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Abstract—Breadth-first search (BFS) is one of the most common graph traversal algorithms and the building block for a wide range
of graph applications. With the advent of graphics processing units (GPUs), several works have been proposed to accelerate graph
algorithms and, in particular, BFS on such many-core architectures. Nevertheless, BFS has proven to be an algorithm for which it is
hard to obtain better performance from parallelization. Indeed, the proposed solutions take advantage of the massively parallelism of
GPUs but they are often asymptotically less efficient than the fastest CPU implementations. This article presents BFS-4K, a parallel
implementation of BFS for GPUs that exploits the more advanced features of GPU-based platforms (i.e., NVIDIA Kepler) and that
achieves an asymptotically optimal work complexity. The article presents different strategies implemented in BFS-4K to deal with
the potential workload imbalance and thread divergence caused by any actual graph non-homogeneity. The article presents the
experimental results conducted on several graphs of different size and characteristics to understand how the proposed techniques
are applied and combined to obtain the best performance from the parallel BFS visits. Finally, an analysis of the most representative
BFS implementations for GPUs at the state of the art and their comparison with BFS-4K are reported to underline the efficiency of the
proposed solution.

F

Index Terms—Parallel graph algorithms, CUDA, GPU, BFS, Kepler

1 INTRODUCTION

G RAPHS are a common representation in many
problem domains, including engineering, finance,

medicine, and scientific applications. Breadth-first search
(BFS) is a crucial graph traversal algorithm used by
many graph-processing applications. Different problems,
such as VLSI chip layout, phylogeny reconstruction, data
mining, and network analysis, map to very large graphs,
often involving millions of vertices. Even though very
efficient sequential implementations of BFS exist [1]–[3],
they have work complexity of the order of number of
vertices and edges. As a consequence, such sequential
implementations become impractical when applied on
very large graphs.

Recently, graphics processing units (GPUs) have be-
come widespread platforms as they provide massive
parallelism at low cost. Parallel executions on GPUs may
achieve speedup up to three orders of magnitude with
respect to the sequential counterparts on CPUs. Never-
theless, accelerating efficient and optimized sequential
algorithms and porting (i.e., parallelizing) their imple-
mentation to such many-core architectures is a very chal-
lenging task. Several solutions in literature take advan-
tage of the massive parallelism of GPUs [4]–[8] but they
are often asymptotically less efficient than the fastest
CPU implementations [3]. After a certain graph size and,
thus, for graph sizes typical of many actual problem
domains, the parallel implementations for GPUs become
slower than the sequential implementations for CPUs.
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Thread divergence, workload imbalance, and poorly
coalesced memory accesses are the most representative
issues that come up when traversing a graph with a
parallel implementation. In particular, sparse graphs,
scale free networks or graphs with power-law distri-
bution in general show up the limits of the parallel
implementations suffering from these problems [9]–[12].

On the other hand, GPU vendors continue to innovate
and meet that demand for high performance parallel
computing with extremely powerful GPU computing
architectures (e.g., NVIDIAs new Kepler GK110 [13]).
The most recent architectures, not only offer much higher
processing power than the prior GPU generations, but,
also, they provide new programming capability to im-
prove the efficiency of the parallel implementations.

This article presents BFS-4K, a parallel implementation
of BFS for GPUs, which exploits the more advanced
features of GPU-based platforms (i.e., NVIDIA Kepler)
to improve the execution speedup w.r.t. the sequential
CPU implementations and to achieve an asymptotically
optimal work complexity. The article presents the dif-
ferent features implemented in BFS-4K to deal with the
potential workload imbalance and thread divergence
caused by the graph non-homogeneity (i.e., number of
vertices, edges, diameter, and vertex degree variability).
An analysis of every single technique is also presented
to show how much they influence the overall perfor-
mance and how they can be customized to exploit the
architecture configurations for the graph characteristics.

Finally, the performance of the proposed implemen-
tation (which is available for download in http :
//profs.sci.univr.it/ ∼ bombieri/BFS−4K/index.html)
is compared with the most efficient BFS implementations
for GPUs at the state of the art over several graphs of
different sizes and characteristics.
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The article is organized as follows. Section 2 presents
some preliminary concepts on CUDA, Kepler, and the
BFS algorithm. Section 3 presents a detailed analysis
of the main representative implementations of parallel
BFS for GPUs at the state of the art. Section 4 gives
an overview of the proposed approach while the sin-
gle techniques implemented in BFS-4K are detailed in
Section 5. Section 6 presents the problem of duplicates
and the proposed approach to deal with them. Finally,
Section 7 presents the experimental results by underlying
the single technique contributions in the overall visit
performance and a comparison of BFS-4K with the BFS
implementations for GPU at the state of the art. Section
8 is devoted to concluding remarks.

2 BACKGROUND

This section presents some preliminary concepts con-
cerning CUDA architectures and BFS, which facilitate the
reader to better understand the proposed solution.

2.1 CUDA and Kepler

Compute Unified Device Architecture (CUDA) is a C
library extension developed by NVIDIA to provide a
programming interface to GPU devices [14]. The host
CPU is responsible for starting the main program and
executing serial code, while delegating parallel execu-
tion of compute-intensive tasks to the GPU device. The
CUDA programming requires the definition of C func-
tions, called kernels, which are executed in parallel by
multiple GPU threads. The threads run the same kernel
concurrently, and each one is associated with a unique
thread ID. A kernel is executed by a three-dimensional
grid of thread blocks. Threads are arranged into three-
dimensional thread blocks. Threads of the same block
efficiently cooperate by sharing data through fast shared
memory and by synchronizing their execution through
extremely fast (i.e., HW implemented) barriers. In con-
trast, threads belonging to different blocks are not al-
lowed (for performance reasons) to perform barrier syn-
chronizations with each other.

Thread blocks are then subdivided into groups of 32
threads called warps to be physically executed by GPU
cores. A thread warp (or warp) executes one common
instruction at a time, meaning that multiple threads
within the warp execute the same instruction on different
data at the same time (i.e., SIMD architecture). To achieve
full efficiency, all threads within a warp should follow
the same control flow path. If threads in the same warp
follow different paths, they are said to diverge. In case of
branch divergence, the warp serially executes each branch.
Threads that are not on the branch being currently taken
are disabled with a consequent performance decrease.

