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ness. J Appl Physiol 94: 213-219, 2003. First published
September 13, 2002; 10.1152/japplphysiol.01258.2001.—We
evaluated autonomic cardiovascular regulation in subjects
with polycythemia and chronic mountain sickness (CMS) and
tested the hypothesis that an increase in arterial oxygen
saturation has a beneficial effect on arterial baroreflex sen-
sitivity in these subjects. Ten Andean natives with a Hct
>65% and 10 natives with a Hct <60%, all living perma-
nently at an altitude of 4,300 m, were included in the study.
Cardiovascular autonomic regulation was evaluated by spec-
tral analysis of hemodynamic parameters, while subjects
breathed spontaneously or frequency controlled at 0.1 and
0.25 Hz, respectively. The recordings were repeated after a
1-h administration of supplemental oxygen and after fre-
quency-controlled breathing at 6 breaths/min for 1 h, respec-
tively. Subjects with Het >65% showed an increased inci-
dence of CMS compared with subjects with Hct <60%.
Spontaneous baroreflex sensitivity was significantly lower in
subjects with high Hct compared with the control group. The
effects of supplemental oxygen or modification of the breath-
ing pattern on autonomic function were as follows: 1) heart
rate decreased significantly after both maneuvers in both
groups, and 2) spontaneous baroreflex sensitivity increased
significantly in subjects with high Het and did not differ from
subjects with low Hct. Temporary slow-frequency breathing
may provide a beneficial effect on the autonomic cardiovas-
cular function in high-altitude natives with CMS.

autonomic nervous system; hypoxia; baroreflex

CHRONIC HYPOBARIC HYPOXIA is known to be related to an
increase in hemoglobin and Hct. The combination of
polycythemia and a variety of clinical symptoms, such
as decreased physical performance, pulmonary hyper-
tension, and an impairment in cerebral function, has
been defined as chronic mountain sickness (CMS) (13,
24). This syndrome has primarily been observed in
Andean natives living at altitudes >3,000 m (24) but
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also occurs in geographic regions outside South Amer-
ica (43, 44). The amount of polycythemia seems to be
related to arterial oxygen saturation (Sao,), regardless
of the population investigated (32).

The typical cerebral symptoms of CMS, such as fa-
tigue and mental disorders, may be caused by cerebral
hypoxia because of factors such as decreased cerebral
blood flow and an impairment of cerebral autoregula-
tion (2, 24, 39, 43). It is not known whether CMS is also
associated with a disturbed function of the autonomic
nervous system. However, an impairment in cardiovas-
cular autonomic regulation has been shown to be re-
lated to a disturbed control of cerebral circulation and
thus may interfere with symptoms of CMS (8, 41).

The aim of the present study was to test the hypoth-
esis that subjects living at high altitude and showing
the clinical signs of CMS have an impaired arterial
baroreflex sensitivity as a measure of autonomic cardio-
vascular regulation compared with otherwise healthy
subjects living in the same environment. Furthermore,
we investigated the impact of maneuvers that increase
Sap, on measures of autonomic cardiovascular func-
tion. In previous studies, our laboratory found that
breathing at a slow rate not only has a beneficial effect
on Sap, in patients with heart failure or during simu-
lated altitude (5, 6) but similarly increases the arterial
baroreflex sensitivity (3). In view of these results, we
evaluated the hypothesis that temporary slow-fre-
quency breathing may improve both the Sap, and the
arterial cardiac baroreflex in patients with CMS.

METHODS

The study was performed in Cerro de Pasco, Peru, at an
altitude of 4,300 m. The study was approved by the Human
Subject Research Committee of the Universities of Pavia and
Lima, and all participants gave their informed consent. The
investigation conforms to the principles outlined in the Dec-
laration of Helsinki.

