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Abstract

The posterior parietal cortex (PPC) is a critical node in attentional and saccadic eye movement 

networks of the cerebral cortex, exerting top-down control over activity in visual cortex. Here, we 

sought to further elucidate the properties of PPC feedback by providing a time-resolved map of 

functional connectivity between parietal and occipital cortex using single-pulse TMS to stimulate 

the left PPC while concurrently recording fast optical imaging data from bilateral occipital cortex. 

Magnetic stimulation of the PPC induced transient ipsilateral occipital activations (BA 18) 24 to 

48 ms post-TMS. Concurrent TMS and fast optical imaging results demonstrate a clear influence 

of PPC stimulation on activity within human extrastriate visual cortex and further extend this 

time- and space-resolved method for examining functional connectivity.
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Introduction

Feedback projections from posterior parietal cortex (PPC) into more posterior visual areas 

provide top-down modulation of visual activity, and these signals are proposed to be 

essential to functions of the attentional and eye-movement systems of the human cerebral 

cortex (Beck & Kastner, 2009; Behrmann, Geng, & Shomstein, 2004; Colby & Goldberg, 

1999; Corbetta & Shulman, 2002; Desimone & Duncan, 1995). Functional magnetic 

resonance imaging (fMRI) studies have shown strong correlations between PPC activity and 
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activity within visual cortices in selective attention and oculomotor planning tasks (Bressler, 

Tang, Sylvester, Shulman, & Corbetta, 2008; Lauritzen, D'Esposito, Heeger, & Silver, 2009; 

Merriam, Genovese, & Colby, 2003, 2007; Silver, Ress, & Heeger, 2005; Yantis et al., 

2002). Disruption of the PPC with transcranial magnetic stimulation (TMS) has been shown 

to impair oculomotor planning (Muri, Vermersch, Rivaud, & Gaymard, 1996; Zangemeister, 

Canavan, & Hoemberg, 1995) and visual attention (Beck, Muggleton, Walsh, & Lavie, 

2006; Chambers, Payne, Stokes, & Mattingley, 2004; Hilgetag, Théoret, & Pascual-Leone, 

2001; Thut, Nietzel, & Pascual-Leone, 2005). TMS studies have further shown that 

phosphene thresholds measured from visual cortex decrease directly following TMS to PPC 

stimulation, demonstrating a direct influence of PPC stimulation on the excitability of visual 

cortex (Silvanto et al., 2009). Recent advances in the concurrent application of TMS and 

neuroimaging (Bestmann et al., 2008; Driver, Blankenburg, Bestmann, Vanduffel, & Ruff, 

2009; Miniussi & Thut, 2010; Siebner et al., 2009; Taylor & Thut, 2012) have provided 

more detailed neurophysiological measures of PPC stimulation on remote visual areas by 

using TMS to stimulate PPC while concurrently recording activity from visual cortex using 

fMRI (Blankenburg et al., 2010; Ruff et al., 2008, 2009) or event-related potentials (ERP; 

Fuggetta et al., 2006). However, unlike the frontal eye fields (FEF, another player in the 

attention and eye-movement network), the precise temporal and spatial characteristics of the 

PPC's influence on occipital cortex has yet to be described (Moore & Armstrong, 2003; 

Armstrong, Fitzgerald & Moore, 2006; Armstrong & Moore, 2007).

Recent work has demonstrated that fast near-infrared optical imaging can also be effectively 

used concurrently with TMS to measure inter-regional TMS-evoked cortical activations 

(Parks et al., 2012; Parks, 2013). Fast optical imaging (also called the event-related optical 

signal, or EROS) has high spatial and temporal resolution as it is based on the modeled 

diffusion paths of near-infrared light and changes in the scattering of this light as it passes 

through depolarized neural tissue (phase or photon delay data; Gratton, Corballis, Cho, 

Fabiani, & Hood, 1995; Gratton et al., 1997; Gratton & Fabiani, 2003; Gratton, Goodman-

Wood, & Fabiani, 2001; Gratton et al., 2006; for reviews see Gratton & Fabiani, 2010; Wolf 

et al., 2008). When combined with TMS, fast optical imaging affords a unique opportunity 

to interrogate the effects of PPC stimulation on visual cortex activity with sub-centimeter 

spatial resolution and millisecond temporal resolution. Thus, unlike fMRI or ERP, which 

have limitations in resolving neural signals in time (fMRI) or space (ERP), fast optical 

imaging allows for the spatiotemporal dynamics of TMS-evoked inter-regional activations 

to be mapped.

