
Modern Stochastics: Theory and Applications 2 (2015) 51–65
DOI: 10.15559/15-VMSTA22

Autoregressive approaches to import–export time
series I: basic techniques

Luca Di Persioa

aDept. Informatics, University of Verona, strada le Grazie 15, 37134, Italy

dipersioluca@gmail.com (L. Di Persio)

Received: 9 February 2015, Revised: 8 April 2015, Accepted: 8 April 2015,
Published online: 20 April 2015

Abstract This work is the first part of a project dealing with an in-depth study of effective
techniques used in econometrics in order to make accurate forecasts in the concrete framework
of one of the major economies of the most productive Italian area, namely the province of
Verona. In particular, we develop an approach mainly based on vector autoregressions, where
lagged values of two or more variables are considered, Granger causality, and the stochastic
trend approach useful to work with the cointegration phenomenon. Latter techniques constitute
the core of the present paper, whereas in the second part of the project, we present how these
approaches can be applied to economic data at our disposal in order to obtain concrete analysis
of import–export behavior for the considered productive area of Verona.

Keywords Econometrics time series, autoregressive models, Granger causality,
cointegration, stochastic nonstationarity, AIC and BIC criteria, trends and breaks

1 Introduction

The analysis of time series data constitutes a key ingredient in econometric stud-
ies. Last years have been characterized by an increasing interest toward the study of
econometric time series. Although various types of regression analysis and related
forecast methods are rather old, the worldwide financial crisis experienced by mar-
kets starting from last months of 2007, and which is not yet finished, has put more
attention on the subject. Moreover, analysis and forecast problems have become of
great momentum even for medium and small enterprizes since their economic sus-
tainability is strictly related to the propensity of a bank to give credits at reasonable
conditions.
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In particular, great efforts have been made to read economic data not as mon-
ads, but rather as constituting pieces of a whole. Namely, new techniques have been
developed to study interconnections and dependencies between different factors char-
acterizing the economic history of a certain market, a given firm, a specified industrial
area, and so on. From this point of view, methods such as the vector autoregression,
the cointegration approach, and the copula techniques have been benefitted by new
research impulses.

A challenging problem is then to apply such instruments in concrete situations and
the problem becomes even harder if we take into account the economies are hardly
hit by the aforementioned crisis. A particularly important case study is constituted by
a close analysis of import–export time series. In fact, such an information, spanning
from countries to small firms, has the characteristic to provide highly interesting hints
for people, for example, politicians or CEOs, to depict future economic scenarios and
related investment plans for the markets in which they are involved.

Exploiting precious economic data that the Commerce Chamber of Verona
Province has put at our disposal, we successfully applied some of the relevant ap-
proaches already cited to find dependencies between economic factor characterizing
the Province economy and then to make effective forecasts, very close to the real
behavior of studied markets.

For completeness, we have split our project into two parts, namely the present
one, which aims at giving a self-contained introduction to the statistical techniques of
interest, and the second one, where the Verona import–export case study have been
treated in detail.

In what follows, we first recall univariate time series models, paying particular
attention to the AR model, which relates a time series to its past values. We will
explain how to make predictions, by using these models, how to choose the delays,
for example, using the Akaike and Bayesian information crtiteria (AIC, resp. BIC),
and how to behave in the presence of trends or structural breaks. Then we move to the
vector autoregression (VAR) model, in which lagged values of two or more variables
are used to forecast future values of these variables. Moreover, we present the Granger
causality, and, in the last part, we return to the topic of stochastic trend introducing
the phenomenon of cointegration.

2 Univariate time-series models

Univariate models have been widely used for short-run forecast (see, e.g., [6, Exam-
ples of Chapter 2]. In what follows, we recall some of these techniques, focusing our-
selves particularly on the analysis of autoregressive (AR) processes, moving average
(MA) processes, and a combination of both types, the so-called ARMA processes;
for further details, see, for example, [3, 2, 8] and references therein.

The observation on the time-series variable Y made at date t is denoted by Yt ,
whereas T ∈ N

+ indicates the total number of observations. Moreover, we denote
the j th lag of a time series {Yt }t=0,...,T by Yt−j (the value of the variable Y j peri-
ods ago); similarly, Yt+j denotes the value of Y j periods to the future, where, for
any fixed t ∈ {0, . . . , T }, j is such that j ∈ N

