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Abstract

We study the heterogeneity of social interaction profiles among
individuals and define the extent of the interaction dimension of seg-
regation. An interaction profile quantifies the probabilities that one
individual has to interact with different social groups. It can be in-
ferred, for instance, from observation of social ties through networks
data. Heterogeneity is minimal if everybody exhibit the same pro-
file, and is maximal if everybody interacts with only one group. All
the in-between configurations can be ordered on the bases of an intu-
itive principle based on operation that generate mixtures of interaction
profiles. We proposes a characterization of the Gini-exposure index to
assess heterogeneity in interaction patters in a society. One key advan-
tage of this index is that overall heterogeneity can be decomposed into
the segregation experienced by every individual with respect to other
people in his own group (isolation) or in other groups (exposure). An
preliminary empirical investigation of interaction patterns of natives
and immigrants across Italian municipalities reveals connections and
differences with other exposure measures.

Keywords: Interaction, segregation, dissimilarity, Gini index.

JEL Codes: J71, D31, D63, C16
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1 Introduction

In their seminal analysis of segregation measures, Massey and Denton (1988)
define five dimensions of analysis for residential segregation: evenness, expo-
sure, clustering, centralization and concentration. The measurement of these
phenomena requires to partition the population into groups and to know
the distribution of these groups across organizational units, such as neigh-
borhoods (Reardon and O’Sullivan 2004, Cutler and Glaeser 1997), school
assignment (Frankel and Volij 2011, Echenique, Fryer and Kaufman 2006) or
job types (Flückiger and Silber 1999, Hutchens 1991, Hutchens 2004). We
focus on multi-group measures of segregation in the exposure dimension that
can be used to assess segregation in networks.

This paper is interested in the distributional information that can be re-
tained from a network, and not on the network’s structure itself. We consider
interaction profiles, that correspond to vectors of probabilities that every unit
in a network has to interact with each of the groups that compose the society.
We contribute to the literature on segregation measurement by proposing a
multi-group index of segregation, the Gini Exposure index, which measures
segregation in a network as a form of inequality in the distribution of inter-
action profiles.

Following Massey and Denton (1988), exposure measures should capture
the differences across groups in the likelihood that any randomly selected
individual from one of these groups interacts with a person/unit from his
own group or from another group. Segregation is zero when the chances that
any two randomly selected individuals interact are made independent on
their respective groups of origin. On the contrary, segregation is maximized
whenever every individual interactions are limited to the members of the
same group.

Segregation measurement (Massey and Denton 1988, Reardon and Firebaugh
2002, Reardon and O’Sullivan 2004, Frankel and Volij 2011) has mainly fo-
cused on the rankings produced by segregation indices for populations parti-
tioned into two or many groups. None of these indices, however, has been de-
signed to deal with problems of segregation that use individual level data and
the axiomatization of these indices, where it exists (see for instance Hutchens
1991, Flückiger and Silber 1999, Reardon and O’Sullivan 2004, Frankel and
Volij 2011), cannot be meaningfully adapted to capture segregation patterns
across individuals interaction profiles.

We fill this gap by proposing a framework to study segregation at individ-
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ual level, conceptualized as a form of inequality in interaction profiles. We
provide an axiomatic characterization of the Gini Exposure index that gener-
alizes to the multi-group case the traditional Gini index of segregation. The
index can be interpreted as the Gini volume index discussed in the multivari-
ate inequality measurement literature (Koshevoy and Mosler 1996, Koshevoy
and Mosler 1997, Arnold 2005). We also provide a decomposition result il-
lustrating how the Gini Exposure index can be used to keep track of changes
in group or individual specific patterns of segregation within the network.

The axiomatic characterization of the Gini Exposure index is mainly
based on operations defined on interaction profiles that preserve or decrease
segregation. Our analysis is grounded on a simple principle: when the num-
ber of units equals the number of the groups, if a portion of a unit interac-
tion profile is merged with another unit, this mixture operation should not
increase the segregation, and indeed should reduce it in proportion of the
quota of the initial unit that is merged.

The following example clarifies this point. Consider, for instance, a large
population that can be partitioned into two group of equal size, the “Reds”
and “Greens”, and interaction profiles can be inferred from network data. If
every individual interacts with half of the remaining individuals, the degree of
segregation depends exclusively on how different types of individuals interact
among them. Two possible configurations are of particular interest. In the
first configuration, each individual interacts with half of the Reds and half
of the Greens. In this case the population is made of all homogeneous units
that exhibit the same interaction profile, so there is no segregation. In a
second configuration, every individual of the Reds interacts with all the Reds
and exclusively with them, and analogously for the Greens. In this case we
can consider the population as composed by two units that collect all the
individuals that interact with a specific groups. Admittedly this is an highly
segregated distribution.

If a proportion 1 − α of the unit of Reds, is joining the unit of Greens
and shares proportionally its interaction links then segregation is reduced
in the proportion 1 − α. In fact as α tends to 1 the overall segregation
should be eliminated because all the individuals will share the same average
interaction profile. Our main result will show that this property will play a
crucial role for the characterization of the Gini Exposure index for a large
class of distribution matrices representing interactions profiles.

Alternative indicators have been proposed and adopted in the literature
to measure the exposure dimension of segregation (see Hutchens 1991, Silber
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1989, Flückiger and Silber 1999, Reardon and Firebaugh 2002). An extensive
qualitative comparisons of these indicators with the Gini Exposure index on
the base of the properties that they satisfy is not possible. We construct a
quantitative analysis to recover empirical correlations in the rankings pro-
duce by different indices of exposure proposed in the literature and the Gini
Exposure index. The closer is this correlation to zero, the more likely it is
that the two indices capture very different segregation patterns underlying
the data.

We make use of Italian data by ISTAT to study the degree of spatial
segregation of immigrant groups across municipalities in Italy. We use a spa-
tial model to identify interaction probabilities across Italian municipalities
(nearly 8400), for each of the Italian provinces separately (101 provinces are
considered in this study) in an interval of eight years (from 2003 to 2010).
Our main assumption is that the chances for two individuals to interact de-
crease with the spatial distance between the area where the two individuals
reside. We consider segregation among three groups: the groups of immi-
grants coming from low HDI and high HDI countries and the natives group.1

The empirical analysis reveals two broad categories of indicators: the
indicators measuring the overall dissimilarity in interaction profiles and the
entropy indicators, measuring how far profiles are from their average. The
Gini Exposure index is mostly rank correlated with the dissimilarity-type
indicators, and this correlation is fairly robust to the demographic variability
of the data.

2 Notation

In this paper, we consider the problem of ranking configurations A, B ∈ C(G)
according to the level of segregation in the exposure dimensions that they
exhibit.

Definition 1 (Configuration) A configuration A ∈ C(G) is a triplet

[
N (A), G, ((πgi(A))g∈G, ξi(A))

i∈N (A)

]

where N (A) is a finite, nonempty set of units of cardinality N(A), G is a

finite, nonempty set of G population groups, with variable demographic size

1In this setting, we treat municipalities as the basic units of our analysis.
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denoted by Ng(A). For each unit i ∈ N (A) and group g ∈ G, the variable

πgi ∈ [0, 1] denotes the probability that i interacts with a randomly selected

individual from group g. Unit i’s demographic weight is denoted by ξi(A),
with

∑
i∈N (A) ξi(A) = 1.2

To avoid cumbersome notation, references to the configuration A are dropped
in what follows, unless disambiguation is needed. Thus, we denoted πig, N ,
Ng, N and ξi for configuration A ∈ C(G).

A configuration can be constructed, for instance, from empirical observa-
tion of the social connections between individuals, or from aggregate statistics
of expected interaction patters. For a configuration A ∈ C(G), the interaction
profile of i ∈ N is a column vector:

π.i := (π1i, . . . , πGi)
t ∈ [0, 1]G,

such that
∑

g∈G πgi = 1 for any i ∈ N . Hence, π.i represents the social ties of
unit i in terms of the probabilities that the individuals associated with this
unit have to interact with members of each of the groups in G. The G × N
interaction matrix π represents a collection of the N interaction profiles (by
column). The rows of the interaction matrix are denoted group profiles and
are indicated with row vectors πg. := (πg1, . . . , πgN) ∈ [0, 1]N .

The expected interaction profile associated with group g is the expected
probability that a randomly drawn individual interacts with group g:

πe
g(A) =

∑

i∈N (A)

ξi(A) πgi(A).

Again, we write πe
g in shorthand notation. For configuration A, we make

use of expected interaction profiles to normalize the entries of the interaction
matrix π. This leads to define a G×N interaction matrix A (always denoted

with boldface letters) such that A := (a1, . . . , ai, . . . aN) where agi :=
πgi(A)

πe
g(A)

.

3 The Gini Exposure index

3.1 The index

The Gini inequality index of a univariate income distribution, represented by
the N -dimensional vector x, is defined as the average income gap between

2One particular case is the uniform weighting scheme, where ξi(A) = 1/N(A) for all
i ∈ N (A).
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any pair of realizations in the income distribution x, scaled by the overall
average income:

G(x) :=
1

2N2 (
∑

i xi/N)

N∑

i=1

N∑

j=1

|xi − xj|.

Alternatively, the Gini index can be related to the Lorenz curve: it is equal
to twice the area between the Lorenz curve and the diagonal, representing
the equal distribution.3 As illustrated by Shephard (1974), the overall area
delimited by the Lorenz curve can be represented as the sum of the areas
spanned by every pair of vectors (xi, 1) and (xj, 1), corresponding to the
determinant of a 2 × 2 matrix formed by these vectors. The gap |xi − xj|
corresponds, in fact, to the determinant of these matrices. It follows that the
Gini inequality index rewrites:4

G(x) :=
1

2

∑

∀{i,j}⊆{1,...,N}

1

N

1

N

∣∣∣∣det

(
xi/ (

∑
i xi/N) xj/ (

∑
i xi/N)

1 1

)∣∣∣∣

In practice, the Gini inequality index can be conceptualized as a weighted
average of the dissimilarity between the incomes of pairs of units and the two
units’ weights. The function measuring the intensity of this dissimilarity is
the determinant, while the weights corresponds to the probability of drawing
the pair of units i and j from the sample. Since every pair of incomes can be
compared twice, the index must be standardized by two, so that its maximum
is equal to one.

