
RTL property abstraction
for TLM assertion-based verification

Abstract—Different techniques and commercial tools are at
the state of the art to reuse existing RTL IP implementations
to generate more abstract (i.e., TLM) IP models for system-
level design. In contrast, reusing, at TLM, an assertion-based
verification (ABV) environment originally developed for an RTL
IP is still an open problem. The lack of an effective and
efficient solution forces verification engineers to shoulder a time
consuming and error-prone manual re-definition, at TLM, of
existing assertion libraries. This paper is intended to fill in the gap
by presenting a technique to automatically abstract properties
defined for RTL IPs with the aim of creating dynamic ABV
environments for the corresponding TLM models.

I. INTRODUCTION

Electronic system-level (ESL) design, assertion-based veri-
fication (ABV), and reuse of intellectual-property (IP) models
are three key approaches often combined to address the in-
creasing complexity of todays System-on-chip (SoC) design.

The trend of ESL design and verification has led both
industry designers and third-party vendors to extend the library
of register-transfer level (RTL) IP implementations with the
corresponding transaction-level modeling (TLM) descriptions.
Even if such higher-level models are still mainly developed by
hand, both methodologies [1], [2] and commercial tools [3], [4]
for reusing the existing RTL IPs and automatically abstracting
them into TLM models are spreading.

On the other hand, several techniques and frameworks have
been developed to apply ABV to ESL design, particularly at
TLM. First, approaches have been proposed for both static and
dynamic ABV of cycle-accurate TLM models [5], [6]. Then,
general concepts [7], requirements [8], and frameworks [9],
[10] have been presented to adopt dynamic ABV in more
abstract TLM models. Alternative ABV frameworks based on
Property Specification Language (PSL), which support TLM
2.0 coding styles, are presented in [11] and [12]. Finally,
in [13], [14] the authors propose a methodology and a cor-
responding tool, to enable dynamic verification of temporal
properties for TLM specifications, where PSL is used to
express communication behaviours.

Reuse of ABV properties in TLM-based design flows has
been addressed in [15], [16], [17]. In particular, [15] and [17]
present two different methodologies to check the functional
consistency between TLM and RTL models by reusing TLM
properties at RTL through ad-hoc refinement rules. Instead,
[16] presents a technique to reuse TLM properties at RTL
through TLM/RTL transactors. All these techniques assume a
top-down design and verification flow, where properties are
defined ex-novo at TLM level, and then reused at RTL.

In contrast, reusing existing properties in an RTL-to-TLM
bottom-up design flow to check the consistency of TLM
models w.r.t. the corresponding RTL models is still an open
problem. An attempt has been recently proposed in [18],
where the authors show how to reuse RTL checkers at TLM.
Nevertheless, this approach suffers from applicability, since it
is suited for cycle-accurate TLM models only.

The main intent of this work is to automatically build
a dynamic ABV environment for a TLM model, with no
restriction on the abstraction level, by starting from a set

Existing RTL IPs are abstracted
manually or automatically to be reused at TLM

Proposed methodology

Wrapper

RTL IP

RTL
properties

IP abstraction
TLM
model

TLM
properties Checkers

Property
rewriting

Abstraction
of signals

Abstraction
of time

Checker
generation

Wrapper
generation

RTL ABV TLM ABV

Fig. 1. Methodology overview.

of properties initially defined for a corresponding RTL im-
plementation1, as depicted in Fig. 1. To achieve this goal,
the proposed methodology acts in two directions. First, we
automatically rewrite cycle-accurate RTL properties into a set
of properties suited to be checked on an event-based TLM
model. This is done by applying a set of transformation
rules that reflect, on the properties, the effect of abstraction
(i) on the timing reference (abstraction of time) and (ii) on
the communication protocol (abstraction of I/O signals) of
the design under verification (DUV). Secondly, we define an
approach to synthesize TLM properties into checkers to be
adopted for dynamic ABV of the TLM model. The approach
is independent from the methods applied to generate checkers
thanks to the definition of an opportune wrapper.

The advantages of the proposed solution are the following:

• avoiding the time-consuming and error-prone manual
effort for re-defining TLM properties;

• reusing existing tools, which are at the state of the
art for RTL ABV, to synthesize TLM properties into
checkers; and

• minimizing the overhead introduced by the generated
checkers in the TLM simulation.

The paper is organized as follows. Section II summarizes
the background related to linear temporal logic (LTL) logic and
PSL. Section III describes how RTL properties are rewritten
to be compliant with TLM verification. Section IV deals with
checker generation. Section V discusses experimental results.
Finally, conclusions are summarized in Section VI.

II. BACKGROUND

The methodology proposed in this work is intended for
abstracting LTL properties compliant with the simple subset of
PSL. This section summarizes basics information about LTL
logics and PSL language.

By using the PSL syntax for temporal operators, LTL is
defined as reported in Def. II.1.

Definition II.1. Given a finite set of atomic propositions AP ,
the set of LTL properties over AP can be defined, in negation
normal form, as follows:

• a ∈ AP and ¬a are LTL properties;

1To keep the notation simple and intuitive, in the following, we use the
terms RTL properties and TLM properties to indicate properties defined for
RTL and TLM models, respectively.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/217541179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• if p1 and p2 are LTL properties then p1 ∨ p2, p1 ∧
p2, next p1, p1 until p2 and p1 release p2 are LTL
properties.

