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Abstract 

The PhD work involved three main biomedical research areas. 

In the first, we aimed at assessing whether T1 relaxometry measurements may help identifying 

structural predictors of mild cognitive impairments in patients with relapsing-remitting multiple 

sclerosis. Twenty-nine healthy controls and forty-nine RRMS patients underwent at high resolu-

tion 3T magnetic resonance imaging to obtain optimal cortical and white matter lesion 

count/volume as well as T1 relaxation times (rt). In WML and CL type I (mixed white-gray 

matter), T1 rt z-scores were significantly longer than in HC tissue (p<0.001 and p<0.01 respec-

tively), indicating loss of structure. Multivariate analysis revealed T1 rt z-scores in CL type I 

were independent predictors of long term retrieval (p=0.01), T1 z-score relaxation time in white 

matter cortical lesions were independent predictors of sustained attention and information pro-

cessing (p=0.02);  

 

In the second, we describe a biomagnetic susceptometer at room-temperature  to quantify liver 

iron overload. By electronically modulated magnetic field, the magnetic system measure mag-

netic signal 10
8
 times weaker than field applied. The mechanical noise of room-temperature 

susceptometer is cancelled and thermal drift is monitored by an automatic balance control sys-

tem. We have tested and calibrated the system using cylindrical phantom filled with 

hexahydrated iron II choloride solution, obtaining the correlation (R=0.98) of the maximum 

variation in the responses of the susceptometer. These measures indicate that the acquisition 

time must be less than 8 seconds to guarantee an output signal variability to about 4-5%, equal 

to 500ugr/grwet of iron. 

 

In the third, a 3D anatomically detailed finite element analysis human foot model is final results 

of density segmentation 3D reconstruction techiniques applied in Computed Tomography(CT) 

scan DICOM standard images in conjunctions with 3D finite element analysis(FEA) modeling. 

In this model the real morphology of plantar fat pad has been considered: it was shown to play a 

very important role during the contact with the ground. To obtain the experimental data to com-

pare the predictions of 3D foot model, a posturography static examination test on a 

baropodometric platform has been carried. The experimental plantar contact pressure is, qualita-
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tively, comparable with FEA predicted results, nominally, the peak pressure value zones at the 

centre heel region and beneath the metatarsal heads. 

Keywords: 

High field MRI; T1 relaxation time; Multiple sclerosis; Cognitive impairment. 

Room-temperature susceptometry; liver iron; thalassemia 

Finite element Analysis; 3D Foot Model; CAD Modeling; plantar pressure 
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Riassunto 

Il lavoro di dottorato ha coinvolto tre principali aree di ricerca biomedica. 

Nella prima area, abbiamo mirato a valutare se le misure del tempo di rilassamento T1 in Riso-

nanza Magnetica possono contribuire ad individuare dei predittori strutturali di lievi disturbi 

cognitivi in pazienti con forma Recidivante-Remittente di Sclerosi Multipla(RRMS). Ventinove 

controlli sani (HC) e quarantanove RRMS pazienti sono stati sottoposti a Risonanza magnetica 

a 3T per acquisire in maniera ottimale per la zona corticale e per la sostanza bianca (WML), i 

tempi di rilassamento T1 (rt), la conta delle lesioni e il volume. Nella WML e in quelle di tipo 

CL I (sostanza bianca - grigia mista), i T1 rt z-score sono risultati, significativamente, più lun-

ghi rispetto ai tessuti dei controlli HC (p<0.001 e p<0.01, rispettivamente), indice di  

un’impoverimento del tessuto cerebrale. L'analisi di regressione multivariata ha rivelato che: i 

T1 rt z-score nelle lesioni corticali sono predittori indipendenti del recupero della memoria a 

lungo termine (p=0.01), i T1 z -score nella lesioni corticali della materia bianca sono predittori 

indipendenti del deficit relativi all’attenzione prolungata e all’elaborazione delle informazioni 

(p=0,02) ; 

Nella seconda, descriviamo un suscettometro biomagnetico a temperatura ambiente in grado di 

quantificare il sovraccarico di ferro nel fegato. Tramite un campo magnetico modulato elettroni-

camente, il sistema riesce a misurare segnali magnetici 10
8
 volte più piccoli del campo applica-

to. Il rumore meccanico del suscettometro a temperatura ambiente viene minimizzato e il drift 

termico viene monitorato da un sistema automatico di bilanciamento. Abbiamo testato e calibra-

to lo strumento  utilizzando un fantoccio riempito con una soluzione di esacloruro esaidrato II di 

ferro, ottenendo come correlazione R = 0,98 tra la massima risposta del suscettometro e la con-

centrazione di ferro. Queste misure indicano che per garantire una buon funzionamento dello 

strumento con una variabilità del segnale di uscita pari al 4-5%, eguale a circa 500ugr/gr di fer-

ro, il tempo di acquisizione deve essere minore o uguale a 8 secondi. 

Nela terza area, un'analisi agli elementi finiti del modello 3D anatomicamente dettagliato del 

piede umano è il risultato finale della segmentazione 3D, secondo tecniche di ricostruzione ap-

plicate ad immagini standard DICOM di scansione a Tomografia Computerizzata, in congiun-

zione con la modellazione 3D assistita e dell’analisi agli elementi finiti (FEA). In questo model-

lo la reale morfologia del cuscinetto adiposo plantare è stato considerata: è stato dimostrato 
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giocare un ruolo molto importante durante il contatto con il terreno. Per ottenere i dati sperimen-

tali da confrontare con le predizioni del modello 3D del piede, un esame posturografico statico 

su una pedana baropodometrica è stato effettuato. La pressione sperimentale del contatto planta-

re è risultata, qualitativamente, comparabile con i risultati predetti dall’analisi agli elementi 

finiti, principalmente, confrontando i valori sperimentali con i valori massimi delle pressioni in 

corrispondenza delle zona centrali del tallone e sotto le teste metatarsali. 

Parole chiave : 

Risonanza Magnetica a 3T; Tempo di rilassamento T1; Sclerosi Multipla; Deficits cognitivi. 

Suscettometria a Temperatura ambiente; ferro nel fegato; talassemia 

Analisi agli elementi finiti; Modello 3D del piede; Modellazione CAD; pressione plantare 
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Chapter 1 Introduction 

1.1 Outline of Thesis 

 
Analysis of multi-modality data is inherent to many problems in science and engineering includ-

ing biomedical image analysis. Technologies for imaging are individually expensive, thus ways 

to synergistically derive information from complementary modalities have the potential to sub-

stantially enhance our understanding of underlying biological and medical processes. The field 

of multimodal biomedical imaging developed rapidly during the last decade and the surge of 

activity within the last decade is a simple proof of the exciting insights offered through the 

analysis of multimodal biomedical imaging data. Due to the increasing complexity, volume and 

modeling challenge of increasingly available multimodal biomedical imaging data, there is criti-

cal need for new, advanced multimedia signal processing, modeling and computational methods 

for fast, accurate and cost-effective analysis of multimodal biomedical data, to obtain compre-

hensive information about the underlying biomedical event and for faster acceptance of novel 

imaging modalities in real-world applications.  

The goal of this work has been to show how in different field of medical imaging, multimodal 

techniques help to measure, quantify, correct, correlate, predict, discover aspects of human dis-

ease. 

The Phd Doctoral Program has involved three main research areas: one of these was done in 

collaboration with a Consortium (FO.CA.VER) of companies active in the footwear Industry. 

Main achievements: companies received funds to go from footwear prototype to production. My 

work, also, included working with EPFL laboratory and with Siemens Healthcare Switzerland 

for a research project in multiple sclerosis disease.  

The PhD Projects have been the followings:  

1. “MRI correlates of mild cognitive deficits in early relapsing-remitting multiple sclero-

sis” – Signal Processing Laboratory(LTS5), EPFL, Lausanne, Switzerland:  

Main acquired skills has been: 

 Solid knowledge in Brain Imaging Analysis software  
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 Expertise in rigid and non-rigid registration of images (with FSL and/or 

Elastix)  

 Solid capability to analyze MRI-brain imaging data: lesions and volume count, 

T1 mapping evaluation, non-parametric statistical correlations (with MATLAB 

R2013b Unix and/or SPSS 22 Unix ).  