+, t − j ≥ 0, and t + j ≤ T .
The j th autocovariance of a series Yt is the covariance between Yt and its j th lag,
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that is, autocovariancej = σj := cov(Yt , Yt−j ), whereas the j th autocorrelation co-
efficient is the correlation between Yt and Yt−j , thats is, autocorrelationj = ρj :=
corr(Yt , Yt−j ) = cov(Yt ,Yt−j )√

var(Yt ) var(Yt−j )
. When the average and variance of a variable are

unknown, we can estimate them by taking a random sample of n observations. In
a simple random sample, n objects are drawn at random from a population, and
each object is equally likely to be drawn. The value of the random variable Y for
the ith randomly drawn object is denoted Yi . Because each object is equally likely
to be drawn and the distribution of Yi is the same for all i , the random variables
Y1, . . . , Yn are independent and identically distributed (i.i.d.). Given a variable Y , we
denote by Y its sample average with respect to the n observations Y1, . . . , Yn, thats is,
Y = 1

n
(Y1 +Y2 + · · ·+Yn) = 1

n

∑n
i=1 Yi , whereas we define the related sample vari-

ance by s2
Y := 1

n−1

∑n
i=1(Yi − Y )2. The j th autocovariances, resp. autocorrelations,

can be estimated by the j th sample autocovariances, resp. autocorrelations, as fol-
lows: σ̂j := 1

T

∑T
t=j+1(Yt −Y j+1,T )(Yt−j −Y 1,T −j ), resp. ρ̂j := σ̂j

s2
Y

, where Y j+1,T

denotes the sample average of Yt computed over the observations t = j + 1, . . . , T .
Concerning forecast based on regression models that relates a time series variable to
its past values, for completeness, we shall start with the first-order autoregressive pro-
cess, namely the AR(1) model, which uses Yt−1 to forecast Yt . A systematic way to
forecast is to estimate an ordinary least squares (OLS) regression. The OLS estimator
chooses the regression coefficients so that the estimated regression line is as close
as possible to the observed data, where the closeness is measured by the sum of the
squared mistakes made in predicting Yt given Yt−1. Hence, the AR(1) model for the
series Yt is given by

Yt = β0 + β1Yt−1 + ut , (1)

where β0 and β1 are the regression coefficients. In this case, the intercept β0 is the
value of the regression line when Yt−1 = 0, the slope β1 represents the change in Yt

associated with a unit change in Yt−1, and ut denotes the error term whose nature will
be later clarified. Let us assume that the value Yt0 of the time series Yt at initial time
t0 is given; then Yt0+1 = β0 + β1Yt0 + ut0+1, so that iterating relation (1) up to order
τ > 0 , we get

Yt0+τ = (
1 + β1 + β2

1 + · · · + βτ−1
1

)
β0 + βτ

1 Yt0

+ βτ−1
1 ut0+1 + βτ−2

1 ut0+2 + · · · + β1ut0+τ−1 + ut0+τ

= βτ
1 Yt0 + 1 − βτ

1

1 − β1
β0 +

τ−1∑
j=0

β
j

1 ut0+τ−j .

Hence, taking t = t0 + τ with t0 = 0, we obtain

Yt = βt
1Y0 + 1 − βt

1

1 − β1
β0 +

t−1∑
j=0

β
j

1 ut−j . (2)

A time series Yt is called stationary if its probability distribution does not change
over time, that is, if the joint distribution of (Ys+1, Ys+2, . . . , Ys+T ) does not depend
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on s; otherwise, Yt is said to be nonstationary. In (2), the process Yt consists of both
time-dependent deterministic and stochastic parts, and, thus, it cannot be stationary.

Formally, the process with stochastic initial conditions results from (2) if and only
if |β1| < 1. It follows that if limt0→−∞ Yt0 is bounded, then, as t0 → −∞, we have

Yt = β0

1 − β1
+

∞∑
j=0

β
j

1 ut−j ; (3)

see, for example, [6, Chap. 2.1.1]. Equation (3) can be rewritten by means of the lag
operator, which acts as follows: LYt = Yt−1, L2Yt = Yt−2, . . . , L

kYt = Yt−k , so
that Eq. (1) becomes (1 − β1L)Yt = β0 + ut . Assuming that E[ut ] = 0 for all t , we
have

E[Yt ] = E

[
β0

1 − β1
+

∞∑
j=0

β
j

1 ut−j

]
= β0

1 − β1
+

∞∑
j=0

β
j

1 E[ut−j ] = β0

1 − β1
= μ,

V [Yt ] = E

[(
Yt − β0

1 − β1

)2]
= E

[( ∞∑
j=0

β
j

1 ut−j

)2]
= E

[(
ut + β1ut−1 + β2

1ut−2 + · · · )2]
= E

[
u2

t + β2
1u2

t−1 + β4
1u2

t−2 + · · · + 2β1utut−1 + 2β2
1utut−2 + · · · ]

= σ 2(1 + β2
1 + β4

1 + · · · ) = σ 2

1 − β2
1

,

where we have used that E[utus] = 0 for t �= s and |β1| < 1. Hence, both the mean
and variance are constants, and thus the covariances are given by

Cov[Yt , Yt−1] = E

[(
Yt − β0

1 − β1

)(
Yt−1 − β0

1 − β1

)]
= E

[(
ut + β1ut−1 + · · · + βτ

1 ut−τ + · · · )
× (

ut−τ + β1ut−τ−1 + β2
1ut−τ−2 + · · · )]

= E
[(

ut + β1ut−1 + · · · + βτ−1
1 ut−τ−1

+ βτ
1

(
ut−τ + β1ut−τ−1 + β2

1ut−τ−2 + · · · ))
× (

ut−τ + β1ut−τ−1 + β2
1ut−τ−2 + · · · )]

= βτ
1 E

[(
ut−τ + β1ut−τ−1 + β2

1ut−τ−2 + · · · )2] = βτ
1 V [Yt−τ ]

= βτ
1

σ 2

1 − β2
1

=: γ (τ).

