
On the Load Balancing Techniques for GPU
Applications Based on Prefix-scan

Federico Busato
Dept. of Computer Science

University of Verona
Italy

Email: federico.busato@univr.it

Nicola Bombieri
Dept. of Computer Science

University of Verona
Italy

Email: nicola.bombieri@univr.it

Abstract—Prefix-scan is one of the most common operation and
building block for a wide range of parallel applications for GPUs.
It allows the GPU threads to efficiently find and access in parallel
to the assigned data. Nevertheless, the workload decomposition
and mapping strategies that make use of prefix-scan can have
a significant impact on the overall application performance.
This paper presents a classification of the mapping strategies
at the state of the art and their comparison to understand
in which problem they best apply. Then, it presents Multi-
Phase Search, an advanced dynamic technique that addresses
the workload unbalancing problem by fully exploiting the GPU
device characteristics. In particular, the proposed technique
implements a dynamic mapping of work-units to threads through
an algorithm whose complexity is sensibly reduced with respect
to the other dynamic approaches in the literature. The paper
shows, compares, and analyses the experimental results obtained
by applying all the mapping techniques to different datasets, each
one having very different characteristics and structure.

I. INTRODUCTION

Prefix-scan is a data-parallel operation whose broad im-
portance is well known. Sequence compaction, radix sort,
quick-sort, sparse-matrix vector multiplication, and minimum
spanning tree construction are some of the many algorithms
that can be efficiently implemented in terms of scan operations
[1], [2]. These operations are the analogs of parallel prefix
circuits [3], which have a long history, and have been widely
used in collection-oriented languages dating since APL [4].
They also form the basis for efficiently mapping nested data-
parallel languages such as NESL [5] on to flat data-parallel
machines.

Given a list of input values and a binary associative operator,
a prefix-scan procedure computes an output list of elements
in which each element is the reduction of the elements
occurring earlier in the input list. Prefix-scan solutions have
been presented for both array processor architectures [6], [2],
[7] and GPUs [8], [9], [10], [11].

When the operator is the addition, the prefix-scan represents
a prefix-sum. Prefix-sum is useful when parallel threads must
allocate dynamic data within shared data structures such as
global queues [12]. Given a workload to be allocated over the
GPU threads (see Fig. 1), prefix-sum calculates the offsets to
be used by the threads to access to the corresponding work-
items (coarse-grained mapping) or work-units (fine-grained

mapping) [13].
Even though prefix-scan operations allows the threads to

efficiently access in parallel to the corresponding data, they do
not address the load balancing problem. Indeed, the workload
decomposition and mapping strategies are let to the application
designer. How the application implements such a mappings
can have a significant impact on the overall application per-
formance.

Several different techniques have been presented in the
literatures to decompose and map the workload to threads
through the use of prefix-sum data structures [14], [15], [16],
[13], [17], [18], [19]. All these techniques differ from the
complexity of their implementation and from the overhead
they introduce in the application execution to address the most
irregular workloads. In particular, the simplest solutions [14],
[15] best apply to very regular workloads while they cause
strong unbalancing and, as a consequence, lost of performance
in case of irregular workloads. More complex solutions [16],
[13], [17], [18], [19] best apply to irregular problems through
semi-dynamic or dynamic workload-to-thread mappings. Nev-
ertheless, the overhead introduced for such a mapping often
worsens the overall application performance when run on
regular problems.

This paper firstly presents an accurate analysis of all
such load balancing techniques based on prefix-scan of the
literature, by underlining advantages and drawbacks over
different workload characteristics. Then, the paper presents
an advanced dynamic technique, called Multi-Phase Search,
which addresses the workload unbalancing problem by fully
exploiting the GPU device characteristics. In particular, Multi-
Phase Search implements a dynamic mapping of work-units
to threads through an algorithm whose complexity is sensibly
reduced with respect to the other dynamic approaches in the
literature. This allows the proposed approach to provide good
performance also when applied to very regular and balanced
workloads.

The paper also provides a detailed analysis of the coalescing
issue during the memory accesses both to the prefix-sum
structure and to the global memory, which is strictly related
to the mapping strategy implementation.

Finally, the paper presents the experimental results obtained
by applying all the mapping techniques to different datasets,

FIG. 1: Overview of the load balancing problem in the workload
decomposition and mapping to threads of scan-based applications

each one having different sizes and characteristics.
The paper is organized as follows. Section II present the

analysis of the related work. Section III presents the proposed
dynamic technique. Section IV presents the experimental
results and their analysis, while SectionV is devoted to the
conclusions.

