
BIT Numer Math (2014) 54:113–128
DOI 10.1007/s10543-013-0446-0

Comparison of software for computing the action
of the matrix exponential

Marco Caliari · Peter Kandolf ·
Alexander Ostermann · Stefan Rainer

Received: 31 January 2013 / Accepted: 16 September 2013 / Published online: 15 October 2013
© Springer Science+Business Media Dordrecht 2013

Abstract The implementation of exponential integrators requires the action of the
matrix exponential and related functions of a possibly large matrix. There are vari-
ous methods in the literature for carrying out this task. In this paper we describe a
new implementation of a method based on interpolation at Leja points. We numeri-
cally compare this method with other codes from the literature. As we are interested
in applications to exponential integrators we choose the test examples from spatial
discretization of time dependent partial differential equations in two and three space
dimensions. The test matrices thus have large eigenvalues and can be nonnormal.

Keywords Leja interpolation · Action of matrix exponential · Krylov subspace
method · Taylor series · Exponential integrators

Mathematics Subject Classification (2010) 65F60 · 65D05 · 65L04

Communicated by Ahmed Salam.

Peter Kandolf acknowledges the financial support by a scholarship of the Vizerektorat für Forschung,
University of Innsbruck.

M. Caliari
Dipartimento di Informatica, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
e-mail: marco.caliari@univr.it

P. Kandolf · A. Ostermann (B) · S. Rainer
Institut für Mathematik, Universität Innsbruck, Technikerstr. 13, 6020 Innsbruck, Austria
e-mail: alexander.ostermann@uibk.ac.at

P. Kandolf
e-mail: peter.kandolf@uibk.ac.at

S. Rainer
e-mail: stefan.rainer@uibk.ac.at

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/217542595?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:marco.caliari@univr.it
mailto:alexander.ostermann@uibk.ac.at
mailto:peter.kandolf@uibk.ac.at
mailto:stefan.rainer@uibk.ac.at

114 M. Caliari et al.

1 Introduction

In recent years, exponential integrators (see, e.g. [8]) became an attractive choice for
the time integration of large stiff systems of differential equations. The efficient im-
plementation heavily relies on the fast computation of the action of certain matrix
functions on a given vector. Standard methods such as Padé approximation or diago-
nalization are only reasonable if the dimension of the system is small. For large scale
problems other methods have to be considered.

In this article we are concerned with the comparison of four commonly used
classes of methods for approximating the action of large scale matrix functions on
vectors, namely Krylov subspace methods, Chebyshev methods, Taylor series meth-
ods and a new version of the so-called Leja point method. All used codes are imple-
mented in Matlab and therefore easily comparable in terms of efficiency.

Most exponential integrators make use of linear combinations of the exponential
and the related ϕ functions (see, e.g. [8]). Moreover, since the computation of ϕ func-
tions can be rewritten in terms of a single matrix exponential by considering a slightly
augmented matrix (see, e.g. [2, 10, 11]), we concentrate in this article on the numeri-
cal approximation of the matrix exponential applied to a vector. The comparisons are
carried out in the following way. For a prescribed absolute or relative tolerance we
measure the CPU time that the codes need to calculate their result. Furthermore we
check whether the results meet the prescribed accuracy. To make a fair comparison
in Matlab all codes are tested using a single CPU only.

The outline of the paper is as follows. In Sect. 2 we recall the idea of the Leja
point method and introduce a new numerical realization. In Sect. 3 we present the
competing methods used in our numerical experiments. Finally Sect. 4 is devoted
to the comparison of the codes. As test examples we use spatial discretizations of
linear operators arising from partial differential equations in either two or three space
dimensions. We conclude in Sect. 5.

2 Leja approximation of the action of the matrix exponential

The Leja approximation of the matrix exponential exp(A)b is based on interpolation
of the underlying scalar exponential function at Leja points. Their selection is gov-
erned by the spectral properties of A. The method was first proposed in [6] for the
ϕ1 function. In the following we briefly recall the method, some modifications are
discussed in Sect. 2.1.

