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Abstract. We present a timed process calculus for modelling wirelessnetworks in which individual
stations broadcast and receive messages; moreover the broadcasts are subject to collisions. Based on
a reduction semantics for the calculus we define a contextualequivalence to compare the external be-
haviour of such wireless networks. Further, we construct anextensional LTS (labelled transition sys-
tem) which models the activities of stations that can be directly observed by the external environment.
Standard bisimulations in this LTS provide a sound proof method for proving systems contextually
equivalence. We illustrate the usefulness of the proof methodology by a series of examples. Finally
we show that this proof method is also complete, for a large class of systems.

1. Introduction

Wireless networks are becoming increasingly pervasive with applications across many domains,
[42, 1]. They are also becoming increasingly complex, with their behaviour depending on ever
more sophisticated protocols. There are different levels of abstraction at which these can be defined
and implemented, from the very basic level in which the communication primitives consist of send-
ing and receiving electromagnetic signals, to the higher level where the basic primitives allow the
initiation of connections between nodes in a wireless system and the exchange of data between them
[52].

Assuring the correctness of the behaviour of a wireless network has always been difficult. Sev-
eral approaches have been proposed to address this issue fornetworks described at a high level
[38, 33, 17, 16, 49, 27, 7, 10]; these typically allow the formal description of protocols at the
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network layerof the TCP/IP reference model [52]. However there are few frameworks in the lit-
erature which consider networks described at the MAC-Sublayer of theTCP/IP reference model
[28, 34, 8, 54]. This is the topic of the current paper. We propose a process calculus for describing
and verifying wireless networks at theMAC-Sublayerof theTCP/IP reference model.

This calculus, called the Calculus of Collision-prone Communicating Processes (CCCP), has
been largely inspired by TCWS [34]; in particular CCCP inherits its communication features but
simplifies considerably the syntax, the reduction semantics, the notion of observation, and as we
will see the behavioural theory. In CCCP a wireless system isconsidered to be a collection of
wireless stations which transmit and receive messages. Thetransmission of messages isbroadcast,
and it istime-consuming; the transmission of a messagev can require several time slots (or instants).
In addition, wireless stations in our calculus are sensitive tocollisions; if two different stations are
transmitting a value over a channelc at the same time slot then a collision occurs; as a result, the
content of the messages originally being transmitted is lost.

More specifically, in CCCP a state of a wireless network (or simply network, or system) will
be described by aconfigurationof the formΓ ⊲W whereW describes the code running at individual
wireless stations andΓ represents the communication state of channels. At any given point of time
there may beexposedcommunication channels, that is channels containing messages (or values) in
transmission; this information will be recorded inΓ.

Such systems evolve by the broadcast of messages between stations, the passage of time, or
some other internal activity, such as the occurrence of collisions and their consequences. One of
the topics of the paper is to capture formally these complex evolutions, by defining areduction
semantics, whose judgements take the formΓ1 ⊲ W1 _ Γ2 ⊲ W2. We show that the reduction
semantics we propose satisfies some desirable time properties such astime determinism, maximal
progressandpatience[39, 22, 56].

However the main aim of the paper is to develop a behavioural theory of wireless networks
with time-consuming communications. To this end we need a formal notion of when two such
systems are indistinguishable from the point of view of users. Having a reduction semantics it
is now straightforward to adapt a standard notion ofcontextual equivalence: Γ1 ⊲ W1 ≃ Γ2 ⊲W2.
Intuitively this means that either system,Γ1 ⊲ W1 or Γ2 ⊲ W2, can be replaced by the other in a
larger system without changing the observable behaviour ofthe overall system. Formally, we use
the approach of [23, 45], often calledreduction barbed congruence, rather than that of [35]1. The
only parameter in the definition of our contextual equivalence is the choice of primitive observation
or barb; our choice is natural for wireless systems: the ability to transmit on an idle (or unexposed)
channel, that is a channel with no active transmissions.

As explained in papers such as [43, 21], contextual equivalences are determined by so-called
extensional actions, that is the set of minimal observable interactions which a system can have with
its external environment. For CCCP determining these actions is non-trivial. Although values can be
transmitted and received on channels, the presence of collisions means that these are not necessarily
observable. In fact the important point is not the transmission of a value, but its successful delivery.
Also, although the basic notion of observation on systems does not involve the recording of the
passage of time, this has to be taken into account extensionally in order to gain a proper extensional
account of systems.

1See page 106 of [47] for a brief discussion of the difference.
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The extensional semantics determines an LTS (labelled transition system) over configurations,
which in turn gives rise to the standard notion of (weak) bisimulation equivalence between con-
figurations. This gives a powerful co-inductive proof technique: to show that two systems are
behaviourally equivalent it is sufficient to exhibit a witness bisimulation which contains them.

One result of this paper is that weak bisimulation in the extensional LTS is sound with respect
to the touchstone contextual equivalence: if two systems are related by some bisimulation in the
extensional LTS then they are contextually equivalent. In order to show the effectiveness of our
bisimulation proof method we prove a number of non-obvious system equalities. However, the main
contribution of the current paper is that completeness holds for a large class of networks, calledwell-
formed. If two such networks are contextually equivalent then there is some bisimulation, based on
our novel extensional actions, which contains them.

To the best of our knowledge, this is the first result of full abstraction for weak barbed congru-
ence, for a calculus of wireless systems where communication is subject to collisions. Also, the
only other result in the field of which we are aware is the one illustrated in [34]. Here a sound
but not complete bisimulation based proof method is developed for (a different form of) reduction
barbed congruence. In this paper, both soundness and completeness are achieved by simplifying the
calculus and isolating novel extensional actions.

We end this introduction with an outline of the paper. In Section 2 we present the calculus
CCCP. More precisely, Section 2.1 contains the syntax of ourlanguage; Section 2.2 introduces the
intensional semantics; here the adjectiveintensionalis used to stress the fact that the actions of this
semantics correspond to those activities which can be performed by a network. Section 2.3 provides
the reduction semantics, which models the intra-actions that can be performed by a network when
isolated from the external environment.; Section 2.4 defines our touchstone contextually-defined
behavioural equivalence for comparing wireless networks.

In Section 3 we address the problem of defining the minimal observable activities of systems.
These are defined as actions of an extensional semantics in Section 3.1, while in Section 3.2 we
consider the bisimulation principle induced by such actions. Here the adjectiveextensionalis used
to stress the fact that the actions of such a semantics correspond to those activities which can be
observed by the external environment of a network.

In Section 4 we present the main results of the paper. First weprove that our bisimulation proof
technique is sound with respect to the contextual equivalence, Section 4.1. In Section 4.2 we prove
that, for a large class of configurations, called well-formed, our proof technique is also complete.

The usefulness of our bisimulation proof technique is shownin Section 5, where we consider
simple case studies which model common features of wirelessnetworks at the Mac-Layer.

Section 6 concludes the paper with a comparison with the related work.

2. The calculus

As already discusses a wireless system will be represented in our calculus as aconfigurationof the
form Γ ⊲W, whereW describes the code running at individual wireless stationsandΓ is a channel
environment containing the transmission information for channels. A possible evolution of a system
will then be given by a sequence of computation steps:

Γ1 ⊲W1 _ Γ2 ⊲W2 _ . . . . . ._ Γk ⊲Wk . . ._ . . . (2.1)

where intuitively each step corresponds to either the passage of time, a broadcast from a station,
or some unspecified internal computation; the code running at stations evolves as a computation
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Table 1CCCP: Syntax

W ::= P station code∣∣∣ c[x].P active receiver∣∣∣ W1 | W2 parallel composition∣∣∣ νc:(n, v).W channel restriction

P,Q ::= c !〈e〉.P broadcast∣∣∣ ⌊c?(x).P⌋Q receiver with timeout∣∣∣ σ.P delay∣∣∣ τ.P internal activity∣∣∣ P+ Q choice∣∣∣ [b]P,Q matching∣∣∣ X process variable∣∣∣ nil termination∣∣∣ fix X.P recursion

Channel Environment: Γ : Ch→ N × Val

proceeds, but so also does the state of the underlying channel environment. In the following we will
use the meta-variableC to range over configurations.

2.1. Syntax. Formally we assume a set of channelsCh, ranged over byc, d, · · · , and a set of values
Val, which contains a set of data-variables, ranged over byx, y, · · · and a special valueerr; this value
will be used to denote faulty transmissions. The set ofclosed values, that is those not containing
occurrences of variables, are ranged over byv,w, · · · . We also assume that every closed value
v ∈ Val has an associated strictly positive integerδv, which denotes the number of time slots needed
by a wireless station to transmitv. Finally, we assume a language of expressionsExp which can
be built from values inVal; we also assume a function~·�, for evaluating expressions with no
occurrences of data-variables into closed values.

A channel environment is a mappingΓ : Ch → N × Val. In a configurationΓ ⊲ W where
Γ(c) = (n, v) for some channelc, there is a wireless station which is currently transmitting the value
v for the nextn time slots. We will use some suggestive notation for channelenvironments:Γ ⊢t c : n
in place ofΓ(c) = (n,w) for somew, Γ ⊢v c : w in place ofΓ(c) = (n,w) for somen. If Γ ⊢t c : 0 we
say that channelc is idle inΓ, and we denote it withΓ ⊢ c : idle. Otherwise we say thatc is exposed
in Γ, denoted byΓ ⊢ c : exp. The channel environmentΓ such thatΓ ⊢ c : idle for every channelc
is said to bestable. Often we will compare channel environments according to the amount of time
instants for which channels will be exposed; we say thatΓ ≤ Γ′ if, for any channelc, Γ ⊢t c : n
impliesΓ′ ⊢t c : m, for somem such thatn ≤ m.

The syntax for system termsW is given in Table 1, whereP ranges over code for programming
individual stations, which is also illustrated in Table 1. Asystem termW is a collection of individual
threads running in parallel, with possibly some channels restricted. As we will see in Section 5,
channel restriction can be used to model non-flat network topologies.
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Each thread may be either an inactive piece of codeP or an active code of the formc[x].P. This
latter term represents a wireless station which is receiving a value from the channelc; when the
value is eventually received the variablex will be replaced with the received value in the codeP.

The syntax for station code is based on standard process calculus constructs. The main con-
structs are time-dependent reception from a channel⌊c?(x).P⌋Q, explicit time delayσ.P, and broad-
cast along a channelc !〈e〉.P; here the value being broadcast is the one obtained by evaluating evia
the function~·�, provided thatedoes not contain any occurrence of data-variables. Of the remaining
standard constructs the most notable is matching, [b]P,Q which branches toP or Q, depending on
the value of the Boolean expressionb. Such boolean expressions can be either equality tests of the
form e1 = e2, or terms of the form exp(c), which will be used to check whether channelc is exposed,
that is it is being used for transmission.

In the constructfix X.P occurrences of the recursion variableX in P are bound; similarly in the
terms⌊c?(x).P⌋Q andc[x].P the data-variablex is bound inP. This gives rise to the standard notions
of free and bound variables,α-conversion and capture-avoiding substitution; In a configuration of
the formΓ ⊲W, we assume thatW is closed, meaning that all its occurrences of both data-variables
and process variables are bound. In general, we always assume that a system termW is closed,
unless otherwise stated. Sometimes we will need to considersystem terms with free occurrences of
process variables, we will explicitly say that they are opensystem terms. System terms, both open
and closed, are identified up toα-conversion. We assume that all occurrences of recursion variables
areguarded; they must occur within either a broadcast, input residual,timeout branch, time delay
prefix, or within an execution branch of a matching construct. This ensures that recursive calls
cannot be used to build up infinite loops within a time slot

Example 2.1. Consider the configuration

C1 = Γ ⊲ S1 | S2 | R1

where

S1 = c !〈v0〉.nil

S2 = σ.c !〈v1〉.nil

R1 = ⌊c?(x).P⌋nil

andΓ is the stable channel environment. Further, we assume thatδv0 = 2 andδv1 = 1. This
configuration contains two sender stations, running the codeS1 andS2, respectively, and a receiving
station, running the codeR1. In the first time slot, the station running the codeS1 broadcasts the
valuev0 along channelc. The station running the codeR1 starts receiving such a value and it will
be busy in receiving it for the next two time slots. In the firsttime slot the station running the code
S2 is idle. It is only in the second time slot that this station will broadcast a value along channelc.
At this point the receiving station will be exposed to two transmissions; the transmission of value
v0, which is still in progress, and the transmission of valuev1. As a result, a collision happens, and
the value received by the receiver will be at the end error valueerr.

The formal behaviour of the configurationC1 will be explained in Example 2.17.

We use a number of notational conventions.
∏

i∈I Wi means the parallel composition of all
stationsWi, for i ∈ I . We identify

∏
i∈I Wi with nil if I = ∅. We will omit trailing occurrences ofnil,

renderνc :(n, v).W asνc.W when the values (n, v) are not relevant to the discussion, and useνc̃.W
as an abbreviation for a sequence ˜c of such restrictions. We write⌊c?(x).P⌋ for ⌊c?(x).P⌋nil. Finally,
we abbreviate the recursive processfix X.⌊c?(x).P⌋X with c?(x).P; as we will see this is a persistent
listener at channelc waiting for an incoming message.



6 A. CERONE, M. HENNESSY, AND M. MERRO

2.2. Intensional semantics.Our first goal is to formally define computation steps among configur-
ations of the formΓ1 ⊲W1 _ Γ2 ⊲W2. In order to do that, we first define the evolution of system
terms with respect to a channel environmentΓ via a set of SOS rules whose judgements take the

form Γ ⊲W1
λ
−−−→W2, wereλ is an intensional action taking one of the following forms:

(1) c!v, denoting a station starting broadcasting valuev along channelc
(2) σ, denoting the passage of one time slot, or time instant
(3) τ, denoting an internal action
(4) c?v, denoting a station in the external environment starting broadcasting valuev on channelc.
These actionsλ will have an effect also on the channel environment, which we describe by means
of a functional updλ(·) : Env→ Env, whereEnv is the set of channel environments.

Definition 2.2. [Channel Environment update] LetΓ ∈ Env be an arbitrary channel environment
andc ∈ Ch an arbitrary channel. Lettc andvc be the exposure time and the value transmitted along
channelc in Γ, respectively, that isΓ ⊢t c : tc andΓ ⊢v c : vc. For any intensional actionλ, we let
updλ(Γ) be the unique channel environment determined by the following definitions:2

(1) updσ(Γ) ⊢t c : tc − 1 and updσ(Γ) ⊢v c : vc;
(2) for any valuev ∈ Val, let updc!v(Γ) be the channel environment such that

updc!v(Γ) ⊢t c :


δv if Γ ⊢ c : idle
max(δv, tc) if Γ ⊢ c : exp

updc!v(Γ) ⊢v c :


v if Γ ⊢ c : idle
err if Γ ⊢ c : exp

and for any channeld, d , c, let updc!v(Γ) ⊢t d : td and updc!v(Γ) ⊢v d : vd;
(3) for any valuev, updc?v(Γ) = updc!v(Γ);
(4) updτ(Γ) = Γ.

Let us describe the intuitive meaning of this definition. When time passes, the time of exposure
of each channel decreases by one time unit. The predicates updc!v(Γ) and updc?v(Γ) model how
collisions are handled in our calculus. When a station begins broadcasting a valuev over an idle
channelc this channel becomes exposed for the amount of time requiredto transmitv, that isδv.
If the channel is not idle a collision happens. As a consequence, the value that will be received by
a receiving station, when all transmissions over channelc terminate, is the error valueerr, and the
exposure time is adjusted accordingly. Finally the definition of updτ(Γ) reflects the intuition that
internal activities do not affect the exposure state of channels.

Let us turn our attention to the intensional semantics of system terms. For the sake of clarity,

the inference rules for the evolution of system terms,Γ ⊲W1
λ
−−−→ W2, are split in four tables, each

one focusing on a particular form of activity.
Table 2 contains the rules governing transmission. Rule (Snd) models a non-blocking broadcast

of a message along channelc. The valuev sent by processc !〈e〉.P is the one obtained by evaluating
an expressione; note that here we are assuming thate is closed, hence we can evaluate it to a
closed value via the function~·�. A transmission can fire at any time, independently on the state
of the network; the notationσδv represents the time delay operatorσ iteratedδv times. So when
the processc !〈v〉.P broadcasts, it has to waitδv time units (the time required to transmitv) before
the residualP is activated. On the other hand, reception of a message by a time-guarded listener
⌊c?(x).P⌋Q depends on the state of the channel environment. If the channel c is free then rule (Rcv)
indicates that reception can start and the listener evolvesinto the active receiverc[x].P.

2For convenience we assume 0− 1 to be 0.
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Table 2 Intensional semantics: transmission

(Snd)
~e� = v

Γ ⊲ c !〈e〉.P
c!v
−−−−→ σδv.P

(Rcv)
Γ ⊢ c : idle

Γ ⊲ ⌊c?(x).P⌋Q
c?v
−−−−→ c[x].P

(RcvIgn)
¬rcv(Γ ⊲W, c)

Γ ⊲W
c?v
−−−−→W

(Sync)
Γ ⊲W1

c!v
−−−−→W′1 Γ ⊲W2

c?v
−−−−→W′2

Γ ⊲W1 |W2
c!v
−−−−→W′1 |W

′
2

(RcvPar)
Γ ⊲W1

c?v
−−−−→W′1 Γ ⊲W2

c?v
−−−−→W′2

Γ ⊲W1 |W2
c?v
−−−−→W′1 |W

′
2

Rule (RcvIgn) states that if a system termW is not waiting for a message along a channel
c, or if c is already exposed, then any broadcast alongc is ignored by the configurationΓ ⊲ W.
Here rcv(Γ ⊲ W, c) is a predicate which evaluates to true in the case that inΓ ⊲ W channelc is
not exposed, andW contains among its parallel components at least one non-guarded receiver of
the form ⌊c?(x).P⌋Q which is actively awaiting a message. Formally, we first define a predicate
rcv(W, c) for open terms, which is then lifted to configurations. For open terms we havercv(Γ ⊲W, c)
is defined inductively as

rcv(P, c) = false provided P = c !〈e〉.Q,P = τ.Q or P = X

rcv(⌊d?(x).P⌋Q, c) = true if and only if d = c

rcv(P+ Q, c) = true if and only if rcv(P, c) = true orrcv(Q, c) = true

rcv(fix X.P, c) = true if and only if rcv(P, c) = true

rcv(c[x].P, d) = false always

rcv(W1 |W2, c) = true if and only if rcv(W1, c) = true orrcv(W2, c) = true

rcv(νd.W, c) = true if and only if rcv(W, c) = true, where we assumed , c

Then, for any configurationΓ ⊲ W, we let rcv(Γ ⊲ W, c) = true if and only ifΓ ⊢ c : idle and
rcv(W, c) = true.

The remaining two rules in Table 2 (Sync) and (RcvPar) serve to synchronise parallel stations
on the same transmission [20, 39, 40].

Example 2.3. [Transmission] LetC0 = Γ0 ⊲ W0, whereW0 = c!〈v0〉 | ⌊d?(x).nil⌋(⌊c?(x).Q⌋) |
⌊c?(x).P⌋, with δv0 = 2, andΓ0 a stable environment.

Using rule(Snd)we can inferΓ0 ⊲ c!〈v0〉
c!v0
−−−−−→ σ2; this station starts transmitting the valuev0

along channelc. Rule(RcvIgn)can be used to derive the transitionΓ0 ⊲ ⌊d?(x).nil⌋(⌊c?(x).Q⌋)
c?v0
−−−−−→

⌊d?(x).nil⌋(⌊c?(x).Q⌋), in which the broadcast of valuev0 along channelc is ignored. On the other
hand, Rule(RcvIgn)cannot be applied to the configurationΓ0⊲⌊c?(x).P⌋, since this station is waiting

to receive a value on channelc; however we can derive the transitionΓ0 ⊲ ⌊c?(x).P⌋
c?v0
−−−−−→ c[x].P

using Rule(Rcv).
We can put together the three transitions above using the rule (Sync), leading to the transition

C0
c!v
−−−−→W1, whereW1 = σ

2 | ⌊d?(x).nil⌋(⌊c?(x).Q⌋) | c[x].P.
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Table 3 Intensional semantics: timed transitions

(TimeNil)
Γ ⊲ nil

σ
−−−→ nil

(Sleep)
Γ ⊲ σ.P

σ
−−−→ P

(ActRcv)
Γ ⊢t c : n, n > 1

Γ ⊲ c[x].P
σ
−−−→ c[x].P

(EndRcv)
Γ ⊢t c : 1, Γ ⊢v c = w

Γ ⊲ c[x].P
σ
−−−→ {w/x}P

(Timeout)
Γ ⊢ c : idle

Γ ⊲ ⌊c?(x).P⌋Q
σ
−−−→ Q

Example 2.4. [Ignored Receptions] Consider the configurationC = Γ ⊲ c!〈v〉 | ⌊c?(x).P⌋Q, where
δv = 1 andΓ is such thatΓ ⊢ c : exp, sayΓ ⊢t c : 1. Using the rules introduced so far we can derive

C
c!v
−−−−→ Γ ⊲ σ | ⌊c?(x).P⌋Q (2.2)

describing the unblocked sending of the valuev along the channelc. This can be inferred using

Rule (Sync) from Γ ⊲ c!〈v〉
c!v
−−−−→ σ, which can be inferred using Rule(Snd), and the judgement

Γ⊲⌊c?(x).P⌋Q
c?v
−−−−→ ⌊c?(x).P⌋Q. This latter can be inferred using Rule(RcvIgn), becauseΓ ⊢ c : exp

means thatrcv(Γ ⊲ ⌊c?(x).P⌋Q, c) = false.
In the transition (2.2) above the receiver⌊c?(x).P⌋Q ignores the transmission ofv alongc. One

might have expected it to accept this value. However the channel is already exposed,Γ ⊢ c : exp,
and thus the receptor can not properly synchronise properlywith the sender. We will see later, in
Example 2.7, that a transmission errors actually occurs.

The transitions for modelling the passage of time,Γ ⊲W
σ
−−−→ W′, are given in Table 3. Rules

(TimeNil) and (Sleep) are straightforward. In rules (ActRcv) and (EndRcv) we see that the active
receiverc[x].P continues to wait for the transmitted value to make its way through the network;
when the allocated transmission time elapses the value is then delivered and the receiver evolves
to {w/x}P. Finally, Rule (Timeout) implements the idea that⌊c?(x).P⌋Q is a time-guarded receptor;
when time passes it evolves into the alternativeQ. However this only happens if the channelc is not
exposed. What happens if it is exposed is explained in Table 4.

Example 2.5. [Passage of Time] LetC1 = Γ1 ⊲ W1, whereΓ1(c) = (2, v0), Γ1 ⊢ d : idle and
W1 = σ

2 | ⌊d?(x).nil⌋⌊c?(x).Q⌋ | c[x].P is the system term derived in Example 2.3. We show how
a σ-action can be derived for this configuration. First note that Γ1 ⊲ σ

2 σ
−−−→ σ; this transition

can be derived using Rule(Sleep). Sinced is idle in Γ1, we can apply Rule(TimeOut) to infer the
transitionΓ1 ⊲ ⌊d?(x).nil⌋(⌊c?(x).Q⌋)

σ
−−−→ ⌊c?(x).Q⌋; time passed before a value could be broadcast

along channeld, causing a timeout in the station waiting to receive a value along d. Finally, since
Γ1 ⊢v c : 2, we can use Rule(ActRcv) to deriveΓ1 ⊲ c[x].P

σ
−−−→ c[x].P.

At this point we can use twice Rule(TimePar)(which is given in Table 5) to infer aσ-action
performed byC1. This leads to the transitionC1

σ
−−−→W2, whereW2 = σ | ⌊c?(x).Q⌋ | c[x].P.

Table 4 is devoted to internal transitionsΓ ⊲ W
τ
−−−→ W′. Let us first explain rule (RcvLate).

Intuitively the process⌊c?(x).P⌋Q is ready to start receiving a value on channelc. However if c
is exposed this means that a transmission is already taking place. Since the process has therefore
missed the start of the transmission it will receive an errorvalue. Thus the rule (RcvLate) reflects the
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Table 4 Intensional semantics: - internal activity

(RcvLate)
Γ ⊢ c : exp

Γ ⊲ ⌊c?(x).P⌋Q
τ
−−−→ c[x].{err/x}P

(Tau)
Γ ⊲ τ.P

τ
−−−→ P

(Then)
~b�Γ = true

Γ ⊲ [b]P,Q
τ
−−−→ σ.P

(Else)
~b�Γ = false

Γ ⊲ [b]P,Q
τ
−−−→ σ.Q

fact that in wireless systems a collision takes place if there is a misalignment between the transmis-
sion and reception of a message. The remaining rules are straightforward. Note that in the matching
construct we use a channel environment dependent evaluation function for Boolean expressions
~b�Γ (note that this has not to be confused with the function~·�, used to evaluate closed expres-
sions), because of the presence of the exposure predicate exp(c) in the Boolean language. Formally
we have that~e1 = e2�Γ = true evaluates to true if and only if~e1� = ~e2�, and~exp(c)�Γ = true
if and only if Γ ⊢ c : exp. We remark that checking for the exposure of a channel amounts to
listening on the channel for a value. But in wireless systemsit is not possible to both listen and
transmit within the same time unit, as communication is half-duplex, [42]. As a consequence in our
intensional semantics, in the rules (Then) and (Else), the execution of both branches is delayed of
one time unit.

Example 2.6. Let Γ2 be a channel environment such thatΓ2(c) = (1, v), and consider the configura-
tion C2 = Γ2 ⊲W2, whereW2 = σ | ⌊c?(x).Q⌋ | c[x].P has been defined in Example 2.5.

Note that this configuration contains both a receiver process and an active receiver along the
exposed channelc. We can think of the receiver⌊c?(x).Q⌋ as a process which missed the synchron-
isation with a broadcast which has been previously performed along channelc; as a consequence
this process is doomed to receive an error value.

