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algorithm for Kepler GPU architectures
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Abstract—Finding the shortest paths from a single source to all other vertices is a common problem in graph analysis. The Bellman-
Ford’s algorithm is the solution that solves such a single-source shortest path (SSSP) problem and better applies to be parallelized for
many-core architectures. Nevertheless, the high degree of parallelism is guaranteed at the cost of low work efficiency, which, compared
to similar algorithms in literature (e.g., Dijkstra’s) involves much more redundant work and a consequent waste of power consumption.
This article presents a parallel implementation of the Bellman-Ford algorithm that exploits the architectural characteristics of recent
GPU architectures (i.e., NVIDIA Kepler, Maxwell) to improve both performance and work efficiency. The article presents different
optimizations to the implementation, which are oriented both to the algorithm and to the architecture. The experimental results show
that the proposed implementation provides an average speedup of 5x higher than the existing most efficient parallel implementations
for SSSP, that it works on graphs where those implementations cannot work or are inefficient (e.g., graphs with negative weight edges,
sparse graphs), and that it sensibly reduces the redundant work caused by the parallelization process.
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1 INTRODUCTION

Given a weighted graph G = (V,E), where V is the set of
vertices and E ⊆ (V × V ) is the set of edges, the single-
source shortest paths (SSSP) problem consists of find-
ing the shortest paths from a single source vertex to all
other vertices [1]. Such a well-known and long-studied
problem arises in many different domains, such as, road
networks, routing protocols, artificial intelligence, social
networks, data mining, and VLSI chip layout.

The de-facto reference approaches to SSSP are the Di-
jkstra’s [2] and Bellman-Ford’s [3], [4] algorithms. The
Dijkstra’s algorithm, by utilizing a priority queue where
one vertex is processed at a time, is the most efficient,
with a computational complexity almost linear to the
number of vertices (O(|V | log |V |+ |E|)).

Nevertheless, in several application domains, where
the modelled data maps to very large graphs involv-
ing millions of vertices, any Dijkstra’s sequential imple-
mentation becomes impractical. In addition, since the
algorithm requires many iterations and each iteration is
based on the ordering of previously computed results, it
is poorly suited for parallelization. Indeed, the parallel
solutions proposed in literature for graphics processing
units (GPUs) [5], [6] are asymptotically less efficient than
the fastest CPU implementations.

On the other hand, the Bellman-Ford’s algorithm relies
on an iterative process over all edge connections, which
updates the vertices continuously until final distances
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converge. Even though it is less efficient than Dijkstra’s
(O(|V ||E|)), it is well suited to parallelization [7].

In the context of parallel implementations for GPUs,
where the energy and power consumption is becom-
ing a constraint in addition to performance [8], an ideal
solution to SSSP would provide both the performance
of the Bellman-Ford’s and the work efficiency of the
Dijkstra’s algorithms. Some work has been recently done
to analyse the spectrum between massive parallelism
and efficiency, and different parallel solutions for GPUs
have been proposed to implement parallel-friendly and
work-efficient methods to solve SSSP [9]. Experimental
results confirmed that these trade-off methods provide
a fair speedup by doing much less work than tradi-
tional Bellman-Ford methods while adding only a mod-
est amount of extra work over serial methods.

On the other hand, all these solutions as well as Dijk-
stra’s implementations, do not work in graphs with neg-
ative weights [1]. Indeed, the Bellman-Ford algorithm is
the only solution that can be also applied in application
domains where the modelled data maps on graphs with
negative weights, such as, power allocation in wireless
sensor networks [10], [11], systems biology [12], and re-
generative braking energy for railway vehicles [13].

In addition, the most recent GPU architectures (e.g.,
NVIDIA Kepler GK110 [13] and Maxwell [14]), not only
offer much higher processing power than the prior GPU
generations, but, also, they provide new programming
capability that allows improving the efficiency of the
parallel implementations.

This article presents H-BF, a high-performance im-
plementation of the Bellman-Ford algorithm for GPUs,
which exploits the more advanced features of GPU archi-
tectures to improve the execution speedup with respect
to any implementation at the state of the art for solving
the SSSP problem. In particular, H-BF implements a
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parallel version of the Bellman-Ford algorithm based
on frontiers [1] and active vertices [30] with the aim of
optimizing, besides the performance, the algorithm work
efficiency. The article presents different optimizations
implemented in H-BF, which are oriented both to the
algorithm and to the architecture to underline the syn-
ergy of parallelism in the algorithm, programming and
architecture.

Experimental results have been conducted on graphs
of different sizes and characteristics to compare, firstly
in terms of performance and, then, in terms of work
efficiency, the H-BF implementation (which is available
for download in http://profs.sci.univr.it/∼bombieri/H-BF/
index.html) with the most efficient sequential and parallel
implementations at the state of the art of both Dijkstra’s
and Bellman-Ford’s algorithms.

The article is organized as follows. Section 2 summa-
rizes preliminaries concepts on CUDA, Kepler, Maxwell
GPUs and Bellman-Ford’s algorithm. Section 3 presents
the related work. Sections 4 and 5 present the optimiza-
tions of the proposed approach oriented to the algorithm
and GPU architecture, respectively. Section 6 reports
the experimental results, while Section 7 is devoted to
concluding remarks.

2 BACKGROUND

This section summarizes preliminary concepts on
CUDA, advanced GPU architectures, and Bellman-Ford
algorithm.