The previous AR(1) can be generalized by considering arbitrary but finite order p > 1.
In particular , an AR(p) process can be described by the equation

Yt = β0 + β1Yt−1 + β2Yt−2 + · · · + βpYt−p + ut , (4)

where β0, . . . , βp are constants, whereas ut is the error term represented by a random
variable with zero mean and variance σ 2 > 0. Using the lag operator, we can rewrite
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Eq. (4) as (1 − β1L − β2L
2 − · · · − βpLp)Yt = β0 + ut . In such a framework, it is

standard to assume that the following four properties hold (see, e.g., [7, Chap. 14.4]):

• ut has conditional mean zero, given all the regressors, that is,
E(ut |Yt−1, Yt−2, . . .) = 0, which implies that the best forecast of Yt is given
by the AR(p) regression.

• Yi has a stationary distribution, and Yi , Yi−j are assumed to become indepen-
dent as j gets large. If the time-series variables are nonstationary, then the
forecast can be biased and inefficient, or conventional OLS-based statistical
inferences can be misleading.

• All the variables have nonzero finite fourth moments.

• There is no perfect multicollinearity, namely it is not true that, given a certain
regressor, it is a perfect linear function of the variables.

2.1 Forecasts
In this section, we show how the previously introduced class of models can be used
to predict the future behavior of a certain quantity of interest. If Yt follows the AR(p)

model and β0, β1, . . . , βp are unknown, then the forecast of YT +1 is given by β0 +
β1YT + β2YT −1 + · · · + βpYT −p+1. Forecasts must be based on estimates of the
coefficients βi by using the OLS estimators based on historical data. Let ŶT +1 denote
the forecast of YT +1 based on YT , YT −1, . . .:

ŶT +1|T = β̂0 + β̂1YT + β̂2YT −1 + · · · + β̂pYT −p+1.

Then such a forecast refers to some data beyond the data set used to estimate the
regression, so that the data on the actual value of the forecasted dependent variable
are not in the sample used to estimate the regression. Forecasts and forecast error
pertain to “out-of-sample” observations.

The forecast error is the mistake made by the forecast; this is the difference
between the value of YT +1 that actually occurred and its forecasted value forecast
error := YT +1 − ŶT +1|T .

The root mean squared forecast error RMSFE is a measure of the size of the fore-

cast error RMSFE =
√

E[(YT +1 − ŶT +1|T )2], and it is characterized by two sources
of error: the error arising because future values of ut are unknown and the error in
estimating the coefficients βi . If the first source of error is much larger than the sec-
ond, the RMSFE is approximately

√
var(ut ), the standard deviation of the error ut ,

which is estimated by the standard error of regression (SER). One useful application
used in time-series forecasting is to test whether the lags of one regressor have useful
predictive content. The claim that a variable has no predictive content corresponds
to the null hypothesis that the coefficients on all lags of that variable are zero. Such
a hypothesis can be checked by the so-called Granger causality test (GCT), a type
of F-statistic approach used to test joint hypothesis about regression coefficients. In
particular, the GCT method tests the hypothesis that the coefficients of all the values
of the variable in Yt = β0 + β1Yt−1 + β2Yt−2 + · · · + βpYt−p + ut , namely the
coefficients of Yt−1, Yt−2, . . . , Yt−p, are zero, and hence this null hypothesis implies
that such regressors have no predictive content for Yt .
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2.2 Lag length selection

Let us recall relevant statistical methods used to optimally choose the number of
lags in an autoregression model; in particular, we focus our attention on the Bayes
method (BIC) and on the Akaike method (AIC); for more details, see, for example,
[7, Chap. 14.5]. The BIC method is specified by

BIC(p) = ln

(
SSR(p)

T

)
+ (p + 1)

ln T

T
, (5)

where SSR(p) is the sum of squared residuals of the estimated AR(p). The BIC esti-
mator of p is the value that minimizes BIC(p) among all the possible choices. In the
first term of Eq. (5), the sum of squared residuals necessarily decreases when adding
a lag. In contrast, the second term is the number of estimated regression coefficients
times the factor (ln T )/T , so this term increases when adding a lag. This implies that
the BIC trades off these two aspects. The AIC approach is defined by