In our implementation of Leja interpolation, we include the spectrum of A in a
box that lies symmetrically with respect to the real axis. We describe this box using
the real numbers α, ν and β , i.e.

α ≤ Reσ(A) ≤ ν ≤ 0, −β ≤ Imσ(A) ≤ β. (2.1)

Note that by an appropriate shift of A we can always assume that ν ≤ 0. We numer-
ically determine the bounds α, ν and β by separately considering the symmetric and
skew-symmetric parts of A. With the help of Gershgorin’s disk theorem we easily
compute an inclusion to their spectra. This provides us with the interval [α, ν] for

Comparison of software for computing the action of the matrix exponential 115

the symmetric part and i[−β,β] for the skew-symmetric part. The field of values
F(A) of A (and hence its spectrum) is thus contained in the rectangle R with vertices
(α,−β), (α,β), (ν,β) and (ν,−β). The number ν is an upper bound to the real part
of the smallest eigenvalue in magnitude.

Now we can construct the ellipse E with semiaxes a1 and a2 circumscribing the
rectangle R with smallest capacity (a1 +a2)/2. We take Leja points on the focal inter-
val (i.e., the interval between the foci) of this ellipse. From the maximal convergence
properties of scalar interpolation at Leja points, we have superlinear convergence in
the matrix case as well (see [6] and references therein).

For a compact set K ⊂ C, a sequence of Leja points is defined recursively by

zm ∈ arg max
z∈K

m−1∏

j=0

|z − zj |, z0 given.

They lie on ∂K by the maximum principle. In our application, K is the focal interval
I of the ellipse E . If I ⊂ R is horizontal (this happens when ν − α ≥ 2β) it is pos-
sible to use a set of precomputed Leja points on the reference interval [−2,2]. Note
that good approximations can be obtained in a fast way as described in [3]. Now one
interpolates the function exp(c + γ ξ), ξ ∈ [−2,2] with Newton’s interpolation for-
mula, where c is the midpoint of the focal interval and γ a quarter of its length. The
resulting scheme is

pm(z) = pm−1(z) + dmrm−1(z) for m > 0,

rm(z) =
(

1

γ
(z − c) − ξm

)
rm−1(z)

with

p0(z) = d0, r0(z) =
(

1

γ
(z − c) − ξ0

)
,

where {dj }mj=0 are the divided differences of the function exp(c + γ ξ) at the Leja
points {ξj }mj=1 on the interval [−2,2]. On the other hand, if the focal interval I of the
ellipse is parallel to the imaginary axis (this happens when ν −α < 2β), then the Leja
points are complex and even the approximation of a real matrix function would be
performed in complex arithmetic. Instead we consider conjugate pairs of Leja points
which are symmetric, by construction. They are defined by z0 = c ∈ R and

zm ∈ arg max
z∈I

m−1∏

j=0

|z − zj |, zm+1 = z̄m for m odd.

They can also be precomputed on the reference interval i[−2,2], and the Newton
interpolation can be written in real arithmetic (if the argument z is real), i.e.,

pm(z) = pm−2(z) + Re(dm−1)rm−2(z) + dmqm(z) for m > 0 even,

116 M. Caliari et al.

Fig. 1 Convergence rates for
the interpolation of exp(z),
z ∈ i[−8,8] at complex Leja
points and conjugate complex
Leja points, respectively

rm(z) = 1

γ
(z − c)qm + Im(ξm−1)

2rm−2(z),

qm(z) = 1

γ
(z − c)rm−2(z)

with

p0(z) = d0, r0(z) = 1

γ
(z − c),

where now {dj }mj=0 are the divided differences (real for even j) of the function
exp(c + γ ξ) at the conjugate complex Leja points {ξj }mj=1 on the interval i[−2,2].
In Fig. 1 we see an example of Newton interpolation at complex Leja points and
conjugate complex Leja points, respectively, with no evident difference in the con-
vergence rates. In the practical implementation of the matrix case it is sufficient to use
two (three) vectors p = pm and r = rm (q = qm) and to update them at each iteration.
Moreover, quite a good a posteriori estimate em of the interpolation error is given by
the difference of two successive approximations (see [7])

exp(z) − pm−1(z) ≈ em = dmrm−1(z) (2.2a)

for interpolation at Leja points, and

exp(z) − pm−2(z) ≈ em = Re(dm−1)rm−2(z) + dmqm(z) (2.2b)

for interpolation at conjugate complex Leja points, respectively.
With the notion of the ε-pseudospectrum of A