2.1 CUDA, Kepler, and Maxwell GPUs
Compute Unified Device Architecture (CUDA) is a C
library extension developed by NVIDIA to provide a
programming interface to GPU devices [15]. The host
CPU is responsible for starting the main program and
executing serial code, while delegating parallel execution
of compute-intensive tasks to the GPU device. CUDA
programming requires the definition of C functions,
called kernels, which are executed in parallel by multiple
GPU threads. The threads run the same kernel concur-
rently, and each one is associated with a unique thread
ID. A kernel is executed by a 1-, 2-, or 3-dimensional
grid of thread blocks. Threads are arranged into three-
dimensional thread blocks. Threads of the same block
efficiently cooperate by sharing data through fast shared
memory and by synchronizing their execution through
extremely fast (i.e., HW implemented) barriers. In con-
trast, threads belonging to different blocks are not al-
lowed (for performance reasons) to perform barrier syn-
chronizations with each other. Thread blocks are then
subdivided into groups of 32 threads called warps to be
physically executed by GPU cores. Multiple threads of
the same warp (i.e., half a warp) execute one common
instruction at a time on different data (i.e., SIMD archi-
tecture). Two half-warps interleave in single instruction
multiple threaded (SIMT architecture) to hide memory
access latency.

In 2012, NVIDIA released the Kepler GK110 architec-
ture [16], which introduces many improvements and
new features to better support parallelism in a wider
application range. One of the most relevant features is
dynamic parallelism, which allows the application execu-
tion to be controlled by the GPU (besides the CPU). This
includes the support of program recursion and dynamic
workload balancing, that is, handling not uniformly
distributed data, such as unbalanced graphs, by creat-
ing additional threads during a single kernel execution
and avoiding overhead due to many kernel invocations.
Nevertheless, dynamic parallelism can also lead to per-
formance decrease if used inappropriately. This work
shows how dynamic parallelism can be efficiently used
in the Bellman-Ford implementation.

Warp shuffle instructions are another new feature of
Kepler used in this work. They implement very efficient
communication among threads within a warp. With
shuffle instructions, threads within a warp can directly
access to other thread registers by skipping shared mem-
ory accesses. Thread communication via warp shuffle
allows the amount of shared memory required for blocks
to be reduced with consequent general improvements of
performance.

The Kepler architecture also introduced the read-only
data cache. Such a separate cache (i.e., with separate mem-
ory pipe), which is available to each symmetric multipro-
cessor, SM, (generally 48KB per SM) allows improving
performance through bandwidth-limited kernels. The
implementation proposed in this work takes advantage
of this feature to alleviate the L1 cache pressure during
data loads from global memory .

Kepler architecture also expands the native support for
64-bit atomic operations in global memory. This feature is
used in this work to improve the work efficiency.

More recently, GPU architectures like NVIDIA Maxwell
[14] have been released with the aim of improving
energy efficiency, to be used in power-limited envi-
ronments like notebooks and small form factor PCs.
The design of the Maxwell-based GPU available in the
commerce (GM107) retains and extends the same CUDA
programming model as in previous architectures, such as
Fermi and Kepler. That is, applications that follow the
best practices (e.g., the optimizations proposed in this
article) for the Kepler architecture should typically see
speedups on the Maxwell architecture without any code
changes. However, some fine-tuning is still possible.
This mainly involves kernel configurations, since some
architectural characteristics have been changed (e.g., the
maximum number of thread blocks per SM has been
increased from 16 to 32, the shared memory capacity has
been increased). The optimization techniques presented
in this article applies to the Kepler architecture onwards
and, thus, also to the Maxwell one.

2.2 The Bellman-Ford’s algorithm
Given a graph G(V,E) (directed or undirected), a source
vertex s and a weight function w : E → R, the Bellman-
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Ford algorithm visits G and finds the shortest path to
reach every vertex of V from source s. The pseudocode
of the original sequential algorithm is the following:

Algorithm 1 BELLMAN-FORD’S ALGORITHM

for all vertices u ∈ V (G) do
d(u) =∞

d(s) = 0
for all edges (u, v) ∈ E(G) do

RELAX (u, v, w)

where the Relax procedure of an edge (u, v) with
weight w verifies whether, starting from u, it is possible
to improve the approximate (tentative) distance to v
(which we call d(v)) found in any previous algorithm
iteration. The relax procedure can be summarized as
follows:

Algorithm 2 RELAX PROCEDURE

RELAX(u, v, w)

if d(u) + w < d(v) then
d(v) = d(u) + w

The algorithm, whose asymptotic time complexity is
O(|V ||E|), updates the distance value of each vertex
continuously until final distances converge.

3 RELATED WORK

At the state of the art, the reference approaches to SSSP
are the Dijkstra’s [2] and Bellman-Ford’s [3], [4] algo-
rithms. These two classic algorithms span a parallel vs.
efficiency spectrum. Dijkstra’s allows the most efficient
(O(|V | log |V | + |E|)) sequential implementations [17],
[18] but exposes no parallelism across vertices. Indeed,
the solutions proposed to parallelize the Dijkstra’s algo-
rithm for GPUs have shown to be asymptotically less
efficient than the fastest CPU implementations [5], [6].
On the other hand, at the cost of a lower efficiency
(O(|V ||E|)), the Bellman-Ford’s algorithm has shown to
be more easily parallelizable for GPUs, by providing
speedups up to two orders of magnitude compared to
the sequential counterpart [19], [7].

Meyer and Sanders [20] proposed the ∆-stepping algo-
rithm, a trade-off between the two extremes of Dijkstra
and Bellman-Ford. The algorithm involves a tunable
parameter ∆, whereby setting ∆ = 1 yields a variant
of Dijsktra’s algorithm, while setting ∆ = ∞ yields
the Bellman-Ford algorithm. By varying ∆ in the range
[1,∞], we get a spectrum of algorithms with varying
degrees of processing time and parallelism. Crobak et
al. [21] and Chakaravarthy et al. [22] presented two
different solutions to efficiently expose parallelism of
this algorithm on the massively multi-threaded shared
memory system IBM Blue Gene/Q.

Parallel SSSP algorithms for multi-core CPUs have
been also proposed by Kelley and Schardl [23], who
presented a parallel implementation of Gabow’s scaling

algorithm [24] that outperforms Dijkstra’s on random
graphs. Shun and Blelloch [25] presented a Bellman-
Ford’s scalable parallel implementation for CPUs on a
40-core machine. Recently, several packages have been
developed for processing large graphs on parallel archi-
tectures including the parallel Boost graph library [26],
Pregel [27] and Pegasus [28].