In 2012, NVIDIA released the Kepler GK110 architec-
ture [13], which introduces many improvements and
new features to better support parallelism in a wider
application range. One of the most relevant features is

dynamic parallelism, which allows the application execu-
tion to be controlled by the GPU (besides the CPU). This
includes the support of program recursion and dynamic
workload balancing, that is, handling not uniformly
distributed data, such as unbalanced graphs, by creat-
ing additional threads during a single kernel execution
and avoiding overhead due to many kernel invocations.
Nevertheless, dynamic parallelism can also lead to per-
formance decrease if used inappropriately. This work
presents an analysis of the dynamic parallelism in BFS
visits, by proposing a parametric use of it to correctly
exploit its potentiality.

Warp shuffle instructions are another new feature of
Kepler used in the proposed solution. They implement
very efficient communication of threads within a warp.
With shuffle instructions, threads within a warp can
directly access other thread registers by skipping shared
memory accesses. In addition, thread communication via
warp shuffle allows the amount of shared memory re-
quired for blocks to be reduced with consequent general
improvements of performance.

The Kepler architecture also introduces the 8-byte ac-
cess mode to the shared memory. The shared memory
throughput is doubled by increasing the bank width to
8 bytes. The proposed algorithm implementation takes
advantage of this feature to realize a hash table and an
efficient technique for atomic and coalesced accesses.

2.2 Breadth First Search (BFS)

BFS is one of the most import graph algorithms. It is
used in several different contexts such as image pro-
cessing, state space searching, network analysis, graph
partitioning, and automatic theorem proving. Given a
graph G(V,E), where V is the set of vertices and E is
the set of edges, and a source vertex s, the BFS visit
inspects every edge of E to find the minimum number
of edges or the shortest path to reach every vertex of V
from source s. The traditional sequential algorithm [3]
can be summarized as follows:

for all verticies u ∈ V (G) do
u.dist←∞
u.π ← −1

end
v0.dist← 0
v0.π ← v0
Q← {v0}
while Q 6= ∅ do

u← DEQUEUE(Q)
for all verticies v ∈ adj [u] do

if v.dist =∞ then
v.dist← u.dist+ 1
v.π ← u
ENQUEUE(Q, v)

end
end
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Harish [4] Virtual Warps [5]
Edge

Parallelism [7] Luo [15] Garland [16] BFS-4K

Work
complexity O(V D + E) O(V D + E) O(ED) O(V + E) O(V + E) O(V + E)

Space
complexity O(3V + E) O(2V + E) O(2E) N/A Ω(4V + 2E) Ω(4V + E)

Type of
parallelismn Vertices Virtual Warp Edges Vertices Vertices, Edges,

CTA

Vertices, Edges,
Dynamic Virtual
Warp, Dynamic

Parallelism

High-degree vertex
management no yes indifferent no yes yes

Duplicate
detection

no no no no yes yes

Type of
synchronization Host-Device Host-Device Host-Device

Host-Device,
Inter-block [17],
Thread barriers

Host-Device
Inter-block [17]

Host-Device,
Inter-block [17],
Thread barriers

Fig. 1. Comparison of the most representative BFS implementations at the state of the art with BFS-4K

where Q is a FIFO queue data structure that stores
not yet visited vertices, v.dist represents the distance of
vertex v from the source vertex s (number of edges in
the path) , and v.π represents the parent vertex of v. An
unvisited vertex v is denoted with v.dist equal to∞. The
asymptotic time complexity of the sequential algorithm
is O(V + E).

3 RELATED WORK
Harish and Narayanan [4] proposed the first approach
to accelerate BFS on GPUs. The proposed algorithm
explores all the graph vertices at each iteration (i.e., at
each visiting level) to see whether the vertex belongs to
the current frontier. This allows the algorithm to save
GPU overhead by not maintaining the frontier queues.
Nevertheless, the proposed approach leads to a sensible
workload imbalance whenever the graph is non homoge-
neous in terms of vertex degree. In addition, let D be the
graph diameter, the computational complexity of such a
solution is O(V D + E), where O(V D) is spent to check
the frontier vertices and O(E) is spent to explore each
graph edge. While this approach fits on dense graphs, in
the worst case of sparse graphs (where D = O(V )) the
algorithm has a complexity of O(V 2). This implies that,
for large graphs, the proposed algorithm is slower than
the sequential version of the algorithm (see Section 2.2).

A partial solution to the problem of workload imbal-
ance has been proposed in [5]. Instead of assigning a
thread to a vertex, the authors propose thread groups
(which they call virtual warps) to explore the array of
vertices. The group size is typically 2, 4, 8, 16, or 32,
and the number of blocks is inversely proportional to
the virtual warp size. This leads to a limited speedup in
case of low degree graphs, since many threads cannot
be exploited at the kernel configuration time. Also, the
virtual warp size is static and has to be properly set
depending on each graph characteristics.

[6] presents an alternative solution based on matrices
for sparse graphs. Each frontier propagation is trans-
formed into a matrix-vector multiplication. Given the

total number of multiplications D (which corresponds
to the number of levels), the computational complexity
of the algorithm is O(V + ED), where O(V ) is spent
to initialize the vector, and O(E) is spent for the mul-
tiplication at each level. In the worst case, that is, with
D = O(V ) the algorithm complexity is O(V 2).

[7] and [8] present alternative approaches based
on edge parallelism. Instead of assigning one or more
threads to a vertex, the thread computation is distributed
to edges. As a consequence, the thread divergence is
limited and the workload is balanced even with high-
degree graphs. The main drawbacks is the overhead
introduced by the visit of all graph edges at each level.
In many cases, the number of edges is much greater than
the number of vertices. In these cases, the parallel work
is not sufficient to improve the performance against
vertex parallelism.

An efficient BFS implementation with computational
complexity O(V +E) is proposed in [15]. The algorithm
exploits a single hierarchical queue shared across all
thread blocks and an inter-block synchronization [17] to
save queue accesses in global memory. Nevertheless, the
small frontier size requested to avoid global memory
writes and the visit exclusively based on vertex paral-
lelism limit the overall speedup.

Merrill, Garland and Grimshaw [16] present an al-
gorithm that achieves work complexity O(V+E). They
make use of parallel prefix-scan and three different
approaches to deal with the workload imbalance: vertex
expansion and edge contraction, edge contraction and
vertex expansion, and hybrid. The algorithm also relies
on a technique to reduce redundant work due to duplicate
vertices on the frontiers.