AIC(p) = ln

(
SSR(p)

T

)
+ (p + 1)

2

T
,

and hence the main difference between the AIC and BIC is that the term ln(T ) in the
BIC is replaced by 2 in the AIC, so the second term in the AIC is smaller. But the
second term in the AIC is not large enough to assure choosing the correct length, so
this estimator of p is not consistent. We recall that an estimator is consistent if, as
the size of the sample increases, its probability distribution concentrates at the value
of the parameter to be estimated. So, the BIC estimator p̂ of the lag length in an
autoregression is correct in large samples, that is, Pr(p̂ = p) → 1. This is not true
for the AlC estimator, which can overestimate p even in large samples; for the proof,
see, for example, [7, Appendix 14.5].

2.3 Trends

A further relevant topic in econometric analysis is constituted by nonstationarities that
are due to trends and breaks. A trend is a persistent long-term movement of a variable
over time. A time-series variable fluctuates around its trend. There are two types of
trends, deterministic and stochastic. A deterministic trend is a nonrandom function of
time. In contrast, a stochastic trend is characterized by a random behavior over time.
Our treatment of trends in economic time series focuses on stochastic trend. One
of the simplest models of time series with stochastic trend is the one-dimensional
random walk defined by the relation Yt = Yt−1 + ut , where ut is the error term
represented by a normally distributed random variable with zero mean and variance
σ 2 > 0. In this case, the best forecast of tomorrow’s value is its value today. A exten-
sion of the latter is the random walk with drift defined by Yt = β0+Yt−1+ut , β0 ∈ R,
where the best forecast is the value of the series today plus the drift β0. A random
walk is nonstationary because the variance of a random walk increases over time, so
the distribution of Yt changes over time. In fact, since ut is uncorrelated with Yt−1,
we have var(Yt ) = var(Yt−1) + var(ut ) with var(Yt ) = var(Yt−1) if and only if
var(ut ) = 0. The random walk is a particular case of an AR(1) model with β1 = 1. If
|β1| < 1 and ut is stationary, then Yt is stationary. The condition for the stationarity
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of an AR(p) model is that the roots of 1 − β1z − β2z
2 − β3z

3 − · · · − βpzp = 0 are
greater than one in absolute value. If an AR(p) has a root equal to one, then we say
that the series has a unit root and a stochastic trend. Stochastic trends usually bring
many issues, for example, the autoregressive coefficients are biased toward zero. Be-
cause Yt is nonstationary, the assumptions for time-series regression do not hold, and
we cannot rely on estimators and test statistics having their usual large-sample nor-
mal distributions; see, for example, [7, Chap. 3.2]. In fact, the OLS estimator of the
autoregressive coefficient β̂1 is consistent, but it has a nonnormal distribution; then
the asymptotic distribution of β̂1 is shifted toward zero. Another problem caused by
stochastic trend is the nonnormal distribution of the t-statistic, which means that con-
ventional confidence intervals are not valid and hypothesis tests cannot be conducted
as usual. The t-statistic is an important example of a test statistic, namely of a statistic
used to perform a hypothesis test. A statistical hypothesis test can make two types of
mistakes: a type I error, in which the null hypothesis is rejected when, in fact, it is
true, and a type II error, in which the null hypothesis is not rejected when, in fact, it
is false. The prespecified rejection probability of a statistical hypothesis test when the
null hypothesis is true, that is, the prespecified probability of a type I error, is called
the significance level of the test. The critical value of the test statistic is the value of
the statistic for which the test just rejects the null hypothesis at the given significance
level. The p-value is the probability of obtaining a test statistic, by random sampling
variation, at least as adverse to the null hypothesis value as is the statistic actually
observed, assuming that the null hypothesis is correct. Equivalently, the p-value is
the smallest significance level at which you can reject the null hypothesis. The value
of the t-statistic is

t = estimator − hypothesized value

standard error of the estimator

and is well approximated by the standard normal distribution when n is large because
of the central limit theorem (see, e.g., [1, Chap. 4.3]). Moreover, stochastic trends can
lead two time series to appear related when they are not, a problem called spurious
regression (see, e.g., [5, Chap. 2] for examples). For the AR(1) model, the most com-
monly used test to determine stochastic trends, is the Dickey–Fuller test (see, e.g.,
[5, Chap. 3] for details. For this test, we first subtract Yt−1 from both sides of the
equation Yt = β0 + β1Yt−1 + ut . Then we assume that the following hypothesis test
holds:

H0 : δ = 0 versus H1 : δ < 0 in Yt − Yt−1 = �Yt = β0 + δYt−1 + ut

with δ = β1 − 1. For an AR(p) model, it is standard to use the augmented Dickey–
Fuller test (ADF), which tests the null hypothesis H0 : δ = 0 against the one-side
alternative H1 : δ < 0 in the regression