Here, we conducted a simultaneous TMS and fast optical imaging experiment to measure 

interregional cortical activations evoked in the human cerebral cortex during PPC 

stimulation. We performed this experiment with two goals in mind. First, we sought to 

investigate the influence of PPC stimulation on occipital visual areas, including the time-

course of these TMS-induced activations. To this end we recorded fast optical imaging from 

bilateral occipital cortex while single pulses of TMS were administered to the left PPC. We 

used event-related fast optical signals time-locked to TMS onset to image the spatiotemporal 

dynamics of PPC feedback in occipital visual cortex. The second goal of our study was to 

further demonstrate the utility of concurrent TMS and fast optical imaging in providing 

time- and space-resolved measurement of TMS-evoked inter-regional activations. The 
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method has been previously applied only in the motor system (Parks et al., 2012). Here, we 

extend the method to demonstrate measures of functional connectivity in the human visual 

system.

Method

Subjects

Ten right-handed subjects were recruited from the University of Illinois graduate and 

undergraduate population. Prior to their participation, subjects were screened for safety with 

TMS according to the guidelines described by Rossi and colleagues (2009). In order to 

ensure that parietal stimulation was sufficient to influence the brain we used the presence of 

TMS-induced phosphenes; if TMS resulted in a visual percept we could be sure that it was 

impacting cortical activity. Previous work has established that, like occipital TMS, a 

phosphene percept can be also induced with TMS to parietal cortex (Bagattini, Mazzi, & 

Savazzi, 2015; Fried, ElkinFrankston, Rushmore, Hilgetag, & Valero-Cabre, 2011; Marzi, 

Mancini, & Savazzi, 2009; Mazzi, Mancini, & Savazzi, 2014; Tapia, Mazzi, Savazzi, & 

Beck, 2014). Thus, subjects were pre-screened for reliability of parietal phosphene percept. 

Subjects participating in this experiment were drawn from a bank of subjects who had 

previously participated in laboratory experiments and were pre-screened for parietal 

phosphenes as part of those projects. The prescreening process assessed the reliability of 

both occipital and parietal phosphenes by evaluating the consistency of phosphene report 

under sham and active stimulation conditions. Occipital and parietal thresholds were used to 

adjust stimulator intensity according to individual subject sensitivity. All TMS, optical 

imaging, and psychophysical procedures were approved by the University of Illinois 

Institutional Review Board.

Stimuli and Procedures

Experimentation was conducted in a dark room. Stimuli were displayed using the 

Presentation® stimulus delivery package (Neurobehavioral Systems, Albany, CA, USA) on 

a 19-inch CRT monitor. Scalp locations for TMS were measured and marked with a grease 

pencil. Then, following a 10 to 15 minute period of dark adaptation, TMS was positioned 

over the P3 scalp location of the international 10-20 system (Jasper, 1958). P3 overlays left 

PPC with variation of less than 2 cm (Herwig et al., 2003), a margin of error which would be 

expected to be further minimized across subjects by the width of the figure-of-eight coil's 

magnetic field (∼2 cm). Parietal phosphene threshold was determined at P3 and the near-

infrared optical imaging apparatus of source and detector fibers was then affixed to the 

subject's head. Subjects were dark-adapted once again for a 10 to 15 minute period before 

testing began.

Optical imaging data were recorded while single-pulses of TMS were administered to the 

left PPC (position P3 of the 10-20 system) or a control site several centimeters away. A 

control site was determined individually for each subject so as to provide sufficient 

separation from the P3 stimulation site while also ensuring that muscle-twitch artifacts were 

not introduced at the control location (see Transcranial Magnetic Stimulation). Subjects 

were positioned at a distance of 57 cm from the screen. Their head position was stabilized 
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using a chin rest with forehead support. Foam padding further secured the head in position 

and minimized head movements during testing. Subjects were instructed to maintain a 

steady fixation on a faint red dot centered on the screen with a 32° × 27° field of view. Trials 

began with a random fixation interval of 1500 – 2500 ms. A single pulse of TMS was then 

administered and a dim gray question mark appeared over the fixation point after a 500 ms 

delay (Figure 1). Subjects then responded with a button press to indicate whether or not they 

had perceived a phosphene by pressing ‘1’ or ‘2’ on the keyboard number pad, respectively. 

Five blocks of 50 trials were given for both P3 and control TMS conditions. TMS coil 

position was alternated between blocks (P3 or control site TMS).