Λε(A) = {
z ∈C : ∥∥(zI − A)−1

∥∥ ≥ ε−1}

it is possible to derive an a priori error estimate for the convergence rate in the matrix
case (see [6]). It is essentially based on the scalar convergence rate. Unfortunately,
this estimate leads in practice to a considerable overestimate, since the ellipse con-
taining the estimate of Λε(A) is usually much larger than Λε(A) itself.

In Fig. 2 a typical behavior for the interpolation of a matrix function can be ob-
served. We display the a posteriori error estimate (norm of em in (2.2a)) for the eval-
uation of exp(τA)b in Example 1 below (N = 100, Pe = 0.495, τ = 5 · 10−3). The

Comparison of software for computing the action of the matrix exponential 117

Fig. 2 Convergence rate (a
posteriori error estimate) for a
2D advection-diffusion operator
discretized by finite differences
(see Example 1 below). The
upper (red) line indicates the
maximum error during the
recursion. Therefore, numbers
below the lower (red) line are
not significant in IEEE double
precision. (Color figure online)

large hump is produced by the eventually (not monotonically) decreasing divided dif-
ferences and the increasing magnitude of the matrix polynomial rm−1. This behavior
is referred to as the hump effect in the context of matrix functions, see [9, 11].

A second observation, made from Fig. 2, is that even if the terms em decrease
eventually (this is true as the divided differences are computed as described in [5]
and not in the standard way) they vary more than 16 orders of magnitude. Therefore,
it is not possible to reach here an error below 10−9 in double precision (bottom line).
A remedy for this problem is to use the functional equation of the exponential and
introduce a substepping procedure to approximate exp(A)b by

exp(A)b = exp(A/s) . . . exp(A/s)︸ ︷︷ ︸
s inner steps

b,

where each of the s inner steps is computed by the above algorithm.

2.1 The new strategy for the Leja point method

Our aim is to speed up the Leja interpolation in terms of CPU time by keeping a
simple user interface. For large matrices the most resource consuming part is the
Newton interpolation, in particular the computation of the matrix-vector products
and the error estimation. In this context we start from the reasonable assumption
that the underlying LAPACK and BLAS routines are implemented in an optimal way.
Therefore we cannot influence the computational cost of the matrix-vector products.
Consequently we concentrate on implementing the Newton interpolation in the most
efficient way using the smallest possible number of interpolation points. If the amount
of inner steps and the amount of interpolation points per step are known a priori, the
interpolation can be optimized.

As mentioned above the Leja interpolation highly depends on the spectral bounds
α, β for the matrix A, see (2.1). These values define the confocal interval of the used
Leja points. The smallest matrix that has the same spectral properties is the 2 × 2
matrix

S =
[

α β

−β 0

]
.

If we perform an interpolation with S to compute exp(S)w, the convergence rate
should be roughly the same as for interpolating exp(A)b. We can then, once and for

118 M. Caliari et al.

all, compute the convergence range of the Leja interpolation for varying α and β and
use this as an a priori estimate of our unknown properties. There are some constraints,
the most important one is the maximally allowed number of Leja points for one inner
step. Tests show that an upper limit of 150 points is reasonable for one inner step.
The selection procedure is then rather simple. If we are in the convergence range,
i.e., the interpolation for S converged in ≤ 150 iterations, we use iterations for the
interpolation of A as well. Otherwise we introduce additional inner steps, reduce α

and β accordingly and make a new guess on the interpolation points. It is necessary
to compute convergence ranges for various tolerances and distinguish between real
and complex conjugate Leja points.