II. RELATED WORK

In the literature, the techniques for decomposing and map-
ping a workload to threads based on prefix-scan for GPU
applications can be organized in three classes: Static mapping,
semi-dynamic mapping, and dynamic mapping. They are all
based on the prefix-sum array that, in the following, is assumed
to be already generated1.

A. Static mapping techniques

This class includes all the techniques that statically assign
each work-item (or blocks of work-units) to a corresponding
GPU thread. In general, this strategy allows the overhead for
calculating the work-item to thread mapping to be sensibly
reduced during the application execution but, on the other
hand, it suffers from load unbalancing when the work-units
are not regularly distributed over the work-items. The main
important techniques are summarized in the following.

1) Work-items to threads: It represents the simplest and
fastest mapping approach by which each work-item is mapped
to a single thread [14]. Fig. 2(a) shows an example, in which
the eight items of Fig. 1 are assigned to a corresponding
number of threads. For the sake of clarity, only four threads
per warp have been considered in the example to underline
two levels of possible unbalancing of this technique. First,
irregular (i.e., unbalanced) work-items mapped to threads of
the same warp lead the warp threads to be in idle state (i.e.,
branch divergence). t1, t3, and t0 of warp0 in Fig. 2(a) are an

1The prefix-sum array is generated, depending on the mapping technique,
in a preprocessing phase [20], at run-time if the workload changes at every
iteration [13], [16], or it could be already part of the problem [21].

FIG. 2: Example of static mapping techniques: (a) Work-items to
threads, and (b) Virtual warps

example. Then, irregular work-items lead to whole warps to
be in idle state (e.g., warp0 w.r.t. warp1 in 2(a)). As a third
level of unbalancing, this technique can lead to whole blocks
of threads to be in idle state.

In addition, considering that work-units of different items
are generally stored in non-adjacent addresses in global mem-
ory, this mapping strategy leads to sparse and non-coalesced
memory accesses. As an example, threads t0, t1, t2, and
t3 of Warp0 concurrently access to the non adjacent units
A1, B1, C1, and D1, respectively. For all these reasons, this
technique is suitable to applications running on very regular
data structures, in which any more advanced mapping strategy
run at run time (as explained in the following sections) would
lead to unjustified overhead.

2) Virtual Warps: This technique consists of assigning
chunks of work-units to groups of threads called virtual warps,
where the virtual warps are equally sized and the threads
of a virtual warp belong to the same warp [15]. Fig. 2(b)
shows an example in which the chunks correspond to the
work-items and, for the sake of clarity, the virtual warps have
size equal to two threads. Virtual warps allow the workload
assigned to threads of the same group to be almost equal and,
as a consequence, it allows reducing branch divergence. In
addition, this technique improves the coalescing of memory
accesses since more threads of a virtual warp access to
adjacent addresses in global memory (e.g., t0, t1 of Warp2
in Fig. 2(b)). These improvements are proportional to the
virtual warp size. Increasing the warp size leads to reducing
branch divergence and better coalescing the work-unit accesses
in global memory. Nevertheless, virtual warps have several
limitations. First, the maximum size of virtual warps is limited
by the number of available threads in the device. Given the
number of work-items and a virtual warp size, the required
number of threads is expressed as follows:

#RequiredThreads = #workitems · |V irtualWarp|
If such a number is greater than the available threads, the

work-item processing is serialized with a consequent decrease
of performance. Indeed, a wrong sizing of the the virtual
warps can sensibly impact on the application performance.
In addition, this technique provides good balancing among
threads of the same warp, while it does not guarantee good
balancing among different warps nor among different blocks.

Finally, another major limitation of such a static mapping
approach is that the virtual warp size has to be fixed statically.
This represents a major limitation when the number and size
of the work-items change at run time.

The algorithm run by each thread to access the correspond-
ing work-units is summarized as follows:

1: VW INDEX = TH INDEX / |V irtualWarp|
2: LANE OFFSET = TH INDEX % |V irtualWarp|
3: INIT = prefixsum[VW INDEX] + LANE OFFSET
4: for i = INIT to prefixsum[VW INDEX+1] do
5: Output[i] = VW INDEX
6: i = i+ |V irtualWarp|
7: end

where VW INDEX and LANE OFFSET are the virtual warp
index and offset for the thread (e.g., VW0, and 0 for t0 in
the example of Fig. 2(b)), INIT represents the starting work-
unit id, and the for cycle represents the accesses of the thread
to the assigned work-units (e.g., A1, A3 for t0 and A2 for t1).