�Yt = β0 + δYt−1 + γ1�Yt−1 + γ2�Yt−2 + · · · + γp�Yt−p + ut

under the null hypothesis. Let us note that since Yt has a stochastic trend, it follows
that, under the alternative hypothesis, Yt is stationary. The ADF statistic is the OLS
t-statistic testing δ = 0. If, instead, the alternative hypothesis is that Yt is station-
ary around a deterministic linear time trend, then this trend t must be added as an
additional regressor. In this case, the Dickey–Fuller regression becomes
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�Yt = β0 + αt + δYt−1 + γ1�Yt−1 + γ2�Yt−2 + · · · + γp�Yt−p + ut ,

and we test for δ = 0. The ADF statistic does not have a normal distribution, and
hence different critical values have to be used.

2.4 Breaks
A second type of nonstationarity arises when the regression function changes over the
course of the sample. In economics, this can occur for a variety of reasons, such as
changes in economic policy, changes in the structure of the economy, or an invention
that changes a specific industry. These breaks cannot be neglected by the regression
model. A problem caused by breaks is that the OLS regression estimates over the
full sample will estimate a relationship that holds “on average,” in the sense that the
estimate combines two different periods, and this leads to poor forecast. There are
two types of testing for breaks: testing for a break at a known date and for a break
at an unknown break date. We consider the first option for an AR(p) model. Let τ

denote the hypothesized break date, and let Dt(τ) be the binary variable such that
Dt(τ) = 0 if t > τ and Dt(τ) = 1 if t < τ . Then the regression including the binary
break indicator and all interaction terms reads as follows:

Yt = β0 + β1Yt−1 + β2Yt−2 + · · · + βpYt−p + γ0Dt(τ)

+ γ1
[
Dt(τ) × Yt−1

] + γ2
[
Dt(τ) × Yt−2

] + · · · + γp

[
Dt(τ) × Yt−p

] + ut

under the null hypothesis of no breaks, γ0 = γ1 = γ2 = · · · = γp = 0. Under
the alternative hypothesis that there is a break, the regression function is different
before and after the break date τ , and we can use the F-statistic performing the so-
called the Chow test (see, e.g., [6, Chap. 5.3.3]). If we suspect a break between two
dates τ0 and τ1, the Chow test can be modified to test for breaks at all possible dates τ

between τ0 and τ1, then using the largest of the resulting F-statistics to test for a break
at an unknown date. The latter technique is called the Quandt likelihood ratio statistic
(QLR) (see, e.g., [7, Chap. 14.7]). Because the QLR statistic is the largest of many
F-statistics, its distribution is not the same as that of an individual F-statistic; also, the
critical values for the QLR statistic must be obtained from a special distribution.

3 MA and ARMA

In the following, we consider finite-order moving-average (MA) processes (see, e.g.,
[6, Chap. 2.2]). The moving-average process of order q, MA(q), is defined by Yt =
α0 + ut − α1ut−1 − α2ut−2 − · · · − αqut−q ; equivalently, by using the lag operator
we get Yt − α0 = (1 − α1L − α2L

2 − · · · − αqLq)ut . Every finite MA(q) process is
stationary, and we have

• E[Yt ] = α0,

• V [Yt ] = E[(Yt − α0)
2] = (1 + α2

1 + α2
2 + · · · + α2

q)σ 2,

• Cov[Yt , Yt+τ ] = E[(Yt − α0)(Yt+τ − α0)]
= E[ut (ut+τ − α1ut+τ−1 − · · · − αqut+τ−q)

− α1ut−1(ut+τ − α1ut+τ−1 − · · · − αqut+τ−q)

· · · − αqut−q(ut+τ − α1ut+τ−1 − · · · − αqut+τ−q)].
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Combining both an autoregressive (AR) term of order p and a moving-average (MA)
term of order q, we can define the process denoted as ARMA(p, q) and represented
by

Yt = β0 + β1Yt−1 + · · · + βpYt−p + ut − α1ut−1 − · · · − αqut−q;
again, exploiting the lag operator, we can write(

1 − β1L − β2L
2 − · · · − βpLp

)
Yt = β0 + (

1 − α1L − α2L
2 − · · · − αqLq

)
ut ,

β(L)Yt = β0 + α(L)ut .

4 Vector autoregression

In what follows, we focus our study on the so-called vector autoregression (VAR)
econometric model, also using some remarks on the relation between the univariate
time series models described in the first part, and the set of simultaneous equations
systems of traditional econometrics characterizing the VAR approach (see, e.g., [4,
Chap. 2]).

