
An Enhanced Profiling Framework for
the Analysis and Development of Parallel Primitives for GPUs

Nicola Bombieri
Dept. of Computer Science

University of Verona
Italy

Email: nicola.bombieri@univr.it

Federico Busato
Dept. of Computer Science

University of Verona
Italy

Email: federico.busato@univr.it

Franco Fummi
Dept. of Computer Science

University of Verona
Italy

Email: franco.fummi@univr.it

Abstract—Parallelizing software applications through the
use of existing optimized primitives is a common trend that
mediates the complexity of manual parallelization and the use
of less efficient directive-based programming models. Parallel
primitive libraries allow software engineers to map any se-
quential code to a target many-core architecture by identifying
the most computational intensive code sections and mapping
them into one ore more existing primitives. On the other
hand, the spreading of such a primitive-based programming
model and the different GPU architectures have led to a large
and increasing number of third-party libraries, which often
provide different implementations of the same primitive, each
one optimized for a specific architecture. From the developer
point of view, this moves the actual problem of parallelizing
the software application to selecting, among the several imple-
mentations, the most efficient primitives for the target platform.
This paper presents a profiling framework for GPU primitives,
which allows measuring the implementation quality of a given
primitive by considering the target architecture characteristics.
The framework collects the information provided by a standard
GPU profiler and combines them into optimization criteria.
The criteria evaluations are weighed to distinguish the impact
of each optimization on the overall quality of the primitive
implementation. The paper shows how the tuning of the
different weights has been conducted through the analysis of
five of the most widespread existing primitive libraries and
how the framework has been eventually applied to improve
the implementation performance of a standard primitive.

I. INTRODUCTION

Computing platforms have evolved dramatically over the
last years. Because of the physical limitations imposed
by thermal and power requirements, frequency scaling has
proven to be no longer the solution to increase the per-
formance of processors. As a consequence, many hardware
manufacturers have turned to scale the number of cores in a
processor in order to boost application performance. Apart
from the significantly improved simultaneous multithreading
capabilities, such heterogeneous multicore platforms also
contain general-purpose graphic processing units (GPUs)
to exploit fine-grained parallelism [1]. As a result of such
hardware trends, the heterogeneity of these platforms and
the need to program them efficiently has led to a spread of
parallel programming models, such as CUDA and OpenCL.

On the other hand, while many software developers
possess a working knowledge of basic programming con-
cepts, they typically lack of expertise in developing efficient
parallel programs in a short time. As a matter of fact,
the programming process with a CUDA or OpenCL-based
environment is much more complicated and time-consuming
than that with a parallel programming environment for
conventional multiprocessor systems. Programmability of

Figure 1: Overview of the Pro++ framework

such parallel platforms is consequently a strategic factor
impacting on the approach feasibility as well as costs and
quality of the final product.

In this context, directive-based extensions to existing
high-level languages (OpenACC[2], OpenHMPP[3]) have
been proposed to help software engineers through sets of
directives (annotations) for marking up the code regions
intended for execution on a GPU. Based on this information,
the compiler generates hybrid executable binary. Despite
their user-friendliness and expressiveness, such directive-
based solutions require notable effort from the developers
in organizing correct and efficient computations and, above
all, compilers are often over conservative, thus leading to
poor performance gain by the parallelization process [4].

Domain-specific languages (DSLs) (e.g., Delite[5],
Spiral[6]) have been also proposed to express the appli-
cation parallelism for GPUs in specific problem domains.
DSL-based approaches allow the language features and the
specific problem domain features to be brought closer and,
at the same time, the parallel applications to be developed
not strictly customized for any particular hardware platform.
Nevertheless, these solutions require the user to implement
the algorithms by using a proprietary language, with conse-
quent limitations to SW IP reuse and portability.

A more user-friendly and common trend is to implement
the application algorithm through existing primitives for
GPUs. This generally provides sound trade-off between
parallelization costs and code performance. Such primitive-
based programming model relies on identifying parts of



code computationally intensive and re-implementing their
functionality through one or more basic primitives provided
by an existing library. Due to its efficiency, the primitive-
based programming model has been recently also combined
to both directive-based solutions and DSLs [7] to exploit
the portability of annotations/DSLs as well the performance
provided by the GPU primitives.

