
Exploiting GPU Architectures for Dynamic

Invariant Mining

Nicola Bombieri∗, Federico Busato∗, Alessandro Danese∗, Luca Piccolboni∗ and Graziano Pravadelli∗†

∗Department of Computer Science, University of Verona, Italy. Email: name.surname@univr.it
† EDALab s.r.l., Italy. Email: name.surname@edalab.it

Abstract—Dynamic mining of invariants is a class of ap-
proaches to extract logic formulas from the execution traces
of a system under verification (SUV), with the purpose of
expressing stable conditions in the behaviour of the SUV. The
mined formulas represent likely invariants for the SUV, which
certainly hold on the considered traces, but there is no guarantee
that they are true in general. A large set of representative
execution traces must be analysed to increase the probability
that mined invariants are generally true. However, this becomes
extremely time-consuming for current sequential approaches
when long execution traces and large set of SUV variables
are considered. To overcome this limitation, the paper presents
a parallel approach for invariant mining that exploits GPU
architectures for processing an execution trace composed of
millions of clock cycles in few seconds.

I. INTRODUCTION

Invariant mining is a technique to extract logic formulas

that hold between a couple (or several couples) of points in

an implementation. Such formulas express stable conditions in

the behaviour of the system under verification (SUV) for all

its executions, which can be used to analyse several aspects

in verification of SW programs and HW designs, at different

abstraction levels. For example, invariant mining has been ap-

plied for analysis of dynamic memory consumption [1], static

checking [2], detection of race conditions [3], identification of

memory access violations [4], test generation [5], mining of

temporal assertions [6] and bug catching in general [7].

Both static and dynamic approaches exist for mining in-

variants. The first exhaustively and formally explore the state

space of the SUV [8], [9], but they work well for relatively

small/medium size implementations. Moreover, they require

the source code of the SUV is available. When larger designs

are considered, dynamic techniques represent a not exhaustive

but more scalable solution, since they rely on simulation

rather than formal methods [7], [10], [11], [12]. Moreover,

these approaches are the unique alternative when the source

code of the SUV is non available. In fact, they generally

work by analysing a set of execution traces of the SUV

and searching for counterexamples of the logic formulas that

represent the desired invariant candidates. However, at the end

of the analysis, survived candidates are likely invariants, i.e.,

formulas that are only statistically true on the SUV, because

they have been proved to hold only on the analysed traces.

For this reason, to increase the degree of confidence on likely

invariants, a large and representative set of execution traces

must be analysed by dynamic approaches. Unfortunately, for

complex HW designs this could require to elaborate thousands

of execution traces, including millions of clock cycles, and

predicating over hundreds of variables, which becomes an un-

manageable time-consuming activity for existing approaches.

The solution we propose to speed-up the mining process

is to move from a sequential to a parallel implementation of

likely invariant miners, such that general-purpose computing

on graphics processing units (GPGPU) can be exploited to

significantly reduce the time required for processing a large

number of execution traces composed of millions of clock

cycles. A first parallel approach for invariant mining has been

presented in [13] showing sensible improvements with respect

to Daikon [10], one of the most popular sequential miners.

In this paper, we propose an alternative parallel algorithm that

greatly benefits from advanced graphics processing unit (GPU)

programming techniques, such that the memory throughput of

the GPU is significantly improved. In this way, as reported in

the experimental results, the overall performance of the mining

algorithm are increased up to three orders of magnitude with

respect to [13].

The rest of the paper is organized as follows. Section II

briefly summarizes the main concepts on the GPU program-

ming model and defines some preliminary concepts. Section III

describes the proposed parallel approach for dynamic invari-

ant mining. Finally, Section IV and Section V are devoted,

respectively, to experimental results and concluding remarks.

II. BACKGROUND

A. CUDA programming model for GPUs

Compute Unified Device Architecture (CUDA) is a pro-

gramming model developed by NVIDIA to provide a program-

ming interface to GPU devices [14]. Through API function

calls, called kernels, and language extensions, CUDA allows

enabling and controlling the offload of compute-intensive

routines. A CUDA kernel is executed by a grid of thread

blocks. A thread block is a batch of threads that can cooperate

and synchronize each other via shared memory and barriers.