This article presents BFS-4K, a parallel BFS imple-
mentation that achieves work complexity O(V + E).
Differently from all the approaches in literature, BFS-4K
implements:

• A two-level exclusive prefix-sum to efficiently man-
age the frontier propagation steps.

• A dynamic virtual warps whereby the warp size is
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calibrated at each frontier propagation step.
• The dynamic parallelism, which allows the main

GPU kernel to properly configure and invoke a child
kernel for overcoming the workload imbalance due
to the different degrees of vertices.

• An edge-discover technique based on binary search,
in which threads are assigned to edges rather than
vertices through an efficient binary search proce-
dure.

• Two main GPU kernels, which are alternately used
and combined with the features presented above
during frontier propagation.

• A duplicate detection and correction strategy, which
is based on hash table and 8-bank access mode to
sensibly reduce the memory accesses and improve
the detection capability.

• A technique to induce coalescence in the global
memory accesses, which is combined with prefix-
sum and adopted by the visiting techniques listed
above.

In particular, the proposed implementation exploits
the features of the Kepler architecture such as dynamic
parallelism, warp-shuffle, and 8-bank access mode, to
guarantee an efficient implementation of the character-
istics listed above. Figure 1 summarizes the differences
between the most representative BFS implementations at
the state of the art and BFS-4K.

4 BFS4 OVERVIEW

Given a graph G(V,E) and a source vertex s, BFS-4K
exploits the concept of frontier [3] to achieve work effi-
ciency O(V +E) for the parallel BFS visits of G. The tool
generates a breadth-first tree that has root s and contains
all reachable vertices. The vertices in each level of the
tree compose a frontier (F). Frontier propagation checks
every neighbour of a frontier vertex to see whether it
is visited already. If not, the neighbour is added into a
new frontier.

BFS-4K implements the frontier propagation through
two data structures, Fd and Fdnew. Fd represents the
actual frontier, which is read by the parallel threads
to start the propagation step. Fdnew is written by the
threads to generate the frontier for the next BFS step.
At each step, Fdnew is filtered and swapped into Fd for
the next iteration. Figure 2 shows an example, in which
starting from vertex ”0”, the BFS visit concludes in three
steps1.

The filtering steps aims at guaranteeing correctness of
the BFS visit as well as avoiding useless thread work and
waste of resources. When a thread visits a neighbour
already visited, that neighbour is eliminated from the
frontier (e.g., vertex 2 visited by a thread from vertex 3 in

1. For the sake of clarity, the figure shows Fdnew firstly written
and then filtered. As explained in the following sections, to reduce the
global memory accesses, the next frontier is firstly filtered and, then,
Fdnew is written. The Fd and Fdnew data structures have the same
size in memory.
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Fig. 2. Example of BFS visit starting from vertex ”0”

step two of Figure 2). When more threads visit the same
neighbour in the same propagation step (e.g., vertex 8
visited by threads 2 and 3 in step two), they generate
duplicate vertices in the frontier. Duplicate vertices cause
redundant work in the subsequent propagation steps
(i.e., more threads visit the same path) and useless occu-
pancy of shared memory. BFS-4K implements a duplicate
detection and correction strategy based on hash tables,
Kepler 8-byte memory access mode, and warp shuffle
instructions, as explained in Section 6.

The considered graphs may have significant variability
in terms of number of vertices, edges, diameter, and ver-
tex degree, which may imply several issues to a parallel
BFS visit. To handle the potential workload imbalance
and thread divergence caused by such a graph non-
homogeneity, BFS-4K implements the following features:

• Exclusive prefix-Sum. To improve data access time
and thread concurrency during the propagation
steps, the frontier data structures are stored in
shared memory and handled by a prefix-sum pro-
cedure. Such a procedure is implemented through
warp shuffle instructions of the Kepler architecture,
as explained in Section 5.1.

• Dynamic virtual warps. The virtual warp technique
presented in [5] is applied to minimize the waste of
GPU resources and to reduce the divergence during
the neighbour inspection phase. Differently from
[5], this work proposes a strategy to dynamically
calibrate the warp size at each frontier propagation
step, as explained in Section 5.2.

• Dynamic parallelism. In case of vertices with degree
much greater than the average, (e.g., scale free
networks or graphs with power-law distribution in
general), BFS-4K applies the dynamic parallelism
provided by the Kepler architecture instead of vir-
tual warps. Dynamic parallelism implies an over-
head that, if not properly used, may worse the
algorithm performance. BFS-4K checks, at run time,
the characteristics of the frontier to decide whether
and how applying this technique, as explained in
Section 5.3.

• Edge-Discover. With the edge-discover technique,
threads are assigned to edges rather than vertices
to improve the thread workload balancing during
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frontier propagation. The edge-discover technique
makes intense use of warp shuffle instructions. BFS-
4K checks, at each propagation step, the frontier
configuration to apply this technique rather than
dynamic virtual warps, as explained in details in
Section 5.4.

• Single-block vs. Multi-block kernel. BFS-4K relies on a
two-kernel implementation. The two kernels are al-
ternately used and combined with the features pre-
sented above during frontier propagation. Section
5.5 presents an analysis of the two-kernel features
and explains how they are applied to better exploit
the GPU stream multiprocessor properties.

• Coalesced read/write memory accesses. To reduce the
overhead caused by the many accesses in global
memory, BFS-4K implements a technique to induce
coalescence among warp threads through warp
shuffle, as explained in Section 5.6..

The article presents an analysis of the advantages and
limits of each proposed technique to understand how
and when they can be applied and combined to improve
the performance of the BFS visits. As explained in the
following sections, the techniques can also be calibrated
through several knobs to customize BFS-4K depending
on both the GPU device characteristics and the graphs
to be visited.

5 IMPLEMENTATION FEATURES IN DETAILS

This section deepens the BFS-4K implementation fea-
tures and presents an analysis and some examples of
each feature contribution to the overall visit perfor-
mance.

5.1 Exclusive Prefix-Sum
Given a list of input values and a binary associative
operator, a prefix-scan procedure computes an output list
of elements in which each element is the reduction of
the elements occurring earlier in the input list. Prefix-
scan has been largely investigated in the past years and
several solutions have been presented for both array
processor architectures [18]–[20] and GPUs [21]–[24].