Intuitively, the semantics of temporal operators next, until
and release is:

• next p1 holds at time t if p1 holds at time t+ 1;
• p1 until p2 holds at time t if p1 holds for all instants

t′ ≥ t until p2 holds;
• p1 release p2 holds at time t if p2 holds for all

instants t′ ≥ t until and including the instants where
p1 first becomes true; if p1 never becomes true, p2
holds forever.

In the rest of the paper, a composition of n next operators
next(next(. . . next(a) . . .)) is abbreviated in next[n](a), ac-
cording to PSL syntax.

PSL is a property specification language that extends LTL
and CTL for enabling designers to capture their intent in
a verifiable form and verification engineer to validate that
the implementation satisfies its specification through dynamic
(i.e., simulation) or static (i.e., formal) verification techniques.
Dynamic verification is performed by synthesizing PSL prop-
erties into checkers, i.e, components that monitor the evolution
of the DUV during simulation and raise a failure when a
property violation is observed. Checker generation is easy
when the simple subset of PSL is adopted, which restricts the
composition of temporal properties to ensure that time moves
forward from left to right through a property, as it does in a
timing diagram [19]. Even if PSL has been originally intended
for RTL verification, several works, like for example [20], [11],
[14] have extened its application at TLM.

III. PROPERTY REWRITING

The abstraction of a property from RTL to TLM must
reflect changes implemented during the abstraction of an
RTL DUV towards an equivalent TLM model. In particular,
two main aspects must be analysed to map RTL properties
towards TLM properties: (i) the change of temporal ref-
erence for temporal operators, caused by moving from an
RTL cycle-accurate simulation towards a TLM transaction-
based simulation (Section III-A), and (ii) the removal of
some primary inputs/outputs, caused by the abstraction of the
I/O communication protocol (Section III-B). Designers and
abstraction tools can address such aspects in various ways
leading to the definition of different versions of TLM models
corresponding to the same RTL implementation. This diversity
makes the definition of an automatic procedure for abstracting
properties particularly challenging. The solution we propose to
overcome this problem relies on the assumption that the RTL
implementation and the corresponding TLM model are timing
equivalent according to the following definition.

Definition III.1. An RTL model MRTL and a TLM model
MTLM are timing equivalent if and only if for all signals
s belonging to the I/O interface of both models, when s is
assigned to a value v on MRTL at time t, the same assignment
happens on MTLM at the same time, and vice versa.

The previous definition guarantees that, whatever procedure
is applied to abstract the RTL implementation, the final TLM
model preserves both the IP functionality and the IP timing.

A. Abstraction of time

At RTL, the simulation of the DUV behaves according to
cycle-accurate events, generally synchronized with respect to
the rising and/or falling edge of one or more clocks, when
input signals are assigned and outputs signals are observed.
In contrast, at TLM, the simulation proceeds along with asyn-
chronous events corresponding to transactions. According to
the selected coding style (e.g., loosely-timed, approximately-
timed, cycle-accurate), write transactions ask for a task elab-
oration, while read transactions get the result back. This

!"#$%&

'()*+&

,-./0/&

,-123&

.24,5627&

.8&

491&

:;0./0/&

7.3&

780&

!"#$%&

')*<+&
.8&

,-./0/&

,-123&

7.3&

07/-85:70=57,>,?@2&

&&&&&'A5/39:/.B&?>2+C&

'/+& 'D+&20ns 0ns

,-./0/&
,-123&

.24,5627&

.8&

491&
780&

&&
:;0./0/&

150ns 160ns 170ns &&&

7.3&

!"#$%'5/39:/.B&?>2+&
&

E-,?/0:7&)/7F20&'!"#$%+&

G7,02&./0/&/-.&.24,5627&
0ns

'4+&

"%&''5/39:/.B&?>2+&
&170ns

'.+&

!"#$%'5/39:/.B&?>2+&
&

G7,02&.8B&,-./0/B&,-123&
10ns

.24,5627&

:;0./0/&

7.3=-2H0=-2H0=43492&

7.3=-2H0=43492&

10ns

7.3=-2H0=43492&
7.3=-2H0=-2H0=43492&

"@/9&5& "@/9&5& "@/9&5& "@/9&5& "@/9&5& "@/9&5&

"@/9&5&

"@/9&5&

"@/9&5&

72/.&7.3B&:;0./0/&

I&

Fig. 2. (a) A RTL DES56 encryption/decryption model, (b) a snippet of the
I/O waveforms, (c) a TLM timing-equivalent model, and (d) the sequence of
TLM transactions implementing the I/O data exchange corresponding to the
time frame of (b).

p1 : always !(ds∧indata = 0)∨(next[17](out ≠ 0))()@clk _ pos

p2 : always !ds∨(next(!ds until next(rdy)))()@clk _ pos

p3 : always !ds∨(next[15](rdy_next _next _ cycle)∧(

 next[16](rdy_next _ cycle)∧next[17](rdy)))@clk _ pos

q
1

: always !(ds∧indata = 0)∨(next
170

1
(out ≠ 0))()@Tb

q
2

: always !ds∨(next
10

1
(!ds) until next

20

2
(rdy)))()@Tb

q
3

: always !ds∨next
170

1
(rdy)()@Tb

!"#$%&'%(&)(*$

"#+$%&'%(&)(*$

Fig. 3. RTL properties for the DES56 models of Fig. 2 and the corresponding
TLM properties generated with the proposed methodology.

difference is depicted in Fig. 2, where, as running example, the
snippet of the RTL I/O waveforms and the corresponding se-
quence of TLM transactions of a DES56 encryption/decryption
model are reported.

