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Abstract: We explicitly give the optimal trade execution strategy in the
Almgren-Chriss framework, see [1, 2], when the publicly available price process
follows an arithmetic Brownian motion with zero drift. The financial setting
is completed by choosing the risk parameters to be the Value at Risk and
the Expected Shortfall associated with the Profit and Loss distribution of the
strategy’s position.
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1. Introduction

We consider a non-liquid market for a risky asset, hence allowing an active
agent to influence the price process of the asset itself. In this financial setting
great attention is given to the study of the difference between publicly available

price representing the price per share of the asset in a market impact-free world,
and the actual price. Such a a difference is called market impact. Our main
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aim is to understand how a large order may be divided into smaller orders to
minimize the resulting market impact. We assume that the publicly available
prices process follows an arithmetic Brownian motion (ABM) with zero drift.
The market impact is split into two component: the temporary market impact
and the permanent one. Both impact components are assumed to be linear in
the rate of trading and in the number of shares sold respectively. With previous
assumptions, in [1, 2] an optimal execution strategy is explicitly computed when
the variance of the strategy’s cost is used as risk parameter. We solve a slightly
different optimal trade execution problem taking the Value at Risk (VAR) and
the Expected Shortfall (ES) as risk parameters. In [4], resp. in [3], the same
problem is solved under the assumption that the unaffected price process follows
a geometric Brownian motion, resp. a displaced diffusion process. Moreover in
[5] a robustness property for the optimal strategies is found. Indeed, under a
specified cost criterion, the form of the solution is independent on the unaffected
price process, provided that it is a square integrable martingale. This paper
is organized as as follows: in Sect. 2 the model is presented, we state the
conditions which characterize the set of admissible strategies and we specify
the price processes. Moreover we compute the Implementation Shortfall (IS) of
each admissible strategy. In Sect. 3 we introduce the chosen risk parameters,
namely the VAR and the ES, deriving an explicit computation for them. In
Sect. 4 we define the criterium that we want to minimize. For such a criterion,
which involves the expected cost and risk parameter associated to a strategy,
we are able to exhibit the related optimal strategy.

2. The Model

The general framework is based on a trader which has a position x0 in the risky
asset at time t = 0. If such a position is positive then the trader’s goal is to sell
all of the x0 shares within a fixed deadline T > 0 minimizing, at the same time,
a function involving the expected cost and some risk parameters. Otherwise,
if x0 < 0, then the trader has the objective to buy x0 shares of the risky asset
within a fixed time T > 0, maximizing a given revenue function which may
depend on some parameters.

Let St denote the price per share at time t ∈ [0, T ], of the asset that is
publicly available, i.e. the unaffected stock price level. This is the price per
share of the asset which will occur in a market impact-free world or, similarly,
the price will occur if the trader will not participate in the market.

We would like to underline that St is not the amount per share received by



OPTIMAL EXECUTION STRATEGY UNDER ARITHMETIC... 157

the trader. Indeed we assume that liquidity effects are present in the market. In
particular the paper value of the asset and the value it will be sold for, may be
significantly different. The realized price, that is the price the trader actually
receives on each trade per share, is called actual price and it will be denoted
by S̃t. Note that S̃t depends both on the unaffected price and the behaviour of
the trader in the market.

We assume that the publicly available price process St follows an ABM with
zero drift, therefore St satisfies the following stochastic differential equation
dSt = σdWt, where Wt is a Brownian motion and σ is a positive constant
representing the volatility of the price process. We would like to underline
that, following [1, 2], the volatility term does not depend on the particular
strategy, since it results as an average over all the market’s endogenous inputs.
Assuming that the initial value of the unaffected price is a fixed and known
positive constant S0, we have that St = S0 + σWt , and the price process St is
a martingale with respect to its natural filtration. Concerning the actual price
process S̃t, we have that it is defined by

S̃t = St + ηẊt + γ(Xt − x0) , (1)

where X is the trade execution strategy adopted by the trader, this means Xt

represents the number of shares that the trader still has to sell at time t within
the deadline T , and where η and γ are given positive constants.

Exploiting equation (1) we can split the market impact, i.e. the differ-
ence between the actual price S̃t and the publicly available price St, into two
components

• ηẊt outlines the temporary (or instantaneous) market impact of trading
,

• γ(Xt − x0) describes the permanent market impact.

Note that while the permanent impact is accumulated by all transactions from
the initial time up to time t, the temporary impact only affects the trading in
the infinitesimal interval [t, t+ dt). We point out that both the temporary and
the permanent market impact are assumed to be linear in the rate of trading and
in the sold/purchased shares respectively, so that we are able to find explicitly
the related optimal strategy, see below Sect. (4).

Since at the initial time, the units of the asset held by the trader are fixed
and equal to x0, while at the final time T > 0, all the shares are sold, then the
financial transactions we are interested in happen in the time interval [0, T ].
Consequently we define the set of admissible strategies A as the class of all the
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absolutely continuous stochastic processes {Xt}t∈[0,T ] which are adapted to the
natural filtration generated by the Brownian motion {Wt}t∈[0,T ], fulfilling the
boundary conditions X0 = x0 and XT = 0.