B. Semi-dynamic mapping techniques

This class includes the techniques by which different map-
ping configurations are calculated statically and, at run time,
the application switches among them.

1) Dynamic Virtual Warps + Dynamic Parallelism: This
technique has been introduced in [16] and relies on two main
strategies. First, it implements a virtual warp strategy in which
the virtual warp size is calculated and set at run time depending
on the workload and work-item characteristics (i.e., size and
number). At each iteration, the right size is chosen among a set
of possible values, which spans from 1 to the maximum warp
size (i.e., 32 threads for NVIDIA GPUs, 64 for AMD GPUs).
For performance reasons, the range is reduced to power of
two values only. Considering that a virtual warp size equal to
one has the drawbacks of the work-item to thread technique
and that memory coalescence increases proportionally with
the virtual warp size (see Section II-A2), too small sizes
are excluded from the range a priori. The dynamic virtual
warp strategy provides a fair balancing in irregular workloads.
Nevertheless, it is inefficient in case of few and very large
work-items (e.g., in datasets representing scale free networks
or graphs with power-law distribution in general).

On the other hand, dynamic parallelism, which exploits the
most advanced features of the GPU architectures (e.g., from
NVIDIA Kepler on) [22] allows recursion to be implemented
in the kernels and, thus, threads and thread blocks to be dy-
namically created and properly configured at run time without
requiring kernel returns. This allows fully addressing the work-
item irregularity. Nevertheless, the overhead introduced by the
dynamic kernel stack may elude this feature advantages if
replicated for all the work-items unconditionally [16].

To overcome these limitations, dynamic virtual warps and
dynamic parallelism are combined into a single mapping
strategy and applied alternatively at run time. The strategy
applies dynamic parallelism to the work-items having size
greater than a threshold, while it applies dynamic virtual warps

to the others. It best applies to applications with few and
strongly unbalanced work-items that may vary at run time
(e.g., applications for sparse graph traversal). This technique
guarantees load balancing among threads of the same warps
and among warps. It does not guarantee balancing among
blocks.

2) CTA+Warp+Scan: In the context of graph traversal,
Merrill et al. [13] proposed an alternative approach to the load
balancing problem. Their algorithm consists of three steps:

1) All threads of a block access the corresponding work-item
(through the work-item to thread strategy) and calculate
the item sizes. The work-items with size greater than
a threshold (CTATH) are non-deterministically ordered
and, one at a time, they are (i) copied in the shared
memory, and (ii) processed by all the threads of the block
(called cooperative thread array - CTA). The algorithm of
such a first step (which is called strip-mined gathering)
is run by each thread (ThID). It can be summarized as
follows:

1: while any(Workloads[ThID] > CTATH) do
2: if Workloads[ThID] > CTATH then
3: SharedWinnerID = ThID
4: sync
5: if ThID = SharedWinnerID then
6: SharedStart = prefixsum[ThID]
7: SharedEnd = prefixsum[ThID + 1]
8: end
9: sync

10: INIT = SharedStart + ThID%|ThSET |
11: for i = INIT to SharedEnd do
12: Output[i] = SharedWinnerID
13: i = i+ |ThSET |
14: end
15: end

where row 3 implements the non-deterministic ordering
(based on iterative match/winning among threads), rows
5-8 calculate information on the work-item to be copied
in shared memory, while rows 10-14 implement the item
partitioning for the CTA. This phase introduces sensible
overhead for the two CTA synchronizations and, rows 5-8
are run by one thread only.

2) In the second step, the strip-mined gathering is run with
a lower threshold (WARPTH) and at warp level. That
is, it targets smaller work-items and a cooperative thread
array consists of threads of the same warp. This allows
avoiding any synchronization among threads (as they are
implicitly synchronized in SIMD-like fashion in the warp)
and addressing work-items with sizes proportional to the
warp size.