This procedure is working well for normal matrices, however, it gives problems
for nonnormal matrices. In the latter case the obtained amount of interpolation points
from S is too low, in general. Nevertheless by analyzing the promising results for
normal matrices we were able to define an upper and a lower estimate for the num-
ber of iterations. For each of the sampling tolerances 10−4,10−6,10−8,10−10, and
independently for real and complex conjugate Leja points, we define the following
procedure with the help of the upper and lower estimates.

(a) Compute the values α and β of the rectangle R enclosing σ(A).
(b) Predict the amount of inner steps and compute upper and lower limits of required

iterations per step (s,m,n). Here the sampling tolerance is chosen smaller than
the prescribed tolerance.

(c) Compute m divided differences for the step size 1/s.
(d) Perform Newton interpolation for each of the s inner steps. In each step the error

is checked the first time after n iterations and then after every fifth iteration.

Henceforth this code will be called Leja. The error estimate is based on (2.2a)
and (2.2b). It computes the relative error scaled to the computed solution. Due to
the selection of n, the superlinear convergence and the discrete range of sampling
tolerances, it is possible that the obtained results are too accurate. We also note that
our approach is extendable to allow a dense output for several values of τ (time step
size) as described in [2].

3 Further methods for computing the action of a matrix function

There is a large number of methods for computing the action of a matrix function on
a given vector. However, many of these methods were never implemented or were
implemented in other program languages than Matlab (such as FORTRAN or C).
Some of them are even not freely accessible. Such codes will not be considered here.
There is also a large class of algorithms that compute the full matrix function and
not its action on a given vector. Whereas such an approach works fine for small-scale
problems it is too costly for situations that we have in mind.

We will now briefly describe the other codes that we considered in the numerical
tests. We divide them into three classes.

Comparison of software for computing the action of the matrix exponential 119

3.1 Krylov subspace methods

The computation of exp(A)b with a Krylov method basically consists in two steps. In
the first step one determines an appropriate Krylov subspace, in the second step one
computes the matrix exponential of a smaller matrix using standard methods.

The code Expokit (see [11]) is a program that computes the Krylov subspace by
the Arnoldi method. Given the matrix A ∈ C

n×n and the vector b ∈ C
n the Arnoldi

method computes an orthonormal basis Vm ∈ C
n×m of the Krylov subspace Km(A,b)

and an upper Hessenberg matrix Hm ∈ Cm×m. Here the mth Krylov subspace is de-
fined by

Km(A,b) = span
{
b,Ab, . . . ,Am−1b

}
.

For this basis and the Hessenberg matrix one gets the relation

(λI − A)Vm = Vm(λI − Hm) − hm+1,mvm+1e
T
m,

where eT
m denotes the mth unit vector in R

m.
Using the fact that Vm(λI −Hm)−1e1 is a Galerkin approximation to (λI −A)−1b

one then gets, by Cauchy’s integral formula,

exp(A)b = 1

2π i

∫

Γ

eλ(λI − A)−1bdλ

≈ 1

2π i

∫

Γ

eλVm(λI − Hm)−1e1dλ = Vm exp(Hm)e1,

where the curve Γ surrounds the field of values of the matrix A.
The code uses the Matlab routine expm to compute exp(Hm). A crucial parameter

is the maximally allowed dimension of the Krylov subspace. In Expokit this is set
to mmax = 30. If a higher dimension is required, Expokit uses a substep strategy to
find an acceptable approximation.

3.2 Taylor series methods

The code expmv (see [2]) approximates the exponential of a given matrix A ∈C
n×n

acting on b ∈C
n by

exp(A)b ≈ Tm

(
s−1A

)s
b

with Tm denoting the truncated Taylor series expansion of order m of the exponential
function at zero. For a fixed integer m, the parameter s is chosen in such a way that
Tm(s−1A)s = exp(A + ΔA) with ‖ΔA‖ ≤ TOL, where ΔA is the backward error
of the computation with respect to truncation errors (see [2]). Note that expmv is
the only method in our comparison that bounds the backward error. The value of
m is chosen such that the computational cost of the algorithm is minimized, taking
into account that the evaluation of a too long Taylor expansion for matrices s−1A

with large norm could lead to numerical instability. Therefore, it is required that m ≤
mmax = 55.