An immediate consequence of such a trend has been
the spreading of an extensive list of accelerated, high-
performance libraries of primitives for GPUs ([8] and [9]
are some exampling collections of them). On the one hand,
all these libraries cover a wide spectrum of use cases,
such as basic linear algebra, machine learning, and graph
applications. On the other hand, many libraries provide
different implementations of the same primitives. From the
developer point of view, this moves the actual problem of
parallelizing a software application to selecting the most
efficient primitives for the target platform among several
implementations.

The motivation for our work is precisely the observa-
tion that it would be nice to measure the implementation
quality of a given primitive, with the aim of helping the
software developer (i) to choose the best implementation
of a given primitive among different libraries, and (ii) to
understand whether such a primitive implementation fully
exploits the architecture characteristics and how the imple-
mentation efficiency could be improved. To do that, this
paper presents Pro++ (see Figure 1), an enhanced profiling
framework for the analysis and the optimization of parallel
primitives for GPUs. Pro++ collects the information about
a given primitive implementation (i.e., profiling metrics)
through a standard GPU profiler. The framework combines
the standard metrics into optimization criteria, such as,
multiprocessor occupancy, load balancing, minimization of
synchronization overheads, and memory hierarchy use. The
criteria are evaluated, weighed, and finally merged into
an overall measure of quality metrics. The quality metrics
allows the user to classify and compare the different imple-
mentations of a primitive in terms of performance over the
selected GPU architecture configuration.

The main contributions of this work are the following:

• A classification of optimization criteria that mainly
impact on the primitive performance.

• An analysis of such optimization criteria over five
different primitive libraries for GPUs to weigh the
impact of each single criterion on the overall primitive
performance.

• A framework that combines profiling metrics, opti-
mization criteria, and weights to provide (i) an overall
quality metrics of a given primitive and (ii) profiling
feedbacks to improve the primitive implementation.

The paper is organized as follows. Section II summarizes
the key concepts of CUDA, GPU architectures and GPU
profiling. Section III presents the optimization criteria by
which the primitives are evaluated. Section IV reports the
analysis conducted to measure the impact of the optimization
criteria on the overall quality metrics of primitives. Section
V presents the case study of Pro++ application while Section
VI is devote to the conclusions.

II. BACKGROUND ON CUDA, GPUS AND PROFILER
METRICS

Computed Unified Device Architecture (CUDA) is a par-
allel computing platform and programming model proposed
by NVIDIA. CUDA comes with a software environment that
allows developers to use C/C++ as a high-level programming
language targeting heterogeneous computing on CPUs and
GPUs. Through API function calls, called kernels, and
language extensions, CUDA allows enabling and controlling
the offload of compute-intensive routines. A CUDA kernel
is executed by a grid of thread blocks. A thread block is
a batch of threads that can cooperate and synchronize each
other via shared memory, atomic operations and barriers.
Blocks can execute in any order while threads in different
blocks cannot directly cooperate.

Groups of 32 threads with consecutive indexes within a
block are called warps. A thread warp executes in SIMD-
like way the same instruction on different data concurrently.
In a warp, the synchronization is implicit since the threads
execute in lockstep. Different warps within a block can
synchronize through fast barrier primitives. In contrast, there
is no native thread synchronization among different blocks
as the CUDA execution model requires independent block
computation for scalability reasons. The lack of support for
inter-block synchronization requires explicit synchronization
with the host, which involves significant overhead.

A warp thread is called active if it successfully executes
a particular instruction issued by the warp scheduling. A
CUDA core achieves the full efficiency if all threads in a
warp are active. Threads in the same warp stay idle (not
active) if they follow different execution paths. In case of
branch divergence, the core serializes the execution of the
warp threads.

The GPU consists of an array of Streaming Multiproces-
sors (SMs), which, in turn, consist of many cores called
Stream Processors (SPs). Each core is a basic processing
element that executes warp instructions. Each SM has from
one to four warp schedulers that issue the instructions from a
given warp to the corresponding SIMD core. The hardware
scheduler switches between warps with the aim of hiding
the memory latency.

Each GPU core has a dedicated integer (ALU) and a
floating point (FPU) data path that can be used in parallel.
Both ALU and FPU can execute complex arithmetic instruc-
tions (e.g., multiplication, trigonometric functions, etc.) in
one clock cycle. On the other hand, the SM has limited
instruction throughput per clock cycle.

