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Abstract. Model development and analysis of biological systems is rec-
ognized as a key requirement for integrating in-vitro and in-vivo exper-
imental data. In-silico simulations of a biochemical model allows one to
test different experimental conditions, helping in the discovery of the
dynamics that regulate the system. Several characteristics and issues of
biological system modeling are common to the electronics system mod-
eling, such as concurrency, reactivity, abstraction levels, as well as state
space explosion during verification. This paper proposes a modeling and
simulation framework for discrete event-based execution of biochemical
systems based on SystemC. SystemC is the reference language in the elec-
tronic design automation (EDA) field for modeling and verifying complex
systems at different abstraction levels. SystemC-based verification is the
de-facto an alternative to model checking when such a formal verifica-
tion technique cannot deal with the state space complexity of the model.
The paper presents how the framework has been applied to model the
intracellular signalling network controlling integrin activation mediating
leukocyte recruitment from the blood into the tissues, by handling the
solution space complexity through different levels of simulation accuracy.

Keywords: Biochemical networks, Dynamic modeling and simulation,
SystemC

1 Introduction

Cells are the fundamental units of the living organisms. They interact with the
environment and with other cells by processing and exchanging environmental
informations. Each different input coming from the environment produces a set of
chemical reactions, which are the answer of the cell to the input. Those reactions
depend on some parameters, such as the concentration of the reactants and the
chemical properties regulating the reaction speed, and generate linear reaction
pathways in turn organized in concurrent non-linear complex networks [16].
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Dynamic network modeling in systems biology aims at describing how such
interactions among defined elements determine the time course of the state of
the elements, and of the whole system, under different conditions. A validated
dynamic model that correctly captures experimentally observed normal behavior
allows researchers to track the changes in the system due to perturbations, to dis-
cover possible covariation between coupled variables, and to identify conditions
in which the dynamics of variables are qualitatively similar [19].

Mathematical models, such as those based on differential equations [7], have
definitely gained consensus in the network modeling community as they have
the highest potential to accurately describe the system. Nevertheless, since they
have the highest requirement for input information, they are difficult to obtain
and analyse if the number of independent variables grows and if the relationships
depend on quantitative events, such as concentration reaching a threshold value.

Computational models, such as Boolean networks [25], Petri nets [10], inter-
active state machines [24], and Process Calculi [23], offer an effective alternative
if precise quantitative relationships are unknown, if they involve many different
variables, or if they change over time [14]. A common way to explain a certain
class of complex dynamical systems is to view them as highly concurrent reactive
systems. Hand-in-hand with the central notion of reactivity go (i) the discrete
event-based execution and simulation of dynamical systems, which requires a
fundamental understanding of parallelism, interaction, and causality; (ii) the
design of complex systems from building blocks, requiring means for composi-
tion and encapsulation; and (iii) the description of systems at different levels of
granularity, requiring methods for abstraction and refinement [13].

All these issues related to concurrent reactive systems have been largely
addressed in the past decades in the electronic design automation (EDA) field
and a large body of methodologies and tools are at the state of the art. In this
context, SystemC [4] has become the de-facto reference standard language for
system-level modelling and simulation of Hardware/Software/Network electronic
systems at different abstraction levels [8].

In this paper, we propose a framework for modeling and simulation of bio-
chemical networks based on SystemC. The framework relies on a state machine-
based computational model to model the behavior of each network element. The
element models are implemented and connected to realize a system-level network
in SystemC. Finally, the network is connected to a stimuli generator and monitor
of results to run a discrete and deterministic network simulation. To handle the
complexity of exploring the solution space, the proposed framework allows us
to discretize the range of the variable values with different levels of accuracy. In
addition, the framework allows us to reuse existing EDA techniques and tools
to parallelize the SystemC simulation, both on GPUs [22] and on clusters [12].

The paper presents how the framework has been applied to model the sig-
naling network controlling LFA-1 beta2 integrin activation mediating leukocyte
recruitment from the blood into the tissues, a central event during the immune
response. Such a case study has been chosen for the large number of independent
variables, for the lack of quantitative information such as molecular concentra-
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tions, activation and inhibition delays and lifetimes, and for the relationships
strongly depending on qualitative events. The dynamic simulation of the model
has been conducted with the aim of exploring the occurrence of emergent prop-
erties in signaling events controlling leukocyte recruitment, such as oscillating
behaviors and, more in general, to help in better understanding the overall dy-
namics of leukocyte recruitment.