3) In the third step the remaining work-items are processed
by all block threads. The algorithm computes a block-
wide prefix-sum on the work-items and stores the result-
ing prefix-sum array in the shared memory. Finally, all
threads of the block get use of such an array to access
to the corresponding work-unit. If the array size exceeds

FIG. 3: Example of assignment of thread th5 to work-item 2 through
binary search over the prefix-sum array (a), and overall threads-items
mapping (b).

the shared memory space, the algorithm iterates.
This strategy provides a perfect balancing among threads

and warps. On the other hand, the strip-mined gathering
procedure run at each iteration introduces a sensible overhead,
which slows down the application performance in case of quite
regular workloads. The strategy well applies only in case of
very irregular workloads.

C. Dynamic mapping techniques

Contrary to static mapping, the dynamic mapping ap-
proaches achieve perfect workload partition and balancing
among threads at the cost of additional computation at run
time. The core of such a computation is the binary search
over the prefix-sum array. The binary search aims at mapping
work-units to the corresponding threads.

1) Direct Search: Given the exclusive prefix-sum array
of the work-unit addresses stored in global memory, each
thread performs a binary search over the array to find the
corresponding work-item index (Fig. 3 shows an example).
This technique provides perfect balancing among threads
(i.e., one work-unit is mapped to one thread), warps and
blocks of threads. Nevertheless, the large size of the prefix-
sum array involves an arithmetic intensive computation (i.e.,
#threads× binarysearch()) and all the accesses performed
by the threads to solve the mapping very scattered. This often
eludes the benefit of the provided perfect balancing.

2) Local Warp Search: To reduce both the binary search
computation and the scattered accesses to the global memory,
this technique first loads chunks of the prefix-sum array from
the global to the shared memory. Each chunk consists of
32 elements, which are loaded by 32 warp threads through
a coalesced memory access. Then, each thread of the warp
performs a lightweight binary search (i.e., maximum log232
steps) over the corresponding chunk in the shared memory.

In the context of graph traversal, this approach has been
further improved by exploiting data locality in registers [16].
Instead of working on shared memory, each warp thread stores
the workload offsets in the own registers and then performs a
binary search by using Kepler warp-shuffle instructions [22].

In general, the local warp search strategy provides a very
fast work-units to threads mapping and guarantees coalesced
accesses to both the prefix-sum array and work-units in global
memory. On the other hand, since the sum of work units
included in each chunk of prefix-sum array is greater than

the warp size, the binary search on the shared memory (or
registers for the enhanced version for Kepler) is repeated until
all work-units are processed. This leads to more work-units to
be mapped to the same thread. Indeed, although this technique
guarantees a fair balancing among threads of the same warp,
it suffers from work unbalance between different warps since
the sum of work-units for each warp can be not uniform in
general. For the same reason, it does not guarantee balancing
among blocks of threads.

3) Block Search: To deal with the local warp search limita-
tions, Davidson et al. [17] introduced the block search strategy
through cooperative blocks. Instead of warps performing 32-
element loads, in this strategy each block of threads loads a
maxi chunk of prefix-sum elements from the global to the
shared memory, where the maxi chunk is as large as the
available space in shared memory for the block. The maxi
chunk size is equal for all the blocks. Each maxi chunk
is then partitioned by considering the amount of work-units
included and the number of threads per block. For example,
considering that the nine elements of the prefix-sum array of
Fig. 1 exactly fits the available space in shared memory and
that each block is sized 4 threads (for the sake of clarity), the
maxi chunk will be partitioned in 4 slots, each one including
7 work-units. Finally, each block thread performs only one
binary search to find the corresponding slot. With the block
search strategy, all the units included in a slot are mapped
to the same thread. This leads to several advantages. First,
all the threads of a block are perfectly balanced. The binary
searches are performed in shared memory and the overall
amount of searches is sensibly reduced (i.e., they are equal to
the block size). Nevertheless, this strategy does not guarantee
balancing among different blocks. This is due to the fact that
the maxi chunk size is equal for all the blocks, but the chunks
can include a different amount of work-units. In addition,
this strategy does not guarantee memory coalescing among
threads when they access the assigned work-units. Finally,
this strategy cannot exploit advanced features for intra-warp
communication and synchronization among threads, such as,
warp shuffle instructions etc.

4) Two-phase Search: Davidson et al.[17], Green et al [18]
and Baxter [19] proposed three equivalent methods to deal
with the inter-block load unbalancing. All the methods rely
on two phases: partitioning and expansion.