This situation is modelled by Rule(RcvLate), which allows us to infer the transitionΓ2 ⊲

⌊c?(x).Q⌋
τ
−−−→ c[x].{err/x}Q. As we will see, Rule(TauPar)which we introduce in Table 5, en-

sures thatτ-actions are contextual. This means that the transition derived above allows us to infer
the transitionC2

τ
−−−→W3, whereW3 = σ | c[x].{err/x}Q | c[x].P.

Example 2.7. [On rules(RcvIgn)and(RcvLate)] Consider again the configurationC of Example 2.4.
Recall thatC = Γ ⊲ c!〈v〉 | ⌊c?(x).P⌋Q, whereΓ ⊢v c : 1 andδv = 1. In Example 2.4 we have

shown thatC
c!v
−−−−→ σ | ⌊c?(x).P⌋Q, where the proof of the transition contains an application of Rule

(RcvIgn). This transition represents the unblocked transmission ofthe valuev along the channel
c, which also changes the channel environment fromΓ to updc!v(Γ). Now consider the resulting
configurationC′ = updc!v(Γ) ⊲ σ | ⌊c?(x).P⌋Q. As updc!v(Γ) ⊢ c : exp we can use Rule(RcvLate)3,

to infer the transitionC′
τ
−−−→ σ | c[x].{err/x}P, modelling the expected error in transmission along

channelc due to a collision.
Note also that we could have applied Rule(RcvLate)directly to the initial configurationC =

Γ ⊲ c!〈v〉 | ⌊c?(x).P⌋Q, leading to the transitionC
τ
−−−→ c!〈v〉 | c[x].{err/x}P, again reflecting an error

in transmission along the channelc due to the fact that it is already exposed. In fact we have the
transitionΓ ⊲W | ⌊c?(x).P⌋Q

τ
−−−→ W | c[x].{err/x}P, regardless of the form ofW. This emphasises

3An application of Rule(TauPar)from Table 5 is also required.
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Table 5 Intensional semantics: - structural rules

(TimePar)
Γ ⊲W1

σ
−−−→W′1 Γ ⊲W2

σ
−−−→W′2

Γ ⊲W1 | W2
σ
−−−→W′1 | W

′
2

(TauPar)
Γ ⊲W1

τ
−−−→W′1

Γ ⊲W1 |W2
τ
−−−→W′1 | W2

(Rec)
Γ ⊲ {fix X.P/X}P

λ
−−−→W

Γ ⊲ fix X.P
λ
−−−→W

(Sum)
Γ ⊲ P

λ
−−−→W λ ∈ {τ, c!v}

Γ ⊲ P+ Q
λ
−−−→W

(SumTime)
Γ ⊲ P

σ
−−−→ P′ Γ ⊲ Q

σ
−−−→ Q′

Γ ⊲ P+ Q
σ
−−−→ P′ + Q′

(SumRcv)
Γ ⊲ P

c?v
−−−−→W rcv(Γ ⊲ P, c)

Γ ⊲ P+ Q
c?v
−−−−→W

(ResI)
Γ[c 7→ (n, v)] ⊲W

c!v
−−−−→W′

Γ ⊲ νc:(n, v).W
τ
−−−→ νc:updc!v(Γ)(c).W′

(ResV)
Γ[c 7→ (n, v)] ⊲W

λ
−−−→W′, c < λ

Γ ⊲ νc:(n, v).W
λ
−−−→ νc:(n, v).W

the fact that the inability of the receiver to receive correctly the value being transmitted is because
the channel is already exposed and not because another station is willing to broadcast along it.

Remark 2.8. The previous example together with Example 2.4 shows that there is a delicate inter-
play between the rules(RcvIgn)and(RcvLate), particularly when modelling the effect of an external
broadcast on receivers in the presence of exposed channels.The overall goal of our intensional
semantics is to ensure that it has certain natural properties, such asinput-enabledness. This ensures

that for any configurationΓ ⊲W and anyc?v there exists some transitionΓ ⊲W
c?v
−−−−→ W′. HereW′

records the effect of an external broadcast ofv alongc has on the configuration; if the broadcast is ac-
tually ignored by all stations in the configuration thenW′ will coincide with W. Input-enabledness
also helps us in ensuring that broadcasts are independent oftheir environment. For example, we
require the configuration (Γ ⊲ c!〈v〉 | W) to be able to perform the broadcast of valuev along channel
c, regardless of the structure ofW, even ifc is exposed inΓ. Such a transition can only be inferred
from Rule(Sync)if we we match the output action along channelc performed by the configuration
Γ ⊲c!〈v〉 with an input action performed byΓ ⊲W. Input-enablednesswill ensure that the latter input
action is always possible.

In Section 2.2 we will show that our intensional semantics infact satisfies a number of natural
properties, includinginput-enabledness; see Lemma 2.9. This would obviously be not true if, by
omitting Rule(Rcvlgn), we were to forbid inputs over exposed channels.

The final set of rules, in Table 5, are structural. Rule (TimePar) models howσ-actions are
derived for collections of threads. Rules (TauPar), (Rec) and (Sum) are standard. Rule (SumTime)
is necessary to ensuretime determinism(see Proposition 2.10). Rule (SumRcv) guaranteed that
only effective receptions can decide in a choice process. Finally Rules (ResI) and (ResV) show
how restricted channels are handled. Intuitively moves from the configurationΓ ⊲ νc :(n, v).W are
inherited from the configurationΓ[c 7→ (n, v)] ⊲W; here the channel environmentΓ[c 7→ (n, v)] is
the same asΓ except thatc has associated with it (temporarily) the information (n, v). However if
this move mentions the restricted channelc then the inherited move is rendered as an internal action
τ, (ResI). Moreover the information associated with the restricted channel in the residual is updated,
using the function updc!v(·) previously defined. Rules (TauPar), (Sum) and (SumRcv) have their
symmetric counterparts.
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In the remainder of this section we illustrate some of the main properties enjoyed by the inten-
sional semantics illustrated in Section 2.2. The contents of this part are purely technical and needed
only for the proofs of the results illustrated later in the paper: they may be safely skipped by the
reader not interested in details.

In broadcast process calculi transmission of a value is usually modelled as a non-blocking
action [40, 34, 10], meaning that all configurations should always be able to receive an arbitrary
value along an arbitrary channel. This is a derived propertyof our calculus:

Lemma 2.9. [Input enabledness] LetΓ ⊲W be a configuration. Then for any channelc and valuev

we have thatΓ ⊲W
c?v
−−−−→W′ for someW′; further

(1) ¬rcv(Γ ⊲W, c) impliesW′ =W

(2) rcv(Γ ⊲W, c) impliesW′ ,W, and for every valuew, Γ ⊲W
c?w
−−−−−→W′.

Proof. See the Appendix, Page 47.

Our model of time also conforms to a well-established approach in the literature; see for ex-
ample [39, 56]:

Proposition 2.10. [Time Determinism] SupposeC
σ
−−−→W1 andC

σ
−−−→W2. ThenW1 = W2.

Proof. By induction on the proof of the transitionC
σ
−−−→W1. See the Appendix, Page 49 for details.

Proposition 2.11. [Maximal Progress] SupposeC
σ
−−−→ W1. If λ ∈ {τ, c!v}, for somec andv, then

there is noW2 such thatC
λ
−−−→W2.

Proof. By induction on the proof of the derivationC
σ
−−−→ W1. See the Appendix, Page 49 for

details.

Another important property concerns the exposure state of channel environments. This property
states that non-timed transitions are identified up-to channel environments which share the same set
of idle channels.

Proposition 2.12. [Exposure Consistency] LetΓ1, Γ2 be two channel environments such thatΓ1 ⊢

c : exp if and only if Γ2 ⊢ c : exp for every channelc. Then for any system termW and action

λ , σ, Γ1 ⊲W
λ
−−−→W′ impliesΓ2 ⊲W

λ
−−−→W′.

Proof. By Induction on the proof of the derivationΓ1 ⊲W
λ
−−−→ W′. See the Appendix, Page 50 for

details.

We end our discussion on the intensional semantics with a technical result on the interaction
between stations in systems; this will be useful in later developments.

Proposition 2.13. [Parallel components] LetΓ ⊲W1 |W2 be a configuration.

(1) Γ ⊲W1 |W2
τ
−−−→W if and only if

• either there isW′1 such thatΓ ⊲W1
τ
−−−→W′1 with W =W′1 |W2

• or there isW′2 such thatΓ ⊲W2
τ
−−−→W′2 with W =W1 |W′2.

(2) Γ ⊲W1 | W2
c?v
−−−−→W if and only if there areW′1 andW′2 such thatΓ ⊲W1

c?v
−−−−→W′1, Γ ⊲W2

c?v
−−−−→

W′2 andW =W′1 | W
′
2.

(3) Γ ⊲W1 |W2
c!v
−−−−→W if and only if there areW′1 andW′2 such that
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• Γ ⊲W1
c!v
−−−−→W′1, Γ ⊲W2

c?v
−−−−→W′2 andW =W′1 |W

′
2

• or Γ ⊲W1
c?v
−−−−→W′1, Γ ⊲W2

c!v
−−−−→W′2 andW =W′1 | W

′
2.

(4) Γ ⊲W1 |W2
σ
−−−→W if and only if there areW′1 andW′2 such thatΓ ⊲W1

σ
−−−→W′1, Γ ⊲W2

σ
−−−→W′2

andW =W′1 |W
′
2.

Proof. Details for (3) are given in the Appendix; see Page 50. The other three statements can be
proved similarly.

2.3. Reduction semantics.We are now in a position to formally define the individual computation
steps for wireless systems, alluded to informally in (2.1) above.

Definition 2.14. [Reduction] We writeΓ ⊲W _ Γ′ ⊲W′ if

(i) (Transmission)Γ ⊲W
c!v
−−−−→W′ for some channelc and valuev, whereΓ′ = updc!v(Γ)

(ii) (Time) Γ ⊲W
σ
−−−→W′ andΓ′ = updσ(Γ)

(iii) (Internal) Γ ⊲W
τ
−−−→W′ andΓ′ = updτ(Γ).

The intuition here should be obvious; computation proceedseither by the transmission of values
between stations, the passage of time, or internal activity; further, the exposure state of channels is
updated according to the performed transition.

Sometimes it will be useful to distinguish between instantaneous reductions and timed reduc-
tions; instantaneous reductions,Γ1 ⊲W1 _i Γ2 ⊲W2, are those derived via clauses (i) or (iii) above;
timed reductions are denoted with the symbol_σ and coincide with reductions derived using clause
(ii). We use the notationΓ ⊲W _i (Γ ⊲W _σ) if there existsΓ′ ⊲W′ such thatΓ ⊲W _i Γ

′ ⊲W′

(Γ ⊲W _σ Γ
′ ⊲W′), andΓ ⊲W 6_i (Γ ⊲W 6_σ) to stress that there is no configurationΓ′ ⊲W′ such

thatΓ ⊲W _i Γ
′ ⊲W′ (Γ ⊲W _i Γ

′ ⊲W′).

Example 2.15. We show how the transitions we have inferred in the Examples 2.3, 2.5 and 2.6
can be combined together to derive a computation fragment for the configurationC0 considered in
Example 2.3.

Let Ci = Γi ⊲Wi , i ∈ 0, .., 2, be as defined in the examples mentioned above. Note thatΓ1 =

updc!v0
(Γ0) andΓ2 = updσ(Γ1). We have already shown thatC0

c!v0
−−−−−→ W1; this transition, together

with the equalityΓ1 = updc!v0
(Γ0), can be used to infer the reductionC0 _i C1. A similar argument

shows thatC1 _σ C2. Finally, if we letC3 denoteΓ2 ⊲W3 we also haveC2 _i C3 sinceC2
τ
−−−→W3

andΓ2 = updτ(Γ2).

Example 2.16. [Time-consuming transmission] Consider a wireless systemwith two stations, that
is a configurationC1 of the formΓ1 ⊲ P1 | Q1. Let us suppose

P1 is c !〈w〉.R, Q1 is ⌊c?(x).S⌋T1

whereΓ1 is a stable channel environment andδw = 2. Then

C1 _ C2 (2.3)

whereC2 has the formΓ2 ⊲ P2 | Q2 and

P2 is σ2.R Q2 is c[x].S Γ2 ⊢t c : 2 Γ2 ⊢v c : w
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The move fromP1 to P2 is via an application of the rule (Snd), fromQ1 to Q2 relies on (Rcv) and

they are combined together using (Sync) to obtainΓ1 ⊲ P1 | Q1
c!w
−−−−−→ P2 | Q2. The final step (2.3)

results from (Transmission) in Definition 2.14.
The next stepC2 _ C3 = Γ3 ⊲ σ.R | Q2 is via (Time) in Definition 2.14; here the only change

to the channel environment is thatΓ3 ⊢t c : 1. The inference of the transition

Γ2 ⊲ P2 | Q2
σ
−−−→ σ.R | Q2

uses the rules (Sleep), (ActRcv) and (TimePar).
The final move we consider,C3 _ C4 = Γ ⊲ R | {w/x}S, is another instance of (Time). However

here the delay action is inferred using (Sleep), (EndRcv) and (TimePar). Thus in three reduction
steps the valuew has been transmitted from the first station to the second one along the channelc,
in two units of time.

Now suppose we changeP1 to P′1 = σ.P1, obtaining thus the configurationC′1 = Γ1 ⊲ P′1 | Q1.
Then the first step,C′1 _ C′2 is a (Time) step, withC′2 = Γ1 ⊲ P1 | T1. Here an instance of the
rule (Timeout) is used in the transition fromQ1 to T1. In C′2 the stationP1 is now ready to transmit
on channelc, but the second station has stopped listening. The next stepdepends on the exact
form of T1; if for examplercv(T1, c) is false then by an application of rule (RcvIgn) we can derive
C′2 _ C′3 = Γ2 ⊲ P2 | T1. Here the transmission ofw alongc started but nobody was listening.

Finally, supposeT1 is a delayed listener on channelc, sayσ.T2 whereT2 is ⌊c?(y).S2⌋U2. Then
we have the (Time) stepC′3 _ C′4 = Γ3 ⊲ σ.R | T2 and now the second station,T2, is ready to
listen. However, asΓ3 ⊢ c : exp, stationT2 is joining the transmission too late. To reflect this we
can derive the (Internal) step

C′4 _ C′5 = Γ3 ⊲ σ.R | c[y].{err/y}S2

using the rules (RcvLate) and (TauPar), among others. At theend of the transmission, in one more
time step, the second station will therefore end up with an error in reception.

In the revised systemC′1 = Γ1 ⊲ σ.P′1 | Q1 the second station missed the delayed transmission
from P′1. However we can change the code at the second station to accommodate this delay, by
replacingQ1 with the persistent listenerQ′1 = c?(x).S. We leave the reader to check that starting
from the configurationΓ1 ⊲ σ.P′1 | Q′1 the valuew will be successfully transmitted between the
stations in four reduction steps.

Example 2.17. [Collisions] Let us now consider again the configurationC1 = Γ ⊲ S1 | S2 | R1 of
Example 2.1. In this configuration the stationS1 can perform a broadcast, leading to the reduction
C1 _ C2 = Γ1 ⊲ σ

2 | S2 | c[x].P, the derivation of which requires an instance of the rule(RcvIgn),

Γ ⊲S1
c?v1
−−−−−→ S1; here the channel environmentΓ1 is defined as updc!v0

(Γ), leading toΓ1(c) = (2, v0).
We can now derive the reductionC2 _ C3 = Γ2 ⊲ σ | c!〈v1〉 | c[x].P, whereΓ2 = updσ(Γ1) meaning
thatΓ2 ⊢t c : 1.

In this configuration the second station is ready to broadcast valuev1 along channelc. Since
there is already a value being transmitted along this channel, we expect this second broadcast to
cause a collision; further, since the amount of time required for transmitting valuev1 is equal to the
time needed to end the transmission of valuev0, we expect that the broadcast performed by the first
station does not affect the amount of time for which the channelc is exposed.

Formally this is reflected in the reductionC3 _ C′3 = Γ
′
2 ⊲ σ | σ | c[x].P. Here the reduction of

the system term uses the sub-inferencesΓ2 ⊲ σ
c?v1
−−−−−→ σ, Γ2 ⊲ c!〈v1〉

c!v1
−−−−−→ σ andΓ2 ⊲ c[x].P

c?v1
−−−−−→

c[x].P; the first and the third of these transitions can be derived using Rule(RcvIgn), while the second
one can be derived using Rule(Bcast). ConsequentlyΓ′2 = updc!v1

(Γ2), and sinceΓ2 ⊢ c : exp we
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obtainΓ′2(c) = (1, err); this represents the fact that a collision has occurred, and thus the special
valueerr will eventually be delivered onc.

At this point we can derive the reductionsC′3 _σ C4 = Γ ⊲ nil | nil | {err/x}P, meaning that
the transmission along channelc terminates in one time instant, leading the receiving station to
detect a collision. The reduction above can be obtained fromthe transitionsΓ′2 ⊲ σ

σ
−−−→ nil and

Γ′2 ⊲ c[x].P
σ
−−−→ {err/x}P, obtained via rules (TimeNil) and (EndRcv) presented in Table 3.

Now, suppose we change the amount of time required to transmit valuev1 from 1 to 2, and
consider again the configurationC3 above. In this case the transmission of valuev1 will also cause a
collision; however, in this case the transmission of valuev1 is long enough to continue after that of
valuev0 has finished; as a consequence, we expect that the time required for channelc to be released
rises when the broadcast ofv1 happens.

In fact, in this case we have the reductionC3 _ C′′3 = Γ
′′
2 ⊲ σ | σ

2 | c[x].P, whereΓ′′2 =
updc!v1

(Γ2) and specificallyΓ′′2 (c) = (2, err). Now, two time instants are needed for the transmission
along channelc to end, leading to the sequence of (timed) reductionsC′′3 _σ_σ C4.

2.4. Behavioural Equivalence. In this section we propose a notion of timed behavioural equival-
ence for our wireless networks. Our touchstone system equality is reduction barbed congruence
[23, 46, 35, 25], a standard contextually defined process equivalence. Intuitively, two terms are re-
duction barbed congruent if they have the samebasic observables, in all parallel contexts, under all
possiblecomputations. The formal definition relies on two crucial concepts, a reduction semantics
to describe how systems evolve, which we have already defined, and a notion of basic observable
which says what the environment can observe directly of a system. There is some choice as to what
to take as a basic observation, orbarb, of a wireless system. In standard process calculi this is
usually taken to be the ability of the environment to receivea value along a channel. But the series
of examples we have just seen demonstrates that this is problematic, in the presence of possible col-
lisions and the passage of time. Instead we choose a more appropriate notion for wireless systems,
one which is already present in our language for station code: channel exposure.

Definition 2.18. [Barbs] We say the configurationΓ ⊲W has astrong barb on c, writtenΓ ⊲W ↓c, if
Γ ⊢ c : exp. We writeΓ ⊲W ⇓c, aweak barb, if there exists a configurationC′ such thatΓ ⊲W _

∗ C′

andC′ ↓c. Note that we allow the passage of time in the definition of weak barb.

Definition 2.19. LetR be a relation over configurations.

(1) R is said to bebarb preservingif Γ1 ⊲W1⇓c impliesΓ2 ⊲W2 ⇓c, whenever (Γ1 ⊲W1) R (Γ2 ⊲W2).
(2) It is reduction-closedif (Γ1⊲W1) R (Γ2⊲W2) andΓ1⊲W1 _ Γ′1⊲W

′
1 imply there is someΓ′2⊲W

′
2

such thatΓ2 ⊲W2 _
∗ Γ′2 ⊲W′2 and (Γ′1 ⊲W′1) R (Γ′2 ⊲W′2).

(3) It is contextualif Γ1 ⊲W1 R Γ2 ⊲W2, impliesΓ1 ⊲ (W1 | W) R Γ2 ⊲ (W2 | W) for all processes
W.

With these concepts we now have everything in place for a standard definition of contextual
equivalence between systems:

Definition 2.20. [Reduction barbed congruence], written≃, is the largest symmetric relation over
configurations which is barb preserving, reduction-closedand contextual.
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In the remainder of this section we explore via examples the implications of Definition 2.20.
The notion of a fresh channel will be important; we say thatc is freshfor the configurationΓ ⊲W
if it does not occur free inW andΓ ⊢ c : idle. Note that we can always pick a fresh channel for an
arbitrary configuration.

Example 2.21. Let us assume thatΓ ⊢ c : idle. Then it is easy to see that

Γ ⊲ c !〈v0〉.P ; Γ ⊲ c !〈v1〉.P (2.4)

under the assumption thatv0 andv1 are different values. For letT be the testing context

⌊c?(x).[x = v0]eureka!〈ok〉, nil⌋

whereeurekais fresh, andok is some arbitrary value. ThenΓ ⊲ c !〈v0〉.P | T has a weak barb on
eurekawhich is not the case forΓ ⊲ c !〈v1〉.P | T. Since≃ is contextual and barb preserving, the
statement (2.4) above follows.

However such tests will not distinguish betweenΓ ⊲ Q1 andΓ ⊲ Q2, where

Q1 = c!〈v0〉 | c !〈v1〉.P and Q2 = c!〈v1〉 | c !〈v0〉.P

assuming thatδv0 = δv1. In both configurationsΓ ⊲Q1 andΓ ⊲Q2 a collision will occur at channelc
and a receiving station, such asT, will receive the error valueerr at the end of the transmission. So
there is reason to hope thatΓ ⊲Q1 ≃ Γ ⊲Q2. However we must wait for for the proof techniques of
the next section to establish this equivalence; see Example3.5.

The above example suggests that transmitted values can be observed only at the end of a trans-
mission; so if a collision happens, there is no possibility of determining the value that was originally
broadcast. This concept is stressed even more in the following example.

Example 2.22. [Equating values] LetΓ be a stable channel environment,W0 = c!〈v0〉,W1 = c!〈v1〉

and consider the configurationsΓ⊲W0, Γ⊲W1; here we assume thatv0 andv1 are two different values
with possibly different transmission times.

We already argued in Example 2.21 that these two configurations can be distinguished by the
context

⌊c?(x).[x = v0]eureka!〈ok〉, nil⌋

However, the two configurations above can be made indistinguishable if we add to each of them
a parallel component that causes a collision on channelc. To this end, let

Eq(v0, v1) = σh.c!〈ok〉

for some positive integerh and valueok such thath < min (δv0, δv1) andδok ≥ max (δv0, δv1) − h.
Now, consider the configurationsC0 = Γ ⊲W0 | Eq(v0, v1), C1 = Γ ⊲W1 | Eq(v0, v1).

One could hope that there exists a context which is able to distinguish these two configurations.
However, before the transmission ofv0 ends inC0, a second broadcast along channelc will fire,
causing a collision; the same happens before the end of transmission of valuev1 in C1. Further, the
total amount of time for which channelc will be exposed is the same for both configurations, so that
one can argue that it is impossible to provide a context whichis able to distinguishC0 from C1. In
order to prove this to be formally true, we have to wait until the next section.
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Collisions can also be used to merge two different transmissions on the same channel in a single
corrupted transmission.

Example 2.23.[Merging Transmissions] LetΓ be a stable channel environment,W0 = c !〈v0〉.c!〈v1〉,
W1 = c !〈v1〉.c!〈v0〉. In Γ⊲W0 a broadcast of valuev0 along channelc can fire; when the transmission
of v0 is finished, a second broadcast of valuev1 along the same channel can also fire. The behaviour
of Γ ⊲W1 is similar, though the order of the two values to be broadcastis swapped. Note that it is
possible to distinguish the two configurationsΓ ⊲W0 andΓ ⊲W1 using the test

⌊c?(x).[x = v0]eureka!〈ok〉, nil⌋

we have already seen in the previous example.
However suppose now that we add a parallel component to both configurations which broad-

casts another value along channelc before the transmission of valuev0 (v1) has finished, and which
terminates after the broadcast of valuev1 (v0) has begun. More formally, let

Mrg(v0, v1) = σh.c!〈ok〉

whereh = min(δv0, δv1) − 1 andδok = |δv0 − δv1 | + 2.
Consider the configurationsΓ ⊲W0 | Mrg(v0, v1), Γ ⊲W1 | Mrg(v0, v1). In both configurations

a collision occurs; further, once the transmission of valuev0 has begun in the former configuration,
channelc will remain exposed until the transmission of valuev1 has finished. A similar behaviour
can be observed on the second configuration. This leads to theintuition thatΓ ⊲W0 | Mrg(v0, v1) ≃
Γ′ ⊲W1 | Mrg(v0, v1); we prove this in Example 3.7, for a particular instance of transmission values
for v0, v1.

A priori reductions ignore the passage of time, and therefore one might suspect that reduction
barbed congruence is impervious to the precise timing of activities. But the next example demon-
strates that this is not the case.

Example 2.24. [Observing the passage of time] Consider the two processesQ1 = c!〈v0〉 andQ2 =

σ.Q1, and again let us assume thatΓ ⊢ c : idle. There is very little difference between the behaviours
of Γ⊲Q1 andΓ⊲Q2; both will transmit (successfully) the valuev0, although the latter is a little slower.
However this slight difference can be observed. Consider the testT defined by

[exp(c)]eureka!〈ok〉, nil

In fact,Γ ⊲ (Q1 | T) can start a transmission along channelc, after which the predicate exp(c) will
be evaluated in the system termT. The resulting configuration is given byΓ′ ⊲ σδv0 | σ.eureka!〈ok〉;
at this point, it is not difficult to note that the configuration has a weak barb oneureka.

