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CONTROLLABILITY OF SOME NONLINEAR SYSTEMS WITH
DRIFT VIA GENERALIZED CURVATURE PROPERTIES∗
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Abstract. We discuss the problem of local attainability for finite-dimensional nonlinear control
systems with quite general assumptions on the target set. Special emphasis is given to control-affine
systems with a possibly nontrivial drift term. To this end, we provide some sufficient conditions
ensuring local attainability, which involve geometric properties both of the target itself (such as a
notion of generalized curvature), and of the Lie algebra associated with the control system. The
main technique used is a convenient representation formula for the power expansion of the distance
function along the trajectories, made at points sufficiently near to the target set.
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1. Introduction.

1.1. Statement of the problem. Consider a time-independent control system
in Rd of the form ⎧⎨

⎩
ẏ(t) = f(y(t), u(t)) for t > 0,

y(0) = x0,

where u ∈ U := {v : [0,+∞[→ U, measurable}, and U is a given compact subset of
Rm, called the set of admissible controls.

Given a closed S of Rd, called the target set, in this work we are interested in the
problem of providing sufficient conditions ensuring the small-time local attainability
(STLA; see Definition 2.19) property of S. The STLA property amounts to the
existence for every T > 0 of a suitable neighborhood of the target set S whose points
can be steered to S in time less than T along admissible trajectories of the system
(see also section 6 in Chapter 4 of [5]). This problem is crucial in control theory, and
is strongly related to many applications.

1.2. A first order condition for STLA. Petrov’s condition is one of the
most common conditions ensuring this property even in the fully nonlinear case (see,
among the others, [2] and references therein). For a compact and smooth target,
Petrov’s condition requires that there exist positive constants δ, μ > 0 such that for
all x ∈ Sδ \ S := {z ∈ Rd : dS(z) < δ} \ S we have

min
u∈U

〈∇dS(x), f(x, u)〉 ≤ −μ,

where ∇dS(x) is the gradient of the distance function from S evaluated at x. In
the case of a nonsmooth target, the condition requires the existence of a generalized
gradient of dS satisfying the same condition.
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We notice that Petrov’s condition is a first order condition in the sense that it
involves only admissible velocities.

From another point of view, this condition requires dS to be a sort of Lyapunov
function for the system. Indeed, from a geometrical point of view, Petrov’s condition
states that at every point x of a neighborhood of the target there exists an admissible
control ux ∈ U such that the corresponding trajectory points sufficiently toward the
target. Moreover, the scalar product between the admissible velocity f(x, ux) and the
gradient of the distance is uniformly bounded away from zero.

Petrov’s condition is very strong, even if it is weaker than full controllability,
which requires that every initial state can be steered to any final state in finite time
along admissible trajectories. Moreover, it can be also shown that Petrov’s condition
is equivalent to the Lipschitz continuity of the minimal time function T up to the
boundary of S (see [23]). However, it is also very easy to give simple examples
where it fails. For instance, in R2 take S = {0} and (ẋ(t), ẏ(t)) = (y(t), u(t)), where
u : R → [−1, 1] is measurable: Petrov’s condition fails on the x-axis.

1.3. Higher order condition for pointwise target. When Petrov’s condition
is not satisfied, i.e., the trajectories of the system do not approach the target at the
first order, it is natural to search for higher order conditions, which involve higher
order terms in a convenient expansion of the trajectory itself. These conditions will
be related to some properties of the Lie algebra generated by the family of vector
fields associated with the system (see [15] for a complete introduction).

In the early 1960s, Kalman proved the following result. Assume that f is linear,
i.e., f(x, u) = Ax + Bu, where A ∈ Matn×n(R), B ∈ Matn×m(R) are two constant
matrices, and S = {0}. Then the following are equivalent:

1. the system is controllable to the equilibrium point 0, i.e., every point can be
steered to the origin in finite time;

2. the matrix (B|AB|A2B| . . . |An−1B) has full rank (equals n).
The second condition above is the celebrated Kalman rank condition, and implies the
Hölder continuity of T , with exponent depending on the smallest 0 ≤ k ≤ n− 1 such
that the matrix

(B|AB|A2B| . . . |AkB)

has full rank.
Later, in the 1970s, several generalizations, mainly concerning the case when

target set S is an equilibrium point for the system, of this condition to nonlinear
systems were proved by several authors among which we recall Hermes, Sussmann,
Hörmander, and many others. The simplest result can be formulated as follows: if
the linearization of the system is STLA around the target equilibrium point, then
the system itself is STLA. All these results involve a suitable expansion around the
equilibrium point, and STLA is achieved by imposing some conditions on the Lie
algebra generated by the vector fields.

1.4. Higher order conditions for nonpointwise target. The aforemen-
tioned higher order conditions assume that the target is reduced to a single point.
Thus, if the target is not a singleton, a natural choice would be to apply them to
each point of its boundary. However, as pointed out in [16], the problem of local
attainability of a closed set with respect to the trajectories of a control system can-
not be reduced to the problem of small-time local attainability at every point of its
boundary. The reason is that the small-time local attainability depends not only on
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436 ANTONIO MARIGONDA AND SILVIA RIGO

the dynamics of the control system, but also on the geometry of the considered closed
set. So, it needs a specific study.

Theorem 1.18, p. 235 in [1] gives a condition yielding Hölder continuity of T in
the case of nonlinear symmetric (driftless) systems:

ẋ(t) = f(x, u) :=
h∑
i=1

uigi(x), |ui| ≤ 1,

for a smooth target S, not necessarily reduced to a single equilibrium point. The term
“symmetric” comes from the fact that in this case f(x,−u) = −f(x, u), thus the set
of trajectories enjoys time reversal symmetry.

The condition requires that if at a point x̄ ∈ ∂S Petrov’s condition does not hold,
then there exists a vector field F (x̄) generated by bracket operations from the vector
fields of the family

F := {f(·, u) : u ∈ U}
associated with the system such that

〈F (x̄), ν(x̄)〉 < 0,

where ν(x̄) is the normal unit vector to the target S at x̄.
Equivalently, there exists a constant μ > 0 such that for every point ȳ /∈ S in

a neighborhood of x̄ there exists a vector field F (ȳ) generated by bracket operations
from the vector field of F such that

〈F (ȳ),∇dS(ȳ)〉 < −μ.
This condition can be viewed as a Petrov’s condition of higher order, and in fact

it leads to Hölder continuity of T and no longer to Lipschitz continuity, where the
exponent of the modulus of continuity depends again on the order of the Lie brackets
involved.

A natural question is whether such a condition can be extended to control systems
with drift of the form

ẋ = f(x) +

d∑
i=1

uigi(x), |ui| ≤ 1, i = 1 . . . d.

It would be very interesting also to relax the assumption on F (x), requiring in a
neighborhood of S the existence of a vector field generated by bracket operations
from vector fields of F pointing towards the target, but allowing the scalar product
between F (ȳ) and ∇dS to vanish sufficiently slowly when ȳ approaches the target
(thus no longer necessarily bounded away from zero).

Among recent papers, we should mention [16] and [17], where the problem was
studied by assuming the existence for every x near to the target of a suitable selection
yx(t) ∈ Rx(t) having a special expansion. In this way, a set of regular higher order
variations to the attainable set is defined, which is related to the first term of a
suitable approximation of admissible trajectories. Then the behavior of the scalar
product between their leading term and the normal to the target is analyzed. In [16]
this scalar product is required to be negative and bounded away from 0.

In the paper [18] a first attempt to relax this assumption was made, stating a
second order condition for general systems with drift for a possibly nonsmooth target
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S satisfying some regularity conditions, where the regularity assumptions on the target
automatically hold in the smooth case.

This condition ensures the existence of an admissible trajectory steering every
point x of a neighborhood of S (or a neighborhood relative to the reachable set) to
S in a finite amount of time T̃ (x), continuously depending on the starting point x.
In order to make the required estimates, we need the expansion of the distance along
such a trajectory. This procedure involves the scalar product of the Lie brackets of
the controlled vector fields with generalized gradients of the distance, and must also
take into account the effect of a nontrivial drift.

In [17], which follows closely the approach of [16] and [18], the results are gener-
alized by relaxing the regularity assumptions on the target.

1.5. Our contribution. The aim of this paper is to extend the result of [18]
beyond the second order, considering higher order expansion, and possibly taking into
account further geometrical properties of the target itself, e.g., curvature.

In Example 5.21 we will present a situation in which the main results of both [16]
and [17] do not apply, while our results can be used. However our results cannot be
considered a full generalization of [16] and [17], since we assume more regularity on
the target set.

We underline also that the authors of [16] and [17] do not take into account any
curvature property of the target, since their hypotheses on the regularity of the target
are very mild.

To better illustrate the kind of results we are going to prove, let us sketch a
simplified version of one of our main results (see Theorem 5.10).

Theorem 1.1. Given a compact set U ⊆ R
m, f : Rd × U → Rd, and a com-

pact target set S ⊆ Rd of class C2, consider the control system ẋ(t) = f(x(t), u(t)),
x(0) = x0, with u : R → U measurable. Let δ, L, C, α > 0, and k ∈ N \ {0} be
constants with 0 ≤ αk < 1 and 0 < 1/k − α ≤ 1. Assume that for any x ∈ Sδ :=
{p ∈ Rd : dS(p) := dist(p, S) < δ} and for any 0 ≤ t ≤ 1 there exist a point
yx(t) ∈ Rd and vxk ∈ Rd such that ‖vxk‖ ≤ L, yx(0) = x, t �→ yx(t) is continuous,
〈vxk ,∇dS(x)〉 ≤ CdαS(x), and∥∥∥∥yx(t)− x− vxk

k!
tk
∥∥∥∥ ≤ Ltk+1.

Then STLA holds and, more precisely, the minimum time function T is Hölder con-
tinuous with exponent min{1− αk, 1/k − α} in Sδ \ S.

Roughly speaking, the theorem states that if from every point x near the target we
can approximately reach a point y nearer to the target itself, with a suitable relation
between the rate of decrease of the distance (which depends on the scalar product
between the gradient of the distance and the nonzero terms in the expansion) and the
time needed to reach the point, then STLA holds. Indeed, this result holds true not
only for control-affine systems but also for general ones. The problem of providing
necessary and sufficient conditions in order to ensure the existence of the desired
expansion is still open. Indeed, it is clear that full controllability would be sufficient,
but in this case the result would become trivial. We give two sufficient conditions for
control-affine systems in Lemma 4.9.

The second main goal of the paper is to study the role of the curvature of the
target in controllability issues. Consider for example the simple system (ẋ(t), ẏ(t)) =
(0, u(t)), where u(t) ∈ [−1, 1] and target S = R \ B(0, 1). It is clear that given
(x, y) ∈ B(0, 1), we have T (x, y) =

√
1− x2 − |y|, which is Hölder- 12 continuous.

D
ow

nl
oa

de
d 

02
/1

3/
15

 to
 1

57
.2

7.
22

6.
18

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

438 ANTONIO MARIGONDA AND SILVIA RIGO

However, we have that at every point of the form (x, 0) with 0 < |x| < 1, the reachable
set from (x, 0) is a segment orthogonal to ∇dS(x, 0). Thus the Petrov condition and
also higher order Petrov’s conditions will fail. Nevertheless, we will prove that negative
curvature of the target will generate a second order effect which allows us to reach
the target and have good estimates on the minimum time function even in this case.

The paper is structured as follows: in section 2, we fix the notation, recall some
notions of nonsmooth analysis such as generalized gradients and semiconcave func-
tions, and review basic concepts of control theory. In section 3 we introduce a notion
of generalized curvature that will be used later to improve controllability conditions.
In section 4 we focus on control-affine systems with drift. In section 5 we state and
prove the main results about higher order sufficient conditions for STLA to a possi-
bly nonsmooth target S, providing some illustrative examples. Finally, section 6 is
devoted to conclusions and still open problems.

2. Preliminaries and notation. In this section we will fix the notation we will
use and recall some fundamental results that will be used throughout the paper.

Our main reference for this section will be Chapter 1 of [5].

2.1. General notation.
Definition 2.1. Let K be a closed subset of Rd, S ⊂ Rd, x = (x1, . . . , xd) ∈ K,

y = (y1, . . . , yd) ∈ Rd, r > 0, X be a vector space, and f : X → R ∪ {+∞} be a
function.

We denote by

〈x, y〉 :=
d∑
i=1

xiyi the scalar product in R
d;

‖x‖ :=
√
〈x, x〉 the Euclidean norm in R

d;
∂S, int(S), S the topological boundary,

interior and closure of S;
diam(S) := sup{‖z1 − z2‖ : z1, z2 ∈ S} the diameter of S;

Bd := {w ∈ Rd : ‖w‖ < 1} the open unit ball
(centered at the origin);

Sd−1 := {w ∈ Rd : ‖w‖ = 1} = ∂Bd the unit sphere
(centered at the origin);

B(y, r) := {z ∈ Rd : ‖z − y‖ < r} = y + rBd the open ball centered
at y of radius r;

dK(y) := dist(y,K) = min{‖z − y‖ : z ∈ K} the distance of y from K;

d�K(y) := 2dK(y)− d∂K(y) the signed distance of y from K;
πK(y) := {z ∈ K : ‖z − y‖ = dK(y)} the set of projections of y

onto K;

co(S) :=
⋂

C convex
C ⊇ S

C the convex hull of S;

Sc := Rd \ S the complement of S;

Sδ = B(S, δ) := {y ∈ Rd : dS(y) < δ} the δ-neighborhood of S;
NP
K(x) the proximal normal cone to K

at x (see Definition 2.5);

dom f := {x ∈ X : f(x) < +∞} the domain of f ;
epi f := {(x, β) ∈ X × R : x ∈ dom f, β ≥ f(x)} the epigraph of f ;

hypo f := {(x, α) ∈ X × R : x ∈ dom f, α ≤ f(x)} the hypograph of f ;
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∂P f(x), ∂
P f(x) the proximal subdifferential and the

proximal superdifferential of f at x
(see Definition 2.6);

∂f(x) the Clarke generalized gradient of
f at x (see Definition 2.7);

T (·) the minimum time function
(see Definition 2.18);

ν(·) the Gauss map (see Definition 3.1);
Sx the shape operator (see Definition 3.1);
�r� := max{n ∈ Z : n ≤ r} the integer part of r.

If πK(y) = {ξ}, i.e., it is a singleton, we will identify it with its unique element
and write πK(y) = ξ.

Definition 2.2. If X is a topological vector space, we say that f : X → R∪{+∞}
is lower semicontinuous if epi f is closed in X×R with respect to the product topology
on X × R, i.e.,

lim inf
y→x

f(y) ≥ f(x).

A function g : X → R ∪ {−∞} is called upper semicontinuous if −g is lower semi-
continuous.

Definition 2.3. Given the Banach spaces X and Y , U ⊆ X, V ⊆ Y be open,
a function f : U → V is said to be a Lipschitz continuous function (f ∈ Lip(U)) if
there exists C > 0, called a Lipschitz constant, such that for every x1, x2 ∈ U

‖f(x1)− f(x2)‖Y ≤ C‖x1 − x2‖X .
A function f : U → V is called locally Lipschitz continuous (f ∈ Liploc(U)) if it is
Lipschitz continuous on every compact set of U .

