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Abstract: In the present paper we find the solution for the stochastic differential
utility problem introduced by [2] using a backward stochastic Volterra integral dif-
ferential approach. In particular we generalize results already obtained in literature
passing from global to local Lipschitz assumption for the drift component.
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1. Introduction

In [2] Duffie and Epstein introduced the concept of stochastic differential utility

(SDU) in the form

Y (t) = E

[
∫ T

t

e−r(s−t)g(s, Y (s))ds + e−r(T−t)ξ | Ft

]

, t ∈ [0, T ], (1)

where r is a positive parameter called discount rate, T > 0 is considered as the
maturity time or expiring date for a certain tipe of financial investment, ξ is a given
terminal condition, namely Y (T ) = ξ, which turns to be a random variable with
respect to FT , where {F}t∈[0,T ] is the σ − algebra containing all the informations,
we shall give more details later, for the process {Y (t)}t∈[0,T ] up to terminal time T .
The main idea behind previous approach is based on an extension of the recursive
utility method in continuous time. Indeed, in the discrete case, the problem is to find
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a suitable utility function which satisfies a certain recursive relation with respect to a
given consumption plan C = {C(t)}t∈I , where I := {t1, t2, . . .} is a given, countable,
set of times.

In the continuous case C = {C(t)}t∈R+ and we define the associated value
process Y (t) := U ({C(s) : s ≥ t}) with respect to the utility function U , so that
U(C(T )) =: ξ represents the so called utility of terminal consumption. Note that
previous problem, i.e. eq. (1), is equivalent to the following Backward Stochastic
Differential Equation (BSDE)

{

dY (t) = [−rY (t) + g(t, Y (t))] dt− Z(t)dW (t), t ∈ [0, T ],

Y (T ) = ξ,
(2)

where a second, Ft − adapted, stochastic process Z appears, being the second un-
known for the following nonlinear BSDE-type problem, first introduced by Pardoux
and Peng, see [6]

{

dY (t) = −g(t, Y (t), Z(t))dt + Z(t)dW (t), t ∈ [0, T ],

Y (T ) = ξ,
(3)

hence (2) is a specialization of (3). In particular one can show that, if the function
g is Lipschitz w.r.t. its second and third argument, then there exists a unique,
adapted, solution which is in fact a couple of stochastic processes, (Y,Z), moreover
we refer to, e.g., [4], for results concerning the study of (3) with non Lipschitz
coefficients. BSDE-theory is strictly related to the theory of Backward Stochastic
Volterra Integral Equation (BSVIE), see, e.g., [5]. As an example, equation (2) can
be reinterpreted in the following BSVIE-form

Y (t) = ξ +

∫ T

t

g(s, Y (s), Z(s))ds −

∫ T

t

Z(s)dW (s), t ∈ [0, T ], (4)

which turns to be a particular case of the following nonlinear BSVIE for t ∈ [0, T ]

Y (t) = ξ +

∫ T

t

g(t, s, Y (s), Z(t, s))ds +

∫ T

t

[h(t, s, Y (s)) + Z(t, s)] dW (s), (5)

for which Lin in [3] gave an existence and uniqueness result under global Lipschitz
condition on the drift.

Our aim is to exploit latter interpretation and recent results developed in [1]
for BSVIE under local Lipschitz condition on the drift component, to determine the
existence and uniqueness for the solution of the associated Stochastic Differential

Utility (SDU) problem.

In
te
rn

a
ti
o
n
a
l
E
le
c
tr
o
n
ic

J
o
u
rn

a
l
o
f
P
u
re

a
n
d

A
p
p
li
e
d

M
a
th

e
m
a
ti
c
s
–
IE

J
P
A
M

,
V
o
lu
m
e
8
,
N
o
.
1
(2

0
1
4
)