In the context of GPUs, Martin et al. [5] and Ortega
et al. [6] proposed two different solutions to parallelize
the Dijsktra’s algorithm. Although both the solutions
provide a good speedup in many cases, they have shown
to be asymptotically less efficient than the fastest CPU
implementations due to the intrinsic sequential nature of
the Dijsktra’s algorithm.

In contrast, Harish et al. [19] and Burtscher et al.
[7] proposed two different parallel implementations of
the Bellman-Ford’s algorithm. Both the solutions always
provide good speedups with respect to the sequential
counterpart and, in any case, speedups higher than
the Dijkstra’s solutions. Nevertheless, they showed to
have a poor work efficiency since they only target to
performance.

Davidson et al. [9] proposed three different work-
efficient solutions for the SSSP problem. Workfront Sweep
implements a queue-based Bellman-Ford algorithm that
reduces redundant work due to duplicate vertices during
the frontier propagation. Such a fast graph traversal
method relies on the merge path algorithm [29], which
equally assigns the outgoing edges of the frontier to the
GPU threads at each algorithm iteration. Near-Far Pile
refines the Workfront Sweep strategy by adopting two
queues similarly to the ∆-Stepping algorithm. Davidson
et al. [9] also propose the bucketing method to implement
the ∆-Stepping algorithm. ∆-Stepping algorithm is not
well suited for SIMD architectures as it requires dynamic
data structures for buckets. However, the authors pro-
vide an algorithm implementation based on sorting that,
at each step, emulates the bucket structure. The Buck-
eting and Near-Far Pile strategies heavily reduce the
amount of redundant work compared to the Workfront
Sweep method but, at the same time, they introduce
overhead for handling more complex data structure (i.e.,
frontier queue). These strategies are less efficient than
the sequential implementation on graphs with large
diameter since they suffer from thread under-utilization
caused by such unbalanced graphs.

This article presents H-BF, a parallel implementation
of the Bellman-Ford algorithm based on frontier propa-
gation. Differently from all the approaches in literature,
H-BF implements:

• An optimization technique by which, during the
frontier propagation, the graph edges are classified
and, depending on the class, they are properly han-
dled to reduce the number of expensive Bellman-
Ford basic iterations (i.e., relax operations).

• A duplicate removal strategy, which is based on
64-bit atomic instructions, to sensibly reduce the
duplicate vertices in the frontier at each algorithm
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iteration, with a consequent reduction of memory
accesses and atomic operations.

• A technique to improve the memory coalescing
through the use of cache modifiers and texture
memory.

• A dynamic virtual warp strategy whereby the warp
size is calibrated at each frontier propagation step
to address the problem of workload imbalance.

• The dynamic parallelism, by which multi-block ker-
nels are properly configured and invoked to manage
the workload imbalance due to the difference of the
vertex degrees.

In particular, the proposed implementation exploits
the features of the most recent GPU architectures such
as dynamic parallelism, warp-shuffle, read-only cache,
and 64-bit atomic instructions to guarantee an efficient
implementation of the characteristics listed above.

4 THE FRONTIER-BASED ALGORITHM AND ITS
OPTIMIZATIONS

The complexity of a SSSP algorithm is strictly related
to the number of relax operations. The Bellman-Ford
algorithm performs a number of relax operations higher
than the Dijkstra or ∆-stepping algorithms while, on the
other hand, it has a simple and lightweight management
of the data structures. The relax operation is the most
expensive in the Bellman-Ford algorithm and, in partic-
ular, in a parallel implementation, each relax involves an
atomic instruction for handling race conditions, which
takes much more time than a common memory access.

To optimize the number of relax operations, H-BF
implements the graph visiting by adopting the idea
proposed in the sequential queue-based Bellman-Ford of
Sedgewick et al. [30]. Such a sequential algorithm uses a
FIFO data structure to keep track of active vertices, that is,
all and only vertices whose tentative distance has been
modified and, thus, that must be considered for the relax
procedure at the next iteration. If d(v) does not change
during iteration i, there is no need to relax any edge
outgoing from v in iteration i+1. As a consequence, v is
not inserted in the queue to avoid useless computation.

Differently from Dijkstra’s, the queue-based Bellman-
Ford’s algorithm does not rely on a priority queue and
the vertex processing can be performed in any order.
The parallel algorithm implemented in H-BF exploits the
concept of frontier [1] rather than FIFO queue to visit
the vertices concurrently. Given a graph G and a source
vertex s, the parallel algorithm can be summarized as in
Algorithm 3.

Considering two frontier data structures, F1 and F2,
at each iteration i of the while loop, the algorithm
concurrently extracts the vertices from F1 and inserts
all the active neighbours in F2 for the next iteration
step. Each iteration step concludes by swapping the F2

contents (which will be the actual frontier at the next
iteration step) in F1. Fig. 1 shows an example of the basic
algorithm iterations starting from vertex ”0”. For the

Algorithm 3 Frontier-based Bellman-Ford’s algorithm

for all vertices u ∈ V (G) do
d(u) =∞

d(s) = 0
F1 ← {s}
F2 ← ∅
while F1 6= ∅ do

parallel for vertices u ∈ F1 do
u← DEQUEUE(F1)
parallel for vertices v ∈ adj [u] do

if d(u) + w < d(v) then
d(v) = d(u) + w
ENQUEUE(F2, v)

end
end
SWAP(F1, F2)

end

sake of clarity, the figure only reports the actual frontier
(F1 of Algorithm 3, reported as F in Fig. 1) at each
iteration step, and D as the corresponding data structure
containing the tentative distances. The example shows,
for each algorithm iteration, the dequeue of each vertex
form the frontier, the corresponding relax operations, i.e.,
the distance updating for each vertex (if necessary), and
the vertex enqueues in the new frontier. In the example,
the algorithm converges in a total of 23 relax operations
over six iterations.