When the operator is the addition, the prefix-scan rep-
resents a prefix-sum. Prefix-sum is useful when parallel
threads must allocate dynamic data within shared data
structures such as global queues. Given a total amount of
data to be allocate for each thread, prefix-sum calculates
the offsets to be used by the threads to start writing the
output elements [16].

BFS-4K exploits prefix-sum procedures to manage the
frontier queues as well as the edge-discover visit (see
Section 5.4). During frontier propagation, the prefix-sum
is used to compute the scatter offset needed by each
thread to assemble, in parallel, global edge frontiers from
expanded neighbours and when producing unique un-
visited vertices into global vertex frontiers. Since the first
offset must be zero, the prefix-sum results are shifted to
right of one position to implement the exclusive variant.

device exclusiveWarpPrefixSum ( value v )

for (i = 1; i ≤ 16; i = i ∗ 2) do
n = shfl up(v, i, 32)
if laneid ≥ i then

v += n
end

shfl up(v, 1, 32)
if laneid = 0 then

v = 0

Fig. 3. Overview of a prefix-sum procedure implemented
with shuffle instructions

BFS-4K implements a two-level exclusive prefix-sum,
that is, at warp-level and block-level. The first is imple-
mented by using Kepler warp-shuffle instructions, which
guarantee the result computation in log n steps rather
than 2 log n as in the most efficient implementations in
literature that rely on shared memory (e.g., [16]). Figure
3 shows a high-level representation of such a prefix-sum
procedure implemented with a warp shuffle instruction
(i.e., shfl up()).

Each frontier assembling step requires also synchro-
nization among thread blocks, which eventually write
the final frontier into the global memory. These last steps
are performed through the block-level exclusive prefix-
sum, which is implemented through atomic operations
and relies on shared memory. However, the warp-level
prefix-sum computes the majority amount of work of the
frontier assembling steps, and its efficient implementa-
tion trough shuffle instructions sensibly impacts on the
overall BFS visit.

Finally, at each frontier propagation step, BFS-4K
checks whether every frontier vertices have at most
one neighbour (i.e., scatter offset either 0 or 1 for each
thread). The check, which work complexity is O(1),
aims at running, when possible, a more efficient binary
variant of the exclusive prefix-sum [25], which has been
implemented with the intrinsics instructions BALLOT
and POPC.

5.2 Dynamic Virtual Warps
The concept of virtual warp has been presented in [5]
to address the problem of workload imbalance in GPU
programming. The idea is to allocate a chunk of tasks to
each warp and to execute different tasks as serial rather
than assigning a different task to each thread. Multiple
threads are used in a warp for explicit SIMD operations
only, thus preventing branch-divergence altogether.

The speedup provided by virtual warps is strictly
related to the virtual warp size. As shown in the exper-
imental results [5], a wrong size setting could also lead
to a speedup decrease.

In the BFS context, the virtual warps technique can
be applied to increase the thread coalescence during
the accesses to the adjacent lists and to reduce their
divergence in the frontier propagation steps. The main
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limitation of such a technique in BFS occurs when the
virtual warp size does not properly fit the vertex degree,
thus leading to unused threads. In case of vertices with
very different degree over the propagation steps, the size
choice may not be always appropriated. Thus, differently
from [5], BFS-4K implements a dynamic virtual warp,
whereby the warp size is calibrated at each frontier
propagation step i, as follows:

WarpSizei = nearest pow2

(
#ResThreads

|Fi|

)
∈ [K1, 32]

where #ResThreads refers to the maximum number of res-
ident threads in case of multi-block kernel while thread
block size in case of single-block kernel (see Section 5.5).
nearest pow2 is the lower nearest power of two that
rounds the division, while |Fi| is the size of the actual
frontier.

Even though the warp size may range between 1 and
32, BFS-4K is parametrized to set the minimum warp size
(K1). Too small sizes of virtual warps may lead to poor
coalescence and thread divergence depending on the
graph characteristics. As explained in the experimental
results, we heuristically set K1 = 4 for all the analysed
graphs.

The choice of the warp size also directly affects the
problem of duplicate vertices. A small size, which leads
to finer granularity of warp work and fine grained
synchronization, involves less duplicate vertices during
frontier propagation. In contrast, large sizes of warps
may reduce the synchronization overhead but they lead
to more duplicates, thus requiring more resources for
the duplicate detection and correction, as explained in
Section 6.

5.3 Dynamic Parallelism

The exclusive prefix-sum and dynamic virtual warp
strategies guarantee a fair workload balancing during
the BFS visit of irregular graphs. Nevertheless, they
found their main limitation in several categories of
graphs, e.g., scale free networks or graphs with power-
law distribution in general. In these cases, the visit of
very few vertices with very high degree can compromise
the performance of the entire BFS visit.

To overcome this limitation, BFS-4K exploits the dy-
namic parallelism feature of the Kepler architectures.
Dynamic parallelism allows recursion to be implemented
in the kernels and, thus, threads and thread blocks to
be dynamically created at run time without requiring
kernel returns. In the BFS context, the idea is to invoke
a multi-block kernel (which we call child kernel) properly
configured to manage the workload imbalance due to
the difference of the vertex degrees. Nevertheless, even
if low, the overhead introduced by the dynamic kernel
stack may elude this feature advantages when replicated
for all frontier vertices unconditionally.

Fig. 4. Example of dynamic parallelism applied to a sub-
set of frontier vertices of a power-law graph

BFS-4K applies dynamic parallelism to a limited num-
ber of frontier vertices at each frontier propagation step.
Given the degree distribution of the visited graph, BFS-
4K applies dynamic parallelism to the sub-set of vertices
(K2%) having degree far from the average (AVG), start-
ing from those with highest degree (Figure 4 shows an
example).

In particular, BFS-4K combines dynamic parallelism
with dynamic virtual warps. The threshold K2 is a
further knob to be set in BFS-4K, which switches the use
of the former technique rather than latter. As explained
in the experimental results, we heuristically fixed K2 =
0.15% (% of the total number of vertices V ) for all the
analysed graphs.

The threshold is correlated with the virtual warp size
and, in particular, with K1. The smaller K1, the larger
K2. That is, the larger the minimum warp size, the
smaller the sub-set of vertices that can be managed by
dynamic kernels to improve the BFS performance. This
is due to the fact that large virtual warps can handle
the workload imbalance more efficiently (i.e, with less
overhead) than dynamic parallelism.