The code expmv allows only three different sizes of tolerances TOL, namely half,
single, and double precision.

120 M. Caliari et al.

3.3 Chebychev methods

The idea of using a Chebychev polynomials for approximating a matrix function is
quite established (see [1, 4]). Chebychev methods work efficiently if the matrix A

is Hermitian or skew-Hermitian. The code Cheb by Güttel1 is designed for Hermi-
tian matrices. For a given Hermitian matrix A ∈ C

n×n with eigenvalues in [α, ν] ⊂ R

the action of the exponential of A on b is approximated by a Chebychev expan-
sion with interpolation points in [α, ν]. In the code Cheb the necessary Chebychev
coefficients are computed with fft, even though they are values of known Bessel
functions. A similar approach can be used for solving ordinary differential equations
(see, e.g. [1]) but is not considered in this paper.

4 Numerical comparisons

In this section we outline some differences between the methods described above
as well as our new implementation on the basis of four test examples. All of the
following numerical comparisons are computed with Matlab 2012a on a 64 bit
(glnxa64) Fedora 16 workstation with a 3 GHz Intel Core 2 vPro and 8 GB RAM.
Matlab is restricted to a single computational thread on a single core by using the
-singleCompThread command flag. In addition the JVM is deactivated with the
-nojvm command flag. This configuration, which limits the computations to one
CPU or processor core, allows us to make a fair comparison where the specific com-
puter architecture has less influence. We are looking at these computations from the
exponential integrator point of view. Therefore, we are typical interested in accuracies
of 4 to 8 digits, say. However, we will also present a comparison where we prescribe
12 digits accuracy. We include this example to show that our conclusions presented
below do not change for higher accuracy requirements. In all cases we used expmv
from [2] with maximal precision to compute a reference solution.

In the following we briefly describe each of the examples and the configuration for
the respective numerical experiment. In each of the test cases we compute exp(τA)b

for a prescribed tolerance TOL. Each of the codes is only provided with τ,A,b and
TOL to keep the user interface simple. The time step size τ allows us to control the
magnitude of the eigenvalues of the example matrices and therefore to vary between
stiff and nonstiff situations.

The various codes treat the prescribed tolerance TOL in a different way. Expokit
normalizes the vector b and uses TOL as a stopping criterion in the Arnoldi iteration.
If the norm of exp(τA)b is small, the relative error is badly controlled (see, e.g., Fig. 4
below). The code expmv controls the backward error by requiring ‖ΔA‖ ≤ TOL‖A‖
for any given norm. Cheb relates TOL to the 1-norm of the last 20 Chebychev co-
efficients employed. Finally, Leja controls with TOL the relative error of the result
(in any given norm).

1We thank S. Güttel for providing us with a Matlab code.

Comparison of software for computing the action of the matrix exponential 121

Fig. 3 Computational cost of
various methods vs. number of
points N per coordinate for the
evaluation of exp(τA)u0 in
Example 1 for grid Péclet
numbers Pe = 0, 0.1, 0.9 and
τ = 10−2. The error is measured
in the maximum norm for the
prescribed tolerance
TOL = 10−4. The + indicates
that the relative error is larger
than TOL, the � indicates that
the absolute error requirement is
slightly violated

Example 1 (advection-diffusion equation) We start to investigate the behavior of the
methods by an example that allows us easily to vary the spectral properties of the
discretization matrix. We consider the advection-diffusion equation

∂tu = εΔu + c∇u

on the domain Ω = [0,1]2 with homogeneous Dirichlet boundary conditions. This
problem is discretized in space by finite differences with grid size Δx = 1

N+1 ,N ≥ 1.