GPUs also feature a sophisticated memory hierarchy,
which involves thread registers, shared memory, DRAM
memory and two-level cache (L1 within a SP, while L2
accessible to all threads). In the last NVIDIA GPU archi-
tectures, Kepler and Maxwell, a small read-only cache per-
SM (called Texture cache) is also available to reduce global
memory data access.
Private variables of threads and local arrays with static
indexing are placed into registers. Large local arrays and
dynamic indexing arrays are stored in L1 and L2 cache.
Thread variables that are not stored in registers are also
called local memory. To fully exploit the memory band-
width, multiple memory accesses of warp threads can be
combined into single transactions (i.e., coalesced memory
access).



EXTRACTED INFORMATION
INFORMATION

SOURCE
DESCRIPTION

#SM Hardware Info Total number of stream multiprocessors.
block size Kernel Configuration Number of threads per block associated to a kernel call.
grid size Kernel Configuration Number of thread blocks associated to a kernel call.
#registers Compiler Info Number of used registers per thread associated to a kernel call.
Static SMem Compiler Info Bytes of static shared memory per block.
Dynamic SMem Kernel Configuration Bytes of dynamic shared memory per block.
active warps Profiler Event Number of active warps per cycle per SM.
total warps Hardware Info Maximum number of active warps per cycle per SM.
warps launched Profiler Event Number of warps run on a multiprocessor.
threads launched Profiler Event Number of threads run on a multiprocessor.
stall sync Profiler Event Percentage of stalls occurring because the warp is blocked at a

syncthreads() call.
Int instr, SP instr, DP instr Profiler Event Number of arithmetic instructions (integer, single-precision floating

point, double-precision floatig point) executed by all threads.

arithmetic throughput Hardware Info
Maximum arithmetic instruction throughput calculated from maximum
number of instructions per clock per SM, total number of SMs, and
execution time.

local accesses, shared accesses
texture accesses, global accesses Profiler Event Number of executed load/store instructions per warp on a SM where

state space is specified as Local, Shared, Texure and Global.
cudacopy size Profiler Event Number of bytes associated to a host-device memory transfer function.
DRAM transactions Profiler Event Total number of DRAM memory accesses.
Available mem throughput Hardware Info Memory bandwidth calculated from DRAM clock frequency, bus

width, number of memory interfaces.
kernel start time, cudacopy start time,

kernel time, cudacopy time Profiler Info Start time and duration of a kernel call or CUDA memory transfer
function.

TABLE I: Profiler events, compiler information, hardware (device) information, and kernel configuration
considered in the proposed optimization criteria.

Finally, the host-GPU device communication bus allows
overlapping CPU-GPU data transfers with the kernel com-
putations to minimize the host-device data transfers.

A. Profiler Metrics
Developing high performance applications requires adopt-

ing tools for understanding the application behaviour and
for analysing the corresponding performance. At the state
of the art, there exist several profiling tools for GPU appli-
cations that provide advanced profiling information through
the analysis of events, kernel configuration, hardware and
compiler information. Table III summarizes a selected list of
such profiling information, which are strongly related with
the application performance.

In this work we refer to the NVIDIA nvprof profiler ter-
minology and information. However, the proposed method-
ology is independent from the adopted profiler. Nvprof has
two operating modes that generate two distinct outputs. The
first mode is the trace mode, which provides a timeline of
all activities taking place on the GPU in chronological order.
From this mode, we extract the kernel configuration and any
timing associated to a kernel (e.g., start time, latency, etc.).
The second mode, called summary mode, reports a user-
specified set of events for each kernel, both aggregating
values across the GPU units and showing the individual
counter for each SM.

III. OPTIMIZATION CRITERIA

We define different optimization criteria, which express
the quality of a given primitive to exploit a GPU character-
istic. Examples are the occupancy of all the computing (SP)
resources, the load balancing, and the memory coalescing.
The selection of the most representative and influential
optimization criteria has been guided by the best practices
guide [10], by the main CUDA books [11] [12] and by

our programming experience [13]. The criteria are defined
in terms of events and static information, which can be
measured through the profiling phase. Each criterion value is
expressed in the range [0, 1], where 1 indicates the maximum
and 0 the worst optimization of such a criterion.

A. Occupancy (OC)
In order to take advantage of the computational power of

the GPU, it is important to maximize the SP utilization of
each SM. This criterion gives information on the maximum
theoretical occupancy of the GPU multiprocessors in terms
of active threads over the maximum number of threads that
may concurrently run on the device.