First, the whole prefix-sum array is partitioned into balanced
chunks, i.e., chunks that point to the same amount of work-
units. Such an amount is fixed as the biggest multiple of the
block size that fits in the shared memory. As an example,
considering blocks of 128 threads, two prefix-sum chunks
pointing to 128 ×K units, and 1300 slots in shared memory, K
is set to 10. The chunk size may differ among blocks (see for
example Fig. 1, in which a prefix-sum chunk of size 8 points
to 28 units). The partition array, which aims at mapping all the
threads of a block into the same chunk, is built as follows. One
thread per block runs a binary search on the whole prefix-sum
array in global memory by using the own global id times the
block size (THglobalid × blocksize). This allows finding the

FIG. 4: Example of expansion phase in the two-phase strategy (10
work-units per thread)

chunk boundaries. The number of binary searches in global
memory for this phase is equal to the number of blocks. The
new partition array, which contains all the chunk boundaries
is stored in global memory.

In the expansion phase, all the threads of each block load
the corresponding chunks into the shared memory (similarly
to the dynamic techniques presented in the previous sections).
Then, each thread of each block runs a binary search in such
a local partition to get the (first) assigned work-unit. Each
thread sequentially accesses all the assigned work units in
global memory. The number of binary searches for the second
step is equal to the block size. Fig. 4 shows an example of
expansion phase, in which three threads (t0, t1, and t2) of the
same warp access to the local chunk of prefix-sum array to get
the corresponding starting point of assigned work-unit. Then,
they sequentially access the corresponding K assigned units
(A1 −D1 for t0, D2 − F2 for t1, etc.) in global memory.

In conclusion, the two-phase search strategy allows the
workload among threads, warps, and blocks to be perfectly
balanced at the cost of two series of binary searches. The first
is run in global memory for the partitioning phase, while the
second, which most affects the overall performance, is run in
shared memory for the expansion phase. The number of binary
searches for partitioning is proportional to the K parameter.
High values of K involves less and bigger chunks to be
partitioned and, as a consequence, less steps for each binary
search. Nevertheless, the main problem of such a dynamic
mapping technique is that the partitioning phase leads to very
scattered memory accesses of the threads to the corresponding
work-units (see lower side of Fig. 4). Such a problem worsens
by increasing the K value.

III. THE PROPOSED MULTI-PHASE SEARCH TECHNIQUE

The proposed multi-phase mapping strategy aims at ex-
ploiting the balancing advantages of the two-phase algorithms
while overcoming the limitations concerning the scattered
memory accesses. It consists of two main contributions: Coa-
lesced expansion and Iterated search.

A. Coalesced Expansion

The proposed expansion phase consists of three sub-phases,
by which the scattered accesses of threads to the global
memory are reorganized into coalesced transactions. This is
done in shared memory and by taking advantage of local
registers. The technique applies for both reading and writing
accesses to the global memory as for the two-phase approach.

FIG. 5: Overview of the coalesced expansion optimization (10 work-
units per thread)

FIG. 6: Overview of the iterated search optimization (10 work-units
per thread and IS=2)

For the sake of clarity, we consider writing accesses in the
following.

1) Instead of sequentially writing on the work-units in global
memory, each thread sequentially writes a small amount
of work-units in the local registers. Fig. 5 shows an
example. The amount of units is limited by the available
number of free registers.

2) After a thread block synchronization, the local shared
memory is flushed and the threads move and reorder the
work-unit array from the registers to the shared memory.

3) Finally, the whole warp of threads cooperates for a
coalesced transaction of the reordered data into the global
memory. It is important to note that this step does not
require any synchronization since each warp executes
independently on the own slot of shared memory.

Steps two and three are iterated until all the work-units
assigned to the threads are processed. Even though these steps
involve some extra computations with respect to the direct
writings, the achieved coalesced accesses in global memory
significantly improve the overall performance.

B. Iterated Searches

The shared memory size and the size of thread blocks play
an important role in the coalesced expansion phase. The bigger
the block size, the shorter the partition array stored in shared
memory. On the other hand, the bigger the block size, the more
the synchronization overhead among the block warps, and the

more the binary search steps performed by each thread (see
final considerations of the Two-phase search in Section II-C4).