This results in a sparse N × N matrix A and a problem with df = N2 degrees of
freedom. We define the grid Péclet number

Pe = cΔx

2ε

as the ratio of advection to diffusion, scaled by Δx. By increasing Pe the nonnor-
mality of the discretization matrix can be controlled. An appropriate measure for the
nonnormality of a matrix A is the number

κ = ‖AA∗ − A∗A‖
‖A‖2

.

122 M. Caliari et al.

Fig. 4 Computational cost and
achieved accuracy of various
methods vs. number of points N

per coordinate for the evaluation
of exp(τA)u0 in Example 1 for
Pe = 0.5 and τ = 10−2. The
error is measured in the
maximum norm for the
prescribed tolerance
TOL = 10−4. The + indicates
that the achieved relative error is
larger than TOL. The gray line
indicates the prescribed
tolerance

In our example, we found the relation Pe = 8κ in the maximum norm. For the com-
putations displayed in Figs. 3–6 the parameters are chosen as follows: ε = 1 and
c = 2εPe

Δx
. As initial value we use the function u0(x, y) = 256 · x2(1 − x)2y2(1 − y)2.

In Fig. 3 the matrix changes from normal (Pe = 0) to nonnormal (Pe = 1). In this
range, our bound β in (2.1) changes accordingly from β = 0 to β = −0.45α. The
Chebyshev method is only working reliably for normal matrices whereas the other
methods work fine for all cases. The methods Leja and expmv have approximately
the same computational effort, independently of the nonnormality of the input matrix.
For Expokit, the computational cost slightly increases with increasing grid Péclet
number. In Fig. 3 we use the maximum norm. We note that the discrete L2 norm gives
almost identical results.

In Fig. 4 we take a closer look for Pe = 0.5 and also include the actual error for
each of the methods (except Cheb for the above described reasons). For this choice
of Pe, the exact solution becomes very small and the distinction between relative and
absolute error gets important. We can see that Expokit effectively only considers
the absolute error, whereas expmv and Leja match the specified relative tolerance.

In our third test case for this example, see Fig. 5, we fix the dimension of A but
vary the grid Péclet number between 0 and 1. The results are somewhat similar to
those in Fig. 3. One observes again that the computational cost increases for higher

Comparison of software for computing the action of the matrix exponential 123

Fig. 5 Computational cost of
various methods vs. grid Péclet
number for the evaluation of
exp(τA)u0 in Example 1 with
df = 2500,12100 and 40000
degrees of freedom and
τ = 10−2. The error is measured
in a discrete L2 norm for the
prescribed tolerance
TOL = 10−6. The + indicates
that the achieved relative error is
larger than TOL

degrees of freedom but is almost constant for the methods Leja, expmv and Ex-
pokit, for varying Pe. These three methods also have about the same computational
cost (varying by a factor of 3). The errors in this example are measured in a discrete
L2 norm but again the pictures stay almost the same for the maximum norm. In Fig. 6
we repeat the above experiment with TOL = 10−12 to show that our conclusions stay
the same for more stringent tolerances.

Throughout these experiments one could see that for small matrices the overhead
produced by the accurate evaluation of the divided differences [5] in Leja is slowing
down the method. For higher dimensions, however, the percentage of this (almost)
fixed cost decreases in comparison to the overall cost and the method improves with
respect to the other methods, see Fig. 3. The difference in CPU time between expmv
and Leja can be explained by the different amount of matrix-vector products needed
by each of the methods.

Example 2 (reactive transport in heterogeneous porous media [12]) The advection-
diffusion-reaction equation

φ(x)∂tu = ∇ · (D∇u) − ∇ · (q(x)u
) + R(x,u), D =

[
D1 0
0 D2

]

124 M. Caliari et al.

Fig. 6 Computational cost of
various methods vs. grid Péclet
number for the evaluation of
exp(τA)u0 in Example 1 with
df = 2500,12100 and 40000
degrees of freedom and
τ = 10−2. The error is measured
in a discrete L2 norm for the
prescribed tolerance
TOL = 10−12. The + indicates
that the achieved relative error is
larger than TOL

is used to model many applications in geo-engineering. A finite volume discretiza-
tion with N × N points in the domain Ω = [0,1]2 results in a sparse discretization
matrix with a more complex structure than the one in the previous example. In par-
ticular, we are using the matrix L of Eq. (6) from [12, p. 3959].2 For the computa-
tions displayed in Fig. 7 the diffusion parameters are set to D1 = 10−3,D2 = 10−4,
and the dynamical viscosity is chosen μ = 1. As initial value we use u0(x, y) =
256 · x2(1 − x)2y2(1 − y)2.