The criterion value that is calculated statically, depends
on the kernel configuration as well as on the kernel imple-
mentation. In particular, it depends on the block size (i.e.,
number of threads per block), grid size (i.e., number of
blocks per kernel) as well as amount of used shared memory
for the kernel variables, and number of used registers. In
general, the kernel configuration of the primitives is set
at compile time by exploiting information on the device
compute capability and no tuning is allowed to the user (to
comply to the principle of user-friendliness). The criterion
takes into account how well the limited resources like reg-
isters and shared memory have been exploited in the kernel
implementation and, thus, how and how many variables
have been declared (e.g., automatic and shared). A low
value means underutilization of the GPU multiprocessors.
More in details, the overall occupancy is calculated as the
minimum value between the occupancy related to block size
(taking into account also the maximum number of block
per SM), to shared memory utilization (StaticalSMem +
DynamicSMem), to the register utilization (#registers), and
to the grid size with respect to the minimum number of
blocks required to keep busy all SMs:



Reg OCC =

⌊
block size

32 · d32 ·#registerse[256]

SM Register

⌋

Block OCC = max

(
max SM blocks,

⌊
SM threads

dblock sizee[32]

⌋)

Thread OCC =
grid size · dblock sizee[32]

#resident threads

OCC = min (Reg OCC,Block OCC,Thread OCC,1)

B. Load Balancing (LB)
During the GPU execution it is crucial to avoid the

situation in which a subset of SPs is doing most of the work
while others are in the idle state. The load balancing criterion
expresses how well the workload is uniformly distributed
over the SPs, as follows:

LB =

∑
#SM

active warps
total warps

#SM

C. Warp Efficiency (WE)
This criterion gives information on the thread divergence

of the warps and, thus, to the quality of the kernel imple-
mentation.

WE =
threads launched

warps launched

In complex parallel code, thread divergence is almost un-
avoidable. Nevertheless, a low value of this criterion outlines
a wrong control flow logic, which does not take into account
SIMD nature of the GPU warps. A low warp efficiency value
indicates that the code execution is serialized, which directly
translates in performance degradation.

D. Synchronization Overhead (SO)
The synchronization overhead takes into account the total

time spent by the primitive for synchronizing threads and
thread blocks. The criterion consists of two weighted values
as follows:

SO =
stall sync

kernel time
·W1 +

Kernel synch time

Total computation time
·W2

The first takes into account the amount of time spent by the
threads in the waiting state as a consequence of a thread
barrier, for each thread barrier in the kernel. It depends on
the load balancing among threads as well as the number of
synchronization points (i.e. thread barriers) in the kernel. It
is provided by the profiler as percentage of GPU time spent
in synchronization stalls. The second value considers the
amount of time spent by the cuda runtime to coordinate two
or more kernel calls that compose a primitive. A fragmented
computation that involves many kernels and many small data
transfers is penalized with a low value of the second part of
the formula. The kernel time value is computed as the sum
of the times spent on the host between the first kernel call
(start time) and the last kernel call (start time + duration)
of a tested primitive.

E. Instruction Optimization (IO)

This criterion takes into account the amount of instruc-
tions that make use of arithmetic units, both integer and
floating point over the whole number of instructions run in
the primitive execution:

IO = 1− Int instr + SP instr + DP instr

arithmetic throughput

This criterion is strictly related to the code optimization.
A high value of instruction optimization criterion means that
the ALU and FPU units have not been wasted. Considering
also the same functionality of all tested code for the same
primitive, this information indicates how much the code
is optimized. Some simple examples are the use of shift
instead multiplication instructions, template arguments to
create constant expressions, etc.

F. Memory Hierarchy (MH)

This criterion measures how much the memory hierarchy
has been exploited in the primitive implementation. We
take care of all memory spaces, by providing an indicative
measure of how much the fast on-chip memories are used
against the slow off-chip DRAM memory:

MH =
texture + local + shared accesses

texture+local+shared+global accesses

Fast on-chip memories allow carefully controlling spatial
data-locality of a parallel application. Customizing specific
applications to fully exploit the memory hierarchy is very
important to take advantage of the limited GPU resources.
On the other hand, it is also the most complex phase
of parallel programming. A low value of this criterion
suggests restructuring the code and reorganizing the data
through techniques such as tiling and problem partition to
improve the performance. It does not take into account
cache memory, since cache accesses is not fully under the
user’s control. Efficacy on cache use is included in memory
coalescing.