Temporal logics, like LTL, and property specification lan-
guages, like PSL, are definitely suited to capture behaviours
of cycle-accurate RTL models, where temporal operators are
naturally referred to clock events. In PSL, for example, every
property has an associated clock context that specifies when
the property must be evaluated. The base clock context is
true, which means the time granularity adopted to check the
consistency between DUV and properties is defined by the
verification tool. More frequently, an explicit clock context
is specified during the definition of the property through the
@ operator. In this case, the property is evaluated when the
Boolean expression following the @ operator holds. In most
of cases, for RTL properties, the @ expression simply specifies
clock events (i.e., falling/rising edges). For instance, the RTL
property p1 in Fig. 3 specifies that out 6= 0 is true 17 events
later than ds ∧ indata = 0 has become true, each time
ds ∧ indata = 0 holds. In this case, according to the @
expression, the property is evaluated at every positive edge
of the clock as reported in Fig. 2(b).

At TLM, the clock is abstracted away, consequently the
evaluation points of a property can solely be expressed in terms
of a transaction context referring to starting and/or ending
points of transactions, as shown, for example, in Fig. 2(d).
Therefore, as a first step towards RTL-to-TLM property ab-
straction, we map the RTL clock context in a TLM transaction
context according to the following definition.

Definition III.2. Given an RTL property p with clock context
C, a transaction context T for the corresponding TLM property
q is defined as follows:

• if C is either the basic clock context (i.e., true) or
it belongs to the set {@clk,@clk pos,@clk neg},

then C is mapped on the basic transaction context Tb,
which evaluates q at the end of every TLM transaction;

• if C is expressed as clock expr ∧ var expr, where
clock expr is one of {@clk,@clk pos,@clk neg}
and var expr is a Boolean expression involving other
variables of the DUV different from a clock, then C
is mapped on Tb ∧ var expr, where Tb is the basic
transaction context.

Mapping the clock context to the transaction context is
not enough to guarantee a correct RTL-to-TLM property
abstraction. In fact, as a result of the RTL-to-TLM abstraction
of the DUV, a transaction generally merges several RTL events
in a single read or write operation, and thus it embraces an
imprecise number of clock cycles. While this does not affect
the evaluation of properties that include the until and release
operators (and all the other LTL operators that are derived from
them, i.e., always and eventually), it represents a problem
for properties that explicitly count the passing of time through
the next operator, as clarified hereafter.

The until and release operators do not refer to a precise
time instant, but to some event which must occur in an
imprecise point in the future. Thus, given that the functionality
of the design is preserved during the RTL-to-TLM abstraction,
an until or release-based property that holds on the RTL DUV
is also true, without the need of being transformed, when
evaluated on the corresponding TLM model. This is proven
by the next Theorem.

Theorem III.1. Given an RTL implementation MRTL, a
timing-quivalent TLM model MTLM , and a property p with
clock context C involving, among temporal operators, only
until and release, if MRTL |= p @ C then MTLM |= p @ T ,
where the transaction context T is generated according to
Def. III.2.

Proof: 2 Since MRTL and MTLM are timing equivalent, a
transaction is executed by MTLM in all instants corresponding
to RTL clock cycles where at least one I/O signal of MRTL

changes its value, to reflect the same I/O modification at TLM .
Otherwise, the two models would not be timing equivalent.
Thus, the only possibility for having that p @ T fails on
MTLM is represented by the fact that the transaction context T
excludes from verification one or more of such instants missing
the observation of something relevant for determining the truth
value of p. However, this is impossible by construction of the
transaction context (Def III.2).

Differently from until and release, the next operator
explicitly counts events. Since RTL events (based on clock cy-
cles) differ from TLM events (based on transactions), proper-
ties including next operators that hold on an RTL DUV cannot
be re-used to check a corresponding abstracted TLM model by
simply replacing the clock context with a transaction context.
For example, for property p1 in Fig. 3 the checking procedure
(independently from its static or dynamic nature) needs to
count 17 clock cycles before evaluating the consequence of
the implication, after the antecedent has been fired3. If the
same property was evaluated at TLM by simply substituting the
clock context with a transaction context based on Def. III.2, the
checking procedure would wait for 17 transactions, definitely
invalidating the property.

A naive solution to such a problem would be scaling RTL
clock cycles to TLM transactions, i.e., mapping the n clock
cycles analysed by a next[n] operator included in a RTL
property p on a corresponding number of m transactions, such
that, at TLM, we can substitute next[n] with next[m] inside

2For lack of space, only an informal idea of the proof is reported.
3Note that ¬a ∨ b ≡ a → b, thus p can be read as an implication.

p. However, this solution is not generally applicable because
it requires to precisely know the number of clock cycles
corresponding to each transaction and the exact sequence of
transactions that will be executed by the DUV in the time
window monitored by each property. On the contrary, the
arrival of an overlapping (unexpected) transaction affecting
a part of the design not monitored by a property could
introduce an extra evaluation point for that property causing
its inopportune failure [7], [17].

To effectively address RTL-to-TLM property abstraction
without the limitations of the previous naive solution, we
propose the definition of a new operator, nextτǫ , where τ ∈ N

and ǫ ∈ N
+, which is specifically intended for dynamic

(i.e., simulation-based) ABV at TLM. The apex τ represents
the position of nextτǫ in the property with respect to other
occurrences of the same operator; it is introduced for a
correct generation of checkers as reported in Section IV. The
subscript ǫ represents the required evaluation time, i.e., the
exact simulation time when the operand must be evaluated
with respect to the firing of the property. More formally, we
define the semantics of nextτǫ as follows.