2. “Non-invasive Determination of liver iron concentrations (LIC) with a 

Biosusceptometer at room temperature(RT)” – Radiation and Protection Service, Vero-

na, Italy  

Main acquired skills has been: 

 Development of a new methodology of automatic balancing of a gradiometer 

(magnetic sensor) at room- temperature (by using Pspice Circuit Simulation 

and NI-LabVIEW);  

 Structural Optimization of a mechanical modulated Biosusceptometer to meas-

ure liver iron concentration:  

 The activities involved choosing non-magnetic materials, building coil sensor, 

assembling the parts, acquiring software and testing.  

3.  “Innovative shoes” - Albo n. 221/2010 Prot. N.16066 del 24/03/2010 –Regione Vene-

to, Italy  

Main acquired skills has been: 

 Development of a new methodology of design of footwear based on the finite 

element;  

 Foot DICOM Automatic Image Segmentation (by using AMIRA 5.3 semi-

automatic blow tool)  

 Foot 3D Cad Modeling (by using Rhinoceros, Rapidform, MeshLab, 

SolidWorks 2010)  

 Development of a 3D mechanical foot model with ABAQUS 6.10 FEA;  

 Validation of 3D model with baropodometric platform;  

The topics of interest have included:  

 Multimodal imaging techniques: data acquisition, reconstruction; 2D, 3D imaging, sim-

ultaneous imaging;  

 Hardware/software design (e.g.Labview and CAD for bio-amplifier circuits)  

 Preprocessing, denoising, filtering; 

 Bio-image processing (e.g., visualization, segmentation, registration)  

 Multimodal signal processing and data fusion; 
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 Multivariate methods and array analysis; 

 Statistical analysis (e.g., parametric and non-parametric methods, regression models); 

 Multi-subject analysis, group analysis  
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Chapter 2 Magnetic Resonance Imaging 

predictors of mild cognitive deficits in early 

relapsing-remitting multiple sclerosis 

2.1 Abstract 

Background: Despite mild cognitive impairment is a known early feature of multiple sclerosis 

patients, the biological substrate of cognitive deficits in multiple sclerosis is still elusive. 

Objective: We aimed at assessing whether T1 relaxometry measurements may help identifying 

structural predictors of mild cognitive impairments in patients with relapsing-remitting multiple 

sclerosis(RRMS).  

Design: Cohort study 

Setting: Hospital-based multiple sclerosis clinic 

Participants: Twenty-nine healthy controls and forty-nine patients with relapsing-remitting 

multiple sclerosis.  

Main Outcome Measures: All subjects underwent at 3T Magnetic Resonance Imaging includ-

ing the following sequences: two inversion-contrast magnetization-prepared rapid gradient echo, 

double-inversion recovery and 3-dimensional fluid attenuated inversion recovery. The protocol 

was designed to maximise lesion detection in white and gray matter. T1 z-score values in the 

lesions, lesions number and lesions volume were calculated for gray matter cortical lesions, 

white matter subcortical lesions and mixed cortical lesions. For each patient, cognitive perfor-

mance was tested using Brief Repeatable Battery of Neuropsychological Tests. 

Results: Relapsing-remitting multiple sclerosis patients and healthy controls showed differ-

ences in age (p<0.01) and in education (p<0.02), but not in gender. T1 z-score values in white 

matter subcortical lesions and in mixed cortical lesions were consistently longer in lesions com-

pared to non-lesion tissue in patients and in healthy tissue in controls (p<0.01). Multivariate 

analysis revealed that: T1 z-score relaxation time in mixed cortical lesions (β=0.26; p<0.01) was 
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an independent predictors of consistency component of long term retrieval memory; T1 z-score 

relaxation time in white matter cortical lesions (β=-0.29; p<0.05) was an independent predictors 

of sustained attention and information processing; gender (β=0.41; p<0.01) and education 

(β=0.05; p<0.01) were independent predictors of semantic verbal fluency (r
2
=0.25; p=0.01). 

Conclusions: T1 relaxation times provide with a sensitive measure of the microstructural brain 

alterations underlying mild cognitive impairment in early multiple sclerosis. The tissue loss in 

cortical, subcortical targets shows to be associated with cognitive dysfunctions in relapsing-

remitting multiple sclerosis. 

 

2.2 Introduction 

Cognitive impairment affects approximately 40% to 70% of the multiple sclerosis (MS) 

patients [1, 2]. Frequently affected functions include attention, information processing, execu-

tive functioning, processing speed and long-term memory [3]. Among these, information pro-

cessing speed appears to be the most sensitive measure of cognitive deficits in early MS [4].  

Magnetic resonance imaging (MRI) has been extensively exploited to investigate cognitive dys-

function in MS. Nonetheless, the underlying physiopathological mechanisms remain unclear [3, 

5, 6].  

Measures of whole-brain atrophy showed only moderate correlations with cognitive dysfunction 

[3, 6]. Likewise, the correlations between the extents of white matter (WM) abnormalities de-

tected on conventional brain MRI and cognitive impairment are generally low [7-10]. 

In this context, cortical pathology has recently received more attention. Thanks to the recently 

developed Double Inversion Recovery (DIR) MRI sequence, it is now possible to detect cortical 

lesions (CLs) in vivo [11-14], and the number of CLs correlates better with MS-related cogni-

tive impairment than the number of WM lesions [15-17]. Moreover, cortical atrophy has been 

reported to have a higher impact than whole-brain atrophy on both physical disability [18, 19] 

and cognitive impairment [20]. Altogether, however, grey matter pathology appears to only 

partially explain cognitive deficits in MS patients. 

Despite the fact that most of the published studies focused on patients with well-established 

RRMS (> 6 years disease duration) or on SPMS patients with moderate to severe cognitive dys-

function, current measures of pathological changes in MS (lesion number, volume, atrophy) do 

not seem to provide with adequate information.  

In this context, other non-invasive MRI markers of disease impact and progression may be more 

sensitive and may hence be helpful to clarify the structural correlates of cognitive dysfunction in 

MS. Quantitative measurements of T1 relaxation times provide with markers of subtle micro-
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structural damage as well as with microstructural characteristics of lesion tissue. T1 relaxation 

times allow distinguishing lesions from normal-appearing white matter in patients and non-

pathological brain tissue in controls [21-23]. As to lesions characterisation, longer T1 values 

have been previously reported to indicate loss of tissue structure, whereas T1-shortening may 

correspond to pathological processes like accumulation of methemoglobin, proteinaceous mate-

rial, lipids, free radicals, paramagnetic metals (non-heme iron) and remyelination [23].  

To date, no studies have attempted at correlating early cognitive deficits in MS patients 

with T1 characteristics of lesion tissue of both cortical and subcortical lesions. 

This work investigates a cohort of early RRMS patients with subtle cognitive symptoms. The 

aim is to test the hypothesis that T1 relaxation times of particular brain regions (namely cortical 

and subcortical lesions) provide with a sensitive and useful tool to study the substrates of cogni-

tive deficits in MS. 

 

2.3 Metods 

2.3.1 Subject population 

Forty-nine patients(14 males and 35 females) with early RRMS according to the 

McDonald criteria [24, 25] (age: 34.2 8.8y; mean educational level: 15.2 2.9y; disease dura-

tion: 2.9 1.9y; EDSS disability score: 1.6 0.3) participated in the study. Patients with a diagno-

sis of major depression or other psychiatric disorders according to the DSM-IV criteria were not 

considered. 

The control group consisted of twenty-nine healthy volunteers (8 males and 21 females - mean 

age: 32.3 8.3y; mean educational level: 16.7 3.2y) with no history of alcohol or drug abuse, 

major psychiatric disorders (major depression, psychosis, untreated bipolar disorders), head 

trauma, other neurological disorders or systemic illness. 

All participants underwent a neuropsychological examination and brain MRI. The study was 

approved by the local Ethics Committee and all subjects gave informed consent for their partic-

ipation. 