A similar logic can be adapted to the measurement of the degree of dissim-
ilarity in interaction profiles, where income realizations have to be replaced
by probabilities of interaction. Segregation assessments boil down to check

3The Lorenz Zonotope of distribution is defined as the area between the Lorenz curve
and its dual. It can be written as a Minkowski sum of line segments, hence its area

equals the sum of the areas spanned by each pair of bi-dimensional vectors
(

xi∑
xi

, 1
N

)

and
(

xj∑
xi

, 1
N

)
, for all i, j. This area coincides with a parallelogram and it corresponds

to a measure of inequality between incomes shares received by two individuals i, j equally
weighted 1

N in the population.
4The terms 1

N2
∑

i
xi/N disappears at it is incorporated in the determinant calculation.

The comparison is now expressed in relative, rather than absolute, incomes. Moreover, the
determinant is a measure of linear dependence, and therefore similarity, between oriented
vectors.
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how much dissimilar is each group’s interaction probability deviation from
the mean from the value 1. A configuration exhibiting no segregation corre-
sponds to the case in which i’s interaction profile with group g is such that
πgi = πe

g, for every g ∈ G.
An obvious extension of the Gini inequality index is the expected Gini

(EG) segregation index analyzed in Flückiger and Silber (1999) and Alonso-
Villar and del Rio (2010). The EG index is an average of local Gini indices
Gg, weighted by groups size:

EG(A) :=
∑

g∈G

sg Gg(A),

where sg = Ng

N
is the share of individuals in the network associated to group

g. Each local Gini index is meant to capture the inequality in the distribution
of interaction probability with a group, say g, across the population:

Gg(A) :=
1

2

∑

∀{i1,i2}⊆N (A)

ξi1(A)ξi2(A)

∣∣∣∣∣det

(
πgi1

(A)

πe
g(A)]

πgi2
(A)

πe
g(A)]

1 1

)∣∣∣∣∣.

The expected Gini index assumes that evaluations of segregation can be
separated across dimensions. This strong assumption leaves aside concerns
about the composition of the interaction profiles. To overcome these limita-
tions, we propose a multi-group extension of the local Gini index presented
above, denoted the Gini Exposure index of segregation.

The Gini Exposure index of segregation, GE : C(G) → [0, 1] captures
the dispersion in the normalized interaction profiles across units in the same
configuration. The index is a weighted mean of a measure of dissimilarity
between G-tuples of interaction profiles, as captured by the determinant of
a square G × G matrix. The weight attached to each G-tuple corresponds
to its probability of being observed. The index is standardized by G!, the
overall number of possible G-tuples, so that the index maximum is equal to
one.

Definition 2 (The Gini Exposure segregation index)

GE(A) :=
1

G!

∑

∀{i1,...,iG}⊆N (A)

ξi1(A) · . . . · ξiG(A)
∣∣det

(
ai1 . . . aiG

)∣∣.
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3.2 A geometric illustration of the index

An equivalent way of assessing heterogeneity in interaction profiles consists in
looking at the likelihood that any randomly chosen individual from group g
interacts with individual i, given the original information about the distribu-
tion of interaction profiles across the population. For configuration A, define
the interaction likelihood LA

gi ∈ [0, 1] as this probability. The sequence of
probabilities LA

g1, . . . ,L
A
gN defines a distribution of interaction likelihoods of

group g with all the units in the distribution, hence satisfying
∑

i∈N LA
gi = 1

for every g ∈ G. The interaction likelihood is tied to interaction profiles and
individual weights through the Bayes’ rule:

LA
gi := agiξi =

πgiξi

πe
g

.

Heterogeneity in interaction profiles always implies that a form of dissim-
ilarity between interaction likelihoods prevails. When all interaction profiles
coincide, then agi = 1 and LA

gi = ξi for any i and g, meaning that the
interaction likelihoods coincide across groups. This does not necessary im-
ply, however, that the interaction likelihoods are constant across individuals.
Conversely, when each individual interacts with exactly one group, say g,
then the knowledge of the group allows to infer with certainty the individ-
uals that will interact with it, because LA

gi > LA
g′i = 0 for all g′ 6= g. All

in-between situations display some form of dissimilarity between the rows
of the interaction likelihood matrix LA associated with configuration A and
defined as:

LA := (ℓ1, . . . , ℓN(A)) =




LA

11 . . . LA
1N(A)

...
...

LA
G1 . . . LA

GN(A)



 ,

where LA is a row stochastic matrix (i.e. the entries add up to one by row,
but not necessarily by column) of the type analyzed in Andreoli and Zoli
(2014).

Andreoli and Zoli show that the dissimilarity between the rows of a G ×
N stochastic matrix (depicting sets of G discrete probabilities distributions
defines over n classes of realizations) can be visually represented through
the Zonotope set Z of the interaction likelyhood matrix LA, denoted Z(LA).
The Zonotope is a centrally symmetric polytope in the G-dimensional space
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representing the Minkowski sum of the matrix’s columns (see Shephard 1974).
More formally, it is defined as:

Z(LA) :=




z := (z1, . . . , zG) : z =

N(A)∑

i=1

θi · ℓ
A
i , θi ∈ [0, 1] ∀i ∈ N (A)




 ,

where the units’ weights ξi ∈ [0, 1] are such that
∑

i ξi = 1. A Zonotope can
be seen as a multi-group extension of the segregation curve5, where actual
distributions of groups across organizational units are replaced by the in-
teraction likelihoods these groups have with individuals. Since the Zonotope
represents the extent od dissimilarity across interaction likelihoods, the order
of distribution matrices produced by Zonotopes inclusion is always consistent
with decreasing segregation.

Various works in linear algebra have studied the properties of the volume
of the Zonotopes (McMullen 1971, Shephard 1974). It is shown, in particular,
that the volume of any Zonotope of a G × N matrix can be written as the
sum of the volumes of the Zonotope sets generated by every G × G (thus
square) matrix obtained from the original one by considering distinct G-
tuples of its columns. The volume of a square matrix is the absolute value
of its determinant, as already noted in Koshevoy and Mosler (1997) and
Arnold (2005). In our case, since the reference matrix is LA, the volume of
Z(LA) is the Gini-Exposure index of segregation. This immediately bears
the following implication.

Remark 1 For any A, B ∈ C(G), Z(LB) ⊆ Z(LA) ⇒ GE(B) ≤ GE(A).

This remark is important for two reasons. First, because it shows that the
analysis of the exposure dimension of segregation is associated with the analy-
sis of dissimilarity between distributions, in this case consisting in interaction
likelihoods of interactions. It follows that the exposure dimension of segre-
gation can be studied by making use of methods developed in the context of
dissimilarity analysis (Andreoli and Zoli 2014). The robust dissimilarity test
based on Zonotopes inclusion, for instance, defines sufficient conditions for
decreasing dissimilarity as picked up by the Gini-Exposure index.

Second, the remark provides the setting that can be used to study the
decomposition properties of the Gini-Exposure index, discussed hereafter.

5Segregation curves were introduced by (Duncan and Duncan 1955) and further studied
by (Hutchens 1991) and generalized by (Carrington and Troske 1997) and (Silber 1989).
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3.3 Decomposition properties

In many instances, one would like to assess the degree of exposure as ex-
perienced only by some subgroups of the population. This can be done by
computing the share of the overall segregation that can be attributed to each
group g ∈ G through a suitable decomposition of the overall Gini Exposure
index.

Similarly to the traditional Gini inequality index, the Gini Exposure in-
dex can be decomposed into a weighted average of the degree of segregation
experienced by each subgroup, captured by a group specific Gini index, and
an overlapping term. This linear decomposition allows to study separately
the dynamics of segregation for the members of each group.

For a configuration A, consider a partition of the overall population in
groups, where we use Ng(A) ⊆ N (A) to identify the set of individuals be-
longing to a group g ∈ G. The construction of the problem makes clear that
within the same unit i, there are possibly individuals belonging to each of
the groups in G. To each of these individuals, we associate the same inter-
action profile irrespectively of their group of origin. For each group g, the
Gini Exposure index GE(A|g) measures the overall degree of segregation as
experienced exclusively by members of group g in the configuration. This
index is defined as:

GE(A|g) :=
1

G !

∑

∀{i1,...,iG}⊆Ng(A)

ξi1(A|g) · · · ξiG(A|g)

∣∣∣∣∣∣∣∣
det





π1i1
(A)

πe
1(A|g)

. . .
π1iG

(A)

πe
1(A|g)

...
...

πGi1
(A)

πe
G

(A|g)
. . .

πGiG
(A)

πe
G

(A|g)





∣∣∣∣∣∣∣∣
.

where ξi(A|g) = ξi(A)∑
i∈Ng(A) ξi(A)

is the relative weight of unit i as measured

by all individual experiencing the interaction profile π.i and belonging to
group g, and πe

m(A|g) =
∑

i∈Ng(A) ξi(A|g)πmi(A) is the expected probability
of interaction with group m for an individual in group g.

Note that the multi-group GE(A|g) index is logically different from the
single group index Gg(A) defined above. In fact, it performs multi-group seg-
regation comparisons by assessing the inequalities in the interaction profiles
involving only individuals in group g, rather than assessing how much the
chances of interacting with g are unequally distributed in the population as
a whole.

The overlapping set, denoted O, gathers all the possible G-tuple of in-
dividuals, with at least two individuals coming from different groups. It is
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given by:

O := {{i1, . . . , iG} ⊆ N (A) : ∄{i1, . . . , iG} ⊆ Ng(A) for any g ∈ G} .

Based on this notation, we are now able to show an additive decomposition
of the multi-group Gini Exposure index in a within groups and an overlap-
ping component, to obtain a decomposition of the Gini-Exposure index that
is analogous to that of Ebert (2010), developed in the context of income
inequality analysis for univariate distributions.

Proposition 1 The Exposure Gini index can be decomposed as follows:

GE(A) =

(
∑

g∈G

αg

)
∑

g∈G

βg GE(A|g) + GE(A|O),

where βg = αg∑
g∈G αg

and αg = (
∑

i∈Ng(A) ξi(A))G
∏

m∈G
πe

m(A|g)
πe

m(A)
.

Proof. See Appendix B.1.

If there are no systematic differences between groups in the expected
interaction profiles, even though there exist within group variability, then
πe

m(A|g) = πe
m(A) for all groups m is expected to hold also across all groups

g ∈ G. In this case the weighting scheme βg would depend only on groups
densities. Moreover, if one compares allocations with little or no variability
in groups compositions, the unique sources of variation for the Gini index
are given either by the variations in the conditional segregation captured by
GE(A|g) or by changes in the degree of overlapping. Otherwise, differences
in the structural composition of the groups populations may play a relevant
role in determining the overall degree of segregation.