Definition III.3. Given a model M , an LTL property p, and
a dynamic ABV environment E, M |= nextτǫ (p) if p is true
after ǫ simulation instants (expressed in nanoseconds). If the
verification environment E is unable to evaluate p at time ǫ,
nextτǫ (p) is false; this happens when no event is observable
by E at time ǫ.

In a simulation-based context, a next operator can be
replaced by nextτǫ , with opportune values for τ and ǫ, without
changing the semantics of the property. For example, assuming
a clock period of 10ns, p1 in Fig. 3 can be equivalently
expressed as the following p′1 property:

always(!(ds ∧ indata = 0) ∨ (next1170(out 6= 0)))@clk pos.

When evaluated at RTL with clock context clk pos, p and p′1
are equivalent. On the contrary, during TLM verification, the
clock context of p′ is substituted with a transaction context,
leading to the property q1 reported in Fig. 3. In this way, q1
preserves the original intent of p, by checking, at TLM, out 6=
0 after 170ns from the firing of ds ∧ indata = 0.

According to the previous observations, we propose a prop-
erty abstraction methodology based on the following sequence
of automatic steps.

Methodology III.1. Given an RTL implementation MRTL and
a timing-equivalent TLM model MTLM , the following steps
are executed to transform an RTL property p with clock context
C into a TLM property q with transaction context T , such that
if MRTL |= p @ C then MTLM |= q @ T , in the context of
dynamic ABV:

1) transform p such that it is expressed in the negation
normal form according to Def. II.1;

2) leave unchanged until and release operators and
remap the next operators of p with a sequence of
nextτǫ operators in q;

3) remap the RTL clock context C with a TLM trans-
action context T according to Def. III.2.

Steps 1 and 3 are straightforward. Step 1 follows from
well-know transformation rules, while step 3 is implemented
according to Def. III.2. Step 2 requires, instead, a two-phase
elaboration. The first phase, called push ahead procedure,
pushes ahead the next operators in p such that their operands
can be exclusively atomic propositions, negation of atomic
propositions, or next operators. This is obtained by applying
the following transformation rules:

• next(a ∨ b) ≡ next(a) ∨ next(b);
• next(a ∧ b) ≡ next(a) ∧ next(b);

• next(a until b) ≡ next(a) until next(b);
• next(a release b) ≡ next(a) release next(b).

Pushing ahead the next operators is preparatory to the
second phase, where a composition of next operators is
substituted with a single nextτǫ , by setting τ and ǫ according
to Algorithm III.1. Given a property p obtained from the
application of the push ahead next procedure, Algorithm III.1
gets, as inputs, the clock period c of the original RTL DUV
where p holds, and the sequence of sub-formulas S =
s1(a1), . . . , sm(am) of p, where each si(ai) is the composition
of an arbitrary number ni of next operators applied to the
atomic proposition ai (or to its negation), i.e., in PSL notation
next[ni](ai).

Algorithm III.1 Substitution of next[ni] with nextτǫ
1: procedure NEXT SUBSTITUTION(c, S)
2: for all si(ai) ≡ next[ni](ai) ∈ S do
3: ǫ = n i ∗ c
4: τ = i
5: substitute si(ai) with nextτǫ (ai)
6: end for
7: end procedure

According to the semantics of the nextτǫ operator, Algo-
rithm III.1 guarantees that the resulting property can be verified
on a TLM DUV by using a verification environment based
on a transaction context, without the risk of failures due to
evaluation of the property at incorrect time instants. In other
words, if a failure occurs by evaluating the property at TLM,
it is only due to a wrong abstraction of the TLM design with
respect to the original RTL implementation. This is formally
proven by Theorem III.2.

Theorem III.2. Given an RTL implementation MRTL, a
timing-equivalent TLM model MTLM , a property p with clock
context C and a property q with transaction context T , derived
from p by following Methodology III.1, if MRTL |= p @ C
then MTLM |= q @ T .

Proof: 4 When p = q we reduce to the case of
Theorem III.1. When p 6= q it means p involves at least
one instance of the operator next. We observe, first, that
MRTL |= p @ C ⇒ MRTL |= q @ C. In fact, Steps 1 and the
push ahead procedure of step 2 of Methodology III.1 are
only syntactic transformations that do not affect the semantics
of p. Algorithm III.1 replaces occurrence of next[ni](ai) with
nextτǫ (ai) where ǫ = ni∗c and c is the clock period of MRTL.
But, according to the semantics of next[ni](ai), ai must be
true after ni clock cycles, i.e., after ni ∗ c nanoseconds, which
exactly corresponds to the semantics of nextτǫ (ai) reported in
Def. III.3. This proves MRTL |= p @ C ⇒ MRTL |= q @ C.
At this point, with considerations similar to the proof of
Theorem III.1 and on the basis of the timing equivalence
between MRTL and MTLM we can derive that MRTL |=
q @ C ⇒ MTLM |= q @ T , which finally leads, by transitivity,
to MRTL |= p @ C ⇒ MTLM |= q @ T .

To clarify the proposed methodology on the DES56 exam-
ple, let us consider property p2 in Fig. 3. Being already in
negation normal form, step 1 is skipped. Then, by applying
the push ahead procedure included in step 2, we obtain:

always(!ds ∨ (next(!ds) until next[2](rdy)))@clk pos.

Step 2 is completed by applying Algorithm III.1 that, suppos-
ing an RTL clock period of 10ns, produces:

always(!ds ∨ (next110(!ds) until next
2
20(rdy)))@clk pos.