In BFS-4K, the child kernels are configured to ensure
the minimum overhead of the child thread synchroniza-
tion, and the best balancing among parent and child
threads. Figure 5 shows an example of three different
kernel settings in terms of number of blocks (with a fixed
block size), given a parent kernel (leftmost side of figure)
and a child kernel (lower side of the figure). Case (a)
represents an oversized kernel, in which the blocks are
more than the vertex neighbours and, thus, they con-
clude shorter than the other threads of the parent. Nev-
ertheless, the many child blocks involve many atomic
operations to update the frontier data structures and
an underutilization of the fast local queues. In contrast,
case (c) represents an undersized kernel, in which less
blocks manage many vertex neighbours. Even though it
involves less atomic operations, this configuration leads
to imbalance with regards to the parent threads, since the
parent kernel must wait for all the threads (including
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Fig. 5. Block number setting: (a) oversized kernel, (b)
correctly sized kernel, (c) undersized kernel

child threads) to end before carrying on with the next
propagation step (see thread synchronization in Kepler
dynamic parallelism [13]).

Case (b) represent the trade-off solution implemented
in BFS-4K in which the child kernel returns at the same
time or close to the parent kernel. The child kernel is
configured as follows:

• #Blocks =
V ertexDegree

K3 × ThreadBlockSize

• BlockSize = block size of the parent kernel to
fully exploit the resident threads on the streaming
multiprocessors.

where V ertexDegree is the degree of the frontier
vertex for which the thread dynamically calls a child
kernel.

In our experimental results, K3 = 16 (i.e, each thread
of the child kernels sequentially manages a queue of 16
vertex neighbour) provides the best BFS performance for
the analysed graphs.

5.4 Edge-discover
In the edge-discover technique, the idea is to assign
threads to edges rather than to vertices during frontier
propagation to better balance the thread workload. The
main problem is the cost of such a thread partitioning
and assignment, which may elude the advantages of the
technique itself.

BFS-4K implements thread assignment through a bi-
nary search and by making intense use of warp shuffle
instructions. Given a thread warp, and the actual fron-
tier:

1) Each warp thread reads a frontier vertex, saves the
degree and the offset of the first edge.

2) Each warp computes the warp shuffle prefix-sum on
the vertices degree.

3) Each thread of the warp performs a warp shuffle
binary search of the own warp id (i.e., laneid ∈
{0, .., 31}) on the prefix-sum results. Figure 6 shows

!"#"# $# %# &# '%# '(#

!" #" $" %" &" '"

()*+,-"'"

."

%" #/"

)*+,-.#/0#

12+34#5#)36#

7889:;,.#

<,+=,>#

!"0"$" !"

%" #"

&"0"/" $"

."0"#%" %"

#&"0"#1" &"

#/"0"#2" '"

3,4"

354"

6+7*++"

8*+9:;<=>"

?+*@+:"

AB-AC+<"

Fig. 6. Example of partitioning and assignment of warp
threads in the edge-discover technique: (a) assignment of
thread with laneid = 5 to vertex 2 of the frontier, (b) final
assignment table of 20 warp threads to 6 frontier vertices

an example, in which 20 threads of a warp are
assigned to 6 vertices of a frontier. In the example,
thread 5 is assigned to vertex 2 of the frontier after
two binary search steps. The warp shuffle instruc-
tions guarantee the efficiency of the search steps
(which are less than log2(WarpSize) per warp).

4) The threads of warp share, at the same time, the
offset of the first edge with an other warp shuffle
operation.

5) Finally, the threads inspect the edges and store
possible new vertices on the local queue.

With this procedure, the workload is always balanced,
the local queues are filled equally and the duplicates
are considerably reduced since the parallel visit is for
edges (see Section 6). The local queue management and
the global memory accessing and synchronization are
similar to those implemented in the dynamic virtual
warp strategy.

Finally, BFS-4K implements an extended edge-
discover technique (EXT) to optimize the visit of middle
size degree vertices. When the last thread of a warp finds
a vertex with a degree greater than the warp size, it
shares the offset with a shuffle operation and directly
assigns threads without performing a new iteration of
binary search. As shown in Section 7, this optimization
provides a sensible speedup improvement in the BFS
visit of several graphs.

BFS-4K applies the edge-discover technique as an al-
ternative of dynamic virtual warps to be combined with
dynamic parallelism. With this new combination, the
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Fig. 7. Single and multi-block kernel use during frontier
propagation steps

threshold of dynamic parallelism (K2) can be increased
more than in the former combination. This is due to
the fact that the warp parallelism on edges allows high-
degree vertices to be handled more efficiently than the
warp parallelism on vertices. Nevertheless, the overhead
introduced by the thread assignment limits the edge-
discover application.

In general, the edge-discover is more efficient than
dynamic virtual warps if the frontier vertices are less
than the available (resident) threads. BFS-4K checks the
following condition at each frontier propagation step:

|Fd| <
#ResThreads

K4

where K4 is a further knob that allows the switch
between one technique over the other to be calibrated
depending on the graphs characteristics. In our exper-
imental results, we found K4 ∈ {1, 2, 4} as the best
configuration for the analysed graphs.

5.5 Single-block vs. Multi-block Kernel

In a parallel BFS visit based on frontier propagation, the
frontier size follows a trend as that shown in Figure 7. In
the first and last steps of the overall frontier propagation
the available parallelism is particularly limited. As a
consequence, in these propagation periods, it is more
convenient to handle the frontier vertices with a single
block of threads. This allows the whole frontier to be
maintained in shared memory and the block threads to
exploit the efficient synchronization and communication
mechanisms.

BFS-4K implements two different kernels (i.e., single-
block and multi-block kernels) that are combined with
the edge-discover and the dynamic virtual warp tech-
niques presented in the previous sections.

A threshold (F Threshold) is statically calibrated de-
pending on the graph characteristics. At each propaga-
tion step, BFS-4K runs the single-block or the multi-block
kernel if the current frontier size is smaller or larger,
respectively, than the threshold. In general, the single-
block kernel is run in the first and last propagation steps,

���� �����

���

������ ��	
���� 
���

���� ��	
���� 
���
���

���������


��	�� ��

��� ���

���������


��	�� ��

���

���������


��	�� ��

���������


��	�� ��

Fig. 8. Shared memory organization: (a) single-block
kernel, (b) multi-block kernel

while the multi-block kernel is run in the middle steps,
as shown in Figure 7.