Similarly, given 0 < α < 1, f is said to be a Hölder continuous function of
exponent α if there exists C > 0, such that for every x1, x2 ∈ U

‖f(x1)− f(x2)‖Y ≤ C‖x1 − x2‖αX .
We recall the following classical result on regularity of Lipschitz functions on

finite-dimensional spaces (the proof can be found, e.g., in Corollary 4.19 p. 148 of
[5]).

Theorem 2.4 (Rademacher’s theorem). Let X be a finite-dimensional Banach
space, U ⊆ X be open, and f : U → R be a locally Lipschitz function. Then f is
differentiable a.e.

2.2. Nonsmooth analysis. We recall now a generalized concept of a normal
vector to possibly nonsmooth closed sets.

Definition 2.5 (proximal normals). Let K be a closed subset of Rd. A vector v
is called a proximal normal to K at x ∈ K if there exists σ = σ(v, x) ≥ 0 such that

〈v, y − x〉 ≤ σ‖v‖‖y − x‖2

for every y ∈ K. The set of all proximal normals to K at x will be denoted by NP
K(x)

and called the proximal normal cone to K at x. We recall that when K is closed and
convex, we can take σ = 0 in the above definition, whence the proximal normal cone
at x reduces to the normal cone at x in the sense of convex analysis, namely, the set
of vectors v ∈ Rd such that 〈v, y − x〉 ≤ 0 for all y ∈ K.
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When the closed set K is taken to be the epigraph of a lower semicontinuous
function, we can use the above definition to define a geometric object generalizing the
classical differential.

Definition 2.6 (proximal subdifferential). Let f : Rd → R ∪ {+∞} be a lower
semicontinuous map, x ∈ dom(f), and ζ ∈ R

d. We say that ζ is a proximal subgra-
dient of f at x if (ζ,−1) ∈ NP

epi(f)(x, f(x)). The possibly empty set of all proximal

subgradients of f at x will be denoted by ∂P f(x) and called the proximal subdifferential
of f at x. The following proximal inequality formula gives another characterization
of ∂P f(x):

ζ ∈ ∂P f(x) iff there exist σ, η > 0 s.t. f(y) ≥ f(x) + 〈ζ, y − x〉 − σ‖y − x‖2

for all y ∈ B(x, η).
Symmetrically, it is possible to define the proximal superdifferential ∂P g(x) of an

upper semicontinuous function g : Rd → R ∪ {−∞} by taking

∂P g(x) = {ζ ∈ R
d : (ζ, 1) ∈ NP

hypo g(x)}.
In this case the proximal inequality formula becomes

ζ ∈ ∂P f(x) iff there exist σ, η > 0 s.t.f(y) ≤ f(x) + 〈ζ, y − x〉+ σ‖y − x‖2

for all y ∈ B(x, η).
Definition 2.7 (Clarke’s generalized gradient). Let Ω be an open subset of Rd,

f : Ω → R be locally Lipschitz continuous, and x ∈ Ω. We recall that Clarke’s
generalized gradient of f at x is given by

∂f(x) := co

{
lim
k→∞

∇f(yk) : {yk}k∈N ⊂ Ω, ∃∇f(yk), and yk → x

}
.

Notice that, by Rademacher’s theorem, we have ∂f(x) �= ∅ for all x ∈ Ω.
The multidimensional version of Clarke’s generalized gradient is Clarke’s gener-

alized Jacobian.
Definition 2.8. Let Ω be an open subset of Rd, F : Ω → Rm be a Lipschitz

continuous map. We denote the components of F by fi, i = 1, . . . ,m, i.e.,

F (x1, . . . , xd) = (f1(x1, . . . , xd), . . . , fd(x1, . . . , xd)) .

The generalized Jacobian ∂F (x) of F at x ∈ Ω is the set

∂F (x) := co
{
lim
i→∞

JacF (xi) : xi → x and F is differentiable at xi

}
.

In the case m = 1, we identify the 1 × d matrix in the right-hand side with a d-
dimensional vector.

We recall the following properties of the generalized Jacobian, referring the reader
to Propositions 2.6.2, 2.6.4, 2.6.5 in [4] for a proof.

Proposition 2.9. Using the same notation as Definition 2.8, the following hold:
1. ∂F (x) is a compact convex subset of Rm×d, bounded by the ball centered at

the origin of radius K := ‖(K1, . . . ,Km)‖, where Ki is the Lipschitz constant
of fi, i = 1, . . . ,m.

2. ∂F (x) is contained in the set of all matrices whose ith row belongs to ∂fi(x)
for every i = 1, . . . ,m.
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3. Given v ∈ Rd, w ∈ Rm, we have that

∂F (x)v = ∂̃F (x)v, (∂F (x))Tw = (∂̃F (x))Tw,

where

∂̃F (x) := co
{
lim
i→∞

JacF (xi) : xi → x, xi /∈ N , and F is differentiable at xi

}
,

and N is an arbitrary set of Lebesgue measure zero.
4. ∂F is an upper semicontinuous multifunction: if {(xi,Mi)}i∈N ⊆ Rd×Matm×d

is a sequence such that xi → x,Mi →M , andMi ∈ ∂F (xi), thenM ∈ ∂F (x).
5. We have that

F (x)− F (y) ∈ co {Z(y − x) : Z ∈ ∂F (tx+ (1− t)y) : t ∈ [0, 1]} .

Now we recall the definition of a particular class of functions generalizing convex
functions. Our main reference is [2].

Definition 2.10 (semiconcavity). A continuous function v : Ω → R with Ω ⊂ Rd

is called locally semiconcave in Ω if, for any compact convex set K ⊂ Ω there exists
c = c(K) ≥ 0 such that

(2.1) λv(x) + (1− λ)v(y)− v(λx + (1− λ)y) ≤ λ(1− λ)c‖x− y‖2

for any x, y ∈ K, λ ∈ [0, 1]. The constant c = c(K) appearing in (2.1) is called a
semiconcavity constant for v on K. Given a compact convex set K ⊆ Ω, the minimal
constant c = c(K) such that (2.1) is satisfied for any x, y ∈ K, λ ∈ [0, 1] will be called
the sharp semiconcavity constant of v(·) on K, and will be denoted by cK ≥ 0.

We say that u is locally semiconvex if −u is locally semiconcave. If cK can be
chosen independently of K, we will omit the adjective “locally.”

Semiconcave functions enjoy some remarkable properties, summarized in the fol-
lowing.

Proposition 2.11. Let v : Ω → R be a function. Then

1. v is semiconcave if and only if there exists c > 0 such that v(x) − c‖x‖2

2 is
concave in every convex subset of Ω;

2. if v : Ω → R is both semiconcave and semiconvex, then v ∈ C1,1(Ω);
3. let v : Ω → R be semiconvex. Then v is locally Lipschitz in Ω and ∂P v(x) =
∂v(x) at every x ∈ Ω. In particular, the subdifferentials ∂P v(x) �= ∅ at
each point. If v is semiconcave, the same results hold, with superdifferentials
instead of subdifferentials;

4. if v is semiconcave, then it is twice differentiable a.e. in the domain.
Alternative characterizations of semiconcave functions can be given (see [2]).
Proposition 2.12. Let Ω be an open convex subset of Rd, v : Ω → R be a

function, and c ≥ 0. The following are equivalent:
1. v is semiconcave and c is a semiconcavity constant for v;
2. for every p ∈ ∂P v(x) we have

v(y)− v(x) ≤ 〈p, y − x〉 + c‖y − x‖2;

3. for any w ∈ Rd such that ‖w‖ = 1 we have ∂2wwv ≤ 2c in the sense of
distributions in Ω.
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The prototype of a semiconcave function is the distance function from a closed
subset S of Rd, i.e. the function dS : Rd → R defined as

dS(x) = min{‖y − x‖ : y ∈ S}.
The following semiconcavity result is proved, e.g., in Proposition 3.2 in [2].

Proposition 2.13. Let S ⊂ Rd be a closed set. Then
(i) the distance function dS is locally semiconcave in Rd\S, more precisely, dS is

semiconcave on each open bounded set A whose closure is contained in Rd \S
with constant 1/dS(A), where

dS(A) = inf{dS(y) : y ∈ A};
(ii) if there exists ρ > 0 such that the following condition (called ρ-internal sphere

condition) holds,

(2.2) ∀x ∈ S ∃x0 ∈ S : x ∈ B(x0, ρ) ⊂ S,

then dS is semiconcave also in Rd \ intS, i.e., it is semiconcave up to the
boundary of S.

Remark 2.14. The above result states that for every closed set S ⊆ R
d the

distance function is locally semiconcave in Rd \ S and the constant of semiconcavity
in general blows up as we consider domains approaching the boundary of S. If S
satisfies the ρ-internal sphere condition, the constants of semiconcavity in each domain
of Rd \ S are bounded, i.e., for every x, y ∈ Rd \ S we have

dS(y)− dS(x) ≤ 〈∇dS(x), y − x〉 + 1

ρ
‖y − x‖2.

In particular, if ∂S is a smooth hypersurface of class C2 property (2.2) holds locally,
i.e., for every R > 0 with S ∩B(0, R) �= ∅ there exists ρ = ρR > 0 such that

(2.3) ∀x ∈ S ∩B(0, R) ∃x0 ∈ S : x ∈ B(x0, ρR) ⊂ S.

2.3. Control theory.
Definition 2.15 (control system). Let U be a compact subset of Rm, called the

set of admissible controls, f : Rd × U → Rd be a function continuous in the variable
u and Lipschitz continuous in the variable x ∈ Rd, uniformly w.r.t. u ∈ U . We are
interested in Carathéodory solutions of the system

(2.4)

{
ẋ(t) = f(x(t), u(t)), t > 0,

x(0) = x̄ ∈ Rd,

where u(·), which is called an open-loop control function, belongs to the set U of
admissible control functions, defined as

U := {u : [0,+∞[→ U, measurable}.
Given τ > 0 and u(·) ∈ U , an admissible trajectory of system (2.4) generated by u(·)
and defined on [0, τ ] is a function x : [0, τ ] → Rd satisfying for all t ∈ [0, τ ]

x(t) = x̄+

∫ t

0

f(x(s), u(s)) ds.

In particular, x(·) is an absolutely continuous function satisfying the initial condition
x(0) = x̄ and the ordinary differential equation in (2.4) for a.e. t ∈ [0, τ ].
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By the regularity of f and the compactness of U , for every x̄ ∈ Rd and u(·) ∈ U ,
for any τ > 0 there exists a unique solution of (2.4) defined on [0, τ ] (see, e.g., section 5
of Chapter 2 in [1]). A relaxed version of this result will be presented in Lemma 5.1.

Definition 2.16 (reachable set). Given the system (2.4) and t ≥ 0, we define
the reachable set Rx̄(t) in time t from x̄ by setting

Rx̄(t) := {y ∈ R
d : there exists a trajectory of (2.4) with x(0) = x̄ and x(t) = y}.

We will be interested in the following particular case of (2.4).
Definition 2.17 (control-affine system). We say that system (2.4) is control

affine if the dynamics assumes the following special form⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = f(x(t)) +
N∑
i=1

ui(t)gi(x(t)), t > 0,

x(0) = x̄ ∈ Rd.

The function f : Rd → Rd is called the drift term, while gi : Rd → Rd are the
controlled vector fields. If f = 0 the system is called driftless or symmetric.

The main object of our study is the following.
Definition 2.18 (minimum time function). Consider the control system (2.4)

and let S be a closed subset of Rd, called the target set. Given x̄ ∈ Rd and u(·) ∈ U ,
we consider the trajectory x(·) of (2.4) generated by u(·). Let I be its maximum
interval of definition, define I+ = I ∩ [0,+∞[, and set

τ(x̄, u(·)) =

⎧⎪⎨
⎪⎩

+∞ if lim
s→t−

x(s) /∈ S for every t ∈ I+,

inf

{
t ∈ I+ : lim

s→t−
x(s) ∈ S

}
otherwise.

The minimum time function T : Rd → [0,+∞] is defined as

T (x) = inf
u(·)∈U

τ(x, u(·)).

The property in which we are interested is the following (see also [16], [17]).
Definition 2.19 (STLA). We say that S is STLA for the system (2.4) if for

any T > 0 there exists an open neighborhood UT ⊆ Rd of S such that T (x) ≤ T for
all x ∈ UT .

Remark 2.20. We will deal mainly with the case in which there exists δ > 0 and
a continuous increasing function ω : [0,+∞[→ [0,+∞[ with ω(p) = 0 iff p = 0 such
that in Sδ we have T (x) ≤ ω(dS(x)). In this case, by the properties of ω(·), for any
T > 0 there exists 0 < r < δ such that ω(s) < T for any s ∈ [0, r]. Thus if we set
UT = Sr we obtain T (x) ≤ ω(r) ≤ T for any x ∈ Sr.

Another controllability property for the system (2.4) which turns out to be strictly
related to STLA is the following.

Definition 2.21 (small-time locally controllable). We say that the system (2.4)
is small-time locally controllable if for any T > 0 and x0 ∈ Rd we have that Rx0(T )
contains a neighborhood of x0.

Similarly, a control system is defined to be small-time locally controllable on a
target S if

(2.5) int
({y ∈ R

d : T (y) < T }) ⊇ S for all T > 0.
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It is clear that the notion of small-time controllability on the target given in (2.5)
is equivalent to STLA: given T > 0,

1. assume that (2.5) holds. Then we define UT = int({y ∈ Rd : T (y) < T })
which by (2.5) is an open neighborhood of S and satisfies T (y) ≤ T for all
y ∈ UT , hence STLA holds;

2. assume that STLA holds. Then we have the existence of an open set UT/2
such that

S ⊆ UT/2 ⊆ int({y : T (y) ≤ T/2}) ⊆ int({y : T (y) < T }),
thus (2.5) is satisfied.

3. Generalized curvature. In this section we will define a notion of curvature
for a class of sets whose boundary is not assumed necessarily to be of class C2.

Indeed, we recall that our objective is to steer every point x0 belonging to a
suitable neighborhood of the target S to the target itself in finite time. To this end, we
will construct a Cauchy sequence of points {xi}i∈N ⊆ Rd and times {ti}i∈N ⊆]0,+∞[
with the following properties:

1. xi+1 ∈ Rxi(ti), i.e., every point xi+1 of the sequence can be reached from its
predecessor xi in time ti by an admissible trajectory;

2. dS(xi) is strictly decreasing and dS(xi) → 0, i.e., the xi are approaching S;
3.
∑

i ti < +∞, i.e., the process will take a finite amount of time.
The results that we will prove in this section will be used mainly regarding issue (2)

above, providing a suitable second order quadratic expansion of the distance function.
The semiconcavity property of the distance stated in Proposition 2.13, and in

particular the semiconcavity inequality of Remark 2.14, seem to be natural tools to
give a quantitative estimate of the decreasing of the distance from the target, even in
a nonsmooth setting in which the distance fails to be differentiable at every point.