GPU architectures provide high memory bandwidth at the

cost of a high access latency. GPUs achieve full memory

bandwidth and hide memory latency through the concept of

memory coalescing that refers to combine multiple continuous

memory accesses into a single transaction. Achieving memory

coalescing is one of the main strategic techniques in GPU

programming to sensibly improve the performance of a parallel

application.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/217548146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

B. Preliminary definitions

The following definitions concerning execution traces and

likely invariants are necessary to describe how the mining

approach presented in Section III works.

Definition 1. Given a finite sequence of simulation instants

〈t1, ...tn〉 and a set of variables V of a model M, an

execution trace of M is a finite sequence of pairs τ =
〈(V1, t1), ...(Vn, tn)〉, where Vi = eval(V , ti) is the value of

variables in V at simulation instant ti.

Definition 2. Given a model M and the corresponding sets

of variables V and execution traces T , a likely invariant for M
is a logic formula over V that holds throughout each τ ∈ T .

III. INVARIANT MINING

The main mining function, in its sequential form, is reported

in Algorithm 1. The inputs of the function are represented by

an execution trace τ of the SUV, an invariant template set I,

and a variable dictionary D. The dictionary contains tuples of

different arity composed by all the possible combinations of

the variables V of the SUV. Such tuples represent the actual

parameters to be substituted inside the formal parameters of

the invariant templates during the mining phase.

The algorithm extracts all likely invariants for τ that cor-

respond to logic formulas included in I, by substituting in

the elements of I all the possible tuples of V belonging

to D, according to the respective arity. More precisely, the

check invariant function (line 5) checks if a specific template

INV, instantiated with the current tuple of variables TUPLE,

holds at simulation time INSTANT. When a counterexample

is found for INV, it is removed from the template set (line

6) for the current tuple of variables. If all elements of the

template set are falsified (line 8), the algorithm restarts by

considering the next tuple in the dictionary, by skipping the

remaining simulation instants of τ . At the end, the algorithm

collects all the pairs composed by the the survived templates

and the corresponding tuples of the variable dictionary (line

11). The instantiation of the tuples in the survived templates

Algorithm 1 The invariant mining algorithm.

SEQUENTIAL MINING(D, I, τ) return result

1: for all TUPLE ∈ D do

2: template set = I

3: for all INSTANT ∈ τ do

4: for all INV ∈ template set do

5: if ¬check invariant(INV,TUPLE,INSTANT) then

6: template set = template set \ INV

7: end

8: if template set = ∅ then

9: break

10: end

11: result = result ∪ 〈TUPLE, template set〉

12: end

FIG. 1: Overview of block mapping and vectorized accesses for the
parallel algorithm on GPU.

represent the final set of likely invariants for τ . The current

implementation supports the invariant template sets reported

in Table I.

The proposed algorithm has a worst-case time complexity

equal to O(|V|K ·|τ |·|I|), where V is the number of considered

variables, K is the arity of the invariant template belonging

to I with the highest arity, |τ | is the number of simulation

instants in the execution trace τ , and |I| is the number of

invariant templates included in I.

A. The parallel implementation for GPUs

The mining approach reported in Algorithm 1 is well suited

for parallel computation. In fact, the problem can be easily

decomposed in many independent tasks, each one having

regular structure and fairly balanced workload. For this reason

we implemented a parallel version of the mining algorithm,

called Mangrove. It implements the mining algorithm with the

aim of exploiting the massive parallelism of GPUs and, at the

same time, an inference strategy to reduce redundant checking

of invariants, as explained in Section III-B.

In an initialization phase, the Boolean and numeric variables

included in the variable dictionary are organized over bit and

float arrays in row-major order. This allows the full coalescing

of memory accesses by the GPU threads in the mining phase.

Furthermore, all accesses are vectorized [15], namely, each

thread loads four consecutive 32-bit words instead of a single

word. This technique allows improving the memory bandwidth

between DRAM and thread registers.