2.1. Cost of a Trading Strategy

To understand how to optimally trade in the market, we have to compute the
costs arising from each admissible strategy. The marked-to-market value of
trader’s initial position, i.e the value under the classical price taking condition,
equals x0S0 , and we will use such a value as benchmark. If we fix a certain time
t ∈ [0, T ) and we consider a fixed admissible strategy X ∈ A, we have that, in

the infinitesimal time interval [t, t+dt), the trader sells −dX(t) = −Ẋtdt shares

of the assets at the price S̃t, earning −S̃t Ẋtdt. By integrating the earning over
all the strategy’s lifetime, we have that the total capture G(X) associated to
the strategy X ∈ A, reads as follows

G(X) =

∫ T

0

−S̃t Ẋt dt =

∫ T

0

−(St + ηẊt + γ(Xt − x0))Ẋt dt =

= −

∫ T

0

St Ẋt dt− η

∫ T

0

Ẋ
2
t dt− γ

∫ T

0

XtẊt dt+ γx0

∫ T

0

Ẋt dt .

Using the boundary conditions, we have
∫ T

0 Ẋt dt = Xt − X0 = −x0 and by
the stochastic Itô version of the integration by parts formula, it follows

∫ T

0
XtẊt dt = X2

t |T0 −
∫ T

0
ẊtXt dt = −X2

0 −
∫ T

0
ẊtXt dt ,

which implies
∫ T

0 XtẊt dt = −1
2x

2
0 . Exploiting again the integration by parts

formula and the maturity condition ST XT = 0, we obtain
∫ T

0
St Ẋt dt = −S0X0 −

∫ T

0
σXt dWt . (2)

Notice that the stochastic integral in (2) is well defined since X ∈ A. Summing
up, the total capture of a strategy X is given by

G(X) = S0x0 −
γ

2
x20 − η

∫ T

0
Ẋ2

t dt+

∫ T

0
σXt dWt.

We define the cost C(X) of a trading strategy X ∈ A as the difference between
the marked-to-market of the initial position, i.e. the quantity x0S0, and the
strategy’s capture, therefore

C(X) = S0x0 −G(X) =
γ

2
x20 + η

∫ T

0
Ẋ2

t dt−
∫ T

0
σXt dWt. (3)
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3. Risk Parameters

The optimal execution strategy is defined as the strategy that, over all admissi-
ble strategies, minimizes a given criterion. Along with the expected costs, our
criterion takes into account as risk parameter the VaR or the ES.

3.1. Risk Parameter: Value at Risk

At time t ∈ [0, T ], the trader is currently holding Xt shares of the asset, so
the marked-to-market value of his position is Ht = XtSt. After a time h if
the trader does not enter in the market the new marked-to-market value of his
position is Ht+h = XtSt+h. Therefore, the loss in position due to the change in
price is equal to

L[t,t+h](X) = Xt(St − St+h) .

The VaR associated with the P&L of the position x(t) with X ∈ A over a
time horizon h at the confidence level α is given by

VaRα,t,h[Xt(St − St+h)] = σXtVaRα,t,h[Wt −Wt+h]

due to the homogeneity property. The term VaRα,t,h[Wt − Wt+h] does not
depend on time t and, since Wt −Wt+h ∼ N(0, h), it represents the α quantile
of the random variable H ∼ N(0, h). Therefore if φ is the density of standard
Gaussian random variable and Φ being its related cumulative distribution, then
the quantile we are looking for is given by

√
hΦ−1(α). Summing up the VaR

measure for the loss of the instantaneous strategy’s position at time t turns out
to be

VaRα,t,h[Xt(St − St+h)] = σ
√
hΦ−1(α)Xt .

When we want to use the VaR as risk parameter we have to taking into
account the whole liquidation time. To this end, we integrate the VaR over the
strategy lifetime [0, T ], obtaining that the risk function becomes

RVaRα(X) = σ
√
hΦ−1(α)

∫ T

0
Xt dt. (4)

3.2. Risk Parameter: Expected Shortfall

We may also choose the Expected Shortfall (ES) as measure of risk. The ES of
the marked-to-market losses, given t, h and α is equal to

ESα,t,h[Xt(St − St+h)] :=E[σXt(Wt −Wt+h)|σXt(Wt −Wt−h) ≥ VaRα,t,h]

=σXtE

[

Wt −Wt+h

∣

∣

∣

∣

Wt −Wt+h ≥
VaRα,t,h

σXt

]

.
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Recalling that VaRα,t,h = σ
√
hΦ−1(α)Xt, we have

E

[

Wt −Wt+h

∣

∣

∣
Wt −Wt+h ≥ VaRα,t,h

σXt

]

=
√
hE[Z|Z ≥ Φ−1(α)] ,

hence we are left with the computation of

E[Z|Z ≥ Φ−1(α)] =
1

1− α

∫

∞

Φ−1(α)

zφ(z) dz = −
φ(z)|∞Φ−1(α)

1− α
=

φ(Φ−1(α))

1− α
.