The paper is organized as follows. Section 2 summarizes the most important
concepts and constructs of SystemC for modeling protein networks. Section 3
presents the leukocyte integrin activation case study. Section 4 presents the
proposed framework, while Section 5 reports the obtained experimental results.
Section 6 is devoted to concluding remarks.

2 Background on SystemC

SystemC [4] is a set of C++ classes and macros that provide an event-driven
simulation interface in C++. These facilities enable a designer to simulate con-
current processes, each described using plain C++ syntax. SystemC processes
can communicate in a simulated real-time environment, using signals of all the
datatypes provided by C++, some additional ones provided by the SystemC
library, as well as user defined.

SystemC has been applied to system-level modeling, architectural explo-
ration, performance modeling, software development, functional verification, and
high-level synthesis of digital circuits since 2000. Nowadays, SystemC is the de-
facto reference standard in the EDA community. SystemC is defined and pro-
moted by the Open SystemC Initiative (OSCI) - Accellera Systems Initiative,
and has been approved by the IEEE Standards Association as IEEE 1666-2005.
The SystemC Language Reference Manual (LRM) [5] provides the definitive
statement of the semantics of SystemC. OSCI also provides an open-source proof-
of-concept simulator, which can be downloaded from the SystemC website [4].
Several optimized simulators are also available in the commerce [1, 3, 2].

SystemC offers a greater range of expression, similar to object-oriented de-
sign partitioning and template classes. Although strictly a C++ class library,
SystemC is sometimes viewed as being a language in its own right. Source code
can be compiled with the SystemC library (which includes a simulation kernel)
to give an executable. SystemC allows designers to model systems at different
abstraction levels (i.e., with different levels of details) by providing modeling fea-
tures such as structural hierarchy and connectivity, communication abstraction,
dynamic processes, timed event notifications, transaction-level modeling [9].

The most important language features, which have been used for modeling
and simulating the signaling network presented in this paper are the following:

– Modules. They are the basic building blocks of a SystemC design hierarchy.
A SystemC model usually consists of several modules that communicate via
ports. As explained in the following sections, each network element (i.e.,
protein and cofactor) has been modelled as a module, and all the elements
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have been hierarchically organized into a module representing the whole
network.

– Ports. They allow communication from inside a module to the outside (usu-
ally to other modules) via signals.

– Signals. They are the communication elements of SystemC models. They
have been used to model the activation/inhibition activity between elements.

– Processes. They are the main computation elements and they are concurrent.
Each protein behaviour has been modelled through a process, which reacts
to any activation or inhibition by an upstream protein and, in turn, activates
or inhibits a downstream protein.

– Events. They allow for synchronization between processes. Events are the
key objects in SystemC models to provide event-driven simulation.

3 The case study

In order to better explain how the proposed framework can be applied for mod-
elling and simulation of signaling networks, we first present the case study, which
will be used as a model system in the subsequent sections.

As a model system, we analysed the signaling mechanism controlling beta2
integrin LFA-1 affinity regulation by chemokines, a crucial event mandatory
to the fulfilment of the leukocyte recruitment process from the blood into the
tissues. This process is critical to immune system function and is modeled as
a concurrent ensemble of leukocyte behaviors under flow, including tethering,
rolling, firm adhesion, crawling, and transmigration [18]. A central step is the
integrin-mediated arrest, comprising a series of adhesive events including increase
of integrin affinity, valency and binding stabilization altogether controlling cell
avidity. In this context, modulation of integrin affinity is widely recognized as the
prominent event in rapid leukocyte arrest induced by chemokines [6, 11, 15, 17].
Regulation of integrin activation depends on a plethora of signaling proteins [6].
At least 67 signaling molecules modulate integrin activity by chemokines [21, 20].
In this context, we have previously described an integrated group of signaling
proteins including RhoA, Rac1 and CDC42 small GTPases, along with the two
effectors PLD1 and PIP5K1C, modulating conformer-selective LFA-1 affinity
triggering and homing to secondary lymphoid organs by chemokines of human
primary lymphocytes [6]. To date, signaling by rho- and rap-small GTPases are
the best-studied mechanisms of integrin activation by chemokines.