Mangrove computes the mining process by elaborating,

in sequence, the unary templates, the binary templates, and,

finally, the ternary templates reported in Table I. The tool takes

advantage of the massive parallelism of GPUs by mapping

each thread block on a different entry of the variable dictionary

(Fig. 1).

In each block, the threads communicate and synchronize

through shared memory. As for the standard characteristics of

the GPU architectures, such hardware-implemented operations

are extremely fast and their overhead is negligible. Com-

munication and synchronization among block threads allow

BOOLEAN NUMERIC

UNARY BINARY TERNARY UNARY BINARY TERNARY

TEMPLATE SET I true, false =, 6=, <, >, ≤, ≥

TEMPLATE SET II true, false =, 6=
Var1 = Var2ANDVar3
Var1 = Var2OR Var3
Var1 = Var2XORVar3

Var = 7
Var 6= 0
Var < 10
Var ≤ 10

Var1 = Var2
Var1 ≤ Var2
Var1 <

√
Var2

Var1 = logVar2
Var1 < Var2 + 1
Var1 = Var2 ∗ 2

Var1 = Var2
Var3

Var1 = min(Var2,Var3)
Var1 = max(Var2,Var3)
Var1 < Var2 ∗ Var3
Var1 ≤ Var2 + Var3

TABLE I: Template sets considered by the miner.

avoiding redundant checking of already falsified invariants and

stopping the computation of the whole block as soon as all

invariants for a particular set of variables have been falsified.

In the GPU implementation the variable dictionary consists

of a simple data structure that stores in each entry a subset of

variables involved in a specific template. Mangrove initializes

the variable dictionary through the host CPU and strongly

exploits it in the mining phase through the GPU threads, as

detailed in the following sections.

B. Generation of the variable dictionary

In the generation of the variable dictionary, our goal is to

avoid redundant storing and elaboration of variables during

the mining phase. Such a redundancy is due to the fact

that the GPU threads, during the mining phase, cannot have

information about any already discovered invariant among

variables in the whole execution trace. Thus, to increase the

efficiency of the parallel computation, Mangrove implements

different optimizations during the generation of the variable

dictionary. The idea behind such optimizations consists of

avoiding wasting of time to check if an invariant template is

satisfied, when the same answer can be inferred from the result

of previous mining steps, as explained in the next paragraphs:

• The result of the mining over unary templates is exploited

during the mining of binary templates. As a simple

example, Mangrove searches for any Boolean variable,

vara, whose value is always equal (or always different)

to any other Boolean variable, varb. If such a condition

occurs, the generation of the entry < vara, varb > in the

dictionary can be avoided since it is redundant.

• The result of the mining over unary and binary templates

is used during the mining of ternary templates. For

example, by considering the ternary mining phase on

Boolean variables, the goal is to figure out which operator

op ∈ {AND, OR, XOR} can be validated over three differ-

ent variables (e.g., vara, varb, and varc). Through the

already extracted unary and binary invariants, Mangrove

automatically infers some ternary invariants without ap-

plying the checking procedure throughout the execution

traces. For instance, the ternary invariant (vara = varb
AND varc) reduces to check whether the binary invariant

(vara = varb) occurs when (varb = varc) holds.

Similarly (vara = varb XOR varc) reduces to check

(vara 6= varc) when varb is constantly set to true.

FIG. 2: The invariant mining phases (a), and the overlapped imple-
mentation of Mangrove for GPUs (b).

C. Data transfer and overlapping of the mining phase

The invariant mining process on the GPU consists of three

main steps showed in Fig. 2(a): (i) reading of the execution

trace from the mass storage (disk) and data storing in the host

DRAM memory; (ii) data transfer from the host to the memory

of the GPU; (ii) elaboration in the GPU device. The three steps

work first on the numeric variables and then they are repeated

for the Boolean variables.