On the other hand, theuniquereduction fromC2 = Γ ⊲ (Q2 | T) leads to the evaluation of the
exposure predicate exp(c); sinceΓ ⊢ c : idle the only possibility for the resulting configuration is
given byC′2 = Γ ⊲Q2 | σ. Sinceeurekais a fresh channel, it is now immediate to note thatC′2 6⇓eureka

and hence alsoC2 6⇓eureka. For the test to work correctly it is essential thatΓ ⊢ c : idle. Here we
would like to point out that using the proof methodology developed in Section 3.2 we are able to
show that ifΓ′ ⊢t c : n andn > δv0 thenΓ′ ⊲ Q1 ≃ Γ

′ ⊲ Q2.

Behind this example is the general principle that reductionbarbed congruence is actually sens-
itive to the passage of time; this is proved formally in Proposition 4.17 of Section 4.2.

Example 2.25. As a final example we illustrate the use of channel restriction. Assume thatv1 and
v2 are some kind of values which can be compared via a (total) order relation4. Consider the
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Table 6Extensional actions

(Input)
Γ ⊲W

c?v
−−−−→W′

Γ ⊲W
c?v
7−→ updc?v(Γ) ⊲W′

(Time)
Γ ⊲W

σ
−−−→W′

Γ ⊲W
σ
7−→ updσ(Γ) ⊲W′

(Shh)
Γ ⊲W

c!v
−−−−→W′

Γ ⊲W
τ
7−→ updc!v(Γ) ⊲W′

(TauExt)
Γ ⊲W

τ
−−−→W′

Γ ⊲W
τ
7−→ Γ ⊲W′

(Deliver)
Γ(c) = (1, v) Γ ⊲W

σ
−−−→W′

Γ ⊲W
γ(c,v)
7−→ updσ(Γ) ⊲W′

(Idle)
Γ ⊢ c : idle

Γ ⊲W
ι(c)
7−→ Γ ⊲W

configuration
Γ ⊲ νc : (0, ·).(c!〈v1〉 | Pe | R) where the station code is given by

Pe = σ.fix X.([exp(c)]X, c!〈v2〉)

R= c?(x).R1

R1 = c?(y).[y 4 x]d!〈x〉, d!〈y〉

Intuitively the receiverR waits indefinitely for two values along the restricted channel c and broad-
casts the largest on channeld. Intuitively the use of channel restriction here sheltersc from external
interference. AssumingΓ ⊢ d : idle we will be able to show that

Γ ⊲ νc : (0, ·).(c !〈v1〉.nil | Pe | R) ≃ Γ ⊲ σδv1+δv2+2.d !〈w〉.nil

providedw = max(v1, v2).

3. Extensional Semantics

Proving that two configurationsC1 andC2 are barbed congruent can be difficult, due to the contex-
tuality constraint imposed in Definition 2.20. Therefore, we want to give a co-inductive character-
isation of the contextual equivalence≃ between configurations, in terms of a standard bisimulation
equivalence over some extensional LTS. In this section we first present the extensional semantics,
then we recall the standard definition of (weak) bisimulation over configurations. We show, by
means of a number of examples, the usefulness of the actions introduced in the extensional se-
mantics.

3.1. Extensional actions. The extensional semantics is designed by addressing the question: what
actions can be detected by an external observer? Example 2.24 indicates that the passage of time
is observable. The effect of inputs received from the external environment also has to be taken
into account. In contrast, the discussion in Example 2.21 indicates that, due to the possibility of
collisions, the treatment of transmissions is more subtle.It turns out that the transmission itself is
not important; instead we must take into consideration the successful delivery of the transmitted
value.

In Table 6 we give the rules defining the extensional actions,C
α
7−→ C′, which can take one of

the forms:
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• Input: C
c?v
7−→ C′, this is inherited directly from the intensional semantics

• Time:C
σ
7−→ C′, also inherited from the intensional semantics

• Internal: C
τ
7−→ C′, this corresponds to the combination of the Internal and Transmission rules

from the reduction semantics, in Definition 2.14

• Delivery: C
γ(c,v)
7−→ C′, this corresponds to the successful delivery of the valuev which was in

transmission along the channelc

• Free:C
ι(c)
7−→ C, a predicate indicating that channelc is not exposed, and therefore ready to start a

potentially successful transmission.

Remark 3.1. The rules provided in Table 6 guarantee thatτ-extensional actions coincide with
instantaneous reductions. In fact, wheneverΓ ⊲W _ Γ′ ⊲W′ then eitherΓ ⊲W

τ
−−−→ W′, and hence

Γ ⊲W
τ
7−→ Γ′ ⊲W′ follows by an application of Rule(TauExt), with Γ′ = updτ(Γ), orΓ ⊲W

c!v
−−−−→W′

andΓ ⊲W
τ
7−→ Γ′ ⊲W′ is ensured by Rule(Shh), with Γ′ = updc!v(Γ). The opposite implication can

be proved analogously.
Similarly, it is easy to check extensionalσ-actions coincide with timed reductions:Γ ⊲W _σ

Γ′ ⊲W′ if and only if Γ ⊲W
σ
7−→ Γ′ ⊲W′.

3.2. Bisimulation equivalence. The extensional actions of the previous section endows systems
in CCCP with the structure of an LTS. Weak extensional actions in this LTS are defined as usual,

with C
α
�=⇒ C′ denotingC

τ

7−→∗
α
7−→

τ

7−→∗ C′. We will useC �=⇒ C′ to denoteC
τ

7−→∗ C′, and the

formulation of bisimulations is facilitated by the notation C
α̂
�=⇒ C′, which is again standard: for

α = τ this denotesC �=⇒ C′ while for α , τ it is C
α
�=⇒ C′. We now have the standard definition of

weak bisimulation equivalence in the resulting LTS which for convenience we recall.

Definition 3.2. LetR be a binary relation over configurations. We say thatR is a bisimulation if for
every extensional actionα, wheneverC1 R C2

(i) C1
α
7−→ C′1 impliesC2

α̂
�=⇒ C′2, for someC′2, satisfyingC′1 R C

′
2

(ii) conversely,C2
α
7−→ C′2 impliesC1

α̂
�=⇒ C′1, for someC′1, such thatC′1 R C

′
2.

We writeC1 ≈ C2, if there is a bisimulationR such thatC1 R C2.

Our goal is to demonstrate that this form of bisimulation provides a sound and useful proof
method for showing behavioural equivalence between wireless systems described in CCCP; moreover
for a large class of systems it will also turn out to be complete.

The next two examples show that the introduction of the actions ι(c) andγ(c, v) are necessary
for soundness.

Example 3.3. [On the rule(Idle)] Suppose we were to drop the rule(Idle) in the extensional se-
mantics; then consider the configurations

Γ1 ⊲W1 = τ.nil

Γ2 ⊲W2 = c!〈v〉

whereΓ1(c) = (1, v), Γ2(c) = (0, ·) andδv = 1.
If we were to drop the actionsι(c) from the extensional semantics then the extensional LTSs

generated by these two configurations would be isomorphic; recall that a broadcast action in the
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intensional semantics always corresponds to aτ action in its extensional counterpart. Thus they
would be related by the amended version of bisimulation equivalence.

However, we also have thatΓ1⊲W1 ; Γ2⊲W2. This can be proved by exhibiting a distinguishing
context. To this end, consider the systemT = [exp(c)]nil, eureka!〈ok〉. ThenΓ2 ⊲W2 | T has a weak
barb on the channel eureka, which obviouslyΓ2 ⊲W1 | T can not match.

Example 3.4. [On the rule(Deliver)] Consider the configurationΓ2⊲W2 from the previous example;
consider also the configurationΓ2 ⊲W3, whereW3 = c!〈w〉 for some valuew, different fromv, such
thatδw = 1. Finally, letT′ = ⌊c?(x).[x = v]eureka!〈ok〉, nil⌋. Then, assumingw is different fromv,
Γ2 ⊲W3 | T′ can not produce a barb on eureka. On the other hand,Γ2 ⊲W2 | T′ can produce such a
barb. It follows thatΓ2 ⊲W2 ; Γ2 ⊲W3.

Note also thatΓ2 ⊲W3 0 Γ2⊲W2, since the (weak) actionΓ2 ⊲W3
γ(c,w)
�=⇒ Γ ⊲nil cannot be matched

by Γ2 ⊲W2. However, if we were to drop the rule(Deliver) in the extensional semantics, thereby
eliminating the actionsγ(c, v), then it would be straightforward to exhibit a bisimulation containing
the pair (Γ2 ⊲W3, Γ2 ⊲W2). Thus again the amended version of bisimulation equivalence would be
unsound.

The two examples above show that both rules(Idle) and(Deliver) are necessary to achieve the
soundness of our bisimulation proof method for reduction barbed congruence.

In the remainder of this section we give a further series of examples, showing that bisimulations
in our extensional LTS offer a viable proof technique for demonstrating behavioural equivalence for
at least simple wireless systems.

Example 3.5. [Transmission] Here we revisit Example 2.21. LetΓ be a stable channel environment,
and consider the configurationsC0 = Γ ⊲ W, C1 = Γ ⊲ V, whereW = c !〈v0〉.P | c!〈v1〉, V =
c !〈v1〉.P | c!〈v0〉; note that these two configurations are taken from the secondpart of Example
2.21.

Our aim is to show thatC0 ≈ C1, whenδv0 = δv1; for convenience let us assume thatδv0 = δv1 =

1. The idea here is to describe the required bisimulation by matching up system terms. To this end
we define the following system terms:

W0 = σ.P | c!〈v1〉 V1 = σ.P | c!〈v0〉

W1 = c !〈v0〉.P | σ V0 = c !〈v1〉.P | σ
E = σ.P | σ E′ = P | nil

Then for any channel environment∆ we have the following transitions in the extensional semantics:

∆ ⊲W
τ
7−→ updc!v0

(∆) ⊲W0 ∆ ⊲ V
τ
7−→ updc!v0

(∆) ⊲ V0

∆ ⊲W
τ
7−→ updc!v1

(∆) ⊲W1 ∆ ⊲ V
τ
7−→ updc!v1

(∆) ⊲ V1

∆ ⊲W
d?w
7−→ updd?w(∆) ⊲W ∆ ⊲ V

d?w
7−→ updd?w(∆) ⊲ V

∆ ⊲W
ι(d)
7−→ ∆ ⊲W if ∆ ⊢ d : idle ∆ ⊲ V

ι(d)
7−→ ∆ ⊲ V if ∆ ⊢ d : idle

∆ ⊲W0
τ
7−→ updc!v1

(∆) ⊲ E ∆ ⊲ V0
τ
7−→ updc!v1

(∆) ⊲ E

∆ ⊲W0
d?w
7−→ updd?w(∆) ⊲W0 ∆ ⊲ V0

d?w
7−→ updd?w(∆) ⊲ V0

∆ ⊲W0
ι(d)
7−→ ∆ ⊲W0 if ∆ ⊢ d : idle ∆ ⊲ V0

ι(d)
7−→ ∆ ⊲ V0 if ∆ ⊢ d : idle
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Table 7A relationS for comparing the configurationsC0,C1 of Example 3.6

∆ ⊲W S ∆ ⊲ V
∆ ⊲W0 S ∆ ⊲ V0

(∆[c 7→ (1, v0)]) ⊲W0 S (∆[c 7→ (2, v1)]) ⊲ V1

(∆[c 7→ (1, err)]) ⊲W0 S (∆[c 7→ (2, err)]) ⊲ V1

Λ ⊲Wok S Λ ⊲ Vok

∆ ⊲Werr S ∆ ⊲ Verr

∆ ⊲W′ S ∆ ⊲ V′

∆ arbitrary channel environment,
Λ arbitrary channel environment such thatΛ(c) = (k,w) for somek ≥ 2

∆ ⊲W1
τ
7−→ updc!v0

(∆) ⊲ E ∆ ⊲ V1
τ
7−→ updc!v0

(∆) ⊲ E

∆ ⊲W1
d?w
7−→ updd?w(∆) ⊲W1 ∆ ⊲ V1

d?w
7−→ updd?w(∆) ⊲ V1

∆ ⊲W1
ι(d)
7−→ ∆ ⊲W1 if ∆ ⊢ d : idle ∆ ⊲ V1

ι(d)
7−→ ∆ ⊲ V1 if ∆ ⊢ d : idle

Hered ranges over arbitrary channel names, includingc.
Then consider the following relation:

S = {(∆ ⊲W,∆ ⊲ V), (∆ ⊲W0, ∆ ⊲ V0), (∆ ⊲W1,∆ ⊲ V1) | ∆ is a channel environment} .

Using the above tabulation of actions one can now show thatS is a bisimulation; forCSC′ each
possible action ofC can be matched byC′ by performing exactly the same action, and vice-versa.

Since (C0,C1) ∈ S, it follows thatC0 ≈ C1.

Example 3.6. [Equators] Let us consider the configurationsC0,C1 of Example 2.22. Recall that
C0 = Γ ⊲W, whereW = c!〈v0〉 | σ

h.c!〈ok〉 andC1 = Γ ⊲ V, whereV = c!〈v1〉 | σ
h.c!〈ok〉; further,

recall thatΓ is a stable channel environment andh, ok are a positive integer and a value, respectively,
such thath < min (δv0, δv1), δok ≥ max (δv0, δv1) − h. Without loss of generality, for this example we
assumeδv0 = 1, δv1 = 2, h = 0 andδok = 2.

For the sake of convenience we define the following system terms:

W0 = σ | c!〈ok〉 V1 = σ2 | c!〈ok〉
Wok = c!〈v0〉 | σ

2 Vok = c!〈v1〉 | σ
2

Werr = σ | σ2 Verr = σ2 | σ2

W′ = nil | σ V′ = σ | σ
E = nil | nil

Let us consider the relationS depicted in Table 7; note that (C0,C1) ∈ S, so that in order to
prove thatC0 ≈ C1 it is sufficient to show thatS is a bisimulation. Note that in the relationS the
system termsWok,Vok are always associated with a channel environment in which the channelc is
exposed. In fact, ifΛ were a channel environment such thatΛ ⊢ c : idle, it would not be difficult to
prove thatΛ ⊲Werr 0 Λ ⊲ Verr; this is because the values broadcast by these two configurations are
different.
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Table 8A relationS for comparing the configurationsC0,C1 of Example 3.7

∆ ⊲W S ∆ ⊲ V
∆[c 7→ (1,w)] ⊲W0 S ∆[c 7→ (2,w)] ⊲ V1

∆[c 7→ (k+ 2,w) ⊲W0 S ∆[c 7→ (k+ 2,w)] ⊲ V1

∆[c 7→ (k+ 3,w)]Wok⊲ S ∆[c 7→ (k+ 3,w)] ⊲ Vok

∆[c 7→ (k + 3, err) ⊲Werr S ∆[c 7→ (k+ 3, err)] ⊲ Verr

∆[c 7→ (k+ 2, err) ⊲W′ S ∆[c 7→ (k+ 2, err) ⊲ V′

∆[c 7→ (k+ 2, err)] ⊲W1 S ∆[c 7→ (k+ 2, err)] ⊲ V′

∆[c 7→ (k + 1, err)] ⊲ E′ S ∆[c 7→ (k+ 1, err)] ⊲ V′′

∆ arbitrary channel environment,w arbitrary value (possiblyerr) andk ≥ 0.

Let us list the main the extensional actions from configurations using these system terms:

∆ ⊲W
τ
7−→ (∆[c 7→ (1, v0)]) ⊲W0 if ∆ ⊢ c : idle

∆ ⊲ V
τ
7−→ (∆[c 7→ (2, v1)]) ⊲ V1 if ∆ ⊢ c : idle

∆ ⊲W
τ
7−→ (∆[c 7→ (2, ok)]) ⊲Wok

∆ ⊲ V
τ
7−→ (∆[c 7→ (2, ok)]) ⊲ Vok

∆ ⊲W
d?w
7−→ (updd?w(∆)) ⊲W

∆ ⊲ V
d?w
7−→ (updd?w(∆)) ⊲ V

(∆[c 7→ (1, v0)]) ⊲W0
τ
7−→ (∆[c 7→ (2, err)]) ⊲Werr

(∆[c 7→ (2, v1)]) ⊲ V1
τ
7−→ (∆[c 7→ (2, err)]) ⊲Werr

∆ ⊲W0
c?w
7−→ (∆[c 7→ (1, err)]) ⊲W0 if ∆ ⊢ c : exp, δw = 1

∆ ⊲ V1
c?w
7−→ (∆[c 7→ (2, err)]) ⊲ V1 if ∆ ⊢ c : exp, δw = 1

∆ ⊲W0
c?w
7−→ (∆[c 7→ (δw, err)]) ⊲W0 if ∆ ⊢ c : exp, δw > 1

∆ ⊲ V1
c?w
7−→ (∆[c 7→ (δw, err)]) ⊲ V1 if ∆ ⊢ c : exp, δw > 1

Λ ⊲Wok
τ
7−→ (updc!v0

(Λ)) ⊲Werr

Λ ⊲ Vok
τ
7−→ (updc!v1

(Λ)) ⊲ Verr

∆ ⊲Werr
σ
7−→ (updσ(∆)) ⊲W′

∆ ⊲ Verr
σ
7−→ (updσ(∆)) ⊲ V′

∆ ⊲W′
σ
7−→ (updσ(∆)) ⊲ E

∆ ⊲ V′
σ
7−→ (updσ(∆)) ⊲ E

Here∆,Λ are two arbitrary channel environments, butΛ is subject to the constraint thatΛ(c) = (k,w)
for some valuew and integerk ≥ 2. This last requirement ensures that (updc!v0

(Λ)) = (updc!v1
(Λ)).

With the aid of this tabulation one can now show thatS is indeed a bisimulation and therefore that
C0 ≈ C1.
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Example 3.7. [Merging] The last example we provide considers the mergingof two transmissions
in a single transmission as suggested in the Example 2.23. Let Γ be a stable channel environment
andv0, v1 be two values such thatδv0 = 1, δv1 = 2. Also letok be a value such thatδok = 3. Consider
the configurations

C0 = Γ ⊲W C1 = Γ ⊲ V

whereW = c !〈v0〉.c!〈v1〉 | c!〈ok〉 andV = c !〈v1〉.c!〈v0〉 | c!〈ok〉.
ThenC0 ≈ C1. As in previous examples, this statement can be proved formally by exhibiting a

bisimulation that contains the pair (C0,C1); to this end, define the following system terms:

W0 = σ.c!〈v1〉 | c!〈ok〉 V1 = σ2.c!〈v0〉 | c!〈ok〉
Wok = c !〈v0〉.c!〈v1〉 | σ

3 Vok = c !〈v1〉.c!〈v0〉 | σ
3

Werr = σ.c!〈v1〉 | σ
3 Werr = σ2.c!〈v0〉 | σ

3

W′ = c!〈v1〉 | σ
2

W1 = σ2 | σ2 V′ = σ.c!〈v0〉 | σ
2

E′ = σ | σ V′′ = c!〈v0〉 | σ
E = nil | nil

Consider now the relationS depicted in Table 8; note thatC0 S C1. Also,S is a weak bisimulation.
In order to show this, we list the non-trivial transitions for both configurationsC0,C1 and their
derivatives, which are needed to perform the proof.

∆[(c 7→ (0, ·)] ⊲W
τ
7−→ ∆[c 7→ (1, v0)] ⊲W0

∆[(c 7→ (0, ·)] ⊲ V
τ
7−→ ∆[c 7→ (2, v1)] ⊲ V1

∆[c 7→ (0, ·)] ⊲W
τ
7−→ ∆[c 7→ (3, ok)] ⊲Wok

∆[c 7→ (0, ·)] ⊲ V
τ
7−→ ∆[c 7→ (3, ok])] ⊲ Vok

∆[c 7→ (k, ·)] ⊲W
τ
7−→ ∆[c 7→ (k, err)] ⊲W0 if k > 0

∆[c 7→ (k, ·)] ⊲ V
τ
7−→ ∆[c 7→ (2, err)] ⊲ V1 if 0 < k ≤ 2

∆[c 7→ (k, ·)] ⊲ V
τ
7−→ ∆[c 7→ (k, err)] ⊲ V1 if k > 2

∆[c 7→ (k, ·)] ⊲W
τ
7−→ ∆[c 7→ (3, err)] ⊲Wok if 0 < k ≤ 3

∆[c 7→ (k, ·)] ⊲W
τ
7−→ ∆[c 7→ (k, err)] ⊲Wok if k > 3

∆[c 7→ (k, ·)] ⊲ V
τ
7−→ ∆[c 7→ (3, err)] ⊲ Vok if 0 < k ≤ 3

∆[c 7→ (k, ·)] ⊲ V
τ
7−→ ∆[c 7→ (k, err)] ⊲ Vok if k > 3

∆ ⊲W
d?v
7−→ updd?v(∆) ⊲W

∆ ⊲ V
d?v
7−→ updd?v(∆) ⊲ V
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∆[(c 7→ (1, v0)] ⊲W0
τ
7−→ ∆[(c 7→ (3, err)] ⊲Werr

∆[c 7→ (2, v1)] ⊲ V1
τ
7−→ ∆[(c 7→ (3, err)] ⊲ Verr

∆[c 7→ (k, ·)] ⊲W0
τ
7−→ ∆[c 7→ (3, err)] ⊲Werr if 0 < 3 ≤ k

∆[c 7→ (k, ·)] ⊲ V1
τ
7−→ ∆[c 7→ (3, err)] ⊲ Verr if 0 < 3 ≤ k

∆[c 7→ (k, ·)] ⊲W0
τ
7−→ ∆[c 7→ (k, err)] ⊲Werr if k > 3

∆[c 7→ (k, ·)] ⊲ V1
τ
7−→ ∆[c 7→ (k, err)] ⊲ Verr if k > 3

∆ ⊲W0
d?w
7−→ updd?w(∆) ⊲W0

∆ ⊲ V1
d?v
7−→ updd?w(∆) ⊲ V1

∆[c 7→ (k, ·)] ⊲Wok
τ
7−→ ∆[c 7→ k, ·] ⊲Werr if k > 3

∆[c 7→ (k, ·)] ⊲ Vok
τ
7−→ ∆[c 7→ k, ·] ⊲ Verr if k > 3

∆ ⊲Wok
d?w
7−→ updd?w(∆) ⊲Wok

∆ ⊲ Vok
d?w
7−→ updd?w(∆) ⊲ Vok

4. Full abstraction

In this section, we show that the co-inductive proof method based on the bisimulation of the previous
section is sound with respect to the contextual equivalenceof Section 2.4; this is the subject of
Section 4.1. Moreover it is complete for a large class of systems. This class is isolated in Section
4.2.1, and the completeness result is then given in Section 4.2.2.

4.1. Soundness.In this section we prove that (weak) bisimulation equivalence is contained in re-
duction barbed congruence. The main difficulty is in proving the contextuality of the bisimulation
equivalence. But first some auxiliary results.

Lemma 4.1. [Update of Channel Environments] IfΓ ⊲W �=⇒ Γ′ ⊲W′ thenΓ ≤ Γ′.

Proof. See the Appendix, Page 51.

Below we report a result on channel exposure for bisimilarity; a similar result for reduction
barbed congruence will also be proved, in Proposition 4.13.

Lemma 4.2. [Channel exposure w.r.t.≈] WheneverΓ1 ⊲W1 ≈ Γ2 ⊲W2 thenΓ1 ⊢ c : idle if and only
if Γ2 ⊢ c : idle.

Proof. See the Appendix, Page 51
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In order to prove that weak bisimulation is sound with respect to reduction barbed congruence
we need to show that≈ is preserved by parallel composition.

Theorem 4.3. [≈ is contextual] SupposeΓ1 ⊲W1 ≈ Γ2 ⊲W2. Then for any system termW, Γ1 ⊲ (W1 |

W) ≈ Γ2 ⊲ (W2 |W).

Proof. Let the relationS over configurations be defined as follows:

{
(
Γ1 ⊲W1 |W , Γ2 ⊲W2 | W) : Γ1 ⊲W1 ≈ Γ2 ⊲W2 }

It is sufficient to show thatS is a bisimulation in the extensional semantics. To do so, by symmetry,
we need to show that an arbitrary extensional action

Γ1 ⊲W1 |W
α
7−→ Γ̂1 ⊲ Ŵ1 (4.1)

can be matched byΓ2 ⊲W2 | W via a corresponding weak extensional action.
The action (4.1) can be inferred by any of the six rules in Table 6. We consider only one case,

the most interesting one(Shh). So hereα is τ andΓ1 ⊲W1 | W
c!v
−−−−→ Ŵ1, for somec andv, and

Γ̂1 = updc!v(Γ). This transition in turn can always be inferred by an application of the rule(Sync), or
its symmetric counterpart, from Table 2. Here we only consider the former case; the proof for the
second case is slightly different, though it uses the same proof strategies illustratedbelow. For the
case we are considering, we have that

• Γ1 ⊲W1
c!v
−−−−→W′1

• Γ1 ⊲W
c?v
−−−−→W′

• Ŵ1 =W′1 | W
′

By an application of rule(Shh)it follows thatΓ1 ⊲W1
τ
7−→ Γ̂1 ⊲W′1. SinceΓ1 ⊲W1 ≈ Γ2 ⊲W2,

there isΓ′2 ⊲W′2 such thatΓ2 ⊲W2 �=⇒ Γ
′
2 ⊲W′2 andΓ′1 ⊲W′1 ≈ Γ

′
2 ⊲W′2. Note that Lemma 4.2 ensures

that wheneverΓ1 ⊢ d : exp then alsoΓ2 ⊢ d : exp, for any channeld . Similarly, if Γ̂1 ⊢ d : exp then
Γ̂2 ⊢ d : exp. That is,Γ1 agrees withΓ2 on the exposure state of each channel; the same applies to
Γ̂1 andΓ̂2.