 

2.3.2 Neuropsychological assessment 

All participants underwent the Brief Repeatable Battery of Neuropsychological Tests 

(BRB-N) [26].In brief, the BRB-N is composed of the following tests. The Selective Reminding 
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Test (SRT)measures verbal learning and delayed recall through presentation of a list of 12 

words and five subsequent learning trials: the SRT distinguished between short-term and long-

term components of memory and examines also the consistency of retrieval from long-term 

memory. We used in this study three indices: the SRT-long term storage in which a word is 

recalled on consecutive trials, the consistent long term retrival (CLTR) in which a word is con-

sistently recalled on all subsequent trials and the Delayed recall (SRTD) is the total number of 

words recalled after an 11 minute delay. The 10/36 spatial recall test (SPART) assesses visual 

learning and recall by recreating the pattern of 10 checkers on a 6´6 checkerboard viewed for 10 

seconds. The symbol digit modalities test (SDMT) measures complex attention and concentra-

tion by requiring the subject to associate symbols with numbers and quickly generate the num-

ber when shown the symbol during 90 seconds. The paced auditory serial addition task 

(PASAT) evaluates sustained attention and information processing speed, and is measured by 

asking the patient to add each number to the one immediately preceding it while numbers are 

presented every three seconds. The word list generation (WLG) measures semantic verbal flu-

ency, evaluating the spontaneous production of words beginning with a particular letter during 

60 seconds. The complete set of neuropsychological tests is presented in Table 1. 

Mood symptoms and fatigue were quantified using the Hospital Anxiety and Depression scale 

[27] [28] and the Fatigue Scale for Motor and Cognitive functions (FSMC) [29], respectively. 

2.3.3 MRI data acquisition 

Within two weeks from neuropsychological assessment, participants underwent brain 

MRI at 3T (Magnetom Trio a Tim System, Siemens Healthcare, Germany) using a commercial 

32-channel head coil. The acquisition protocol was conceived in order to maximise lesion detec-

tion in WM and GM as well as in the cerebrum and the cerebellum. 

The imaging protocol included the double-inversion recovery (DIR, T2-weighted, suppressing 

signals from both WM and CSF, [11], Figure 1), the two inversion-contrast magnetization-

prepared rapid gradient echo (MP2RAGE - 3D T1-weighted providing T1 maps from the same 

scan, [30], Figure 2) and the 3-dimensional fluid attenuated inversion recovery (3D FLAIR T2-

weighted, see[31], Figure 4). For sequence details see Table 2. 

2.3.4 Post-processing 

A certified neurologist and a certified neuroradiologist identified [32] the lesions by 

consensus in all contrasts separately. Subsequently, the lesions were manually contoured and 

assigned to one of the following classes: cerebral GM (cortical lesion type II, CL II), cerebral 

WM, mixed cerebral GM/WM(cortical lesion type I, CL I). The  identified lesions were manual-
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ly delineated by a trained technician. The resulting mask were finally double-checked and, if 

necessary, corrected by the study physicians(Figure 7, Figure 8). 

The imaging volume and lesion masks were patient-wise co registered (Figure 5) to a common 

image space using a home-built-rigid-body registration software. Subsequently, a single set 

union mask was created per patient containing all lesions from all contrasts with their maximal 

spatial extent. MRI parameters that were evaluated are lesion number, volume and T1 relaxation 

times: these one last were evaluated for each contrast and for a mask representing the set union 

(Figure 6) of all the contrast lesion masks. The segmented masks were applied to the T1-maps 

from the MP2RAGE(Figure 3).  

Finally, for each patient only T1 mean relaxation times of cortical, subcortical and mixed le-

sions were standardized as follows: 

( 1 ) 

 

where:  is the T1 mean relaxation times of each region,  is the standard deviation of T1 relax-

ation time of whole region of interest in healthy controls and  is the T1 mean relaxation time of 

whole region of interest in healthy controls. 

 

2.3.5 Statistics 

Krsuskal-Wallis test was used to compare demographic, clinical, behavioural findings 

between patients and controls. A Box-Cox transformation was applied to all cognitive variable 

and MRI parameters (lesion number and volume) in order to normalise the data prior to analy-

sis. 

A general linear model regression was applied to evaluate the association between all cognitive 

scores as outcome variables and population (age and education) and MRI scores (T1 z-score 

relaxation time, lesion number and volume) as predictors. Backward stepwise analyses were 

conducted  with the Wald criterion using with p=0.05 for entry level and p=0.10 for removal. 

Bonferroni correction was applied for multiple comparison. The significant variables were iden-

tified with p-value < 0.05. All statistical analysis was performed using MATLAB R2013a Sta-

tistical Toolbox. 
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2.4 Results 

2.4.1 Clinical and neuropsychological results 

No between-group difference found for gender(p=0.87) and age(p=0.12). However, 

RRMS patients and controls differed in education (i.e. years of study, p=0.02) 

The cognitive impairment results of all patients are reported in Table 3. Patients showed on 

average significantly low scores on measure of information processing speed (p-value =0.005 

after correction for multiple comparisons) 

Concerning the behavioural questionnaires, RRMS patients and controls had comparable scores 

on the HAD scale (depression: p=0.006); on the other hand, patients showed higher scores of 

fatigue on the total FSMC score (z=7.82, p=1*10e-12 after correction for multiple comparisons) 

both on the physical dimension of the scale (p=0.0013) and on its cognitive dimension  

(p=6*10
-5

). 

2.4.2 Cortical and subcortical lesions counts and T1 relaxation times 

All early RRMS patients showed cortical lesions (CLs), whereas no CLs were observed 

in healthy controls. The majority consisted of CLs and mixed cortical-subcortical lesions, see 

Table 4. The rest of the CLs were characterised as type II (intra-cortical lesions). No type III/IV 

lesions (large subpial lesions) were detected. Furthermore, almost all patients showed a substan-

tial number of subcortical lesions.  

T1 z-score relaxation times of cortical and subcortical lesions in the cerebral hemispheres and 

the cerebellum are reported in Table 4. Except for the pure cortical (CL-II and cerebellum) le-

sions, T1 z-score values were consistently longer in lesions compared to non-lesion tissue in 

patients and in healthy tissue in controls (p<0.01). 

2.4.3 Neural correlates of neuropsychological deficits 

T1 relaxation times of MS lesions 

The correlations coefficients between MRI parameters and cognitive measurement are 

reported in Table 5. Stepwise regression analysis applied on all patients revealed significant 

independent contributions from gender (β=-0.27; p<0.05), T1 z-score relaxation time in mixed 

cortical lesions (β=0.26; p<0.01) and gray matter cortical lesions number (β=-0.29; p<0.05) as a 

predictors (final model with r
2
=0.28; F=5.25; p=0.02 after correction for multiple comparisons) 

of consistency component of long term retrieval memory. Education (β=0.49; p<01) and T1 z-

score relaxation time in white matter cortical lesions(β=-0.29; p<0.05) were found to be inde-

pendent predictors of sustained attention and information processing (r
2
=0.24; F=7.18; p=0.02 

after correction for multiple comparisons). In the end, gender (β=0.41; p<0.01) and education 
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(β=0.05; p<0.01) were independent predictors of semantic verbal fluency (r
2
=0.25; F=7.81; 

p=0.01). 

No correlations were found between SRT-D, SRT-LTS, SPART and SPART-D and MRI pa-

rameters of gray, white and mixed matter lesions. 

2.5 Discussions 

In this study, we show that the microstructural characteristics of cortical and subcortical 

lesions, as measured by T1 relaxation times, correlate positively with consistency of long-term 

memory in patients with early RRMS. In addition, we also give evidence that T1 relaxation 

times of cortical hemispheric and cerebellar lesions negative correlate with attention and infor-

mation processing dysfunction in the same patients. 