The parallel frontier-based Bellman-Ford’s algorithm
(Algorithm 3) preserves the semantics of the original
Bellman-Ford’s algorithm (Algorithm 1). The only dif-
ference between the sequential and parallel algorithms
is that the first adopts a queue structure in which all nodes
are stored and processed sequentially. The second adopts
a frontier structure (as proposed by Cormen et al. [1]), in
which all and only active nodes are processed in parallel.
The parallel processing of active nodes does preserve the
semantics of the algorithm. This is due to the fact that
(i) each node processing is independent from the others,
and (ii) including non-active nodes in the processing
phase of any propagation step does not change the result
(next frontier), as proved by Sedgewick et al. [30] and by
Pape [31].

Frontier-based data structures have been similarly ap-
plied in literature for implementing parallel breadth-first
search (BFS) visits [32], [33]. The main difference from
BFS is the number of times a vertex can be inserted in
the queue. In BFS, a vertex can be inserted in such a
queue only once, while, in the proposed Bellman-Ford
implementation, a vertex can be inserted O(|E|) times in
the worst case.

H-BF implements three main optimizations to improve
both the performance and the work efficiency:

1) The edge classification. During each frontier propa-
gation step, the edge outgoing the vertices of the
frontier are classified and processed differently to
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FIG 1: Example of the basic algorithm iterations starting
from vertex ”0”

simplify as much as possible the relax operations,
as explained in Section 4.1.

2) The duplicate removal. It allows avoiding redun-
dancy when processing duplicate vertices in the
frontier propagation steps, as explained in Section
4.2.

4.1 The edge classification optimization
During the graph visit, the number of relax operations
can be significantly reduced by observing the properties
of the edges outgoing the active vertices in the frontier.
In particular, given a vertex u and an outgoing edge
(u, adj[u]), we identify four different classes to which the
edge may belong. Depending on the class, the edge may
involve operations lighter than the standard relax, with
a consequent impact on performance:

1) Self-loop class ((u, adj[u]) edges where u = adj[u]).
Since a self-loop cannot change the tentative dis-
tance of u, the relax operation can be avoided (see,
for example, edges (2, 2) and (4, 4) in Figure 2). The
efficiency improvement provided by the self-loop
identification is proportional to the number of self-
loops in the graph. It best applies to graphs where
each vertex includes a self-loop (e.g., msdoor and
circuit in the experimental results).

2) Source edge class ((u, adj[u]) edges where u = s). The
relax operation for the source vertex is substituted
with a direct update of the tentative distance for
each source neighbour (v ∈ adj[s]) since, certainly,
they have not been set previously. This optimiza-
tion best applies to graphs with small diameter
and, even more, when the source in such graphs
is a high-degree vertex.

3) In-degree edge class ((u, adj[u]) edges where in-
degree of adj[u] is equal to 1). The vertices with in-
degree equal to one (e.g., (0, 2), (2, 1), (4, 5), (7, 6),

Algorithm 4 EDGE CLASSIFICATION OPTIMIZATION

RELAX OPT(u, v, w)

if u = v OR out−degree(v) = 0 then
skip

else if u = s OR in−degree(v) = 1 then
d(v) = d(u) + w

else
ATOMICMIN(d(v), d(u) + w)

FIG 2: Example of Edge-Classification optimization

and (3, 7) in Figure 2) are never visited concur-
rently and, thus, the atomic operations are avoided
and replaced with a direct distance update.

4) Out-degree edge class ((u, adj[u]) edges where out-
degree of adj[u] is equal to 0). The vertices with
out-degree equal to zero in directed graphs (e.g., 1,
5, and 8 in Figure 2) and equal to one in undirected
graphs are ignored during the algorithm iterations
(the relax operation and the enqueue into the next
frontier are skipped). The correct distance is as-
signed at the end of the algorithm iterations with-
out using atomic instructions. H-BF implements
this optimization through an extra kernel, which
is invoked after the main algorithm procedure.
Such a kernel involves a negligible amount of
computational work with respect to the (useless)
relax operations performed for these edges in the
standard approach.

Algorithm 4 summarizes the main important steps
of the edge classification, while Figure 2 shows such an
optimization applied to the example of Figure 1, by
underlining how it reduces the number of relax oper-
ations of about five times with respect to the standard
approach. The example in Figure 2 converges in a total
of 5 relax operations over five iterations.

The edge classification optimization has been imple-
mented, in H-BF, through a marking phase, in which
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FIG 3: The duplicate problem in the frontier propagation.

each edge is classified by two bits. The marking bits
are added to the bits encoding the edge. In particular,
in the adopted adjacency list data structure, each edge
is encoded with the id of the target vertex. In common
GPU architectures, where the global DRAM memory is
on the order of 4GBytes, such an id may require at most
30 bits, since, considering 4Bytes-sized ids, 230 is the
maximum number of vertices that we can handle1. The
two most significant bits in a 32 integer id of a vertex,
which are, thus, always available, are exploited for such
a classification. Reading those bits to identify the edge
class does not involve overhead since it is included in
the memory access for reading the vertex id.

4.2 Duplicate removal with Kepler 64-bit atomic in-
structions

In the execution of a parallel Bellman-Ford implemen-
tation, duplicate vertices are generated when, during an
algorithm iteration, more threads concurrently access the
same vertex for the relax operation. This causes a vertex
to be redundantly considered for relax and enqueued
more times in the next frontier. Figure 3 shows an
example. Initially, the frontier queue consists of vertices
1, 2, and 3. In the first iteration, the algorithm dequeues
the three vertices and performs, in parallel, the relax
operation over edges (1, 4), (2, 4), and (3, 4). The memory
accesses for updating the tentative distance of 4 are
serialized through atomic operations to handle race con-
ditions, and the next frontier is generated by en-queuing
duplicates of vertex 4 (see iteration # 1 in the example).
In turn, the duplicates are redundantly evaluated for the
successive iteration and relax operations. In the example,
the duplicate problem of the parallel implementation,
by considering the atomic operation order shown in the
figure, causes 9 relax operations instead of the three of
any serial implementation.