3.4 An illustrative example

Consider an allocation A with a population of 20 individuals, partitioned
in three non-overlapping groups G = {g1, g2, g3}. Out of the 20 individu-
als, 10 belong to group g1, 5 belong to group g2 and the remaining 5 are
of group g3, such that Ng1(A) = {1, . . . , 10}, Ng2(A) = {11, . . . , 15} and
Ng3(A) = {16, . . . , 20}.6

6The elements of the three sets represent individuals of the population.
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We consider two different frameworks. In the first, we analyze a bivariate
model of segregation, based on the interaction profiles with groups g1 and
g2, as experienced by the whole population. In Figure 1 we draw the related
Segregation Zonotope, we identify the Gini Exposure index and we depict
a graphical representation of the index decomposition. The second example
extends the analysis to the multi-groups (three groups) case.

Consider a simplified setting where there are only three possible inter-
action profiles with groups g1 and g2, namely π(A), π

′(A) and π
′′(A) and

defined as follows:

π(A) =

(
0.5
0.5

)
; π

′(A) =

(
0
1

)
; π

′′(A) =

(
1
0

)
.

The third interaction profile, π
′′(A), is such that all the individuals allocated

with that profile do not have any chance to interact with group g2. The other
profiles can be interpreted in a similar way.

In the following table we summarize the distribution of individuals across
groups and interaction profiles. For instance, individual i = 3 in group g1 is
allocated with interaction profile π(A), while individual i = 15 is the unique
individual in group g2 allocated with profile π

′′(A).

π(A) π
′(A) π

′′(A)
g1 {1, 2, 3} {4, 5, 6} {7, 8, 9, 10}
g2 {11, 12} {13, 14} {15}
g3 {16, 17, 18} {19, 20} ∅

Assuming a uniform weighting scheme (ξi(A) = 1
20

), one can construct
the expected interaction profiles with the two groups: πe

g1
(A) = 8

20
0.5+ 7

20
0+

5
20

1 = 0.45 and πe
g2

(A) = 0.55. The distribution matrix obtained from these
data defines the underlying information that is necessary to construct the
Segregation Zonotope in Figure 1(a) (the Segregation Zonotope is defined by
the solid contour of the figure). The Gini Exposure index corresponds to its
area, and it amounts to GE(A) = 0.8383.

Within this example, it is possible to provide a graphical representation
of the decomposition of the Gini Exposure index into a weighted sum of
Gini Exposure indices, each measuring the overall inequality in interaction
profiles between individuals of the same group. In Figure 1(a) we represent
three distinct areas (denoted by different scales of grey), that correspond to
the contributions of each group to the overall exposure inequality. Each area
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is decomposed according to the distribution of individuals across the three
groups. The values of the group-specific Gini Exposure indices are:

GE(A|g1) = 0.909, GE(A|g2) = 0.8333, GE(A|g3) = 0.5714, GE(A|O) = 0.53,

and the associated weighting scheme is:

αg1 = 0.25, αg2 = 0.06, αg3 = 0.053.

Using a similar analysis, one can evaluate the multi-group exposure pat-
terns for cases where the interaction profiles are defined on more than two
dimensions. We consider the case where interaction takes place with respect
to the three groups considered, thus redefining the new interaction patterns
π(A), π

′(A) and π
′′(A) as follows:

π(A) =




0.25
0.25
0.5



 ; π
′(A) =




0

0.7
0.3



 ; π
′′(A) =




0.2
0

0.8



 .

The distribution of these interaction profiles across the population is set
as before. In Figure 1(b) it is reported the Segregation Zonotope associ-
ated to this distribution of interaction profiles (shaded in grey). The overall
Gini Exposure index coincides with the zonotope volume, and it is equal to
GE(A) = 0.1138. It is possible to replicate the previous exercise to obtain
the decomposition of the Gini Exposure index and identify (also graphically)
the segregation patterns of the three groups under analysis.

4 A characterization result for measuring the

exposure dimension of segregation

In this section, we study the minimal transformations of the data that allow
to characterize the Gini Exposure index as a measure of segregation for a set
of configurations of interactions. We use the term segregation to indicate any
departure from the situation where interaction profiles are equalized within
the network.

For expositional purposes we consider likelihood matrices of dimension
G×N where N ≥ G ≥ 2. Each matrix is by construction row-stochastic, and
represent configurations where in each column there exists at least a positive
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element. The set of such matrices in denoted MGN , where MGG is the
subset of MGN containing only square row-stochastic matrices of dimension
G that do not include empty units (i.e. columns with all elements equal to
0). For technical purposes we will consider also an extended set M0

GG that
will include matrices belonging to MGG and those where at most G− 1 rows
could contain all 0’s while the other rows are stochastic and no column has
all elements equal to 0.

Let LA ∈ MGN , denote a likelihood matrix obtained from configuration
A, its generic element ℓgj ≥ 0 represents the probability that an individual
in group g interacts with individuals associated with unit j.

Given matrix L∈MGN , we measure its exposure dimension segregation
through the index EN(L), where EN : MGN → [0, 1] denotes a sequence of
continuous functions from the set MGN to the interval [0, 1]. The index is
increasing in the degree of segregation exhibited by a likelihood matrix and
reaches its maximum value at 1.

We illustrate here some properties that should be satisfied by the EN

index.
Let ΠN denote a N×N permutation matrix. The set of all these matrices

is PN . The property of Units Anonymity requires that the index is invariant
with respect to permutations of the units (columns) of matrix L.

Axiom 1 (UA: Units Anonymity) EN(L) = EN(LΠN) for all L∈MGN ,
all ΠN∈PN .

The UA axiom can be interpreted equivalently also in terms of interac-
tion matrices π. It requires that segregation in exposure is not affected by
columns permutations of π. In this case also the weights of the units ξ should
be permuted accordingly.

Next, the Normalization axiom identifies the reference case of maximal
segregation. It is specified only for matrices in MGG. Let IG denote the
identity matrix of dimension G. When each unit is associated only to a group
then the segregation is maximal and the index reaches the value of 1.

Axiom 2 (N: Normalization) EG(IG) = 1.

In terms of interaction matrices the maximal segregation is also associated
with the case where the matrix π is an identity matrix.

In order to make segregation comparisons for matrices where N > G we
adopt a decomposition property. This property assumes that overall segre-
gation evaluations can be based on a weighted combination of evaluations
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applied to square likelihood matrices in MGG that are obtained by focussing
only on G units ordered as in L. According to this view the set MGG is
the minimal set of matrices that allow to “fully” express segregation eval-
uations. This is the smaller set of matrices where each unit could interact
with only one group and all groups interact with at least one unit. This view
is consistent with the N axiom that specify the reference case for maximal
segregation in terms of matrices in MGG.

Let NO(L) denote the set of units ordered according to the ranking in
L. Any G dimensional subset of ordered units is denoted by {i1, i2, ..., iG} ⊆
NO(L) where the index ik denotes a unit in position k ≤ G in the units order
obtained by eliminating N − G units from the initial ordered set of units
{1, 2, ..., N} in L. The obtained sub-matrix derived from L by keeping the
units {i1, i2, ..., iG} is denoted (ℓi1 , ℓi2 , ..., ℓiG). In general this square matrix
of dimension G is not in MGG. This could be the case because all elements
in a row are 0’s, or more generally because for some/all rows the elements do
not sum to 1. In order to accommodate the first case we consider matrices in
M0

GG. In the second case, the matrix could however be made row-stochastic
by dividing each row (except those made of all 0’s) by the corresponding
element of the vector λ

{i1,i2,...,iG} obtained by calculating the product

λ
{i1,i2,...,iG} := (ℓi1 , ℓi2 , ..., ℓiG) · 1G

where 1G denotes the G dimensional column vector of 1’s. For simplicity
of exposition we denote such row stochastic matrix as (ℓ̃i1 , ℓ̃i2 , ..., ℓ̃iG). Note

that the generic element λ
{i1,i2,...,iG}
g of the vector λ

{i1,i2,...,iG} corresponding to
group g denotes the probability that an individual from group g interacts with
one of the units in the set {i1, i2, ..., iG}. The joint probability of interaction
obtained taking into account all G groups is given by the product of all
elements of λ

{i1,i2,...,iG}.
We are now in the position to formalize the Decomposition property that

requires that the aggregate segregation evaluation could be decomposed in
the weighted sum of all evaluations made over all ordered matrices in M0

GG

weighted according to the joint probability of interaction.

Axiom 3 (D: Decomposition)

EN(L) :=
∑

{i1,i2,...,iG}⊆NO(L)

(
G∏

g=1

λ{i1,i2,...,iG}
g

)
· EG(ℓ̃i1 , ℓ̃i2 , ..., ℓ̃iG)

for all L∈MGN , where EG is defined over M0
GG.
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The decomposition property is consistent with the logic adopted by the
Gini index to measure dispersions in income distributions, for the index in
fact the aggregate dispersion is a weighted average of pairwise individuals
comparisons of their distances.

Next axiom will allow to quantify changes in segregation moving from
one matrix to another. To introduce it we consider a combination of two
operations that should reduce the segregation for matrices in MGG and we
also quantify the cardinal level of this reduction. We first provide an intuition
of these operations for interaction matrices π and then we express them in
terms of transformations applied to likelihood matrices in MGG.

Consider a generic interaction matrix π and two units characterized by
the column vectors of interactions π.i and π.j, with demographic weights ξi

and ξj respectively. Assume now that a proportion 0 ≤ (1 − α) < 1 of the
individuals in unit i is joining unit j and shares its interaction probabilities.
The new demographic weights then become respectively αξi and ξj+(1−α)ξi,
the column vectors of interactions π.i is unaffected but the one of group j is
modified and is given by the weighted “mixture” of interaction probabilities
of the merged proportions of units, it becomes

π
′
.j = (ξjπ.j + (1 − α)ξiπ.i)

(
1

ξj + (1 − α)ξi

)
.

The axiom of ”Exposure segregation reduction through Mixtures of units”
postulates that these operations should not increase segregation, and more
precisely also assumes that segregation should be reduced proportionally ac-
cording to the coefficient (1−α). Thus, if the original configuration is associ-
ated to a positive level of segregation these operations should strictly reduce
it proportion (1 − α).