Finally, the substitution of the clock context by following
Def. III.3 provides the final TLM property q2 showed in Fig. 3.

4For lack of space, only an informal idea of the proof is reported.

as ∅ next(as) ∅
p ∨ ∅ p ∅ ∨ p p
p ∧ ∅ p ∅ ∧ p p
p until ∅ p ∅ until p ∅
p release ∅ ∅ ∅ until p p

Fig. 4. Transformation rules for signal abstraction.

B. Abstraction of signals

At RTL, the I/O protocol is accurately described. Control
signals, in addition to data signals, are used to implement the
handshaking mechanism between components. At TLM, when
coding styles higher than cycle-accurate TLM are adopted, the
I/O protocol may be abstracted by removing control signals to
focus on the pure functionality and to speed-up the simulation.
This means that RTL properties including abstracted signals
need to be reformulated to exclude such signals at TLM.

The removal of a signal implies that its role is no longer ex-
pressed in the TLM model. Hence, subformulas involving the
abstracted signals become irrelevant and cannot be evaluated
at TLM. For this reason, such subformulas must be removed
as well. The impact of their removal on the semantics of the
remaining formula must be accurately analysed. According to
the timing equivalence definition (Def. III.1), we consider only
the case in which the timing of TLM events on the preserved
I/O signals is equivalent to the timing of corresponding I/O
signals at RTL. On the base of this assumption, the solution we
propose consists in defining a set of transformation rules that
delete subformulas including abstracted signals and preserve,
when possible, the intent of the original property. The proposed
transformation rules are reported in Fig. 4, where as repre-
sents an atomic proposition involving abstracted signals to be
deleted, p is a generic LTL formula, ∅ is used to represent that
the subformula has been removed as effect of the application
of a transformation rule.

In some cases, the application of rules in Fig. 4 leads
to the deletion of the whole property. This happens when
the semantics of the property is completely dependent on
the RTL handshaking mechanism rather than on the pure IP
functionality, and thus the property becomes meaningless on
a model that definitely abstracts the protocol. On the other
cases, different considerations apply. Let us consider that
p and p′ represent, respectively, an RTL property including
subformulas that operate on abstracted signals, and the corre-
sponding property after the application of the rules in Fig.4.
On the assumption that p holds on the RTL implementation,
transformation rules may lead p′ to be a logical consequence of
p or not. On the first case, p′ is still true at RTL, and thus, after
the application of Methodology III.1, it must holds also on the
TLM model. On the contrary, the TLM model would not be
timing-equivalent to the RTL implementation. When p′ is not
a logical consequence of p, human investigation is required
to analyse the result of checking p′ on the TLM model. A
failure at TLM could depend either on a wrong implementation
of the TLM model or on a modification of the semantics of
the property that, due to the application of the transformation
rules, does not reflect the change occurred in the RTL-to-
TLM abstraction of the communication protocol. In this second
case, p′ requires to be manually refined for restoring the
compliance with the designer intent. A completely automatic
procedure would be applicable only in presence of strict and
well-defined rules the designer should apply for abstracting the
communication protocol, which is generally not the case.

For example, property q3 in Fig. 3 has been obtained
from property p3 by applying Methodology III.1 and rules
in Fig. 4, on the assumption that signals ready next cycle
and ready next next cycle have been removed during the
RTL-to-TLM abstraction of DES56 (Fig. 2).

IV. CHECKER GENERATION

Properties abstracted according to the methodology pro-
posed in the previous section are intended to be synthesized

into checkers to set up the dynamic ABV environment for TLM
models depicted in Fig. 1. The approach is independent from
the way checkers are generated; for example, techniques and
tools described in [21], [22], [23] for the PSL language can be
adopted. To take care of the presence of nextτǫ operators, for
each property we defined a wrapper that executes checkers
at the correct simulation instants. From the point of view
of the checker generator, nextτǫ (a) is synthesized as it was
next[τ](a), i.e., without the wrapper, a would be evaluated
after τ events according to the defined transaction context. The
wrapper restricts the set of events where a can be evaluated
according to the value of ǫ. In practice, when τ−1 events have
been consumed by the verification environment, a is evaluated
only when and if a transaction at time ǫ occurs, which finally
is identified as event τ . If a transaction arrives at time t < ǫ,
it is not considered for the evaluation of nextτǫ (a) and the last
consumed event remains τ−1 waiting for the next transaction.
If a transaction arrives at time t > ǫ and the event τ has not
been processed yet, a failure is raised.

To clarify the approach and describe the structure of the
wrapper, let us consider the properties p3 and q3 in Fig. 3,
where q3 has been generated from p3 according to the abstrac-
tion methodology presented in Section III and by assuming, at
RTL, a clock period of 10ns.

At RTL, the checker of p3 is called at each rising edge of
the clock. If ds becomes true, for example, at clock cycle ci,
the checker monitors clock cycle ci+170 to see if rdy becomes
true. In case of a violation, it raises a failure signal. According
to the presence of the always operator, the checker repeats this
sequence of evaluations by starting a new verification session
at each clock cycle with fresh values for the involved variables.

At TLM, the wrapper for the checker of the property q3
takes role. It generally behaves as follows.