In literature, a technique to detect and remove dupli-
cates has been proposed by Davidson et al [32]. Such
a technique allows eliminating duplicates by interleav-
ing the main computation kernel with two additional
kernels. The first aims at marking every frontier vertex
through a lookup table in global memory, while the

1. Actually, the available global memory for storing the vertex ids is
much less since the implementation requires additional data structures
for storing frontiers, edges, weights, vertex offsets, and vertex weights.

Iteration#

vertexInfo (int2 variable)

if (d[u] + w < d[v]) then {

d[v] = d[u] + w

if (IterationNr[v] != currentIteration) then

ENQUEUE(v)

}

oldInfo = atomicMin(&vertexInfo[v], vertexInfo[u])

if (oldInfo.iteration != currentIteration) then

ENQUEUE(v)

Distance (D)(a)

(b)

(c)

FIG 4: Use of 64-bit atomic instructions in the implemen-
tation of duplicate removal.

second aims at accessing the look up table to check
whether the vertex index exists before proceeding with
the relax phase. The non-duplicate vertices are compacted
before carrying on with a new algorithm iteration. This
strategy involves four memory accesses (two of them
not coalesced) for each vertex in the frontier, and it
introduces overhead for the compacting routine and for
synchronizing with the host.

H-BF implements a different technique to completely
avoid duplicate vertices during the graph visit by adding
information (extra to the distance value) to each vertex.
The distance (D) of each vertex is coupled with the
number of the current algorithm iteration. The cou-
pled information (vertexInfo) is stored into a 64-bit
int2 CUDA datatype, where D resides in the 32 most
significant bits while the iteration number in the 32
least significant bits (see Figure 4). Access to such a
variable is implemented through single-transaction 64-
bit atomic operations, which are available for the GPU
architectures with compute capability 3.5 onwards (i.e.,
Kepler, Maxwell GPUs).

Algoruthm 5 represents the high-level implementation
of the technique, which highlights how each vertex
enqueue is controlled by a condition on the current
algorithm iteration. If the iteration number stored in
the variable is equal to the actual iteration, the vertex
is already in the queue, otherwise it is going to be
visited, and thus inserted for the first time in the frontier.
Algoruthm 6 represents the low-level implementation of
such a control, by showing how the atomic primitives
provided by Kepler have been applied.

Algorithm 5 ATOMIC64 RELAX PSEUDOCODE

RELAX ATOM(u, v, w)

if d(u) + w < d(v) then
d(v) = d(u) + w
if IterationNumber[v] 6= currentIterationNumber then

ENQUEUE(v)

Algorithm 6 ATOMIC64 RELAX IMPLEMENTATION

RELAX ATOM(u, v, w)

u info = MERGE( d(u), currentIteration )
old info = ATOMICMIN( &vertexInfo[v], u info )
if ( old info.iteration 6= currentIteration )

ENQUEUE(v)
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5 ARCHITECTURE-ORIENTED
OPTIMIZATIONS

Besides optimizations that target work efficiency (i.e.,
edge classification and duplicate removal), this article
presents different optimizations that aim at improving
the memory accesses bandwidth and the workload bal-
ancing.

5.1 Memory coalescing, cache modifiers, and tex-
ture memory
Coalesced memory access or memory coalescing refers
to combining multiple memory accesses into a single
transaction. When threads of the same warp concur-
rently access to aligned addresses in global memory,
they are coalesced by the device hardware into a single
transaction. In the NVIDIA Fermi, Kepler, and Maxwell
architectures, the maximum coalescence in memory ac-
cesses is achieved when threads of the same warp access
128 Bytes in an contiguous region. The coalescing control
in GPUs is hardware-implemented and relies on the use
of cache memory. The memory coalescing is the key to
reduce the overhead involved by the DRAM memory
latency, which, in GPU architectures, is amplified by the
thousands of threads accessing such a ”slow” memory.

Cache modifiers [34] are a feature provided by Kepler
GPU architectures that allows the L1 cache to be enabled
or disabled at run time. This allows reducing the miss
rate of cache accesses by skipping the cache use for those
data not frequently used or too sparse in memory.

In H-BF, memory coalescing has been implemented
and combined with cache modifiers as follows. Consid-
ering each algorithm step (see Section 4):

1) The first step (DEQUEUE(F )) aims at reading the
frontier vertices, which are stored in global mem-
ory in consecutive locations thanks to the use
of adjacency list data structures. H-BF forces the
cache streaming policy to take advantage of L1/L2
caches to perform coalesced memory accessed, thus
avoiding cache pollution2. The same cache policy
is used to load edge offsets of each vertex, which
are scattered and occur only one time. In this way,
the caches are mainly reserved to the other steps.

2) The threads read information of edges (v ∈ adj[u]),
which, similarly to the vertices, are stored in global
memory in consecutive locations. Nevertheless,
since the edges are much more with respect to the
vertices, overloading the L1 cache may decrease the
performance. H-BF disables the L1 cache for such
data while takes advantage of the L2 cache and
read-only texture memory (through the __ldg()
Kepler operators) for caching these accesses.

3) H-BF implements the relax phase through atomic
instructions, which do not allow exploiting mem-
ory coalescing or caching. However, in several

2. The L1 cache could be disabled or partially enabled by the
compiler to be used for other memory accesses like, for example, the
edge reading.

FIG 5: Example of memory coalescing for the enqueue
phase

cases, the relax operations are replaced by direct
updating of the vertex distance d(v) (see class 3 in
Section 4.1). Memory accesses for such an operation
are inevitably scattered and each distance reading
occurs only once. H-BF directly accesses to the
global memory by skipping (and avoiding cache
pollution) through low-level PTX instructions [34].