The measured T1 values of WM and GM in healthy controls are in agreement with recent publi-

cation [33-35]: pure cortical lesion(CL-II) T1 results did not reach significance between lesion 

tissue in patients, healthy controls and normal-appearing tissue; instead, statistical differences 

were found between lesion tissue, non-lesion tissue in patients and in healthy tissue in controls 

in cerebral and cerebellar WM as well as CL-I and mixed cerebellar GM/WM lesions  

T1 MRI measurements are globally influenced by pathological changes of different severity, 

such as demyelination, gliosis, inflammation, axonal injury and axonal loss [27, 33-35]. In acute 

MS lesions, there is first a prolongation of T1 and T2 due to acute oedema, rapidly followed by 

shortening of both relaxation times [36]. On the other hand, relaxation times are quite variable 

in chronic plaques, indicating pathological heterogeneity [36]. Traditionally, T1 relaxation time 

measurements have been exploited in MS to assess the degree of tissue alteration in different 

MS subtypes [21, 22, 27, 37]. Moreover, they provide a quantitative measure that correlates 

moderately with global disability scores in MS (i.e. EDSS) [21, 38] and MS Functional compo-

site (MSFC) score [39]. So far, however, there are no studies attempting at achieving better 

clinic-radiological correlations by combining T1 relaxation times of both cortical and subcorti-

cal lesions. 

This study explores the hypothesis that T1 relaxation times are sensitive correlates of cognitive 

dysfunction, also in early phases of MS. We studied a cohort of RRMS patients with disease 

duration inferior to 6 years, who benefitted of a complete clinical and neurological examination. 

Comparing the patient group to the control group, we detected mild cognitive deficits in sus-

tained attention and information processing speed (impaired performance in PASAT), as well as 

in consistency of long-term memory (impaired performance in SRT-CLTR ) in the investigated 
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patient cohort. These results are in line with previous studies reporting that attention deficits 

occur frequently in MS from the early stages of the disease [1, 3, 5, 10, 40-42].  

Visual attention and information processing are functions controlled by a widespread network 

involving frontal and parietal association cortices, the connections between them and the cere-

bellum [43]. By contrast, executive control is known to crucially involve the prefrontal cortex, 

the cerebellum and the fronto-cerebellar connectivity complex [44, 45].  

Our data show a correlation between the normalised T1 values of hemispheric lesions (cortical 

and subcortical) and the SRT-CLTR test, assessing long term retrieval memory. On the other 

hand, the mean T1 relaxation times of hemispheric and cerebellar cortical lesions correlated 

with the PASAT test that assesses sustained attention and processing speed. These results indi-

cate that, in our cohort of MS patients, the degree of damage in the cortex and in the white mat-

ter is related to the presence of memory deficits. In addition, our findings suggest that the char-

acteristics of the cortical lesions in the hemispheres and the cerebellum influence the presence 

of attention deficits.  

The observed correlations were negative and showed that lower attention deficits are concomi-

tant with longer T1-relaxation times. These findings point at the fact that a certain threshold of 

tissue loss, as measured by prolonged T1, is necessary to activate compensatory mechanisms in 

early RRMS. In MS, compensatory adaptive mechanisms were previously observed in several 

domains using functional MRI, i.e. in the motor system [46] and in the working memory system 

[10]. The attention network has also been previously shown to functionally remodel through the 

recruitment of areas normally involved in high-level cognitive processing in order to guarantee 

normal or sub-normal attention performances in RRMS patients [40, 47]. In our cohort of pa-

tients, it is plausible that tissue loss in targeted cortical, subcortical or cerebellar regions induced 

functional changes in the attention and the memory networks in order to allow the recruitment 

of supplementary areas and to preserve normal cognitive performance. 

 

In summary, we showed that T1 relaxation studies in early MS stages may provide with sensi-

tive radiological markers to elucidate the substrate of already mild deficits.  
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2.7 Tables 

BRB-N Tests 

Cognitive variables Cognitive Functions 

SRT-CLTR Verbal learning and memory: 

Consistency of Retrieval 

from Long-Term memory component 

SRT-D Verbal learning and memory: 

Delayed recall component 

SRT-LTS Verbal learning and memory 

Long-Term Storage component 

SDMT Processing speed 

and working memory 

PASAT Sustained attention 

and information processing speed 

SPART Visuospatial learning 

and recall 

SPART-D Visuospatial learning 

and Delayed recall 

WLG Semantic verbal fuency test 

BRB-N Tests= Brief Repeatable Battery of Neuropsychological Tests 

Abbreviations: SRT-CLTR=Selective Reminding Test–Consistent Long-term Retrieval; 

SRT-D=Selective Reminding Test–Delayed Recall; SRT-LTS=Selective Reminding Test–

Long-term Storage; SDMT= Symbol Digit Modalities Test; PASAT= Paced Auditory Se-

rial Addition Test at 3 seconds; SPART=10/36 Spatial Recall Test; SPART-D=10/36 Spa-

tial Recall Test–Delayed; WLG=Word List Generation; 

Table 1: Neuropsyscological testing 

 

Sequences Parameters 

  3D FLAIR MP2RAGE DIR 

Acquisition 3D 3D 3D 

Resolution 1 x 1 x 1.2 mm3 1 x 1 x 1.2 mm3 1.1 x 1 x 1.2 mm3 

Orientation/readout Sagittal/ A >> P     

Matrix size 240 x 256 240 x 256 240 x 256 

Slice/partitions 176 176 160 

Acquisition time 6 min 27 s 8 min 22 s 12 min 52 s 

No patients/controls scans 49/29 49/29 49/29 

Acceleration factor 2 3 2 

TE, ms 394 2.89 218 

Inversion time(s), ms 1800 700/2500 3650 

Flip angle(s), degrees VFL* 4 VFL* 

Echo/readout train length, ms 835 1162 640 

TR, ms 5000 5000 10000 

Bandwidth, Hz/pixels 781 240 651 
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Table 2. Sequence Parameters(continued) 

Abbreviations: 3DFLAIR=3-Dimensional Fluid Attenuated Inversion Recovery; 

MP2RAGE= two inversion-contrast magnetization-prepared rapid gradient echo; 

DIR=double-inversion recovery. Parameters of all employed imaging sequences. All 3D 

contrasts were acquired with the same spatial resolution. *Optimized variable flip an-

gle(VFL) pattern over the readout train. TE indicates echo time; TR, repetition time.  

Table 2: Sequences Parameters 

 

Characteristics RRMS patients  

(p=49) 

Healthy controls 

(c=29) 

Adjusted 

p-value 

SRT-LTS 62.5 ± 6.82 64.5 ± 6.5 0.2 

SRT-CLTR 56.6 ± 11.1 59.9 ± 9.7 0.2 

SRT-D 11.2 ± 1.14 11.5 ± 0.9 0.1 

SPART 23.4 ± 4.3 23.3 ± 4.6 7.2 

SPART-D 8.6 ± 2.05 8.6 ± 1.8 7.2 

SDMT 56.9 ± 9.56 59.6 ± 11.4 0.8 

PASAT 46.8 ± 10.8 51.9 ± 10.5 0.005 

WLG 27.7 ± 5.3 28.7 ± 6.9 2.4 

Abbreviations: SRT-LTS=Selective Reminding Test-Long-term Storage; SRT-

CLTR=Selective Reminding Test–Consistent Long-term Retrieval; SRT-D=Selective Re-

minding Test–Delayed Recall; SDMT= Symbol Digit Modalities Test; PASAT= Paced Au-

ditory Serial Addition Test at 3 seconds; SPART=10/36 Spatial Recall Test; SPART-

D=10/36 Spatial Recall Test–Delayed; WLG=Word List Generation; Adjusted p-value for 

multiple comparison are reported 

Table 3: Cognitive results of RRMS patients and controls. 
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MRI Lesions Classifi-

cation 

Lesions Number  Lesions Volume T1 zscore relaxa-

tion time 

mean sd mean sd mean sd 

WM lesions 36.89 27.81 3424.40 2892.72 10.27 4.66 

GM cortical lesions  1.07 1.72 36.22 65.56 1.93 5.64 

CLs type I 4.96 6.49 368.53 508.96 2.64 7.33 

Abbreviations: WM= white-matter; GM= gray-matter; CLs=cortical lesions; sd=standard 

deviation; 

Table 4: Lesion Number, Lesion Volume, and T1 zscore relaxation time in Patients with Re-

lapsing-Remitting Multiple Sclerosis 

 