The costs of publication of this article were defrayed in part by the
payment of page charges. The article must therefore be hereby
marked “advertisement” in accordance with 18 U.S.C. Section 1734
solely to indicate this fact.
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Twenty male subjects living in Cerro de Pasco were inves-
tigated. These subjects were recruited from a cohort of 30
men, all not employed as miners, who were born and lived in
Cerro de Pasco, with the last stay at lower altitudes being at
least 6 mo before the study. The subjects underwent a clinical
evaluation including spirometry (Sensomedics, Milano, Italy)
and the determination of hemoglobin and Hect. Ten subjects
with the highest Het values (Het >65%) and 10 subjects with
low Hct values (Het <60%) were included in the study. The
subjects were evaluated by using the CMS score published by
Leo6n-Velarde et al. (20). This scoring system includes clinical
symptoms typical for CMS (dizziness; physical weakness;
mental fatigue; anorexia; paresthesia of hands and feet;
cyanosis of lips, face, or fingers; prominent capillaries of
conjunctives, or prominent veins of hands and feet; sleep
disturbance; breathlessness or palpitations; tinnitus; head-
ache) and classifies a value of hemoglobin or Het >2 SD of the
mean of the population as pathological, as well as Sao, <82%
(calculated for the population of Cerro de Pasco) (20). A value
<12 points is regarded as indicative of the absence of CMS, a
value between 12 and 18 points indicates light symptoms,
between 19 and 24 points moderate symptoms, and >24
points severe symptoms of CMS.

The study protocol included registration of ECG and con-
tinuous noninvasive recording of the blood pressure curve of
the radial artery by arterial tonometry (CBM 7000, Colin,
San Antonio, TX). Additionally, pulse oximetry and inspira-
tory and expiratory COs (CO2SMO, Novametrix Medical
Systems, Wallingford, CA), tidal volume (pneumotachogra-
phy), and abdominal-thoracic breathing movements (induc-
tion plethysmography) were recorded. The registrations were
performed with the subjects in a sitting position between 9:00
and 12:00 AM on 2 subsequent days.

Arterial blood pressure, heart rate, Sao,, and carbon diox-
ide were continuously monitored after instrumentation for at
least 30 min of familiarization with the laboratory setting.
Measurements were performed during steady-state condi-
tions of hemodynamic variables.

The measurements consisted of two sequences, which were
randomly assigned (in equal proportions) to 1 of 2 subsequent
days. One sequence consisted of a 5-min baseline registration
while subjects breathed spontaneously (control A) and of two
3-min recordings with breathing frequency controlled at 6
and 15 breaths/min, respectively. These registrations were
followed by the administration of 4 I/min supplemental oxy-
gen by face mask for 1 h. The recordings during spontaneous
breathing were repeated after a break of 15 min without
oxygen supplementation. The other sequence consisted of a
5-min baseline registration while subjects breathed sponta-
neously (control B), followed by a 1-h episode of frequency-
controlled breathing at 6 breaths/min. The recordings during
spontaneous breathing were repeated after a break of 15 min.

Data were sampled by using a 12-bit analog-to-digital
converter via the serial RS-232 interface at 300 Hz on a
Macintosh laptop computer. The single breaths were identi-
fied, and end-expiratory COs was determined. After identifi-
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cation of the R peaks, the time series of R-wave-R-wave (R-R)
interval, systolic and diastolic blood pressure, Sao,, respira-
tion, and COs were created and visually inspected, and arti-
facts were removed by interpolation with the use of interac-
tive software. Spectral analysis of R-R interval and systolic
and diastolic blood pressure was performed after linear de-
trending by an autoregressive algorithm (4, 37). The area
under the distinct components of the curve was determined
by a decomposition algorithm. Spectral power was calculated
as absolute power (variance of the time series), low-frequency
(LF) power (0.03—0.15 Hz), and high-frequency (HF) power
(0.15-0.4 Hz).

Following previous studies, which showed that the LF
fluctuation in R-R interval might be influenced by baroreflex
activity (9-11, 38), spontaneous baroreflex sensitivity was
estimated as the square root of the relation between LF
power of the R-R interval and systolic blood pressure (15, 27,
31, 33, 34). The accuracy of the relationship between fluctu-
ations in R-R interval and systolic blood pressure at a specific
frequency was measured by the coherence function (37). A
value >0.5 was regarded as statistically significant and in-
terpreted as a sign of stable phase shift.