We recall the following classical definitions (see, e.g., [13]).
Definition 3.1. Let Ω ⊂ Rd an open bounded set whose boundary S is an

hypersurface of class C2, oriented with unit normal external to Ω. For every x ∈ S,
we denote by νx ∈ R

d the positive unit normal to S at x (i.e., the external unit normal
to Ω at x). The Gauss map ν : S → Sd−1 of S associates with every x ∈ S the vector
νx. If the map ν(·) is differentiable at x, its differential dν(x) at x ∈ S is called the
shape operator (or Weingarten map) Sx. If we represent Sx as a square matrix of
order d, we have that its eigenvalues are the classical principal curvatures of S at x,
while its determinant is the Gaussian curvature of S at x.

We start from a simple remark giving a useful geometric interpretation of the
sharp semiconcavity constant of the distance to the target set.

Lemma 3.2. Let Ω ⊂ R
d an open bounded set whose boundary S is a hypersurface

of class C2, oriented with unit normal external to Ω. Then all the principal curvatures
of S at each point are bounded above by twice the sharp semiconcavity constant of dS.

Proof. Since S is smooth, we have that the signed distance d�
Ω
(·) from Ω (see

Definition 2.1) is of class C2 near S, hence x �→ Sx is continuous on S. Indeed, for
every x ∈ S, v, w ∈ Rd we have, according to Definition 3.1,

ν(x) = ∇d�
Ω
(x), 〈〈Sx, v′〉, w′〉 =

〈〈
∇2d�

Ω
(x), v

〉
, w
〉
,

where v′, w′ are the projection on the tangent space to S at x of v, w, respectively.
Since S is compact and C2, it follows from Proposition 2.13 that dS is semiconcave

up to the boundary of Ω . Let C > 0 be a semiconcavity constant for dS . We recall
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from Proposition 2.12 that ∂2wwdS ≤ 2C in the sense of distributions, but since dS is
smooth sufficiently near to S, we have that this inequality holds pointwise at every
y /∈ Ω̄ sufficiently near to S. For every x ∈ S and w ∈ Rd, we write w = μν(x) + λw′

with μ, λ ∈ R, 〈ν(x), w′〉 = 0, and ‖w′‖ = 1. Thus, since ∇2dS is continuous and

∇2d�
Ω
(y) = ∇2dS(y) for every y /∈ Ω̄, we have

λ2〈〈Sx, w′〉, w′〉 =
〈〈

∇2d�
Ω
(x), w

〉
, w
〉
= lim

y → x

y /∈ Ω̄

〈〈∇2dS(y), w〉, w〉 ≤ 2C(λ2 + μ2).

By the arbitrariness of λ, μ, w, this means that all the eigenvalues of Sx, i.e., all the
principal curvatures of S at x, are bounded above by 2C, and since C was an arbitrary
semiconcavity constant for dS , the proof is concluded.

Lemma 3.2 links semiconcavity to curvature in the smooth hypersurface case,
leading to an interpretation of the sharp semiconcavity constant of the distance as
an upper bound for principal curvatures, even in the nonsmooth case. Nevertheless,
even in the smooth case, the signs of the principal curvatures turn out to play an
important role when we have to consider second order phenomena. This is illustrated
by the following simple example.

Example 3.3. The ground space is R2. Consider the system{
ẋ1(t) = u(t) ∈ [−1, 1],

ẋ2(t) = 0.

Take S := R
2 \B((0, 0), 1). Given x = (x1, x2) ∈ B((0, 0), 1) we have dS(x) = 1− |x|,

moreover, for x ∈ B((0, 0), 1) \ {(0, 0)}, we have

∇dS(x) = − x

|x| , D2dS(x) =
1

|x|3
( −x22 x1x2
x1x2 −x21

)
.

Let −1 < α < −1/2 and set x̄ = (0, α). We have ∇dS(x̄) = (0, 1) and D2dS(x̄) =(
α−1 0
0 0

)
. The eigenvalues of D2dS(x̄) are α

−1 < 0 and 0, hence we can choose K = 0
in the semiconcavity inequality (this follows also from the fact that since S is the
complement of a convex set, it enjoys the internal sphere condition with arbitrary
large ρ).

If t �→ x(t) = (x1(t), x2(t)) ∈ B((0, 0), 1) is an admissible trajectory for the system
satisfying x(0) = x̄, using Taylor’s expansion we get

dS(x(t)) = 1−
√
x21(t) + α2 = 1− |α| − x21(t)

2|α| +O(x1(t)
4)

= dS(x̄)− x21(t)

2|α| +O(x41(t)),

where |O(x41(t))| ≤ 6
|α|5x

4
1(t).

In this case, the semiconcavity inequality yields just the much weaker estimate

dS(x(t)) − dS(x̄) ≤ 〈∇dS(x̄), x(t) − x̄〉+K‖x(t)− x̄‖2 = 0.

We conclude that starting from x̄ we can approach the target at second order
thanks to (negative) curvature properties of the target. This fact cannot be deduced
from the semiconcavity inequality only. However, a strong smoothness assumption on
the target was crucial in order to obtain second order derivatives of the distance, while
the semiconcavity inequality holds for a much wider class of closed sets, including also
nonsmooth sets (e.g.,the complement of nonsmooth convex sets).
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3.1. Sets with positive reach and generalized curvature. In order to im-
prove the estimate given by the semiconcavity inequality taking into account, more
carefully, curvature effects, we focus our attention on sets belonging to an intermedi-
ate class of smoothness between general closed sets and sets with boundary of class
C2. The sets belonging to this class, called sets with positive reach, enjoy a strong
regularity property of the proximal normals, which results in certain regularity prop-
erties of the boundary. The class of sets with positive reach was introduced first by
Federer in [10], and then was studied by several authors, both in finite and infinite
dimensions. We refer the reader to [6], [7], and [9], for a recent survey on this subject.

Definition 3.4 (Federer). Let A ⊂ Rd, a ∈ A. We denote by Unp(A) the
(possibly empty) set of all those points x ∈ Rd for which there exists a unique point
of A closest to x. Then the projection map πA : Unp(A) → A, which associates with
x ∈ Unp(A) the unique a ∈ A such that dA(x) = ‖x − a‖, is well defined for all
x ∈ Unp(A). We set

reach(A, a) := sup {r ≥ 0 : B(a, r) ⊆ Unp(A)} ,
reach(A) := inf {reach(A, a) : a ∈ A} .

Classical results on closed sets and sets with positive reach are collected in the
following.

Theorem 3.5 (Federer). For every nonempty closed subset A of Rd the following
statements hold, with d(·) = dA(·), π(·) = πA(·), U = Unp(A):

1. ‖d(x)− d(y)‖ ≤ ‖x− y‖ whenever x, y ∈ Rd.
2. If x ∈ Rd \A and d(·) is differentiable at x, then x ∈ U and

grad d(x) =
x− π(x)

d(x)
.

3. π(·) is continuous.
4. d(·) is continuously differentiable on int(U \A) and d2 is continuously differ-

entiable on intU with

gradd2(x) = 2[x− π(x)]

for x ∈ intU .
5. If x ∈ U , a = π(x), reach(A, a) > 0, and b ∈ A, then

〈x− a, b− a〉 ≤ ‖x− a‖
2reach(A, a)

‖a− b‖2,

i.e., for every x ∈ U we have x − π(x) ∈ NP
A (x − πA(x)) and we can take

σ = 1
2reach(A,πA(x)) in the proximal normal inequality.

6. Assume that 0 < r < reachA. Then πA(·) is Lipschitz continuous on Ar \A,
where Ar := {y ∈ Rd : dA(y) ≤ r} with constant r/(reachA− r).

For a set A with positive reach, we notice that ∇dA(x) ∈ NP
A (πA(x)) for every

x ∈ Unp(A) \A, but, since the distance function is just C1,1, we have that the second
order differential of dA is defined just a.e. in a neighborhood of A. Our aim is to
replace it by a suitable construction employing Clarke’s generalized Jacobian of ∇dA,
which is Lipschitz continuous in Unp(A) \A.

We are ready now to formulate a quite simple and natural notion of generalized
curvature as follows.

Definition 3.6 (generalized curvature). Let A be a closed subset of Rd with
positive reach, x, y ∈ Rd \A such that tx+ (1− t)y ∈ Unp(A) \A for every t ∈ [0, 1].
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We define the following generalized curvature operator:

K (x, y) :=
1

2
co {〈〈Z, y − x〉, y − x〉 : Z ∈ ∂∇dA(x+ t(y − x)), t ∈ [0, 1]} ,

where ∂∇dA(p) is taken in the sense of the generalized Jacobian of the Lipschitz map
∇dA(·) at p.

Remark 3.7. If we assume that the boundary of A is a smooth hypersurface, and
that x and y are sufficiently near to ∂A, we can replace the generalized Jacobian with
the classical one, and consider

K (x, y)

‖y − x‖2 =
1

2
co

{〈〈
Hess dA(x+ t(y − x)),

y − x

‖y − x‖
〉
,
y − x

‖y − x‖
〉

: t ∈ [0, 1]

}
.

In particular, for every v ∈ Sn−1 we have

lim
t→0+

K (x, x+ tv)

t2
=

1

2
〈〈Hess dA(x), v〉 , v〉 = 1

2
〈〈SπA(x), v〉, v〉,

where SπA(x) is the shape operator at πA(x).
The main motivation of Definition 3.6 is illustrated by the following.
Proposition 3.8. Let A be a closed subset of Rd with positive reach, x, y ∈ Rd\A

such that tx + (1 − t)y ∈ Unp(A) \ A for every t ∈ [0, 1]. We have the following
generalized Taylor formula:

dA(y)− dA(x) − 〈∇dA(x), y − x〉 ∈ K (x, y).

In particular, given μ > 0, 0 < δ < dA(x), if we assume that there exists v ∈ Sd−1

such that for every p ∈ B(x, δ) we have

〈〈Z, v〉, v〉 < −μ for all Z ∈ ∂∇dA(p),
then for every t ∈]0, δ[

dA(x+ tv) ≤ dA(x) + t〈∇dA(x), v〉 − t2μ.

Remark 3.9. The above result can be interpreted as follows. Suppose that we
can choose v ∈ (∇dA(x))⊥ in the above proposition. Then the above result states
that if we move from x in direction v for a short time, we are still approaching the
target at the second order, due to curvature effects.

Proof of Proposition 3.8 is based on the following lemma, which is a special case
of Theorem 2.3 in [14], to which we refer the reader for a proof.

Lemma 3.10. Let Ω be an open convex subset of Rd, f : Ω → Rm be a function
of class C1,1. Then for every x, y ∈ Ω we have that

f(y)− f(x)− 〈∇f(x), y − x〉
belongs to the set

∂∇f [x, y] := 1

2
co {〈〈Z, y − x〉, y − x〉 : Z ∈ ∂∇f(x+ s(y − x)), s ∈ [0, 1]} .

Proof of Proposition 3.8. We apply Lemma 3.10 to dA choosing as Ω an open
tubular neighborhood of {tx+ (1− t)y : t ∈ [0, 1]}.
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448 ANTONIO MARIGONDA AND SILVIA RIGO

We present now a variation of Example 3.3, where we are able to explicitly com-
pute the generalized curvature operator.

Example 3.11. The ground space is R2. Consider the system

{
ẋ(t) = u(t) ∈ [−1, 1],
ẏ(t) = 0.

Define

g(x) :=

⎧⎪⎨
⎪⎩

−√
1− x2 for − 1 ≤ x ≤ 0,

1−√
4− x2 for 0 < x ≤ 2,

+∞ for x < −1 or x > 2,

and set S := hypo g. We have that reach(S) = 1. Consider now

U := (R2 \ S) ∩ {y < −1/2} ⊆ Unp(S),

which can be written as U = U+ ∪ U− ∪ U0, where U+ := U ∩ {x > 0}, U− :=
U ∩ {x < 0}, and U0 := U ∩ {x = 0} = {0}×]− 1,−1/2[.

As in Example 3.3, the sharp semiconcavity constant of dS(·) is 0 since S is the
complement of an open convex set, hence satisfies the internal sphere condition at
every point of the boundary with arbitrary large radius.

By elementary computations we have

dS(x, y) =

⎧⎪⎨
⎪⎩

1−√x2 + y2 if (x, y) ∈ U−,
2−√x2 + (y − 1)2 if (x, y) ∈ U+,

1− |y| if (x, y) ∈ U0.

∇dS(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− (x, y − 1)√
x2 + (y − 1)2

for (x, y) ∈ U+,

− (x, y)√
x2 + y2

for (x, y) ∈ U−,

(0, 1) for (x, y) ∈ U0.

D2dS(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

(x2 + y2)3/2

( −y2 xy
xy −x2

)
for (x, y) ∈ U−,

1

(x2 + (y − 1)2)
3/2

( −(y − 1)2 x(y − 1)
x(y − 1) −x2

)
for (x, y) ∈ U+.

If we consider an admissible trajectory t �→ (x(t), y(t)) starting from U0 at t0 = 0,
we have 〈∇dS(0, y(0)), (x(t), 0)〉 = 0, so the semiconcavity inequality yields no strong
information about approaching the target.

It is clear that dS(·) ∈ C1(U) ∩C2(U+ ∪ U−); however, it turns out that ∇dS(·)
is not differentiable on U0 and hence its classical Hessian cannot be defined on the
whole of U . Thus the method used in Example 3.3 cannot be used.

Since we have that ∇dS is Lipschitz continuous on U it make sense to consider
Clarke’s generalized Jacobian ∂∇dS(x, y) at every point of U .

D
ow

nl
oa

de
d 

02
/1

3/
15

 to
 1

57
.2

7.
22

6.
18

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONTROLLABILITY VIA CURVATURE 449

In particular, since dS ∈ C2(U+ ∪ U−), we have that ∂∇dS(x, y) = D2dS(x, y)
for every (x, y) ∈ U+ ∪ U−. Noticing that

lim
(x′, y′) → (0, y)

(x, y) ∈ U−

D2dS(x, y) =
1

y

(
1 0
0 0

)
,

lim
(x′, y′) → (0, y)

(x, y) ∈ U+

D2dS(x, y) =
1

y − 1

(
1 0
0 0

)
,

we have

∂∇dS(0, y) =
{
λ− y

y − y2

(
1 0
0 0

)
: λ ∈ [0, 1]

}
.

Given (x, y) ∈ U+, we compute the generalized curvature operator

K

((
0
y

)
,

(
x
y

))

=
1

2
co

({〈〈
Z,

(
x
0

)〉
,

(
x
0

)〉
: Z ∈ ∂∇dS(0, y)

}

∪
{〈〈

D2dS(λx, y),

(
x
0

)〉
,

(
x
0

)〉
: λ ∈]0, 1]

})

=
1

2
co

([
x2

y
,
x2

y − 1

]
∪
]

x2

y − 1
,− x2(y − 1)2

(x2 + (y − 1)2)3/2

])

=

[
x2

2y
,− x2(y − 1)2

2 (x2 + (y − 1)2)
3/2

]
.

Recalling that since −1 < y < −1/2 we have 2 < 9/4 < (y−1)2 < 4, and that x2 < 1,
we can give the following estimate:

K ((0, y), (x, y)) ⊆ [−x2,−x2/10].
According to Proposition 3.8, this means that if t �→ (x(t), y(t)) is an admissible

trajectory starting at t0 = 0 from U0, and such that (x(t), y(t)) ∈ U+, we have

dS(x(t), y(t)) − dS(0, y(0)) ≤ − 1

10
x2(t),

i.e., we are approaching the target at the second order due to curvature effects. Similar
computations can be performed for the case in which (x(t), y(t)) ∈ U−.