The threshold calibration impacts on the organization
of the shared memory of each streaming multiprocessor.
Figure 8 depicts the shared memory organization in case
of single or multi-block kernel. In the first case, the
shared memory stores the frontier data structures (Fd
and Fd new), kernel variables, and the hash table for
implementing duplicate detection and correction. The
memory is sized as follows:

F Threshold = MaxThreadsPerBlock ·K5;

Fdsize ≥
F Threshold · 4

2
;

HashTsize = nearest pow2 (|SM | − (FdSize · 2)− V arsize) .

where MaxThreadsPerBlock is the maximum size of
the single block (which must satisfy the GPU device
constraints), and K5 is a further knob to assign more
frontier vertices per thread. |SM | is the total size of
the shared memory. For efficiency reason, the hash table
partition must be a power of two. Considering, for
example, a 48K shared memory, the hash table size can
be set to 32K, 16K, 8K or less.

In case of multi-block kernel, the shared memory is
organized as depicted in Figure 7(b). In this case, a hash
table instance is dedicated to each thread block, and the
tables are sized as follows:

HashTsize = nearest pow2

(
(|SM | − V arsize) ·K6

MaxThrPerMultiproc

)
.

where K6 is the knob to size blocks (in terms of
number of threads) and MaxThrPerMultiproc is the
maximum number of threads per multiprocessor (i.e.,
GPU device constraint).
K5 impacts on the threshold and it aims at shifting

the single-multi kernel switch points. This knob can be
properly set to avoid both a premature switch to the
multi kernel (with a consequent underutilisation of the
multi-block threads and more overhead due the CPU
synchronization) and a late switch whereby the single
kernel serializes the visit of the many frontier vertices. In
the single kernel context, K5 allows the user to partition
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the shared memory between frontier data structures
and hash table depending on the graph characteristics,
in particular frontier size distribution and number of
duplicates.

5.6 Coalesced Read/Write Memory Accesses
In the Kepler architectures, the maximum coalescence
in memory accesses can be achieved by four threads
belonging to the same half warp. In these cases, the
memory access is performed by 128-bit transactions (32
bits per thread).

With virtual warps, the maximum coalescence is in-
versely proportional to the warp size. For example, given
a 32 thread warp and 4 virtual warps (each one of 8
threads), the maximum coalescence can be achieved by
two virtual warp threads belonging to the same half
warp. In this case, the memory access is performed
by 64-bit transactions. The worst case occurs when the
virtual warps are sized 32, in which the accesses cannot
be coalesced.

To deal with such a problem involved by virtual
warps, BFS-4K takes advantage of warp shuffle instruc-
tions to share the read data among the virtual warp
threads. To elude the overhead involved by the warp
shuffle operations, such a reading technique is applied
under two constraints:

1) |Fd| > ResThreads, that is, only if all the virtual
warp threads are involved in the frontier propaga-
tion;

2) WarpSizei = 32, that is, only in propagation steps
in which there would not be coalescence in memory
reading.

The coalescence problem for memory reads is suffered
from the virtual warp technique only. In contrast, co-
alescence for memory writes is suffered from all the
techniques in general (i.e., virtual warps, dynamic par-
allelism, and edge discover). At each propagation step,
the threads exploit local queues, which are data structures
in thread registers, to store and filter the neighbour
vertices. After the filtering phase, each thread updates
the own frontier segment in the global memory (Fdnew).
In the classic context, the Fdnew updating is performed
in parallel, where each thread sequentially writes the
own vertices starting from the scatter offset calculated
by prefix-sum (see Section 5.1). This leads to coalescence
problems since the memory accesses rely on the number
of vertices to be written in global memory.

BFS-4K implements a technique to induce coalescence
in memory writes as follows (see Figure 9):

1) The shortest size of the queues (which we call min-
imum) is calculated through warp-shuffle instruc-
tions in log time.

2) Each thread updates Fdnew by writing the vertices
stored in the local queues at the same position
(e.g., the first thread writes the four blue vertices in
global memory, the second thread writes the green
four vertices, etc.). Each write is coalesced and the
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Fig. 9. Example of induced coalescence in memory
accesses
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Fig. 10. Example of duplicates exponential growth

scatter offset is equal to the number of local queues.
The minimum value represents the total number
of coalesced writes and the starting point for the
remaining writes with the prefix-sum technique.

The overhead involved by the minimum value calcula-
tion is not negligible, especially for large sized virtual
warps. Thus, a further knob, K7, allows the user to
set a threshold for switching the writing mode between
induced coalescence and standard non coalesced (prefix-
sum). The K7 value depends on the GPU characteristics
(warp shuffle efficiency). In our experimental results, we
heuristically set K7 = 10.

6 DUPLICATE DETECTION AND CORRECTION

Duplicate vertices are a relevant problem in the parallel
BFS visit of graphs. Duplicate vertices are generated
whenever two or more threads visit the same vertex
at the same time and, as a consequence, they cause
redundant work among threads during frontier propa-
gation. Figure 10 shows an example that underlines how
such a redundant work grows exponentially through the
frontier propagation steps.

BFS-4K implements a hash table in shared memory
(i.e., one per streaming multiprocessor) to detect and cor-
rect duplicates, and takes advantage of the 8-bank shared
memory mode of Kepler to guarantee high performance
of the table accesses. At each propagation step, each
frontier thread invokes the hash64 procedure depicted
in Figure 11 to update the hash table with the visited
vertex (v).
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device bool hash64 ( vertex v )

1: H SZ : Hash Table Size

2: h = hash(v) → h ∈ [0,H SZ]

3:* HashTable[h] = merge(v, threadid)
4: recover = HashTable[h];
5:* (vR, threadidR) = split(recover)
6: return threadid 6= threadidR ∧ v = vR

*volatile int2 are not supported in CUDA

Fig. 11. Main steps of the hash table managing algorithm

Given the size of the hash table (Hash Table Size),
each thread of a block calculates the address (h) in the
table for v (row 2). The thread identifier (threadid) and
the visited vertex identifier (v) are merged into a single
64-bit word, to be then saved in the calculated address
(row 3). The merge operation (as well as the consequent
split in row 5) is efficiently implemented through bitwise
instructions. A duplicate vertex causes the update of the
hash table in the same address by more threads. Thus,
each thread recovers the two values in the corresponding
address (rows 4, 5) and checks whether they have been
updated (row 6) to notify a duplicate. In particular, the
recovered information classifies a vertex v as follows:

• If v = vR and threadid = threadidR: the vertex is
valid (not a duplicate).