Furthermore, and more recently, we have demonstrated that, in human pri-
mary T lymphocytes, chemokines control integrin affinity triggering and in vivo
homing by means of tyrosine kinases of the JAK family acting as upstream trans-
ducer linking chemokine receptors to the activation of the rho and rap module
of integrin [20]. Overall, an integrated macro module comprising JAKs, rho and
rap small GTPases and a variety of upstream regulators and downstream effec-
tors finely control integrin triggering and mediated lymphocyte recruitment by
chemokines. Beside arrest under flow, integrin activation is also critical to sup-
port leukocyte crawling and transmigration (diapedesis) along with directional
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Fig. 1. The protein-protein interaction network of the leukocite integrin activation

movement toward a gradient of chemotactic factors that is chemotaxis. Figure
1 depicts the protein network and each different interaction between proteins or
cofactors of the case study.

Notably, cell motility needs an on-off kinetic of integrin activation, allowing
cycling between adhesion and de-adhesion event thus ensuring cell movement.
Thus, control of the duration of cell adhesion is critical to control cell migration.
This on-off, oscillatory, kinetics of integrin triggering likely depends on on-off
kinetics of the signaling transduction machinery triggered by chemokines and
controlling integrin-mediated cell adhesion. This suggests an equal relevance for
both activators as well as inhibitors on integrin triggering. Although negative
regulators of cell adhesion have been described, a comprehensive dynamic model
of signaling events controlling on-off cycling of integrin activation is still lacking.
Such a modeling is an important approach to explore the occurrence of emergent
properties in signaling events controlling leukocyte recruitment, such as oscillat-
ing behaviors characterized by frequency and amplitude of agonist triggering.
In turn, identification of these properties could help to better understand the
overall dynamics of leukocyte recruitment.

4 The SystemC Framework for Modelling and Simulation

of the Protein Network

The framework relies on three main steps. First, the behavior of each network
element (i.e., protein and cofactor) is modeled through the Finite State Machine
(FSM) formal model. The element models are then implemented in SystemC
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Fig. 2. The protein behavior representation through Finite State Machines. The pro-
tein template (a), and the JAK3 example

modules and connected through SystemC signals to realize a system-level net-
work. Finally, the network is connected to a stimuli generator and monitor of
results to run a reactive, event-driven network simulation.

4.1 Modelling proteins through Finite State Machines

The finite state machine model allows us to formally model each protein be-
havior and, similarly, each cofactor behaviour, in terms of states (e.g., inactive,
activated/inhibited, activating/inhibiting, etc.), transitions between states, and
guard conditions (i.e., boolean conditions).

Figure 2(a) depicts the proposed FSM template, while Figure 2(b) shows
a modelling example of the JAK3 protein of the case study in Figure 1. Each
protein changes state (i.e., a transition occurs) when the guard condition is eval-
uated to be true. The condition may be set on a particular reaction event (e.g.,
activation via phosphorylation, steric, auto-phosphorylation, cofactor or inhibi-
tion via phosphatase) generated by any upstream protein or on any environment
status. As an example, JAK3 moves from the inactive state to the activated state
(which represents the steric binding with CXCR4) as soon as CXCR4 activates
JAK3. Once activated, JAK3 seeks for the phosphorylation of its own protein
target (VAV1), which occurs after a delay time (i.e., the time spent to encounter
a molecule of VAV1, to pick up an atom of phosphorus from an ATP molecule,
and to add it to VAV1). t represents the time elapsed, which is constantly up-
dated during simulation, while lifetime represents the maximum lifetime from
the activation instant in which the protein carries out its biological function.
JAK3 continues to phosphorylate new VAV1 molecules (Behaves state) as long
as it is bounded with CXCR4 and the lifetime has not expired.
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Fig. 3. The SystemC framework

The template distinguishes two sets of input data that can affect the model
behavior and one set of generated output:

– Topological inputs (Input Ti): They are inputs whose values are calculated
at simulation time and depend on the topological interaction of the mod-
elled protein with upstream proteins. Some examples are the activation via
phosphorylation, steric, cofactor, or inhibition.