3.2. Comparison with existing notions of generalized curvature. In Chap-
ter 13 of [22] properties of different notions of second order generalized differentials
for several classes of functions are studied. We recall that our main motivation for in-
troducing the generalized curvature was to obtain a suitable quadratic approximation
of the distance function dS(·) around each point x̄ sufficiently near to S.

In this spirit, according to Theorem 13.2 of [22], given a lower semicontinuous
function f : Rd → R, vx̄ ∈ Rd, and Ax̄ ∈ Matd×d(R), we have that f has the following
second order expansion at x̄,

(3.1) f(x) = f(x̄) + 〈vx̄, x− x̄〉+ 〈〈Ax̄, x− x̄〉, x − x̄〉+ ox̄(|x− x̄|2),
if and only if ∂Lf(x̄) = {vx̄} and

∅ �= ∂Lf(x) ⊆ vx̄ +Ax̄(x− x̄) + ox̄(|x− x̄|)Bd,
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where ∂Lf(x) is defined in Definition 8.3 of [22] as

∂Lf(x) :=

⎧⎪⎨
⎪⎩v ∈ R

d : ∃
{
xn → x
vn → v

s.t. lim inf
y → xn

y 
= xn

f(y)− f(xn)− 〈vn, y − xn〉
|y′ − yn|

≥ 0 ∀n ∈ N

⎫⎪⎬
⎪⎭

(actually in [22] ∂Lf is denoted by ∂f , but we use this symbol for a different purpose).
If we want to apply this result to the distance function dS , we obtain that the

assumption for S to be a set with positive reach is sharp. More precisely we have the
following result.

Proposition 3.12. Given a closed set S ⊆ Rd and an open set U ⊆ Rd such
that S ⊆ U , we have that if dS(·) possesses a second order expansion around every
point x̄ ∈ U \ S then S has locally positive reach and U ⊆ Unp(S).

Proof. According to Theorem 13.2 of [22], we have that ∂LdS must be a singleton
at every point x̄ ∈ U \ S. Since dS is locally semiconcave we have that this implies
that dS is differentiable at x̄ by Theorem 3.3.15 in [3]. Hence we have that dS is dif-
ferentiable at x̄ for every x̄ ∈ U \ S. According to Proposition 4.4 in [3], this implies
that every point of U \ S has a unique projection on S and thus U ⊆ Unp(S).
Since U is an open neighborhood of S, we conclude that S has locally positive
reach.

The generalized curvature operator introduced in Definition 3.6 improves the
second order expansion (3.1) giving some uniformity for the remainder term.

Another approach to study curvature properties in the nonsmooth setting is sug-
gested after Exercise 13.17, p. 600 of [22] by means of another kind of second order
generalized differential applied to the indicator function IC : Rd → {0,+∞} defined
as

IC(x) :=

{
0 if x ∈ C,
+∞ if x /∈ C

for a given set C ⊆ Rd. Clearly, if IC is finite and classically differentiable at a point
x̄, it turns out that IC(·) must be constant around x̄, since it must be continuous
at x̄ and IC(y) ∈ R iff IC(y) = 0. In particular, all classical differentials vanish at
x̄. The notion of second order generalized differential used by authors is the second
order epi-differential, defined in Definition 13.6, p. 586 of [22]. An explicit formula
for the second order epi-differential of IC(·) is provided by Exercise 13.17 in the case
when C has the special form C = {x ∈ X : F (x) ∈ D}, where F : Rd → Rm is a
C2 function, and X ⊆ Rd, D ⊆ Rm are polyhedral sets, i.e. intersections of a finite
family of hyperplanes or half-spaces in Rd and in Rm, respectively. Also, a suitable
constraint qualification condition is required to be satisfied involving D and F . The
following example will show that this notion of generalized curvature differs from the
one we introduced.

Example 3.13. In R
2, let h(x) = |x|3/2. Set C = epih. Notice that C is

convex, hence reachC = +∞. Thus the generalized curvature operator K (x, y)
can be computed for every x, y ∈ R2 such that the segment joining x and y does
not intersect C. If we take X = R2, D = {0}, F (x, y) = y − h(x) we have that
C = {x ∈ X : F (x) ∈ D}, but F fails to be of class C2(R2) since h ∈ C1,1(R)\C2(R)
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as its second order derivative is not continuous at x = 0. Thus the notion of curvature
given by the formula in Exercise 13.17, p. 600 of [22] cannot be used.

From a totally different point of view, in [10] were introduced the curvature mea-
sures as a generalization of Steiner’s formula for convex bodies. More precisely, given
a set A ⊆ R

d with reach(A) > 0 it was proved that for each bounded Borel subset Q
of Rd and for 0 ≤ r < reach(A), the d-dimensional measure of

{x ∈ R
d : dA(x) ≤ r and πA(x) ∈ Q}

is given by a polynomial of degree at most d in r, say

d∑
i=0

rd−iα(d− i)Φi(A,Q),

where α(j) is the j-dimensional measure of the unit ball in Rj .
The coefficients Φ(A,Q) are countably additive with respect to Q, defining the

curvature measures Φi(A, ·), i = 0, . . . , d. If the Hausdorff dimension of A is k, then
Φi(A, ·) = 0 for i > k, Φk(A, ·) is the restriction of the k-dimensional Hausdorff
measure to A, and the measures Φi(A, ·) corresponding to i < k depend on second
order properties of A.

Curvature measures also enjoy some remarkable stability properties, namely, given
ε > 0 and a sequence {Ah}h∈N of sets with reach(Ah) ≥ ε for all h ∈ N and such that
Aj → A in the Hausdorff metric, then the associated sequences of curvature measures
converge weakly to the curvature measures of the limit set A, whose reach is also at
least ε. Federer concludes that in this way any set A with positive reach may be
approximated in curvature by the solids {x ∈ Rd : dA(x) ≤ s} for s→ 0+.

According to Definition 5.7 in [10], if the numbers Φi(A,A), i = 0, . . . , d are finite
(this is true e.g., if A is compact) they can be considered the total curvatures of A
in the following sense. If ∂A is smooth, then Φi(A,A) is the ith mean curvature
of A, i.e., the integral on ∂A of the ith elementary symmetric polynomial of the
principal curvatures. In the positive reach case, curvature measures are constructed
as the limit as s→ 0+ of the integral of the ith mean curvature of the (smooth) sets
{x ∈ Rd : dA(x) ≤ s} (Theorem 5.5 in [10]). Thus it is possible to use the generalized
curvature operator introduced in Definition 3.6 to give upper and lower bounds on
them. However, since we are interested more in a pointwise directional decreasing
property of the distance and not in the mean curvature properties of the surface, the
use of curvature measures seems not to be natural.

4. Control-affine systems with drift. We turn now our attention to control-
affine systems. Our problem will be to give a suitable approximation of Rt(x̄) for
t > 0 sufficiently small. These results will be later applied to particularize the general
results of section 5. Throughout this section we will assume that we have a control
system in Rd of the form

(4.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ(t) = f(x(t)) +

N∑
i=1

ui(t)gi(x(t)),

x(0) = x̄,

where |ui(·)| ≤ 1, f, gi ∈ Lip(Rd), i = 1, . . . , N (thus conditions in Definition 2.15 are
satisfied).
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We consider now the problem of approaching a target S along admissible trajec-
tories of the control system (4.1) starting from a point x̄ sufficiently near to S. We
are interested to find t > 0 and yx̄(t) ∈ Rx̄(t) such that dS(yx̄(t)) < dS(x̄).

If the system is fully controllable this turns out to be trivial. In this case, by
definition, for any t > 0 we have that Rx̄(t) contains a ball centered at x̄. The
aim of this section is to give some sufficient condition weaker than controllability,
guaranteeing the existence of points yx̄(t) ∈ Rx̄(t) for any t ∈ [0, δx̄[, δx̄ > 0 sufficiently
small, such that t �→ dS(yx̄(t)) is strictly decreasing.

Definition 4.1. Given the system (4.1), define the sets

F (x) :=

{
f(x) +

N∑
i=1

uigi(x) : ui ∈ [−1, 1]

}
,

F̃ (x) :=

{
f(x) +

N∑
i=1

uigi(x) : ui ∈ {−1, 0, 1}
}

⊂ F (x).

We recall that since co F̃ (x) ⊇ F (x) for every x ∈ R
d, every trajectory of the sys-

tem, which can be written in the form of the differential inclusion ẋ ∈ F (x), can be
uniformly approximated by trajectories of the control system ẋ ∈ F̃ (x). Thus in order
to study controllability properties of the original system, it is sufficient to study the
analogous properties of ẋ ∈ F̃ (x), which are strictly related to the Lie algebra Lie(F̃ )
generated by the vector fields of F̃ .

Definition 4.2 (formal bracket). We denote by Diffeo(Rd) the set of all dif-
feomorphism of Rd. Let ψ, ϕ ∈ Diffeo(Rd) be two diffeomorphisms. We define their
formal bracket by setting

[ψ, ϕ](x) := ψ ◦ ϕ ◦ ψ−1 ◦ ϕ−1(x).

Since for every ψ, ϕ ∈ Diffeo(Rd) we have that [ψ, ϕ] ∈ Diffeo(Rd), by iterating the
procedure we can construct formal bracket expressions by nesting formal brackets of
diffeomorphisms. Given a subset S ⊆ Diffeo(Rd), we define the length (also order
or depth) of nested formal brackets of elements of S by induction. If ϕ ∈ S is a
single diffeomorphism, then ord (ϕ) = 1. Otherwise, if A and B are formal bracket
expressions of elements of S , we set ord [A,B] = ordA+ ordB. We define similarly
pw (ϕ) = 1 if ϕ ∈ S , otherwise we set pw [A,B] = 2pwA + 2pwB if A and B are
formal bracket expressions of elements of S .

Definition 4.3. Let X : Rd → Rd be a locally Lipschitz vector field. Given
x ∈ Rd, we denote by φXt (x) or φX(t, x) the flow of X starting from x the (unique)
solution of ẋ(s) = X(x(s)), x(0) = x evaluated at s = t. We have φX(0, x) = x and
∂
∂tφ

X(t, x) = X(φX(t, x)).
For t sufficiently small, it is well known that φXt (·) is a diffeomorphism and that

if X,Y are two C2-smooth vector fields, we have that⎧⎪⎪⎨
⎪⎪⎩

d

dt
[φXt , φ

Y
t ](x)|t=0 = 0,

d2

dt2
[φXt , φ

Y
t ](x)|t=0 = 2[X,Y ](x),

where on the right-hand side we have the usual Lie bracket of vector fields defined by

[X,Y ](x) = 〈∇X(x), Y (x)〉 − 〈∇Y (x), X(x)〉.
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The correspondence between the first nonvanishing derivative at 0 of flows gener-
ating the bracket and the order of the Lie bracket is explained in this classical result
(see, e.g., Theorem 1 in [20]).

Theorem 4.4. Let k ∈ N \ {0}, M be a manifold of class Ck+1, and for i =
1, . . . , k let φi : R×M ⊃ Uφi →M be a smooth map of class Ck+1 such that

1. Uφi is an open neighborhood of {0} ×M in R×M ,

2. φit is a diffeomorphism of class Ck+1 on its domain,

3. φi0 = IdM and ∂
∂tφ

i
t

∣∣
t=0

= Xi ∈ Veck(M),

where Veck(M) is the set of vector fields on M of class Ck. Then for each formal
bracket expression B of order k (w.r.t. S = {φi : i = 1, . . . , k}) we have

∂j

∂tj
B(φ1t , . . . , φ

k
t )
∣∣∣
t=0

= 0 ∀1 ≤ j < k,

1

k!
· ∂

k

∂tk
B(φ1t , . . . , φ

k
t )
∣∣∣
t=0

= B(X1, . . . , Xk).

Definition 4.5. Given the system (4.1), we will set

L :=
{
B(X1, . . . , Xk) : k ∈ N \ {0}, B is a formal bracket of order k w.r.t. F ,

Xj ∈ Ck,1 are vector fields with Xj(x) ∈ F̃ (x) for every x,

∃τ > 0 s.t. t �→ B(φ1t , . . . , φ
k
t )(x) is an admissible trajectory for 0 ≤ t < τ

}
.

Moreover, if Z ∈ L , we will define ordZ as the minimum natural number k > 0 such
that there exists a formal bracket B and k vector fields Xj ∈ Ck,1, with Xj(x) ∈
F̃ (x) for every x, satisfying Z = B(X1, . . . , Xk). In this case, we set pwZ =
min{pwB : ordB = ordZ}.

An immediate consequence of Theorem 4.4 is the following.
Lemma 4.6. Consider the system (4.1) and the sets defined in Definitions 4.1

and 4.5. Let Z ∈ L , ordZ = k. Then there exists a curve t �→ yx̄(t) such that
yx̄(t) ∈ Rx̄(t) for every t and

(4.2) yx̄(t)− x̄ = Z(x̄) · tk

pwk Z
+ o(tk).

Moreover, for each compact K there exists LK > 0 such that |o(tk)| ≤ LKt
k+1 for

x̄ ∈ K.
Proof. Since Z is in the Lie algebra generated by the elements of F̃ , it can be

written as Z = B(X1, . . . , Xk), where B(X1, . . . , Xk) is a bracket expression of or-
der k depending on k vector fields Xi ∈ F̃ for 1 ≤ i ≤ k. We define yx̄(pw

k B · t) =
B(φX1

t , . . . , φXk
t )(x̄). We have by construction that yx̄(pw

k B · t) ∈ Rx̄(pw
k B). More-

over, according to Theorem 4.4, we have the following Taylor expansion in a neigh-
borhood of 0:

yx̄(pwB · t) = x̄+

k∑
j=1

1

j!

dj

dtj
B(φX1

t , . . . , φXk
t )(x̄)

∣∣∣
t=0

· tj + o(tk)

= x̄+B(X1, . . . , Xk)(x̄) · tk + o(tk).

This is the desired expansion up to a reparametrization of the time variable. The last
assertion follows from the smoothness of the vector fields.

Lemma 4.6 gives us an approximation of Rx̄(t) using the elements of L . We
can give a natural sufficient condition ensuring that there are points of Rx̄(t) whose
distance from S is strictly less than dS(x̄).
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Corollary 4.7. Given the control system (4.1), assume that there exist a neigh-
borhood V of the target S, a vector field Y ∈ L , and a real number μ > 0 such that
for every x ∈ V \ S there exists ζx ∈ ∂PdS(x) such that

〈ζx, Y (x)〉 < −μ.
Then given x̄ ∈ V \ S there exist δ = δx̄ > 0 and a curve t �→ yx̄(t) defined on [0, δ],
such that yx̄(t) ∈ Rx̄(t) for any t ∈ [0, δ] and t �→ dS(yx̄(t)) is strictly decreasing.