Mangrove implements such a process by overlapping the

three steps as shown in Fig. 2(b). This allows totally hiding the

cost of host-device data transfers and partially hiding the cost

of the mining elaboration. Moreover, Mangrove implements

the data transfer overlapping through asynchronous kernel

invocations and memory copies (i.e., cudaMemcpyAsync in

CUDA). Finally, a specific optimization has been implemented

for Boolean variables: Mangrove stores the values of Boolean

variables in arrays of bits to reduce the memory occupation

(e.g., 5,000,000 values of a Boolean variable are stored in 600

KB). In addition, this array-based representation allows using

bitwise operations to concurrently elaborate 32 Boolean values

in a single chunk, thus speeding up the mining phase.

IV. EXPERIMENTAL RESULTS

Experimental results have been run on a NVIDIA Kepler

GeForce GTX 780 device with 5 GHz PCI Express 2.0 x16,

CUDA Toolkit 7.0, AMD Phenom II X6 1055T 3GHz host

processor, and the Debian 7 Operating System. To evaluate

the efficiency of Mangrove experiments have been conducted

on different kind of execution traces, whose characteristics are

summarized in Table II. The considered execution traces differ

LENGTH
BOOLEAN

VARS

NUMERIC

VARS

INVARIANTS

(TEMP. SET I)

INVARIANTS

(TEMP. SET II)

TRACE 1 5,000,000 15 15 0 0

TRACE 2 5,000,000 15 15 142 964

TRACE 3 5,000,000 50 50 0 0

TRACE 4 5,000,000 50 50 1,788 42,371

TABLE II: Characteristics of execution traces.

T
em

p
la

te
S

et
I

T
em

p
la

te
S

et
II

DAIKON[10] SEQUENTIAL[13] PARALLEL[13] MANGROVE

TRACE 1 103 s < 1 ms 116 ms < 1 ms

TRACE 2 170 s 4,629 ms 116 ms 17 ms

TRACE 3 287 s 2 ms 369 ms < 1 ms

TRACE 4 1366 s 52,160 ms 457 ms 182 ms

TRACE 1 2 m 34 s 22 ms 352 ms < 1 ms

TRACE 2 5 m 47 s 11 m 0 s 1,751 ms 140 ms

TRACE 3 8 m 23 s 119 ms 3,145 ms < 1 ms

TRACE 4 32 m 54 s 7 h 45 m 71,314 ms 4,577 ms

TABLE III: Comparison of the execution times with respect to

state-of-the-art approaches.

in terms of number of variables and number of likely invariants

that it is possible to extract by considering the template sets

reported in Table I. These are the two parameters that most

influence, together with the length of the trace, the execution

time of the mining algorithm. On the opposite, information

about the complexity of the SUV from which execution traces

have been generated are irrelevant when the SUV model is

not explored. Indeed, higher is the number of likely invariants

exposed by the execution traces, higher is the time spent for

their extraction, even if the SUV is very simple from the

computational point of view.

The efficiency of Mangrove has been compared against

the sequential mining approaches implemented, respectively,

in [10] and in [13], and the parallel implementation pro-

posed in [13]. Table III shows the execution time required

to extract the likely invariants according the first and second

template sets on the traces reported in Table I. For the parallel

approaches, the times include the overhead introduced for

data transfer between host and device. Mangrove provides

the best results in all datasets by executing up to four orders

of magnitude faster than the sequential state-of-the-art tool

Daikon1. Compared to the more recent approach for GPUs

described in [13], Mangrove executes up to three orders of

magnitude faster2. The improvements achieved in Mangrove

with respect to the parallel approach implemented in [13] are

due to the implementation of a more efficient strategy for

mapping thread blocks to entries of the variable dictionary,

and to the vectorized accesses that best exploit the memory

coalescence and the high memory throughput. These aspects

are critical to improve the performance, since the memory

bandwidth may limit the concurrent memory accesses. Table

III shows that Mangrove is efficient also when no invariant can

be mined (Traces 1 and 3) thanks to the capability of early

1For a fair comparison, Daikon has been configured to search only for the
invariants specified in the first and second template sets.