• If v = vR and threadid 6= threadidR: the vertex is a
duplicate.

• If v 6= vR: there has been a conflict, that is, different
threads wrote in the same hash table address (i.e.,
hash(v) = hash(vR)). Since it is not possible to know
whether the conflict hides a valid or a duplicate
vertex, v is conservatively maintained in the frontier.

Conflicts are proportionally related to the size of the
hash table and, thus, to the size of shared memory
allocated for the hash table. As explained in Section 5.5
and shown in Figure 7, the setting of the FrontierLimit
knob to run a single block rather than a multi-block
kernel directly impacts on the hash table size and, thus,
to the capability of BFS-4K of detecting duplicate vertices
rather than conflicts.

The vertex classification is feasible for threads of
the same warp, since they are synchronized at each
instruction of the procedure and each access to the
hash table is atomic. When duplicates are generated
by threads of different warps of the same block, the
procedure detects the duplicate whenever the warp
scheduling does not generate a race condition. For
example, the sequence:

HashTable[h] = merge(vx, thread1)
HashTable[h] = merge(vx, thread2)
recover = HashTable[h] // by thread1
recover = HashTable[h] // by thread2

Fig. 12. Example of duplicates caused by different visit-
ing techniques and the effect of the proposed detection
strategy

allows the procedure to detect the duplicate, while
the sequence:

HashTable[h] = merge(vx, thread1)
recover = HashTable[h] // by thread1
HashTable[h] = merge(vx, thread2)
recover = HashTable[h] // by thread2

does not allow the procedure to detect the duplicate,
which is conservatively maintained in the frontier.
Duplicates generated by threads of different blocks are
not detectable.

Since the duplicate issue occurs mainly among threads
of the same warp, the problem affects more the visit
by virtual warps than by edge-discover. Indeed, since
in edge-discover the exploration is performed on edges,
the chances to visit the same vertex more times is
considerably small. Figure 12 shows the problem with
the different visit strategies and the efficiency of the
implemented technique of duplicate detection.

The virtual warp size (1 and 4 in the figure) is pro-
portionally related to the number of duplicates. The se-
quential visit does not suffers from duplicates. Plots Edge
Discover + Hash64 and VirtualWarp4 + Hash64 represent
the frontier sizes obtained by combining the duplicate
detection technique to the dynamic virtual warps and
edge-discover, respectively. VirtualWarp1 + Hash64 over-
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Fig. 13. Comparison between the duplicate detection
techniques implemented in [16] and in BFS-4K

laps VirtualWarp4 + Hash64 and has not been reported
in the figure for the sake of clarity.

For the best of our knowledge, the duplicate detection
and correction problem has been addressed in litera-
ture only in [16]. Differently from our solution, [16]
implements a hash table per warp and a procedure
that writes and reads laneid (instead of threadid) and
v non atomically in the hash table. This involves more
overhead due to the number of memory accesses and,
by implementing disjointed hash tables, it suffers more
from conflicts and non detectable duplicates. Figure 13
shows a representative example in which the techniques
implemented in [16] and in BFS-4K are compared. In
particular, Figure 13(a) shows the duplicates generated
by adopting virtual warp of size 4 over the propagation
steps. Figure 13(b) reports the total number of detected
duplicates for both the solutions and the corresponding
improvement on the overall performance (average and
maximum improvement). The figure also reports the
total number of conflicts and non detected duplicates.

7 EXPERIMENTAL RESULTS
BFS-4K has been run on two main sets of graphs. The
first set is from Stanford Network Analysis Platform

Fig. 14. Impact of virtual warp, edge discover, dynamic
parallelism and duplicate detection

(SNAP) [26]. It includes graphs from different contexts,
such as, product co-purchasing networks, web page
hyperlink graphs, network with ground-truth commu-
nities, road networks, social networks, time-evolving
graphs and small-word phenomenon graphs. The second
set is from the 10th DIMACS Implementation Challenge
[27]. The random.2Mv.128Me and rmat.2Mv.128Me
datasets have been generated by using GTGraph [28].
Table 1 shows each graph characteristics in terms of
number of vertices (V , in millions), edges (E, in mil-
lions), size of graph diameter, average degree, standard
deviation, and mode. BFS-4K has been run on a NVIDIA
GEFORCE GTX 780 device [29] with CUDA Toolkit 5.0,
with AMD Phenom II X6 1055T (3GHz) host processor
(Ubuntu 10.04 operating system).

Figure 14 shows an example of the impact of each BFS-
4K feature (Section 5) and the duplicate detection and
correction technique (Section 6) on the overall speedup.
The feature contributions are shown for a sample graph
(as-skitter), by taking the speedup of the parallel BFS
implementations in [4] and [7] versus the sequential
implementation as reference point. The figure underlines
that the best speedup is achieved by the combination
of these features. In particular, the best feature config-
uration and combination can be obtained by properly
setting the presented knobs. As explained in the follows,
such a setting is correlated to the characteristics of the
visited graphs and the characteristics of the GPU device.

Table 2 and Figure 15 report the performance com-
parison of BFS-4K with the most representative imple-
mentations at the state of the art in terms of visiting
time and speedup, respectively. The performance of the
state-of-the-art implementations are the best ones we
obtained by tuning the kernel configurations (in terms
of number of threads per block and number of blocks
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V (106) E (106)
Approx.

Diameter [30]
Avg.

Degree
Std.