Proof. According to Lemma 4.6, there exists a curve t �→ yx̄(t) such that yx̄(t) ∈
Rx̄(t) satisfying

yx̄(t) = x̄+ Y (x̄) · tk

pwk Y
+ o(tk),

where k is the order of Y . Moreover, we choose δ > 0 so small such that for 0 < t < δ

yx̄(t) ∈ B(x̄, dS(x̄)/2) ∩ V.
In particular, we have for 0 < t < δ,

dS(yx̄(t))− dS(x̄) ≤ 〈ζx̄, yx̄(t)− x̄〉+ 2

dS(x̄)
‖yx̄(t)− x̄‖2

=

〈
ζx̄, Y · tk

pwk Y
+ o(tk)

〉
+

2

dS(x̄)

∥∥∥∥Y (x̄) · tk

pwk Y
+ o(tk)

∥∥∥∥
2

≤ − μ

pwk Y
tk + o(tk)

by the local semiconcavity of dS on B(x̄, dS(x̄)2 ).
By further shrinking δ, we obtain that for every x̄ ∈ V \S there exists δx̄ > 0 and

a curve yx̄(·) of points of admissible trajectories such that

dS(yx̄(t))− dS(x̄) ≤ − μ

2pwk Y
tk

for 0 < t < δx̄, from which the result follows. Notice that if dS is differentiable at x̄
(or, equivalently, if x̄ has a unique projection on S) then ζx̄ = ∇dS(x̄).

Remark 4.8. We can repeat the procedure described in Corollary 4.7 starting
from yx̄(δx), and in this way we construct a sequence of points belonging to admissible
trajectories starting from x̄ along which the distance is strictly decreasing. However
Corollary 4.7 does not imply that the constructed trajectory actually will reach the
target in finite time, since at each step we have no uniformity properties on δx̄; further
assumptions are needed to grant suitable estimates on δx.

The computation of L turns out to be quite simple in the driftless case (sym-
metric systems) as in this case the set of admissible trajectories enjoys time reversal
symmetry. In particular, we have that L coincides with all possible nested brackets
of the vector fields gi(·) of suitable order (depending on the smoothness of the field)
and, more specifically, if gi(·) ∈ C∞, we have L = Lie({gi}Ni=1).

In the presence of a nontrivial drift term, which breaks the time reversal symmetry
of the system, this is no longer true. The computation of elements of L becomes much
more tricky but can be done using repeatedly the classical Baker–Campbell–Hausdorff
formula (see, e.g., sections III.4 and III.5 in [12]) and induction.

To cover the example we provided at the end of section 5, we give some explicit
computations of this case, giving explicit formulas for some elements of L in two
simple cases.
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Lemma 4.9 (second order expansion). Let X1, . . . , Xj be a finite family of C1-
vector fields on Rd, q ∈ Rd. For i = 1, . . . , j denote by φXi(s, q) the flow of Xi at
time t = s starting from q at t = 0. Fix x ∈ Rd, and define by induction p0(t) = x,
pi(t) = φXi(t, pi−1(t)) for 0 < i ≤ j. Then

dpj
dt

∣∣∣∣
t=0

=

j∑
i=1

Xi(x),

d2pj
dt2

∣∣∣∣
t=0

= 2

j∑
i, h = 1
i < h

∇Xh(x) ·Xi(x) +

j∑
h=1

∇Xh(x) ·Xh(x).

In particular, given f, g, g1, g2 ∈ C1,1(Rd), and u ∈ R,
1. if we define X1(x) := f(x) + ug(x), X2(x) = f(x) − ug(x) we have

d

dt
φX2 (t, φX1(t, x))

∣∣∣∣
t=0

= 2f(x),

d2

dt2
φX2 (t, φX1(t, x))

∣∣∣∣
t=0

= 4∇f(x)f(x) + 2u[f, g](x);

2. if we define

X1(x) = X7(x) = f(x) + g1(x), X2(x) = X8(x) = f(x) + g2(x),

X3(x) = X5(x) = f(x)− g1(x), X4(x) = X6(x) = f(x)− g2(x),

then we have

d

dt
φ8(t, φ7(t, . . . ))

∣∣∣∣
t=0

= 8f(x),

d2

dt2
φ8(t, φ7(t, . . . ))

∣∣∣∣
t=0

= 64∇f(x)f(x) + 4[g1, g2](x).

Proof. We have

pj(0) = φXj (0, pj−1(0)) = pj−1(0) = · · · = p0(0) = x,

dpj
dt

=
d

dt

[
φXj (t, pj−1)

]
= Xj(φXj (t, pj−1)) +∇φXj (t, pj−1) · dpj−1

dt

= Xj(pj) +∇φXj (t, pj−1) · dpj−1

dt
,

dpj
dt

∣∣∣∣
t=0

= Xj(pj(0)) +∇φXj (0, pj−1(0)) · dpj−1

dt
(0)

= Xj(x) + IdRd · dpj−1

dt
(0) = Xj(x) +

dpj−1

dt
(0) =

j∑
i=1

Xi(x),

where we use induction in the last step.
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The computation of the second order derivative yields

d2pj
dt2

=
d

dt

[
Xj(pj) +∇φXj (t, pj−1) · dpj−1

dt

]

= ∇Xj(pj) · dpj
dt

+∇φXj (t, pj−1) · d
2pj−1

dt2

+

(
∇ ∂

∂t
φXj (t, pj−1) +∇2φXj (t, pj−1) · dpj−1

dt

)
· dpj−1

dt

= ∇Xj(pj) · dpj
dt

+∇φXj (t, pj−1) · d
2pj−1

dt2
+∇Xj(pj) · dpj−1

dt

+∇2φXj (t, pj−1) · dpj−1

dt
· dpj−1

dt
.

If we evaluate at t = 0, we notice that ∇2φXj (0, x) = 0, and hence by induction again

d2pj
dt2

∣∣∣∣
t=0

= ∇Xj(x) ·
(

j∑
i=1

Xi(x) +

j−1∑
i=1

Xi(x)

)
+
d2pj−1

dt2

= 2

j∑
i=1

∇Xj(x) ·Xi(x) −∇Xj(x) ·Xj(x) +
d2pj−1

dt2

= 2

j∑
i, h = 1
i ≤ h

∇Xh(x) ·Xi(x)−
j∑

h=1

∇Xh(x) ·Xh(x)

= 2

j∑
i, h = 1
i < h

∇Xh(x) ·Xi(x) +

j∑
h=1

∇Xh(x) ·Xh(x).

The two statements (1) and (2) follow from the above computations (see also Lem-
mas 1 and 2 in [18] for a different approach).

5. Small-time attainability in control systems. In this section we prove the
main results of the paper.

Throughout this section we consider the following control system

(5.1)

{
ẋ(t) = f(x(t), u(t)), t > 0,

x(0) = x̄ ∈ Rd,

where u ∈ U := {u : [0,+∞[→ U measurable}, U is a compact subset of Rm, S ⊆ Rd

is a given closed target set, f : Rd × Rm → Rd, f is of class C1,1
loc ((R

d \ S) × U) (in
particular we have local existence and uniqueness of the Carathéodory solution for
every x̄ /∈ S).

We recall that our aim is to give sufficient conditions in order to find an admissible
trajectory of (5.1) steering x̄ to S in finite time.

We collect in this lemma some basic properties of solutions of (5.1). The proof
can be found, e.g., in Theorem 5.4 in Chapter III, section 5, p. 219 of [1].

Lemma 5.1. Let δ,m > 0 and assume that U is a compact subset of Rm, S ⊆ Rd

is a given closed target set, f : Rd × Rm → Rd, f is of class C1,1
loc ((R

d \ S) × U),
‖f‖∞ < m on Sδ \ S. Given a measurable function u : [0,+∞[→ U , consider the
Carathéodory solution of (5.1), let I be its (open) maximal interval of existence, and
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set I+ = I∩[0,+∞[. We recall that by assumption we have uniqueness of the trajectory
in Sδ \ S. For any t ∈ I+, we have that if 0 < lims→t− dS(x(s)) ≤ δ then sup I+ > t.
For any t ∈ I+ such that x(s) ∈ Sδ \ S for all 0 ≤ s ≤ t we have ‖x(t)− x̄‖ ≤ mt.

Definition 5.2 (A -trajectory). Let x̄ ∈ Rd, T > 0. We say that a continuous
curve yx̄ : [0, T ] → R

d is an A -trajectory starting from x̄ if we have yx̄(0) = x̄ and
yx̄(t) ∈ Rx̄(t) for any t ∈ [0, T ] (see also section 3.1 in [16]).

It is clear that every admissible trajectory of (5.1) starting from a point x̄ is an
A -trajectory starting from the same point, as shown in this classical example.

Example 5.3. In R3, define X1(x, y, z) := (1, 0,−y) and X2(x, y, z) := (0, 1, x).
Consider the system γ̇(t) = u1(t)X1(γ(t)) + u2(t)X2(γ(t)), where u1, u2 : [0,+∞[→
[−1, 1] are measurable. Set P̄ = (0, 0, 0), and define a smooth curve yP̄ (·) by setting

yP̄ (t) =

(
0, 0,

t2

16

)
.

For every t > 0 we have that

ẏP̄ (t) /∈ {u1X1(yP̄ (t)) + u2X2(yP̄ (t)) : u1, u2 ∈ [−1, 1]} .

Hence yP̄ (·) is not an admissible trajectory for the system starting from the origin.
However, given t > 0 and defining the controls

(
u
(t)
1 (s), u

(t)
2 (s)

)
=

⎧⎪⎪⎨
⎪⎪⎩

(1, 0) for 0 ≤ s ≤ t/4,
(0, 1) for t/4 ≤ s ≤ t/2,
(−1, 0) for t/2 ≤ s ≤ 3t/4,
(0,−1) for 3t/4 ≤ s ≤ t,

we have that the trajectory γ̄(t)(·) generated by the system using (u
(t)
1 (·), u(t)2 (·)) with

initial condition γ̄(t)(0) = 0 is an admissible trajectory starting from the origin and
satisfying γ̄(t)(t) = yP̄ (t). By the arbitrariness of t > 0 in the previous construction,
we conclude that yP̄ (·) is an A -trajectory starting from the origin.

We now start to consider the behavior of the distance function from S along
smooth A -trajectories of (5.1), providing a first result concerning estimates on the
distance to S of yx̄(t), t > 0 sufficiently small. The main tool will be the semiconcavity
estimates of dS provided in Proposition 2.13. This proposition may be viewed as a
quantitative counterpart of Corollary 4.7 for the system (5.1).

Remark 5.4. The following simple fact, that can be easily proved by induction,
will be used: given ξ0, . . . , ξN ∈ Rd, we have

∥∥∥∥∥
N∑
i=0

ξi

∥∥∥∥∥
2

= ‖ξ0‖2 + 2

N∑
i=1

〈ξ0, ξi〉+
N∑
i=1

‖ξi‖2 + 2

N∑
l, j = 1
i < j

〈ξl, ξj〉

=

�N/2�∑
i=1

‖ξi‖2 + 2

N∑
i=1

N∑
l, j = 1
l < j

l + j = i

〈ξl, ξj〉

+
N∑

i=1+�N/2�
‖ξi‖2 + 2

N∑
l, j = 1
l < j

l + j > N

〈ξl, ξj〉+ ‖ξ0‖2 + 2
N∑
i=1

〈ξ0, ξi〉.D
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Proposition 5.5. Consider the control system (5.1). Let x̄ /∈ S, L > 0, k ∈
N \ {0}, and {vx̄1 , . . . , vx̄k} ⊆ Rd with

∑k
i=1 |vx̄i | ≤ L. Denote by Kx̄ a semiconcavity

constant of dS(·) on B(x̄, dS(x̄)/2). Assume that there exists an A -trajectory yx̄(·)
starting from x̄ such that for any t ≥ 0 with yx̄(t) ∈ B(x̄, dS(x)/2),∥∥∥∥∥yx̄(t)− x̄−

k∑
i=1

ti

i!
vx̄i

∥∥∥∥∥ ≤ Ltk+1.

Then for every ζx̄ ∈ ∂PdS(x̄), 0 ≤ t ≤ min{ dS(x̄)
2‖f‖∞+1 , 1}, we have

(5.2) dS(yx̄(t)) − dS(x̄) ≤
k∑
i=1

Ci(ζx̄)t
i + Cψt

k+1,

where Cψ = Cψ(Kx̄, L) ≥ 0 is a constant independent of t, and

(5.3) Ci(ζx̄) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

i!
〈ζx̄, vx̄i 〉+ 2Kx̄

k∑
i, j = 1
j + l = i

j < l

1

l!j!
〈vx̄l , vx̄j 〉, i odd,

1

i!
〈ζx̄, vx̄i 〉+ 2Kx̄

k∑
i, j = 1
j + l = i

j < l

1

l!j!
〈vx̄l , vx̄j 〉+Kx̄

(
1

(i/2)!

)2

‖vx̄i/2‖2, i even.

Proof. Set

η(t) = yx̄(t)− x̄−
k∑
i=1

ti

i!
vx̄i .

According to Lemma 5.1, we have that yx̄(t) ∈ Rx̄(t) ⊆ B(x̄, dS(x̄)
2 ) for any 0 ≤ t ≤

min{ dS(x̄)
2‖f‖∞+1 , 1}, so the segment joining yx̄(t) and x̄ lies inside B(x̄, dS(x̄)/2), and

hence outside S. We apply now Remark 5.4 with ξ0 = η(t) and ξi =
ti

i! v
x̄
i , recalling

that ‖ζx̄‖ ≤ 1 by the 1-Lipschitz continuity of the distance function and 0 ≤ t ≤ 1,
and that by assumption |vx̄i | ≤ L, to obtain

dS(yx̄(t))− dS(x̄)

≤ 〈ζx̄, yx̄(t)− x̄〉+Kx̄‖yx̄(t)− x̄‖2

≤ 〈ζx̄ ,
k∑
i=1

ti

i!
vx̄i + η(t)〉 +Kx̄

∥∥∥∥∥
k∑
l=1

tl

l!
vx̄l + η(t)

∥∥∥∥∥
2

≤
k∑
i=1

ti

i!
〈ζx̄, vx̄i 〉+Kx̄

�k/2�∑
i=1

t2i

(i!)2
‖vx̄i ‖2 + 2Kx̄

k∑
i=1

k∑
l, j = 1
l < j

l + j = i

ti

l!j!
〈vx̄l , vx̄j 〉

+ ‖η(t)‖+Kx̄

k∑
i=1+�k/2�

t2i

(i!)2
‖vx̄i ‖2 + 2Kx̄

k∑
l, j = 1
l < j

l + j > k

tl+j

l!j!
〈vl, vj〉

+Kx̄‖η(t)‖2 + 2Kx̄

k∑
i=1

ti

i!
〈η(t), vx̄i 〉.
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Since
∑k
i=1

1
i! ≤ e − 1, we can estimate from above all the terms with order greater

than or equal to k + 1 by Cψt
i+1, where

Cψ := L+Kx̄L(L(e− 1) + 2L(e− 1)2 + L+ 2L(e− 1)).