Following experimentation, three-dimensional coordinates of the scalp locations of the 

optical sensors (optodes) were digitized for each subject, using the Brainsight® software 

package (Rogue Research, Montreal, Canada) equipped with a Polaris Vicra® optical 

tracking system (NDI, Waterloo, Ontario, Canada). Three fiducial points (nasion, left and 

right pre-auricular points) and an additional 50 positions from the scalp and face were also 

digitized to fully capture head shape.

Transcranial Magnetic Stimulation

TMS was administered using a Magstim 220® stimulator (Magstim, Whitland, UK) 

outfitted with a 70 mm figure-of-eight coil. Single TMS pulses were administered to one of 

two locations over the left hemisphere in an anterior-to-posterior orientation. Position P3 

was used as the active site for posterior parietal stimulation. Stimulation over this scalp 

location corresponds to BA 7/39/40 (Herwig et al. 2003; Okamoto et al., 2004). We verified 

that coil position induced suprathreshold stimulation of PPC by ensuring that TMS to this 

location elicited a phosphene percept (Bagattini et al., 2015; Fried et al., 2011; Marzi et al., 

2009; Mazzi et al., 2014; Tapia et al., 2014). We selected a stimulation site that elicited 

parietal phosphenes so that stimulation intensity could be set according to this phosphene 

threshold to ensure suprathreshold stimulation of PPC. A control site was selected 

individually for each subject at a location over the left hemisphere that was approximately 3 

cm anterior and dorsal to P3 and did not evoke muscle twitches of the face, scalp, neck, or 

extremities. To set stimulator intensity individual for each subject, a 50% phosphene 

threshold was measured at P3 using the rapid estimation of phosphene thresholds (REPT) 

method (Abrahamayan et al., 2011). Stimulator intensity was then set to 120% of this 

threshold value for the duration of the experiment. TMS coil positioning was guided by a 

Brainsight® neuronavigation system (Rogue Research Inc., Montreal, Quebec, Canada), 

ensuring accurate coil placement between stimulation runs.

Fast Optical Imaging

Optical recordings were taken using Imagent® frequency-domain oxymeters (ISS, 

Champaign, IL). Fiber optic near-infrared (NIR) sources and detectors were secured to 

parietal and occipital regions using a custom built mounting apparatus (Figure 2). The 

optical recording montage consisted of 16 detectors and 12 source fibers mounted to the 

scalp over right parietal, left occipital, and right occipital regions. The optical recording 

apparatus was mounted with respect to P3 and control site locations, leaving enough 

separation to ensure the unimpeded administration of TMS pulses. Source fibers emitted 
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NIR light at 830 nm, amplitude-modulated at 110 MHz. Phase delay data were sampled 

from 80 channels (source-detector pairs) at 8 ms intervals (125 Hz). To achieve a sampling 

rate of 125 Hz, we designed our optical montage such that a subset of near-infrared sources 

could be illuminated simultaneously without causing channel crosstalk (i.e., allowing for a 

large spatial separation across the two hemispheres). This permitted multiplexing through 

five sources over an 8 ms period (1.6 ms duration of illumination per source).

Pre-processing of continuous fast optical data included correction of phase wrapping, 

conversion of phase to optical delay, amplitude normalization (within blocks), pulse artifact 

correction (Gratton & Corballis, 1995), and a low-pass filter of 30 Hz (see Gratton & 

Fabiani, 2010 for a review of optical analysis). Fast optical signals were then segmented into 

600 ms epochs, beginning 192 ms prior to TMS onset (pre-stimulus baseline) and continuing 

408 ms thereafter. Separate event-related averages were then formed for P3 and control site 

TMS blocks. Three-dimensional digitization was used to co-register source and detector 

fibers to a structural T1-weighted MRI collected from each subject in independent sessions. 

Co-registration was accomplished using the method described by Whalen et al. (2008) 

implemented in custom Matlab code (Mathworks, Natick, MA, USA). Co-registration to 

individual neuroanatomy improves the spatial resolution and signal-to-noise of fast optical 

signals (Whalen et al., 2008; Gratton & Fabiani, 2010). Modeling of near-infrared diffusion 

paths and group-level level statistical analyses were conducted with custom analysis 

software package, OPT-3D (Gratton, 2000). Source-detector pairs (channels) below a 

distance of 2.5 cm (too short to pass through cortex) or exceeding a distance of 6.0 cm (too 

far to reliably detect) were excluded from analysis as were channels in which the standard 

deviation of phase delay in the 600 ms average exceeded 160 ps. Data were baseline-

corrected according to the 192 ms pre-stimulus interval, transformed into Talairach space 

(Talairach & Tournoux, 1988), and spatially smoothed with an 8-mm Gaussian filter. 