Therefore, for a given confidence level α, we have that the ES of the instanta-
neous position at time t equals

ESα,t,h[Xt(St − St+h)] =
σ
√
hφ(Φ−1(α))Xt

1− α
,

and the risk function associated with the ES for the whole period of liquidation,
is given by

RESα(x) =
σ
√
hφ(Φ−1(α))

1− α

∫ T

0
Xt dt . (5)

4. Optimal Strategy based on VaR or ES

We would like to underline that the two risk functions, given by (4) and by
(5), are of the same form. Indeed, they are both proportional to the integral
of the trading strategy over its lifetime but with different coefficients. Let

R(X) = R(X) = λ
∫ T

0 Xt dt , then setting λ = σ
√
hΦ−1(α) or λ = σ

√
hφ(Φ−1(α))

1−α
,

we will choose as risk function the VaR, resp. the ES. Thus, our aim is minimize
the function

E[C(X) +R(X)] =
γ

2
x
2
0 + E

[

η

∫ T

0

Ẋ
2
t dt+ λ

∫ T

0

Xt dt−

∫ T

0

σXt dWt

]

(6)

over all the admissible strategies A. Since the constant value γ
2x

2
0 is additive,

it does not affect the minimum point even if it affects the minimum value,
therefore we do not have to take it into consideration in our minimization

procedure. Since by Itô integral property, we have that E

[

∫ T

0 Xt dSt

]

= 0 ,

minimizing the function in (6) is equivalent to minimize

E

[
∫ T

0
Ẋ2

t dt+ Λ

∫ T

0
Xt dt

]

, (7)

where Λ := λ
η
.
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Theorem 1. The unique optimal trading strategy which solves the fol-

lowing problem

min
X∈A

E

[
∫ T

0
Ẋ2

t dt+ Λ

∫ T

0
Xt dt

]

(8)

is given by

X∗
t =

T − t

T

(

x0 −
ΛT

4
t

)

, (9)

for which (8) returns the value

E

[
∫ T

0
(Ẋ∗

t )
2 dt+ Λ

∫ T

0
X∗

t dt

]

=
x20
T

+
1

2
x0ΛT − 1

48
x0ΛT

3.

Proof. Consider the following perturbation of Xt

Xε
t = Xt + εh(t), (10)

where h(t) is an arbitrary function satisfying h(0) = h(T ) = 0 and ε is a real
constant. In this way, Xε still satisfies the boundary condition Xε(0) = x0 and
Xε(T ) = 0. Moreover we require h be differentiable, so that Ẋε

t = Ẋt + εḣ(t).
Substituting (10) and (4) into (7), we obtain a functional in ε, i.e. H(ε) =

E
[ ∫ T

0 (Ẋε
t )

2 + ΛXε
t dt

]

, hence, differentiating with respect to ε and evaluating

the resulting expression at ε = 0, we have Ḣ(0) = E
[ ∫ T

0 2Ẋtḣ(t) + Λh(t) dt
]

.

Since, using integration by parts formula, we have

∫ T

0
Ẋt ḣ(t) dt = h(t)Ẋt|T0 −

∫ T

0
h(t)Ẍt dt = −

∫ T

0
h(t)Ẍt dt,

where we have used the boundary condition on h, h(0) = h(T ) = 0, it follows

Ḣ(0) = E

[
∫ T

0
−2Ẍt h(t) + Λh(t) dt

]

= E

[
∫ T

0
−(2Ẍt − Λ)h(t) dt

]

.

The optimal trading strategy X∗
t is obtained by setting Ḣ(0) = 0. Since the

function h(t) is arbitrarily, X∗ has to satisfy the following equality 2Ẍt−Λ = 0,
for all t ∈ [0, T ]. Then, in order to find the optimal solution, we have to solve
the following Cauchy problem















Ẍt =
Λ

2
(11)

X0 = x0 (12)

XT = 0 . (13)
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The family of solutions of the differential equation (11) are given by Xt =
Λ
4 t

2 + At + B, where A and B are real constants. Constraint (12) implies
B = x0 and then, by (13), A = −x0

T
− ΛT

4 .
Therefore the unique solution which attain the minimum in (8) is X∗

t =
T−t
T

(

x0 − ΛT
4 t

)

and the associated minimum value is given by E
[ ∫ T

0 (Ẋ∗
t )

2 dt+

Λ
∫ T

0 X∗
t dt

]

.

5. Conclusions

In the present paper we give the explicit execution strategy that minimizes a
criterion involving expected cost and the value at risk or the expected shortfall

as risk parameters, see Th. 1, when the publicly available price process follows
an arithmetic Brownian motion with zero drift. Our result is linked to the ones
obtained in [5], but, see (9), we give the optimal execution strategy with respect
to different minimization criteria.

We would also like to underline that in the optimal execution strategy X∗

exhibited in (9), the price process St does not appear explicitly, indeed X∗ turns
out to be deterministic.
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