We formalize now the axiom in terms of matrices in MGG. This notation
will allow us also to highlight more directly the connections of the property
and the Gini measures of inequality.

Consider a likelihood matrix L = (ℓ1, ℓ2, ..., ℓG)∈MGG represented by
making explicit the G column vectors ℓi. This matrix can be transformed by
taking a portion (1 − α) where 0 < α ≤ 1 of unit i and transferring it so to
merge it with unit j, such that the resulting matrix L(α, i, j) can be written
as

L(α, i, j) = (ℓ1, ℓ2, ..., αℓi, ..., ℓj + (1 − α)ℓi, ..., ℓG).

We call such transformations elementary ”mixture of units”. Note that the
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matrix L(α, i, j) is still in MGG by construction. If ℓj and ℓi are not lin-
early dependent this operation should not increase the degree of segrega-
tion. The fact that EG(L(α, i, j)) ≤ EG(L) can be explained by combining
two operations [split and merge of columns] discussed in Andreoli and Zoli
(2014) and in the literature on dissimilarity measurement with permutable
columns. On one hand the split of a unit into two units is supposed to keep
dissimilarity/segregation unchanged, on the other hand the merge of two
units that are linearly independent is supposed not to increase the dissimi-
larity/segregation, by leveling the disparities between these two units. Next
axiom is also quantifying the reduction in segregation.

Axiom 4 (EM: Exposure segregation reduction through Mixtures of units)
EG(L(α, i, j)) = αEG(L) for all L∈MGG, i, j∈N , 0 < α ≤ 1.

Axiom EM is a generalization of a property satisfied by the Gini index
when G = 2.

Consider for instance the Gini index derived from the matrix L =

[
p 1 − p
x 1 − x

]

where for expositional purpose we assume that p denotes the proportion of
poor individuals whose income is a share x < p of the total income, and 1−p
is the proportion of rich individuals that own a share 1 − x of the society
income.

The Gini index for this society is p−x as could be calculated by computing
the Lorenz curve that in this case is piecewise linear with coordinates (0, 0),
(p, x), (1, 1). Suppose that we apply an elementary mixture transformation

to the data by post multiplying matrix L by

[
α 1 − α
0 1

]
the obtained new

matrix L(α, 1, 2) will be

L(α, 1, 2) =

[
αp (1 − α) p + 1 − p
αx (1 − α) x + 1 − x

]
=

[
αp 1 − αp
αx 1 − αx

]
.

The Gini index of matrix L(α, 1, 2) will be αp − αx = α · (p − x), precisely
as postulated by axiom EM.

An analogous result could be obtained by post multiplying L by

[
1 0

1 − α α

]

which is the matrix related to the other possible elementary mixture oper-
ation created by splitting column 2 and merging it with column 1. In this
case

L(α, 2, 1) =

[
1 − α (1 − p) α (1 − p)
1 − α (1 − x) α (1 − x)

]
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whose Gini index is 1 − α (1 − p) − 1 + α (1 − x) = α · (p − x).
We are now ready to prove the main characterization result for the Gini

Exposure index.
We apply our result to a set M̂GG ⊆ MGG of square matrices of dimen-

sion G that could be obtained as a combination of elementary mixture of
units/columns operations and permutations of units/columns. As we will
show when G = 2 the two sets coincide, that is M̂22 = M22. However, the
fact that M̂GG could be strictly included in MGG for G ≥ 3, is an open
question. Making use of an equivalence result in Theorem 1 in Andreoli and
Zoli (2014) it can be shown that any matrix in MGG can be obtained from
IG through a finite sequence of splitting of units, merge of units and permu-
tation of units.7 Even though split and merge operations are the basis for
the elementary mixture of units, there is no guarantee that any appropriate
sequence could be decomposed combining all split and merge operations into
elementary mixture operations so that the starting and arriving matrices are
all square matrices of dimension G.

Proposition 2 Let L∈M̂GG, the exposure segregation index EG : MGG →
[0, 1] satisfies axioms UA, N and EM if and only if it is the absolute value of

the determinant of L, that is

EG(L) := |detL| .

Proof. See Appendix B.2.

Before moving to the extension of the result to matrices where N > G
it is important to highlight the relevance of the restrictions applied in the
result in Proposition 2, that holds for matrices in M̂GG. As already stated,
the fact that M̂GG and MGG could not coincide when G ≥ 3, is an open
question. At this stage we are not in the position either to prove this fact or
to disprove it. The degree of flexibility in expanding the set M̂GG so that
it could coincide with MGG, is ”large”. In fact the construction of matrices

7This statement is obtained by considering the equivalence between statements (iv)
and (i) in Theorem 1 in Andreoli and Zoli (2014) and adapting it to the notation adopted
here. The result is more general as the one restated here, in fact it holds for matrices B
and A where B = AX for a generic row stochastic matrix X such that A and B could
exhibit a different number of columns. It involves the possibility of adding or eliminating
empty classes, the use of operations of splitting of columns and merging of columns and
columns permutations. In the current setting it suffices to consider A = IG.
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in MGG requires to identify G · (G − 1) values, because matrices are row-
stochastic. Moreover, the inequalities restrictions among all the values of the
matrix are at most 1

2
[(G2 − 1) · G2] . On the other hand, in order to construct

M̂GG it is possible to use G · (G− 1) transformation matrices as T (α, i, j) in
(1) each one with a possibly different parameter α. Moreover, the product of
these matrices could be permuted in [G · (G − 1)]! configurations, and could
be possibly integrated in the sequence by insertion of permutation matrices.
This large flexibility in the number of parameters and operations behind the
construction of M̂GG has however not yet allowed us to obtain a conclusive
answer on whether M̂GG = MGG or M̂GG ⊂ MGG even for the G = 3 case.

The result in Proposition 2 goes beyond the simple proof of the sufficiency
part, it shows also the necessity condition for the characterization that holds
for a potentially large set of admissible matrices of interest.

Note that EG(L) = |detL| is the volume of the zonotope associated with
matrix L∈M̂GG. By construction the index is such that if two columns are
linearly dependent then the index takes the value of 0. This is certainly a
limitation for the use of this measure if one restricts attention to problems
with G groups and G units.8 However, as we are going to show by making
use of axiom D, when N > G the overall segregation measure boils down to
0 only if there are not G linearly independent column vectors among the N
vectors associated to the units in L. A sufficient case for this extreme result
is obtained when two rows of L are identical.

We derive now the general formula for the exposure segregation index for
matrices where N > G. Given the construction of Proposition 1, we consider
the set of matrices M̂GN ⊆ MGN , such for any matrix in M̂GN any of its
square submatrices, where all rows have at least one positive element, that are
obtained after eliminating N − G columns is in M̂GG. By direct application
of axiom D in conjunction with the result of Proposition 2 it follows that:

Corollary 1 Let L∈M̂GN , the exposure segregation index EN : MGN →
[0, 1] satisfies axioms UA, N, EM and D if and only if it is the Gini Exposure

index, that is

EN(L) :=
1

G!

∑

{i1,i2,...,iG}⊆N (L)

|det(ℓi1 , ℓi2 , ..., ℓiG)| .

8These concerns are in line with those expressed in Shorrocks (1978) for the measures of
intergenerational mobility that take into account the determinant of the square transition
mobility matrix.
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Proof. See Appendix B.3.

Next remark formalizes the fact that when two groups are considered the
result applies to all matrices in M2N . In this case Proposition 2 and the
related corollary provide a full characterization of the Gini segregation index
in the two groups case.

Remark 2 M̂22 = M22.

In order to prove the remark, consider matrix

L =

[
p 1 − p
x 1 − x

]

where p > x, we show that it can be obtained as the product of matrices

T (α1, 1, 2) =

[
α1 1 − α1

0 1

]
, and T (α2, 2, 1) =

[
1 0

1 − α2 α2

]

and eventually the permutation matrix

[
0 1
1 0

]
. Consider the product

T (α1, 1, 2) · T (α2, 2, 1) =

[
α1 + (α1 − 1) (α2 − 1) α2 (1 − α1)

1 − α2 α2

]

it follows that α2 = 1 − x and α2 (1 − α1) = 1 − p that is α1 = p−x

1−x
. This

latter term is consistent with the definition of α1 > 0. If this was not the
case then one has to permute the columns of the matrix to get the result.

Recall that the value of the index could be obtained by multiplying α1 ·α2

it follows that E2(L) = p−x

1−x
· (1 − x) = p − x = |det(L)| that also coincides

with the Gini index of the distribution.

5 Comparison with other indices within the

spatial interaction model

This section compares the Gini Exposure index with other measures of the
exposure dimension of segregation. To do so, we use a qualitative analysis of
the properties characterizing these different indices, as well as a quantitative
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analysis based on empirical correlations. The focus is on interaction at the
urban level.

In many applications on urban networks, data are only available for (i) the
demographic size of the groups, (ii) the distribution of groups across a well
defined partition of the space into organizational units and, possibly, (iii) a
measure of the proximity between the units, decreasing with their distance or
diversity. Within this framework, interaction profiles can be inferred making
use of a spatial model for interaction, approximating the actual unobservable
network.

Spatial data have been often used in the sociological literature to assess
the spatial dimensions of social interaction at the urban level. Under the
postulate that social interactions frequency decreases with spatial distance,
sociologists have combined demographic data with spatial information to
design the probabilities that one individual has to interact with other groups,
as a function of her location in the space where interactions take place. Here,
we adopt a similar strategy to asses the social segregation patterns across
Italian provinces. Each province gathers together many municipalities. We
assume that the Italian municipalities are representative agents whose weight
depends on the municipality demographic size.

5.1 Additional notation for the spatial model

A configuration A defines the distribution of individuals within a province.
Consider the case in which the interaction space is partitioned into NA non-
overlapping organizational units i = 1, . . . , NA and use N (A) to denote this
set. Let ngi(A) be the observed number of individuals living in the same or-
ganizational unit i who are of group g. Each organizational unit is assumed
to have a demographic weight ξ̂i(A) =

ngi(A)∑
g∈G

∑
i∈N (A) ngi(A)

where the “hat”

symbol is used to denote an empirical weighting scheme.
The second ingredient in our analysis is a measure of distance, d, be-

tween organizational units’ centroids. Coherently with a long stream of
works in sociology (see for instance White 1983, Reardon and O’Sullivan
2004, Echenique and Fryer 2007), we assume that the spatial distance ac-
counts for social distance between individuals, so that the likelihood that
two individuals interact is a decreasing function of their spatial distance.