G. Memory Coalescing (MC)

This criterion measures the efficiency of the primitive to
exploit the bus bandwidth. Achieving high memory band-
width, and thus high application throughput, requires a high
level of concurrency and memory access pattern that allows
coalescing:

MC =

∑
DRAM transactions

kernel time
Available mem throughput

The coalescing control in GPUs is hardware-implemented
and relies on the use of L1 cache memory. The memory
coalescing is the key to reduce the overhead involved by
DRAM memory latency.

H. Data Transfer (DT)

It takes gives a quality measure of the primitive to address
the data transfer overhead. As an example, pipelining (over-
lapping) between data transfer and data computation allows



the primitive to rich higher value of this criterion:

DT = 0.5 +
Overlapping mem transf

problem size+
∑

cudacopy size

−
∑

cudacopy size

problem size+
∑

cudacopy size

Overlapping data transfers with kernel computation may
reduce the execution time, but it requires a fine-tuning of
the data size to be transferred. Too large data sizes may
involve no advantage, while too small sizes may involve
heavy synchronization overhead.

It also takes into account the amount of bytes transferred
in the host-device communication during a kernel computa-
tion over the actual I/O bytes required for the computation.
Any extra data transfer between host and device is consid-
ered as overhead.

I. Overall Quality Metrics (QM)
All the proposed values of the optimization criteria are

finally combined into an overall quality metric to provide,
through a single value, an evaluation of the profiled code.
We express this value as the weighted average of the values
of the optimization criteria as follows:

QM=

OC ·WOC+LB ·WLB+WE ·WWE+IO ·WIO+
MH ·WMH+MC ·WMC+DT ·WDT

WOC+WLB+WWE+WIO+WMH+WMC+WDT

Wxy express the weight of each single criterion in the
overall quality measure. In this work, we tuned the different
weights through the analysis of different libraries of primi-
tive, as detailed in the following section.

IV. WEIGHING OF OPTIMIZATION CRITERIA ON THE
OVERALL QUALITY METRICS

The impact of the optimization criteria classified in the
previous section on the overall quality metrics has been
measured through the analysis of five primitive libraries for
NVIDIA GPU architectures. The first library, Thrust[14], is
provided by NVIDIA in the CUDA Toolkit and it is based
on the C++ Standard Template Library high-level interface.
This library provides a wide range of parallel primitives
to simplify the parallelization of fundamental parallel al-
gorithms such as scan, sort, and reduction. The second
library, CUB[15], provides a set of high performance parallel
primitives for generic programming for both host and device
programming layer. The third library, CUDPP[16], focuses
on common data-parallel algorithms such as reduction and
prefix-scan, and includes also a set of specific-domain prim-
itives such as compression and suffix array functions. The
fourth library, ModernGPU (MGPU) [17], implements basic
primitives such as reduction and prefix-scan but the main
goal of ModernGPU is providing very efficient implementa-
tions of parallel binary search algorithm applications such as
segmented reduction/prefix-scan, load balancing algorithm,
merge, set operations and matrix-vector multiplication. Fi-
nally, ArrayFire [18] includes hundreds of high performance
parallel computing functions. In particular, it is focused
on complex algorithms across various domains such image

processing, computer vision, signal processing and linear
algebra. In ArrayFire, the common parallel primitives are
proposed as vector algorithms.

These libraries have been selected as they provide differ-
ent implementations of widely used and common primitives
for the parallelization of fundamental algorithms. This al-
lowed us to compare such implementations by running them
over several datasets and by measuring their actual speedups
w.r.t. a reference sequential implementation. The comparison
results has been finally used to heuristically tune the weight
of each optimization criteria in the overall quality metrics.

Table II summarizes the parallel primitives that have been
evaluated for such a tuning, by specifying which libraries
provide an implementation of a specific primitive. The
primitives are grouped by similar functionality in seven main
classes. The most basic primitives implementing data elabo-
ration are grouped in the Independent Linear Transformation
class, which applies concurrent operations on every single
element of the input data. This class includes primitives
implementing predicate functions for linear transformation
on subsets of the input data as well as on multiple sets
of data concurrently. The second class, Advanced Copying,
includes two classic collective operations, i.e., gathering
and scattering, as well as their version with predicate. The
Reduction class refers to all the primitives that apply an
operation to the input data and that return a single value as
result (e.g., counting, maximum, reduction). The segmented
version of the reduction applies the operation on a subset
of input data. The fourth class includes all the variants (i.e.,
inclusive, exclusive, etc.) of the prefix-scan procedure, which
represents the building blocks of many parallel algorithms.
The search class contains primitives for searching elements
in sorted or unsorted sets of data. The load-balancing prim-
itives are a specialization of the vectorized sorted search.
They are largely used to extrapolate, from a given input
data, the indices to map threads to the corresponding input
elements. The primitives in the Reordering class include
different procedures to manipulate the input data or to select
a subset of such a data by using predicates. Finally, the Set
class covers the most common operations on sets represented
as continuous sorted data values.