Cogni-

tive 

varia-

ble of 

BRB-N 

Tests 

Multiple linear regression (β) R 

squa

re 

F 

statis-

tics 

Mo-

del 

p-

va-

lue 

Gen-

der 

Educa-

tion 

WM 

le-

sions 

T1 z-

score 

WM 

le-

sions  

mean 

Num-

ber 

WM 

le-

sions 

mean 

Vo-

lume 

GM 

le-

sions 

T1 z-

score 

GM 

le-

sions  

mean 

Num-

ber 

GM 

le-

sions 

mean 

Vo-

lume 

GM-

WM 

le-

sions 

T1 z-

score 

GM-

WM 

le-

sions  

mean 

Num-

ber 

GM-

WM 

le-

sions 

mean 

Vol-

ume 

SRT-

CLTR 

-

0.27* 

NS NS NS NS NS -0.29* NS 0.26*

* 

NS NS 0.28 5.25 0.02 

SRT-D NS NS NS NS NS NS NS NS NS NS NS - - - 

SRT-

LTS 

NS NS NS NS NS NS NS NS NS NS NS - - - 

SDMT NS NS NS NS NS NS NS NS NS NS NS - - - 

PASAT NS 0.49** -

0.29* 

NS NS NS NS NS NS NS NS 0.24 7.18 0.02 

SPART NS NS NS NS NS NS NS NS NS NS NS - - - 

SPART

-D 

NS NS NS NS NS NS NS NS NS NS NS - - - 

WLG 0.41*

* 

0.05** NS NS NS NS NS NS NS NS NS 0.25 7.81 0.01 

Abbreviations: BRB-N Tests= Brief Repeatable Battery of Neuropsychological Tests; WM=white matter cortical lesions; GM=gray matter 

cortical lesions; GM-WM=gray-white(mixed) cortical lesions 

SRT-CLTR=Selective Reminding Test–Consistent Long-term Retrieval; SRT-D=Selective Reminding Test–Delayed Recall; SRT-

LTS=Selective Reminding Test–Long-term Storage; SDMT= Symbol Digit Modalities Test ;PASAT= Paced Auditory Serial Addition Test at 3 

seconds; SPART=10/36 Spatial Recall Test; SPART-D=10/36 Spatial Recall Test–Delayed; WLG=Word List Generation. 

NS=not significant,*p<0.05,**p<0.01; Model p-value is corrected for multiple comparison 

Table 5: Correlation coefficients (multivariate analysis) between MRI parameters and cognitive 

variables in patients with relapsing remitting multiple sclerosis 
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2.8 Figure 

 

Figure 1: Double-Inversion Recovery (DIR) sequence 

 

 

Figure 2: Two inversion-contrast magnetization-prepared rapid gradient echo (MP2RAGE) 

sequence 

 

 

Figure 3: T1 from Two inversion-contrast magnetization-prepared rapid gradient echo (T1 map) 

sequence 
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Figure 4: 3-Dimensional Fluid Attenuated Inversion Recovery (3D FLAIR) sequence 

 

 

Figure 5: Coregistation of MRI data into MP2RAGE space  

 

 

Figure 6: T1Map and Lesions Union Mask 
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Figure 7: T1Map and Label Mask overlapped 

 

 

Figure 8: T1Map and Spatial Atlas mask (as anatomical region) overlapped  

 



 
 

 

Chapter 3 A room-temperature suscep-

tometer to measure liver iron concentration: 

data analysis, calibration and test 

3.1 Abstract 

Background: The determination of iron overload in the human body is essential for the man-

agement of therapies in different diseases characterized by iron accumulation. Until to now, the 

current room temperature mechanical-modulated susceptometer provides to do this but produces 

unexpected noisy signal. 

Objective: We aimed at assessing whether a room-tempearature electronic-modulated 

susceptometer may help measuring and monitoring the accumulation of iron. 

Design: An AC susceptometer opearting in the range of 1Hz to 600Hz at room temperature is 

designed, built and tested to measure concentration of ferric chloride in order to simulate the 

acculation of liver iron. To remove mechanical noise an electronic modulation has been used. 

Setting: To ensure a solid working of system the balancing condition is required, both during 

background measurements and during liver measurements: we have used a feedback control 

digital circuit to maintain the system in balancing conditions. The calibration and the test was 

carried out using solutions of ferric chloride in order to simulate different iron overloads. 

Results: We have tested and calibrated the system using cylindrical phantom filled with 

hexahydrated iron II choloride solution, obtaining the correlation (R=0.98) of the maximum 

variation in the responses of the susceptometer. We have obtained  that the acquisition time of 

measurement must be less than 8 seconds to guarantee a variability of the signal to about 4-5%. 

Conclusions:  Our room-temperature susceptometer uses oscillatory magnetic fields and can-

cels the signal from the applied field. It cancels, also, mechanical noise by electronic modula-

tion of field, periodically, to simulate the motion toward the samples. Ferric chloride measure-

ments indicate instrumental noise comparable with errors of the room temperature (RT) 

susceptometer. 
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3.2 Introduction 

The determination of iron overload in the human body is essential for the management of thera-

pies in different diseases characterized by iron accumulation. Its effects are especially clear in 

hereditary hemochromatosis and in transfusion-dependent patients with thalassemia major, 

where severely elevated iron can cause heart failure, diabetes, cirrhosis or liver cancer, and sur-

vival may depend on removing iron by phlebotomy or chelation(1).  

Patients, who suffer from these diseases, don’t succeed in producing blood cells and therefore 

require periodic transfusions; the iron received from transfused blood and not reused, because of 

disease, to produce new red blood cells, accumulates mainly in the liver. Liver biopsy is the 

traditional method for determining liver iron, is painful and carries a risk of severe bleeding (2, 

3). 

To avoid these risks, liver iron concentration can be measured non-invasively by magnetic reso-

nance imaging (MRI) and biomagnetic liver susceptometry. However, these methods also have 

their own limitations of cost, accessibility and accuracy. 

One advantage of MRI is that thousands of MRI scanners already exist. However, MRI scans 

still cost hundreds of dollars, and may involve delays in scheduling the scan and waiting for 

results. In addition, MRI senses iron indirectly, through its effect on the magnetic resonance of 

nearby water molecules (4). This interaction is complicated, poorly understood and dependent 

on a variety of factors such as tissue hydration, proton mobility and the clustering of iron depos-

its (4,5). However, recent studies have found good correlations with liver biopsy (6, 7).  

Today’s clinical susceptometers use SQUID magnetic sensors and superconducting field coils 

enclosed in a liquid-helium dewar (10). This classic design has been validated by liver biopsy 

(11), used clinically on hundreds of patients, and subjected to an intensive analysis of measure-

ment errors (12). 

 

Our measurement system used for monitoring and measuring the accumulation of iron in the 

liver is the Room Temperature(RT) mechanical-modulated Biosusceptometer(8). One of the 

problems that limits the performance of this machine is the instability of the signal caused by 

motion of the magnetic sensor. The motion is used in order to cancel the thermal drifts of the 

coils and to maintain the system in balance conditions. The use of this technique generates un-

expected mechanical noise.  

 

Currently there aren’t in the bibliography alternative methods to solve the problem: in conse-

quent of this, we have used the electronic modulation different to the mechanical modulation in 

order to remove mechanical noise and used a feedback control circuit to maintain the system in 
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balancing condition. Essential condition for ensuring a good working of the system is to main-

tain the balancing condition both during the time of background measurement (bi-distiiled wa-

ter) and during the time liver measurement: at this purpose we have tested several different pro-

tocols and after accurate laboratory measurements we have obtained that the time of measure-

ment must be short in order to  guarantee a stability of the signal. In this paper we have tested 

the stability of this system with the electronic modulation and with the automatic balancing. The 

test was carried out using the chloride II iron concentrations in order to simulate liver iron over-

loads. 

 

3.3 Metods 

3.3.1 Background and motivation 

Compared to Magnetic Resonance, the susceptometry applied to the liver is difficult, because 

the magnetic field produced from the iron in the liver is 10
7
 or 10

8
 times smaller than the field 

we apply to the patient. This small response must be measured in the presence of the applied 

field. During measurement, the signal of the liver can easily be obscured by the field produced 

by small changes in temperature, from possible changes in the geometry of the coils that gener-

ate the field, the gain of the sensor, the geometric relationship between the sensor and the ap-

plied field. 