1- Allocation of checker instances. At the beginning, the
wrapper allocates in memory an array C of checker instances
for the corresponding property. The size of the array depends
on the lifetime of a checker instance. The lifetime is the
maximum number of instants where transactions can occur in
the interval (tfire, tend], where tfire and tend are, respectively,
the firing time and the completion time of the property. The
firing time corresponds to the instant where the first subformula
of the property is evaluated. The completion time corresponds
to the expected verification instant for the last subformula. For
example, concerning q3, tfire and tend correspond, respec-
tively, to the instants in which ds and rdy become true. Then,
the size of the array for q3 is 17, because, being the reference
RTL clock period 10ns, we have at maximum 17 instants
where transactions can occurs in (tfire, tend] (i.e., tfire+10ns,
tfire + 20ns, . . . , tfire + 170ns = tend). It was not possible
having a transaction at a different time from those, because, in
that case, it would mean that the RTL implementation and the
TLM model would not be equivalent with respect to Def. III.1.

2- Evaluation of active checker instances. To execute checker
instances (see Fig. 5), the wrapper maintains and consults
an evaluation table where the next evaluation points of each
checker instance is annotated (see the following point 4). On
the occurrence of a transaction T at time t, the wrapper extracts
from the table and calls all checker instances whose next
evaluation point is expected at time t, if any. Instances still
pending on subformulas that were supposed to be evaluated
at time t′ < t, if any, raise a failure. For example, in Fig. 5,
the wrapper raises a failure at time 350ns because checker
instances C[3] was not executed when expected at time 340ns.

3- Reset and reuse of checker instances. When a checker
instance arrives at its completion time tend, the wrapper resets
the checker instance such that it can be reused for a new
verification session going on with the simulation. For example,

!"#$%&'() *%(+,&)

-(#&,!"#$%&#'()%&*#%+,-./)

-(#&,!"#$%&#'()%&*#%+,-./)

012)

3012)

4)

35012)

36012)

37012)

"')&(%".%/$'")

(,%0!"#$%&#'()%&*#%+,-./)

12%34%$'")'5)

.465'(743%.)'5)!"#

$%# &$'# (&)**+&#),-./-+%#
0.)1#

2)31+#

89:.) ;#%2.)

<=.)89#12#*,&1)28#982)#)1.>).1*9$",&1)2.22?&1)@$)

2.A1B)!")#1')!#$%&'#(C)DE0F)?2)%/$2%&,0)#1')

(,+#.&,(,0);&9)#)1.>).G#%:#,&1)"&?18)#8),-.)35012C)

;#%2.) ;#%2.)

<=.)89#12#*,&1)#22?B1)0)8&)!")#1')"9&G?'.2)G#%?')

G#%:.2);&9)&)!*+*)#1')&),#-C)DE3F)?2)#*,G#8.')@:8)?8)?2)

89?G?#%%$)89:.)2?1*.)!".?2);#%2.C)

H) H)

I.8>..1)J012)#1')3K0)12)1&)*=.*L.9)?128#1*.)?2)

.M.*:8.'N#*,G#8.')@.*#:2.)1&)89#12#*,&1)&**:92C)

O:@;&9-:%#2)*#11&8)@.).G#%:#8.'C)

;#%2.) 89:.)

DE0F)?2).M.*:8.')#1')9.#*=.2)?82)*&-"%.,&1),-.)

>?8=&:8);#?%:9.()8=:2)?8)?2)(,.,&)&')6,)(,4.,0C)DEJF)?2)

#*,G#8.')@:8)?8)?2)89?G?#%%$)89:.)2?1*.)!")?2);#%2.C)

DE0F)

89:.) ;#%2.)

<=.)89#12#*,&1)28#982)#)1.>).1*9$",&1)2.22?&1)@$)

2.A1B)!")#1')!#$%&'#(C)DEPF)?2)%/$2%&,0)#1')

(,+#.&,(,0);&9)#)1.>).G#%:#,&1)"&?18)#8),-.)PQ012C)

;#%2.) ;#%2.)

<=.)89#12#*,&1)#22?B1)0)8&)!")#1')"9&G?'.2)G#%?')

G#%:.2);&9)&)!*+*)#1')&),#-C)DEQF)?2)#*,G#8.')@:8)?8)?2)

89?G?#%%$)89:.)2?1*.)!".?2);#%2.C)

H) H)

I.8>..1)J0012)#1')PP0)12)1&)*=.*L.9)?128#1*.)?2)

.M.*:8.'N#*,G#8.')@.*#:2.)1&)89#12#*,&1)&**:92C)

O:@;&9-:%#2)*#11&8)@.).G#%:#8.'C)

H) H)

R8)PQ012)1&)*=.*L.9)?128#1*.)?2).M.*:8.'N#*,G#8.')

@.*#:2.)1&)89#12#*,&1)&**:92()@:8)DEPF)?2)?1)8=.)

.G#%:#,&1)8#@%.()8=:2)#)89#12#*,&1)>#2).M".*8.'C)8)

5%#34(,)-#33)6,)(%#.,0)%&)",9&)&(%".%/$'":)

DEPF)

;#%2.) 89:.)

R);#?%:9.)?2)9#?2.')@.*#:2.)DEPF)>#2)1&8).M.*:8.')#8)

,-.)PQ012C)S.#')89#12#*,&1)#99?G.')8&&)%#8.C)*;,)

<('<,(&=)#.)5%3.,:)

4)

PQ012)

12'34$'")'5)&;,)*>?)

@1ABC)04(#"+).#743%$'")

7#..#"+)(,%0)

-(#&,!"#$%&#'()%&*#%+,-./)

-(#&,!"#$%&#'()%&*#%+,-./)

"')&(%".%/$'")

PT012) (,%0!"#$%&#'()%&*#%+,-./)

Fig. 5. Evolution of the wrapper for property q.

in Fig. 5, C[0] is reset at 170ns. It will be reused with fresh
values after instance C[16].