Rearranging the terms in the previous inequality, the result follows.
Remark 5.6. For a general closed set, the local sharp semiconcavity constant

cK of dS(·) on a compact convex subset K of Rd disjoint from S can blow up as the
minimum distance between elements of K and S tends to zero. In particular, given
x̄ /∈ S, if we take K = B(x̄, dS(x̄)/2), then 2/dS(x̄) is a semiconcavity constant of
dS(·) on K. However, if the set S satisfies the ρ-internal sphere condition, according
to Proposition 2.13 we have that 1/ρ is a semiconcavity constant for dS(·) on every
compact convex set disjoint from the interior of S, thus the sharp semiconcavity
constant is uniformly bounded.

When we consider (5.2), for t > 0 sufficiently small, the sign of the right-hand
side is determined by the first nonzero element of {Ci(ζx̄)}ki=1, since we can neglect
higher order terms. In particular, if this coefficient is negative, we have that for t > 0,
t sufficiently small, the distance is decreasing along the trajectory.

Now we introduce a sort of higher order Petrov’s condition. Our aim is to show
that for every x̄ /∈ S there exists an admissible trajectory of the system and a time
tx̄ > 0 such that for 0 ≤ t ≤ tx̄ the trajectory is strictly approaching the target S,
moreover, we will provide a lower estimate on tx̄, linking it to μx, thus providing the
information lacking in Remark 4.8.

Lemma 5.7. Consider the control system (5.1), assuming that S satisfies a ρ-
internal sphere condition for a certain ρ > 0. Assume that there exists L > 0, δ > 0
such that for every x ∈ Sδ \ S the following property is satisfied:

(HP) there exist μx > 0, kx ∈ N \ {0}, {vx1 , . . . , vxk} ⊆ Rd,
∑kx

i=1 |vi| ≤ L, ζx ∈
∂PdS(x), and an A -trajectory yx(·) starting from x satisfying for any yx̄(t) ∈
Sδ \ S

(5.4)

⎧⎪⎨
⎪⎩

Ci(ζx) ≤ 0 for i = 1, . . . , kx − 1 and Ckx(ζx) < −μx,∥∥∥∥∥yx̄(t)− x̄−
k∑
i=1

ti

i!
vx̄i

∥∥∥∥∥ ≤ Ltk+1,

where the Ci(ζx) are defined as in Proposition 5.5.
Then there exists a constant c > 0 such that if we set

Tx := min

{
1,
μx
c
,

(
dS(x)

μx

)1/kx
}
,

we have that for all 0 ≤ t ≤ Tx such that yx(t) /∈ S,

dS(yx(t)) − dS(x) ≤ −μx
2

· tkx .

Proof. SetK = 1/ρ. We notice from (5.3) that |Ci(ζx)| ≤ L+KL2(2k2+1) =: C1.
Define

τx = sup{t > 0 : yx(s) ∈ Sδ \ S for every 0 ≤ s ≤ t}.
We have τx > 0 according to Lemma 5.1. Using the same argument as in Proposi-
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tion 5.5, for yx(s) /∈ S we have

dS(yx(s)) − dS(x) ≤ 〈ζx, yx(s)− x〉+K‖yx(t)− x‖2

≤ −μx · skx +

k∑
i=kx+1

Ci(ζx)s
i + sk+1Cψ

≤ −μx · skx + C2s
kx+1,

where C2 = kC1+Cψ > 0 does not depend on x, t. Letting c = 2C2, for all 0 ≤ t ≤ Tx
such that yx(t) /∈ S we have

dS(yx(t))− dS(x) ≤ −μx · tkx + C2t
kx+1 ≤ −μx

2
tkx .

Remark 5.8. We have that (5.4) reduces to the classical Petrov’s condition if we
assume that it is satisfied for every x̄ in a neighborhood of the target with kx̄ ≡ 1 and
μx̄ ≡ μ > 0 which do not depend on x̄.

We have introduced the higher order Petrov’s condition pointwise, so we can
consider μx as a function defined in a suitable neighborhood V of S and strictly
positive in V \ S. An interesting case is when we take it to be continuous, satisfying
μ|V \S > 0 but allowing μ|∂S = 0. Geometrically speaking, this case means that we are
allowing the (negative) coefficient of the leading term in expansion (5.2) to vanish as
we approach the target; the modulus of the component of the speed pointing toward
the target becomes smaller and smaller. In particular, we may not conclude that the
target is reached in finite time, even if the distance is still strictly decreasing along at
least one A -trajectory starting from every point of V \ S.

We will consider in particular the case in which μx = μ(dS(x)), where μ : [0, δ[→
[0,+∞[ is a nondecreasing continuous function satisfying μ(r) �= 0 if r �= 0 (but
allowing the possibility that μ(0) = 0). This case occurs frequently in applications.
We will give sufficient conditions on μ to ensure for every x ∈ B(S, δ) the existence of
an admissible trajectory starting from x̄ that reaches the target S in finite time. We
will use a strategy similar to [18].

Remark 5.9. Since we will provide different results for targets satisfying the ρ-
internal sphere condition and for targets with positive reach, we summarize here the
relationships between sets with positive reach, sets satisfying the ρ-internal sphere
condition, and smooth sets:

1. if C is closed and convex then reachC = +∞ and Rd \ C enjoys the ρ-internal
sphere condition, for every ρ > 0. However C may fail to enjoy the ρ-internal
sphere condition (an example is given by taking a square in R2, where the
internal sphere property fails at the vertices);

2. if K is has positive reach, then Rd \K enjoys the ρ-internal sphere condition,
with ρ = reachK;

3. in general, if Rd \K enjoys just the ρ-internal sphere condition we have that
K may not have positive reach, additional hypotheses are required (see ref-
erences below);

4. if K is a compact set with C1,1 boundary then both K and Rd \K have

positive reach (possibly reachK �= reachRd \K).
We refer the reader to [21] and [8] for further details and applications, and to [19] for
a generalized version of these results.

Our first main result is the following.
Theorem 5.10 (controllability result). Consider the control system (5.1) with

f ∈ C1,1
loc ((R

d \ S)×U). Let ρ, δ,m > 0, k ∈ N \ {0} be constants, and μ :]0, δ[→ [0, 1]
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be continuous, nondecreasing, satisfying μ(p) > 0 for any p > 0 and

∫ dS(x)

0

dr

μk(r)
+

∫ dS(x)

0

dr

r1−1/kμ(r)
< +∞.

We make the following assumptions:
1. the closed target set S satisfies the ρ-internal sphere condition;
2. ‖f(x, u)‖ ≤ m in (S2δ \ S)× U (automatically satisfied if ∂S is compact);
3. there exists L > 0 such that for every x ∈ Sδ \ S there exist 1 ≤ kx ≤ k,

{v1, . . . , vkx} ∈ Rd, ζx ∈ ∂PdS(x), and an A -trajectory yx(·) starting from x
such that (5.4) is satisfied with μx = μ(dS(x)).

Then T (x) ≤ ω(dS(x)) for every x ∈ Sδ, where

ω(s) := C

(∫ s

0

dr

μk(r)
+

∫ s

0

dr

r1−1/kμ(r)

)

for a suitable constant C > 0, thus STLA holds.
If we have also ‖∇f(x, u)‖ ≤ m in (S2δ \ S)×U , then T is continuous in Sδ with

modulus of continuity bounded by ω(s).
Proof. Fix x̄ ∈ Sδ. The strategy of the proof will be to define by induction a

sequence {(ti, xi)}i∈N such that (t0, x0) = (0, x̄) and xi+1 ∈ Rxi(ti+1), i.e., xi+1 can
be reached from xi in time ti+1 by an admissible trajectory of the system. Gluing
all these trajectories we can construct an admissible trajectory starting from x̄ that
passes through each xi at time

∑i
h=0 th. Our aim is to show that limi→∞ dS(xi) = 0

and
∑∞

h=0 th < +∞, i.e., this admissible trajectory reaches S in finite time.
The basic idea is to apply at each step the estimates of Proposition 5.5 and

Lemma 5.7, ensuring that at each step we satisfy their assumptions.
Let K := 1/ρ. For every x ∈ Sδ we define Tx as in Lemma 5.7. Define by

induction a sequence of times and points {(ti, xi)}i∈N ⊆ [0,+∞[×Rd as follows. We
set (t0, x0) = (0, x̄) and given (ti, xi) ∈ [0,+∞[×Rd, we define

(ti+1, xi+1) :=

{
(Txi , yxi(Txi)) if T (xi) > Txi,
(T (xi), θxi(T (xi)) if T (xi) ≤ Txi,

where θxi(·) is an optimal trajectory starting from xi. Notice that if T (xi) ≤ Txi ,
then in particular T (xi) < +∞, so we have that there exists a trajectory of the system
such that θxi(T (xi)) ∈ S. We set also ri := dS(xi).

We have to check the following.
Claim (a). If xi ∈ Sδ, then xi+1 ∈ Sδ.
Claim (b). limi→+∞ ri = 0.
Claim (c).

∑+∞
i=1 ti < +∞.

Proof of Claim (a). If ti+1 = T (xi) we have xi+1 ∈ S ⊆ Sδ. Otherwise, we have
that yxi(t) /∈ S for all 0 ≤ t ≤ Txi since Txi < T (xi). According to Lemma 5.7, we
have that for 0 ≤ t < ti+1

dS(yxi(t))− ri ≤ −μ(ri)
2

· tkxi < 0.

By passing to the limit for t→ T−
xi
, we have ri+1 < ri so xi+1 ∈ Sδ.

Proof of Claim (b). If there exists i ∈ N such that ri = 0, we have that rj = tj = 0
for all j > i and the proof is concluded. Assume now that ri �= 0 for all i ∈ N.
According to Claim (a), the sequence {ri}i∈N is a strictly decreasing sequence of
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positive numbers, thus there exists r ≥ 0 such that limi→∞ ri = r. Moreover, for
every i ∈ N

ri+1 − ri ≤ −μ(ri)
2

· T kxi
xi ≤ max

{
−μ

kxi
+1(ri)

2ckx−1
,−riμ(ri)

2
,−μ(ri)

2

}
< 0.

If we pass to the limit for i→ +∞ and recall the continuity of μ(·) we obtain

lim
i→∞

μ(ri) = μ(r) = 0.

Then necessarily r = 0 and the proof of this claim is concluded.
Proof of Claim (c). This claim states that we are going to reach the target in a

finite time. The result is trivial if there exists i such that ri = 0, so we assume that
ri �= 0 for all i ∈ N, i.e., T (xi) > Txi for every i ∈ N. According to the estimate given
in Claim (b), and recalling that 1 ≤ kxi ≤ k and that Txi < 1, we have that

ri+1 − ri ≤ −1

2
T
kxi
xi μ(ri) ≤ −1

2
T kxi

≤ −1

2
T k−1μ(ri)Txi

= −μ(ri)
2

(
min

{
1,
μ(ri)

c
,

(
ri

μ(ri)

)1/k
})k−1

Txi

= −min

{
μ(ri)

2
,
μk(ri)

2ck−1
,
1

2
r
1−1/k
i μ1/k(ri)

}
Txi

≤ −C3 min
{
μk(ri), r

1−1/k
i μ(ri)

}
Txi ,

where C3 > 0 is a suitable constant independent of xi, ri. This implies that

2(ri − ri+1)

C3μk(ri)
+

2(ri − ri+1)

C3r
1−1/k
i μ(ri)

≥ Txi .

Since μ(·) is positive and nondecreasing we have that p �→ μ−k(p) and p �→ (p1−
1
kμ(p))−1

are nonincreasing, and thus we have

T (x) ≤
∞∑
i=0

Txi ≤
2

C3

(∫ dS(x)

0

dr

μk(r)
+

∫ dS(x)

0

dr

r1−1/kμ(r)

)
< +∞,

which concludes the proof of the claim.
To conclude the proof of the theorem, we define

ω(s) :=
2

C3

(∫ s

0

dr

μk(r)
+

∫ s

0

dr

r1−1/kμ(r)

)
,

and notice that we have that T (x) ≤ ω(dS(x)) for all x ∈ Sδ.
If ∇f is bounded in Sδ \ S, we can obtain more information by proceeding in a

way similar to Proposition 1.6 of Chapter 4, p. 230 in [1], or to Propositions 2 and 3
of [18].

Take x, y ∈ Sδ and without loss of generality assume that T (y) ≤ T (x). According
to the previous estimate, we have that

T (y) ≤ T (x) ≤ ω(dS(x)) ≤ ω(δ),
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since by definition ω is nondecreasing. Let uy : [0, T (y)] → U be an optimal control
steering y to ȳ ∈ S in time T (y). Consider the solution x̂(·) of ẋ(t) = f(x(t), uy(t)),
x(0) = x, and set x̄ := x̂(T (y)). By Gronwall’s inequality we have that there exist
constants c1, c2 > 0 such that

dS(x̄) ≤ ‖ȳ − x̄‖ ≤ ec1T (y)‖y − x‖ ≤ c2‖y − x‖.
By the dynamic programming principle,

T (x) ≤ T (y) + T (x̄) ≤ T (y) + ω(dS(x̄)) = T (y) + ω(c2‖y − x‖),
so |T (x)− T (y)| = T (x)− T (y) ≤ ω(c2‖y − x‖), as desired.

Remark 5.11. In the above assumption, if we are allowed to choose μ(r) = Crα for
a suitable C,α > 0 such that 0 ≤ αk < 1 and 0 < 1/k−α ≤ 1, then T (x) ≤ C′dηS(x),
where η = min{1 − αk, 1/k − α}. If the dynamics is Lipschitz, this implies Hölder
continuity with exponent η. Petrov’s condition corresponds to α = 0 and k = 1, i.e.,
μ ≡ const., and in this case we have ω(r) = cr for a suitable positive constant c > 0,
which yields Lipschitz continuity, as is well known.

Now we want to apply Theorem 5.10 to the affine control systems we considered
in (4.1), exploiting Lemma 4.6.

Corollary 5.12. Consider the control-affine system (4.1). Let ρ, δ,m > 0,
k ∈ N \ {0} be constants, and μ :]0, δ[→ [0, 1] be continuous, nondecreasing, with
μ(p) > 0 for any p > 0 and∫ dS(x)

0

dr

μk(r)
+

∫ dS(x)

0

dr

r1−1/kμ(r)
< +∞.

We make the following assumptions:
1. the closed target set S satisfies the ρ-internal sphere condition;
2. f, gj ∈ Ck,1(Rd) with ‖Dif‖L∞, ‖Digj‖L∞ uniformly bounded in S2δ by a

constant m > 1 for j = 0, . . . , k + 1;
3. for every x ∈ Sδ \ S there exist 1 ≤ kx ≤ k, ζx ∈ ∂PdS(x), and Y

x ∈ L such
that ordY x = kx and

〈ζx, Y x(x)〉 ≤ −μ(dS(x)).
Then T is continuous in Sδ with the modulus of continuity bounded by

ω(s) := C

(∫ s

0

dr

μk(r)
+

∫ s

0

dr

r1−1/kμ(r)

)

for a suitable constant C > 0.
Proof. According to Lemma 4.6, since Y x ∈ L is of order kx, then there exists

an A -trajectory yx(·) such that

yx(t)− x̄− tkx

kx!
· kx!

pwkx
Y x(x) = ox(t

kx).

By the smoothness and boundedness assumptions on f, gi we have that |o(tkx)| ≤
mk+1tkx+1 and ‖Y (x̄)(x̄)‖ ≤ mk. Moreover, since

〈ζx, Y 〉 ≤ −μ(dS(x)),
the assumptions of Theorem 5.10 are satisfied (possibly replacing μ(·) by μ(·)/k! and
setting L = (m+ 1)k+1).