Further, recall that̂Γ1 = updc!v(Γ1). Therefore we have that, for any channeld , c, Γ1 ⊢ d : exp
iff Γ̂1 ⊢ d : exp; for channelc, we have that̂Γ1 ⊢ c : exp. That is, the exposure states ofΓ1 andΓ̂1

differ only in the entry at channelc, and only if such a channel was idle inΓ1.
SinceΓ1 and Γ̂1 agree withΓ2, Γ̂2, respectively, on the exposure state of each channel, it has

also to be that the exposure states ofΓ2 andΓ̂2 differ only at the entry at channelc, and only when
the latter is idle inΓ2; formally Γ2 ⊢ d : exp iff Γ̂2 ⊢ d : exp whend , c, andΓ̂2 ⊢ c : exp.

Next we show that the actionΓ1 ⊲W1 | W
τ
7−→ Γ̂1 ⊲W′1 | W

′ can be matched by a weak action

Γ2 ⊲W2 | W �=⇒ Γ̂2 ⊲W′2 | W
′. SinceΓ̂1 ⊲W′1 ≈ Γ̂2 ⊲W′2, the above statement would imply that

(Γ̂1 ⊲W′1 |W)S (Γ̂2 ⊲W′2 |W), which is exactly what we want to prove. There are two possible cases,
according to whetherΓ1 ⊲W is able to detect a value broadcast along channelc:

(1) ¬rcv(Γ1 ⊲W, c). By Lemma 2.9(1), in the transitionΓ1 ⊲W
c?v
−−−−→ W′ it must be thatW′ = W.

We have to show that the transitionΓ2⊲W2 �=⇒ Γ̂2⊲W′2 implies thatΓ2⊲W2 | W �=⇒ Γ̂2⊲W′2 | W.
To this end, we prove a stronger statement: whenever we have asequence of transitions

Γ0 ⊲ V0 τ
7−→ Γ1 ⊲ V1 τ

7−→ · · ·
τ
7−→ Γn ⊲ Vn
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of arbitrary lengthn ≥ 0, and such that for anyd , c, Γ0 ⊢ d : exp if and only if Γn ⊢ d : exp,
and¬rcv(Γ0 ⊲W). Then

Γ0 ⊲ V0 | W
τ
7−→ Γ1 ⊲ V1 |W

τ
7−→ · · ·

τ
7−→ Γn ⊲ Vn | W

Further,¬rcv(Γn ⊲W, c). By choosingΓ0 ⊲ V0 = Γ2 ⊲W2 andΓn ⊲ Vn = Γ̂2 ⊲W′2 we obtain that

Γ2 ⊲W2 | W �=⇒ Γ̂2 ⊲W′2 |W.
The proof of the aforementioned statement is by induction onn.

(a) If n = 0 then there is nothing to prove.
(b) Let n > 0. By inductive hypothesis we assume that the statement is true for n − 1. By

Lemma 4.1 we know thatΓ0 ≤ Γn−1 ≤ Γn. Let d , c; if Γ0 ⊢ d : exp, thenΓn−1 ⊢ d : exp
sinceΓ0 ≤ Γn−1. Conversely, ifΓn−1 ⊢ d : exp thenΓn−1 ≤ Γn implies thatΓn ⊢ d : exp,
and by hypothesis we get thatΓ0 ⊢ d : exp.
Therefore we can apply the inductive hypothesis to obtain the sequence of transitions

Γ0 ⊲ V0 |W
τ
7−→ Γ1 ⊲ V1 | W

τ
7−→ · · ·

τ
7−→ Γn−1 ⊲ Vn−1 |W

and infer that¬rcv(Γn−1 ⊲W, c). Consider now the transitionΓn−1 ⊲Vn−1 τ
7−→ Γn ⊲Vn. There

are different ways in which this extensional transition could have been inferred:
• if this transition has been obtained by an application of Rule (TauExt)of Table 6, then

we have thatΓn−1 ⊲ Vn−1 τ
−−−→ Vn, andΓn = updτ(Γ

n−1). By Rule(TauPar)we also have

thatΓn−1 ⊲Vn−1 | W
τ
−−−→ Vn |W, which can now be translated in an extensionalτ-action

Γn−1 ⊲ Vn−1 | W
τ
7−→ Γn ⊲ Vn |W via an application of Rule(TauExt).

• if the transition has been obtained by an application of Rule(Shh)of Table 6, thenΓn−1 ⊲

Vn−1 d!w
−−−−−→ Vn, andΓn = updd!w(Γn−1). Let us perform a case analysis on the channeld:

– If d = c, then since¬rcv(Γn−1⊲W, c), Lemma 2.9(1) ensures that we have the transition

Γn−1 ⊲W
c?w
−−−−−→ W. Note also that nowΓn ⊢ c : exp, so that it follows¬rcv(Γn ⊲W, c).

Now by applying Rule(Sync)to the transitionsΓn−1⊲Vn−1 c!w
−−−−−→ Vn andΓn−1⊲W

c?w
−−−−−→

W we obtainΓn−1 ⊲ Vn−1 | W
d!v
−−−−→ Vn | W. The latter can be converted into an

extensionalτ-transitionΓn−1 ⊲ Vn−1 | W
τ
7−→ Γn ⊲ Vn | W using Rule(Shh)and the fact

thatΓn = updc!w(Γn−1).
– It remains to check the cased , c. First note that if we haveΓn−1 ⊢ c : exp then

alsoΓn ⊢ c : exp (sinceΓn−1 ≤ Γn), so that¬rcv(Γn ⊲W, c). On the other hand, if
Γn−1 ⊢ c : idle, we can still prove that¬rcv(Γn ⊲W, c) via an induction on the structure
of W.4

Finally, note that sinceΓn = updd!w(Γn−1) implies thatΓn ⊢ d : exp. By hypothesis
we get thatΓ0 ⊢ d : exp, which leads toΓn−1 ⊢ d : exp (recalling thatΓ0 ≤ Γn−1).
Therefore we have that¬rcv(Γn−1 ⊲W, d), and by Lemma 2.9(1) we obtain thatΓn−1 ⊲

W
d?v
−−−−−→ W. Now we can proceed as in the cased = c to infer the extensional

transitionΓn−1 ⊲ Vn−1 | W
τ
7−→ Γn ⊲ Vn | W.

(2) Suppose now thatrcv(Γ1 ⊲ W, c). By Lemma 2.9(2) the transitionΓ1 ⊲ W
c?v
−−−−→ W′ leads to

W′ , W. Also, in this case we have thatΓ1 ⊢ c : idle, which also givesΓ2 ⊢ c : idle by Lemma
4.2. Since we havêΓ2 ⊢ c : exp, it has to be the case that we can unfold the weak transition

4Intuitively, we just need to check that there are no unguarded receivers along channelc appearing inW.
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Γ2 ⊲W2 �=⇒ Γ̂2 ⊲W′2 as

Γ2 ⊲W2 �=⇒ Γ
pre
2 ⊲W

pre
2

τ
7−→ Γ

post
2 ⊲W

post
2 �=⇒ Γ̂2 ⊲W′2

whereΓ
pre
2 ⊢ c : idle andΓ

post
2 ⊢ c : exp. Note also that Lemma 4.1 ensures that, for any

channeld , c, Γ2 ⊢ d : exp impliesΓ
pre
2 ⊢ d : exp, andΓ

pre
2 ⊢ d : exp implies Γ̂2 ⊢ d : exp,

which by hypothesis leads toΓ2 ⊢ d : exp. Similarly we can show thatΓ
post
2 ⊢ d : exp if and

only if Γ̂2 ⊢ d : exp. That is,Γ2, Γ
′
2 agree withΓ

pre
2 , Γ

post
2 on the exposure state of each channel,

respectively. Now, in a way similar to the first case, we can prove that we have the following
transitions:
• Γ2 ⊲W2 |W �=⇒ Γ

pre
2 ⊲W

pre
2 |W,

• Γ
post
2 ⊲W

post
2 | W′ �=⇒ Γ̂2 ⊲W′2 | W

′.

so that it remains to show thatΓ
pre
2 ⊲W

pre
2 |W

τ
7−→ Γ

post
2 ⊲W

post
2 | W′. Note that, sinceΓ

pre
2 ⊢

c : idle andΓ
post
2 ⊢ c : exp, it has to be the case that the transitionΓ

pre
2 ⊲W

pre
2

τ
7−→ Γ

post
2 ⊲W

post
2

has been induced by the intensional oneΓ
pre
2 ⊲W

pre
2

c!w
−−−−−→W

post
2 , andΓ

post
2 = updc!w(Γ

pre
2 ).

Now note that, sinceΓ1 ⊲ W
c?v
−−−−→W′ we also have thatΓ1 ⊲ W

c!w
−−−−−→W′ by Lemma 2.9(2).

Finally, note that for any channelc, Γ1 ⊢ d : exp iff Γ2 ⊢ d : exp (asΓ1 ⊲W1 ≈ Γ2 ⊲W2) iff

Γ
pre
2 ⊢ d : exp. By Proposition 2.12 it follows thatΓ1 ⊲W

c!w
−−−−−→W′ impliesΓ

pre
2 ⊲W

c?w
−−−−−→ W′.

We can now apply Rule(Sync)to such a transition, and the transitionΓ
pre
2 ⊲W

pre
2

c!w
−−−−−→W

post
2 ,

to infer Γ
pre
2 ⊲W

pre
2 | W

c!w
−−−−−→ W

post
2 | W′. The last transitions induces the extensional action

Γ
post
2 ⊲W

post
2 | W′

τ
7−→ Γ

post
2 ⊲W

post
2 |W′, as we wanted to prove.

We have built the sequence of transitions

Γ2 ⊲W2 |W �=⇒ Γ
pre
2 ⊲W

pre
2 |W

τ
7−→ Γ

post
2 ⊲W

post
2 |W′ �=⇒ Γ̂2 ⊲W′2 |W

′

which can be synthesised asΓ2 ⊲W2 | W �=⇒ Γ̂2 ⊲W′2 | W
′, which is exactly the transition that

we wanted to derive.

Theorem 4.4. [Soundness]C1 ≈ C2 impliesC1 ≃ C2.

Proof. It suffices to prove that bisimilarity is reduction-closed, barb preserving and contextual.

Reduction Closure: Note that ifC1 _ C′1, then we have two possible cases; eitherC1 _i C
′
1 or

C1 _σ C
′
1. If C1 _i C

′
1 then it is not difficult to see thatC1

τ
7−→ C′1 (see Remark 3.1). Similarly,

if C1 _σ C
′
1 thenC1

σ
7−→ C′1. SinceC1 ≈ C2, it follows that there existsC′2 such thatC2 �=⇒ C

′
2

(respectively,C2
σ
�=⇒ C′2) with C′1 ≈ C

′
2. By Remark 3.1 the last transition can be rewritten as

a sequence of reductionsC2 _
∗
i C

′
2 (respectively,C2 _

∗
i _σ_

∗
i C

′
2), from which it follows

C2 _
∗ C′2,

Barb Preservation: Let C1 = Γ1 ⊲W1 andC2 = Γ2 ⊲W2. Suppose thatC1 ↓ c for some channelc;
by definition we have thatΓ − 1 ⊢ c : exp. By Lemma 4.2 we also have thatΓ2 ⊢ c : exp. This
ensures thatC2 ↓c, and more generallyC2 ⇓c.

Contextuality: contextuality has already been proved as Theorem 4.3.
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4.2. Completeness.Having proved soundness, it remains to check whether our bisimulation proof
technique is also complete with respect to reduction barbedcongruence; that is, whenever we have
Γ1 ⊲W1 ≃ Γ2 ⊲W2, then there exists a bisimulation that contains the pair (Γ1 ⊲W1, Γ2 ⊲W2). Unfor-
tunately, this is not true for arbitrary configurations, as shown by the following Example:

Example 4.5. Let Γ1 ⊢ c : exp, Γ2 ⊢ c : idle and consider the two configurationsC1 = Γ1 ⊲ νd :
(0, ·).(d[x].nil) andC2 = Γ2 ⊲ c!〈v〉 | νd : (0, ·).(d[x].nil). Note that both configurations include an
active receiver placed along an idle, restricted channel. The presence of such an active receiver is
somewhat problematic, as it does not allow the passage of time in both configurations, according to
our definition of timed reductions. Indeed, the reader can check that, in the intensional semantics,
no transition

σ
−−−→ is defined for a configuration of the formΓ[d 7→ (0, ·)] ⊲ d[x].P; consequently,

σ-transitions are not allowed for the configurationΓ ⊲ νd : (0, v).(d[x].P) either. Similarly, weak
σ-transitions are note enabled inC2.

Now note that, since any occurrence of channeld is restricted in bothC1,C2, we cannot enable
the passage of time for them via the composition with a systemtermT. That is, for any system term
T, and configuration̂C1, Ĉ2, such thatC1 | T _

∗
i Ĉ1, C2 | T _

∗
i Ĉ2, we have that̂C1 6_σ and

Ĉ2 6_ σ.
Now it is not difficult to show thatC1 ≃ C2. At least informally, the only difference between

these two configurations lies in the exposure state of channel c, and in the fact thatC2 can broadcast
along channelc. Such a broadcast ensures that the strong barb at channelc, enabled inC1, can be
matched by a weak barb enabled atC2. On the other hand, the difference in the exposure state of
channelc in C1,C2 could be detected via a testT which contains an exposure check exp(c); however,
this construct requires the passage of time in order to determine that channelc is free (exposed) in
C1 | T (respectively,C2 | T). But, as we have already noticed, time is not allowed to passin such
configurations. Formally, to proveC1 ≃ C2 it suffices to show that the relation

{ (∆ ⊲ νd:(0, ·).(d[x].nil),∆′ ⊲ νd:(0, ·).(c!〈v〉 | d[x].P) |

| ∆ ⊢ c : exp,∆ ⊢ d : exp iff ∆′ ⊢ d : exp for d , c }

is barb-preserving, reduction closed and contextual.
Therefore we have shown thatC1 ≃ C2; however,Γ1 ⊢ c : idle, while Γ2 ⊢ c : exp. Therefore,

by Lemma 4.2 it also has to beC1 0 C2.

4.2.1. Well-formed systems.The counterexample to completeness illustrated in Example4.5 relies
on the existence of configurations which do not let time pass.These can be built by placing an active
receiver along an idle, restricted channel. However, such configurations are not interesting per se,
as it is counter-intuitive to allow wireless stations to receive a value along a channel, when there is
no value being transmitted.

It is interesting, in fact, to ask ourselves if our proof methodology based on bisimulations is
complete, if we were to restrict our focus to a setting where active receivers along idle channels
were explicitly forbidden. These take the name ofwell-formedconfigurations, and can be defined
as below:

Definition 4.6. [Well-formedness] The set of well-formed configurations WNets is the least set such
that
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Γ ⊲ P ∈WNets for all processesP

Γ ⊢ c : exp implies Γ ⊲ c[x].P ∈WNets

Γ ⊲W1, Γ ⊲W2 ∈WNets implies Γ ⊲W1 | W2 ∈WNets

Γ[c 7→ (n, v)] ⊲W ∈WNets implies Γ ⊲ νc : (n, v).W ∈WNets

A configurationΓ ⊲W is well-formed if it does not contain any receiving station along an idle
channel. Note that the configurations from Example 4.5 are not well-formed. Clearly, well-formed
configurations are preserved at runtime.

Lemma 4.7. SupposeC is well-formed andC_ C′. ThenC′ is also well-formed.

Proof. See the Appendix, Page 51.

The main property of well-formed systems is that they allow the passage of time, so long as all
internal activity has ceased:

Proposition 4.8. [Patience] LetC be a well-formed configuration for which there is noC′ such that
C_i C

′; thenC_σ C
′′, for some configurationC′′.

Proof. Details for the most important cases are given in the Appendix; see Page 52.

However, Patience alone does not preclude the possibility of exhibiting a configuration in which
time never passes. In fact, it only ensures the passage of time when instantaneous reduction are not
possible anymore. However, it could be the case that a configurationC enables an infinite sequence
of instantaneous reductions, and by maximal progress (Proposition 2.11) the passage of time would
be forbidden. As we will prove presently, this phenomenon does not arise for CCCP configurations;
we recall in fact that, in recursive processes of the formfix X.P, we require all free occurrences of the
process variableX in P to be guarded by a time-consuming construct. This limitation is sufficient to
prevent the existence of configurations which do not allow time to pass; further, it is also necessary,
as shown by the following example.

Example 4.9. Suppose we remove the constraint in the syntax that process variables have to be
guarded by time-consuming constructs in fixed point processes. LetW denote the codefix X.(τ.X).
Then we have an infinite sequence of internal actions

Γ ⊲W _i C1 _i . . .Ck _i

Indeed one can show that ifΓ ⊲W _
∗ C′ thenC′ _i . Maximal progress then ensures thatC′ 6_σ.

Example 4.10. Again, suppose we remove the constraint on guarded recursion in the syntax of
CCCP. Then our bisimulation proof principle would not be complete; to see this, it is sufficient to
consider the two configurationsΓ ⊲ fix X.(τ.X) andΓ′ ⊲ fix X.(τ.X) | c!〈v〉, whereΓ ⊢ c : exp and
Γ′ ⊢ c : idle. By Lemma 4.2 these two configurations are not bisimilar, as they differ in the exposure
state of channelc. On the other hand, none of these two configurations allow thepassage of time. As
we have already argued in Example 4.5, when the passage of time is not allowed in a configuration,
it is not possible to provide a context that determines the exposure state of a channel. Then it is not
difficult to show thatΓ ⊲ fix X.(τ.X) ≃ Γ′ ⊲ fix X.(τ.X) | c!〈v〉. This can be done by simply showing
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that the relation

S = {(∆ ⊲ fix X.τ.X,∆′ ⊲ fix X.τ.X | c!〈v〉), (∆c ⊲ fix X.τ.X,∆′c ⊲ fix X.τ.X | σδv) |

∆ ⊢ d : exp if and only if∆′ ⊢ d : exp, d , c,

∆c ⊢ d : exp if and only if∆′c ⊢ d : exp,with d arbitrary}

is a bisimulation.

Let us state precisely what we mean when we say that infinite sequences of instantaneous re-
ductions are not allowed in our calculus. In practice, we give a slightly stronger definition, requiring
that the amount of instantaneous reductions that can be performed in sequence by a configurationC
is bounded.

Definition 4.11. [Well-timed configurations] A configurationC is well-timed, [32], if there exists
an upper boundk ∈ N such that wheneverC (_i)h C′ for someh ≥ 0, thenh ≤ k.

Contrarily to well-formedness, which is a simple syntacticconstraint,well-timednessmeans
that the designer of the network has to ensure that the code placed at the station nodes can never
lead to divergent behaviour. As we already argued, however,the constraint we have placed on
the syntax of system terms that each recursive definition is weakly guarded inP, is sufficient to
ensure well-timedness. One simple method for ensuring thisis to only use recursive definitions
fix X.P whereX is weakly guarded inP; that is, every occurrence ofX is within an input, output
or time delay prefix, or it is included within a branch of a matching construct. These are exactly
the conditions that we placed for recursion variables when defining our calculus. Thus, we would
expect every configuration in our calculus to be well-timed.

Proposition 4.12. Any configurationΓ ⊲W is well-timed.

Proof. See the Appendix, Page 53.

Next we prove a very useful result for well-defined configurations; the proof emphasises the
roles of well-formedness and well-timedness in the configurations being tested.

Proposition 4.13. SupposeΓ1 ⊲W1 ≃ Γ2 ⊲W2, where both are well-formed. ThenΓ1 ⊢ c : idle
impliesΓ2 ⊢ c : idle.

Proof. Let Γ1 ⊲W1 ≃ Γ2 ⊲W2 and supposeΓ1 ⊢ c : idle for some channelc. Consider the testing
code:

T = [exp(c)]nil, eureka!〈ok〉
From the definition of≃ we know thatΓ1 ⊲W1 | T ≃ Γ2 ⊲W2 | T. SinceΓ1 ⊲W1 is well-timed, by
definition there is a configurationC such thatΓ1 ⊲W1 _

∗
i C andC 6_i. BecauseΓ1 ⊲W1 is well-

formed so isC. By Proposition 4.8 there is a configurationC′ such thatC_σ C
′. LetC′ = Γ′ ⊲W′,

for someΓ′ andW′. Now, if we defineC′′ = updeureka!ok(Γ
′) ⊲W′ andT′ = σ.eureka!〈ok〉, it is easy

to see that there exists a sequence of reductions of the following shape:

Γ1 ⊲W1 | T _i Γ1 ⊲W1 | T
′
_
∗
i C | T

′
_σ C

′ | eureka!〈ok〉_i C
′′ | σδok

whereC′′ | σδok ↓eureka. By definition this implies thatΓ1 ⊲W1 | T ⇓eureka.
Note that the existence of the sequence of reductions above relies on the fact thatΓ1 ⊲W1 is

well-timed.The timed transitionC | T′ _σ C
′ | eureka!〈ok〉 in such a sequence is derived from the

timed transitions performed by their components; ifC were not able to perform aσ-transition, in
fact, we would have not been able to derive the timed reduction for the overall configurationC | T′.
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SinceΓ1 ⊲W1 | T ≃ Γ2 ⊲W2 | T we also have thatΓ2 ⊲W2 | T ⇓eureka. This is only possible if

Γ2 ⊲W2 | T _
∗
i Γ

′
2 ⊲W′2 | T

′
_
∗
i _σ_

∗
i Γ

′′
2 ⊲W′′2 | σ

δok

whereΓ′2 is a channel environment such thatΓ′2 ⊢ c : idle. From Lemma 4.1 (recall thatτ-
extensional actions coincide with instantaneous reductions) we get the requiredΓ2 ⊢ c : idle.

We remark once again that restricting our attention to well-formed configurations is crucial in
order to ensure the validity of Proposition 4.13. In fact, inExample 4.5 we have already provided an
example of two (ill-formed) configurations which are reduction barbed congruent, but which differ
in the exposure state of a channel.

Another important property that we will need from well-formed configurations concerns the
definition of reduction barbed congruence itself; the reduction closure property which we used to
define≃ can be strengthened by requiring instantaneous reductionsto be matched by sequences of
instantaneous reductions, and timed reductions to be matched by timed reductions, possibly pre-
ceded and followed by sequences of instantaneous ones. To prove this property we will need the
following technical result, which will also be used later:

Lemma 4.14. SupposeΓ1 ⊲W1 | T ≃ Γ2 ⊲W2 | T where each channel occurring free inT does not
occur free inW1, nor inW2 and is idle in bothΓ1 andΓ2; thenΓ1 ⊲W1 ≃ Γ2 ⊲W2.

Proof. See the Appendix, Page 55, for an outline.

Proposition 4.15.LetΓ1⊲W1, Γ2⊲W2 be two well-formed configurations such thatΓ1⊲W1 ≃ Γ2⊲W2.
Then

(i) wheneverΓ1⊲W1 _i Γ
′
1⊲W

′
1 there exists a configurationΓ′2⊲W

′
2 such thatΓ2⊲W2 _

∗
i Γ
′
2⊲W

′
2,

andΓ′1 ⊲W′1 ≃ Γ
′
2 ⊲W′2,

(ii) wheneverΓ1⊲W1 _σ Γ
′
1⊲W

′
1 there exists a configurationΓ′2⊲W

′
2 such thatΓ2⊲W2 _

∗
i _σ_

∗
i

Γ′2 ⊲W′2, andΓ′1 ⊲W′1 ≃ Γ
′
2 ⊲W′2.

Proof. See the Appendix, Page 55.

4.2.2. Proving Completeness.We are now in the position to prove that, for well-formed configur-
ations, our proof methodology is also complete. Given two well-formed configurationsC1 ≃ C2,
there exists a bisimulationS such thatC1 S C2.

To prove completeness, we show that reduction barbed congruence is a bisimulation. That is,

we need to show that for any extensional actionα, if C1 ≃ C2 andC1
α
7−→ C′1, then there existsC′2

such thatC2
α̂
�=⇒ C′2 andC′1 ≃ C

′
2. The special casesα = τ andα = σ follow as a direct consequence

of Proposition 4.15. However, we state the results for the sake of consistency.

Proposition 4.16. [Preserving extensionalτs] SupposeΓ1 ⊲W1 ≃ Γ2 ⊲W2 andΓ1 ⊲W1
τ
7−→ Γ′1 ⊲W′1.

ThenΓ2 ⊲W2 �=⇒ Γ
′
2 ⊲W′2 such thatΓ′1 ⊲W′1 ≃ Γ

′
2 ⊲W′2.

Proposition 4.17. [Preserving extensionalσs] SupposeΓ1⊲W1 ≃ Γ2⊲W2. ThenΓ1⊲W1
σ
7−→ Γ′1⊲W

′
1

impliesΓ2 ⊲W2
σ
�=⇒ Γ′2 ⊲W′2 such thatΓ′1 ⊲W′1 ≃ Γ

′
2 ⊲W′2.
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Let us turn our attention to the remaining casesα ∈ {c?v, ι(c), γ(c, v)}. For each of them we
define a distinguishing contextTα; these are defined so that, given a well-formed configurationC,

C
α̂
�=⇒ C′ if and only if C | Tα _

∗ C′ | TXα , whereTXα is uniquely determined by the action
α. Intuitively, the latter corresponds to the first state reached by the testing component when it
has detected that the configurationC has performed a weakα-action; the systemTXα is called the
successful state for the actionα.

The testsTα are defined below; here we assume thateureka, fail are fresh channels, while
δok = δno = 1.

Tγ(c,v)
def
= νd:(0, ·).(c[x].([x=v]d!〈ok〉, nil) + fail!〈no〉 | σ2.[exp(d)]eureka!〈ok〉, nil)

Tc?v
def
= (c !〈v〉.eureka!〈ok〉 + fail!〈no〉)

Tι(c)
def
= ([exp(c)]nil, eureka!〈ok〉) + fail!〈no〉.