4.1 Representation of the system
We have so far considered forecasting a single variable. However, it is often necessary
to allow for a multidimensional statistical analysis if we want to forecast more than
one-parameter dynamics. This section introduces a model for forecasting multiple
variables, namely the vector autoregression (VAR) model, in which lagged values
of two or more variables are used to forecast their future values. We start with the
autoregressive representation in a VAR model of order p, denoted by VAR(p), where
each component depends on its own lagged values up to p periods and on the lagged
values of all other variables up to order p. It follows that the main idea behind the
VAR model is to know how new information, appearing at a certain time point and
concerning one of the observed variables, is processed in the system and which impact
it has over time not only for this particular variable but also for the other system
parameters. Hence, a VAR(p) model is a set of k time-series regressions (k ∈ N

+) in
which the regressors are lagged values of all k series and the number of lags equals p

for each equation. In the case of two time series variables, say, Yt and Xt , the VAR(p)
consists of two equations of the form{

Yt = β10 + β11Yt−1 + · · · + β1pYt−p + γ11Xt−1 + · · · + γ1pXt−p + u1t ,

Xt = β20 + β21Yt−1 + · · · + β2pYt−p + γ21Xt−1 + · · · + γ2pXt−p + u2t ,

(6)
where the βs and the γ s are unknown coefficients, and u1t and u2t are error terms rep-
resented by normally distributed random variables with zero mean and variance σ 2

i >

0. The VAR assumptions are the same as those for the time-series regression defin-
ing AR models and applied to each equation; moreover, the coefficients of each VAR
are estimated by means of the OLS approach. The reduced form of a vector autore-
gression of orderp is defined as Zt = δ + A1Zt−1 + A2Zt−2 + · · · + ApZt−p + Ut ,
where Ai, i = 1, . . . , p, are k-dimensional quadratic matrices, U represents the
k-dimensional vector of residuals at time t , and δ is the vector of constant terms.
System (6) can be rewritten compactly as Ap(L)Zt = δ + Ut , where Ap(L) =
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Ik − A1L − A2L
2 − · · · − ApLp, E[Ut ] = 0, E[UtU

′
t ] = σuu, and E[UtU

′
s] = 0

for t �= s. Such a system is stable if and only if all included variables are station-
ary, that is, if all roots of the characteristic equation of the lag polynomial are out-
side the unit circle, namely det(Ik − A1z − A2z − · · · − Apz) �= 0 for |z| ≤ 1
(for details, see, e.g., [6, Chap. 4.1]). We use this condition because we saw in Sec-
tion 2.3 that the condition for the stationarity of an AR(p) model is that the roots of
1 − β1z − β2z

2 − β3z
3 − · · · − βpzp = 0 are greater than one in absolute value.

If an AR(p) has a root equal to one, we say that the series has a unit root and a
stochastic trend. Moreover, the previous system can be rewritten by exploiting the
MA representation as follows:

Zt = A−1(L)δ + A−1(L)Ut

= μ + Ut − B1Ut−1 − B2Ut−2 − B3Ut−3 − · · ·
= μ + B(L)Ut

with

B0 = Ik , B(L) := I −
∞∑

j=1

BjL
j ≡ A−1(L),

μ = A−1(1)δ = B(1)δ.

The autocovariance matrices are defined as ΓZ(τ) = E[(Zt −μ)(Zt−τ −μ)′]; without
loss of generality, we set δ = 0 and, therefore, μ = 0, whence we obtain

E
[
ZtZ

′
t−τ

] = A1E
[
Zt−1Z

′
t−τ

] + A2E
[
Zt−2Z

′
t−τ

]
+ · · · + ApE

[
Zt−pZ′

t−τ

] + E
[
UtZ

′
t−τ

]
and, for τ ≥ 0,

ΓZ(τ) = A1ΓZ(τ − 1) + A2ΓZ(τ − 2) + · · · + ApΓZ(τ − p),

ΓZ(0) = A1ΓZ(−1) + A2ΓZ(−2) + · · · + ApΓZ(−p) + Σuu

= A1ΓZ(1)′ + A2ΓZ(2)′ + · · · + ApΓZ(p)′ + Σuu.

Since the autocovariance matrix entries link a variable with both its delays and
the remaining model variables, we have that if the autocovariance between X and Y

is positive, then X tends to move accordingly with Y and vice versa, whereas if X

and Y are independent, their autocovariance obviously equals zero.