4- Activation of a new instance. A new instance C[i] of
the checker is activated at each transaction that respects the
transaction context modelled by the @ expression of the prop-
erty. Then, the wrapper registers C[i] on the evaluation table
according to the evaluation points required by the property
after its firing, except when the it is trivially true. In Fig. 5, a
new checker instance is activated at each transaction, according
to the basic transaction context Tb. When ds is false, q3 is
trivially true and no further evaluation is necessary for that
instance. On the other side, when ds is true, next the evaluation
point of q3 is registered in the evaluation table 170ns later than
tfire to remember at what instants rdy should be evaluated.

V. EXPERIMENTAL RESULTS

The proposed methodology has been applied to two test
cases: DES56 and ColorConv, whose VHDL (RTL) descrip-
tions and the corresponding set of PSL properties (9, and 12,
respectively) have been provided as a starting point. DES56
implements a reconfigurable (encrypt/decrypt) 64-bit crypto-
graphic algorithm with a latency of 17 clock cycles. ColorConv
is a is pipelined IP (8 stages) with a latency of 8 clock cycles.
All properties were preserved during the abstraction process.
IBM FoCs [21] has been applied to generate the checkers.

To measure the approach applicability and correctness,
each test case has been implemented in three different SystemC
models (i.e., at three levels of abstraction): at RTL, TLM cycle-
accurate (TLM-CA) and TLM approximately-timed (TLM-
AT). The TLM-CA model simulation allows us to evaluate
the impact of checkers synthesized from the RTL proper-
ties without abstraction (i.e., without applying the proposed
methodology). The TLM-AT model simulation allows us to
evaluate the actual effect of the property abstraction. SystemC
RTL has been automatically generated from the VHDL models,
and then abstracted towards TLM-CA by using HIFSuite [4]
preserving the I/O communication protocol. The TLM-AT
versions have been manually implemented by abstracting the
I/O interfaces and implementing the IP algorithms with only
one write transaction (for receiving input data) and one read
transaction (to return results).

TABLE I. SIMULATION RESULTS

DES56 ColorConv

Abstr.level
Sim. time (s) Overhead Sim. time (s) Overhead

w/out c. with c. (%) w/out c. with c. (%)

RTL 1 C 4.25 6.93 63.0 11.36 12.46 9.7
RTL 5 C 4.25 9.99 135.1 11.36 13.18 16.0
RTL All C 4.25 16.83 296.2 11.36 15.74 38.6
TLM-CA 1 C 2.03 4.4 116.7 5.38 6.76 25.7
TLM-CA 5 C 2.03 7.77 282.8 5.38 6.99 29.9
TLM-CA All C 2.03 12.58 519.7 5.38 7.11 32.2
TLM-AT 1 C 2.01 2.09 4.0 1.86 1.90 2.3
TLM-AT 5 C 2.01 2.33 15.9 1.86 1.97 5.9
TLM-AT All C 2.01 2.95 46.7 1.86 2.01 8.1

The efficiency of the proposed methodology has been eval-
uated in terms of overhead introduced by the checkers on the
overall model simulation. Table I reports the simulation results.
For each abstraction level, the test cases have been simulated
without checkers (w/out c.) and with different amounts of
checkers (with c.: 1 C, 5 C, All C). Fig. 6 shows the average
speedup of the different TLM implementations w.r.t. RTL, both
with checkers and without checkers.

In general, the overhead of checkers synthesized from
properties abstracted with the proposed methodology and
applied to the TLM implementations is one order of magni-
tude lower than the overhead caused by the checkers of the
original properties at RTL (RTL vs. TLM-AT rows in Table
I). The overhead of checkers synthesized from the original
RTL properties without abstraction and applied to the TLM-
CA implementations doubles w.r.t. the overhead of the same
checkers in the RTL implementations (RTL vs. TLM-CA rows
in Table I). This is due to the fact that the event-driven
simulation of the cycle-accurate checkers, which is comparable
more to the RTL than to the cycle-accurate TLM simulation,
influences most the latter. The number of activated checkers
linearly affects the overhead in the overall simulation, in both
testcases and at each abstraction level.

We observed the main advantage of the proposed method-
ology in the RTL vs. TLM speedup before and after the
checker integration (see Fig. 6). The original speedup of the
two testcases (i.e., without checkers) over the abstraction levels
is different. This is due to the different characteristics of the
RTL implementations. Without property abstraction, the reuse
of RTL properties is possible in the TLM-CA implementations
only. In these cases, the checker simulation leads to a decrease
of the (even low) speedup between RTL and TLM-CA models
(TLM-CA in Fig. 6). In contrast, the property abstraction
prosed in this work is intended for TLM-AT models, leading to
an increase of the speedup, up to double in the DES56 test case
(TLM-AT in Fig. 6). This is due to the fact that the TLM-AT
checkers marginally affect the overall event-driven simulation
while, in the cycle accurate models, they sensibly increase the
number of simulation events at each clock cycle.

We expect that the speedup may be even better by applying
checkers synthesized from manually defined TLM properties.
However, the results obtained with the proposed methodol-
ogy have been achieved by automatically reusing the already
existing verification environment, without relying on any time-
consuming manual transformation.

VI. CONCLUSIONS

This paper presented a methodology to reuse properties,
originally defined for an RTL IP model, to verify the corre-
sponding abstracted TLM implementation. The methodology
consists of transformation rules that reflect, on properties, the
effect of the RTL-to-TLM abstraction and on an approach to
synthesize TLM properties into checkers for dynamic simula-
tion of the TLM model. The experimental results, which have
been conducted on two representative test cases with different
characteristics and complexity, show the applicability and the
efficiency of the proposed methodology.