– Unknown inputs (Input Ui): They are inputs whose values depends on the en-
vironment characteristics and status, which are unknown at modeling time.
Some examples are the delay time (i.e., time spent by the protein to en-
counter a protein target), the molecular concentrations of the downstream
proteins (which affect the delay time), the protein lifetime, etc. For each
unknown input, the framework generates different values with the aim of
observing, via simulation, how such values affect the system dynamics.

– Topological outputs (Output Ti): They are outputs whose values are cal-
culated at simulation time and depend on the role of the protein towards
downstream proteins (e.g., the ouput of the JAK3 module is set to true when
JAK3 encounters and activates VAV1 via phosphorylation) .

4.2 Implementation of the protein models through SystemC

Each protein is implemented through a SystemC module, with both the topo-
logical and unknown inputs and outputs as SystemC ports (see Section 2). The
protein behavior represented by FSM in Figure 2 is implemented through a
SystemC process, which is sensitive to any event on the input signals. An activa-
tion/inhibition from an upstream protein is represented by an input (boolean)
signal set to true. Being event-driven, the process wakes up and updates both
the internal state and the output signals whenever a new event on inputs occurs.
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The network model consists of every protein modules connected via SystemC
signals (see right-most side Figure 3, which, for the sake of clarity, reports a part
of the network).

The protein network is connected to a testbench, which generates the val-
ues for the unknown inputs of the protein network. The set of all input values
represents a configuration. The testbench generates a configuration and runs
(i.e., executes) a dynamic simulation of the network behavior for such a set of
input values for a given simulation time. Then, the testbench generates a new
different configuration for a new simulation. The run ends when all the possible
configurations have been simulated.

The testbench also implements a monitor of results, which controls whether
any condition or behavior of the network occurs, in order to identify which
configurations have led to such a behavior. In the proposed case study, the mon-
itored condition consists of the on-off, oscillatory, kinetics of integrin triggering
represented, in the model, by the oscillatory state of ITGB2 between inactive
and activate affinity state. Particularly, the monitoring activity of the testbench
aims at identifying which configurations, in terms of protein lifetime, activation
delays, and protein concentrations lead to a given number of oscillations, with a
given oscillation period.

4.3 Simulation of the system-level network

The main problem in exploring the dynamics of protein networks is the complex-
ity of the solution space. The solution space, that is, the number of configurations
to simulate, grows exponentially over the number of unknown inputs. In addi-
tion, several inputs are continuous magnitudes (e.g., delay and lifetime), which
would lead to an intractable problem if not properly discretized.

To handle such a complexity, the proposed framework allows us to discretize
the range of the input values with different levels of accuracy. As an example,
the lifetime of CDC42 in Figure 1 is an unknown input, whose value has to be
generated by the testbench. Different values have been simulated, starting form
a minimum to a maximum value, by steps of a given time period. The finer the
step, the more accurate the space solution exploration, and, on the other hand,
the higher the configuration number and the consequent overall simulation time.
EDA techniques and tools at the state of the art can be applied to parallelize the
SystemC simulation, both on GPUs [22] and on clusters [12] in order to improve
the accuracy over the simulation time ratio.

In general, given a number of network elements, n, the total number of input
configurations to be generated by the testbench is the following:

∏n

i=1(
MConcentrationi

MCStepi

)(Targetsi)(
MaxDelayTi−MinDelayTi

DelayStepi

)(MaxLifeTi−MinLifeTi

LifetimeStepi

)

where MConcentration represents the molecular concentration of the protein
(or cofactor), Targets represents the number of the downstream targets, Max
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and MinDelayT represent the observed range of delay time, Max and MinLifeT
represent the range of the lifetime, while MCStep, DelayStep, and LifetimeStep
represent the chosen periods of discretization.

The overall simulation time is linear over the number of configurations. It
is possible to associate, before simulation, the required time for simulating the
network dynamics with a chosen space exploration accuracy. In addition, param-
eters MaxDelayT, MinDelayT, MaxLifeT, MinLifeT, MCStep, DelayStep, and
LifetimeStep can be tuned for each single element of the network. This allows us
to explore, with different levels of detail, the behavior and the influence of each
protein in the overall network dynamics.