4.2 Determining lag lengths in VARs

An appropriate method for the lag length selection of VAR is fundamental to deter-
mine properties of VAR and related estimates. There are two main approaches used
for selecting or testing lag length in VAR models. The first consists of rules of thumb
based on the periodicity of the data and past experience, and the second is based on
formal information criteria. VAR models typically include enough lags to capture the
full cycle of the data; for monthly data, this means that there is a minimum of 12 lags,
but we will also expect that there is some seasonality that is carried over from year
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to year, so often lag lengths of 13–15 months are used (see, e.g., [4, Chap. 2.5]). For
quarterly data, it is standard to use six lags. This captures the cyclical components in
the year and any residual seasonal components in most cases. Usually, we decide to
choose the number of lags not exceeding kp + 1 < T , where k is the number of en-
dogenous variables, p is the lag length, and T is the total number of observations. We
use this limitation because the estimate of all these coefficients increases the amount
of forecast estimation errors, which can result in a deterioration of the accuracy of
the forecast itself. The lag length in VAR can be formally determined using informa-
tion criteria; let Σ̂uu be the estimate of the covariance matrix with the (i, j) element
1
T

∑T
t=1 ûit ûj t , where ûit is the OLS residual from the j th equation. The BIC for the

kth equation in a VAR model is

BIC(p) = ln
[
det(Σ̂uu)

] + k(kp + 1)
ln T

T
, (7)

whereas the AIC is computed using Eq. (7), modified by replacing the term ln T by 2.
Among a set of candidate values of p, the estimated lag length p̂ is the value of p

that minimizes BIC(p).

4.3 Multiperiod VAR forecast

Iterated multivariate forecasts are computed using a VAR in much the same way as
univariate forecasts are computed using an autoregression. The main new feature of a
multivariate forecast is that the forecast of one variable depends on the forecast of all
variables in the VAR. To compute multiperiod VAR forecasts h periods ahead, it is
necessary to compute forecast of all variables for all intervening periods between T

and T +h. Then the following scheme applies: compute the one-period-ahead forecast
of all the variables in the VAR, then use those forecasts to compute the two-period-
ahead forecasts, and repeat the previous stops until the desired forecast horizon. For
example, the two-period-ahead forecast of YT +2 based on the two-variable VAR(p)
in Eq. (6) is

ŶT +2|T = β̂10 + β̂11ŶT +1|T + β̂12YT + β̂13YT −1 + · · · + +β̂1pYT −p+2

+ γ̂11X̂T +1|T + γ̂12XT + γ̂13XT −1 + · · · + γ̂1pXT −p+2, (8)

where the coefficients in (8) are the OLS estimates of the VAR coefficients.

4.4 Granger causality

An important question in multiple time series is to assign the value of individual
variables to explain the remaining ones in the considered system of equations. An
example is the value of a variable Yt for predicting another variable Xt in a dynamic
system of equations or understanding if the variable Yt is informative about future
values of Xt . The answer is based on the determination of the so-called Granger
causality parameter for a time-series model (for details, see, e.g., [4, Chap. 2.5.4]).
To define the concept precisely, consider the bivariate VAR model for two variables
(Yt , Xt ) as in Eq. (6). Using this system of equations, Granger causality states that,
for linear models, Xt Granger causes Yt if the behavior of past Yt can better predict
the behavior of Xt than the past Xt alone. For the model in system (6), if Xt Granger
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causes Yt , then the coefficients for the past values of Xt in the Yt equation are nonzero,
that is, γ1i �= 0 for i = 1, 2, . . . , p. Similarly, if Yt Granger causes Xt in the Xt

equation, then the coefficients for the past values of Yt are nonzero, that is, β2i �= 0
for i = 1, 2, . . . , p. The formal testing for Granger causality is then done by using
an F test for the joint hypothesis that the possible causal variable does not cause the
other variable. We can specify the null hypothesis for the Granger causality test as
follows.

H0: Granger noncausality Xt does not predict Yt if

γ11 = γ12 = · · · = γ1p = 0,

H1: Granger causality Xt does predict Yt if

γ11 �= 0, γ12 �= 0, . . . , or γ1p �= 0,

whereas the F test implementation is based on two models.

Model 1 (unrestricted)

Yt = β10 + β11Yt−1 + · · · + β1pYt−p + γ11Xt−1 + · · · + γ1pXt−p + u1t .

Model 2 (restricted)

Yt = β10 + β11Yt−1 + · · · + β1pYt−p + u1t .

In the first model, we have γ11 �= 0, γ12 �= 0, . . . , γ1p �= 0, so the variable Xt

compares in the equation of Yt , namely the values of Xt are useful to predict Yt .
Instead, in the second model, γ11 = γ12 = · · · = γ1p = 0, so Xt does not Granger
cause Yt . The test statistic has an F distribution with(p, T − 2p − 1) degrees of
freedom:

F(p, T − 2p − 1) ∼ (SSRrestricted − SSRunrestricted)/p

SSRunrestricted/(T − 2p − 1)
.

If this F statistic is greater than the critical value for a chosen level of significance,
we reject the null hypothesis that Xt has no effect on Yt and conclude that Xt Granger
causes Yt .