In Fig. 7 we investigate the behavior of the considered methods for increasing ma-
trix dimensions. In this experiment we prescribed a higher accuracy but due to the
superlinear convergence this does not result in a considerably higher cost. The spec-
tral properties of L are similar to that of A in Example 1 with Pe = 0.9. As soon as
the overhead of Leja is compensated by the reduced amount of matrix-vector prod-
ucts Expokit, expmv and Leja have roughly the same computational cost with
an almost negligible disadvantage for Expokit. In this example we do not have a
monotonic growth of computational cost, due to the definition of the permeability and
the porosity φ(x) of the heterogeneous media, which include random variables. The
experiments show, however, that all the methods are affected almost in the same way.

2We thank A. Tambue for providing us with a Matlab code.

Comparison of software for computing the action of the matrix exponential 125

Fig. 7 Computational cost and
achieved accuracy of various
methods vs. number of points N

per coordinate for the evaluation
of exp(τL)u0 in Example 2 for
τ = 10−1. The error is measured
in a discrete L2 norm for the
prescribed tolerance
TOL = 10−6. The gray line
indicates the prescribed
tolerance

Example 3 (Schrödinger equation with harmonic potential in 3D) Our next example
is the 3D Schrödinger equation

∂tu = i

2

(
Δ − ε|x|2)u

with harmonic potential. We discretize this problem with finite differences in N3

points on the domain Ω = [0,1]3. This results in a discretization matrix with pure
imaginary spectrum and allows us to test the stability of the methods on the imaginary
axis. As described in Sect. 2 this forces the Leja implementation to use complex
Leja points. Although the spectrum lies on the negative imaginary axis, we decided
to use complex conjugate Leja points. As initial value we use u0(x, y, z) = 4096 ·
x2(1 − x)2y2(1 − y)2z2(1 − z)2.

In Fig. 8, Leja, expmv and Expokit show a nearly parallel linear growth of
the computational cost, this time with a slight advantage for Leja, even though the
implementation achieves about 3 digits more accuracy than required. This example
shows that the procedure described in Sect. 2.1 might not always result in the least
possible computational cost. However, it is still fast. The CPU time of Leja, expmv
and Expokit is varying only by a factor of about 2.

126 M. Caliari et al.

Fig. 8 Computational cost and
achieved accuracy of various
methods vs. number of points N

per coordinate for the evaluation
of exp(τA)u0 in Example 3 for
ε = 0.5 and τ = 0.5. The error is
measured in a discrete L2 norm
for the prescribed tolerance
TOL = 10−6. The gray line
indicates the prescribed
tolerance

Example 4 (Molenkamp–Crowley in 2D with radial basis functions) In order to in-
clude an example with a dense matrix we consider the Molenkamp–Crowley equation

∂tu = ∂x

(
a(x, y)u

) + ∂y

(
b(x, y)u

)

with a(x, y) = 2πx and b(x, y) = −2πy in [−1,1]2. This problem is discretized on
a regular N × N grid with Gaussian radial basis functions. The form factor is chosen
in such a way that the approximation error in space is smaller than TOL. For a further
discussion of the example and some literature on radial basis functions, see [7]. This
kind of discretization results in a matrix where more than 90% of the entries are
nonzero. As initial value we use

u0(x, y) = 1.1734 · e−100
(
(x−0.2)2+(y−0.2)2

)(
x2 − 1

)2(
y2 − 1

)2
.