4) The ENQUEUE(F, v) operation performed by each
thread consists of updating the frontier data struc-
ture in global memory with each vertex v, which
information is stored in the thread register. H-BF
handles such a massively parallel memory writ-
ing by stepping into the SM shared memory to
organize the data before moving into the global
memory. The data organization aims at ordering
the data values to enable memory coalescing. Fig-
ure 5 shows the main idea. The shared memory
is partitioned into slots, one per warp. Each thread
writes the vertices composing the own partial fron-
tier into the shared memory. The threads write in
parallel and start from the shared memory address
(offset) computed through a prefix-sum procedure
[35]. Then, all threads in a warp collaborate to
read from the warp slot in shared memory and to
perform a coalesced writing in the global memory.
In Kepler architectures, the total memory dedi-
cated to registers in each SM exceeds the size of
the shared memory. This implies that a warp slot
may be used more times for different transactions.
Considering, for example, a 48KBytes shared mem-
ory and 2048 threads per SM, each slot is 768
Bytes sized (maximum 192 vertices per slot) and
allows maximum 6 coalesced transactions to be
performed. Then, the slot is released for a new set
of data. In general, the thread registers are enough
to store the whole frontier. In those particular cases
the frontier size exceeds the available registers, the
frontier updating in global memory is split in many
iterations (register filling, writing in shared mem-
ory of the partial frontier, coalesced transaction in
global memory, register filling, and so on).
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FIG 6: The Virtual Warp concept

5.2 Dynamic virtual warps

Virtual warp programming has been introduced in [36]
to address the problem of workload imbalance and
thread divergence in GPU graph algorithms. Such a
thread scheduling strategy consists of organizing the
GPU threads into groups (i.e., virtual warps) smaller
than a warp and whose size is statically tuned. The
idea is to assign smaller tasks to few threads (i.e., less
than a warp size) to reduce as much as possible the
thread divergence. This helps increasing the speedup
even when the parallelism degree is low. For example,
the graph algorithms exploit the virtual warp strategy
to allocate one virtual warp per vertex with the aim
of partitioning and equally assigning the work over the
edges outgoing the vertex to each thread (Figure 6 shows
an example) and finds the best application in low-degree
graphs.

H-BF exploits the virtual warp technique to increase
the thread coalescence during the accesses to the adja-
cent lists and to reduce their divergence in the frontier
propagation steps. In this context, the main limitation of
such a technique occurs when the virtual warp size does
not properly fit the vertex degree, thus leading to unused
threads. In case of vertices with very different degrees
over the propagation steps (e.g., power-law graphs), the
size choice may be appropriated for some vertices only.
Thus, differently from [36], H-BF implements a dynamic
virtual warp, whereby the warp size is calibrated at each
frontier propagation step i, as follows:

WarpSizei = nearest pow2

(
#ResThreads

|Fi|

)
∈ [4, 32]

where #ResThreads is the maximum number of resident
threads in the GPU device and nearest pow2 is the lower
nearest power of two that rounds the division. |Fi| is the
size of the actual frontier.

The virtual warp size may range between 1 and the
maximum size of a warp (i.e., 32 for NVIDIA GPUs).
Nevertheless, we heuristically found that sizes smaller
than 4 threads per warp lead to a decrease of perfor-
mance due to the excessive non-coalescence (close to a
mere serialization) of threads. In addition, the technique
proposed in [36] suffers from two problems. First, it over-
loads the the warp scheduler when the virtual warp size
is small and the number of virtual warps is large. Then, it
provides workload balancing at warp-level while while,
considering that the workload assigned to each virtual
warp may be different, it does not provide workload
balancing at block level. Indeed, a heavier virtual warp

FIG 7: Example of dynamic parallelism applied to a sub-
set of frontier vertices of a power-law graph (flickr)

may lead to the situation in which lighter warps of the
same block terminate (and thus some SM cores become
ready for new warps) but any new block allocation is
prevented until the end of all warps.

H-BF overcomes such a problem by assigning more
than one vertex per virtual warp. The warp scheduler
overhead is minimized since there are less thread blocks
in the kernel grid and the thread local queues are filled
with more items that, in average, are more uniformly
distributed. This provides better load balancing and
coalesced global memory accesses. We heuristically fixed
such a workload to 32 vertices per warp. We found that
such a value leads to an increase of performance for
all the analysed graphs. Higher values lead to a slight
performance improvement only in graph with very high
average degree.

5.3 Dynamic parallelism

The dynamic virtual warp strategy provides a fair work-
load balancing when applied to irregular graphs. Nev-
ertheless, to further improve the speedup in case of
very irregular graphs (i.e., scale free networks or graphs
with power-law distribution), H-BF exploits the dynamic
parallelism feature of the Kepler architectures. Dynamic
parallelism allows implementing recursion in the ker-
nels and, thus, dynamically creating threads and thread
blocks at run time without requiring kernel returns. In
the H-BF context, the idea is to invoke a multi-block
kernel properly configured to manage the workload
imbalance due to the difference of the vertex degrees.
Nevertheless, the (even low) overhead caused by the
dynamic kernel stack may elude this feature advantages
when replicated for all frontier vertices unconditionally.

H-BF applies dynamic parallelism to a limited number
of frontier vertices at each frontier propagation step.
Given the degree distribution of the visited graph, H-
BF applies dynamic parallelism to the sub-set of vertices
that have degree far from the average (AVG) and that
exceeds a threshold, TDP (Figure 7 shows an example).

H-BF combines dynamic parallelism with dynamic
virtual warps. The threshold TDP is a knob to be set in H-
BF, which switches from the use of the former technique
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to the use of the latter. As explained in the experimental
results, we heuristically fixed TDP = 4096 vertices for all
the analysed graphs.