Group-level T statistics were calculated at each voxel for a P3 versus control site TMS 

contrast then converted to Z scores. Statistical parametric maps were surface-projected onto 

a coronal orientation (see posterior view of template Talairach brain; Figure 2). Three 3.0 × 

2.5 cm surface-projected regions of interest (ROIs) were examined (X and Z dimensions). 

These ROIs were selected to encompass occipital visual cortices (Brodmann areas 17 and 

18) in the left and right hemispheres (left hemisphere: x=-31 to x=-1 and z=-30 to z=-5; right 

hemisphere: x=4 to x=34 and z=-30 to z=-5). A third ROI examined potential 

interhemispheric propagation to the right PPC. This ROI was centered on the mean cortical 

projection of 10-20 position P4 in Talairach space (Okamoto et al., 2004; x=22 to x=52 and 

z=36 to z=61). Correction for multiple comparisons within each ROI was calculated based 

on the number of independent ROI resolution elements (resels; Friston et al., 1994; Gratton 

et al., 2006). ROI peak Z scores achieving statistical significance (p < .05) determined 

significant activity at each time sample.

Results

Analysis of phosphene reports revealed that subjects perceived a greater proportion of 

phosphenes with P3 stimulation than control site stimulation (P3 TMS: M= 55.7%, 

SD=19.1%; control site TMS: M=33.5%, SD=34.94%; t(9)=2.61, p=.028), consistent with 

greater activation of PPC with P3 stimulation than control site stimulation (Bagattini et al., 

Parks et al. Page 5

Neuropsychologia. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2015; Fried et al., 2011; Marzi et al., 2009; Mazzi et al., 2014; Tapia et al., 2014). However, 

it should be noted that the relatively high rate of phosphene reports associated with control 

site stimulation may indicate some spread of activation to left PPC during control site TMS.

Fast optical signals revealed significant TMS-evoked activity within the left occipital ROI 

beginning 24 ms post-TMS (Z=3.03, Zcrit = 2.90; peak voxel: -21, -98, -18) and continuing 

at 32 ms (Z=2.62, Zcrit = 2.62; peak voxel: -21, -97, -13) and 40 ms (Z=2.13, Zcrit = 2.07; 

peak voxel: -6, -100, -6). This activation corresponds to BA 18, consistent with activation of 

visual extrastriate cortex through parietal feedback connections (Figure 3). There were no 

significant activations in the right occipital ROI (Z<1.5)consistent with the known ipsilateral 

effects of PPC TMS stimulation, and with the right visual field lateralization of the 

phosphenes. The time course of TMS-evoked activation for the P3 TMS versus control site 

TMS contrast is shown for the first 48 ms in Figure 3. Time course plots of raw optical 

signals from left and right ROIs are given in Figure 4. No significant contralateral (right) 

PPC activations were found (Z < 1.5).

Discussion

We investigated the spatiotemporal dynamics of feedback from PPC to more posterior 

occipital visual areas. Imaging of such functional connectivity between PPC and occipital 

visual cortices was conducted using a concurrent brain stimulation and neuroimaging 

approach: we stimulated the left PPC with single-pulses of TMS and used simultaneous 

recordings of near-infrared fast optical imaging to measure the resultant inter-regional 

propagation of the TMS-induced activity. Fast optical imaging of bilateral occipital cortex 

and right parietal cortex revealed a transient activation of left occipital cortex (BA 18) 24 to 

48 ms following TMS to left PPC, demonstrating a clear effect of PPC simulation on 

extrastriate visual cortical activity.