In particular, the overhead introduced to synchronize the
threads after the writing on registers (see step 1 of coalesced
expansion) is the bottleneck of the expansion phase (each
register writing step requires two barriers of thread). The
iterated search optimization aims at reducing such an overhead
as follows:

1) In the partition phase, the prefix sum array is partitioned
into balanced chunks (see Fig. 6). Differently from the
two-phase search strategy, the size of such chunks is fixed
as a multiple of the available space in shared memory:

Chunksize = Blocksize ×K × IS

where Blocksize × K represents the biggest number of
work-units (i.e., a multiple of the block size) that fits in
shared memory (as in the two-phase algorithm), while
IS represents the iteration factor. The number of threads
required in this step decreases linearly with IS.

2) Each block of threads loads from global to shared
memory a chunk of prefix-sum, performs the function
initialization and synchronizes all threads.

3) Each thread of a block performs IS binary searches on
such an extended chunk;

4) Each thread starts with the first step of the coalesced
expansion (upper-side of Fig. 6), i.e., it sequentially
writes an amount of work-units in the local registers. Such
an amount is equal IS times larger than in the standard
two-phase strategy.

5) The local shared memory is flushed and each thread
moves a portion of the extended work-unit array from
the registers to the shared memory. The portion size
is equal to Blocksize × K. Then, the whole warp of
threads cooperates for a coalesced transaction of the
reordered data into the global memory, as in the coalesced
expansion phase presented in Section III-A. This step
iterates IS times, until all the data stored in the registers
has been processed.

With respect to the standard partitioning and expansion strat-
egy, the iterated search optimization reduces the number of
synchronization points by a factor of 2 ∗ IS , avoids many
block initializations, decreases the number of required threads,
and maximizes the shared memory utilization during the
loading of the prefix-sum values with more large consecutive
intervals. Nevertheless, the required number of registers
grows proportionally to the IS parameter. Considering that the
maximum number of registers per thread is a fixed constraints
for any GPU device (e.g., 32 for NVIDIA Kepler devices) and
that exceeding such a constraint involves data to be spilled in
L1 cache and then in L2 cache or global memory, too high
values of IS may compromise the overall performance of the
proposed approach.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup
We tested the load balancing efficiency of all the techniques

presented in Section II and the proposed Multi-Phase Search

Workload Source Max work-item
size

Avg. work-item
size

Std. Dev.
work-item size

great-britain osm 8 2.1 0.5
web-NotreDame 3,445 5.2 21.4
circuit5M 1,290,501 10.7 1,356.6
kron g500-logn20 413,378 96.2 1,033.1

TABLE I: Dataset Characteristics

over a dataset of different benchmarks. Table I summarizes
the features of the dataset. It consists of four representative
benchmarks selected from The University of Florida Sparse
Matrix Collection [23], which consists of a huge set of data
representation from different contexts (e.g., circuit simula-
tion, molecular dynamic, road networks, linear programming,
vibroacoustic, web-crawl). The four benchmarks have been
selected among the collection to cover very different data char-
acteristics in terms of work-item size, average, and standard
deviation from the item size. As summarized in the table, they
span from very regular to strongly irregular workloads. The
great-britain osm benchmark represents a road network with
very uniform distribution and low average. web-NotreDame is
a web-crawl with a slightly higher average and middle-sized
standard deviation. Circuit5M represents a circuit simulation
instance, while kron g500-logn20 is a synthetic graph based
on the Kronecker model. The last two benchmarks are char-
acterized both by highly not-uniform distribution, while they
have low and high average, respectively.

All the analysed balancing techniques have been integrated
in a reference application, in which the threads access and
update, in parallel, each work-unit of the benchmark workload.
We ran the experiments on a NVIDIA Kepler GeForce GTX
780 device with CUDA Toolkit 6.0, AMD Phenom II X6
1055T 3GHz host processor, and Debian 3.2.60 O.S.

B. Execution time analysis and Comparison

Figure 7 reports the obtained results in terms of execution
time. In particular, the reported values are the best performance
of each technique obtained by tuning the kernel configuration
in terms of number of threads per block. For the GPU device
used in this analysis, the best results have been reached
with 128-256 threads per block for all the techniques that
allows the maximum occupancy of the device and low
synchronization overhead. The results obtained with the
Direct Search and Block Search techniques are much worse
than the other techniques and, for the sake of clarity, have
not been reported in the figures. For the Two-Phase Search
algorithm, we used the well-know ModernGPU library [19],
which is based on the GPU algorithm proposed by Green et
al [18].