D
ow

nl
oa

de
d 

02
/1

3/
15

 to
 1

57
.2

7.
22

6.
18

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

464 ANTONIO MARIGONDA AND SILVIA RIGO

The previous results concern closed target sets satisfying the internal sphere con-
dition property with uniform radius. Now we are going to switch to the case when the
target set S has positive reach. In this case, we can refine the rough semiconcavity
estimate of Proposition 5.5 with the generalized curvature defined in Definition 3.6.

Proposition 5.13. Consider the control system (5.1). Let δ > 0, L > 0,

k ∈ N \ {0}, {vx̄1 , . . . , vx̄k} ⊆ Rd with
∑k

i=1 |vx̄i | ≤ L. We assume that
1. reachS > 2δ;
2. for every x̄ ∈ Sδ \ S there exists an A -trajectory yx̄(·) starting from x̄ such

that ∥∥∥∥∥yx̄(t)− x̄−
k∑
i=1

ti

i!
vx̄i

∥∥∥∥∥ ≤ Ltk+1.

Then for every 0 ≤ t ≤ min{ dS(x)
2‖f‖∞+1 , 1}, we have

(5.5) dS(yx̄(t))− dS(x̄) ≤ max
Z ∈ ∂∇dS(p)

p ∈ B(x̄, dS(x)/2)

k∑
i=1

C̃i,Z(x̄, v
x̄
1 , . . . , v

x̄
k )t

i + Cψt
k+1,

where Cψ is a constant not depending on x̄, and

C̃i,Z(x̄, v
x̄
1 , . . . , v

x̄
k )(5.6)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

i!
〈∇dS(x̄), vx̄i 〉+

k∑
j, l = 1
j + l = i

j < l

1

l!j!
〈〈Z, vx̄l 〉, vx̄j 〉+ 〈〈Z, vx̄j 〉, vx̄l 〉, i odd,

1

i!
〈∇dS(x̄), vx̄i 〉+

〈〈Z, vx̄i/2〉, vx̄i/2〉
[(i/2)!]2

+
k∑

j, l = 1
j + l = i

j < l

1

l!j!

(〈〈Z, vx̄l 〉, vx̄j 〉+ 〈〈Z, vx̄j 〉, vx̄l 〉
)
, i even.

Proof. The proof follows exactly the argument of Proposition 5.5 using the

estimate proved in Proposition 3.8. Since for every 0 ≤ t ≤ dS(x)
2‖f‖∞+1 we have

yx̄(t) ∈ B(x̄, dS(x̄)/2), we then have

dS(yx̄(t))− dS(x̄)− 〈∇dS(x̄), yx̄(t)− x̄〉(5.7)

≤ maxK (x̄, yx̄(t))

≤ 1

2
max

Z ∈ ∂∇dS(p)

p ∈ B(x̄, dS(x̄)/2)

〈〈Z, yx̄(t)− x̄〉, yx̄(t)− x̄〉.

Set

η(t) = yx̄(t)− x̄−
k∑
i=1

vx̄i
i!
ti,

and recall that ‖η(t)‖ ≤ Ltk+1 by assumption.
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Given Z ∈ {∂∇dS(p) : p ∈ B(x̄, dS(x̄)/2)}, and performing a computation similar
to Proposition 5.5 (recalling that 0 ≤ t ≤ 1 and ‖Z‖ ≤ Lip(∇dS)), we have

〈〈Z, yx̄(t)− x̄〉, yx̄(t)− x̄〉

=

�k/2�∑
i=1

t2i

(i!)2
〈〈Z, vx̄i 〉, vx̄i 〉+ 2

k∑
i=1

k∑
l, j = 1
l < j

l + j = i

ti

l!j!
〈〈Z, vx̄l 〉, vx̄j 〉+

k∑
i=1+�k/2�

t2i

(i!)2
〈〈Z, vx̄i 〉, vx̄i 〉

+2
k∑

l, j = 1
l < j

l + j > k

tl+j

l!j!
〈〈Z, vl〉, vj〉+ 〈〈Z, η(t)〉, η(t)〉 + 2

k∑
i=1

ti

i!
〈〈Z, η(t)〉, vx̄i 〉

≤
�k/2�∑
i=1

t2i

(i!)2
〈〈Z, vx̄i 〉, vx̄i 〉+ 2

k∑
i=1

k∑
l, j = 1
l < j

l + j = i

ti

l!j!
〈〈Z, vx̄l 〉, vx̄j 〉

+Lip(∇dS)L

⎛
⎜⎜⎜⎝L

k∑
i=1+�k/2�

t2i

(i!)2
+ 2L

k∑
l, j = 1
l < j

l + j > k

tl+j

l!j!
+ Lt2k+2 + 2

k∑
i=1

ti

i!

⎞
⎟⎟⎟⎠ .

Recalling that 0 ≤ t ≤ 1, we notice that〈
∇dS(x̄),

k∑
i=1

vx̄i
i!
ti + η(t)

〉
(5.8)

≤
k∑
i=1

1

i!
〈∇dS(x̄), vx̄i 〉ti + Ltk+1,

〈〈Z, η(t)〉, η(t)〉(5.9)

≤ ‖Z‖L2tk+1,

2

k∑
i=1

ti

i!
〈〈Z, vx̄i 〉, η(t)〉(5.10)

≤ 2‖Z‖Ltk+1
k∑
i=1

1

i!
≤ 2e‖Z‖Ltk+1,

2
k∑

i, j = 1
i < j

ti+j

i!j!
〈〈Z, vx̄i 〉, vx̄j 〉(5.11)

= 2

k∑
i, j = 1
i < j

i + j ≤ k

ti+j

i!j!
〈〈Z, vx̄i 〉, vx̄j 〉+ 2

k∑
i, j = 1
i < j

i + j > k

ti+j

i!j!
〈〈Z, vx̄i 〉, vx̄j 〉

≤ 2

k∑
i, j = 1
i < j

i + j ≤ k

ti+j

i!j!
〈〈Z, vx̄i 〉, vx̄j 〉+ 2tk+1‖Z‖L2

k∑
i, j = 1
i < j

i + j > k

1

i!j!

≤ 2
k∑

i, j = 1
i < j

i + j ≤ k

ti+j

i!j!
〈〈Z, vx̄i 〉, vx̄j 〉+ 2tk+1ke2‖Z‖L2.D
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Substituting this estimate into inequality (5.7), and taking into account that

〈∇dS(x̄), yx̄(t)− x̄〉 ≤
k∑
i=1

ti

i!
〈∇dS(x̄), vx̄i 〉+ Ltk+1,

we end up with

dS(yx̄(t)) − dS(x̄) ≤ max
Z ∈ ∂∇dS(p)

p ∈ B(x̄, dS(x̄)/2)

k∑
i=1

ti

i!
〈∇dS(x̄), vx̄i 〉+

k∑
i=1

t2i

(i!)2
〈〈Z, vx̄i 〉, vx̄i 〉

+

k∑
i, j = 1
i < j

i + j ≤ k

ti+j

i!j!
〈〈Z, vx̄i 〉, vx̄j 〉+ Cψt

k+1.

Rearranging the terms, and setting

Cψ = L+ Lip(∇dS)L(L(e− 1) + 2L(e− 1)2 + L+ 2L(e− 1)),

we obtain the desired inequality. Notice the similarity between this expression and
the corresponding one obtained in Proposition 5.5.

Finally, we give the second main result of the paper, about controllability via
generalized curvature properties.

Theorem 5.14 (controllability via curvature). Consider the control system (5.1).
Let ρ, δ,m > 0, k ∈ N \ {0} be constants, and μ :]0, δ[→ [0, 1] be a continuous and

nondecreasing function, satisfying μ(p) > 0 for any p > 0 and

∫ dS(x)

0

dr

μk(r)
+

∫ dS(x)

0

dr

r1−1/kμ(r)
< +∞.

We make the following assumptions:
1. reachS > 2δ;
2. ‖f(x, u)‖ + ‖∇f(x, u)‖ ≤ m in (S2δ \ S) × U (automatically satisfied if S is

compact);
3. there exists L > 0 such that for every x ∈ Sδ \ S there exist 1 ≤ kx ≤ k,

{v1, . . . , vkx} ∈ Rd,
∑kx

i=1 |vi| ≤ L, and an A -trajectory yx(·) starting from x
satisfying ∥∥∥∥∥yx(t)− x̄−

kx∑
i=1

ti

i!
vxi

∥∥∥∥∥ ≤ Ltk+1,

{
C̃i,Z(x, v

x
1 , . . . , v

x
k ) ≤ 0 for i = 1, . . . , kx − 1,

C̃kx,Z(x, v
x
1 , . . . , v

x
k) < −μ(dS(x))(5.12)

for every Z ∈ {∂∇dS(p) : p ∈ B(x, dS(x)/2)}.
Then T is continuous in Sδ with the modulus of continuity bounded by

ω(s) := C

(∫ s

0

dr

μk(r)
+

∫ s

0

dr

r1−1/kμ(r)

)

for a suitable constant C > 0.
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Proof. The proof follows the same argument as Theorem 5.10 replacing Proposi-
tion 5.5 and the occurrence of Ci(·), by Proposition 5.13 and C̃i,Z(·).

Remark 5.15. We observe that if ∂S is C1,1, and hence satisfies both the internal
sphere condition and the positive reach property (see Remark 5.9), we have that
C̃i(x) ≤ Ci(∇dS(x)). In particular, the controllability condition given in terms of C̃i is
sharper. A situation where strict inequality holds will be presented in Example 5.22.

We state here a special case of Theorem 5.14.
Corollary 5.16. Consider the control system (5.1). Let ρ, δ,m > 0, k ∈ N\{0}

be constants, and μ :]0, δ[→ [0, 1] be continuous, nondecreasing, satisfying μ(p) > 0
for any p > 0 and ∫ dS(x)

0

dr

μk(r)
+

∫ dS(x)

0

dr

r1−1/kμ(r)
< +∞.

We make the following assumptions:
1. reachS > 2δ;
2. ‖f(x, u)‖ + ‖∇f(x, u)‖ ≤ m in (S2δ \ S) × U (automatically satisfied if S is

compact);
3. there exists L > 0 such for every x ∈ Sδ \S there exist 1 ≤ kx ≤ k, vxkx ∈ Rd,

|vxkx | ≤ L, and an A -trajectory yx(·) starting from x satisfying∥∥∥∥yx(t)− x− tk

k!
vxkx

∥∥∥∥ ≤ Ltk+1,

K

(
p, p+

dS(x)

2m
vxkx

)
< μ(dS(x))(5.13)

for every p ∈ B(x, dS(x)/2).
Then T is continuous in Sδ with the modulus of continuity bounded by

ω(s) := C

(∫ s

0

dr

μk(r)
+

∫ s

0

dr

r1−1/kμ(r)

)
for a suitable constant C > 0.

We conclude this section by providing some examples illustrating the results.
Example 5.17 (Brockett’s nonholonomic integrator). The ground space is R

3.
Set

g1(x1, x2, x3) := (1, 0, x2), g2(x1, x2, x3) = (0, 1,−x1),
and consider the (driftless) system ẋ(t) = u1(t)g1(x)+u2(t)g2(x), where u1(t), u2(t) ∈
[−1, 1]. It is well known that at every point of R3 we have

dim (span{g1(x), g2(x), [g1, g2](x)}) = 3,

and hence the system is fully controllable, according to the classical Chow–Rashevskii’s
theorem (see, e.g., section 0.4 in [11]). We set k = 2, i.e., the min order of Lie bracket
needed to generate the whole space. Take S := B(0, 1) and δ = 1. We notice that

∇dS(x) = x

‖x‖ for every x ∈ Sδ = B(0, 2), and so

min
u1∈[−1,1]

〈u1g1(x),∇dS(x)〉 = −|x1 + x2x3|,
min

u2∈[−1,1]
〈u2g2(x),∇dS(x)〉 = −|x2 − x1x3|,

min
u1,u2∈[−1,1]

〈[u1g1, u2g2](x),∇dS(x)〉 = −|2x3|.D
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These three values are identically 0 if and only if x1 = x2 = x3 = 0. Consequently in
Sδ \ S there exists μ > 0 independent of x such that

min
Y ∈L

〈Y (x),∇dS(x)〉 ≤ −μ.

Theorem 5.10 applies, yielding T (x) ≤ C
√
dS(x), i.e., T (·) turns out to be Hölder

continuous with exponent 1/2.
Remark 5.18. We notice that if we take the origin S′ = {(0, 0)} as target set for

the system of Example 5.17, given a point z = (x1, x2, x3) the corresponding minimum
time function T ′(z) is equivalent to the Carnot–Carathéodory distance between z and
the origin, while dS′(z) = |z| is the Euclidean distance between z and the origin.
Applying the well-known Ball–Box theorem (see, e.g., section 0.5 in [11]), we recover
also in this case that there exists C′ > 0 such that T ′(z) ≤ C′√|z|, and thus the
Hölder continuity of T ′(·) with exponent 1/2.

A similar situation is given by the following.
Example 5.19. The ground space is R2. Set S := B(0, 1), f(x, y) = 10−3(−y, x),

g(x, y) = (−y, 2x), and consider the system{
(ẋ(t), ẏ(t)) = f(x(t), y(t)) + u(t)g(x(t), y(t)),
(x(0), y(0)) = (x0, y0),

where u(t) ∈ [−1, 1].
We notice that 〈f,∇dS〉 = 0, whence 〈f + ug,∇dS〉 = u〈g,∇dS〉. The scalar

product vanishes on the axis, so along these lines Petrov’s condition cannot be satis-
fied.

Set z̄ = (x̄, ȳ) and X1(z) = f(z) + u1g(z), X2(z) = f(z) − u1g(z), X3(z) =
f(z)+u2g(z), where u1 := −sign(−x̄2+ȳ2) ∈ {0,±1}, and u2 := −sign(x̄ȳ) ∈ {0,±1}.
We consider the A -trajectories y

(1)
z (t) := φ2(t/2, φ1(t/2, z)) and y

(2)
z (t) = φ1(t, z)

starting from z. According to Lemma 4.9, we have

(5.14)

⎧⎪⎨
⎪⎩

y
(1)
z̄ (t) = z̄ +

t

4
· f(z̄) + t2

4
(2∇f(z̄)f(z̄) + u1[f, g](z̄)) + o1(t

2),

y
(2)
z̄ (t) = z̄ + (f(z̄) + u2g(z̄))t+ o2(t

2).