2The approach in [13] has been extended in order to support also the
template set II.

terminating the search on a trace as soon as all templates have

been falsified. On the contrary, the parallel implementation

proposed in [13] always requires to analyse the whole trace

to identify the absence of likely invariants, thus wasting time.

V. CONCLUDING REMARKS

The paper presented Mangrove, a parallel approach for

mining likely invariants by exploiting GPU architectures. Ad-

vanced GPU-oriented optimizations and inference techniques

have been implemented in Mangrove such that execution

traces composed of millions of clock cycles can be generally

analysed in less than one second searching for thousands of

likely invariants. Experimental results have been conducted

on execution traces with different characteristics, and the

proposed approach has been compared with sequential and

parallel implementations of the most promising state-of-the-art

invariant miners. Analysis of the results showed that Mangrove

outperforms existing tools.

ACKNOWLEDGMENT

This work has been partially supported by the EU project

CONTREX (FP7-2013-ICT-10-611146).

REFERENCES

[1] V. Braberman, D. Garbervetsky, and S. Yovine, “A static analysis for syn-
thesizing parametric specifications of dynamic memory consumption,”
J. of Object Technology, vol. 5, no. 5, pp. 31–58, 2006.

[2] J. W. Nimmer and M. D. Ernst, “Invariant inference for static checking:
An empirical evaluation,” in Proc. of ACM FSE, 2002, pp. 11–20.

[3] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A dynamic data race detector for multithreaded programs,” in
ACM Trans. on Computer Systems, 1997, pp. 391–411.

[4] R. Hastings and B. Joyce, “Joyce. purify: Fast detection of memory
leaks and access errors.” in Proc. of the Winter USENIX Conference,
1991.

[5] C. Csallner and Y. Smaragdakis, “Check ’n’ crash: Combining static
checking and testing,” in Proc. of ACM/IEEE ICSE, 2005, pp. 422–431.

[6] A. Danese, T. Ghasempouri, and G. Pravadelli, “Automatic extraction
of assertions from execution traces of behavioural models,” in Proc. of

ACM/IEEE DATE, 2015, pp. 1–6.
[7] M. S. L. Sudheendra Hangal, “Tracking down software bugs using

automatic anomaly detection,” in Proc. of ACM/IEEE ICSE, 2002, pp.
291–301.

[8] C. Flanagan, R. Joshi, and K. R. M. Leino, “Annotation inference for
modular checkers,” Inf. Process. Lett., vol. 77, no. 2-4, pp. 97–108, 2001.

[9] N. Tillmann, F. Chen, and W. Schulte, “Discovering likely method
specifications,” in Formal Methods and Software Engineering, ser.
LNCS, Z. Liu and J. He, Eds. Springer, 2006, vol. 4260, pp. 717–
736.

[10] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The Daikon system for dynamic detection of
likely invariants,” Science of Computer Programming, vol. 69, no. 1, pp.
35–45, 2007.

[11] S. Hangal, S. Narayanan, N. Chandra, and S. Chakravorty, “IODINE: a
tool to automatically infer dynamic invariants for hardware designs,” in
Proc. of ACM/IEEE DAC, 2005, pp. 775–778.

[12] R. D. Marat Boshernitsan and A. Savoia, “From daikon to agitator:
lessons and challenges in building a commercial tool for developer
testing,” in Proc. of ISSTA, 2006, pp. 169–180.

[13] A. Danese, L. Piccolboni, and G. Pravadelli, “A parallelizable approach
for mining likely invariants,” in Proc. of ACM/IEEE CODES+ISSS,
2015.

[14] “http://docs.nvidia.com/cuda.”
[15] J. Luitjens, “CUDA pro tip: Increase performance with vectorized

memory access,” http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-
increase-performance-with-vectorized-memory-access/, Dec. 2013.

http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-increase-performance-with-vectorized-memory-access/
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-increase-performance-with-vectorized-memory-access/

	Introduction
	Background
	CUDA programming model for GPUs
	Preliminary definitions

	Invariant mining
	The parallel implementation for GPUs
	Generation of the variable dictionary
	Data transfer and overlapping of the mining phase

	Experimental results
	Concluding remarks
	References