Statistical analysis was performed by using the software
SPSS 9.0 (SPSS, Chicago, IL). Data were tested for normal
distribution by using the Kolmogorov-Smirnov test. Because
results of spectral power analysis were left-skewed, logarith-
mic transformation was necessary to obtain normal distribu-
tion. Data are presented as means * SD. Differences be-
tween groups are reported as mean difference and 95%
confidence interval (95% CI). The mean values of R-R inter-
val, blood pressure, tidal volume, end-expiratory COsz, and
Sao,, obtained during each registration, as well as the results
of power spectral analysis and spontaneous baroreflex sensi-
tivity, were compared between the groups by using a general
linear model procedure (repeated-measures analysis of vari-
ance; the within-subjects factors were tested by simple con-
trasts taking the first measure as the reference) and Stu-
dent’s ¢-test for unpaired data with adjustment for the
a-error. The degree of severity of CMS was compared be-
tween groups with high and low Het by using the x2 test. A P
value <0.05 was regarded as statistically significant.

RESULTS

One subject from the high-Hct group (Het 75%) was
excluded from the study because of atrial fibrillation.
Clinical characteristics of the subjects are presented in
Table 1. The results are comprehensively presented in
Tables 2 and 3.

Subjects with high Hect had a significantly higher
CMS score than subjects with low Hct (mean differ-
ence: 11.0; 95% CI: 1.2-20.7%). Spirometry did not
reveal significant differences between groups. Sap, was
slightly lower in subjects with high Hct compared with
subjects with low Hct without statistical significance.

Table 1. Characteristics and clinical data of subjects with low Hct and high Hct

Age, Weight, Height, Het, CMS Score, SBP, DBP, HR, FVC, FEV;, PEF,
yr kg cm % points mmHg mmHg beats/min liters liters 1/s
Low Het 38.5*+4.6 60.5*79 160*+44 544+27 11.6%9.7 106.6 9.8 59.1x13.0 72.0£4.9 455*+0.54 3.80x0.44 9.29*1.16

High Het 38.9%+8.0 65.5%+6.5 165+4.4*% 72.6*+4.1% 22.6*+10.3*

119.1£8.7f 71.2+x13.6 76.2x9.8 4.43*x0.80 3.52+0.65 9.05+1.39

Values are means *= SD. Low Hct, hematocrit <60%j; high Hct, hematocrit >65%; CMS, chronic mountain sickness; SBP, systolic blood
pressure; DBP, diastolic blood pressure; HR, heart rate; FVC, forced vital capacity; FEV, forced expiratory volume over 1 s; PEF, peak
expiratory flow. Significant difference vs. low Het: *P < 0.05, TP < 0.01, and P < 0.001.
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Table 2. Results of registration sequence A in subjects with low Hct and high Hct

Control A 15 Breaths/Min 6 Breaths/Min After Oz
Low Hect High Hcet Low Het High Het Low Hect High Hcet Low Hct High Hcet

f, breaths/min 179142 19.1£2.8 14.9+0.1% 15.1+0.4* 6.1+0.2% 6.1+0.1% 19.2+4.7 18428
Vr, ml 694 +95 695 +93 1,344 +558*% 1,449+431* 1,948 +520* 2,463 *+610* 644 +92 695 + 187
VE, 1/min 12.1£1.6 13.2+t1.2 20.0 = 8.4* 21.7+6.4% 12.0£34 15.0+3.9 11.8+1.6 14.3£8.0
CO2, mmHg 38.0£2.8 39.5+3.4 28.8 +4.7* 28.8 +2.7* 36.2 +3.8*% 36.3 +2.9% 36.1+3.1% 37.8 +4.5%
Saosz, % 88.8+1.8 87.4+1.5 94.7 + 2.0% 93.6 = 1.7*% 92.4 +2.3*% 91.9+1.9% 90.7 +1.9% 90.0 = 3.3%
R-R interval

Mean, ms 837170 767*+91 897 +109* 810 +104* 871 +88* 804 +98* 914 = 97* 852 +139*

SD, ms 381+154 245+11.1 36.4+17.8 28.1+13.6 57.8+16.8%* 55.5+26.2* 52.1+20.2% 30.8*+12.1*

(2% 46+1.8 3.2+x14 4.0x1.8 3.5+x1.7 4.0x19 3.5+x1.7 57+2.1 3.6+1.3

In LF, In ms? 5.73+1.15 3.73+1.88%f 5.52+0.97 4.95+1.50 7.561+0.86% 7.59+1.31*F 4.77+1.97 4.70 +1.317