4.5 Cointegration

In Section 2.3, we introduced the model of random walk with drift as follows:

Yt = β0 + Yt−1 + ut . (9)

If Yt follows Eq. (9), then it has an autoregressive root that equals 1. If we consider a
random walk for the first difference of the trend, then we obtain

�Yt = β0 + �Yt−1 + ut . (10)

Hence, if Yt follows Eq.(10), then �Yt follows a random walk, and accordingly
�Yt − �Yt−1 is stationary; this is the second difference of Yt and is denoted �2Yt .
A series that has a random walk trend is said to be integrated of order one, or I(1);
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Table 1. Critical values for the EG-ADF statistic

Numbers of regressors 10% 5% 1%
1 −3,12 −3,41 −3,96
2 −3,52 −3,80 −4,36
3 −3,84 −4,16 −4,73
4 −4,20 −4,49 −5,07

a series that has a trend of the form (10) is said to be integrated of order two, or
I(2); and a series that has no stochastic trend and is stationary is said to be inte-
grated of order zero, or I(0). The order of integration in the I(1) and I(2) termi-
nology is the number of times that the series needs to be differenced for it to be
stationary. If Yt is I(2), then �Yt is I(1), so �Yt has an autoregressive root that
equals 1. If, however, Yt is I(1), then �Yt is stationary. Thus, the null hypothesis
that Yt is I(2) can be tested against the alternative hypothesis that Yt is I(1) by testing
whether �Yt has a unit autoregressive root. Sometimes, two or more series have the
same stochastic trend in common. In this special case, referred to as cointegration,
regression analysis can reveal long-run relationships among time series variables.
One could think that a linear combination of two processes I(1) is a process I(1).
However, this is not always true. Two or more series that have a common stochas-
tic trend are said to be cointegrated. Suppose that Xt and Yt are integrated of or-
der one. If, for some coefficient θ , Yt − θXt is integrated of order zero, then Xt

and Yt are said to be cointegrated, and the coefficient θ is called the cointegrat-
ing coefficient. If Xt and Yt are cointegrated, then they have a common stochastic
trend that can be eliminated by computing the difference Yt − θXt , which elim-
inates this common stochastic trend. There are three ways to decide whether two
variables can be plausibly modeled exploiting the cointegration approach, namely,
by expert knowledge and economic theory, by a qualitative (graphical) analysis of
the series checking for common stochastic trend, and by performing statistical tests
for cointegration. In particular, there is a cointegration test when θ is unknown. Ini-
tially, the cointegrating coefficient θ is estimated by OLS estimation of the regres-
sion

Yt = α + θXt + zt , (11)

and then we use the Dickey–Fuller test (see Section 2.3) to test for a unit root in zt ;
this procedure is called the Engle–Granger augmented Dickey–Fuller test for coin-
tegration (EG-ADF test); for details, see, for example, [6, Chap. 6.2] . The concepts
covered so far can be extended to the case of more than two variables, for example,
three variables, each of which is I(1), are said to be cointegrated if Yt −θ1X1t −θ2X2t

is stationary. The Dickey–Fuller needs the use of different critical values (see Table 1),
where the appropriate line depends on the number of regressors used in the first step
of estimating the OLS cointegrating regression.

A different estimator of the cointegrating coefficient is the dynamic OLS (DOLS)
estimator, which is based on the equation

Yt = β0 + θXt +
p∑

j=−p

δjXt−j + ut . (12)
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In particular, from Eq. (12) we notice that DOLS includes past, present, and future
values of the changes in Xt . The DOLS estimator of θ is the OLS estimator of θ in
Eq. (12). The DOLS estimator is efficient, and statistical inferences about θ and δs in
Eq. (12) are valid. If we have cointegration in more than two variables, for example,
three variable Yt ,X1t , X2t , each of which is I(1), then they are cointegrated with
cointegrating coefficients θ1 and θ2 if Yt − θ1X1t − θ2X2t is stationary. The EG-ADF
procedure to test for a single cointegrating relationship among multiple variables is
the same as for the case of two variables, except that the regression in Eq. (11) is
modified so that both X1t and X2t are regressors. The DOLS estimator of a single
cointegrating relationship among multiple Xs involves the level of each X along with
lags of the first difference of each X.

5 Conclusion

In this first part of our ambitious project to use multivariate statistical techniques to
study critic econometric data of one of the most influential economy in Italy, namely
the Verona import–export time series, we have focused ourselves on a self-contained
introduction to techniques of estimating OLS-type regressions, analysis of the cor-
relations obtained between the different variables and various types of information
criteria to check for the goodness of fit. A particular relevance has been devoted to
the application of tests able to enlightening various types of nonstationarity for the
considered time series, for example, the augmented Dickey–Fuller test (ADF) and
the Quandt likelihood ratio statistic (QLR). Moreover, we have also exploited both
the Granger causality test and the Engle–Granger augmented Dickey–Fuller test for
cointegration (EG-ADF) in order to analyze if and how these variables are related
to each other and to have a measure on how much a variable gives information on
the other one. Such approaches constitute the core of the second part of our project,
namely the aforementioned Verona case study.
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