Let δA(i, h; d) denotes a measure of proximity of two units i, h ∈ NA which
is inversely related to the distance function d(i, h). We impose the proximity
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to be maximal and equal to 1 when i and h coincide according to the dis-
tance criterion d (so that δA(i, i; d) = 1), while the measure decreases and
approaches the value 0 the larger is the distance between the two units.

The proximity-weighted counting indicator n̂gi(A) =
∑

i∈NA
ngi(A)δA(i, h; d)

measures the number of individuals of groups g with whom an individual in
unit i may interact with. The overall interaction potential can be mea-
sured by the total amount of individuals that can be associated to unit i,∑

g∈G n̂gi(A). Combining together these two indicators, one obtains an empir-
ical measure of the probability to interact with group g conditional on the fact
that interaction takes place in organizational unit i: π̂gi(A) =

n̂gi(A)∑
g∈G n̂gi(A)

. An

empirical interaction profile is now denoted by the vector π̂i = (π̂1i, . . . , π̂Gi)
t.

The expected interaction profile is denoted π̂e
g(A) and the interaction matrix

is denoted Â, whose entry g, i is equal to âgi =
π̂gi(A)

π̂e
g(A)

.

5.2 Qualitative comparison with other indices

Reardon and O’Sullivan (2004) systematically analyzed the exposure seg-
regation measures treated in the literature, and proposed some meaningful
properties that these indices should satisfy.

The first property, scale interpretability is satisfied by construction of the
Gini Exposure index. We interpret GE(A) = 0 as the case where interaction
profiles coincide across groups and units, while GE(A) = 1 as the opposite
case of perfect segregation, occurring only in the case where the interaction
profile allocated to each of the units is degenerate, that is it assigns a prob-
ability of interaction with group g equal to zero for the remaining.

The implementable model is not exempted from the MAUP problem,9

and therefore the arbitrary boundary independence property is not satisfied.
This is a drawback of our empirical analysis (based on a pre-determined par-
tition of the space into organizational units) rather than an issue related to
the index itself.

The implementable Gini Exposure index meets the requirements of lo-

cation equivalence. In fact, if two organizational units are associated to the
same interaction pattern, the operations of mixing the two together into a
new unit preserves the segregation order characterized by the merge axiom,

9The Modifiable Areal Unit Problem occurs when the partition of the space into orga-
nizational units is exogenously fixed.
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and hence the Gini Exposure index.10

The implementable Gini Exposure index also satisfies Population den-

sity invariance, however it does not respect the requirements of composition

invariance. In fact, the Gini Exposure index captures a form of relative

inequality in the distribution of interaction patterns across the population.
Therefore, the index is independent from the overall expected interaction
profiles. In particular, the index is not independent from the size of the
groups. The convenience of satisfying composition invariance is, neverthe-
less, debatable (see Frankel and Volij 2011). We consider in our empirical
comparison the Atkinson multi-group segregation index in Frankel and Volij
(2011) that, differently from the other exposure indicators, is composition
invariant.

Finally, it is impossible to establish if transfer and exchange principles
are satisfied by the Gini Exposure index. In fact, the mixture of interac-
tion profiles is not defined in the form of a movement of population masses
across organizational units (transfer) or groups (exchange) but rather as a
convex combination of interaction profiles. We compute empirical correla-
tions between indices satisfying the transfer/exchange principle and the Gini
Exposure index, to recover a relation between mixtures, transfers and ex-
changes.

We compare the multi-group Gini Exposure index with other multi-group
measures proposed in the literature. In the class of indices that do not satisfy
composition invariance, the first index that we consider is a spatial version
of the the Mutual Information index M(A) characterized (among others) by
Frankel and Volij (2011).

The entropy of the discrete probability distribution (p1, . . . , pG) is defined
by:

E(p1, . . . , pG) =
∑

g∈G

pg log2

(
1

pg

)
.

The Mutual Information index equals the entropy of an allocation’s groups
distribution minus the average entropy of individual interaction profiles:

M(A) = E (π̂e
1(A), . . . , π̂e

G(A)) −
∑

i∈N (A)

ξ̂i(A) E (π̂1i(A), . . . , π̂Gi(A)).

Alternatively, we also consider other spatial indices studied in Reardon

10This is so because all the agents living in the two regions are endowed with the same
interaction profiles.
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and O’Sullivan (2004). All these indices satisfy the transfer and exchange
principles, provided that some symmetry requirements on the proximity mea-
sure are imposed. The first index is the Spatial Relative Diversity index
R(A). It consists in a ratio between the average degree of heterogeneity in
the composition of probabilities of interaction of each unit’s interaction pro-
file and the degree of heterogeneity in the the composition of probabilities of
interaction of the expected interaction profile. The heterogeneity in the the
composition of probabilities of interaction observed in unit i is measured by
the interaction coefficient Ii(A) :=

∑
g∈G(A) π̂gi(A) (1 − π̂gi(A)) for each orga-

nizational unit i and for the population as a whole, denoted by the coefficient
I(A) :=

∑
g∈G π̂e

g(A) (1 − π̂e
1(A)). The relative diversity amounts to:

R(A) = 1 −
∑

i∈N (A)

ξ̂i(A)
Ii(A)

I(A)
.

The spatial dissimilarity index D(A) is a measure of how different the
composition of individuals’ organizational units environments are, on aver-
age, from the composition of the population as a whole. It is defined as
follows:

D(A) =
1

2 I(A)

∑

g∈G

∑

i∈N (A)

ξ̂i(A)
∣∣π̂gi(A) − π̂e

g(A)
∣∣.

The last two indices that we consider are the empirical counterpart of the
expected Gini index, denoted EG(A), and the normalized spatial exposure

index NE(A), which is defined as:

NE(A) =
∑

g∈G

∑

i∈N (A)

ξ̂i(A)

(
π̂gi(A) − π̂e

g(A)
)2

1 − π̂e
g(A)

.

This index belongs to the class of the variance indicators. In the Reardon
and Firebaugh (2002) taxonomy, the two indices fall into the class of the
indicators measuring segregation as a form of distributional inequality of the
interaction profiles.

5.3 Quantitative comparisons: immigrants segregation
across Italian municipalities

In this section we study the empirical performances of the spatial segregation
indices discussed above. We exploit a panel of nearly 8400 Italian municipal-
ities, observed in the period 2003 to 2010. The municipalities are clustered
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at province level (110 provinces in 2010, of which 101 remain fixed over time,
each made by 74 municipalities on average), covering on average a population
of 551,000 inhabitants. Each municipality has an average demographic size
of 6,400 individuals, comparable to the dimension of the US MSAs districts.
In the analysis, each municipality corresponds to an organizational unit, with
Npt the set of municipalities that belongs to a given province p in time t. We
exploit the patterns of segregation of immigrants and natives (for a total of
G = 3 groups) for each province p in each year t. This can be done by cal-
culating a segregation index for each pair p, t. In this way, we have sufficient
time and space variability to construct and analyze segregation patters in
Italy, while keeping a sufficiently refined spatial scale.

We propose to study the degree of segregation of three mutually exclusive
social groups: Italian natives, immigrants from countries with high HDI lev-
els, and immigrants from countries with low HDI levels.11 This multi-group
separation (compared to the traditional bivariate analysis of immigrants ver-
sus natives) is of particular relevance in Italy, since immigration is a recent
and growing phenomenon, and the type of the country of origin (as measured
by the HDI) is a relevant factor to account for.

The distribution of the Italian provinces is represented in Figure 2. For
each province we construct a spatial model to measure interaction profiles at
the municipality level. Then, we compute the values of the segregation indices
GE, M, NE, R, D, EG and A for each of the provinces, using municipalities
as organizational units. These indicators are meant to summarize the infor-
mation about the distribution of interaction probabilities within provinces.
We end up with 808 data point for each of the indicators, varying across the
101 provinces and the 8 years considered.

We study the empirical rank correlations of the indices, and we asses the
differences in the type of segregation patterns that can be captured accord-
ing to the indicator used. Then, we apply the decomposition of the Gini
Exposure index to the data to study the contribution of each group to the
overall exposure.

11The Human Development Indicator (HDI) proposed by the UNDP department is a
synthetic indicator computed on a country and year bases for evaluating the multivariate
distribution of health, resources and educational indicators across the population in that
year and country. The UNDP also provides a classification of countries according the their
HDI profile.
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5.3.1 Data

We build the spatial analysis using ISTAT demographic data12 at municipal-
ity level. We obtain data on the demographic size of the resident population,
partitioned according to the nationality. Municipalities are grouped into
provinces, according to the official repartition of the Italian territory. Table
1 in the appendix collects information on the variability of the number and
demographic size of provinces and municipalities across the period consid-
ered.

Two immigration groups have been created according to the definition of
low level and medium/high level HDI countries provided by the UNDP for
2011. In 2010, the share of immigrants from low HDI countries amounts to
6.7% of the total population by province, on average (Table 1), while it is
particularly high in the north of Italy (Figure 2).

We use a spatial proximity index to empirically identify the interac-
tion probabilities π̂gi. We proceed as follows. Each municipality has been
geocoded, so that latitude and longitude are now available for each munic-
ipality’s centroid. We assume that the interaction probability decays with
spatial distance. We construct a set of interaction profiles associated to each
municipality within the same province (but not across provinces). To do so,
we compute n̂gi, assuming δ(i, h; d) to be a biweight kernel estimator of prox-
imity, and we take d as the spatial distance between municipalities, censored
at a 20km threshold.13 Interaction probabilities and expected (by province)
probabilities are calculated according to their definitions. We use the relative
demographic size of a municipality i in a given province to infer ξ̂i.

Interaction probabilities with immigrants from low HDI countries grew
substantially but uniformly over the 8 years span, although the probability

12The municipality level composition (by nationality) of the resident population in Italy
from 2003 to 2010 can be freely downloaded from the official ISTAT (the Italian Statistical
Institute) webpage at the following link: http://demo.istat.it/.

13We use the biweight kernel to assign the distance weighted number of individual of
each group to municipality i. The kernel has a Gaussian-like shape, although it is bounded,
so that all the municipalities outside a given radius of length r = 20km are assumed to
have no weight in determining interaction probabilities for the population living in i. The
weight decreases according to the spatial distance. The proximity weighting function is:

δ(i, h; d) := 1(d(i, h) < 20km) ·

(
1 −

(
d(i,h)
20km

)2
)2

, where 1(.) is the indicator function and

d(i, h) is the spatial distance based on the cosine method, and calculated by using latitude
and longitude information for municipalities centroids.
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of interaction with this group remains high in the north of Italy, both at the
level of provinces (Figure 4) and municipalities (Figure 5).