We also list their respective successful statesTXα :

TXγ(c,v)
def
= νd:(0, ·).(σ.d!〈ok〉nil | σ.[exp(d)]eureka!〈ok〉, nil)

TXc?v
def
= (σδv.eureka!〈ok〉)

TXι(c)
def
= σ.eureka!〈ok〉

As an example we consider in detail the behaviour of the testing contextTγ(c,v). This is de-
signed to detect whether a configurationΓ ⊲W has performed a weakγ(c, v)-action. Let us discuss
informally how the testing contextTγ(c,v) operates. The fresh channelseureka, fail play a different
role: fail ensures that the reception along channelc has finished, whileeurekaguarantees that the
received values is actuallyv.

We provide a possible evolution of the testing contextsTγ(c, v) when running in a channel
environmentΓ such thatΓ(c) = (1, v), and then we discuss how it works.

Γ ⊲ Tγ(c,v)

_σ Γ1 ⊲ T1 = Γ′1 ⊲ νd:(0, ·).(([v=v]d!〈ok〉, nil) + fail!〈no〉 |
| σ.[exp(d)]eureka!〈ok〉, nil)

_i ΓX ⊲ TX = Γ2 ⊲ νd:(0, ·).(σ.d!〈ok〉 | σ.[exp(d)]eureka!〈ok〉, nil)
_σ Γ3 ⊲ T3 = Γ3 ⊲ νd:(0, ·).(d!〈ok〉 | [exp(d)]eureka!〈ok〉, nil)
_i Γ4 ⊲ T4 = Γ4 ⊲ νd:(1, ok).(σ | [exp(d)]eureka!〈ok〉, nil)
_i Γ5 ⊲ T5 = Γ5 ⊲ νd:(1, ok).(σ | σ.eureka!〈ok〉)
_σ Γ6 ⊲ T6 = Γ6 ⊲ νd:(0, ·).(nil | eureka!〈ok〉)

Initially a configuration of the formΓ ⊲W | Tγ(c,v) has a weak barb at channelfail. Further, the
testing component has an active receiver over channelc; note that the configurationΓ ⊲W | Tγ(c,v)

is well-formed only ifΓ ⊢ c : exp. If Γ ⊲W | Tγ(c,v)
γ(c,v)
�=⇒ Γ1 ⊲W′, that is ifΓ(c) = (1, v), then after

time passes the reception along channelc in the testing componentTγ(c,v) terminates. Formally, we
have the sequence of reductionsΓ ⊲W | Tγ(c,v) _

∗
i _σ_

∗
i Γ1 ⊲W′ | T1. Note that the componentT1

compares the received value along channelc with v; this test can only succeed, and as a consequence
we obtain a further instantaneous reductionΓ1 ⊲W′ | T1 _i Γ

X ⊲W′ | TX; In practice here we have
ΓX = Γ1). At this point we have detected that the configurationΓ1 ⊲W1 has performed the weak
γ(c, v)-action, ending inΓ1 ⊲W′. The rest of the computation is already determined, at leastfor the
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part concerning the testing componentT1, and leadsΓX ⊲W′ | TX to output a barb oneureka; further,
in this configuration it is not possible to output a barb onfail anymore.

To see why this is true, note that inΓX ⊲W′ | TX the testing componentTX is waiting for time
to pass, before broadcasting valueok along a restricted channeld. Formally, we have the sequence
of reductionsΓX ⊲ W′ | TX _

∗
i _σ Γ3 ⊲W3 | T3 _i Γ4 ⊲W4 | T4, whereΓX ⊲W′ _

∗
i Γ2 ⊲W2

andW3 = W4 (note that each instantaneous reduction performed by the tested component does not
affect the test at this point).

Finally, in Γ4 ⊲ W4 | T4 the test checks whether the restricted channeld is exposed. As this
channel is effectively restricted inT4, the test can only succeed, leading toΓ4 ⊲W4 | T4 _i Γ5 ⊲W5 |

T5, whereΓ5 = Γ4 andW5 = W4. At this point we can let time pass, via a sequence of reductions of
the formΓ5 ⊲W5 | T5 _

∗
i _σ_

∗
i Γ6 ⊲W6 | T6. Now it is trivial to see that this configuration has a

barb oneureka.
Note that in the computation ofΓ ⊲W | Tγ(c,v) discussed above, there are two crucial checks that

lead to enabling a barb over channeleureka:
• The received value is exactlyv,
• The check that a broadcast along the restricted channeld is performed after two time instants.

Since the broadcast along channeld is performed only one time instant after valuev has been
delivered, this check ensures that such a value has been actually delivered after one time instant.

Proposition 4.18. [Detecting Inputs] For any well-formed configurationΓ⊲W we have thatΓ⊲W
c?v
�=⇒

Γ′ ⊲W′ if and only if Γ ⊲W | Tc?v _
∗
i Γ
′ ⊲W′ | TXc?v.

Proof. See the Appendix, Page 56.

Proposition 4.19. [Detecting Exposure Checks] For any well-formed configuration Γ ⊲W we have

thatΓ ⊲W
ι(c)
�=⇒ Γ′ ⊲W′ if and only if Γ ⊲W | Tι(c) _

∗
i Γ
′ ⊲W′ | TXι(c).

Proof. See the Appendix, Page 57.

Proposition 4.20. [Detecting Delivery of Values] For any well-formed configurationΓ ⊲W we have

thatΓ ⊲W
γ(c,v)
�=⇒ Γ′ ⊲W′ if and only if Γ ⊲W | Tγ(c,v) _

∗
i _ σ_

∗
i Γ
′ ⊲W′ | TXγ(c,v).

Proof. See the Appendix, Page 58.

Note that in Propositions 4.18, 4.19 and 4.20, we emphasizedwhether the reductions needed to
reach the successful configurationΓ ⊲W′ | TXα from Γ ⊲W | Tα are instantaneous or timed.

We have stated all the results needed to prove completeness.

Theorem 4.21. [Completeness] On well-formed configurations, reduction barbed congruence im-
plies bisimilarity.

Proof. It is sufficient to show that the relation

S
def
= {
(
Γ1 ⊲W1 , Γ2 ⊲W2

)
: Γ1 ⊲W1 ≃ Γ2 ⊲W2}

is a bisimulation. To do so, suppose thatΓ1 ⊲W1 _ Γ2 ⊲W2, and thatΓ1 ⊲W1 ≃ Γ2 ⊲W2. If α = τ
or α = σ, the result follows directly from propositions 4.16 and 4.17, respectively.

Now suppose thatα = γ(c, v) for some channelc and valuev. Let Γ1 ⊲W1
γ(c,v)
7−→ Γ′1 ⊲W′1; by

Proposition 4.20 it follows thatΓ1 ⊲W1 | Tγ(c,v) _
∗
i _σ_

∗
i Γ
′
1 ⊲W′1 | T

X
γ(c,v). By the contextuality of

reduction barbed congruence, and by Proposition 4.15, it follows thatΓ1⊲W2 | Tγ(c,v) _
∗
i _σ_

∗
i C2
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for someC2 such thatΓ′1 ⊲ W′1 | TXγ(c,v) ≃ C2. Let C2 = Γ
′
2 ⊲ Ŵ2; note thatΓ′1 ⊢ eureka : idle

(recall that we assumed thateurekais a fresh channel), so that by Proposition 4.13 it follows that
Γ′2 ⊢ eureka: idle. Further,Γ′1⊲W

′
1 | T

X
γ(c,v) ⇓eurekaandΓ′1⊲W

′
1TXγ(c,v) 6⇓fail ; therefore, we also have that

Γ′2 ⊲ Ŵ2 ⇓eurekaandΓ′2 ⊲ Ŵ2 6⇓fail . Now, by inspecting all the possible evolutions of the configuration
Γ2 ⊲ W2 | Tγ(c,v) it follows that the sequence of reductionsΓ1 ⊲ W2 | Tγ(c,v) _

∗
i _σ_

∗
i Γ
′
2 ⊲ Ŵ2,

whereΓ′2 ⊢ eureka: idle, Γ′2 ⊲ Ŵ2 ⇓eurekaandΓ′2 ⊲ Ŵ2 6⇓fail , is possible only ifŴ2 = W′2 | T
X

γ(c,v).

Consequently, Proposition 4.20 ensures thatΓ2 ⊲W2
γ(c,v)
�=⇒ Γ′2 ⊲W′2.

We also need to show thatΓ′1 ⊲W′1 ≃ Γ
′
2 ⊲W′2; but this follows immediately from Lemma 4.14

and the fact thatΓ′1 ⊲W′1 | T
X
γ(c,v) ≃ Γ

′
2 ⊲W′2 | T

X
γ(c,v).

It remains to check the casesα = c?v andα = ι(c); these can be proved analogously to the
previous case, using proposition 4.18 and 4.19, respectively, in lieu of Proposition 4.20.

5. Applications

In this section, we show how our calculus CCCP can be used to model different interesting beha-
viours which arise at the MAC sub-layer [26] of wireless networks. Then, we exploit our bisimu-
lation proof technique to provide examples of behaviourally equivalent networks. In particular we
give some examples comparing the behaviour of routing protocols andTime Division Multiplexing.

We start with some simple examples. The first show that stations which do not transmit on
unrestricted channels can not be detected. To this end we usefsn(W) to denote the set of unrestricted
channel names in the codeW which have transmission occurrences. Formally fsn(W) is defined
inductively on (a possibly open system term)W as the least set such that

fsn(nil) = fsn(X) = ∅

fsn(!〈c〉.vP) = {c} ∪ fsn(P)

fsn(τ.P) = fsn(σ.P) = fsn(c[x].P) = fsn(fix X.P) = fsn(P)

fsn(P+ Q) = fsn([b]P,Q) = fsn(⌊c?(x).P⌋Q) = fsn(P) ∪ fsn(Q)

fsn(W1 | W2) = fsn(W1) ∪ fsn(W2)

fsn(νc : (n, v).W) = fsn(W1) \ {c}

Example 5.1. [Unobservable systems] Consider a wireless system in whichno station can broadcast
on any free channel. Intuitively none of its behaviour should be observable. In CCCP this means
that the system should be behaviourally equivalent to theemptysystemnil.

Formally consider the configurationΓ ⊲ nil whereΓ is an arbitrary channel environment. This
configuration has non-trivial extensional behaviour. For example it is input enabled, and so can
perform all extensional actions of the formc?v. It can also performσ actions, indicating the passage
of time.

Now let W be arbitrary station code such that fsn(W) = ∅, that is it can not broadcast on any
free channel. The configurationΓ ⊲W has similar behaviour. Indeed letS be the relation

{(Γ ⊲W, Γ ⊲ nil) | fsn(W) = ∅}

Then it is straightforward to show thatS is a bisimulation in the extensional LTS. Our soundness
result therefore ensures that

Γ ⊲W ≃ Γ ⊲ nil
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whenever fsn(W) = 0.

Next we consider what happens when a channel becomes permanently exposed. This situation
can be modelled by using two stationss0, s1 which repeatedly send a value along channelc; each
broadcast performed bys1 takes place before the transmission ofs0 ends, and vice versa. In this case
we say that the channelc is corrupted. Clearly, if a system transmits only on corrupted channels;
then it cannot be detected. Let us see how this scenario is reflected in our behavioural theory.

Example 5.2. [Noise obfuscates transmissions] Letv be a value such thatδv = 2 and let Snd(c)
denote the codefix X.c !〈v〉.X, which continually broadcasts an arbitrary valuev alongc. To model
the two stationss0 ands1 discussed informally above we use the code Noise(c) = Snd(c) | σ.Snd(c).

Then, consider a configurationΓ ⊲W such that fsn(W) ⊆ {c}; that is does not transmit on free
channels different fromc. Then

Γ ⊲W | Noise(c) ≃ Γ ⊲ Noise(c)

To prove this, it is sufficient to exhibit bisimulation containing the pair of configurations (Γ ⊲W |
Noise(c), Γ ⊲ Noise(c)).

We use the following abbreviations:

Noise′(c) = σ2.Snd(c) | σ.Snd(c)

Noise′′(c) = σ.Snd(c) | Snd(c)

Noise′′′(c) = σ.Snd(c) | σ2.Snd(c)

Then letS denote the following set of pairs of configurations:

{(∆ ⊲W | Noise(c) , ∆′ ⊲ Noise(c)),
(∆ ⊲W | Noise′(c) , ∆′ ⊲ Noise′(c)),
(∆ ⊲W | Noise”(c) , ∆′ ⊲ Noise′′(c)),
(∆ ⊲W | Noise”’(c) , ∆′ ⊲ Noise′′′(c)) |

∆,∆′ ⊢ c : exp, fsn(W) ⊆ {c} }

Then it is possible to check thatS is a weak bisimulation in the extensional LTS. At least intuitively,
this is because in the extensional LTS all outputs fired alongthe obfuscated channelc corresponds
to internal actions; further, in the configurations included in S, channelc is never released, so that
neitherι(c)-actions norγ(c, v)-actions can be performed by any configuration included inS.

TheCarrier Sense Multiple Access(CSMA) scheme [24] is a widely used MAC-layer protocol
in which a device senses the channel (physical carrier sense) before transmitting. More precisely,
if the channel is sensed free the sender starts transmittingimmediately, that is in the next instant of
time5; if the channel is busy, that is some other station is transmitting, the device keeps listening to
the channel until it becomes idle and then starts transmitting immediately. This strategy is called
1-persistentCSMA and can be easily expressed in our calculus in terms of the following process:

c!!〈v〉.P = fix X.[exp(c)]X, c !〈v〉.P

So, by definition CSMA transmissions are delayed whenever the channel is busy.
In the next example we prove a natural property of CSMA transmissions.

Example 5.3. [Delay in CSMA broadcast] SupposeΓ ⊢t c : n for somen > 0. Then, for any
k ≤ n+ 1

Γ ⊲ c!!〈v〉.P ≃ Γ ⊲ σk.c!!〈v〉.P (5.1)

5Recall that in wireless systems channels are half-duplex.
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Table 9A simple topology for a network

s r

s r

e

N0 N1

.

Intuitively, sinceΓ ⊢t= n, the transmission of valuev in Γ ⊲ c!!〈v〉.P can take place only after at least
n instants of time. The same happens inΓ ⊲ σk.c!!〈v〉.P.

Formally, to prove (5.1) we need to exhibit a bisimulationS which contains all pairs of the
form (Γ ⊲ c!!〈v〉.P, σk.c!!〈v〉.P), whereΓ is such thatΓ ⊢t: n > 0 for somen satisfyingk ≤ (n+ 1).
One possibleS takes the formR∪Id whereId is the identity relation over configurations andR is
given by:

R = {(∆n ⊲ c!!〈v〉.P,∆n ⊲ σ
h.c!!〈v〉.P) | ∆n ⊢t c : n, h ≤ n}

In our calculus the network topology isassumed to beflat. However, we can exploit the pres-
ence of multiple channels to model networks with a more complicated topological structure. The
idea is to associate a particular channel with a collection of stations which are in the same neigh-
bourhood.

Example 5.4. [Network Topology] Suppose that we want to model a network with two stationss,
r with the following features:

• the range of transmission ofs is too short to reach external agents,
• the stationr is in the range of transmission ofs,
• the range of transmission ofr is long enough to also reach external agents.

A graphical representation of the network we want to model isgiven asN0 of Table 9. We can
model this network topology by using a specific restricted channel, sayd, for the local communica-
tion between stationss andr. In CCCP a wireless system running onN0 would therefore take the
form

C0 = Γ ⊲ νd : (0, ·).(S | R)

where

• S represents the code running at stations; it can therefore only broadcast and receive along the
restricted channeld (recall that we do not want stations to be able to communicate directly with
the external environment)
• R represents the code running at stationr; it can only receive values along the restricted channel

d (since inN0 station r can receive messages broadcast by stationr, but not by the external
environment), while it is free to broadcast on other channels (since stationr is able to broadcast
messages to the external environment)

As a specific example we could letS denote the single broadcastd!〈v〉, andR= fix X.⌊d?(x).c!〈x〉⌋X.
Then in the configurationC0 the stations broadcasts as a value and stationr acts as a forwarder;
this behaviour is reminiscent of range repeaters in wireless terminology.

Suppose now that we want to add a second statione to the above network topology, so that
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• broadcasts fromecan be detected byr; this can be accomplished by allowing the process used to
model statione to broadcasts along a restricted channeld.
• broadcasts fromecan not reachs, nor the external environment. For this to be true, it is sufficient

to require that the process which models the behaviour of station e can broadcast values only
along the restricted channeld; further, in order for ensuring that the stationecannot detect values
broadcast bys, we require that the process used to represent stationedoes not use receivers along
channeld.

The network topology we wish to model is depicted asN1 in Table 9 and so a wireless system
running on this network takes the form

C1 = νd:(0, ·).(S | R | E)

whereE is the code running at statione. As an example we could takeE to be the faulty code
d!〈v〉 + τ.nil.

Then inC1 stationr still acts as a forwarder for stations; however stationecan non-
deterministically decide whether to corrupt the transmission from nodes to r, causing a collision.

Let us assume that the transmission time of the value used in these networks,v, satisfiesδv =
δerr. Then we can show

C0 ≃ Γ ⊲ σ
δv.c!〈v〉

C1 ≃ Γ ⊲ τ.σ
δv.c!〈v〉 + τ.σδv.c!〈err〉

Intuitively the reasons for these equivalences are obvious. The transmission along channeld is
restricted inC0, so it cannot be observed by the external environment. The only activity which can
be observed is the broadcast of valuev along channelc, which takes place afterδv instants of time.
ForC1, a collision can happen along channeld, which is again restricted; the only activity that can
be detected by the external environment is a transmission which takes place afterδv instants of time.
Such a transmission will contain either the valuev or an error message of lengthδv.

The formal proof of these identities involves exhibiting two bisimulations, containing the relev-
ant pairs of configurations. Here we exhibit a bisimulation for showing thatC1 ≃ Γ ⊲ τ.σ

δv.c!〈v〉 +
τ.σδv.c!〈err〉. For the sake of simplicity, letδerr = δv = 1 and define the system terms

W = νd : (0, ·).(S | E | R) Ws = νd : (1, v).(σ | E | c[x].c!〈x〉)
We = νd : (1, err).(S | σ | c[x].c!〈x〉) W′ = νd : (0, ·).(S | nil | R)
W′′ = νd : (1, err).(σ | σ | c[x].c!〈x〉) Wok = νd : (0, ·).(nil | nil | c!〈v〉)
Werr = νd : (0, ·).(nil | nil | c!〈err〉) Wc = νd : (0, ·).(nil | nil | σ)

Then it is easy to show that the relation

S = { (∆ ⊲W , ∆ ⊲ τ.σ.c!〈v〉 + τ.σ.c!〈err〉) ,
(∆ ⊲Ws , ∆ ⊲ τ.σ.c!〈v〉 + τ.σ.c!〈err〉) ,
(∆ ⊲We , ∆ ⊲ σ.c!〈err〉) ,
(∆ ⊲W′ , ∆ ⊲ σ.c!〈v〉) ,
(∆ ⊲W′′ , ∆ ⊲ σ.c!〈err〉) ,
(∆ ⊲Wok , ∆ ⊲ c!〈v〉) ,
(∆ ⊲Werr , ∆ ⊲ c!〈err〉) ,
(∆ ⊲Wc , ∆ ⊲ σ)

| ∆ arbitrary channel environment}

is a weak bisimulation.
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Table 10Two transmitting stations using different time slots to broadcast values

!v0
0 σ !v1

0 σ

s0

σ !v0
1 σ !v1

1

s1

?x σ ?y σ

r0

σ ?x σ ?y

r1

d d

The next example shows how the TDMA modulation technique [52] can be described in CCCP.
Time Division Multiple Access(TDMA) is a type of Time Division Multiplexing, where instead of
having one transmitter connected to one receiver, there aremultiple transmitters. TDMA is used in
the digital 2G cellular systems such asGlobal System for Mobile Communications(GSM). TDMA
allows several users to share the same frequency channel by dividing the signal into different time
slots. The users transmit in rapid succession, one after theother, each using his own time slot.
This allows multiple stations to share the same transmission medium (e.g. radio frequency channel)
while using only a part of its channel capacity.

As a simple example let us describe how two messagesv0 andv1 can be delivered in TDMA
style; for simplicity, we assumeδv0 = δv1 = 2. The main idea here is to split each of these values
into two packets of length one, transmit the packets individually, which will then be concatenated
together before being forwarded to the external environment. So let us assume valuesv0

0, v
1
0, v

0
1, v

1
1,

each of which requires one time instant to be transmitted, and a binary operator◦ for composing
messages such that

v0
0 ◦ v1

0 = v0

v0
1 ◦ v1

1 = v1

v ◦ err = err ◦ v = err

wherev is an arbitrary value; in this case we assume thatδerr = 2.
More specifically, for this example we assume four different stations,s0, s1, r0, r1, running the

codeŜ0, Ŝ1, R̂0, R̂1 respectively. The network we consider for modelling the TDMA transmission
is then given by

C0 = Γ ⊲ νd:(0, ·)
(
Ŝ0 | Ŝ1 | R̂0 | R̂1

)

where

Ŝ0 = d !〈v0
0〉.σ.d!〈v1

0〉

Ŝ1 = σ.d !〈v0
1〉.σ.d!〈v1

1〉

R̂0 = ⌊d?(x).σ.⌊d?(y).σ.c!〈x ◦ y〉⌋⌋

R̂1 = σ.⌊d?(x).σ.⌊d?(y).σ2.c!〈x ◦ y〉⌋⌋
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Table 11Forwarding two messages to the external environment

s0

s1 r

The intuitive behaviour of this network is depicted in Table10. Stations0 wishes to broadcast value
v0, while s1 wishes to broadcast valuev1. They both use the same (restricted) channeld to broadcast
their respective values; however, both stations split the value to be broadcast in two packets. Value
v0 is split in v0

0 andv1
0, while v1 is split in v0

1 andv1
1.

The two stations run a TDMA protocol with a time frame of length two. Stations0 takes control
of the first time frame, hence transmitting its two packetsv0

0 andv1
0 in the first and the third time

slot, respectively. Stations1 takes control of the second time frame; hence the two packetsv0
1 and

v1
1 are broadcast in the second and fourth time slot, respectively.

Stationsr0 andr1 wait to collect the values broadcast along channeld. However, the former is
interested only in packets sent in the first time frame, whilethe latter detects only values sent in the
second time frame. At the end of their associated time frame the stationsr0 andr1 have received
two packets which are concatenated together and then broadcast to the external environment along
channelc. Note that stationr1 is a little slower thanr0, for we have added a delay of two time units
before broadcasting the concatenated values.

As an alternative to TDMA, the two valuesv0, v1 can be also be delivered to the external
environment by means of a simple routing, along the lines suggested in Example 5.4. Here we
consider the configuration

C1 = Γ ⊲ νd:(0, ·).(S0 | S1 | R)

where

S0 = σ4.c!〈v0〉

S1 = σ4.d!〈v1〉

R = d?(x).c!〈x〉

Intuitively, the configurationC1 models three wireless stationss0, s1, r, running the codeS0,S1,
R, respectively, and connected as in Table 11. Stations0 waits four instants of time, then it broad-
casts valuev0 directly to the external environment via the free channelc. Similarly, after four
instants of time the stations1 broadcasts valuev1 to stationr via the restricted channeld. Finally, r
forwards the message to the external environment via the free channelc.

From the point of view of the external environment the configurationC1 performs the following
activities:

• it remains idle for the first four instants of time
• it transmits valuev0 in the fifth and sixth time instants
• it transmits valuev1 in the seventh and eighth time instants.

In this manner, at least informally the observable behaviour of C1, which uses direct routing, is the
same as that ofC0, which uses TDMA.

Formally, we can prove

C0 ≃ C1 (5.2)
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However, instead of proving this by giving a bisimulation containing this pair of configurations, we
prove them individually bisimilar to a simpler specification. LetS1 denote the configurationΓ ⊲ S1

whereS1 is the code

σ4.c !〈v0〉.c !〈v1〉.