Deviation Mode

Set 1

Amazon0505 0.4 3.4 40 8.2 3.1 10

web-Google 0.9 5.1 34 5.6 6.5 456

com-youtube 1.2 6.0 24 5.2 50.2 28,754

as-skitter 1.7 22.2 31 12.1 136.9 35,455

roadNet-CA 2.0 5.5 865 2.8 1.0 12

soc-LiveJournal1 4.8 69.0 19 14.2 36.1 20,293

Gen-ForestFire
(f:0.35,b:0.32,s:1) 1.0 7.3 19 7.3 38.3 2,416

Gen-SmallWorld
(k:10 ,p: 0.3) 2.0 40.0 7 20.0 2.3 32

Set 2

europe.osm 50.9 108.1 30,102 2.1 0.5 13

hugehubbles-00020 21.2 63.6 7,905 3.0 0.0 3

nlpkkt160 8.3 221.2 162 26.5 2.7 27

audikw1 0.9 76.7 81 81.3 42.4 344

cage15 5.2 94.0 56 18.2 5.7 46

kkt power 2.1 13.0 49 6.3 7.5 95

coPapersCiteseer 0.4 32.1 34 73.9 101.3 1,188

kron g500-lon20 1.0 100.7 7 96.0 1,033.2 413,378

random.2Mv.128Me 2.0 128.0 5 64.0 10.6 183

rmat.2Mv.128Me 2.0 128.0 5 64.0 136.8 8,785

TABLE 1
Characteristics of the graph datasets on which BFS-4K has been evaluated

Harish [4]
(ms)

Edge Parall.
[7] (ms)

Static Virtual
Warp [5] (ms)

Luo [15]
(ms)

Garland [16]
(ms)

BFS-4K
(ms)

Set 1

Amazon0505 5.2 7.2 5.2 (W1) 4.3 – 1.5

web-Google 12.0 9.2 12.0 (W1) 7.3 – 1.6

com-youtube 57.0 5.5 19.0 (W4) out-of-time – 3.1

as-skitter 95.0 24.0 28.0 (W4) out-of-time – 6.5

roadNet-CA 120.7 154.4 120.7 (W1) 20.2 – 5.5

soc-LiveJournal1 91.0 61.0 52.0 (W2) out-of-time – 24.4

Gen-ForestFire 37.0 5.4 14.0 (W4) out-of-time – 2.7

Gen-SmallWorld 33.0 27.0 24.0 (W2) out-of-time – 15.1

Set 2

europe.osm 59,620.0 78,422.0 59,620.0 (W1) 684.0 305 264.8

hugehubbles-00020 8,123.0 11,922.0 8,123.0 (W1) 220.0 103 95.9

nlpkkt160 351.0 1486.0 351.0 (W1) out-of-memory 80.4 39.2

audikw1 68.0 185.0 36.0 (W4) 54 21.5 11.1

cage15 95.0 213.0 95.0 (W1) 96 42.2 28.8

kkt power 36.0 24.5 36.0 (W1) 24 8.8 8.5

coPapersCiteseer 21.2 40.6 11.4 (W4) out-of-memory 8.6 4.9

kron g500-lon20 675.0 47.4 67.0 (W32) out-of-time out-of-memory 34.4

random.2Mv.128Me 112.0 73.0 63.0 (W16) out-of-time 66.5 52.0

rmat.2Mv.128Me 103.0 62.0 56.0 (W4) out-of-time out-of-memory 43.4

TABLE 2
Performance comparison (BFS visiting time) of BFS-4K with the most representative implementations at the state of

the art
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Fig. 15. Performance comparison (speedup) of BFS-4K with the most representative implementations at the state of
the art

per grid) for our GPU device. For the static virtual
warp technique [5], Table 2 reports the size of virtual
warp statically set to obtain the best performance results.
The Garland’s implementation [16] does not support the
template representation of the first set of graphs.

The results show how BFS-4K outperforms all the
other implementations in every graph. This is due to the
fact that BFS-4K exploits the more advanced architecture
characteristics (in particular, Kepler features) and that it
allows the user to optimize the visiting strategy through
the knobs (K1 −K7).

We observed that K1 is strictly related to the graph
standard deviation and average degree. In particular,
we measured the best speedups by increasing this knob
value proportionally to the graph deviation and degree,
starting from the lowest value (K1 = 4) for graphs with
low deviation and degree (e.g., road networks in general,
web-Google, kkt power, etc.), to the highest value (K1 =
32) in graphs with high average (e.g., random.2Mv.128Me)
or high standard deviation (e.g., com-youtube).
K2 controls the use of dynamic parallelism, which

achieves the best results with very high mode net-
works (e.g., mode greater than 2048 such as in as-
skitter, rmat.2Mv.128Me, etc.) to deal with the sporadic
high workloads. K2, which maximum value is 0.15% in
our experiments, should be higher for graphs with low
average and inversely proportional to K1. As explained
in Section 5.3, the larger is the minimum warp size, the
smaller is the sub-set of vertices that can be managed by
dynamic kernels to improve the BFS performance. This
is due to the fact that large virtual warps can handle

the workload imbalance more efficiently (i.e, with less
overhead) than dynamic parallelism.
K3 impacts on the block size of child kernels when

applying dynamic parallelism. The right value is more
related to the GPU device characteristics and should
be optimized heuristically. In our experimental results,
K3 = 16 provides the best BFS performance for all the
analysed graphs.
K4 controls the edge-discover technique to contrast

the workload imbalance and it is strongly related to
the standard deviation and average. We set K4 = 2 for
graphs with low average and high standard deviation
(e.g., com-youtube, ForestFire, etc.). We decreased K4 to
1 for graphs with medium standard deviation (e.g.,
kkt power, web-Google, etc.). The edge-discover technique
should not be used (K4 = 0) with graphs with both
high average degree and high standard deviation since,
in these cases, the virtual warp size is expected to be
high. This is due to the fact that the assignment of edges
(rather than vertices) to threads is more efficient for high
degree vertices.

The use of the single-block rather than the multi-block
kernel is ruled by K5, which is strictly related to the
average degree and, though to a lesser extent, to the
standard deviation. The single-block kernel should not
be used (K5 = 0) in graphs with high average since they
provide enough parallelism for the multi-block kernel.
In our experiments, we mainly set K5 = 1 to provide a
good trade-off between parallelism and synchronization.

Finally, K6 and K7 sets the block size in the multi-
block kernel and the threshold for switching the writing
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mode in global memory, respectively. They best values
depend on the GPU device characteristics. In our exper-
iments, we heuristically set K6 = 128 and K7 = 10.

8 CONCLUDING REMARKS

This article presented BFS-4K, a parallel implementation
of BFS for Kepler GPU architectures. BFS-4K implements
different techniques to deal with the potential workload
imbalance and thread divergence caused by any actual
graph non-homogeneity. The article presented an analy-
sis of the advantages and limits of each proposed tech-
nique to understand how and when they can be applied
and combined to improve the performance of the BFS
visits. The article also showed how such techniques can
be calibrated through several knobs to customize BFS-4K
depending on both the GPU device characteristics and
the graphs to be visited. Finally, a comparison between
the most efficient BFS implementations for GPUs at the
state of the art and BFS-4K is reported to underline the
efficiency of the proposed solution.
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