6 EXPERIMENTAL RESULTS

6.1 Experimental setup

H-BF has been run on two sets of graphs. The first
set is from the 9th and 10th DIMACS implementa-
tion challenges [37], [38] and from the University of
Florida Sparse Matrix Collection [39]. It consists of
graphs from different contexts such as, road networks,
three-dimensional meshes, circuit simulations, social and
synthetic graphs. The second set is from SNAP [40],
10th DIMACS, and GTGraph generator [38]. It consists
of graphs from contexts like 2D dynamic simulations,
communication networks, road networks, autonomous
systems, and synthetic based on the Erdős-Rényi model.
The graphs of the second set include some edges with
negative weights though no negative cycles.

Table 1 shows the graph characteristics in terms of
directed/undirected, vertices, edges, average degree, de-
gree standard deviation, degree mode, graph diameter,
and degree distribution of the edges (abscissa) over the
vertices (ordinate). The degree distribution, which is
shown in log scale, expresses the potential unbalancing
of a parallel algorithm to visit the graph. For example,
graphs like msdoor or random 0.1Mv.20Me have the best
balancing as they include many vertices with the same
(high) degree. In contrast, rmat.3Mv.20Me or wiki-talk
are strongly unbalanced as they include many vertices
with low degree, few vertices with high degree and, in
general, the degree is not uniform over the vertices.

H-BF has been run on a NVIDIA (Kepler) GEFORCE
GTX 780 device, which has 12 SMs, 192 Cores per SM,
3 GB of DRAM, and 5 GHz PCI Express 2.0 x16, with
CUDA Toolkit 6.0, AMD Phenom II X6 1055T (3GHz)
host processor, and Debian 7 operating system.

6.2 Execution time analysis and comparison

Table 2 reports the results in terms of execution time
and millions of traversed edges per second (MTEPS) and
the comparison of H-BF with the most representative
SSSP implementations (both sequential and parallel for
GPUs) at the state of the art. They include the Boost li-
brary sequential Dijkstra [41], which is based on priority
queues and relaxed heap, and a queue-based sequential
Bellman-Ford. As parallel implementations for GPUs, we
selected the Lonestar GPU graph suite [7], which is a
parallel implementation of Bellman-Ford, and Workfront
Sweep and Near-Far Pile, which are the most efficient
parallel implementations of Davidson et al. [9] (see Sec-
tion 3). The results are presented as the average time and
the average MTEPS obtained by running the tool from
100 sources randomly chosen, where, for each source,
the connected component has at least 105 vertices.

FIG 8: Comparison of speedups

Figure 8 summarizes the speedup of the different
implementations with respect to the sequential queue-
based Bellman-Ford implementation. The results show
how H-BF outperforms all the other implementations in
every graph. The speedup on graphs with very high
diameter (left-most side of the figure) is quite low for
every parallel implementation. This is due to the very
low degree of parallelism for propagating the frontier in
such graph typology. In these graphs, H-BF is the only
parallel implementation that outperforms the Boost Di-
jkstra solution in asia.osm, while it preserves comparable
performance in USA-road.d-CAL. On the other hand, the
sequential Boost Dijkstra implementation largely outper-
forms all the other parallel solutions in literature.

We observed the best H-BF performance (time and
MTEPS) on the graphs in the right-most side of Figure
8 that allow high parallelism due to small diameter and
high average degree. H-BF provides high speedup also
in rmat.3Mv.20Me and flickr, which are graphs largely
unbalanced (see standard deviation and power-law de-
gree distribution in Table 1). This underlines the effec-
tiveness of the proposed methods to deal with such
an unbalancing problem in traversing graphs. We also
verified that the optimization based on the 64-bit atomic
instruction strongly impacts on performance for graphs
with small diameters. This is due to the fact that such
graph visits are characterized by a rapid grow of the
frontier, which implies a high number of duplicate ver-
tices. The edge classification technique successfully applies
to the majority of the graphs. In particular, asia.osm has
a high number of vertices with in-degree equal to one,
while in msdoor and circuit5M dc each vertex has a self-
loop. Scale-free graphs (e.g., rmat.3Mv.20Me and flickr)
are generally characterized by a high number of vertices
with low out-degree.
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The second set contains graphs with negative weights
(and no negative cycles) and, thus, the Dijkstra-based
sequential implementation as well as the other parallel
solutions at the state of the art could not be tested.
For these graphs, we compared H-BF with respect to
the Bellman-Ford sequential implementation and we
evaluated the effects of each proposed optimization (see
Sections 4 and 5) on the overall speedup. Table 3 reports
the results. Our basic frontier-based solution provides a
speedup that ranges from 12.5x to 20x with respect to
the sequential counterpart. The proposed optimizations
improve such a speedup from a minimum of twice
(from 58.1x to 110.5x by enabling the duplicate removal)
to almost four times (from 15.4x to 52.6x by enabling the
edge classification).

We evaluated the impact of the warp workload opti-
mization (section 5.2) to deal with the lack of parallelism
in the hugetrace 00000 graph, since it represents a 2D
dynamic simulation with a low and perfect uniform
degree and it is representative to be hardly visited in par-
allel. The warp workload optimization improves the load
balancing and the coalesced global memory accesses by
filling the local queues with more vertices.

The second graph, wiki-talk, is a community network
with very low average degree and power-law distribu-
tion. The edge classification optimization in this graph
allows improving the performance by more than three
times. The edge classification optimization is particularly
effective in graphs with power-law distribution since
they present a high number of low-degree vertices that,
in many cases, have in-degree equal to 1 and out-
degree equal to 0. This allows avoiding expensive atomic
operations and vertex reinsertions in the frontier. For
this graph, we reported both the time spent for the
main computation and the additional time to perform
the two complementary kernels (in round brackets).
With a high maximum degree and the highest standard
deviation, the as-Skitter graph has the most workload
unbalancing. In this case, we underlined the effects of
the Dynamic Virtual Warp and Dynamic Parallelism opti-
mizations. The combination of these techniques allows
reaching high throughput with irregular workload, by
dealing with both low and high degree vertices. Finally,
we considered a random-generated graph with a very
low diameter and a high average degree. Traversing any
graph with these characteristics leads to a high number
of redundant vertices since many threads have high
probability to concurrently access the same vertex for
the relax operation. In this case, the duplicate removal
optimization allows improving the performance of twice
by avoiding multiple extractions of the same vertex from
the frontier.