In HF, In ms? 553+0.97 4.52+1.23 6.21+1.14% 5.84+0.87% 5.33+x1.04 4.76 £1.21 4.62+2.54 5.11*+1.56
SBP, mmHg 1184+16.3 1264+13.2 111.0x145 122.1+8.6 109.9+14.9 124.9+9.2% 104.6 +14.4*% 117.9*+11.5%%
DBP, mmHg 63.0+17.2 74.0£13.0 62.2+9.7 69.9+12.9 61.8+10.6 70.8*+12.9 62.2+10.8 726104
BRS, ms/mmHg 11.2+8.5 3.9+2.1% 10.4+5.9 6.8+3.3 11.9+7.38 9.3+4.7* 11.1+£5.1 9.8+6.1%

Values are means = SD. Measurements were performed during spontaneous breathing (cont¢rol A) and frequency-controlled breathing (15
breaths/min; 6 breaths/min) and during spontaneous breathing after a 1-h period of oxygen administration (after Os). f, Respiratory
frequency; VT, tidal volume; VE, minute ventilation; Sao,, arterial oxygen saturation; R-R interval, R-wave-R-wave interval; CV, coefficient
of variation (SD/mean X 100); LF, low-frequency component; HF, high-frequency component; BRS, baroreflex sensitivity. *P < 0.05 vs.
control A. TSignificant interaction between groups compared with control A, P < 0.05. £P < 0.05 vs. low Hct.

Sao, increased significantly in both groups during
controlled breathing at 15 or at 6 breaths/min and after
the temporary administration of supplemental oxygen
(Table 2). Frequency-controlled breathing did not sig-
nificantly influence the absolute difference in Sao, be-
tween subjects with high and low Hct.

The subjects showed a marked hyperventilation
when breathing at 15 breaths/min. At a breathing rate
of 6 breaths/min, end-expiratory COg was not signifi-
cantly different from the values recorded during spon-
taneous breathing.

Systolic blood pressure was significantly higher in
subjects with high Hct than in subjects with low Hct
(mean difference: 12.5 mmHg; 95% CI. 3.5-21.5
mmHg; Table 1 reports the oscillometric measurement
at the start of the recordings). Similarly, the mean R-R
interval was shorter in subjects with high Hct com-
pared with the control group. This difference between

groups reached statistical significance at the registra-
tion point control B (mean difference: 80.9 ms; 95% CI:
21.4—-140.3 ms; Table 3).

The HF component of R-R interval variability, which
is mediated predominantly by vagal activity, was de-
creased in subjects with high Hct. Tidal volume was
similar in subjects with low and high Hct; breathing
frequency and minute ventilation were not signifi-
cantly increased in subjects with high Hct. LF power
showed a more marked variation between control A
and control B than did HF power.

Exemplary power spectra of systolic blood pressure
and R-R interval and coherence and phase spectra are
demonstrated in Fig. 1. The spontaneous baroreflex sen-
sitivity was markedly impaired in subjects with high Hct
compared with subjects with low Hct (mean difference
and 95% CI: control A, 7.3 and 0.15-14.4 ms/mmHg;
control B, 5.1 and 0.92-9.3 ms/mmHg, respectively) and

Table 3. Results of registration sequence B in subjects with low Hct and high Hct

Control B After Slow Breathing
Low Het High Hcet Low Hct High Het

f, breaths/min 17.6 4.1 19.2+4.0 17.9+t45 19.1£28
Vr, ml 716 £121 694 +125 657107 634 +159
VE, 1/min 122+1.2 13.0£24 11.3+2.1%* 11.9+3.8*
CO2, mmHg 39.8+£3.1 39.0£3.7 37.3+3.3% 34.3+7.7*%
Saosz, % 88.7+1.6 87.2+1.8 89.2+3.6 85.8+5.9
R-R interval