For all the parallel primitives, we firstly measured the
value of each optimization criterion as proposed in Section
III. Figure 2 reports, as an example, the values of the
optimization criteria of the reduction and inclusive prefix-
scan primitives. The evaluation of all the primitives has been
run on two different systems: a NVIDIA Kepler GeForce
GTX 780 device with CUDA Toolkit 6.0, AMD Phenom II
X6 1055T 3GHz host processor, and Debian 3.2.60 OS and
a NVIDIA Fermi GeForce GTX 570 device with CUDA
Toolkit 6.5, AMD FX-4100 1.4 GHz host processor, and
Debian 3.2.0 OS.

The dataset applied for the evaluation consists of a large
sets of random generated input data. The figure shows that
the Warp efficiency criterion reaches almost the maximum
value for all the implementations of the five libraries of both
the primitives. This is due to the fact that both the reduction
and the inclusive prefix-scan implement a highly regular
computation on the input data, which does not cause thread
divergence. The different implementations of the reduction
also show a high value of the Synchronization overhead cri-
terion. This is due to two main reasons. First, the reduction



Parallel
Primitives

Library
Thrust CUB CUPDD MGPU ArrayFire

Independent
Linear

Transformation

Fill/Generate/Sequence/
Tabulate X X

Modify/Transform/
Replace/Adjacent
Difference

X X

Modify If X
Comparison X
Simple Copy X

Advanced Coping
Gathering X
Gathering If X
Scattering X
Scattering If X

Reduction

Couting X X
Extrema X X X
Reduction X X X X X
Reduce by keys/
Segmented Reduction X X X X

Histogram X X

Prefix-Scan
Inclusive X X X X X
Exclusive X X X X X
Prefixscan By Key/
Segmented Prefixscan X X

Search
Unsorted Search/Find X
Vectorized Binary Search X X
Load-Balancing Search X

Reordering

Partitioning/Partitioning If X X
Compaction/Copy If/Select X X X
Merge X X
Merge Sort X X
Radix Sort X X X

Set (ordered)
Union X X X
Intersection X X X
Set Difference X X
Unique X X X

TABLE II: Parallel primitives evaluated for the weight tuning

(a) Reduction (b) Inclusive Prefix-Scan

Figure 2: Optimization criteria evaluation of the reduction and inclusive prefix-scan primitives



Quality metrics value ([0, 1]) GPU/CPU Sim. speedupParallel
Primitives Thrust CUB CUDPP MGPU ArrayFire Thrust CUB CUDPP MGPU ArrayFire

Reduction 0.50 0.89 0.41 0.75 0.64 202 505 163 252 233
Reduction by Keys 0.55 0.67 0.65 err 13 101 40 err
Inclusive PrefixScan 0.70 0.77 0.76 0.79 0.74 64 190 119 301 62
Prefix-
Scan by Keys 0.58 0.69 36 128
Vectorized Binary

Search 0.30 0.55 687 3576
Partition 0.65 0.71 15 87
Compaction 0.66 0.69 0.67 19 67 34
RadixSort 0.57 0.55 22 45
Unique 0.69 0.68 err 15 88 err

TABLE III: Quality metrics values obtained with WOC = 30; WLB = 30; WWE = 15; WSO = 10; WIO = 70;
WMH = 100; WMC = 100; WDT = 50 and the corresponding actual GPU vs. CPU simulation speedup.

primitives have been implemented, in all the libraries, by a
single kernel function and, second, they have been imple-
mented with few barriers and highly balanced threads. In
contrast, the prefix-scan primitive has been implemented, in
all the evaluated libraries, through a two-phase algorithm and
a kernel per phase. This involves synchronization overhead
between the two kernels invocations.