We have also h(z) := [f, g](z) = 10−3(−x, y).
Recalling that a semiconcavity constant K for the unit ball is equal to 1, that

‖∇dS(z)‖ ≤ 1, ‖f(z)‖ ≤ 10−3|z|, and ‖∇f(z)‖ ≤ 1, with the notation of Theo-
rem 5.10, we have

C
(1)
1 (∇dS(z)) = 〈∇dS(z), f(z)/4〉 = 0,

C
(1)
2 (∇dS(z)) = 1

2
〈∇dS(z),∇f(z)f(z) + u1

2
[f, g](z)〉+ 1

16
‖f(z)‖2

≤ 1

2
10−6|z|+ 10−6|z|2

16
+

1

4
〈∇dS(z), u1[f, g](z)〉

=
10−6

√
x2 + y2

2

(
1 +

√
x2 + y2

8

)
− 10−3

4

∣∣−x2 + y2
∣∣√

x2 + y2
,

C
(2)
1 (∇dS(z)) = u2〈∇dS(z), g(z)〉 = −|xy|,

where C
(h)
i (∇dS(z)), h = 1, 2, are the coefficients Ci(∇dS(z)) computed, respectively,

for the expansions of y
(h)
z (·), h = 1, 2.
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Consider now a point z ∈ R2 such that 1 ≤ |z| ≤ 8. In polar coordinates, we have
z = (ρ cos θ, ρ sin θ), with 1 ≤ ρ ≤ 8 and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C
(1)
1 (∇dS(z)) = 0,

C
(1)
2 (∇dS(z)) ≤ 8 · 10−6 − 10−3

4
| cos 2θ|,

C
(2)
1 (∇dS(z)) ≤ −1

2
| sin 2θ|.

We can always choose y1z(t) or y
2
z(t) in such a way that

max
{
C

(1)
1 (z), C

(2)
1 (z)

}
≤ 0.

Moreover, we have

min{C(1)
2 , C

(2)
1 } ≤ 8 · 10−6 − 10−3

4
max{| sin 2θ|, | cos 2θ|}

= 10−3

(
8 · 10−3 −

√
2

8

)
< −10−4.

So if we take μ(·) ≡ 10−4, the assumptions of Theorem 5.10 are satisfied with k = 2.
Thus T (·) is 1/2-Hölder continuous.

A more complex situation is described in the following
Example 5.20. The ground space is R2. Set S := B(0, 1),

f(x, y) = 10−3 16
√
x2 + y2 − 1(−y, x), g(x, y) = 16

√
x2 + y2 − 1(1, 1),

and consider the system

{
(ẋ(t), ẏ(t)) = f(x(t), y(t)) + u(t)g(x(t), y(t)),
(x(0), y(0)) = (x0, y0),

where u(t) ∈ [−1, 1].
We notice again that 〈f,∇dS〉 = 0 and hence 〈f + ug,∇dS〉 = u〈g,∇dS〉. Thus

〈g,∇dS〉 vanishes on the line x+ y = 0 and so Petrov’s condition cannot be satisfied
at these points.

We proceed in the same way as Example 5.19, defining y
(1)
z (t) and y

(2)
z (t) as in

(5.14). When we consider higher order terms, we have to compute

h(x, y) := [f, g](x, y) =
10−3

8

(
−8x2 − xy − 9y2 + 8

(x2 + y2 − 1)
7/8

,
9x2 + xy + 8y2 − 8

(x2 + y2 − 1)
7/8

)
,

〈h(x, y),∇dS(x, y)〉 = −10−3 (y − x) 8
√
x2 + y2 − 1√

x2 + y2
,

〈∇f(x)f(x),∇dS(x)〉 ≤ 10−6 8
√
x2 + y2 − 1

√
x2 + y2.

If we consider points z = (x, y) with 1 ≤ |z| ≤ 2, recalling that ‖f(z)‖ ≤ 10−2d
1/16
S (x, y),

D
ow

nl
oa

de
d 

02
/1

3/
15

 to
 1

57
.2

7.
22

6.
18

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

470 ANTONIO MARIGONDA AND SILVIA RIGO

and that 0 ≤ dS(z) ≤ 1, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
(1)
1 (∇dS(z)) = 0,

C
(1)
2 (∇dS(z)) ≤ 10−5

2
d
1/8
S (x, y) +

1

16
· 10−4d

1/8
S (x, y)− 1

4
10−3|y − x|d1/8S (x, y),

≤ 10−3

(
3

2
· 10−2 − |y − x|

4

)
d
1/8
S (x, y),

C
(2)
1 (∇dS(z)) ≤ −d1/16S (x, y)|x + y| ≤ −d1/8S (x, y)|x + y|.

As in Example 5.19, we can always choose y1z(t) or y
2
z(t) in such a way that

max
{
C

(1)
1 (z), C

(2)
1 (z)

}
≤ 0,

and there exists c > 0 such that we have also

min{C(1)
2 , C

(2)
1 } ≤ −10−3

4
d
1/8
S (x, y)

(√
2

2
− 3

2
· 10−2

)
≤ −cd1/8S (x, y).

So if we take k = 2, μ(r) = cr1/8, the assumptions of Theorem 5.10 are satisfied,

yielding that T (x) ≤ Cd
3/8
S (x) (see Remark 5.11 with α = 1/8).

We discuss now the example marking the difference between our results and the
results in [16] and [17].

Example 5.21. The ground space is R. Set S =] − ∞, 0], thus it satisfies the
internal sphere condition and has compact boundary. Define f(x, u) = u

log x for 0 <

x < 1/2, u ∈ [−1, 1], f(x) = 0 for x ≤ 0. We have that f ∈ C1,1
loc (S1/2 \ S)× [−1, 1])

and without loss of generality, we can extend it to a function C1,1
loc ((R \ S)× [−1, 1]).

Clearly, for any 0 < x̄ < 1/2 the optimal control corresponds to u(t) ≡ 1. We
consider the optimal solution γx̄(t) = x̄ + t

log x̄ + o(t) corresponding to this choice of

control. We notice that if we take yx̄(t) = x̄+ t
2 log x̄ , we have that x̄ > yx̄(t) > γx̄(t),

thus yx̄(·) is an A -trajectory. We choose vx1 = t
2 log x̄ . Recalling that dS(x) = x for any

0 < x < 1/2, we have 〈∇dS(x), v1〉 ≤ μ(dS(x)), where μ(s) =
1

2 log s . The assumptions

of Theorem 5.10 are satisfied, providing the estimate T (x) ≤ C(x− x log x) for some
C > 0 (we recall that dS(x) = x for x > 0). Indeed, we can compute exactly the
minimum time function in this case, which turns out to be T (x) = x− x log x.

To compare our result with Theorem 3.1 of [16], consider now any A -trajectory
σx̄(·) starting from x̄ of the form

(5.15) σx̄(t) = x̄+ a(t, x̄) + tαA(x̄) + o(tα, x̄),

where A(·) is a Lipschitz continuous map, ‖a(t, x)‖ ≤ tsc(x) for s > 0, and a Lipschitz
map c(·) satisfying c(x) → 0 when dS(x) → 0. Since for small t we have Rx̄(t)− x̄ ⊆
[2t/ log x̄,−2t/ log x̄], we have

|a(t, x̄) + tαA(x̄) + o(tα, x̄)| ≤ 2t

| log x̄| .

If we pass to the limit for x̄→ 0, divide by tα, and let t→ 0+, we have that A(0) = 0.
We conclude that Assumption A3 of Theorem 3.1 of [16], requiring the existence of a
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Lipschitz function b(·) such that

max
z ∈ B(0, r) \ S

ξ ∈ πS(x) = {0}

〈
x− ξ

‖x− ξ‖ , A(x)
〉

≤ b(z) < 0,

is violated, because the right-hand side is greater than or equal to 0, thus the main
result in [16] cannot be applied. Theorem 3.4 of [16], based on the same techniques as
Theorem 3.1 of [16] and dealing with control-affine systems, requires the vector fields
to be analytic and the target to be compact, but does not assume that the target S
satisfies any internal sphere condition or positive reach property. So this result seems
to be not directly comparable with ours in general. However, in this case, it cannot
be applied, too.

In [17] the results of [16] were extended allowing 〈x − πS(x), A(x)〉 to vanish as
dS(x) → 0. More precisely, Theorem 3.1, which is the main result of [17], requires the
existence of 0 ≤ λ < 2α

2α−1 for the A -trajectory σx̄(·) defined in (5.15) such that

〈x− πS(x), A(x)〉 ≤ −δdλS(x).
Since A(0) = 0, by the Lipschitz continuity of A(·) we have |A(x)| ≤ C|x|, and this
implies λ ≥ 2. However, since it is assumed α ≥ 1, we have 2α

2α−1 ≤ 2, thus even
Theorem 3.1 in [17] cannot be used.

Finally, we provide an example where the negative curvature of the target plays
a distinguished role, thus indicating the difference between Theorem 5.10 and Theo-
rem 5.14.

Example 5.22. The ground space is R2. Set S := R2 \ B(0, 1), f(x, y) =
(0, x2+y2), g(x, y) = (0, 2(x2+y2)). Notice that [f, g] = 0. We notice that x(t) is con-
stant for every admissible trajectory, so no horizontal shifting is allowed. This implies

that for every A -trajectory we have that the first component of any v
(i)
(x,y) appearing

in item (4) of Theorem 5.10 vanishes. In particular, we notice that 〈f+ug,∇dS(x, y)〉
vanishes on ]−1, 1[×{0} for every u ∈ [−1, 1], so Petrov’s condition cannot be satisfied
on this line. More precisely, we have that

min
u∈[−1,1]

〈f + ug,∇dS(x, y)〉 = − max
u∈[−1,1]

y(1 + 2u)
√
x2 + y2 ≤ −|y|

√
x2 + y2 ≤ 0.

Moreover, on this line we have ∇dS(x, 0) = (signx, 0) for every x �= 0, and hence

〈v(i)(x,0),∇dS(x, 0)〉 = 0.

In particular, we have C1(∇dS(x, 0)) = 0 and C2(∇dS(x, 0)) ≥ 0, so the higher order
conditions required by Theorem 5.10 also fail.

Fix 0 < ε < 1, consider

Uε1 :=

{
(x, y) ∈ B(0, 1) : dS(x, y) ≤ 1

3
, |y| > ε

3

}
,

Uε2 :=

{
(x, y) ∈ B(0, 1) : dS(x, y) ≤ 1

3
, |y| ≤ ε

3

}
,

and observe that in Uε1 we have

min
u∈[−1,1]

〈f + ug,∇dS(x, y)〉 ≤ −ε
9
.

We have that (Uε1 ∪ Uε2 ) \ S = S1/3.
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Indeed, we have that dS is concave on R2 \ S, and by direct calculation we have
that

Hess dS(x, y) =
1

|(x, y)|3
( −y2 xy

xy −x2
)

is smooth and semidefinite negative on B(0, 1) \ {0} = R2 \ (S ∪ {0}).
Given z := (x, y), z′ := (x′, y′) ∈ B(0, 1) \ {0} such that (0, 0) /∈ co{z, z′} we have

K (z, z′) =
1

2
co {〈〈Hess dS(z + λ(z − z′)), z − z′〉, z − z′〉, λ ∈ [0, 1]}

=
1

2

{
〈〈Z, z − z′〉, z − z′〉, Z ∈ co {Hess dS(z + λ(z − z′)), λ ∈ [0, 1]}

}
since, according to the smoothness of dS(·) in B(0, 1) \ {0}, we have that the Clarke
generalized gradient ∂∇dS(z + λ(z − z′)) reduces to Hess dS(z + λ(z − z′)) at all
λ ∈ [0, 1].

If z′ can be reached from z in time t by an admissible trajectory, we must have
x = x′, and if (0, 0) /∈ co{z, z′}, we have

K (z, z′) =
1

2
co

{
− x2(y′ − y)2

|(x, y + λ(y′ − y)|3/2
, λ ∈ [0, 1]

}
.

In particular, given z ∈ Uε2 and z′ ∈ B(z, dS(z)/2)∩Rz(t) such that (0, 0) /∈ co{z, z′},
we have that

maxK (z, z′) ≤ −x2(y′ − y)2 ≤ −4− ε2

9
(y′ − y)2,

since on Uε2 we have x2 ≥ (4− ε2)/9 and |z + λ(z′ − z)| ≤ 1.
Take now the admissible trajectory γ of the system satisfying γ(0, 0) = z̄ := (x̄, ȳ)

obtained by using u(t) ≡ 1 if ȳ ≥ 0, and u(t) ≡ −1 if ȳ < 0.
In this case, we have

v
(x̄,ȳ)
1 = f(x̄, ȳ) + ug(x̄, ȳ) =

{
3(0, x2 + y2) if y ≥ 0,
−(0, x̄2 + ȳ2) if ȳ < 0,

and

v
(x̄,ȳ)
2 = ∇(f(x̄, ȳ) + ug(x̄, ȳ)) · (f(x̄, ȳ) + ug(x̄, ȳ)) =

{
6ȳ(0, x̄2 + ȳ2) if ȳ ≥ 0,
−2ȳ(0, x̄2 + ȳ2) if ȳ < 0.

Accordingly, if (x̄, ȳ) ∈ Uε2 , for every p = (px, py) ∈ B((x̄, ȳ), dS(x̄,ȳ)2 ) we have

C̃1,D2dS(p)(x, y, v
(x,y)
1 , v

(x,y)
2 ) = 〈∇dS(x̄, ȳ), v(x̄,ȳ)1 〉 ≤ 0.

We have also

〈∇dS(x̄, ȳ), v(x̄,ȳ)2 〉 ≤ 0,

which yields

C̃2,D2dS (x, y, v
(x̄,ȳ)
1 , v

(x̄,ȳ)
2 ) ≤ 〈〈D2dS(p), v

(x,y)
1 〉, v(x,y)1 〉

≤ −p2x(x2 + y2) ≤ −p2x
4− ε2

9
≤ −4− ε2
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recalling that |px| ≥ 1/2, since

1− dS(z̄) = |z̄| ≤ |p− z̄|+ |p| ≤ dS(z̄)

2
+ |p|.

Hence

1− 3

2
dS(z̄) ≤ |p|.

Taking ε = 1/3, we obtain that on S1/3 the assumptions of Theorem 5.14 are
satisfied with k = 2 and μ = −1/27. This yields Hölder continuity of T (·) with
exponent 1/2.

6. Conclusions. We provided some controllability results both for general con-
trol systems and for affine control systems. These results rely on some estimates on
the distance function, which depend on the smoothness of the target, together with
structural assumptions on the dynamics, in a sort of interplay between the smooth-
ness of the target and the speed of approach, linking them also to the modulus of
continuity of the minimum time function T (·) in a neighborhood of the target.

The stated higher order Petrov’s condition generalizes the first order Petrov’s
condition and the results of [18], extending controllability conditions for this class of
nonlinear systems to quite general target sets, and do not require the target to be
an equilibrium point for the system, as in many known results. In particular, we are
able to cover a broad class of affine systems with nontrivial drift, thus extending the
result of [1].

The role of (generalized) curvature can be crucial in some cases to have controlla-
bility, helping to improve the rough semiconcavity estimate of the distance function.
It would be very interesting to substitute the pointwise formula provided with an in-
tegral estimate on curvature, in the spirit of the generalized Steiner formula proved by
Federer in [10] which involves the generalized curvatures as measures. This would lead
to conditions for controllability in a measure theoretic generic sense, and no longer
pointwise.
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Boston, Boston, MA, 1997,

[2] P. Cannarsa and C. Sinestrari, Convexity properties of the minimum time function, Calc.
Var. Partial Differential Equations, 3 (1995), pp. 273–298.

[3] P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and
Optimal Control, Progr. Nonlinear Differential Equations Appl. 58, Birkhäuser Boston,
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