Mean, ms 853+44 772 +76% 898 +68* 830 +116*

SD, ms 40.8+11.2 28.9+9.1 47.9+10.8% 34.0+15.3%%

(63% 4.8+1.2 3.8+1.2 54+14 4.1+1.7

In LF, In ms? 5.056+1.95 5.15+1.41 5.77+1.24 5.56 +1.06

In HF, In ms? 5.86 +1.05 4.94+1.27 5.84+0.53 4.73+1.13%
SBP, mmHg 114.5+12.9 120.0£16.5 105.0+9.2 113.8+13.1
DBP, mmHg 63.1+12.0 60.9+14.7 59.0+£10.0 71.9+12.3F
BRS, ms/mmHg 11.1*+5.5 5.9+2.2% 11.9+7.8 9.3 +4.7*%

Values are means = SD. Measurements were performed during spontaneous breathing before (control B) and after (after slow breathing)
a 1-h period of breathing at 6 breaths/min. *P < 0.05 vs. control B. {Significant interaction between groups compared with control B, P <

0.05. P < 0.05 vs. low Hect.
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did not differ between the two control registrations.
Baroreflex sensitivity improved in subjects with high Het
during breathing at 6 breaths/min but not during breath-
ing at 15 breaths/min (Tables 2 and 3).

The temporary administration of oxygen and the per-
formance of a slow-frequency breathing pattern for 1 h
had a persisting effect on the autonomic activity. After
both maneuvers, mean R-R interval increased signifi-
cantly in both groups with high and low Hct (mean
difference and 95% CI after oxygen: high-Hct group, 84.4
and 29.7-140.0 ms; low-Hct group, 76.1 and 20.5-131.7
ms; mean difference and 95% CI after slow breathing:
high-Hct group, 80.0 and 2.8-120.1 ms; low-Hct group,
83.1 and 14.0-104.9 ms, respectively). Systolic blood
pressure decreased after oxygen administration but re-
mained significantly higher in subjects with high Hct
compared with subjects with low Hct (mean difference:
13.4 mmHg; 95% CI: 6.6—-26.1 mmHg). Systolic blood
pressure decreased to a somewhat lesser extent after
slow-frequency breathing. With the exception of baseline
registration B, diastolic pressure was higher, although
not statistically significant, in patients with CMS com-
pared with the control group.

—T
Frequency (Hz) 060 Frequency (Hz) 06

Baroreflex sensitivity increased significantly in sub-
jects with high Hct after the administration of supple-
mental oxygen (mean difference: 6.3 ms/mmHg; 95% CI:
0.35 to 12.3 ms/mmHg) or after the 1-h episode with LF
breathing (mean difference: 4.8 ms/mmHg; 95% CI: 0.18—
9.4 ms/mmHg). In subjects with low Hct, these maneu-
vers did not have a significant impact on baroreflex sen-
sitivity. Phase shift between fluctuation in systolic blood
pressure and R-R interval around 0.1 Hz did not differ
between subjects with low and high Het. Fluctuations in
systolic blood pressure preceded those in R-R interval by
1.76 * 0.23 rad (control A, low Het) and 1.62 + 0.23 rad
(control A, high Hct) or 1.76 = 0.25 rad (control B, low
Hct) and 1.50 = 0.41 rad (control B, high Hct). This phase
relationship did not change significantly after oxygen
administration (low Hct: 1.64 = 0.31 rad; high Hct:
1.54 = 0.16 rad) or after LF breathing (low Hect: 1.64 =
0.33 rad; high Hct: 1.47 + 0.34 rad).

DISCUSSION

The present study reveals that the arterial cardiac
baroreflex is impaired in high-altitude natives with
high Hct and a high CMS score, compared with a
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control group with normal Hct and a significantly
lower CMS score. Temporary maneuvers, such as the
administration of oxygen or slow-frequency breathing,
are sufficient to improve autonomic function in sub-
jects with CMS.

Differences between subjects with high and low Hct
during baseline measurements. We defined an Hct
>65% as a significant sign of polycythemia. This value
was chosen with regard to the studies of Leén-Velarde
et al. (19), who measured hemoglobin in the population
of Cerro de Pasco and found a 95th percentile of 21.3
g/dl, which may roughly correspond to an Hct of ~64%
(32). The score defines a value of Sap, <82% as patho-
logical in accordance with the results of previous stud-
ies (20). It should be emphasized that these values are
characteristic for the population of Cerro de Pasco and
cannot be simply transferred to populations in other
geographical regions. Furthermore, the incorporation
of values of Het may have created a selection bias as
subjects were stratified by Hct. Whereas the scoring
system indicated the absence of severe symptoms of
CMS in subjects with low Hct, it suggested moderate-
to-severe signs of CMS in subjects with high Het. This
finding supports previous studies, which demonstrated
a relationship between polycythemia at altitude and
CMS, although this relationship may vary among dif-
ferent geographic regions (25, 44), and severity of CMS
may not strictly parallel Het.