S
p
e
e
d
u
p
 (

w
.r

.t
.
R

T
L
)

!"

#"

$"

%"

&"

'"

("

)"

*+,-."/0"

*1.2"/0"

DES56
TLM-CA

(Prop. reuse)

DES56
TLM-AT

(Prop. abstr.)

ColorConv
TLM-CA

(Prop. reuse)

ColorConv
TLM-AT

(Prop. abstr.)

Fig. 6. RTL/TLM simulation average speedup.

REFERENCES

[1] N. Bombieri, F. Fummi, and G. Pravadelli, “Automatic abstraction of
RTL IPs into equivalent TLM descriptions,” IEEE Trans. on Computers,
vol. 60, no. 12, pp. 1730–1743, 2011.

[2] J. R. S.A. Syed, M. Jenihhin, “Extensible open-source framework for
translating RTL VHDL IP cores to SystemC,” in Proc. of IEEE DDECS,
2013, pp. 112–115.

[3] Carbon Design Systems. Carbon Model Studio.
http://carbondesignsystems.com/.

[4] EDALab. HIFSuite. ”http://www.hifsuite.com/”.

[5] A. Habibi and S. Tahar, “Design and verification of SystemC
transaction-level models,” IEEE Trans. on VLSI Systems, vol. 14, no. 1,
pp. 57–67, 2006.

[6] Y. Lahbib, R. Kamdem, M.-l. Benalycherif, and R. Tourki, “An auto-
matic ABV methodology enabling PSL assertions across SLD flow for
SOCs modeled in SystemC,” Comput. Electr. Eng., vol. 31, no. 4-5, pp.
282–302, 2005.

[7] W. Ecker, V. Esen, and M. Hull, “Execution semantics and formalisms
for multi-abstraction TLM assertions,” in Proc. of ACM/IEEE MEM-
OCODE, 2006, pp. 93–102.

[8] ——, “Requirements and concepts for transaction level assertions,” in
Proc. of IEEE ICCD, 2006, pp. 286–293.

[9] ——, “Implementation of a transaction level assertion framework in
SystemC,” in Proc. of IEEE/ACM DATE, 2007, pp. 894–899.

[10] D. Grosse, H. Le, and R. Drechsler, “Proving transaction and system-
level properties of untimed SystemC TLM designs,” in Proc. of
IEEE/ACM MEMOCODE, 2010, pp. 113–122.

[11] Z. Xiong, J. Bian, and Y. Zhao, “An assertion-based verification method
for SystemC TLM,” in Proc of IEEE ICCCAS, 2010, pp. 842–846.

[12] L. Pierre and L. Ferro, “A tractable and fast method for monitoring
SystemC TLM specifications,” IEEE Trans. Computers, vol. 57, no. 10,
pp. 1346–1356, 2008.

[13] L. Ferro and L. Pierre, “ISIS: runtime verification of TLM platforms,”
in Proc. of FDL, 2009, pp. 1–6.

[14] ——, “Formal semantics for PSL modeling layer and application to
the verification of transactional models,” in Proc. of ACM/IEEE DATE,
2010, pp. 1207–1212.

[15] M. Chen and P. Mishra, “Assertion-based functional consistency check-
ing between TLM and RTL models,” in Proc. of IEEE VLSID, 2013,
pp. 320–325.

[16] N. Bombieri, F. Fummi, and G. Pravadelli, “Incremental ABV for
Functional Validation of TL-to-RTL Design Refinement,” in Proc. of
ACM/IEEE DATE, 2007, pp. 882–887.

[17] L. Pierre and Z. B. H. Amor, “Automatic refinement of requirements
for verification throughout the SoC design flow,” in Proc. of ACM/IEEE
CODES+ISSS, 2013, pp. 1–10.

[18] N. Bombieri, F. Fummi, V. Guarnieri, G. Pravadelli, F. Stefanni,
T. Ghasempouri, M. Lora, G. Auditore, and M. Marcigaglia, “On the
reuse of RTL assertions in SystemC TLM verification,” in Proc. of
LATW, 2014, pp. 1–6.

[19] “Standard for property specification language (PSL),” IEC
62531:2012(E) (IEEE Std 1850-2010), pp. 1–184, 2012.

[20] Y.Lahbib, M.-A. Ghrab, M. Hechkel, F. Ghenassia, and R. Tourki, “A
new synchronization policy between PSL checkers and SystemC designs
at transaction level,” in Proc. of IEEE DTIS, 2006, pp. 85–90.

[21] Y. Abarbanel, I. Beer, L. Glushovsky, S. Keidar, and Y. Wolfsthal,
“FoCs: Automatic generation of simulation checkers from formal spec-
ifications,” in Proc. of CAV, 2000, pp. 538–542.

[22] M. Boulé and Z. Zilic, “Automata-based assertion-checker synthesis of
PSL properties,” ACM Trans. Des. Autom. Electron. Syst., vol. 13, no. 1,
pp. 4:1–4:21, 2008.

[23] G. Di Guglielmo, L. Di Guglielmo, A. Foltinek, M. Fujita, F. Fummi,
C. Marconcini, and G. Pravadelli, “On the integration of model-
driven design and dynamic assertion-based verification for embedded
software,” J. Syst. Softw., vol. 86, no. 8, pp. 2013–2033, 2013.