SQUID susceptometers address these problems by exploiting the low noise of SQUID magnetic 

sensors, the stable magnetic fields produced by persistent currents in superconducting coils, and 

the stable geometry of source and sensing coils immersed in liquid helium(9). 

These problems need to be overcome and resolved when we use a susceptometer at room tem-

perature. In particular, the thermal variations of the surrounding environment produce a residue 

field, which is very small compared to that applied to the patient but comparable with that 

measured by the measuring coils (sensing). This signal slowly varying amplitude, most likely 

due to drifts in temperature that cause geometric deformations between the source and the sens-

ing coils. To avoid such fluctuations in the signal to be measured, the current instrument was 

implemented a modulation technique mechanics, in particular the transmitting and the receiving 

coil is moved at 1Hz frequency above and below the patient.  By using the concept of modula-

tion they(8) managed to separate the signal component due to the thermal drift from that of the 

useful signal. The periodic oscillation of the coil allows with good approximation to minimize 

the noise components due to thermal drifts and to the effects of thermal expansion, but it pro-

duces in the output signal of sense coils noise components at the frequency of 21-22-23 Hz 

(RelazioneTecnica AR-FSE: Codice prog. 1695/1/11/1268/2008). 
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3.3.2 The measurement system 

Our measurement system consists by two parts: the first one (source coils) generates the mag-

netic field, the second one(sense coils) detects the magnetic field produced by the liver and can-

cels the field produced by source. The magnetic sensor used is a gradiometer, in which the 

transmitter coil is a magnetometer, the receiver coil is a second order gradiometer. The coil 

system parameters to generate the field and to receive are described in Table 6: they are a com-

promise that permits to maximize the  response to the magnetization of the liver and that mini-

mizes the effects of abdominal tissue overlayer, decreasing the sensitivity of the probe in the 

pick up coils, the signal produced by lung, placed in proximity of the liver. The sensor has 

shown in Figure 9: the geometric dimensions are 16 and 2.5 centimeters, height and radius, 

respectly. 

To ensure the magnetic sensor measures the liver  magnetic susceptibility and not the electrical 

capacitance of the body, it is useful to shield the coils from electric fields: these electric fields 

can be capacitively coupled with the receiving coils and produce a shift in the measurement of 

the magnetic field. At this purpose, the magnetic sensor has shielded by electric fields ,with an 

electrostatic shield (Figure 10). 

3.3.3 The electronic modulation 

Our modulation technique consists to keep the sensor in stationary position and to create the 

variation of the magnetic field through the generation of modulated electronically signals. The 

electronic modulation frequency is equal to that of the frequency of mechanical modula-

tion(8).Out signal is the product of two signals: the carrier, a signal mathematically predeter-

mined  at 1 Hz frequency, and a modulating signal at 610 Hz frequency. This method permits to 

simulate the reciprocating motion of coil unit used by ref(8) device. With oscillating magnetic 

fields, we aimed that cancellation of the applied-field signal and simulated motion of the coil 

unit, permit to minimize sensor noise, applied-field fluctuations, and effects of thermal expan-

sion. 

3.3.4 The balancing coils 

When the imbalance of the output voltage is higher than the desired resolution for measure-

ments of magnetic susceptibility on the liver, it needs to compensate appropriately. To minimize 

these errors, we evaluated and built a system for automatic compensation, to produce a magnetic 

field opposite in phase to that produced.  

Such compensation system must, mainly, cancel the produced field by non-perfect symmetry in 

the construction of the sensing coils, and after, it must ensure automatically the maintenance of 
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the condition of balance when the temperature changes become significant(more than 10
-6

 volt 

to gradiometer output). Bibliographical studies suggest that in order to obtain an optimum can-

cellation of the residual field it needs to eliminate in-phase and out-phase component of  input 

signal. 

For this purpose, we have studied and evaluated different circuit configurations(Figure  : 

I. Active balance coil L2C and passive balance coils L3 and L5 with parallel R3 ed R5 re-

sistors (Figure 11) ; 

By changing the phase and the amplitude of the current in the coil L3A ( 

II. Figure 12); 

III. Active balance coils L2C and passive balance coils L4 with parallel resistor (Figure 

13);  

IV. Passive balance coils L3A and L3B (Figure 14);   

V. Active balance coil L2C and passive balance coil L3C (Figure 15);  

VI. Active balance coil L3A and passive balance coil L3B (Figure 16); 

VII. Active balance coil L1C and passive balance coil L4C (Figure 17); 

Active balance coil is powered-supply, instead, passive balance coil is inducted-current. 

3.3.5 The automatic balancing 

The output signals of the magnetic sensor are processed via a National Instrument acquisition 

board(NI-6289). In particular, the output signal is sent to a lockin amplifier and a digital filter 

that, every second, extract in-phase and in-quadrature component of output signal: FFT norm 

and the sign of the unbalance signal. The compensation is automatic both on in-phase signal 

component and on in-quadrature otherone, alternately every second. The FFT value is compared 

with a threshold value(1*10
-5

), under which the compensation doesn’t work and above which, 

the compensation increases or decreases by one step the digital resistor: the increasing or de-

creasing depends to the sign of the output voltage. 

The implementation of automatic control is made with NI-LabView software with a flowchart 

(Figure 18). 

3.3.6 Susceptometer Layout 

Figure 19 is a picture of Room Temperature eletronical-modulated susceptometer. The coils are 

enclosed in a rigid fiberglass cylinder, which is lowered down to touch the phantom (like pa-

tient’s abdomen). A water bag (not shown) fills any gaps between this enclosure and the phan-

tom. During magnetic susceptibility measurements, the coil is stationary and the electronic 
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modulation simulates that the unit moves up and down within the outer cylinder. The 

susceptometer also includes a waveform generator to produce a 610-Hz sinewave (Hewlett 

Packard 33102a), an amplifier to drive the source coils (AE Techron 5050),signal pre-amplifiers 

of our own design, data acquisition cards, and a personal computer to demodulate the 610-Hz 

signal and calculate the ferric concentration. 

3.3.7 Experimental testing setup 

The measurement system is a Biosusceptometer Laboratory at room temperature. In Figure 16 

the structure of susceptometer is presented with balancing and signal conditioning circuits. The 

control signal is digital. The balancing circuit works for canceling the in-phase and in-

quadrature component of the input signal(8). Samples used for measurements are the plexiglass 

phantoms( 

Figure 25), filled properly with ferric chloride in order to simulate the accumulation of iron in 

the liver. The measure of the liver iron accumulation normally is deduced by the subtraction of 

liver signal FFT and the signal background(like bi-distilled water) FFT. The solution that simu-

lates liver iron is the a hexahydrated iron II chloride solution FeCl3*6 H2O in different concen-

trations (Table 8). For each solution the protocol was repeated cyclically (about 20-time) (Table 

7); The plexiglass phantom was filled with a different concentration of ferric chloride and 

cleaned each time. The acquisition step air–phantom-air can be easily described with the follow-

ing sequence(Figure 23): before the phantom is outside, then the phantom is placed under coil 

for 10 seconds and after the phantom is again outside. 

3.3.8 Other aspects of liver susceptometry 

3.3.8.1 Water-bag methods 

In liver susceptometry, the response of liver iron is superimposed on a background signal due to 

the diamagnetism of the patient’s body. This diamagnetic background is as large as the signal 

from liver iron at a concentration of several thousand μg/gwet, and is different for each patient 

because it depends from shape of the body. 

To compensate for the body’s diamagnetic response, we use a water-bag technique similar to 

that used with existing SQUID susceptometers (13, 14). The water bag fills the space between 

the patient’s body and the rigid shell that encloses the susceptometer coils. 

This waterbag needs to be filled with water  when it did the background measurement and it 

needs to be emptied  partly  when the patients is placed down : therefore, during these phases in 

order to not introduce errors in measurement, it needs to not create air bubbles inside. 
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Consequently we have studied a better solution that has the advantages of last one and ensures a 

rapid membrane deformation without applying high pressure on the patient. The solution is 

shown in  

Figure 28, in which it’s represented the structure that contains the magnetic sensor and in par-

ticular the nose that will contain the magnetic sensor, the cylindrical container and the latex 

membrane. 