The impact of each criteria on the overall quality metrics
value has been weighed by considering the criteria val-
ues and the actual CPU vs. GPU speedup of each single
primitive obtained during simulation. The tuning has been
performed with the aim of obtaining the quality metrics
value of each primitive implementation linearly proportional
to the actual CPU vs. GPU speedup of such an imple-
mentation. The weight values of the optimization criteria
are calculated through a multi-variable regression analysis
between all information returned by the different criteria
and the execution time. Since the weights depend on the
actual architecture, our future work aims at automating such
a weight computation. The idea is to define a software
framework based on a collection of primitives to be run on
the target architecture and that automatically extrapolates the
weight values.

Table III reports some of the most meaningful obtained
results. The table reports the weights of the optimization
criterion extrapolated during simulation, the correspond-
ing quality metrics values and the actual CPU vs. GPU
simulation speedup of each parallel primitive. The results
show how, given the weights reported in the table caption,
the values of the overall quality metrics reflect the actual
simulation speedup. The performance accuracy of our model
is with 10%-15%, as shown in the experimental results All
the other results, which have not been reported in the table
for the sake of brevity, show the same correlation.

From the results reported in Figure 2, it is possible to
compare different implementations of a given primitive in
terms of performance and to understand which character-
istics of such implementations lead to the corresponding
speedup. As an example, the CUB library provides the best
implementation of the reduction primitive even though such
an implementation presents low occupancy and low load
balancing. On the other hand, the code has been imple-
mented by fully exploiting memory coalescing and memory
hierarchy, whose criteria values have more impact in the
overall quality metrics. The reduction primitive implemented
in CUDPP shows a load balancing value much lower

than the occupancy value. This underlines that the warp
workloads during the primitive execution are not uniform.
Another example is the very different values of memory
hierarchy and memory coalescing criteria obtained with the
prefix-scan primitive of Thrust. A high value of memory
hierarchy, that indicates a correct local reorganization of
data, should also imply a good memory coalescing.

This analysis allows us to understand whether, given a
primitive implementation, there is room to improve such an
implementation and how. We applied the proposed profiling
framework to analyse and improve the implementation of a
load balancing search, as explained in the following section.

V. CASE STUDY: THE Load Balancing Search PRIMITIVE

The load balancing search is a special case of vectorized
sorted search (i.e., binary search). It is commonly applied as
auxiliary function to uniformly partition irregular problems.
Given a set of input values that represent the problem work-
load, the primitive generates a set of indices for mapping
threads to the corresponding input elements.

Among the libraries evaluated in this work, only MGPU
provides an implementation of the load balancing search
primitive. We applied Pro++ to such a primitive to calculate
the optimization critera values, the CPU/GPU simulation
speedup, and the overall quality metrics value by considering
the weights proposed in Section IV (Table III). Figure 3
reports the results (MGPU columns). Then, starting from the
MGPU implementation, we optimized the code by exploiting
the profiling information with the aim of improving the CPU
vs. GPU simulation speedup.

Considering the different optimization criteria weights,
we started from the analysis of the Memory hierarchy
and Memory coalescing criteria values. To improve these
values, we modified the code to better organize the data
in shared memory, registers and texture memory. Such a
modification led to a better organization of the data in
local memory, which also simplified the management of the
memory accesses and allowed us to improve the memory
coalescing among threads. These first modifications of the
code increased the memory hierarchy and memory coalesc-
ing criteria values from 0.7 to 0.9 and from 0.4 to 0.5,
respectively. Further improving memory coalescing has been
evaluated as a hard task, due to the many sparse global
memory accesses that are closely related to the algorithm.
Thus, it has not been further investigated.

On the other hand, improving the two memory criteria



(a) Optimization criteria values ([0 ,1]) (b) CPU vs. GPU sim. speedup(c) Quality metrics values ([0 ,1])
Figure 3: Load balancing search primitive evaluation

required the introduction of many extra control flow state-
ments, which decreased, with respect to the original MGPU
implementation, the value of the Instruction optimization
criterion. Nevertheless, considering such a decrease and the
the weight of the instruction optimization criterion, we didn’t
invest effort to limit such a side-effect.