BACKWARD STOCHASTIC VOLTERRA INTEGRAL EQUATION... 13

2. BSVIE Formulation for the Stochastic Differential Utility Problem

Let S :=
(

Ω,F , {Ft}t∈[0,T ] ,P
)

be a filtered probability space, where 0 < T < +∞

is considered as the maturity time of our consumption-utility plan, and {W}t∈[0,T ]

is a one-dimensional Brownian motion determining the filtration Ft = {F}t∈[0,T ].
The stochastic approach to the recursive utility problem in continuous, but finite,
time [0, T ], where C = {C(t)}t∈R+ is a consumption plan, U is a utility function,
and Y (t) := U ({C(s) : s ≥ t}) is the associated (stochastic) value process, adapted
to Ft, such that U(C(T )) =: ξ represents the utility of terminal consumption, leads
to the SDU solution given in [2]. In particular we are left to consider the following
stochastic differential equation in integral form

Y (t) = ξ +

∫ T

t

g(C(s), Y (S))ds, t ∈ [0, T ], (6)

where C is adapted to Ft, hence Y turns out to be a uniformly integrable martingale,
with respect to with respect to Ft, with Y (0) = 0, so that, by the Martingale

representation theorem, there exists an adapted stochastic process Z = Z(t), t ∈
[0, T ], such that

Y (t) = U(C(T )) +

∫ T

t

g(C(s), Y (s))ds −

∫ T

t

Z(s)dW (s), t ∈ [0, T ], (7)

analogous of equation (1) given in Sec.1. Moreover the BSDE (7) is equivalent to
the BSVIE (4), special case of the nonlinear BSVIE (5), both given in Sec. 1. Hence
the SDU problem can be solved finding a couple of adapted stochastic processes
(Y,Z) solution of a properly simplified equation of the type (5). In particular, in
what follows we shall assume that ξ be a FT -measurable, square integrable random
variable and that the drift g satisfies the following conditions ∀N ∈ N

+, | y |≤ N ,
| y′ |≤ N , z, z′ ∈ R, and a.e. s ∈ [0, T ]

(C1) | g(s, y, z) |≤ K(1+ | y | + | z |)α ,P − a.s ,

(C2) ∃ K > 0, α ∈ [0, 1) and LN > 0, such that

| g(s, y, z) − g(s, y′, z′ |≤ LN | y − y′ | +K | z − z′ | .

Moreover we set the following definition

Definition 1. A solution for the SDU problem in BSVIE form (4), with drift
g and final condition given by the utility of terminal consumption C(U(T )) =: ξ, is
a pair of square integrable (w.r.t. P × L , L being the usual Lebesgue measure on
R), Ft−adapted processes (Y,Z) = {Y (t), Z(t)}t∈[0,T ] which solve (4).

With previous assumptions, the following result holds, see [1] for details,In
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Theorem 2. If assumptions (C1) and (C2) are satisfied, and

lim
N→+∞

e(2LN+2L2
N
)T

(2LN + 2L2
N )N2(1−α)

= 0 ,

then there exists a unique solution to the SDU problem defined by eq.(1), analogously
by eq. (4).

Proof. Concerning the uniqueness we suppose that two different solutions, in the
sense given before, (Y,Z) and (Y ′, Z ′) exists, then we define ∆Y (s) := Y (s)−Y ′(s),
∆Z(s) = Z(s) − Z ′(s) and ∆g(s) := g(s, Y (s), Z(s)) − g(s, Y ′(s), Z ′(s)), hence we
have

∆Y (t) +

∫ T

t

∆g(s)ds +

∫ T

t

∆Z(s)dW (s) = 0 , (8)

and by Lemma 2.1 in [3] we have to estimate the following expectation

E | ∆Y (s) |2 +E

∫ T

t

| ∆Z(s) |2 ds =

5
∑

i=1

Ii , (9)

where the (integral) terms Ii, i = 1, . . . , 5, can be controlled by the estimating pro-
cedure given in [1], but requiring just the assumptions (C1) and (C2).

The proof for the existence relies on the same concepts, once we have defined,
for every m ≤ n ∈ N

+, the processes Ym, Zm, Yn, Zn following the definitions given
in Lemma 3.1 and Lemma 3.2 of [1]. In particular we have the following expression

E | Yn(s)− Ym(s) |2 +E

∫ T

t

| Zn(s)− Zm(s) |2 ds , (10)

which can be estimated using Lemma 3.2 of [1], together with standard application
of both Hölder and Chebychev inequalities, concluding the proof.
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