3.4 Results 

3.4.1 Electronic modulation : benefits and drawback 

The continuous room temperature changings (from 24°C to 26°C) cause inevitable deformations 

in the geometry of the receiver coil, and cangings in the induced magnetic field. In fact, as de-

scribed in ref (8): "Thermally induced dimensional changes represent a challenging problem 

when you do differential measurements with high resolution. For a given change in temperature, 

the change of the length of the conductor is proportional to the coefficient of thermal expansion 

of the material involved". 

By eliminating the motion of coil we obtain as improvement the cancelling of mechanical noise, 

but it needs to keep the temperature as stable as possible. 

Thermal drifts are a problem when the source coils are electrically modulated, rather than me-

chanically. Although the mechanical movement significantly reduces the thermal drifts of the 

coils, we found that the 1°C changing of room temperature during working mechanical modula-

tion introduces 2% variability of background signal, 5% variability during electronic modula-

tion working. 

3.4.2 Balancing results 

In Pspice Simulation we have tested several circuits configuration, described in 3.34 section, to 

balance gradiometer and we have obtained the results for the following configurations: 

I. This configuration allows to obtain a balance of the output voltage equal to 0.2nV; 

II. To obtain the balance, the phase of the current in balance coil must be equal to the 

phase of the current in source coil; 

III. To obtain balance condition (Vout= 25.57μV) it needs to have high value of  potenti-

ometer;  

IV. This method does not allow balance condition under 30mV;  

V. This method does not allow balance condition under 191µV; 

VI. This method allows balance condition equal to 0.61nV. 
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VII. This method allows balance condition equal to 0.2nV. 

Definitively, the compensation methods implemented in real circuit are the following one: 

1. L3A active balance coil and L3B passive balance coil; 

2. L1C active balance coil and L4C passive balance coil; 

The first method has the advantage as a minor influence on the unbalance of the detection coils, 

but the drawback that the passive coil is close to the sense coil (L5) that receives the signal from 

the liver, and therefore could affect the measurement on liver. 

The second method has the advantage the long distance between the coil and the liver but the 

the drawback the greatest influence on the inbalance of the sense coils.  

3.4.3 Stability of background signal: tests 

The magnetic sensor has been physically performed and installed on an experimental probe. A 

very rigid structure was built in order to break down all the mechanical vibrations present on the 

structure (Figure 19) 

In first instance, we tested the working of the automatic compensation by room temperature 

changing:  initially we turned on the electronical-modulated signal, 30 minutes before taking 

measurements, as long as the coils get to thermal regime; after, we run automatic compensation 

and, so registered the air signal every 3 minutes for 30 minutes: the signal acquisition is ac-

quired when the automatic balance is stopped. We registered 3 times the signal for each acquisi-

tion. From each acquisition we extracted the FFT mean value of output signal and the room 

temperature: we tested the changing of room temperature, under electronic modulation, before 

and after the automatic balance. During the first set the temperature changes from  24.5°C to 

24.6°C (Figure 20), during the second one from 24.7°C to 24.8°C (Figure 21), during the third 

from 24,1°C to 24.5°C (Figure 22). During the first test the variability of the background[48] 

signal amounted to 1.23%, during the second amounted to 7.75%, during the third amounted to 

3.60%. 

Finally, the mean variation of the output signal FFT, when electronical-modulated signal and 

automatic compensation is turned on is 2.40%. 

3.4.4 Calibration of  Biosusceptometer 

The tests show a linear relationship between FFT (Fast-Fourier Transformat) signals and con-

centration. The FFT value of each concentration expressed in the graph is the result of the sub-

traction between the backgroundwater) (Figure 26)signal FFT and the solution (Figure 25) (iron 

II Chloride) FFT signal. Figure 23 and Figure 24 show the variation in 1-Hz signal amplitude 
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over a period of 20 seconds. This is the result of filtered signal output from lock-in amplifer (de-

modulation signal in-fase). 

The results were fitted via linear interpolation and we have obtained the following calibration 

line (Figure 27) for this electronic-modulated susceptometer. The measurement is differenzial 

and it’s done by this expression: 

 BACKGROUND(water) – PHANTOM (iron II chloride) = iron [ugr/gr] 

Calibration line is shown in Figure 4. The results are fitted linearly, we obtained a straight line 

with this expression : 

 

 

con Coefficients (with 95% confidence bounds): 

 

 

Goodness of fit: 

 

 

 

 

The measures have a correlation coefficient equal to 0.98, meaning that this prototype is able 

with good precision to distinguish a ferric concentration from  to . 

3.4.5 Test of Waterbag 

Tests carried out on the new waterbag showed good water tightness and the good deformability 

of latex membrane. This system also has the advantage to avoid air bubbles during the filling of 

the waterbag and permits faster measurements.  

3.5 Discussions 

A very important feature of this system is the ambient temperature changing during the several 

measurements (about ±3°C during all measurements, about ±0.2°C each three-four measure-

ments): these small changes are a limit for this system at room temperature but the speed execu-

tion of measurement permits to maintain small the changes in temperature. Furthermore the 

acquisition air-phantom-air allows to monitor every 10 seconds the signal variability, and there-

fore, to avoid errors in measurement. This aspect constitutes a limit mainly in the measurement 

of the concentration of iron in the patient liver because the measurement must be carried out 
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quickly. A possible application of this system with patients is to built the system ina structure 

small and portable.  

Water phantom measurements indicate instrumental noise about 4-5% which is small compared 

with other errors due to the response of the patient’s body  

For improvement the performance of the instrumentation and remove. possible additional error, 

in addition to this system, is to be used a Locketor Loops: this magnetic sensor is able to evalu-

ate the thickness of air between the patient abdomen and probe sensor.  

Our room-temperature susceptometer uses oscillatory magnetic fields and reduces thermal drifts 

by automatic balancing and performs quickly the measurement. 

Our hope is that this simplified susceptometer technology will make accurate, noninvasive body 

iron measurements more available. 

3.6 Conclusions 

Our room-temperature susceptometer uses oscillatory magnetic electronical-modulated fields 

and cancels the signal form the applied field.  It reduces thermal drift and mechanical noise by 

using an electronic modulation of the signal applied to sample and by reducing the time acquisi-

tion. The correlatiom measurement shown a 0.98 R-square between the signal FFT and the con-

centration of ferric chloride. Thes results indicate that the fundamental error limits for the new 

system are similar to those of existing mechanical modulated susceptometer. Our hope is that 

simplified susceptometer techology will make accurate, with a flexible and portable instrument. 
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3.8 Tables 

 

Table 6: Gradiometer parameters 

 

TYPE OF OPERATION  TIME DURATION  

AUTOMATIC  BALANCE: AIR MEASURE  120”  

ACQUISITION: AIR – PHANTOM – AIR  20’’  

Table 7: Mesurement Protocol 

 

Coil Coil Type 
Turn 

coil 

Coil 

name 

Electrostatic shield 
 

 

Figure 9: Sensor unit 
 
 

 

Sense Coil 

Active Feedback Balance Coil 

Source Coil  

Feedback Coil 

 

 

 

 

Sensing Feedback Coil  

Sensing Feedback Coil  

Sense Coil  

Sensing Feedback Coil  

Sensing Feedback Coil  

 

 

 

 

Feedback Coil 

Source Coil 

Passive Feedback  Balance  Coil 

Sense Coil  

 

+550 

+15 

-100 

+15 

 

 

 

 

+15 

+15 

-1100 

+15 

+15 

 

 

 

 

+15 

+100 

+15 

+550 

 

L3 

L3A 

L1 

L1A 

 

 

 

 

L1C 

L2C 

L4 

L3C 

L4C 

 

 

 

 

L1B 

L2 

L3B 

L5 

 

Figure 10: Electrostatic 

shield 
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Solution Name Concentration Number of Measurement 

SOL_D 490ugr/gr 60 

SOL_B 981ugr/gr 60 

SOL_A 2452ugr/gr 32 

SOL_C 4904ugr/gr 60 

H20 0ugr/gr 96 

Table 8: Concentrations simulate liver iron disease  
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3.9 Figure 

 

Figure 11: Active balance coil L2C and passive balance coils L3 and L5 and resistor R3 ed R5 

(config. I)  

 

Figure 12: By changing the phase and the amplitude of the current in the coil L3A(config. II)  
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Figure 13: Active balance coils L2C and passive balance coils L4 with parallel resistor(config. 