Saop, was slightly decreased in subjects with high Hct
compared with subjects with low Hect. This phenome-
non has already been reported and may support the
hypothesis that subjects with CMS suffer more fre-
quently from lung disease than subjects without CMS
(20, 40, 43). Leén-Velarde and co-workers (20) observed
a decreased peak expiratory flow in patients with CMS
as a sign of chronic pulmonary disease. Our subjects
with high Hct showed a decrease in forced expiratory
volume in 1 s compared with subjects with low Hct.
This phenomenon is compatible with the presence of
chronic lower respiratory disease in subjects with
CMS. However, peak expiratory flow was comparable
between groups. The combination of slightly increased
minute ventilation and decreased Sao, may be inter-
preted in accordance with other authors as a sign of
increased dead space ventilation in subjects with CMS
(18). However, our results are also in agreement with
the hypothesis that the more pronounced hypoxia may
be related additionally to a ventilation-perfusion mis-
match (23) or a reduced diffusing capacity (42) in
patients with CMS.

Systolic blood pressure was higher and R-R interval
shorter in subjects with high Hct compared with the
control group, thus suggesting increased sympathetic
activity in subjects with CMS. Additionally, the HF
component of the R-R interval spectrum was slightly
lower in subjects with high Hct during spontaneous
breathing, despite breathing frequency and tidal vol-
ume being similar in both groups. This finding may be
interpreted as a sign of lower vagal activity in subjects
with high Hct, according to the phenomenon that fluc-
tuations in R-R interval >0.15 Hz are nearly entirely
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mediated by vagal activity (1, 35). Spontaneous barore-
flex sensitivity was lower in subjects with high Hct
compared with the control group, thus indicating im-
pairment in autonomic cardiovascular regulation in
subjects with high Hct and clinical symptoms of CMS.
The differences in baroreflex sensitivity had no effect
on the temporal coupling between blood pressure and
R-R interval in the LF range: the phase shift between
these signals was comparable between groups.

Effects of oxygen administration. Even more than 15
min after termination of the administration of oxygen,
both subjects with low and those with high Het showed
an improvement in ventilation during spontaneous
breathing, indicated by an increase in Saop, and a
decrease in end-expiratory Pcos.

It is well known that a permanent increase in Sao,
improves the symptoms of CMS (42). Additionally, an
increase in the Pog reverses the depressant effect of
hypoxia on ventilation (36), which has been interpreted
as a reversal of the centrally depressed ventilatory
response (18, 36). Our data indicate that the improve-
ment of ventilation outlasts the maneuvers that in-
crease Sao,.

We observed that the temporary administration of
oxygen was associated with a persistent, significant
decrease in systolic blood pressure, an increase in
mean R-R interval, and an increase in heart rate vari-
ability, in both subjects with low and those with high
Hct. Regarding the results of power spectral analysis
and spontaneous baroreflex sensitivity, this improve-
ment in autonomic function was more pronounced in
subjects with high Hct. Baroreflex sensitivity did not
change significantly in subjects with low Hct, whose
values were within the range of those of healthy con-
trols at sea level (15). Thus our findings suggest a
normalization of a previously impaired autonomic ner-
vous function after improved oxygenation in patients
with CMS that lasted at least for the subsequent reg-
istrations after the administration of supplemental
oxygen.

Effects of frequency-controlled breathing. Sao, in-
creased significantly in both subjects with low and
those with high Hct during frequency-controlled
breathing, whereas the difference in Sao, between the
two groups did not change. During breathing at 15
breaths/min, the improvement in Sap, was related to a
marked hyperventilation and thus to an increase in the
alveolar Pos. During breathing at 6 breaths/min, the
subjects showed less hyperventilation, and Pcos was
only slightly and not significantly different from the
values obtained during spontaneous breathing. Thus
the increase in Sap, during LF breathing may have
been caused by reduced dead space ventilation and by
an improvement of ventilation-perfusion mismatch.
This effect of LF breathing has already been demon-
strated in a previous study, which showed that inter-
mittent training of a LF breathing pattern resulted in
a more efficient ventilation in patients with impaired
myocardial function (6).