Then we can show thatC0 ≈ S1 andC1 ≈ S1, from which (5.2) follows by soundness. Let us show
thatC0 ≃ S1; for the sake of simplicity, it will be convenient to define the following system terms:

Ŝn
0 = σn.d!〈v1

0〉 Ŝ′1 = d !〈v0
1〉.σ.d!〈v1

1〉

Ŝn
1 = σn.d!〈v1

1〉 (R̂0)act = d[x].σ.⌊d?(y).σ.c!〈x ◦ y〉⌋
R̂′0 = ⌊d?(y).σ.c!〈v0

0 ◦ y〉⌋ (R̂′0)act = d[y].σ.c!〈v0
0 ◦ y〉

R̂f
0 = c!〈v0

0 ◦ v1
0〉 R̂′1 = ⌊d?(x).σ.⌊d?(y).σ2.c!〈x ◦ y〉⌋⌋

(R̂′1)act = d[x].σ.⌊d?(y).σ2.c!〈x ◦ y〉⌋ R̂′′1 = ⌊d?(y).σ2.c!〈v0
1 ◦ y〉⌋

(R̂′′1 )act = d[y].sigma2.c!〈v0
1 ◦ y〉 R̂f

1 = c!〈v0
1 ◦ v1

1〉

Wn = σn.c !〈v0〉.c!〈v1〉

Then the relation

R = { (∆ ⊲ νd : (0, ·).(Ŝ0 | Ŝ1 | R̂0 | R̂1) , ∆ ⊲W4) ,

(∆ ⊲ νd : (1, v0
0).(Ŝ2

0 | Ŝ1 | R̂act
0 | R̂1) , ∆ ⊲W4) ,

(∆ ⊲ νd : (0, ·).(Ŝ1
0 | Ŝ

′
1 | σ.R̂

′
0 | R̂

′
1) , ∆ ⊲W3) ,

(∆ ⊲ νd : (1, v0
1).(Ŝ1

0 | Ŝ
2
1 | σ.R̂

′
0 | (R̂

′
1)act) , ∆ ⊲W3) ,

(∆ ⊲ νd : (0, ·).(d!〈v1
0〉 | Ŝ

1
1 | R̂

′
0 | σ.R̂

′′
1 ) , ∆ ⊲W2) ,

(∆ ⊲ νd : (1, v1
0).(σ | Ŝ1

1 | (R̂
′
0)act | σ.R̂′′1 ) , ∆ ⊲W2) ,

(∆ ⊲ νd : (0, ·).(nil | c!〈v1
1〉 | σ.R̂

f
0 | R̂

′′
1 ) , ∆ ⊲W1) ,

(∆ ⊲ νd : (1, v1
1).(nil | c!〈v1

1〉 | σ.R̂
f
0 | (R̂

′′
1 )act) , ∆ ⊲W1) ,

(∆ ⊲ νd : (0, ·).(nil | nil | c!〈v0〉 | σ
2.c!〈v1〉) , ∆ ⊲ c !〈v0〉.c!〈v1〉) ,

(∆ ⊲ νd : (0, ·).(nil | nil | σ2 | σ2.c!〈v1〉) , ∆ ⊲ σ2.c!〈v1〉) ,
(∆ ⊲ νd : (0, ·).(nil | nil | σ | σ.c!〈v1〉) , ∆ ⊲ σ.c!〈v1〉) ,
(∆ ⊲ νd : (0, ·).(nil | nil | nil | c!〈v1〉) , ∆ ⊲ c!〈v1〉) ,
(∆ ⊲ νd : (0, ·).(nil | nil | nil | σ2) , ∆ ⊲ σ2) ,
(∆ ⊲ νd : (0, ·).(nil | nil | nil | σ) , ∆ ⊲ σ) ,
(∆ ⊲ νd : (0, ·).(nil | nil | nil | nil) , ∆ ⊲ nil) ,

| ∆ arbitrary channel environment }

is a bisimulation. Below we also show thatC1 ≃ S1; for the sake of simplicity, define the
following terms:

Sn
0 = σn.c!〈v0〉 Sn

1 = σn.d!〈v1〉

R′ = d[x].c!〈x〉 Wn = σn.c !〈v0〉.c!〈v1〉

for anyn ∈ N. Then the relation

R′ = { (∆ ⊲ νd : (0, ·).(Sn
0 | S

n
1 | R) , ∆ ⊲Wn) ,

(∆ ⊲ νd : (0, ·).(σ2 | d!〈v1〉 | R) , ∆ ⊲ σ2.c!〈v1〉) ,
(∆ ⊲ νd : (2, v1).(c!〈v0〉 | σ

2 | R′) , ∆ ⊲ c !〈v0〉.c!〈v1〉) ,
(∆ ⊲ νd : (2, v1).(σ2 | σ2 | R′) , ∆ ⊲ σ2.c!〈v1〉) ,
(∆ ⊲ νd : (1, v1).(σ | σ | R′) , ∆ ⊲ σ.c!〈v1〉) ,
(∆ ⊲ νd : (0, ·).(nil | nil | c!〈v1〉) , ∆ ⊲ c!〈v1〉) |

| ∆ arbitrary channel environment }

is a relation which contains the most relevant couples needed for showing thatC1 ≈ S1.
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Example 5.5. As a final example we can modify the behaviour of the two configurationsC0 and
C1 seen above by adding the possibility of getting acollision when delivering valuesv0, v1 to the
external environment. In the routing case, this is accomplished by requiring that both stationss0, s1

can either broadcast their value directly to the external environment or to the forwarder noder, while
in the TDMA case it is sufficient to allow both the stationss0, s1 to non-deterministically choose
the time slot to be used to broadcast packets.

To this end, let

Sc
0 = τ.σ4.c!〈v0〉 + τ.σ

4.d!〈v0〉

Sc
1 = τ.σ4.c!〈v1〉 + τ.σ

4.d!〈v1〉

Ŝc
0 = d !〈v0

0〉.σ.d!〈v1
0〉 + τ.σ.d !〈v0

0〉.σ.d!〈v1
0〉

Ŝc
1 = d !〈v0

1〉.σ.d!〈v1
1〉 + τ.σ.d !〈v0

1〉.σ.d!〈v1
1〉

and consider the configurations

Cc
1 = Γ ⊲ νd:(0, ·).(Sc

0 | S
c
1 | R)

Cc
0 = Γ ⊲ νd:(0, ·).(Ŝc

0 | Ŝ
c
1 | R̂0 | R̂1)

It is not difficult to see informally that the observable behaviour of these two configurations is
the same. Specifically

• either valuev0 is broadcast in the fifth and sixth time slots andv1 is broadcast in the seventh and
eighth instants of time slots, or
• valuev1 is broadcast in the fifth and sixth time slots, while valuev0 is broadcast in the seventh

and eighth time slots, or
• a collision occur in the fifth and sixth time slots, or
• a collision occur in the seventh and eighth time slots.

This informal behaviour can be described by the term

S2 = τ.σ4.c !〈v0〉.c!〈v1〉 +

τ.σ4.c !〈v1〉.c!〈v0〉 +

τ.σ4.c!〈err〉 +

τ.σ6.c!〈err〉

and once more we can exhibit bisimulations to establishΓ ⊲ S2 ≈ C
c
0 andΓ ⊲ S2 ≈ C

c
1. Then

soundness again ensures that
Cc

0 ≃ C
c
1

6. Conclusions and related work

In this paper we have given a behavioural theory of wireless systems at the MAC level. In our frame-
work individual wireless stations broadcast information to their neighbours along virtual channels.
These broadcasts take a certain amount of time to complete, and are subject to collisions. If a broad-
cast is successful a recipient may choose to ignore the information it contains, or may act on it,
in turn generating further broadcasts. We believe that our reduction semantics, given in Section 2,
captures much of the subtlety of intensional MAC-level behaviour of wireless systems.
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Then based on this reduction semantics we defined a natural contextual equivalence between
wireless systems which captures the intuitive idea that onesystem can be replaced by another in a
larger network without affecting the observable behaviour of the original network. Inthe main result
of the paper, we then gave a sound and complete characterisation of this behavioural equivalence
in terms ofextensional actions. This characterisation is important for two reasons. Firstly it gives
an understanding of which aspects of the intensional behaviour is important from the point of view
of external users of these wireless systems. Secondly it gives a powerful sound and complete co-
inductive proof method for demonstrating that two systems are behaviourally equivalent. We have
also demonstrated the viability of this proof methodology by a series of examples.

Let us now examine some relevant related work. We start with the literature on process cal-
culi for wireless systems. Nanz and Hankin [37] have introduced the first (untimed) calculus for
Mobile Wireless Networks (CBS♯), relying on a graph representation of node localities. Themain
goal of that paper is to present a framework for specificationand security analysis of communica-
tion protocols for mobile wireless networks. Merro [33] hasproposed an untimed process calculus
for mobile ad-hoc networks with a labelled characterisation of reduction barbed congruence, while
[17] contains a calculus called CMAN, also with mobile ad-hoc networks in mind. This latter pa-
per also gives a characterisation of reduction barbed congruence, this time in terms of a contextual
bisimulation. It also contains a formalisation of an attackon the cryptographic routing protocol
ARAN. Kouzapas and Philippou [27] have developed a theory ofconfluence for a calculus of dy-
namic networks and they use their machinery to verify a leader-election algorithm for mobile ad
hoc networks.

Singh, Ramakrishnan and Smolka [48] have proposed theω-calculus, a conservative extension
of the π-calculus. A key feature of theω-calculus is the separation of a node’s communication
and computational behaviour from the description of its physical transmission range. The authors
provide a labelled transition semantics and a bisimulationin openstyle. Theω-calculus is then used
for modelling the AODV ad-hoc routing protocol. Another extension of theπ-calculus for modelling
mobile wireless systems may be found in [7]; the calculus is used to verify reachability properties of
the ad-hoc routing protocol LUNAR. Fehnker et al. [13] have proposed a process algebra for wire-
less mesh networks that combines novel treatments of local broadcast, conditional unicast and data
structures. In this framework, they also model the AODV routing protocol and (dis)prove crucial
properties such as loop freedom and packet delivery. Vigo etal. [53] have proposed a calculus of
broadcasting processes that enables to reason about unsolicited messages and lacking of expected
communication. Moreover, standard cryptographic mechanisms can be implemented in the calculus
via term rewriting. The modelling framework is complemented by an executable specification of
the semantics of the calculus in Maude.

All the calculi, mentioned up to now, except for [37], represent topological changes of mobile
networks in the syntax. In contrast Ghassemi et al. [14] haveproposed a process algebra called
RBPT where topological changes to the connectivity graph are implicitly modelled in the opera-
tional semantics rather than in the syntax. They propose a notion of bisimulation for networks
parametrised on a set of topological invariants that must berespected by equivalent networks. This
work in then refined in [15] where the authors propose an equational theory for an extension of
RBPT. Godskesen and Nanz [18] have proposed a simple timed calculus for wireless systems to
express a wide range of mobility models.

A simple notion of time is also adopted in the calculus for wireless systems by Macedonio and
Merro [31] to verify key management protocols for wireless sensor networks by applying semantics-
based techniques. In [30] this notion of time is extended with probabilities. In this paper a prob-
abilistic simulation theory is proposed to evaluate the performances gossip protocols in the context
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of wireless sensor networks. Paper [50] also presents a probabilistic broadcast calculus for wire-
less networks where, unlike [30], nodes are mobile; due to mobility the connection probabilities
may change. The authors examine the relation between a notion of weak bisimulation and a minor
variant of PCTL*. Paper [10] investigate in detail the probabilistic behaviour of wireless networks.
The paper presents a compositional theory based on a probabilistic generalisation of the well known
may-testing and must-testing pre-orders. Also, it provides an extensional semantics to define both
simulation and deadlock simulation preorders for wirelessnetworks. Gallina et al. [8] propose a pro-
cess algebraic model targeted at the analysis of both connectivity and communication interference
in ad hoc networks. The framework includes a probabilistic process calculus and a suite of ana-
lytical techniques based on a probabilistic observationalcongruence and an interference-sensitive
preorder. In particular, the preorder makes it possible to evaluate the interference level of differ-
ent, behaviourally equivalent, networks. They use their framework to analyse the Alternating Bit
Protocol. Song and Godskesen [51] introduce a continuous time stochastic broadcast calculus for
mobile and wireless networks. The mobility between nodes ina network is modelled by a stochastic
mobility function which allows to change part of a network topology depending on an exponentially
distributed delay and a network topology constraint. They define a weak bisimulation congruence
and apply their theory on a leader election protocol.

All the calculi mentioned up to now abstract away from the possibility of interference between
broadcasts. Lanese and Sangiorgi [28] have instead proposed the CWS calculus, a lower level un-
timed calculus to describe interferences in wireless systems. In their operational semantics there is
a separation between the beginning and ending of a broadcast, so there is some implicit representa-
tion of the passage of time. A more explicit timed generalisation of CWS is given [34] to express
MAC-layer protocols such as CSMA/CA, where the authors propose a bisimilarity which is proved
to be sound but not complete with respect to a notion of reduction barbed congruence. We view the
current paper as a simplification and generalisation of [34].

The research we have mentioned so far has been focused on formalising various aspects of
ad-hoc networks. However other than [18, 34], these variouscalculi abstract away from time. Nev-
ertheless there is an extensive literature on timed processalgebras, which we now briefly review.
From a purely syntactic point of view, the earliest proposals are extensions of the three main pro-
cess algebras, ACP, CSP and CCS. For example, [2] presents a real-time extension of ACP, [44]
contains a denotational model for a timed extension of CSP, while CCS is the starting point for
[36]. In [2] and [44] time is real-valued, and at least semantically, associated directly with actions.
The other major approach to representing time is to introduce a special action to model the pas-
sage of time, and to assume that all other actions are instantaneous. This approach is advocated in
[19, 5, 36, 39] and [55, 56], although the basis for this approach may be found in [6]. The current
paper shares many of the assumptions of the languages presented in these papers; in particular we
have been influenced by [22] which contains a timed version ofCCS enjoying time determinism,
maximal progress and patience. All the just mentioned papers assume that actions are instantaneous
and only the extension of ACP presented in [19] does not incorporate time determinism; however
maximal progress is less popular and patience is even rarer.

From this early work on timed process calculi a flourishing literature has emerged. Here we
briefly mention some highlights of this research. Prasad [41] has proposed a timed variant of his
CBS [40], called TCBS. In TCBS a timeout can force a process wishing to speak to remain idle for
a specific interval of time; this corresponds to have a priority. TCBS also assumes time determinism
and maximal progress. Corradini et al. [11] deal withdurational actionsproposing a framework
relying on the notions of reduction and observability to naturally incorporate timing information in
terms of process interaction. Our definition of timed reduction barbed congruence takes inspiration
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from theirs. Corradini and Pistore [12] have studied durational actions to describe and reason about
the performance of systems. Actions have lower and upper time bounds, specifying their possible
different durations. Theirtime equivalencerefines the untimed one. Baeten and Middelburg [3]
consider a range timed process algebras within a common framework, related by embeddings and
conservative extensions relations. These process algebras, ACPsat, ACPsrt, ACPdat and ACPdrt, allow
the execution of two or more actions consecutively at the same point in time, separate the execution
of actions from the passage of time, and consider actions to have no duration. The process algebra
ACPsat is a real-time process algebra with absolute time, ACPsrt is a real-time process algebra with
relative time. Similarly, ACPdat and ACPdrt are discrete-time process algebras with absolute time
and relative time, respectively. In these process algebra the focus is on unsuccessful termination or
deadlock. In [4] Baeten and Reniers extend the framework of [3] to model successful termination
for the relative-time case. Laneve and Zavattaro [29] have proposed a timed extension ofπ-calculus
where time proceeds asynchronously at the network level, while it is constrained by the local ur-
gency at the process level. They propose a timed bisimilarity whose discriminating is weaker when
local urgency is dropped.
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Appendix A. Technical Definitions and Proofs of some Lemmas and Propositions

Definition A.1. [Process Environments] A process environment, is a mappingfrom process vari-
ables to system terms. In the following we useρ to range over process environments. Given an
open system termW and a process environmentρ, the (possibly open) system termWρ correspond
to the system term obtained fromW by replacing each free occurrence of any process variableX
with ρ(X).

Lemma A.2. Let Γ be a channel environment, andW be an (open) system term whose free occur-
rences of process variables are time guarded. Then, given a channelc and two process environments
ρ, ρ′ such that both (Wρ) and (Wρ′) are closed,rcv(Γ ⊲Wρ, c) = rcv(Γ ⊲Wρ′, c).

Proof. Note that ifΓ ⊢ c : exp then, for any channel environmentρ such thatWρ is closed, we have
thatrcv(Γ ⊲ (Wρ), c) = false, and there is nothing else left to prove.

Suppose then thatΓ ⊢ c : idle, and letρ, ρ′ be two process environments such thatWρ andWρ′

are closed. We proceed by induction on the structure ofW.

• W = ⌊c?(x).P⌋Q. In this case we havercv(Γ⊲(⌊c?(x).P⌋Q)ρ, c) = rcv(Γ⊲(⌊c?(x).P⌋Q)ρ′, c) = true,
• W = X. This case is vacuous, as it contains an unguarded free occurrence of a process variable.
• W = c !〈e〉.P. In this casercv(Γ ⊲ (c !〈e〉.P)ρ, c) = rcv(Γ ⊲ c !〈e〉.(Pρ), c) = false, andrcv(Γ ⊲

(c !〈e〉.P)ρ′, c) = rcv(Γ ⊲ c !〈e〉.(Pρ′), c) = false,
• W = τ.P, W = σ.P, W = [b]P,Q, W = nil or W = d[x].P whered is an arbitrary (possibly equal

to c) channel; this case is analogous to the previous one,
• W = P+ Q.Then we have that

rcv(Γ ⊲ (P+ Q)ρ, c) = rcv(Γ ⊲ (Pρ), c) ∨ rcv(Γ ⊲ (Qρ), c)

= rcv(Γ ⊲ (Pρ′), c) ∨ rcv(Γ ⊲ (Qρ′), c)

= rcv(Γ ⊲ (P+ Q)ρ′, c)

where the equalitiesrcv(Γ ⊲ (Pρ), c) = rcv(Γ ⊲ (Pρ′), c) and rcv(Γ ⊲ (Qρ), c) = rcv(Γ ⊲ (Qρ′), c)
follow by induction.
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• W = fix X.P. Then we have that

rcv(Γ ⊲ (fix X.P)ρ, c) = rcv(Γ ⊲ (Pρ), c)

= rcv(Γ ⊲ (Pρ′), c)

= rcv(Γ ⊲ (fix X.P)ρ′, c)

Again, the equalityrcv(Γ ⊲ (Pρ), c) = rcv(Γ ⊲ (Pρ′), c) follows by induction.
• W =W1 |W2. This case is analogous to the caseW = P+ Q,
• W = νc : (t, ·).W′. In this casercv(Γ ⊲ (νc : (t, ·).W′)ρ, c) = rcv(Γ ⊲ (νc : (t, ·).W′)ρ′, c) = false,
• W = νd : (t, ·).W′, whered , c. Then we have

rcv(Γ ⊲ (νd : (t, ·).W′)ρ, c) = rcv(Γ ⊲ (W′ρ), c)

= rcv(Γ ⊲ (W′ρ′), c)

= rcv(Γ ⊲ (νd : (t, ·).W′)ρ′, c)

Lemma A.3. Let Γ be a channel environment andW be an open system term where every free
occurrence of process variables is guarded. Let alsoc be a channel andv be a value. There exists an
open system termW′ such that, for any process environmentρ for which (Wρ) is closed, thenW′ρ

is also closed, andΓ ⊲Wρ
c?v
−−−−→W′ρ.

Proof. Note that ifrcv(Γ ⊲ (Wρ), c = false) for some environmentρ, it suffices to chooseW′ = W.
In fact, by Lemma A.2 we have thatrcv(Γ ⊲Wρ′, c) = false for any environmentρ′ such thatWρ′ is

closed. By applying Rule(RcvIgn)we obtain the transitionΓ ⊲ (Wρ′)
c?v
−−−−→ (Wρ′).

Therefore, suppose thatW is such thatrcv(Γ ⊲ (Wρ), c) = true for some process environmentρ
(and, as a consequence of Lemma A.2,rcv(Γ ⊲ (Wρ′), c) = true for any other process environment
ρ′). Note that in this case we have thatΓ ⊢ c : idle, andW cannot take the form !〈c〉.eP, τ.P, σ.P,
[b]P,Q, nil or d[x].P. We check the remaining cases, by performing an induction onW. In the
following ρ is an arbitrary process environment.
• Suppose thatW = ⌊c?(x).P⌋Q for some processesP,Q. In this case we letW′ = c[x].P. By

definition (⌊c?(x).P⌋Q)ρ = ⌊c?(x).(Pρ′)⌋(Qρ), whereρ′ = ρ[x 7→ x]; by applying Rule(Rcv) we

obtain thatΓ⊲(⌊c?(x).(Pρ′)⌋(Qρ)
c?v
−−−−→ c[x].(Pρ′). note that the latter system term can be rewritten

as (c[x].P)ρ; note in fact that the process environmentsρ andρ′ differ only at the entry for variable

x, which is bound inc[x].P. Therefore we have the transitionΓ ⊲ (⌊c?(x).P⌋Q)ρ
c?v
−−−−→ (c[x].P)ρ.

• Suppose thatW = P+Q. Note that, in order to ensure thatrcv(Γ ⊲ (P+Q)ρ, c) = true, it must be
eitherrcv(Γ⊲(Pρ), c) = true orrcv(Γ⊲(Qρ), c) = true. We consider only the first case, as the second
one can be handled similarly. Ifrcv(Γ ⊲ (Pρ), c) = true then by inductive hypothesis we have that

there exists a system termW′ such thatΓ ⊲ (Pρ)
c?v
−−−−→ (W′ρ). By Rule(SumRcv), we can derive

the transitionΓ ⊲ (Pρ) + (Qρ)
c?v
−−−−→Wρ, which can be rewritten asΓ ⊲ (P+Q)ρ

c?v
−−−−→W′ρ. Note

also that ifrcv(Γ ⊲ (Pρ), c) = true, thenrcv(Γ ⊲ (Pρ′), c) = true for any other process environment
ρ′, as a consequence of Lemma A.2, so that the choice ofW′ is independent from the process
environment.
• Suppose thatW = fix X.P. By inductive hypothesis, there exists a processW′′ such that, for

any process environmentρ′, Γ ⊲ Pρ′
c?v
−−−−→ W′′ρ′. In particular, letρ′ = ρ[X 7→ (fix X.P)ρ],

whereρ is an arbitrary process environment. We obtain thatΓ ⊲ Pρ[X 7→ (fix X.P)ρ]
c?v
−−−−→

W′′ρ[X 7→ (fix X.P)ρ]. Γ ⊲ Pρ[X 7→ (fix X.P)ρ] = ({fix X.P/X})Pρ, andW′′ρ[X 7→ (fix X.P)ρ] =
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({fix X.P/X}W′′)ρ. Let thenW′ = {fix X.P/X}W′. It suffices to apply Rule(Rec) to obtain the

transitionΓ ⊲ (fix X.P)ρ
c?v
−−−−→W′ρ.

• Suppose thatW =W1 | W2. By inductive hypothesis there existW′1,W
′
2 such thatΓ ⊲ (W1ρ)

c?v
−−−−→

W′1ρ, andΓ ⊲ (W2ρ)
c?v
−−−−→ W′2ρ. In this case we letW′ = W′1 | W

′
2. In fact, by Rule(RcvPar)it

follows thatΓ ⊲ (W1ρ) | (W2ρ)
c?v
−−−−→ (W′1ρ) | (W

′
2ρ), or equivalentlyΓ ⊲ (W1 | W2)ρ

c?v
−−−−→ (W′1 |

W′2)ρ.
• Finally, supposeW = νd : (n, v).W1, whered , c. By inductive hypothesis we have thatΓ[d 7→

(n, v)]⊲(W1ρ)
c?v
−−−−→W′ρ for someW′. Now it suffices to apply Rule(ResI)to obtainΓ⊲(Wρ)

c?v
−−−−→

(W′ρ).

Proof of Lemma 2.9.Let Γ ⊲W be a configuration. First note thatW is a closed system term, hence
Wρ = W for any process environmentρ. Given an arbitrary channelc and an arbitrary valuev,

Lemma A.3 ensures that there exists a system termW′ such thatΓ ⊲W
c?v
−−−−→W′.

It remains to show that wheneverΓ ⊲ W
c?v
−−−−→ W′ for someW′, if rcv(Γ ⊲W, c) = true then

W′ , W; conversely, ifrcv(Γ ⊲W, c) = false thenW′ = W. This last statement can be proved by

performing an induction on the proof of the derivationΓ⊲W
c?v
−−−−→W′; the proof is relatively simple,

and the details are left to the reader.
The case wherercv(Γ ⊲ W, c) = true is slightly more complicated. In practice, we define a

function #Rcv(·, c) which maps any system term into its number of active receivers along channel

c and we show that, wheneverΓ ⊲ W
c?v
−−−−→ W′, then #Rcv(W′) > #Rcv(W). As an immediate

consequence,W′ , W. Formally, the function #Rcv(·, c) is defined inductively on the structure of
system terms, by letting for any processP and system termsW1,W2,

( a ) #Rcv(P, c) = 0,
(b) #Rcv(d[x].P, c) = 1 if d = c, 0 otherwise,
( c ) #Rcv(νd.(W1), c) = #Rcv(W1, c), whend , c,
(d ) #Rcv((W1 |W2), c) = #Rcv(W1, c)+ #Rcv(W2, c).

We proceed by induction on the proof of the derivationΓ ⊲W
c?v
−−−−→W′.

• The last rule applied in the proof ofΓ ⊲ W
c?v
−−−−→ W′ is Rule (Rcv). It follows that W =

⌊c?(x).P⌋Q for some processesP,Q, hence #Rcv(W, c) = 0. Further,W′ = c[x].P, which leads to
#Rcv(W′, c) = 1;

• the last Rule applied in the proof ofΓ ⊲W
c?v
−−−−→ W′ is (SumRcv); ThenW = P + Q for some

processesP,Q such thatrcv(Γ ⊲ P, c) = true, andΓ ⊲ P
c?v
−−−−→ W′. By definition we have that

#Rcv(P+ Q, c) = 0; also, #Rcv(P, c) = 0, hence by inductive hypothesis #Rcv(W′, c) > 0, as we
wanted to prove; the symmetric case of Rule(SumRcv)is handled similarly.

• the last rule applied in the proof ofΓ ⊲W
c?v
−−−−→ W′ is Rule(Rec); this case is analogous to the

previous one,

• the last rule applied in the proof ofΓ ⊲ W
c?v
−−−−→ W′ is Rule (ResV); then W = νd.(W1) and

W′ = νd.(W′1) for somed , c, W1 andW′1 such thatΓ ⊲ [d 7→ (·, ·)]W1
c?v
−−−−→ W′1. In this case

we have that #Rcv(νd.(W1), c) = #Rcv(W1, c) > #Rcv(W′1, c) = #Rcv(νd.(W′1), c), where the
inequality #Rcv(W1, c) > #Rcv(W′1, c) follows from the inductive hypothesis,
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• the last case to analyse is the one in which Rule(RcvPar)has been applied last in the proof

of Γ ⊲ W
c?v
−−−−→ W′. Then W = W1 | W2 for someW1,W2 such thatΓ ⊲ W1

c?v
−−−−→ W′1

andΓ ⊲ W2
c?v
−−−−→ W′2. Further, since we are assuming thatrcv(Γ ⊲ W1 | W2, c) = true, then

either rcv(Γ ⊲ W1, c) = true or rcv(Γ ⊲ W2, c) = true. Without loss of generality, suppose that
rcv(Γ ⊲ W1, c) = true. Note that in this case, ifrcv(Γ ⊲ W2, c) = false then we know that
W′2 = W2, hence #Rcv(W′2, c) = #Rcv(W2, c). Otherwise, by inductive hypothesis it follows
that #Rcv(W′2, c) > #Rcv(W2, c). In any case, we obtain that #Rcv(W′2, c) ≥ #Rcv(W2, c). Also,
by inductive hypothesis we have that #Rcv(W′1, c) > #Rcv(W1, c). By these two statements,
and the definition of #Rcv(·, c), it follows that #Rcv(W1 | W2, c) = #Rcv(W1, c)+ #Rcv(W2, c) >
#Rcv(W′1, c)+ #Rcv(W2, c) = #Rcv(W′1 |W

′
2, c).