In the first benchmark (Fig. 7a), as expected, Work-items
to threads is the most efficient balancing technique. This is
due to the very regular workload and the small average work-
item size. In this benchmark, any overhead for the dynamic
item-to-thread mapping may compromise the overall algorithm
performance. However, the proposed Multi-Phase Search is the

(a) great-britain osm
(b) web-NotreDame

(c) Circuit5M
(d) kron g500-logn20

FIG. 7: Comparison of execution time on the datasets.

second most efficient technique. This underlines the reduced
amount of overhead introduced by such a dynamic technique,
which well applies also in case of very regular workloads.

In the web-NotreDame benchmark (Fig. 7b), Multi-Phase
Search is the most efficient technique and provides almost
twice the performance with respect to the second best tech-
niques (Virtual Warps and Two-Phase). On the other hand, Vir-
tual Warps provides good performance if the virtual warp size
is properly set, while it may sensibly worsen with wrongly-
sized sizes. The virtual warp size has to be set statically.
For the obtained results in these two benchmarks, we noticed
that the optimal virtual warp size is proportional and follows
approximately the average of work-item sizes.

In these first two benchmarks, CTA+Warp+Scan, which
is one of the most advanced and sophisticated balancing
technique at the state of the art, provides low performance.
This is due to the fact that the CTA and the Warp phases are
never or rarely activated, while the activation controls involve
strong overhead.

Multi-Phase Search provides the best results also in the
circuit5M benchmark (Fig. 7c). In such a benchmark, we
observed that the CTA+Warp+Scan, Two-Phase Search, and
Multi-Phase Search dynamic techniques are one order of
magnitude faster than the static-mapping techniques. In web-

Notredame and in circuit5M Multi-Phase Search shows the
best results due to the low average (less than warp size)
and high std. deviation. In the last benchmark, kron g500-
logn20 (Fig. 7d), CTA+Warp+Scan provides the best results,
since the CTA and Warp phases are frequently activated
and exploited. However the performance of Multi-Phase are
comparable. Dynamic Virtual Warps and Virtual Warps provide
similar performance. Indeed, these two techniques are very
efficient on high-average datasets, since, with a thread group
size of 32, they completely avoid the warp divergence. Finally,
we observed that the Dynamic Parallelism feature provided
by Kepler, implemented in the corresponding semi-dynamic
technique, finds the best application only when the work-item
sizes and their average are very large. In any case, all the
dynamic load balancing techniques, and in particular the Multi-
Phase Search, perform better without such a feature in all the
analysed datasets.

C. Multi-Phase Search Analisys

Figure 8 shows the impact of the thread block size on the
performance of the main phases of Multi-Phase. The partition
phase takes advantage of large block sizes. This is due to
the fact that large blocks involve the input workload to be
partitioned in fewer work-unit chunks and, as a consequence,

FIG. 8: Execution time of Partition and Expansion phases varying the
block size. Executed on 226 work-items with uniformly distributed
random work-sizes.

FIG. 9: Execution time varying the number of iterations. Executed
on 226 work-items with uniformly distributed random work-sizes.

they require fewer threads for such a computation. The com-
putation is completely independent among threads. In contrast,
large block sizes penalize the performance of the expansion
phase. This is due to the synchronization overhead required to
coordinate the shared memory accesses. We observed the best
trade-off size of blocks equal to 256 (see Fig. 8).

Figure 9 reports the Multi-Phase Search execution time
obtained by varying the number of iterations (i.e., the IS
value). IS affects the number of required registers and, as a
consequence, the overall balancing performance. In the GPU
device used for these experiments, the maximum number of
registers per thread is 32. As for the standard behaviour
of GPU devices, exceeding such a threshold involves data
to be spilled in L1 cache and then in L2 cache or global
memory. With IS values from two to five, we obtained the
best performance, since all the data elaborated by the threads
manly fits in registers and, in small part, in the L1 cache.
With seven iterations and beyond, the performance drastically
decreases since the compiler places the data variables outside
the on-chip memory.

V. CONCLUSIONS

This paper presented an accurate analysis of the load
balancing techniques based on prefix-scan in the literature, by
underlining advantages and drawbacks over different workload
characteristics. The paper then presented an advanced dynamic
technique, called Multi-Phase Search, which addresses the

workload unbalancing problem by fully exploiting the GPU
device characteristics. In particular, the paper showed how
Multi-Phase Search implements a dynamic mapping of work
units to threads through an algorithm whose complexity is
sensibly reduced with respect to the other dynamic approaches
in the literature. This allows the proposed approach to provide
good performance also when applied to very regular and
balanced workload. The paper presented a set of experimental
results to underline where and why the different static, semi-
dynamic, and dynamic techniques find the best application.