The modular structure of the framework allows us to adopt different simula-
tion models (e.g., stochastic simulations), by modifying the testbench module.
The development of a testbench for stochastic simulations with the aim of relax-
ing the constraints on the input values is part of our current and future work.

5 Experimental Results

The case study presented in Section 3 has been implemented in SystemC with
the aim of exploring pro-adhesive signaling events and to better understand the
overall dynamics of leukocyte recruitment.

The main goal of the model simulation was identifying the system properties
that lead to oscillating behaviors, which are characterized by frequency and am-
plitude of integrin triggering. In particular, the testbench has been implemented
to monitor which configurations of input values lead to oscillations of ITGB2
with a period of 30-40 ms (15-20 ms in active state, 15-20 ms inactive state),
which represents the average stopping time of a cell when it interacts with the
blood vessel epithelium. Notably, although accurate experimental measurement
of on-off dynamics of integrin triggering is, at the present, unavailable, the ex-
tremely rapid kinetics of leukocyte arrest under-flow conditions, occurring in
the experimentally-determined range of few milliseconds clearly suggest that it
is reasonable to consider this rapid time-frame as a correct reference time to
simulate on-off dynamics of integrin triggering. Furthermore, since directional
leukocyte motility (chemotaixs) appears to maintain constant speed, at least in
the context of a chemotactic gradient, it is reasonable to expect the emergence
of regular oscillatory dynamics of signaling mechanisms controlling integrin trig-
gering.

In order to reduce the explosion of the exploration space, we assumed the
following characteristics of the system, which are summarized in Table 1. Each
protein and cofactor (listed in Table 1 with (P) and (C), respectively) have been
simulated with three different molecular concentrations (1, half, and maximum
molecular number). The delay time of each element has been fixed as a function
of the molecular concentration of the target element, with minimum value equal
to 2 ms.

The lifetime of each single protein (cofactor) has been explored by discretizing
the time intervals, which have been fixed for each element as shown in the table.
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Unknown inputs Topological signals
MConcentration
(# molecules)

downstream
targets (#)

delay time
(ms)

lifetime
(ms)

inputs outputs

CXCL12 (P) [1,400] [1,1] - [250,250] - sig CXCR4

CXCR4 (P) [1,325] [1,3] [2,3] [250,250] sig CXCL12
sig JAK3
sig JAK2
sig ABG

JAK3 (P) [1,300] [1,1] [2,5] [250,250] sig CXCR4 pho VAV1
JAK2 (P) [1,175] [1,1] [2,5] [42,42] sig CXCR4 pho VAV1
ABG (P) [1,200] [1,1] [2,5] [31,37] sig CXCR4 sig PLC

VAV1 (P) [1,168] [1,3] [2,2] [45,51]
pho JAK3
pho JAK2

sig RAC1
sig RHOA
sig CDC42

RAC1 (P) [1,235] [1,1] [2,6] [34,40] sig VAV1 sig PLD1
RHOA (P) [1,146] [1,1] [2,6] [29,35] sig VAV1 sig PLD1

CDC42 (P) [1,256] [1,2] [2,2] [35,41] sig VAV1
sig PIP5K1C
sig RAP1A

PLC (P) [1,210] [1,2] [2,4] [33,33] sig ABG
syn IP3
syn DAG

IP3 (C) [1,115] [1,1] [2,5] [51,57] syn PLC syn CA
CA (C) [1,140] [1,1] [2,5] [44,50] syn IP3 sig RASGRP1
DAG (C) [1,123] [1,1] [2,5] [56,62] syn PLC sig RASGRP1