The distribution of interaction profiles across municipalities within the
same province defines the object of our study. Additional measures of dis-
proportionality at municipality level, as well as indices at province level, can
now be calculated.

5.3.2 Segregation patterns across Italian provinces

The distribution matrix associated to a given province provides information
about the disproportion in interaction probabilities at municipality level ver-
sus the expected probabilities at province level. Figure 6 reports the spatial
distribution of this disproportionality coefficient for the group of immigrants
from low HDI countries, defined as ai = π̂low HDI,i(A)/π̂e

low HDI(A). If ai

is larger than one, then the probability of interacting with immigrants from
low HDI countries in i is larger than what is expected at province level.

In north-east and central Italy it is observed the largest within province
variability in interaction disproportionality, which implies higher variability
across municipalities in the type of interaction profiles. These macro-regions
(the distribution of disproportionality coefficients at municipality level in the
north Italy region is reported in Figure 7) are also characterized by large vari-
ability in their ranking position throughout the period, while the expected
interaction level remains stable (see Figure 8 and the figures in Table 1, re-
porting the percentage of municipalities where ai > 1, stable in the 2003/2010
period).

This particular pattern of (exposure) segregation across municipalities is
captured by both by the Gini Exposure index and the Mutual Information
index by Frankel and Volij (2011), which we take as a reference for the class
of multi-group exposure indices that do not satisfy composition invariance.
The position of all the 101 Italian provinces (for which data are available)
in the ranking produced by the Gini Exposure index are depicted in Figure
9 for the year 2003 and 2010. Provinces are ranked according to increasing
segregation. The top 20 segregated provinces are concentrated in the center
and the north-east regions of Italy. This outcome is coherent with the fact
that the Gini Exposure index captures the within province variability in in-
teraction profiles, which is consistent in the two macro-regions.

The Mutual Information index provides a closely related (although not
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coincident) picture regarding the distribution of the entropy associated to
each interaction profile within provinces (Figure 10). The changes in the
ranking of the provinces by 2003 to 2010 (right panel of Figures 9 and 10)
generated by the two indices, however, do not coincide.

5.3.3 Comparison of segregation indices

The graphs in Figure 12 suggest two well defined patterns of segregation that
distinguish the spatial indices under analysis. For each of the six indices con-
sidered (GE, M , NE, R, EG, D) calculated by province and year, we report
three curves, identifying the dynamics of segregation across years associated
to the province scoring at the first, median and third quartile of the ranking
of provinces defined, for each year, by one given index.

The Gini Exposure index identifies a slightly decreasing pattern of seg-
regation across years for the three reference provinces taken into account.
One can interpret the graph in the following way: the segregation pattern
measured for the most segregated province among the least 25%, 50% and
75% segregated provinces in a given year is decreasing across the time in-
terval considered. A similar pattern emerges if we consider the multi-group
Dissimilarity index. Also for the Expected Gini index the patterns is almost
stable across time.

On the other hand, the Mutual Information index defines a different pat-
tern: segregation is slightly increasing in time for the moderately (25% and
median) segregated provinces, while the growth in segregation of the most
segregated provinces is even more evident. Similar patterns are also exhib-
ited by the Normalized Exposure or the Relative Diversity indices. A possible
explanation of this divergence in segregation patterns is that the two families
of indices obeys to different aggregation principles.

We study more in depth the ordinal relation between the six indices, along
with the composition invariant Atkinson index characterized by Frankel and
Volij (2011), by computing the rank correlations between the indices, re-
ported in Table 2. The correlations are all positive and significant. As
anticipated above, the Gini Exposure index is significantly positively rank
correlated with the Dissimilarity index (τb = 0.593 and ρ = 0.773), although
the link with the Expected Gini is less evident. On the other hand, the Mu-
tual Information index, the Relative Diversity and the Normalized Exposure
measures generate significantly similar ranking of segregated distributions.

Differently from the majority of the composition invariant measures, the

29



Gini Exposure and the Dissimilarity indices are also (weakly) correlated with
the Atkinson index, thus remarking that the two indices, in part, are affected
by the distributions and account for the changes in overall composition.14.

In Figure 13(a) we decompose this correlation across years. We identify
two distinct patterns of correlation between the Gini Exposure index and the
remaining composition invariant indices. The rank correlation between the
Gini Exposure index and the Dissimilarity index remains fairly stable across
time and persistently high. This pattern is distinct from other patterns, ob-
tained by plotting rank correlations between the Gini Exposure index and
other indices such as M , NE and R. We also tried to perform the inverse
analysis, that is comparing for each province the correlation in ranking be-
tween years. However, it is not possible to disentangle any clear pattern
among observed correlations.

Finally, we try to decompose the sources of correlation across periods by
making use of the main demographic variables that we have studied, such
as the share of groups in a province, the interaction profile associated to a
province, or the size of the population. The objective is to assess the impact
of the variability in the data on the rank correlation between pairs of indices.
To do so, we focus on the correlation of the Gini Exposure with D (first
pattern) and with M (second pattern). We use regression models to explain
the contribution of each province in determining the Kendall’s τb correlation
measure used to construct Figure 13. In fact, the Kendall’s index of rank
correlation is an average of the degree of measured concordance associated
to each observation.15 Hence, traditional OLS methods are suitable to assess
the association of variability in concordance across provinces with the char-
acteristics of each province.

We perform six regressions and we report the results in Table 3. Each
regression gives a list of coefficients that identify the impact of marginal vari-
ations in the independent variable on the rank correlation between the Gini

14The reported correlation, for the appropriate indices, are comparable to the one com-
puted in Frankel and Volij (2011)

15The Kendall’s τb can be written as τb/4 = #concordant pairs/n(n−1)−(1−a/n(n−1)).
Let ρi(I) be the rank of province i in a given year produced by the index I. We say that,
within a given year, provinces i and j are concordant with respect to two indices I, I ′

if (ρi(I) − ρj(I)) (ρi(I
′) − ρj(I

′)) > 0. The number of concordant pairs is the sum of
concordances for each i. The index linearly depends only on the concordant cases, since
n(n − 1) is the total number of pairwise comparisons and a the number of cases in which
provinces i, j are ranked in the same position by both indicators.
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Exposure and the Dissimilarity index (models (1) to (3)) or alternatively the
Mutual Information index (models (4) to (6)). Models (3) and (6) control
for time dummies (where 2003 is the reference value). As shown before,
correlation patterns do not substantially differ across years. Moreover, the
association between common variables entering in the segregation indices is
very low. We conclude that the rank association between the Gini Exposure
index and the Dissimilarity index does not rely on the variability of the data
considered. Moreover, the two indices produce very consistent rankings, and
these rankings are not influenced by the structure of the data.

We repeat the same analysis by regressing the contribution of each obser-
vation in determining the rank correlation between the Gini Exposure index
and the Mutual Information index. Results for the complete specification
are reported in Model (6). As in the previous case, variables measuring the
population (total or group level) distribution across provinces in absolute or
relative terms have no impact in explaining changes in correlation. However,
time fixed effects are significantly different from zero. This result, along with
the fact that variability in inequality within interaction profiles (captured
by the odds of interacting with an immigrant) have a significant negative
impact on correlation between GE and M , which let us conclude that the
association between GE and M is in part due to the variability in the data,
and decreases sensibly when the odds of interacting with one of the groups
are low. Therefore, the two indices may capture different information when
faced with substantial within interaction profiles heterogeneity. The Gini
Exposure index is, however, robust with respect to these differences.

6 Concluding remarks

We have proposed and analysed a new measure of multi-group segregation
in networks: the Gini Exposure index. The index is designed to evaluate
across the individuals in a network the inequality in the distribution of their
interaction profiles with social groups. It can be interpreted as the volume of
the zonotope of the matrix of the likelihood probabilities of interaction with
the social groups in analogy with the generalization of the inequality Gini
index in the multidimensional setting provided by the volume Gini index.
In order to highlight the properties of the Gini Exposure index we have
presented an axiomatic characterization of the index that holds for a large
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set of interactions configurations.
Adopting a spatial model of interaction based on Italian data on the dis-

tribution of immigrants across municipalities we have analyzed the behavior
of the Gini Exposure index compared to other segregation indices which are
not defined from an individual level perspective.
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A Illustration

We introduce, with a simple example, the representation of the data that we
use and the type of transformations involved in our analysis.

An interaction profile defines the conditional probability that a given pop-
ulation unit16, denoted by i, interacts with each of the social groups, denoted
by g, in which the population is partitioned. This probability is denoted by
πgi. Each unit is associated with its own interaction profile, that may de-
pend on her network, location, or demographic attributes. In the example,
we consider four individuals l1, l2, j and k. Two of them belong to group g1

and the remaining to group g2. We assume that profiles of interactions are
estimated on the individual bases, so that the units of analysis coincide with
the individuals. The interaction profile of individual i specifies the probabil-
ity he or she has to interact with groups g1 and g2. Let assume for simplicity
that individuals l1 and l2 share the same interaction profile, which is marked
with an l. We can reduce the analysis to three profiles. We use the following
data to fix ideas:

(
πg1l

πg2l

)
=

(
1/4
3/4

)
,

(
πg1j

πg2j

)
=

(
1/8
7/8

)
and

(
πg1k

πg2k

)
=

(
3/8
5/8

)
.

According to the first profile, the chances that l1 or l2 interact with a person
of group g1 is 25%, while 75% of the times they interact with members of
group g2.

To normalize the data and eliminate any form of heterogeneity within

interaction profiles we use the vector of expected interaction probabilities πg

as the endogenously determined reference interaction profile.
It turns out that segregation can be measured as a form of dissimilarity

(see Andreoli and Zoli 2014) between the likelihood that any randomly drawn
individual of group g interacts with the demographic unit i, for any group
g and any unit i. This likelihood, denoted L(i|g), should ideally equate the
probability of interacting with unit i, namely Pr[i] if interaction profiles are
equally distributed in the population. That is, L(i|g) = L(i|g′) for all is and

16A unit can be an individual, in which case it receives a weight equal to the inverse
of the overall population size. It can also represent the minimum statistical unit used
to empirically construct interaction profiles, for instance a class of student in a school,
a neighborhood or a family unit. In this case, the weight of the unit is proportional to
the group of individuals attached to that unit, and thus experiencing the same interaction
profile

35



all groups g 6= g′. Any departure from this configuration leads to a form of
segregation in the exposure dimensions.