REFERENCES

[1] G. E. Blelloch, Vector Models for Data-parallel Computing. Cam-
bridge, MA, USA: MIT Press, 1990.

[2] ——, “Scans as primitive parallel operations,” IEEE Trans. Comput.,
vol. 38, no. 11, pp. 1526–1538, 1989.

[3] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” J. ACM,
vol. 27, no. 4, pp. 831–838, 1980.

[4] K. E. Iverson, A Programming Language. New York, NY, USA: John
Wiley & Sons, Inc., 1962.

[5] G. E. Blelloch, J. C. Hardwick, S. Chatterjee, J. Sipelstein, and
M. Zagha, “Implementation of a portable nested data-parallel language,”
SIGPLAN Not., vol. 28, no. 7, pp. 102–111, Jul. 1993.

[6] G. E. Blelloch, “Prefix sums and their applications,” School of Computer
Science, Carnegie Mellon Univ., Tech. Rep. CMU-CS-90-190, 1990.

[7] S. Chatterjee, G. E. Blelloch, and M. Zagha, “Scan primitives for
vector computers,” in Proceedings of the 1990 ACM/IEEE Conference
on Supercomputing, 1990, pp. 666–675.

[8] M. Billeter, O. Olsson, and U. Assarsson, “Efficient stream compaction
on wide simd many-core architectures,” in Proceedings of the Confer-
ence on High Performance Graphics 2009, 2009, pp. 159–166.

[9] Y. Dotsenko, N. K. Govindaraju, P.-P. Sloan, C. Boyd, and J. Manfer-
delli, “Fast scan algorithms on graphics processors,” in Proceedings of
the 22nd Annual International Conference on Supercomputing, ser. ICS
’08, 2008, pp. 205–213.

[10] D. Merril and A. Grimshaw, “Parallel scan for stream architectures,”
Department of Computer Science, University of Virginia, Tech. Rep.
CS-200914, 2009.

[11] S. Sengupta, M. Harris, and M. Garland, “Efficient parallel scan algo-
rithm for GPUs,” NVIDIA, Tech. Rep., 2009.

[12] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms. MIT press, 2009.

[13] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU graph
traversal,” in Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’12, 2012,
pp. 117–128.

[14] P. Harish and P. J. Narayanan, “Accelerating large graph algorithms
on the GPU using CUDA,” in Proceedings of the 14th International
Conference on High Performance Computing, ser. HiPC’07, 2007, pp.
197–208.

[15] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating CUDA
graph algorithms at maximum warp,” in Proceedings of the 16th ACM
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’11, 2011, pp. 267–276.

[16] F. Busato and N. Bombieri, “BFS-4K: an efficient implementation of
BFS for kepler GPU architectures,” IEEE Transactions on Parallel
Distributed Systems, vol. preprint, no. 99, pp. 1–14, 2015.

[17] A. Davidson, S. Baxter, M. Garland, and J. D. Owens, “Work-efficient
parallel gpu methods for single-source shortest paths,” in Parallel
and Distributed Processing Symposium, 2014 IEEE 28th International.
IEEE, 2014, pp. 349–359.

[18] O. Green, R. McColl, and D. A. Bader, “Gpu merge path: a gpu merging
algorithm,” in Proceedings of the 26th ACM international conference on
Supercomputing. ACM, 2012, pp. 331–340.

[19] “Modern gpu library.” [Online]. Available: http://nvlabs.github.io/
moderngpu/

[20] K. Xu, Y. Wang, F. Wang, Y. Liao, Q. Zhang, H. Li, and X. Zheng,
“Neural decoding using a parallel sequential monte carlo method on
point processes with ensemble effect,” BioMed research international,
vol. 2014, 2014.

[21] C. Yang, Y. Wang, and J. D. Owens, “Fast sparse matrix and sparse
vector multiplication algorithm on the gpu,” IPDPSW, 2015.

[22] NVIDIA, “Kepler GK110,” www.nvidia.com/content/PDF/kepler/NV
DS Tesla KCompute Arch May 2012 LR.pdf.

[23] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, Dec.
2011.