RASGRP1 (P) [1,127] [1,1] [2,4] [32,38]
sig CA
sig DAG

sig RAP1A

PLD1 (P) [1,67] [1,1] [2,4] [28,28]
sig RAC1
sig RHOA

sig PA

PIP5K1C (P) [1,234] [1,1] [2,4] [27,33]
sig CDC42

sig PA
sys PIP2

PA (C) [1,322] [1,2] [2,2] [63,69] sys PLD1
sig RAP1A
sig PIP5K1C

RAP1A (P) [1,364] [1,2] [2,2] [34,40]
sig PA

sig RASGRP1
sig CDC42

sig RASSF5
sig RIAM

PIP2 (C) [1,243] [1,2] [2,3] [55,61] sys PIP5K1C
sig FERMT3
sig TLN1

RIAM (P) [1,435] [1,1] [2,4] [39,39] sig RAP1A sig TLN1
RASSF5 (P) [1,134] [1,1] [2,5] [32,38] sig RAP1A sig ITGB2
FERMT3 (P) [1,123] [1,1] [2,5] [31,31] sig PIP2 sig ITGB2
TLN1 (P) [1,364] [1,1] [2,5] [36,36] sig PIP2 sig ITGB2

ITGB2 (P) [1,125] - - [43,49]
sig FERMT3
sig TLN1

sig RASSF5
-

Table 1. The protein network characteristics

To better explore the behavior of the most interesting proteins of the network
(e.g., CDC42, RAP1A, and PIP5K1C that can lead to oscillations upon inhi-
bition), the lifetime ranges explored in simulation for such elements have been
extended. JAK3 and JAK2 have a fixed lifetime (40 ms and 42 ms, respectively)
since it has been accepted that, at present, there is not a known phosphatase
process that can influence their behavior.

Each protein or cofactor can activate (inhibit) one target at a time. Activation
(inhibition) of different targets are explored through different configurations. As
an example, VAV1 activates either RAC1 or RHOA or CDC42 (see Figure 1) in
a configuration run. Activation of all the targets is guaranteed and covered in
different configuration runs.

For each configuration, the network dynamics has been simulated and mon-
itored for a total time of 250 ms. For each configuration run, CXCL12 is always
active. CXCL12 and ITGB2 have not delay time. In total, we run around seven
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billion configurations on a cluster of 16 dual-core CPUs for a total of 278 hours
run time. As a result, we filtered the configurations that lead to periodic oscil-
lations (0.06% of the total) from the configurations that lead to aperiodic oscil-
lations or no oscillation (41.7% and 58.33%, respectively). Among the periodic
oscillations, the majority of configurations (57.75%) lead to three oscillations
in the overall simulated time (250 ms), 21% oscillations lead to two oscillations,
while 11.14% and 9.45% lead to five and four oscillations, respectively. Such con-
figurations represent different settings of the unknown inputs (see Section 4.1)
that lead the model behavior close enough to what experimentally observed.
These results encourage us for further model refinements and deeper investiga-
tions of the case study.

6 Concluding remarks

The paper presented a SystemC-based framework for modeling and simulation
of the signaling network controlling LFA-1 beta2 integrin activation mediating
leukocyte recruitment from the blood into the tissues. The framework relies on
the FSM model to formally model the behavior of each network element and on
the SystemC EDA language, which allows us to implement the network elements
as concurrent and reactive processes. The framework also consists of a testbench,
which generates configurations of values for each unknown parameters (e.g.,
molecular concentrations, activation delays, etc.). The framework simulates the
system for each configuration to identify the system properties that lead to any
experimentally observed behavior, such as the periodic oscillations of ITGB2 in
the leukocyte integrin activation case study. The proposed approach allows us
to handle the solution space complexity through different levels of simulation
accuracy and to apply EDA techniques and tools at the state of the art to
parallelize the SystemC simulation, both on GPUs and on clusters, to improve
the accuracy over the simulation time ratio.