Then, the analysis results underline the low value of the
Occupancy criterion. To improve this criterion, we modified
the code by improving the kernel configuration, the use of
automatic variables (and thus the use of SM registers), and
the allocation of shared memory. Beside an improvement on
occupancy, these modifications had impact on the value of
the load balancing criterion. This is due to the fact that the
execution flows of all threads during the primitive execution
take similar paths and, as a consequence, improving the
occupancy criterion leads also to an improvement of the load
balancing criterion. The modifications also slightly reduced
the Warp efficiency value, which, on the other hand, still
remains close to the maximum. As a consequence, any
further investigation or modification of the code targeting
warp efficiency would not be worth to improve the overall
quality of the primitive implementation. The synchronization
overhead criterion had the highest value, both in the original
and the modified version of the code. Thus, no modifications
on barriers or synchronization have been considered.

In conclusion, the use of Pro++ allowed us to improve the
loading balancing search primitives by better concentrating
the effort in those code optimizations with more room for
improvement and, as a consequence, to save time. The case
of study has shown how Pro++ framework has been applied
to significant improve step-by-step, in the optimization cy-
cle, the performance of the load balancing search exploting
the suggested guideline on the optimization criteria.

VI. CONCLUSION

This paper presented Pro++, a profiling framework for
GPU primitives that allows measuring the implementation
quality of a given primitive. The paper showed how the
framework collects the information provided by a standard
GPU profiler and combines them into optimization crite-
ria. The criteria evaluations are weighed to distinguish the
impact of each optimization on the overall quality of the
primitive implementation. The paper reported the analysis
conducted on five among the most widespread existing
primitive libraries to tune the different weights. Finally,

the paper presented how the framework has been applied
to improve the implementation performance of a standard
primitive.

REFERENCES

[1] “Hybrid System Architecture - HSA Foundation,”
http://www.hsafoundation.com.

[2] “OpenACC - Directives for Accelerators,”
http://www.openacc-standard.org/.

[3] D. R., B. S., and B. F., “Hmpp: A hybrid multicore parallel
programming environment,” 2007.

[4] M. Sugawara, S. Hirasawa, K. Komatsu, H. Takizawa, and
H. Kobayashi, “A comparison of performance tunabilities
between opencl and openacc,” in Proc. of the 2013 IEEE 7th
International Symposium on Embedded Multicore/Manycore
System-on-Chip (MCSOC’13), 2013, pp. 147–152.

[5] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi,
M. Odersky, and K. Olukotun, “Delite: A compiler archi-
tecture for performance-oriented embedded domain-specific
languages,” ACM Trans. Embed. Comput. Syst., vol. 13,
no. 4s, pp. 134:1–134:25, 2014.

[6] “Spiral - Software/Hardware Generation for DSP Algo-
rithms,” http://www.spiral.net/bench.html.

[7] W. Tan, W. Tang, R. Goh, S. Turner, and W. Wong, “A code
generation framework for targeting optimized library calls
for multiple platforms,” IEEE Transactions on Parallel and
Distributed Systems, vol. PP, no. 99, pp. 1–12, 2014.

[8] “NVIDIA CUDA ZONE - GPU-accelerated libraries,”
https://developer.nvidia.com/gpu-accelerated-libraries.

[9] “CLPP - OpenCL Parallel Primitives Library,”
http://gpgpu.org/2011/06/03/opencl-parallel-primitives-
library.

[10] C. NVidia, “C best practices guide,” NVIDIA, Santa Clara,
CA, 2012.

[11] D. B. Kirk and W. H. Wen-mei, Programming massively
parallel processors: a hands-on approach. Newnes, 2012.

[12] J. Cheng, M. Grossman, and T. McKercher, Professional
Cuda C Programming. John Wiley & Sons, 2014.

[13] F. Busato and N. Bombieri, “BFS-4K: an efficient implemen-
tation of BFS for kepler GPU architectures,” IEEE Transac-
tions on Parallel Distributed Systems, vol. preprint, no. 99,
pp. 1–14, 2015.

[14] J. Hoberock and N. Bell, “Thrust: A parallel template
library,” 2014. [Online]. Available: http://thrust.github.io/

[15] D. Merrill, “Cub,” 2015.
[16] M. Harris, J. Owens, S. Sengupta, Y. Zhang, and A. Davidson,

“Cudpp: Cuda data parallel primitives library,” 2014.
[17] S. Baxter, “Modern gpu,” 2014.
[18] J. Malcolm, P. Yalamanchili, C. McClanahan, V. Venu-

gopalakrishnan, K. Patel, and J. Melonakos, “Arrayfire:
a gpu acceleration platform,” 2014. [Online]. Available:
http://arrayfire.com/