The effect of frequency-controlled breathing at 6
breaths/min on autonomic cardiac control was similar
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to that of temporary oxygen administration: baroreflex
sensitivity increased in subjects with high Hct to val-
ues that were not significantly different from those of
the control group with low Het.

Beside these direct effects of breathing at 6 breaths/
min on autonomic activity, normalization of cardiovas-
cular autonomic activity persisted even after termina-
tion of the actively controlled training period of LF
breathing in patients with high Hct.

These effects of breathing at 6 breaths/min may
depend on two phenomena: a previous study demon-
strated that Sao, and autonomic cardiovascular regu-
lation were maintained better during hypobaric hyp-
oxia in Western yoga trainees who regularly performed
LF breathing than in a control group, even when
breathing frequency was not deliberately controlled
(5). This phenomenon may have been caused by a more
efficient breathing pattern in yogis, which improved
cerebral oxygenation and, therefore, might have been
similar to the supplementation of oxygen. On the other
hand, it is known that spontaneous fluctuations in
blood pressure and R-R interval of ~6 cycles/min
(equivalent to the LF oscillations at ~0.1 Hz) are
markedly enhanced by breathing or stimulation of
baroreceptors at this frequency (4, 11, 26, 35). These
maneuvers were associated with an increase in heart
rate variability (35), as well as in baroreflex sensitivity
(3, 7, 37). Our data suggest that this effect was more
pronounced in subjects with CMS. Unlike the control
group, subjects with CMS showed an increase in LF
power, as well as in spontaneous baroreflex sensitivity,
after oxygen administration. This effect was less
marked after the slow-breathing period. The beneficial
effect of improved oxygenation on the ventilatory re-
sponse might have been counteracted by acute changes
in Pcos. Subjects showed hypocapnia and a decrease in
ventilation without significant changes in Sao,, even
15 min after the slow-breathing episode. Slow-fre-
quency breathing, as well as oxygen supplementation,
was not able to decrease diastolic blood pressure, which
was, except for control B, constantly higher in subjects
with CMS compared with subjects with low Hct.

Limitations. In the present study, we used “sponta-
neous” baroreflex sensitivity as a marker of autonomic
cardiovascular regulation. Several studies demon-
strated that this parameter was a sensitive marker to
detect autonomic dysfunction (12, 22, 27, 28). However,
it should be pointed out that the different methods for
assessing baroreflex sensitivity are not interchange-
able (21, 30). The computation of spontaneous barore-
flex sensitivity reveals information about the dynamic
autonomic regulation at the actual baroreflex operat-
ing point and does not provide information about the
sigmoid curve describing the relationship between
static changes in blood pressure and the heart rate
response (29).

Previous investigations found a high reproducibility
and a lack of placebo effect when assessing hemody-
namic regulation by spectral analytic methods and
measures of spontaneous baroreflex sensitivity (14, 16,
17). However, a period effect could have theoretically
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influenced the results of our study, i.e., spontaneous
baroreflex improved regardless of the maneuvers per-
formed. Because measurements were carried out in
resting subjects after at least 0.5 h of adaptation to the
measurement procedure on 2 days, and diurnal
changes in baroreflex sensitivity should not be of im-
portance within this period of time, this effect is un-
likely but cannot be strictly excluded.

In conclusion, we found in high-altitude natives with
Hct >65% and significant signs of CMS an impaired
cardiovascular regulation, expressed as reduced spon-
taneous baroreflex sensitivity, compared with subjects
with Hct <60%. Spontaneous baroreflex sensitivity
normalized after the temporary administration of oxy-
gen as well as after slow-frequency breathing. Our
results indicate that this beneficial effect outlasts the
actively controlled training period of slow-frequency
breathing; however, the long-term efficiency of this
maneuver as a therapeutic option in patients with
CMS should be investigated in further studies.

We thank Dr. Robert C. Roach, Department of Life Sciences, New
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