The results of this example are summarized in Fig. 9. For a dense matrix the
matrix-vector products are more expensive and therefore Leja and expmv need sig-
nificantly more CPU time, compared to the sparse situation in the previous examples.
The costs for Expokit have increased as well. Altogether the methods vary only
by a factor of about 3. In comparison to the previous examples our implementation
of Leja needs more matrix-vector products than expmv and therefore consumes

Comparison of software for computing the action of the matrix exponential 127

Fig. 9 Computational cost and
achieved accuracy of various
methods vs. number of points N

per coordinate for the evaluation
of exp(τA)u0 in Example 4 for
τ = 0.5. The error is measured
in the maximum norm for
prescribed tolerance
TOL = 10−6. The gray line
indicates the prescribed
tolerance

slightly more CPU time. Due to the storage limitations it is not feasible to include
higher dimensional matrices in this experiment as it can not be guaranteed that Mat-
lab is not starting to swap storage to the hard drive. The results in Fig. 9 are given
for the maximum norm. The corresponding results in a discrete L2 norm look very
similar.

5 Concluding remarks

In this paper a new method for computing the action of the matrix exponential is
proposed. It is based on a polynomial interpolation at Leja points and provides an
a priori estimate of the required degree. This enables us to determine the required
number of inner steps for an efficient computation.

From the numerical comparisons we can draw the following conclusions. All
methods with the very exception of Cheb work well for the considered examples.
The latter gives satisfactory results only for nearly self-adjoint problems. For Krylov
subspace methods, the maximal dimension of the subspace should not be too large.
This and a high degree in the interpolation methods can be avoided by choosing more
inner steps which results in a smaller field of values of the matrix. For small time

128 M. Caliari et al.

step sizes τ all methods are comparable and work well, but our interest lies in stiff
problems with τ not too small as considered in the examples. A clear advantage of
expmv and our interpolation at Leja points is the low demand of storage due to the
employed short-term recursion.

References

1. Abdulle, A.: Fourth order Chebyshev methods with recurrence relation. SIAM J. Sci. Comput. 23(6),
2042–2055 (2002)

2. Al-Mohy, A.H., Higham, N.J.: Computing the action of the matrix exponential, with an application
to exponential integrators. SIAM J. Sci. Comput. 33(2), 488–511 (2011)

3. Baglama, J., Calvetti, D., Reichel, L.: Fast Leja points. Electron. Trans. Numer. Anal. 7, 124–140
(1998)

4. Bergamaschi, L., Caliari, M., Vianello, M.: Efficient approximation of the exponential operator for
discrete 2D advection-diffusion problems. Numer. Linear Algebra Appl. 10(3), 271–289 (2003)

5. Caliari, M.: Accurate evaluation of divided differences for polynomial interpolation of exponential
propagators. Computing 80(2), 189–201 (2007)

6. Caliari, M., Vianello, M., Bergamaschi, L.: Interpolating discrete advection-diffusion propagators at
Leja sequences. J. Comput. Appl. Math. 172(1), 79–99 (2004)

7. Caliari, M., Ostermann, A., Rainer, S.: Meshfree exponential integrators. SIAM J. Sci. Comput. 35(1),
A431–A452 (2013)

8. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)
9. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five

years later. SIAM Rev. 45(1), 3–49 (2003)
10. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM

J. Numer. Anal. 29(1), 209–228 (1992)
11. Sidje, R.B.: EXPOKIT: a software package for computing matrix exponentials. ACM Trans. Math.

Softw. 24(1), 130–156 (1998)
12. Tambue, A., Lord, G.J., Geiger, S.: An exponential integrator for advection-dominated reactive trans-

port in heterogeneous porous media. J. Comput. Phys. 229(10), 3957–3969 (2010)

	Comparison of software for computing the action of the matrix exponential
	Abstract
	Introduction
	Leja approximation of the action of the matrix exponential
	The new strategy for the Leja point method

	Further methods for computing the action of a matrix function
	Krylov subspace methods
	Taylor series methods
	Chebychev methods

	Numerical comparisons
	Concluding remarks
	References