Lemma A.4. Suppose thatΓ ⊲W
σ
−−−→W′;

(i) if W = P+Q for some processesP,Q then there exists two processesP′,Q′ such thatΓ⊲P
σ
−−−→

P′, Γ ⊲ Q
σ
−−−→ Q′ andW′ = P′ + Q′,

(ii) if W = W1 | W2 for someW1,W2, then there exists two system termsW′1,W
′
2 such that

W′ =W′1 |W
′
2, Γ ⊲W1

σ
−−−→W′1 andγ ⊲W2

σ
−−−→W′2.

Proof. Both statements can be proved by induction on the structure of W. We only provide the
details for ((i)), since the proof for ((ii)) is identical instyle.
• First note that ifW is a basic process, that is, it has either the formnil, c !〈e〉.P, [b]P,Q, ⌊c?(x).P⌋Q,
τ.P, fix X.P or σ.P then there is nothing to prove, as the assumption thatW = P + Q for some
processesP,Q is not valid;
• suppose then thatW = P+Q for some processesP,Q, and thatΓ⊲P+Q

σ
−−−→W′. By inspecting the

rules of the intensional semantics, it is clear that the lastRule applied in a proof of the transition
above is(SumTime). Thus, there exist processesP1,Q1,P′1,Q

′
1 such thatP + Q = P1 + Q1,

W′ = P′1+Q′1, Γ ⊲P1
σ
−−−→ P′1 andΓ ⊲Q1

σ
−−−→ Q′1. We need to show that there exist two processes

P′,Q′ such thatΓ ⊲ P
σ
−−−→ P′, Γ ⊲ Q

σ
−−−→ Q′ andP′ + Q′ = P′1 + Q′1. Note that the assumption

P+ Q = P1 + Q1 leads to three possible cases:
(1) there exists a processR such thatP1 = P + R, Q = R+ Q1; In this case we can apply the

inductive hypothesis to the system termP1 (note thatP1 is a smaller term thanP + Q, as
P + Q = P1 + Q1). Thus the transitionΓ ⊲ P1

σ
−−−→ P′1 ensures that there exist two system

termP′,R′ such thatΓ ⊲P
σ
−−−→ P′, Γ ⊲R

σ
−−−→ R′ andP′1 = P′ +R′. Further, by applying Rule

(SumTime)to the transitionsΓ ⊲ R
σ
−−−→ R′ andΓ ⊲ Q1

σ
−−−→ Q′1, we obtainΓ ⊲ R+ Q1

σ
−−−→

Γ ⊲ R′ + Q′1. By letting Q′ = R′ + Q′1, we can rewrite this last transition asΓ ⊲ Q
σ
−−−→ Q′.

Finally notice that we haveW = P′1+Q′1 = (P′ +R′) +Q′1 = P′ + (R′ +Q′1) = P′ +Q′, as we
wanted to prove,

(2) otherwiseP = P1 andQ = Q1; this case is trivial, as it suffices to chooseP′ = P′1,Q
′ = Q′1,

(3) the last case possible is that there exists a processR such thatP = P1 + R, Q1 = R+ Q;
the proof here is symmetrical to the first case, as now it is necessary to apply the inductive
hypothesis toQ1, rather than toP1,

• the last remaining cases are those in which eitherW = νc.W1 or W =W1 | W2. Again, these cases
invalidate the hypothesis thatW is a non-deterministic choice of processes, hence there is nothing
to prove.
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Proof of Proposition 2.10.We proceed by induction on the proof of the derivationC
σ
−−−→W1.

• The last rule applied in the derivationC
σ
−−−→ W1 is rule (EndRcv). ThenC = Γ ⊲ c[x].P for some

channelc, processP, channel environmentΓ for which Γ ⊢t c : 1 andΓ ⊢v c : w for some
closed valuew. Also W1 = {w/x}P. Suppose now thatC

σ
−−−→ W2 for some system termW2. By

inspecting the rules of the intensional semantics we have that the only rule which could have been
applied to infer this transition is again Rule(EndRcv). It follows thatW2 =W1 = {w/x}P,
• the cases where the last rule applied in the proof ofC

σ
−−−→W1 is either(TimeNil), (Sleep), (ActRcv)

or (Timeout)can be proved similarly to the previous one,
• if the last rule applied in the proof ofC

σ
−−−→ W1 is (SumTime), thenC = Γ ⊲ P + Q for some

processesP,Q. By Lemma A.4((i)) we also know thatW1 = P1 + Q1 for someP1,Q1 such that
Γ ⊲ P

σ
−−−→ P1, Γ ⊲ Q

σ
−−−→ Q1.

Suppose thatC
σ
−−−→W2 for someW2. Then again, Lemma A.4((i)) leads toW2 = P2 + Q2 for

someP2,Q2 such thatΓ ⊲ P
σ
−−−→ P2 andΓ ⊲Q

σ
−−−→ Q2. But by the inductive hypothesis we have

thatP1 = P2, Q1 = Q2. HenceW2 = P2 + Q2 = P1 + Q1 =W1,
• if Rule (Rec)has been applied last, thenW = fix X.P for some process variableX and processP;

further,Γ ⊲ {fix X.P/X}P
λ
−−−→ W1. Suppose now hatΓ ⊲ fix X.P

σ
−−−→ W2 for someW2; then again

the last rule applied has been(Rec), so thatcon fΓ{fix X.P/X}P
λ
−−−→ W2. Now, by the inductive

hypothesis, we get thatW1 =W2,
• the case where(ResV)is the last one in the derivationC

σ
−−−→W1 is similar in style to the previous

one, and is therefore left to the reader,
• the last case is the one in which the last rule applied for deriving C

σ
−−−→W1 is Rule(TimePar); the

proof in this case is analogous to the one whereC = Γ ⊲ P+ Q, using Lemma A.4((ii)) instead of
A.4((i)).

Proof of Proposition 2.11.By induction on the proof of the transition. We only supply the details
for the most interesting cases.

• The last Rule applied in the proof of the derivationC
σ
−−−→ W1 is Rule(TimeOut). It follows that

C = Γ ⊲ ⌊c?(x).P⌋Q for someΓ, channelc and processesP,Q such thatΓ ⊢ c : idle. By inspecting
the rules of the intensional semantics we note that no Rule can be applied to obtain a transition

of the formC
c!v
−−−−→W2, nor a transition of the formC

τ
−−−→W2; for this last case, note in fact that

a τ-action can be inferred for a configuration of the formΓ ⊲ ⌊c?(x).P⌋Q only via Rule(RcvLate),
which however requiresΓ ⊢ c : exp. This is in contrast with our assumption thatΓ ⊢ c : idle.
• The last Rule applied in the proof of the transitionC

σ
−−−→ W1 is Rule (SumTime). ThenC =

Γ ⊲ P+ Q for someP,Q such thatΓ ⊲ P
σ
−−−→ P′, Γ ⊲ Q

σ
−−−→ Q′ andW1 = P′ + Q′.

We show, by contradiction, thatΓ⊲P+Q
c!v
−−−−9 for any channelc and valuev, andΓ⊲P+Q

τ
−−−9.

So suppose thatΓ ⊲ P + Q
λ
−−−→ W2 for some system termW2 and actionλ ∈ {τ, c!v | c ∈

Ch, v closed value}. Then the last rule applied in the proof of such a transition is either Rule(Sum)

or its symmetric counterpart. In the first case we have thatΓ ⊲ P
λ
−−−→W2, but this contradicts the

inductive hypothesis;Γ⊲P
σ
−−−→ P′ impliesΓ⊲P

c!v
−−−−9. Similarly, in the second caseΓ⊲Q

λ
−−−→W2,

which contradicts the inductive hypothesis applied to the transitionΓ ⊲ Q
σ
−−−→ Q′. Therefore

Γ ⊲ P+ Q
λ
−−−9.
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Proof of Proposition 2.12.The proof is performed by induction on the structure of the proof of the

derivationΓ1 ⊲W
λ
−−−→W′. Again, we only consider the most interesting cases:

• The last rule applied in the proof of the derivationΓ1 ⊲W
λ
−−−→W′ is Rule(Rcv). Thenλ = c?v for

some channelc and valuev, Γ1 ⊢ c : idle, W = ⌊c?(x).P⌋Q for someP,Q andW′ = c[x].P. By

Hypothesis we have thatΓ2 ⊢ c : idle, so thatΓ2 ⊲ ⌊c?(x).P⌋Q
c?v
−−−−→ c[x].P.

• The last Rule applied in the proof ofΓ1 ⊲W
λ
−−−→ W′ is Rule(RcvLate). Thenλ = τ, Γ1 ⊢ c : exp

for some channelc, W = ⌊c?(x).P⌋Q andW′ = c[x].{err/x}P. By hypothesisΓ2 ⊢ c : exp, so that

Rule(RcvLate)can be applied leading toΓ2 ⊲ ⌊c?(x).P⌋Q
λ
−−−→ c[x].{err/x}P.

• The last rule applied in the proof ofΓ1 ⊲W
λ
−−−→W′ is Rule(Then). ThenW = [b]P,Q for someb

such that~b�Γ1 = true,λ = τ andW′ = σ.P. Here it is necessary to make a case analysis on the
form of the boolean expressionb; the most interesting case, and the only one which we analyse, is
b = exp(c) for some channelc. Since~b�Γ1 = true thenΓ1 ⊢ c : exp. By hypothesis it follows that

Γ2 ⊢ c : exp, therefore~b�Γ2 = true. Now we can apply Rule(Then)to inferΓ2 ⊲ [b]P,Q
τ
−−−→ σ.P.

• The last rule applied in the proof ofΓ1 ⊲W
λ
−−−→ W′ is Rule (Sync). It follows thatλ = c!v for

some channelc and valuev, W = W1 | W2 andW′ = W′1 | W
′
2 for someW1,W2,W′1,W

′
2 such that

Γ1 ⊲W1
c!v
−−−−→W′1, Γ2 ⊲W2

c!v
−−−−→W′2. Then by inductive hypothesis we have thatΓ2⊲W1

c!v
−−−−→W′1

andΓ2 ⊲W2
c?v
−−−−→W′2. An application of Rule(Sync)givesΓ2 ⊲W

c!v
−−−−→W′.

Proof of Proposition 2.13(3). Note that the proof of this statement uses Lemma, 2.13(2), which can

be proved independently. For the if implication,suppose thatΓ ⊲W1
c!v
−−−−→W′1 andΓ ⊲W2

c?v
−−−−→W′2.

Then, by an application of Rule(Sync)we obtain thatΓ ⊲ W1 | W2
c!v
−−−−→ W′1 | W′2. Similarly, if

Γ ⊲W1
c?v
−−−−→ W′1 andW2

c!v
−−−−→ W′2, we can obtain the transitionΓ ⊲W1 | W2

c!v
−−−−→ W′1 | W

′
2 using

the symmetric counterpart of Rule(Sync).

For the only if implication, suppose thatΓ ⊲ W1 | W2
c!v
−−−−→ W′. Note that we can rewrite

W1 | W2 as
∏k

i=1 Pk for somek ≥ 2. We proceed by induction onk.

• k = 2. ThenW1 = P1, W2 = P2. The last rule applied in the derivation ofΓ ⊲ P1 | P2
c!v
−−−−→ W′

is either Rule(sync)or its symmetric counterpart. In the first case we obtain thatΓ ⊲ P1
c!v
−−−−→ P′1,

Γ ⊲P2
c?v
−−−−→ P′2 andW′ = P′1 | P

′
2, so that there is nothing to prove. The second case is analogous.

• k > 2. Suppose that the statement is true for any indexi ≤ k. Again, the last rule applied in the

proof of the transitionΓ⊲W1 | W2
c!v
−−−−→W′ is either Rule(Sync)or its symmetric counterpart. We

consider only the first case, as the second one is treated similarly. If Rule (Sync)has been applied

last, then there exist two system termsWa,Wb such thatW1 | W2 =Wa | Wb andΓ ⊲Wa
c!v
−−−−→W′a,

Γ ⊲Wb
c!v
−−−−→W′b andW′ =W′a | W

′
b. SinceWa |Wb =W1 |W2, we have three possible cases:

– W1 = Wa | Wx, Wb = Wx | W2 for some system termWx. Then we can apply Proposition 2.13

(2) to the transitionΓ ⊲Wx | W2
c?v
−−−−→ W′b to show thatΓ ⊲Wx

c?v
−−−−→ W′x, Γ ⊲W2

c?v
−−−−→ W′2

for someW′x,W
′
2 such thatW′b = W′x | W′2. Now we can apply Rule(Sync) to the transitions

Γ ⊲Wa
c!v
−−−−→W′a andΓ ⊲Wx

c?v
−−−−→W′x to inferΓ ⊲W1

c?v
−−−−→W′a | W

′
x. Let W′1 =W′a |W

′
x. Then

we have
W′ =W′a |W

′
b =W′a |W

′
x | W

′
2 =W′1 | W

′
2.
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– Wa = W1,Wb = W2. In this case there is nothing to prove, as it suffices to chooseW′1 =
W′a,W

′
2 =W′b to obtain the result.

– Wa =W1 | Wx, W2 =Wx |Wb for someWx. By the inductive hypothesis we obtain that either

∗ Γ ⊲W1
c!v
−−−−→W′1, Γ ⊲Wx

c?v
−−−−→W′x for someW′1,W

′
x such thatW′a =W′1 | W

′
x, or

∗ Γ ⊲W1
c?v
−−−−→W′1, Γ ⊲Wx

c!v
−−−−→W′x for someW′1,W

′
x such thatW′a =W′1 | W

′
x.

We consider only the first case. In this case we can apply Rule(rcvPar) to the transitions

Γ ⊲Wx
c?v
−−−−→ W′x andΓ ⊲Wb

c?v
−−−−→ W′b to obtainΓ ⊲W2

c?v
−−−−→ W′x | W

′
b. Let W′2 = W′x | W

′
b.

Then we have proved thatΓ ⊲W1
c!v
−−−−→W′1, Γ ⊲W2

c?v
−−−−→W′2; further we have that

W′ = W′a |W
′
b =W′1 |W

′
x |W

′
b =W′1 |W

′
2

as we wanted to prove.

Proof of Lemma 4.1.We first prove that ifΓ⊲W
τ
7−→ Γ′ ⊲W′ thenΓ ≤ Γ′. Note that such a transition

could have been inferred in two different ways:

• via an application of Rule(TauExt), from which it follows thatΓ′ = updτ(Γ) = Γ, or

• via an application of Rule(Shh), applied to a transition of the formΓ ⊲W
c!v
−−−−→W′; it follows that

Γ′ = updc!v(Γ), from which we obtain thatΓ ≤ Γ′.

Now suppose thatΓ ⊲ W
τ
�=⇒ Γ′ ⊲ W′. By definition, there exists an integern ≥ 0 such that

Γ ⊲W = Γ0 ⊲W0
τ
7−→ Γ1 ⊲W1

τ
7−→ · · ·

τ
7−→ Γn ⊲Wn = Γ

′ ⊲W′. By applying the result proved above to
each step in this sequence, we obtainΓ = Γ0 ≤ Γ1 ≤ · · · ≤ Γn = Γ

′, henceΓ ≤ Γ′.

Corollary A.5. For any channelc, Γ ⊲W
ι(c)
�=⇒ impliesΓ ⊲W

ι(c)
7−→.

Proof. By Definition, Γ ⊲W �=⇒ Γ′ ⊲W′
ι(c)
7−→ for someΓ′,W′. Since,Γ′ ⊲W′

ι(c)
7−→ we obtain that

Γ′ ⊢ c : idle. Now Lemma 4.1 givesΓ ≤ Γ′, henceΓ ⊢ c : idle. Therefore we can apply Rule(Idle)

of the extensional semantics and deriveΓ ⊲W
ι(c)
7−→ Γ ⊲W.

Proof of Lemma 4.2.SupposeΓ1 ⊲W1 ≈ Γ2 ⊲W2. If Γ1 ⊢ c : idle then by definition of Rule(Idle)

of Table 6 it follows thatΓ1 ⊲W1
ι(c)
7−→. As Γ1 ⊲W1 ≈ Γ2 ⊲W2, it follows thatΓ2 ⊲W2

ι(c)
�=⇒. From

Corollary A.5 we have thatΓ2 ⊲W2
ι(c)
7−→, and by the definition of Rule(Idle) thatΓ2 ⊢ c : idle.

Proof of Lemma 4.7.We have to show that ifC is well-formed andC
λ
−−−→W′, thenC′ = updλ(Γ) ⊲

W′ is also well-formed. We provide the details of the most interesting cases of a rule induction on
the proof of the aforementioned transition.

• The last rule applied is Rule(Rcv). Thenλ = c?v for some channelc and closed valuev. Further,
C = Γ ⊲ ⌊c?(x).P⌋Q, W′ = c[x].P and updc?v(Γ) ⊢ c : exp. The second equation in Definition 4.6
ensures thatC′ ∈Wnets,
• the last rule applied is Rule(EndRcv); in this caseλ = σ, W = c[x].P for somec such that
Γ ⊢ c : exp, andW′ = {w/x}P, wherew is the closed value such thatΓ ⊢v c : w. It follows from
the first equation in Definition 4.6 thatC′ = updσ(Γ) ⊲W′ is well formed,
• the last rule applied is Rule(ActRcv). In this caseW =W′ = c[x].P for somec such thatΓ ⊢t c : n,

wheren > 1. To show thatC′ = updσ(Γ) ⊲ c[x].P, it suffices to prove that updσ(Γ) ⊢ c : exp; but
this is true, since by Definition of updσ(·) we have that updσ(Γ) ⊢t c : n− 1, and nown− 1 > 0,
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• the last rule applied is Rule(Sync). Thenλ = c!v, W = W1 | W2, W′ = W′1 | W′2 for some

W1,W2,W′1,W
′
2 such thatΓ ⊲W1

c!v
−−−−→ W′1, Γ ⊲W2

c?v
−−−−→ W′2 andW′ = W′1 | W

′
2. By inductive

hypothesis the configurationsC1 = updc!v(Γ) ⊲W′1 andC2 = updc?v(Γ) ⊲W′2 are well formed, so
by the third equation in Definition 4.6 we have thatC′ ∈Wnets6.

Proof of Proposition 4.8.Let Γ ⊲W be a well-formed configuration. We give the details of the most
important cases of a structural induction performed on the structure of a system termW.
• W = c !〈v〉.P, or W = τ.P; this case is vacuous, since by definition of instantaneous reductions
Γ ⊲W _i ,
• W = σ.P; this case is trivial, since by applying Rule(Sleep)we infer Γ ⊲ W

σ
−−−→ P, hence

Γ ⊲W _σ updσ(Γ) ⊲ P,
• W = c[x].P. By definition of well-formed networks we have thatΓ ⊢ c : exp. Then there are two

possible cases:
– Γ ⊢t c : 1 andΓ ⊢v c : v for some valuev. We can apply Rule(EndRcv)to infer the transition
Γ ⊲ c[x].P

σ
−−−→ {v/x}P, which in turns gives the reductionΓ ⊲ c[x].P _σ updσ(Γ) ⊲ {v/x}P,

– Γ ⊢t c : n for somen > 1; in this case we can apply Rule(ActRcv) to inferΓ⊲c[x].P
σ
−−−→ c[x].P,

leading toΓ ⊲ c[x].P _σ updσ(Γ) ⊲ c[x].P.
• W = fix X.P. Recall that in this case every occurrence of the process variable X in P is (time)

guarded, so that we can apply the inductive hypothesis to theterm {fix X.P/X}P. Now suppose
that Γ ⊲ fix X.P 6_i . Then it follows thatΓ ⊲ {fix X.P/X}P 6_i , and by inductive hypothesisΓ ⊲
{fix X.P/X}P _σ. Now it is easy to show thatΓ ⊲ fix X.P _σ.
• W = P + Q. Suppose thatΓ ⊲ P + Q 6_i. That is,Γ ⊲ P 6_i , Γ ⊲ Q 6_i, By inductive hypothesis

we have thatΓ ⊲ P
σ
−−−→ P′, Γ ⊲ Q

σ
−−−→ Q′ for someP′,Q′. It follows from Rule(SumTime)that

Γ ⊲ P+ Q
σ
−−−→ P′ + Q′, henceΓ ⊲ P+ Q _σ updσ(Γ) ⊲ P′ + Q′.

Proposition A.6. For any channel environmentΓ, (possibly open) processP and process environ-
mentρ such thatPρ is closed, thenΓ ⊲ Pρ is well-timed.

Proof. We give the details of the most important cases of an induction performed on the structure of
the processW. In the following we assume thatρ is a process environment such thatWρ is closed;
recall that we are assuming that free occurrences of processvariables are time guarded inW.
• W = ⌊c?(x).P⌋Q. Then we have thatΓ ⊲ (⌊c?(x).P⌋Q)ρ 6_i ; it follows thatΓ ⊲ (⌊c?(x).P⌋Q)ρ is

well-timed.
• W = X for some process variableX; this case is vacuous, since it violates the assumption that

free occurrences of process variables are (time) guarded inW,
• W = fix X.P for some processP. Let ρ′ be the environment defined asρ[X 7→ (fix X.P)ρ]. By in-

ductive hypothesis we have thatΓ⊲Pρ′ is well-timed. Further, by definitionPρ′ = ({fix X.P/X}P)ρ.
Now note thatΓ ⊲ (fix X.P)ρ _

h C′ if and only if Γ ⊲ (fix X.P/X}P)ρ _
h C′. It follows that

Γ ⊲ (fix X.P)ρ is well-timed.
• W = P+Q. Suppose that both (P+Q)ρ is closed; that is, bothPρ andQρ are closed. By inductive

hypothesis they are well timed, meaning that there existskP ≥ 0 such that wheneverΓ ⊲ Pρ _
h

Γ′ ⊲ P′ thenh ≤ kP; similarly, there existskQ ≥ 0 such that wheneverΓ ⊲Qρ_
h Γ′ ⊲Q′ for some

h, thenh ≤ kQ. Choosek = max(kP, kQ). It is easy to show that wheneverΓ ⊲ (P+Q)ρ_
h Γ′ ⊲W′

then eitherΓ ⊲ Pρ _
h Γ′ ⊲W′, in which caseh ≤ kP ≤ k, or Γ ⊲ Qρ _

h Γ′ ⊲W′, in which case
h ≤ kP ≤ k. It follows thatΓ ⊲ (P+ Q)ρ is well-timed.

6Recall that updc!v(Γ) = updc?v(Γ).
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Proof of Proposition 4.12.We give the proof for a fragment of the language where channelrestric-
tion is omitted. This limitation is needed only to avoid technical complications in the proof of the
statement. In fact, when channel restriction is present, weneed to introduce a structural congruence
≡ between system terms; the main property required by this relation is that it preserves transitions

of configurations, meaning that wheneverW1 ≡ W2 andΓ ⊲W1
λ
−−−→ W′1, thenΓ ⊲W2

λ
−−−→ W′2, with

W2 ≡ W′2. Also, the relation≡ needs to be defined so that any system termW can be rewritten

in the formνc̃.
(∏n

i=1 Pi

)
. See [9], Definition9.1.2at Page 174, for the definition of the structural

congruence .
Let us focus on the case in which channel restriction is not present in our language First note

that the result holds for any well-formed configuration of the formΓ⊲P, whereP is a closed process;
in fact we have that,Γ ⊲ P = Γ ⊲ Pρ for any process environmentρ, and the latter is well-timed by
Proposition A.6.

Otherwise, we can rewriteΓ ⊲W asΓ ⊲
∏n

i=1 Pi, for some processesP1, · · · ,Pn. Note that each
configurationΓi ⊲ Pi is well-formed, hence well-timed; by definition there exists an indexkPi ≥ 0
such that, wheneverΓ ⊲ Pi _

h
i Γ
′ ⊲ P′i , thenh ≤ kPi . Now suppose thatΓ ⊲

∏n
i=1 Pi _

h
i Γ
′ ⊲
∏n

i=1 P′i ;

we show thath ≤
(∑n

i=1 kPi

)
by induction onh.

The caseh = 0 is trivial; suppose then thath > 0, and the statement is valid forh−1; in this case
we can rewrite the (weak) reduction above asΓ ⊲

∏n
i=1 Pi _i Γ

′′ ⊲
∏n

i=1 P′′i _
h−1
i Γ′ ⊲

∏n
i=1 P′i , and

by inductive hypothesish− 1 ≤
∑

i=1n kP′′i
. Let us focus on whyΓ ⊲

∏n
i=1 Pi _i Γ

′′ ⊲
∏n

i=1 P′′i _
h−1
i .