Our results align with previous studies examining the causal influence of PPC feedback on 

posterior visual areas but provide a more complete view of the spatiotemporal dynamics of 

PPC-to-occipital feedback in the human brain. Previous work using multi-site TMS 

demonstrated that occipital phosphene thresholds were reduced 50 ms after PPC stimulation, 

bilaterally following right PPC stimulation and only ipsilaterally following left PPC 

stimulation (Silvanto et al., 2009). Our fast optical imaging results are consistent with this 

spatial pattern and time range as we observe activations within left BA18, which onset at 24 

ms and continue 48 ms post-pulse. Previous TMS-fMRI studies have also demonstrated 

activation of extrastriate visual areas when a short train of TMS pulses is applied to PPC in 

the right hemisphere (Ruff et al., 2008, 2009). Our fast optical imaging results further 

elaborate on the timing of this interregional PPC-to-occipital activation, demonstrating 

modulation of occipital visual activity within a few tens of milliseconds. It should be noted, 

however, that a previous TMS-fMRI study (Ruff et al., 2009) failed to find significant 

modulation of occipital visual activity when left PPC was stimulated with TMS (Ruff et al., 

2009). One potential reason for this discrepancy in left PPC effects is that Ruff et al. (2009) 

tested subjects under photopic conditions whereas subjects in both Silvanto et al. (2009) and 

the present study remained dark-adapted throughout experimentation.
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In addition to further elucidating the influence of PPC on occipital visual activity, the results 

of this concurrent TMS and fast optical imaging study further demonstrate the utility of this 

technique and highlight the unique information that can be garnered by this neuroimaging 

approach. A previous study first demonstrated the feasibility of this technique by using 

single-pulse TMS to induce activations within primary motor cortex and measuring the 

resultant propagation of intra- and inter-regional activity with fast near-infrared optical 

imaging (Parks et al., 2012). Concurrent TMS and fast optical imaging recordings allow 

TMS-evoked responses to be imaged with high temporal (< 10 ms) and spatial (∼1 cm3) 

resolution. Here, we successfully follow up on this methodology and extend its application 

to another modality, providing valuable information regarding the timing of inter-regional 

communication within a parietal-occipital network of the human visual system.

Our fast optical imaging results are consistent with axonal tracing studies in non-human 

primates (Andersen, Asanuma, Essick, & Siegel, 1990; Cavada & Goldman-Rakic, 1989). 

However, there are two caveats to our findings that should be noted. First, unlike tracing 

studies, our data are unable to discriminate the intrinsic anatomical directionality of the 

functional activations induced in BA 18 by PPC stimulation. TMS-induced activations may 

propagate inter-regionally via orthodromic stimulation, antidromic stimulation, or both. 

Thus, the neuroimaging of TMS-evoked activity is, at present, incapable of determining 

whether inter-regional activations were induced via signal propagation along afferent or 

efferent fibers. Second, our selection of a control site was proximal enough to P3 that there 

may still have been some spread of activation to left PPC, which may have impacted the 

spatial extent and magnitude of activations observed in occipital cortex.

In summary, our concurrent TMS and fast optical imaging findings demonstrate a functional 

relationship between PPC and extrastriate visual cortices, revealing that stimulation of PPC 

influences occipital cortical activity within 24 ms of a TMS pulse. These results provide 

novel information regarding the timing and spatial distribution of PPC-extrastriate 

functional connectivity and further demonstrate the unique advantages of concurrent TMS 

and fast optical imaging recordings.
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highlights

• The functional connectivity between PPC and visual cortices was examined.

• TMS and event-related fast optical imaging (EROS) were used concurrently.

• EROS was used to image the spread of TMS-induced activity to occipital 

cortex.

• Activation of extrastriate visual cortex was found 24 to 48 ms following TMS.
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Figure 1. 
Trial schematic illustrating stimuli and timing of TMS pulses.
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Figure 2. 
Posterior view of a three-dimensional reconctruction of the optical montage from a 

representative subject. Optode locations are displayed on a scalp render derived from an 

anatomical MRI. Optode locations are shown as red (sources) and yellow (detectors) dots. 

Green lines indicate souce-detector pairs used to form optical channels in a typical subject. 

Location of P3 TMS is indicated by a blue ‘X’.
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Figure 3. 
Time course of TMS-evoked fast optical responses (P3 TMS versus control site TMS). 

Statistical parametric maps are surface projected onto a posterior view of a template 

Talairach brain and thresholded for display at a z-score of 2.0. Dark gray regions of the 

template brain denote regions of usable coverage from the optical montage whereas light 

gray areas indicate areas without coverage. Analysis ROIs are highlighted on the template 

brain as green boxes.
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Figure 4. 
Fast optical waveforms (phase delay) from left and right BA 18. Left BA 18 waveforms are 

the mean time series data derived from the mean of peak voxels achieving statistical 

significance within the left hemisphere ROI. Right BA 18 waveforms are mean time series 

data derived from homologous voxels in the right hemisphere. Asterisks represent 

statistically significant time points (p < .05).
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