The Bayes rule ties interaction probabilities to the likelihood of interac-
tion in the following way:

L(i|g) =
Pr[i] · πgi

πg

.

In our example, suppose that weights are defined as follows: Pr[l] =
2/4, Pr[j] = 1/4 and Pr[k] = 1/4. The expected interaction profile can be
computed as follows:

(
πg1

πg2

)
=

2

4

(
πg1l

πg2l

)
+

1

4

(
πg1j

πg2j

)
+

1

4

(
πg1k

πg2k

)
=

(
1/4
3/4

)
.

The interaction profiles are not equally distributed. In fact, one obtains:

(
Llg1

Llg2

)
=

(
2/4
2/4

)
,

(
Ljg1

Ljg2

)
=

(
1/8
7/24

)
and

(
Lkg1

Lkg2

)
=

(
3/8
5/24

)
,

or, in matrix notation,

L :=

(
2/4 1/8 3/8
2/4 7/24 5/24

)
,

which shows that the sources of exposure are units j and k, given that
L(l|g1) = L(l|g2) holds. In fact, unit l1 and l2 interaction profiles coin-
cide with the expected profile.

B Proofs

B.1 Proof of Proposition 1

Proof. The proof is made by construction. We first partition the set of
all possible G-tuple {i1, . . . , iG} of individuals into two groups. There are
some G-tuples gathering individuals that exclusively belong to subpopulation
Ng(A), for each of the groups g ∈ G. The remaining G-tuples belong, instead,
to the overlapping set O. This originate the first result: the Exposure Gini
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index is linearly separable into a within component plus the overlapping
term. The latter is representable itself as a Gini index (because the whole
population is taken into consideration in calculating it):

GE(A) := Within term + GE(A|O).

We now turn to the within term. Again, by linearity of the Gini in-
dex it is possible to separate the different observations by group, defined
by Ng(A), such that for i ∈ Ng(A) it holds that i ∈ {i1, . . . , iG} only if
{i1, . . . , iG} ∈ Ng(A). An obvious requirement, always satisfied by definition
of an allocation, is that Ng(A)∩Nm(A) = ∅ for all groups g 6= m. As a result
one obtains a comparison of G-tuples for all groups separately, for a total of
G factors adding up to the within component.

Each of the G factors can be written as a sum of absolute values of deter-
minants of a squared matrix of size G, which for simplicity is referred to by
D. For the G-tuple {i1, . . . , iG}, this matrix is defined as D = (ℓi1 , . . . , ℓiG).
Note that within a chosen group g, D only depends upon the chosen G-tuple
in Ng(A). The within term can be written as:

Within term =
∑

g

1

G!

∑

{i1,...,im,...,iG}∈Ng(A)

| det(D)|

For a chosen group (say g) and a given G-tuple (say the one including
im), an element of the matrix D chosen in any position (say the one corre-
sponding to row g and column im) is given by πgim(A)aim .

Multiplication and division of the interaction probability vector by an ap-

propriate conversion factor
πe

g(A)

(
∑

i∈Ng(A) ξi(A))πe
g(A|g)

does not produce any effect.

The operation gives a new matrix, where a generic element in row g, column
im is defined by

(
∑

i∈Ng(A) ξi(A))πe
g(A|g)

πe
g(A)

ξim(A|g)πgim(A)

πe
g(A|g)

.

In compact form, one can substitute D with D̂ in the calculation of the
within term, to obtain:

Within term =
∑

g

1

G!

∑

{i1,...,im,...,iG}∈Ng(A)

| det(αg · D̂)|,
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where

αg := diag

(
(
∑

i∈Ng(A) ξi(A))πe
1(A|g)

πe
1(A)

, . . . ,
(
∑

i∈Ng(A) ξi(A))πe
G(A|g)

πe
G(A)

)
,

and D̂ = α
−1
g · D.

The determinant of the product of two matrices is the product of the re-
spective determinants of the factors. Moreover, the determinant of a diagonal
matrix is the product of elements on the diagonal. Few calculations show
that det(αg) = αg, defined in the proposition. The value αg only depends
on the group index. Hence, the following result applies, which concludes the
proof:

Within term = (
∑

g∈G

αg)
∑

g∈G

αg∑
g∈G αg

GE(A|g).

B.2 Proof of Proposition 2

Proof. Necessity part. Consider matrix L∈M̂GG, by construction it could
be obtained from IG applying a finite sequence of elementary mixture of
units/columns operations and permutation of units/columns. Note that
L = IGL, it follows that there is a finite sequence of elementary mixture
of units/columns transformations and permutations of units/columns that
allow to construct L starting from IG. These transformations can be sum-
marized in terms of matrices multiplications, by considering permutations
matrices in PG and matrices T (α, i, j)∈MGG such that

1 ... i... ... j ...

T (α, i, j) =





1
1

α 1 − α
1

1
1





(1)

where all empty cells should be occupied by zeros. Let index by k the el-
ements of the sequence of transformations T (αk, ik, jk), where αk ∈ (0, 1]
denotes the mixture coefficient and ik, jk denote the columns involved in the
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mixture at stage k. It follows that either

L = IGΠ1
G ·
∏

k

T (αk, ik, jk) · Π
2
G (2)

or matrix L can be decomposed similarly by also inserting some permutations
matrices among the elements of the sequence of transformations T (αk, ik, jk).

We consider first the case in (2). The first permutation matrix Π1
G in the

sequence can be considered as a column permutation of the matrix IG. Note
that Π1

G could also coincide with an identity matrix and therefore lead to no
effect on the sequence of operations. Thus, EG(L) = EG (IGΠ1

G ·
∏

k T (αk, ik, jk) · ΠG) .
Making use of axiom UA it follows that EG(L) = EG (IGΠ1

G ·
∏

k T (αk, ik, jk)) .
Note that if we apply the transformation associated with T (αk, ik, jk) to ma-
trix IGΠ1

G we obtain IGΠ1
G · T (αk, ik, jk). Recall that according to axiom UA

in combination with axiom N, it follows that EG(IGΠ1
G) = 1. Then by apply-

ing axiom EM we obtain that EG[IGΠ1
G ·T (αk, ik, jk)] = αk ·E

G(IGΠ1
G) = αk.

By repeated application of axiom EM one obtains that

EG(L) = EG

(
∏

k

T (αk, ik, jk)

)
=
∏

k

αk. (3)

Note that by construction αk = det (T (αk, ik, jk)) . Moreover, by making use
of the property that the determinant of the product of square matrices is
equal to the product of the determinant of the matrices, one obtains that

∏

k

αk = det

[
∏

k

T (αk, ik, jk)

]
. (4)

Note however that all elements αk are positive, and thus the above relation
holds also if we consider the absolute value of the determinant. This in
general should be the case if we consider matrix L that could be obtained
permuting either matrix IG and/or matrix

∏
k T (αk, ik, jk). These operation

may invert the sign of the determinant and therefore we may have that
combining (3) and (4) one obtains

|detL| = det

[
∏

k

T (αk, ik, jk)

]
=
∏

k

αk = EG(L).
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The above consideration could be extended to the case where permutation
matrices in PG are inserted into the sequence of operations T (αk, ik, jk).
These insertions do not affect the final result, but allow to enrich the set of
matrices that can be reached by the combinations of operations.

So far we have considered the case where EG(L) > 0, by continuity of EG

we can also approach the situations where EG(L) = 0, these can be obtained
as limiting cases where some αk → 0.

In order to complete the proof it is left to verify the uniqueness of the
index and the sufficiency part.

Suppose that the sequence of matrices T (αk, ik, jk) and of the permutation
matrices ΠG is not unique. By construction then either it leads to the same
value |detL| or it not possible that the sequence leads to L because |detL|
is uniquely defined.

Sufficiency. The index EG(L) = |detL| satisfies all the three axioms UA,
N and EM. In fact the absolute value of the determinant is not affected by
permutation of the columns of a matrix (axiom UA) and it equals 1 if L = IG

(axiom N). To prove that also axiom EM is satisfied, we need to combine
some properties of the determinants.

Recall in the definition of axiom EM the notation for

L(α, i, j) = (ℓ1, ℓ2, ..., αℓi, ..., ℓj + (1 − α)ℓi, ..., ℓG).

First note that if one column of a matrix is multiplied by α also its determi-
nant is multiplied by α. It then follows that

detL(α, i, j) = det(ℓ1, ℓ2, ..., αℓi, ..., ℓj + (1 − α)ℓi, ..., ℓG)

= α det(ℓ1, ℓ2, ..., ℓi, ..., ℓj + (1 − α)ℓi, ..., ℓG).

Then recall that the determinants are multilinear functionals and therefore

det(ℓ1, ℓ2, ..., ℓi, ..., ℓj + (1 − α)ℓi, ..., ℓG)

= det(ℓ1, ℓ2, , ..., ℓi, ..., ℓj, ..., ℓG) + (1 − α) det(ℓ1, ℓ2, ..., ℓi, ..., ℓi, ..., ℓG).

Note that the last determinant equals 0 because two columns are identical
to ℓi. It then follows that

det(ℓ1, ℓ2, ..., ℓi, ..., ℓj + (1 − α)ℓi, ..., ℓG)

= det(ℓ1, ℓ2, ..., ℓi, ..., ℓj, ..., ℓG) = detL.
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To summarize, detL(α, i, j) = α · detL. The above considerations are not
affected if one considers the absolute value of the determinant, thereby lead-
ing to EG(L(α, i, j)) = |detL(α, i, j)| = α · |detL| = αEG(L) as required by
axiom EM.

B.3 Proof of Corollary 1

Proof. By direct application of the definition of axiom D to the result in
Proposition 2, note first that is not necessary to consider matrices where at

least one row is made of zeros, because in this case the associated
(
ΠG

g=1λ
{i1,i2,...,iG}
g

)
=

0. We should therefore only focus on matrices in M̂GG. For these matrices
by combining axiom D with the result in Proposition 2 we obtain

EN(L) =
∑

{i1,i2,...,iG}⊆NO

(
ΠG

g=1λ
{i1,i2,...,iG}
g

)
·
∣∣∣det(ℓ̃i1 , ℓ̃i2 , ..., ℓ̃iG)

∣∣∣ .