References

1. Cadence Palladium - System Design and Verification, http://www.cadence.com/
products/sd/Pages/default.aspx

2. Mentor Graphics SystemVisio, http://www.mentor.com/products/sm/
3. Synopsys System Studio, http://www.synopsys.com/Systems/Pages/default.

aspx

4. SystemC - Accellera Systems Initiative, http://www.systemc.org
5. IEEE 1666 Standard: SystemC Language Reference Manual.

http://ieeexplore.ieee.org (2011)
6. Bolomini-Vittori, M., Montresor, A., Giagulli, C., Staunton, D., Rossi, B., Mar-

tinello, M., Constantin, G., Laudanna, C.: Regulation of conformer-specific acti-
vation of the integrin lfa-1 by a chemokine-triggered rho signaling module. Nat
Immunol. 10, 185–194 (2009)

7. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley,
Chichester, UK (2003)



12 Authors Suppressed Due to Excessive Length

8. Cai, L., Gajski, D.: Transaction level modeling: An overview. In: ACM/IEEE
CODES+ISSS. pp. 19–24 (2003)

9. Cai, L., Gajski, D.: Transaction level modeling: An overview. In: Proceedings of the
1st IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis. pp. 19–24. CODES+ISSS (2003)

10. Chaouiya, C.: Petri net modelling of biological networks. Briefings in Bioinformat-
ics 8(4), 210–9 (2007)

11. Constantin, G., Majeed, M., Giagulli, C., Piccio, L., Kim, J., Butcher, E., Lau-
danna, C.: Chemokines trigger immediate beta2 integrin affinity and mobility
changes: differential regulation and roles in lymphocyte arrest under flow. Im-
munity 13, 759–769 (2000)

12. Ezudheen, P., Chandran, P., Chandra, J., Simon, B.P., Ravi, D.: Parallelizing
SystemC kernel for fast hardware simulation on SMP machines. In: Proc. of
ACM/IEEE PADS. pp. 80–87 (2009)

13. Fisher, J., Harel, D., Henzinger, T.A.: Biology as reactivity. Commun. ACM 54(10),
72–82 (Oct 2011)

14. Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25, 1239
– 1249 (2007)

15. Giagulli, C., Ottoboni, L., Caveggion, E., Rossi, B., Lowell, C., Constantin, G.,
Laudanna, C., Berton, G.: The src family kinases hck and fgr are dispensable for
inside-out, chemoattractant-induced signaling regulating beta 2 integrin affinity
and valency in neutrophils, but are required for beta 2 integrin-mediated outside-
in signaling involved in sustained adhesion. J. Immunol. 177, 604–611 (2006)

16. Gilbert, D., Fuss, H., Gu, X., Orton, R., Robinson, S., Vyshemirsky, V., Kurth,
M.J., Downes, C.S., Dubitzky, W.: Computational methodologies for modelling,
analysis and simulation of signalling networks. Briefings in Bioinformatics 7(4),
339–353 (2006)

17. Kim, M., Carman, C., Yang, W., Salas, A., Springer, T.: The primacy of affinity
over clustering in regulation of adhesiveness of the integrin αlβ2. J Cell Biol. 167,
1241–1253 (2004)

18. Ley, K., Laudanna, C., Cybulsky, M., Nourshargh, S.: Getting to the site of inflam-
mation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689
(2007)

19. Melham, T.: Modelling, abstraction, and computation in systems biology: A view
from computer science. Progress in Biophysics and Molecular Biology, vol. 111, pp.
129 – 136 (Apr 2013)

20. Montresor, A., Bolomini-Vittori, M., Toffali, L., Rossi, B., Constantin, G., Lau-
danna, C.: Jak tyrosine kinases promote hierarchical activation of rho and rap
modules of integrin activation. J Cell Biol. 203(6), 1003–1019 (2013)

21. Montresor, A., Toffali, L., Constantin, G., Laudanna, C.: Chemokines and the
signaling modules regulating integrin affinity. Front Immunol. 3:127 (2012)

22. Nanjundappa, M., Patel, H.D., Jose, B.A., Shukla, S.K.: Scgpsim: a fast systemc
simulator on gpus. In: Proceedings of the 2010 Asia and South Pacific Design
Automation Conference. pp. 149–154. ASPDAC ’10 (2010)

23. Priami, C.: Stochastic pi-calculus. The Computer Journal 38(7), 578–589 (1995)
24. Sadot, A., Fisher, J., Barak, D., Admanit, Y., Stern, M.J., Hubbard, E.J., Harel,

D.: Toward verified biological models. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 5(2), 223–34 (2008)

25. Srihari, S., Raman, V., Leong, H.W., Ragan, M.A.: Evolution and controllability
of cancer networks: A boolean perspective. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics 11(1), 83–94 (2013)