(i) Γ ⊲
∏n

i=1 Pi
τ
−−−→
∏n

i=1 P′′i , andΓ′′ = Γ; in this case it is not difficult to note that there exists an

index j : 1 ≤ j ≤ n such thatΓ ⊲ P j
τ
−−−→ P′′j , and for any indexi , j, 1 ≤ i ≤ n, P′′i = Pi . In

this case we have thatkP′′j
≤ kP j − 1

Without loss of generality, letj = 1. Then we have that

h− 1 ≤
n∑

i=1

kP′′i
=

= kP′′1
+

n∑

i=2

kPi ≤

≤ (kP1 − 1)+
n∑

i=2

kPi =

=


n∑

i=1

kPi

 − 1

Henceh ≤
(∑n

i=1 kPi

)
, as we wanted to prove;

(ii) OtherwiseΓ ⊲
∏n

i=1 Pi
c!v
−−−−→

∏n
i=1 P′′i , andΓ′′ = updc!v|(Γ). In this case we can partition the

set{1, · · · , n} into three sets{l}, I andJ such that(a) Γ ⊲ Pl
c!v
−−−−→ Γ′′ ⊲ P′′l andP′′ = σδv.Q for

some processQ, (b) for any i ∈ I , rcv(Γ ⊲ Pi , c) = true andP′′i = c[x].Qi for some processQi ,
(c) for any j ∈ J, rcv(Γ ⊲ P j , c) = false andP′′j = P j . Note that(a) implies thatkP′′l

= 0 and
1 ≤ kPl , (b) implies thatkP′′i

= 0 for anyi ∈ I and(c) implies thatkP′′j
= kP j for any j ∈ J.
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Without loss of generality, suppose thatl = 1, I = {2, · · · ,m} for somem ≤ n, and
J = {m+ 1, ·n}. In this case we have

h− 1 ≤
n∑

i=1

kP′′i
=

= kP′′1
+


m∑

i=2

kP′′i

+


n∑

i=m+1

kP′′i

 =

= 0+ 0+
n∑

i=m+1

kPi ≤

≤ (kP1 − 1)+ 0+
n∑

i=m+1

kPi ≤

≤

n∑

i=1

kPi

Again the last inequation givesh ≤
(∑n

i=1 kPi

)
.

Lemma A.7. Let us say that a system termT is behaviourally independent fromW if each channel
name appearing free inT does not appear free inW, and vice versa.

If T is independent from a configurationW, then wheneverΓ ⊲W | T _i C, then either

(i) C = Γ′ ⊲W | T′, andΓ ⊲ T _i Γ
′ ⊲W′, or

(ii) C = Γ′ ⊲W′ | T, andΓ ⊲ T _i Γ
′ ⊲W′.

Proof. Suppose thatT is a system term independent from a configurationΓ ⊲W, and thatΓ ⊲W |
T _i C. By the definition of instantaneous reductions, there are two possibilities:

(1) Γ ⊲ W | T
τ
−−−→ Ŵ, andC = Γ ⊲ Ŵ. By Proposition 2.13(1) then either̂W = W′ | T, and

Γ ⊲ W
τ
−−−→ W′, or Ŵ = W | T′, andΓ ⊲ T

τ
−−−→ T′; in the first case we obtain the reduction

Γ ⊲W | T _i Γ ⊲W′ | T, while in the second one we getΓ ⊲W | T _i Γ ⊲W | T′,

(2) the second possibility is thatΓ ⊲W | T
c!v
−−−−→ Ŵ′, andC = Γ′ ⊲ Ŵ, whereΓ′ = updc!v(Γ). In this

case, by Proposition 2.133 then̂W =W′ | T′ and either

(a) Γ ⊲W
c!v
−−−−→ W′, Γ ⊲ T

c!v
−−−−→ T′; the first transition is possible only ifc appears free inW,

which by assumption gives thatc does not appear free inT; it follows that rcv(Γ ⊲ T, c) =
false, and by Lemma 2.9 we obtain thatT′ = T. By converting the intensional transition in
a reduction (recalling thatΓ′ = updc!v(Γ)), we obtain thatΓ ⊲W | T _i Γ

′ ⊲W′ | T,

(b) orΓ ⊲W
c?v
−−−−→ W′, Γ ⊲ T

c!v
−−−−→ T′; this case can be handled symmetrically to the previous

one, and leads toΓ ⊲W | T _i Γ
′ ⊲W | T′.

Lemma A.8. Let Γ1 ⊲W be a configuration, and letΓ2 be a channel environment such that, for any
channelc appearing free inW, Γ2(c) = Γ1(c). Then if Γ1 ⊲W _ Γ′1 ⊲W′, there exists a channel
environmentΓ′2 such thatΓ2 ⊲W _ Γ′2 ⊲W′2, andΓ′1(c) = Γ′2(c) for anyc appearing free inW.

Outline of the proof.The reductionΓ1 ⊲W _i Γ
′
1 ⊲W′ can be converted in a transition of the form

Γ1⊲W
λ
−−−→W′, whereλ takes either the formτ, c!v orσ. Note here that ifλ takes the formc!v, then

c appears free inW. By performing an induction on the proof of the derivation ofthis transition

we can infer a transition for the configurationΓ2 ⊲ W, namelyΓ2 ⊲ W
λ
−−−→ W′. Also, by letting
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Γ′2 = updλ(Γ2), we obtain the reductionΓ2 ⊲W _ Γ′2 ⊲W′. Now it remains to note that ifc appears
free then, by hypothesis,Γ1(c) = Γ2(c); henceΓ′1(c) = updλ(Γ1)(c) = updλ(Γ2)(c) = Γ′2(c).

Corollary A.9. [Independence of Computations] LetΓ ⊲ W be a configuration, and letT be a
system term which only uses fresh channels. Then wheneverΓ ⊲W | T _

∗ Γ′′ ⊲ Ŵ it follows that
Ŵ = W′ | T′ for someW′,T′ such thatΓ ⊲W′ _

∗ Γ′ ⊲W′, whereΓ′ is such thatΓ′(c) = Γ′′(c) for
anyc appearing free inW.

Outline. By induction on the number of derivationsk in a sequence ofk reductions,Γ ⊲W | T _
k

Γ′′ ⊲Ŵ; in the inductive step it is necessary to distinguish whether the first reduction of the sequence
is instantaneous or timed. In the first case, the result follows from lemmas A.7 and A.8. In the
second case, we need to recover the timed transitions for theindividual componentsΓ ⊲W andΓ ⊲T,
then apply Lemma A.8.

Proof of Lemma 4.14 (Outline).This is a variation on analogous results already given in theliter-
ature, for a number of different process calculi. We show that the relation

S = {(Γ1 ⊲W1, Γ2 ⊲W2) :

Γ′1 ⊲W1 | T1 ≃ Γ
′
2 ⊲W2 | T2 for someT1,T2 independent from bothW1,W2

andΓ1 ⊲ (c) = Γ′1(c), Γ2(c) = Γ′2(c) wheneverc appears free inW}

is barb preserving, reduction closed and contextual. Note that it is necessary to employ Corollary
A.9 to prove thatS is reduction closed.

Proof of Proposition 4.15:The two statements are proved separately. LetΓ1 ⊲ W1, Γ2 ⊲ W2 be
well-formed, and suppose thatΓ1 ⊲W1 ≃ Γ2 ⊲W2.

(1) Suppose thatΓ1 ⊲W1 _i Γ
′
1 ⊲W′1. We have two possible cases, according to the definition of

_i:
(i) Γ1 ⊲W1

τ
−−−→W′1 andΓ′1 = updτ(Γ1) = Γ1, by an application of rule(TauExt)

(ii) Γ1 ⊲W1
c!v
−−−−→W′1 andΓ′1 = updc!v(Γ1), by an application of rule(Shh).

We consider the first case; the proof for the second case is virtually identical. Leteurekabe a
fresh channel; that is it does not appear free inW1 and must satisfyΓ1 ⊢ eureka: idle. Let ok
be a message which requires one time unit to be transmitted, i.e.δok = 1. By an application of
rules(TauPar)and(TauExt)we derive

Γ1 ⊲W1 | eureka!〈ok〉
τ
7−→ Γ′1 ⊲W′1 | eureka!〈ok〉

with Γ′1 ⊲W′1 | eureka!〈ok〉 ⇓eurekaandΓ′1 ⊢ eureka: idle. By Definition 2.14 this transition
corresponds in the reduction semantics to

Γ1 ⊲W1 | eureka!〈ok〉_ Γ′1 ⊲W′1 | eureka!〈ok〉

As Γ1⊲W1 ≃ Γ2⊲W2 and≃ is contextual, this step must be matched by a sequence of reductions

Γ2 ⊲W2 | eureka!〈ok〉_∗ C (A.1)

such thatΓ′1 ⊲W′1 | eureka!〈ok〉 ≃ C. Depending on whether the transmission ateurekais part
of the sequence of reductions or not, the configurationC must be one of the following:

C1 = Γ′2 ⊲W′2 | eureka!〈ok〉 with Γ′2 ⊢ eureka: idle
C2 = Γ′2 ⊲W′2 | σ.nil with Γ′2 ⊢ eureka: exp
C3 = Γ′2 ⊲W′2 | nil with Γ′2 ⊢ eureka: idle
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As eurekais a fresh channel (hence not appearing free inW2, it follows thatC3 6⇓eureka; therefore
C cannot beC3. SinceΓ′1 ⊲W′1 | eureka!〈ok〉 ≃ C andΓ′1 ⊢ eureka: idle, by Proposition 4.13
(which can be applied since we are assuming thatC is well-formed, hence well-timed) it follows
that C cannot beC2. So, the only possibility isC = C1. By Lemma 4.14 it follows that
Γ′1 ⊲W′1 ≃ Γ

′
2 ⊲W′2. It remains to show thatΓ2 ⊲W2 _

∗
i Γ
′
2 ⊲W′2.

To this end we can extract out from the reduction sequence (A.1) above a reduction sequence

Γ2 ⊲W2 _
∗ Γ′2 ⊲W′2

We show that each step in this sequence, sayΓ ⊲W _ Γ′ ⊲W′, corresponds to an instantaneous
reduction,Γ ⊲W _i Γ

′ ⊲W′, from which the result follows.
Recall from Definition 2.14 that there are three possible ways to infer the reduction step

Γ ⊲W _ Γ′ ⊲W′. If it is either (Internal), i.e.Γ ⊲W
τ
−−−→W′, or a (Transmission), i.e.Γ ⊲W

c!v
−−−−→

W′, then by definitionΓ ⊲W _i Γ
′ ⊲W′ follows. Condition (ii), (Time), is not possible because

in the original sequence (A.1) above the testing componenteureka!〈ok〉 can not make aσmove,
hence it cannot perform a timed reduction_σ.

(2) Suppose now thatΓ1 ⊲W1 _σ Γ
′
1 ⊲W′1. In this case we will use the testing context:

T = σ.(τ.eureka!〈ok〉 + fail!〈no〉)

whereeurekaand fail are fresh channels. SinceΓ1 ⊲W1 _σ Γ
′
1 ⊲W′1 we also haveΓ1 ⊲W1 |

T _σ_i C1, whereC1⊲ = Γ
′
1 ⊲W′ | eureka!〈ok〉). Note that, sincefail is a fresh channel, we

have thatC1 ⇓eurekaandC1 6⇓fail .
The contextuality of≃ gives thatΓ1 ⊲W1 | T ≃ Γ2 ⊲W2 | T, so that we must have the series

of reduction steps

Γ2 ⊲W2 | T _
∗ C2 (A.2)

whereC1 ≃ C2. BecauseC1 ⇓eurekaandC1 6⇓fail , the same must be true ofC2. As Γ′1 ⊢ eureka:
idle, it follows thatC2 must take the formΓ′2 ⊲W′2 | eureka!〈ok〉. By Lemma 4.14 we have that
Γ′1 ⊲W′1 ≃ Γ

′
2 ⊲W′2. It remains to establish thatΓ2 ⊲W2 _

∗
i _σ_

∗
i Γ
′
2 ⊲W′2.

We proceed as in the previous proposition, by extracting outof (A.2) the contributions from
Γ2 ⊲W2; we know that because of the presence of the time delay inT, one time unit needs to
pass before the broadcast alongeurekais enabled inΓ2 ⊲ W2 | T; also, by maximal progress
(Proposition 2.11), we know that such a broadcast must be fired before time passes. So (A.2)
actually takes the form

Γ2 ⊲W2 | T _
∗
i Γ
′ ⊲W′ | . . ._σ Γ

′′ ⊲W′′ | . . . _∗
i Γ
′
2 ⊲W′2 | eureka!〈ok〉

Each individual reduction step can now be projected on to thefirst component, giving the re-
quired

Γ2 ⊲W2 _
∗
i Γ ⊲W

σ
7−→ Γ′ ⊲W′ _∗

i Γ
′
2 ⊲W′2

Proof of Proposition 4.18.The two implications are proved separately; first, letΓ ⊲W be a config-

uration such thatΓ ⊲W
c?v
�=⇒ Γ′ ⊲W′; that is,Γ ⊲W �=⇒ Γpre ⊲Wpre c?v

7−→ Γpost ⊲Wpost �=⇒ Γ′ ⊲W′.
Since Tc?v does not contain any receiver, nor doesTXc?v, we have the sequences of transitions
Γ ⊲W | Tc?v �=⇒ Γ

pre ⊲Wpre | Tc?v andΓpost⊲Wpost | TXc?v �=⇒ Γ
′ ⊲W′ | TXc?v.

Next we show thatΓpre ⊲Wpre | Tc?v
τ
7−→ Γpost ⊲Wpost | TXc?v. Combined with the two (weak)

transitions above, this gives the extensional transitionΓ ⊲W | Tc?v �=⇒ Γ ⊲W′ | TXc?v, which can be
rewritten asΓ ⊲W | Tc?v _

∗
i Γ ⊲W′ | TXc?v.
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Consider then the transitionΓpre ⊲Wpre c?v
7−→ Γpost⊲Wpost; this can only have been obtained by

the intensional transitionΓpre⊲Wpre c?v
−−−−→W′, and the equalityΓpost= updc?v(Γ

pre). For the testTc?v

we have the transitionΓpre⊲Tc?v
c!v
−−−−→ TXc?v; Now we can combine the two transitions together, using

Rule (sync), and getΓpre ⊲Wpre | Tc?v
c!v
−−−−→ Wpost | TXc?v; also, we know thatΓpost = updc?v(Γ

pre) =

updc!v(Γ
pre), hence we can infer the required transitionΓpre ⊲Wpre | Tc?v

τ
7−→ Γpost⊲Wpost | TXc?v.

For the other implication, suppose thatΓ ⊲W | Tc?v _
∗
i Γ
′ ⊲W′ | TXc?v. This is possible only if,

at some point in the sequence, the test componentTc?v fired the broadcast along channelc; in fact,
we have that the broadcast along channeleurekais guarded by a broadcast action inTc?v, while it is
guarded by a delay ofδv instants of time inTXc?v. Also, by Maximal Progress (Proposition 2.11) the
broadcast performed byTc?v must happen before time elapses; formally, we have the sequence of
reductions

Γ ⊲W | Tc?v _
∗
i Γ

pre ⊲Wpre | Tc?v _i Γ
post⊲Wpost | TXc?v _

∗
i Γ
′ ⊲W′ | TXc?v

Now note that the sequence of instantaneous reductions

Γ ⊲W | Tc?v _
∗
i Γ

pre ⊲Wpre | Tc?v (A.3)

induces the extensional transitionΓ ⊲W �=⇒ Γpre⊲Wpre. This can be proved using the facts that, for

any channel environmentΓx and channeld, wheneverΓx ⊲ Tc?v
τ
7−→ Γ′x ⊲ T′, thenT′ = Tc?v, and

wheneverΓx ⊲ Tc?v
τ
�=⇒ Γ′x ⊲ T′ thenT′ , Tc?v.

Similarly, we can prove that the weak reduction

Γpost⊲Wpost | TXc?v _
∗
i Γ
′ ⊲W′ | TXc?v

induces the extensional transitionΓpost⊲Wpost �=⇒ Γ′ ⊲W′.
It remains to show that we can infer the transitionΓpre⊲Wpre c?v

7−→ Γpost⊲Wpost from the reduction
Γpre ⊲ Wpre | Tc?v _i Γ

post ⊲ Wpost | TXc?v. Note that inTc?v we have a station which is ready to
broadcast along channelc, while this is not true anymore inTXc?v. By performing a case analysis
on the intensional transition which could have led to the reduction above, we find that the only

possible case is thatΓpre⊲Wpre | Tc?v
c!v
−−−−→Wpost | TXc?v and, more specifically, thatΓpre⊲Wpre c?v

−−−−→

Wpost andΓpre ⊲ Tc?v
c!v
−−−−→ TXc?v. Also, Γpost⊲ = updc!v(Γ⊲

pre). By an application of Rule(Input)

in the extensional semantics, we get the required transition Γpre ⊲ Wpre c?v
7−→ Γpost ⊲ Wpost, which

can be combined with the two weak transitions already derived, namelyΓ ⊲W �=⇒ Γpre ⊲Wpre and

Γpost⊲Wpost �=⇒ Γ′ ⊲W′, to obtainΓ ⊲W
c?v
�=⇒ Γ′ ⊲W′.

Proof of Proposition 4.19.Suppose thatΓ ⊲W
ι(c)
�=⇒ Γ′ ⊲W′. This can be rewritten asΓ ⊲W �=⇒

Γpre⊲Wpre ι(c)
7−→ Γpost⊲Wpost �=⇒ Γ′ ⊲W′. Since the only rule of the extensional semantics that could

have been used to deriveΓpre⊲Wpre ι(c)
7−→ Γpost⊲Wpost is (Idle), we obtain thatΓpre⊲Wpre= Γpost⊲Wpost.

Thus, we haveΓ ⊲W �=⇒ Γpre ⊲Wpre = Γpost ⊲Wpost �=⇒ Γ′ ⊲W′, or equivalentlyΓ ⊲W
Γ′⊲W′
�=⇒ . In

terms of the reduction semantics, this can be rewritten asΓ ⊲W _
∗
i Γ
′ ⊲W′.

By Corollary A.5 we know thatΓ ⊲W
ι(c)
�=⇒ impliesΓ ⊲W

ι(c)
7−→ Γ ⊲W; thereforeΓ ⊢ c : idle. Now

it is easy to see that we have the reductionΓ ⊲W | Tι(c) _i Γ ⊲W | TXι(c) _
∗
i Γ
′ ⊲W′ | Tι(c), where

the first reduction has been obtained by letting the predicate exp(c) be evaluated inTι(c), while the
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rest of the sequence can be derived using the facts thatΓ ⊲ W _
∗
i Γ
′ ⊲ W′, and for any channel

environmentΓx we have thatΓx ⊲ TXι(c) 6_i , Γx ⊲ TXι(c)
c?v
−−−−→ T′ impliesT′ = TXι(c).

Conversely, suppose thatΓ ⊲W | Tι(c) _
i
∗ Γ
′ ⊲W′ | TXι(c). In this sequence of reductions, the

evolution of the test component fromTι(c) to TXι(c) is possible only if eventually the exposure check
on channelc is evaluated to true. That is, we have the sequence of reductions

Γ ⊲W | Tι(c) _
∗
i Γ

pre ⊲Wpre | Tι(c) _i Γ
post⊲Wpost | TXι(c) _

∗
i Γ
′ ⊲W′ | TXι(c)

whereΓpre ⊢ c : idle.
Since the evaluation of the exposure check in the reductionΓpre ⊲Wpre | Tι(c) _i Γ

post⊲Wpost |

TX
ι(c) corresponds to aτ-intensional transition which affects only the system termTι(c), that isΓpre ⊲

Tι(c)
τ
−−−→ TX

ι(c), Proposition 2.13(1) ensures thatWpost= Wpre, andΓpost= updτ(Γ
pre) = Γpre. Using

the facts thatΓpre⊲Wpre= Γpost⊲WpostandΓpre ⊢ c : idle, we can apply Rule(Idle) of the extensional

semantics and infer the transitionΓpre ⊲Wpre ι(c)
7−→ Γpost⊲Wpost.

Next, note that for any configurationΓx, we have thatΓx ⊲Tι(c)
d?v
−−−−−→ T′ impliesT′ = Tι(c), and

Γx ⊲ Tι(c) _i Γ
′
x ⊲ T′ impliesT′ , Tι(c). Similar results hold for the system termTXι(c). Using these

facts, it is not difficult can derive the extensional transitionΓ ⊲W �=⇒ Γpre⊲Wpre from the sequence
of reductionsΓ ⊲ W | Tι(c) _

∗
i Γ

pre ⊲ Wpre, and the transitionΓpost ⊲Wpost �=⇒ Γ′ ⊲ W′ from the
sequence of reductionsΓpost⊲Wpost | TXι(c) _

∗
i Γ
′ ⊲W′ | TXι(c).

Thus we have proved thatΓ ⊲W �=⇒ Γpre ⊲Wpre ι(c)
7−→ Γpost⊲Wpost �=⇒ Γ′ ⊲W′, or equivalently

Γ ⊲W
ι(c)
�=⇒ Γ′ ⊲W′.

Proof of Proposition 4.20.For any valuew, let Tw be the system term

Tw = νd : (0, ·).(([w = v]d!〈ok〉, nil) + fail!〈no〉 | σ.[exp(d)]eureka!〈ok〉, nil)

Suppose thatΓ ⊲ W
γ(c,v)
�=⇒ Γ′ ⊲ W′. In particular, we have thatΓ ⊲ W �=⇒ Γpre ⊲ Wpre γ(c,v)

7−→

Γpost⊲Wpost �=⇒ Γ′ ⊲W′. From the transitionΓpre ⊲Wpre γ(c,v)
7−→ Γpost⊲Wpost we get thatΓpre = (1, v),

andΓpre ⊲ Wpre σ
−−−→ Wpost. In particular, note thatΓpre ⊢ c : exp, henceΓ ⊲pre Wpre | Tι(c,v) is

well formed. Note also thatΓx ⊲ Tγ(c,v) 6_i for any environmentΓx with Γx ⊢ c : exp, and that

Γx ⊲ Tγ(c,v)
c?v
−−−−→ T′ implies thatT′ = Tγ(c,v). Also, sinceΓpre(c) = (1, v), we obtain the transition

Γpre ⊲ Tι(c)
σ
−−−→ Tv. Finally, note that, for any channel environmentΓx we also have the transition

Γx ⊲ Tv
τ
−−−→ TXγ(c,v). Using these facts, we can build the sequence of transitions

Γ ⊲W | Tγ(c,v) _
∗
i Γ

pre ⊲Wpre | Tγ(c,v) _σ Γ
post⊲Wpost | Tv _

∗
i Γ
′ ⊲W′ | Tv _i Γ

′ ⊲W′ | TXγ(c,v)

Now suppose thatΓ⊲WTγ(c,v) _
∗
i _σ_

∗
i Γ⊲W

′ | Tγ(c,v); we need to show thatΓ⊲W
γ(c,v)
�=⇒ Γ′⊲W′.

Note that, in order for the testing componentTγ(c,v) to evolve intoTXγ(c,v), then

(1) when the first time instant passes, the test evolves intoTw for some valuew; this is because in
TXγ(c,v) the active receiver along channelc has vanished, and in CCCP active receivers along a
channelc can only disappear after a timed reduction has been performed, and only if the state
of channelc changes from exposed to idle,



MODELLING MAC-LAYER COMMUNICATIONS IN WIRELESS SYSTEMS 59

(2) at some point, in the remaining of the computation, the matching construct [w = v] is evaluated
in Tw, leading to the test component to evolve inTX

γ(c,v). Note that the matching construct [w = v]
cannot be evaluated to false, as this would cause the test component to evolve to a system term
different fromTX

γ(c,v). Therefore,w = v, and more specificallyTw = Tv.
(3) The evaluation of the matching construct [v = v] to true is modelled as anτ-intensional action,

hence it does not affect the tested componentW.
Formally, we have a sequence of reductions

Γ ⊲W | Tγ(c,v) _
∗
i Γ

pre ⊲Wpre | Tγ(c,v) _σ

_σ Γpost⊲Wpost | Tv _
∗
i Γ
′′ ⊲W′′ | Tv _i

_i Γ
′′ ⊲W′′ | TX

γ(c,v) _
∗
i Γ
′ ⊲W′ | TX

γ(c,v)

whereΓpre(c) = (1, v).
Let T be eitherTγc,Tv or TXγc,v, and letΓx be an arbitrary channel environment; note that we

have thatΓx ⊲ T
d?v
−−−−−→ T′ impliesT′ = T, andΓx ⊲ T _i Γ

′
x ⊲ T′ implies thatT′ , T. Using these

facts, it is not difficult to derive the transitions

( a ) Γ ⊲W �=⇒ Γpre ⊲Wpre,
(b ) Γpost⊲Wpost �=⇒ Γ′′ ⊲W′′,
( c ) Γ′′ ⊲W′′ �=⇒ Γ′ ⊲W′

Thus, we only need to show thatΓpre ⊲Wpre γ(c,v)
7−→ Γpost ⊲Wpost. The timed reductionΓpre ⊲Wpre |

Tγ(c,v) _σ Γ
post⊲Wpost | Tv can only be inferred ifΓpre ⊲Wpre σ

−−−→ Wpost, Γpre ⊲ Tγ(c,v)
σ
−−−→ Tv and

Γpost= updσ(Γpre). Also, note that the only possibility for inferring the transitionΓpre⊲Tγ(c,v)
σ
−−−→ Tv

is by using an instance of Rule(EndRcv)(where the channel environment contains valuev at channel
c); therefore, we obtain thatΓpre(c) = (1, v).

We have proved thatΓpre(c) = (1, v), Γpre ⊲Wpre σ
−−−→ Wpost andΓpost = updσ(Γpre); therefore,

we can apply Rule(Deliver) to infer thatΓpre ⊲ Wpre γ(c,v)
7−→ Γpost ⊲ Wpost, as we wanted to show.

By combining this transition with the weak transitions listed in (a), (b), (c), above, we obtain the

requiredΓ ⊲W
γ(c,v)
�=⇒ Γ′ ⊲W′.
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