Finally, Figure 9 shows the global effect of the pre-
sented optimizations on the H-BF work efficiency. The
figure reports such an analysis by comparing a Bellman-
Ford queue-less (i.e., without frontier) sequential imple-
mentation, our basic Bellman-Ford queue-based sequen-
tial implementation, the Boost Dijkstra queue-based se-

FIG 9: Impact of the proposed optimizations on the
implementation work efficiency

quential implementation [41], and H-BF in terms of total
number of relax operations performed during the SSSP
elaboration on the msdoor graph (the analysis results are
similar for the other graphs). For the sake of clarity,
the Boost Dijkstra result is not reported in the figure
since it consists of a very long horizontal line (one relax
operation for each 20M of edges). As expected, the Dijk-
stra’s and Bellman-Ford’s queue-less are the most and
the least work efficient implementations, respectively.
The use of the frontier concept on the Bellman-Ford
implementation sensibly reduces the relax operations. H-
BF further reduces such a work to a final difference of
one order of magnitude with respect of Dijkstra’s rather
than six orders of magnitude of the original Bellman-
Ford’s queue-less implementation.

7 CONCLUDING REMARKS

This article presented H-BF, a parallel implementation
of the Bellman-Ford algorithm for Kepler GPU archi-
tectures. The article presented different optimizations
oriented both to the algorithm and to the architecture,
which have been implemented in H-BF to improve the
performance and, at the same time, to optimize the
work inefficiency typical of the Bellman-Ford algorithm.
Experimental results have been conducted on graphs of
different sizes and characteristics to compare the pro-
posed approach with the most representative sequential
and parallel implementations at the state of the art for
solving the SSSP problem. Finally, the article presented
an analysis of the impact of the proposed optimization
strategies over different graph characteristics to under-
stand how they impact on the H-BF work efficiency.
An OpenCL implementation of the proposed solution is
currently under study. The challenge is to observe how
much the performance of the OpenCL and CUDA imple-
mentations differ since they provide different low-level
instructions as well as the opportunity of implementing
different hardware-oriented techniques.



11

Graph Name Directed /
Undireced Group Vertices Edges Avg.

Degree
Std.

Deviation
Max.

Degree Diameter
Degree

Distribution

asia.osm U Dimacs 10th [37] 12.0M 25.4M 2.1 0.5 9 38,576

USA-road-d.CAL D Dimacs 9th [42] 1.9M 4.7M 2.5 0.9 7 2,575

delaunay n20 U Dimacs 10th [37] 1.9M 6.3M 6.0 1.3 23 380

msdoor U INPRO [39] 415K 20.6M 49.7 11.7 78 167

circuit5M dc D Freescale [39] 3.5M 19.2M 5.4 2.1 27 135

rmat.3Mv.20Me U GTGraph [38] 3.0M 20.0M 6.7 10.2 521 15

flickr D Gleich [39] 820K 9.8M 12.0 87.7 10,272 12

Hugetrace 00000 U Dimacs 10th [37] 4.6M 13.8M 3.0 0.0 3 4,119

wiki-talk D SNAP [40] 2.4M 5.0M 2.1 99.9 100,022 9

as-Skitter U SNAP [40] 1.7M 22.2M 13.1 136.9 35,455 31

random 2Mv.128Me U GTGraph [38] 2.0M 128.0M 64.0 8 114 5

TABLE 1: Characteristics of the graph datasets on which H-BF has been evaluated, including both real and synthetic datasets

Graph Name

Bellman-Ford
Queue-Based Seq.

Boost Dijkstra
Seq. [41] LoneStar [7] WorkFront Sweep /

Near-Far Pile [32] H-BF

Time MTEPS Time MTEPS Time MTEPS Time MTEPS Time MTEPS

asia.osm 32.0 s 0.8 5.2 s 4.9 280 s 0.1 12.7 s 2 3.4 s 7.5

USA-road-d.CAL 20.6 s 0.2 588 ms 7.9 3.9 s 1.2 4.6 s 1 720 ms 6.4

delaunay n20 3.2 s 2.0 581 ms 10.8 902 ms 7.0 420 ms 15 105 ms 60

msdoor 1.2 s 17.2 676 ms 30.6 1.9 s 10.8 206 ms 100 36 ms 570

circuit5M dc 3.2 s 6.0 4.1 s 4.7 657 ms 29.2 240 ms 80 68 ms 282

rmat.3Mv.20Me 6.4 s 3.1 4.0 s 5.0 520 ms 38.5 133 ms 150 99 ms 201

flickr 887 ms 11.1 963 ms 10.2 1.2 s 8.2 49 ms 200 32 ms 307

TABLE 2: Performance comparison of H-BF with the most representative implementations at the state of the art.

Graph Name Optimization Notes
Belman-Ford
Queue-Based

Seq.

H-BF w/out
Opt.

Speedup
w/out Opt.
vs. Seq.

H-BF with
Opt.

Speedup
with Opt.
vs. Seq.

hugetrace 00000 Warp Workload Sparse graph 82.0 s 4.1 s 20.0x 1.4 s 58.6x

wiki-talk Edge Classification Sparse graph 1.0 s 65 ms 15.4x 17(+2) ms 52.6x

as-Skitter
Dynamic Parallelism +
Dynamic Virtual Warp

High Std. Deviation
and Max. Degree 2.5 s 199 ms 12.5x 77 ms 32.5x

random 2Mv.128Me 64-bit Atomic Instr. Small Diameter 84 s 1,445 ms 58.1x 760 ms 110.5x

TABLE 3: Impact of H-BF optimizations. Comparison between the speedups versus the sequential implementation
obtained by enabling or disabling a specific optimization.
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