However, note that by construction

∣∣∣det(ℓ̃i1 , ℓ̃i2 , ..., ℓ̃iG)
∣∣∣ = |det(ℓi1 , ℓi2 , ..., ℓiG)| ·

(
ΠG

g=1λ
{i1,i2,...,iG}
g

)−1
.

After simplifying in the EN(L) formula we obtain

EN(L) =
∑

{i1,i2,...,iG}⊆NO

|det(ℓi1 , ℓi2 , ..., ℓiG)| .

Here the ordered distribution of the G units in NO is taken into account. If
we allow all possible permutations of these units as in N (L) then we obtain
for each ordered set of units G! times the same index |det(ℓi1 , ℓi2 , ..., ℓiG)|
that, being expressed in absolute terms is not modified by permutation of
the columns. These considerations lead to the final result.
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C Figures and tables
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Figure 1: Segregation Zonotope and the Gini Exposure index. In the first
graph, the population of 20 individuals is partitioned according to the group
of origin: Ng1(A) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, Ng2(A) = {11, 12, 13, 14, 15}
and Ng3(A) = {16, 17, 18, 19, 20}. The share of overall segregation as expe-
rienced exclusively by the members of the three groups is given by the area
of the three polytopes identified in panel (a).
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Figure 2: Population by province and year, and its growth rate (in %).

Figure 3: Share of immigrants by province and year, and its growth rate (in
%).
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Figure 4: Expected interaction probability with immigrants from low HDI

countries, by province and year, and its growth rate (in %).

Figure 5: Interaction probability with immigrants from low HDI countries,
by municipality and years, and its growth rate (in %).

44



Figure 6: Disproportionality in interaction probability (with respect to the
expected interaction) with immigrants from low HDI countries, by munici-
pality and year, and the change in ranking (relative to the position of the
municipalities in 2003 within the same province).
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Figure 7: Disproportionality in interaction probability (with respect to the
expected interaction) with immigrants from low HDI countries, by municipal-
ity in 2010 for the North Italy macro-region. Higher concentration (ak > 1)
is interpreted as the disproportion between the interaction with immigrants
from low HDI countries with respect to the expected interaction. The ex-
pected interaction probability is calculated at province level.
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Figure 8: Disproportionality in expected interaction probability with immi-
grants from low HDI countries, by province and year, and it growth rate (in
%).
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Figure 9: Ranking of Italian provinces according to the multi-group Gini Ex-
posure index, by year. Differences are reported for provinces where segrega-
tion is increased (positive rank changes, in dark gray) and where segregation
is decreased (negative rank changes, in pale gray).
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Figure 10: Ranking of Italian provinces according to the multi-group Mutual
information index, by year. Differences are reported for provinces where
segregation is increased (positive rank changes, in dark gray) and where
segregation is decreased (negative rank changes, in pale gray).
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Figure 11: Dynamics of the six exposure segregation indices in the period
2003 to 2010, for the 101 Italian provinces. For each index and each year
are reported the values of the index associated to the provinces in the first
quartile (25%), median and third quartile (75%) of the ranking produced by
the index in that year.
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Figure 12: Dynamics of the decomposition of the GE index in the period
2003 to 2010, for the 101 Italian provinces. For each subgroups and each
year are reported the values of the index associated to the provinces in the
first quartile (25%), median and third quartile (75%) of the ranking produced
by the index in that year.
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(a) Across periods

(b) Across provinces

Figure 13: Kendall’s τb correlation coefficient of Mutual Information index
(M), Relative interaction (R), Dissimilarity (D), Normalized Exposure (NE),
Expected Gini (EG) and Gini Exposure for two groups (GE) indices with
the multi-group Gini Exposure index. See the note of Table 2 for further
details. Correlations in panel (a) are calculated for each year for the whole
set of realizations of the indices across provinces (on average 102 observations
per year), while correlations in panel (b) are calculated for each province
using the data of the years 2003/2010 (eight years, negative correlations are
statistically zero at 5% confidence level). Provinces are ordered by increasing
magnitude of the correlation between GE and D.
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Table 1: Descriptive statistics
Year 2003 2004 2005 2006 2007 2008 2009 2010
Provinces (N) 103 103 103 107 107 107 107 110
Municipalities (N) 8100 8101 8101 8101 8101 8101 8100 8094
Municipalities by province 79 79 79 76 76 76 76 74
Population (total, mil) 57.9 58.5 58.8 59.1 59.6 60.0 60.3 60.6
Population by municipality 6267 6342 6375 6441 6500 6549 6586 6417
Population by province 562022 567596 570405 552629 557190 561169 563928 551149
Low HDI Immigrants
Share 0.029 0.035 0.039 0.043 0.050 0.057 0.062 0.067

0.017 0.021 0.023 0.025 0.028 0.031 0.032 0.035

Interaction probability 0.029 0.036 0.040 0.044 0.045 0.052 0.063 0.066
0.018 0.022 0.025 0.027 0.030 0.033 0.034 0.037

High HDI immigrants
Share 0.005 0.006 0.006 0.007 0.007 0.008 0.008 0.008

0.003 0.004 0.004 0.004 0.005 0.005 0.005 0.005

Interaction probability 0.005 0.006 0.006 0.007 0.006 0.007 0.008 0.008
0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.005

Immigrants concentration as a proportion of cases where a > 1:
By municipality 0.419 0.409 0.407 0.406 0.419 0.419 0.415 0.413

0.493 0.492 0.491 0.491 0.493 0.493 0.493 0.492

By province 0.447 0.456 0.437 0.458 0.570 0.570 0.495 0.536
0.500 0.501 0.498 0.501 0.497 0.497 0.502 0.501

Polarization (.9 < a < 1.1) 0.078 0.097 0.107 0.112 0.131 0.140 0.131 0.155
0.269 0.298 0.310 0.317 0.339 0.349 0.339 0.363

Data: ISTAT, demographic statistics, years 2003/2010.

Notes: Interaction probabilities constructed with a spatial biweighted quadratic kernel,

boundary distance is 20km. Standard deviations are reported in italics.
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Table 2: Rank correlation between segregation indices

Index GE M R D NE EG GE2 A

Gini Exposure (GE) 1 0.484 0.501 0.773 0.506 0.410 0.614 0.407
Mutual Information (M) 0.347 1 0.901 0.498 0.859 0.251 0.335 0.073

Relative Diversity (R) 0.356 0.750 1 0.665 0.988 0.305 0.499 0.121
Dissimilarity (D) 0.593 0.356 0.486 1 0.686 0.311 0.767 0.379

Normalized Exposure (NE) 0.357 0.709 0.919 0.502 1 0.325 0.534 0.109
Expected Gini (EG) 0.285 0.168 0.207 0.222 0.221 1 0.272 0.140

Gini Exposure, pair (GE2) 0.437 0.230 0.350 0.576 0.377 0.184 1 0.341
Atkinson (A) 0.278 0.050 0.078 0.259 0.070 0.091 0.233 1

Mean (diagonal excluded) 0.379 0.373 0.427 0.506 0.221 0.321 0.341 0.151

Data: by ISTAT, demographic statistics, years 2003/2010.

Notes: Kendall (τb, below the diagonal) and Spearman (ρ, above the diagonal) rank

correlation coefficients of spatial segregation indices calculated at province level, years

2003 to 2010. The total number of observations is 808 (708 for the Atkinson index,

year 2010 is chosen to set the index weighting scheme). All coefficients are significantly

different from zero at 1% level. Universe is set according to the ISTAT statistical

definition of Italian provinces (reduced to 101 here), and indices are computed with

information at municipality level. Provinces created or destroyed after 2003 are excluded

from the sample. Social groups are mutually exclusive: natives (Italian nationality),

immigrants from low HDI countries and immigrants from high HDI countries.
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Table 3: The impact of demographic factors on the rank correlation

Dependent var.: Num. of concordances (GE and D) Num. of concordances (GE and M)
(1) (2) (3) (4) (5) (6)

Pop. total -0.000 -0.000 -0.000+ 0.000 0.000 0.000+
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Pop. natives 0.000 0.000 0.000+ -0.000 -0.000 -0.000+
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Pop immigrants 0.000 0.000 0.000* -0.000 -0.000 -0.000+
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Share imm. -124.199 556.237 151.561 -638.273
(86.62) (436.70) (123.50) (569.17)

Proportion imm. 5.353 -596.959 -164.355 676.974
(83.73) (432.16) (119.84) (565.11)

Proportion ratio 16.256 -133.832**
(44.00) (65.59)

Rank (prop. ratio) -14.540 125.770**
(41.89) (63.28)

Rank by GE 0.081*** -0.046*
(0.02) (0.02)

year==2004 -0.626 -0.782 6.876*** 6.691***
(2.32) (2.28) (2.45) (2.32)

year==2005 -0.394 -0.458 1.758 1.160
(2.37) (2.31) (2.46) (2.26)

year==2006 0.539 -0.796 9.410*** 8.059***
(2.38) (2.36) (2.63) (2.41)

year==2007 -0.130 -0.921 8.784*** 8.325***
(2.45) (2.46) (2.60) (2.44)

year==2008 -0.578 -1.812 7.226*** 6.987***
(2.51) (2.50) (2.59) (2.47)

year==2009 4.802* 2.222 10.515*** 9.260***
(2.47) (2.51) (2.66) (2.51)

year==2010 -0.027 -2.109 7.852*** 6.243**
(2.69) (2.73) (2.82) (2.73)

Constant 60.236*** 65.082*** 55.332*** 54.055*** 47.755*** 54.232***
(0.82) (2.15) (3.69) (0.95) (2.34) (4.07)

Provinces (8 years) 847 847 795 847 847 795
R2 0.004 0.03 0.03 0.007 0.04 0.06
p-value model 0 0 0 0 0 0

+ p < 0.15, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Data: by ISTAT, demographic statistics, years 2003/2010.

Notation: Regression (OLS) of the number of concordant observations on predictors,

controlling by year FE. An observation is a province in a given year. Let ρi(I) be

the rank of province i in a given year produced by the index I. We say that, within

a given year, provinces i and j are concordant with respect to indices GE and D if

(ρi(GE) − ρj(GE)) (ρi(D) − ρj(D)) > 0. The dependent variable is the number of cases

of concordance of each province i in a given year, for both pairs (GE , D) (models (1)-(3))

and (GE , M) (models (4)-(6)). These values, normalized by the maximum number of

comparisons, give the Kendall’s τb coefficient.
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