III)  

 

Figure 14: Passive balance coils L3A and L3B(config. IV)  
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Figure 15:  Active balance coil L2C and passive balance coil L3C(config. V)  

 

Figure 16: Active balance coil L3A and passive balance coil L3B(config. VI)  
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Figure 17: Active balance coil L1C and passive balance coil L4C(config. VII)  

 

 

Figure 18: Flowchart of automatic balancing system 
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Figure 19: Susceptometer layout 

 

Figure 20: FFT signal changing during 30 minutes (Troom from 24.5°C to 24.6°C) 

mean signal (FFT) = 4.5712*10
-4 

Standard deviation=5.6253*10
-6 

Variation (%)= 1.23% 
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Figure 21: FFT signal changing during 30 minutes (Troom from 24.7°C to 24.8°C) 

 

Figure 22: FFT signal changing during 30 minutes (Troom from 24.1°C to 24.5°C) 

 

mean signal (FFT) = 4.9672 *10
-4 

Standard deviation =1.7924*10
-5 

Variation (%)= 3.60% 

mean signal (FFT) = 5.1319 *10
-4 

Standard deviation =3.98*10
-5 

Variation (%)= 7.75% 
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Figure 23: Acquisition timing (AIR – PHANTOM – AIR) 

 

 

Figure 24: Output acquisition signal (in up the output signal vs time, in down the FFT output 

signal vs time) 
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Figure 25: Phantom filled with Ferric Chloride        

 

Figure 26: Phantom filled with water 

 



A room-temperature susceptometer to measure liver iron concentration: data analysis, calibration and test 

59 

 

 

Figure 27: Calibration line: signal FFT(average value) versus concentrations 

 

 

Figure 28: Latex Waterbag 

 



 
 

 

Chapter 4 A Finite Element Analysis of 

3D Anatomic Human Foot with plantar Fat 

Pad  

 

4.1 Abstract 

Background: In many application area there is an interest to understand the states of stress and 

strain in the tissues of the ankle-foot complex, together with the map of plantar pressures 

Objective: In this work a preliminary prediction of stress condition of the foot with the real 

Plantar Fat Pad is presented: it was shown to play a very important role in the transmission of 

stress during the contact with the ground. 

Design: The 3D foot model is the final result of 3D reconstruction applied in Computed To-

mography scan DICOM standard images, FEM Modelling and Analysis.  

Setting: Interaction Module of FEA has permitted to model cartilage only with the surface-

surface contact. In this model the real morphology of Plantar Fat Pad has been considered. Plan-

tar Fat Pad material has been modeled as elastic in agreement with the soft tissue model. The 

balanced standing condition was simulated. The contact pressure distribution on foot plantar 

area and stresses on the bone structures are calculated for a rigid contact between the plantar 

foot area and the rigid support. 

Main Outcome Measures: To obtain the experimental data to compare the predictions of mod-

el, has been carried out a posturography static examination test, on a fixed baropodometric plat-

form. Contact pressure values on the hell region and a metatarsal heads has compared and pro-

cessed with FEA results 

Results: The FEA predictions of plantar pressure distribuition were in good agreement with 

experimental results, nominally, the peak value zones a the centre of heel region and beneath the 

metatarsal heads 
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Conclusions:  The metods can be a very powerful to understand the foot and its implications in 

the project: a great variety of insole geometries and insole material could be tested with good 

approximation to study and improve the life style of patients with foot diseases and to design 

shoes for sport activities. 

4.2 Introduction 

In many application area there is an interest to understand the states of stress and strain in the 

tissues of the ankle-foot complex, together with the map of plantar pressures. In clinical set-

tings, such information would allow to assess the effect of anatomical variations and/or struc-

tural stress on the foot, providing medical support in the selection of clinical and surgical strate-

gy to be adopted. In the footwear industry, the prediction of the stresses and deformations of the 

structures of the foot would be to support the design of the shoe, allowing you to assess whether 

or not the prototype satisfies the biomechanical objectives for which it was designed. In the 

sports sector, such prediction may help to understand the mechanisms that lead to stress frac-

tures or overload pathologies in the foot. The quantification of the field of stress and strain is 

not determinable, until now, in vivo in the ankle-foot complex. Actually, there is no instrument 

capable to quantify non-invasively the mechanical stress of the foot. For this reason, numerical  

models have been developed, with a certain degree of approximation, to predict the distribution 

of stresses in the internal structures of the foot. These models, when rigorously validated , allow 

you to develop different studies , with a considerable saving in time and costs compared to tra-

ditional experimental studies on volunteers or cadavers. 

Until now, it has been proposed in the literature numerous biomechanical models of the foot. 

The first formulations were trying to explain the anti-gravitary function of the foot, in which the 

structure was shaped like a simple architectural element such as a bow, an arch and a truss, or as 

the complex tripod and the more common backward helix (Figure 29). 

More recently, due to the increased computational power of computers , the foot is represented 

by numerical models that can simulate load conditions and constraints more sophisticated and, 

at the same time, to find more accurate solutions in less time (Figure 30). 

The models, developed with the 3D finite element technique, seem to achieve the best results in 

terms of reliability to the real kinematics and dynamics of the ankle-foot complex , compared to 

other types of models in the literature(1, 2, 3, 4, 5). These models utilize imaging techniques, 

such as computed tomography and magnetic resonance imaging to extract the right bone mor-

phology for an human subject and use the ability of the finite element method (FEM) to solve 
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partial differential equations in domains complex and to obtain accurate solutions in a quick 

time. 

In the literature, there are more studies(1, 2, 3, 4, 5) that have developed 3D finite element mod-

els of the foot in order to simulate the biomechanics. They, mainly, differ in the type of simpli-

fication measures in relation to structures geometry, materials definition, interaction methods 

between parties, definitions of loads and boundary conditions. 

Concerning to the geometry of the model, generally only the bones are represented with their 

real morphology and, in some cases, also the cartilaginous-ligament structures. In contrast, the 

real morphology of the fat pad (or Plantar Fat Pad, PFP) under foot has never been considered 

in the literature models. In last works, the mechanical behavior of the PFP is modeled by assign-

ing the mechanical properties of the generic volume, interposed between the skeleton and the 

plantar surface (1, 3, 7). In a previous study (2) it was shown that the heel fat pad (or Heel Pad 

HFP) has a complex morphology that can play an important role in the transmission of stress 

during the contact with the ground (Figure 31): the strains, transmitted from the ground to the 

foot during a step, will not reach high values, but the repetitive motion can lead to excessive 

stress of the leg. The most critical stage is the first foot-ground contact (or heel strike): in this 

phase, the first damping mechanism is the PFP, natural pressure reducer of the foot by Heel Fat 

Pad (HFP) and by the metatarsal fat pad (MFP), respectively, located under the heel and under 

the metatarsal heads. PFP has a structure composed of fat lobules contained in a dense network 

of fibro-elastic septa, which makes its capable to absorbe the energy produced in the impact 

foot-ground, to redistribute pressure on larger surfaces and, simultaneously, to provide the elas-

tic come back to start new step. 

In this paper, the objective is the creation of  ankle-foot complex for subject-specific model 

including the morphology dell' PFP. This model will be developed using the finite element 

method from 3D computed tomography data. The model will be validated by comparing the 

results of finite element simulation in static loading conditions with those obtained experimen-

tally by baropodometric examination. Despite the geometric complexity of HFP, the FEM mod-

els of 3D foot shape, the adipose tissue is modeled assigning the properties of the material de-

riving from experimental trials(6). 

4.3 Metods 

4.3.1 Geometry Modelling  

The methodological approach used to model the 3D geometry of the foot and its structures char-

acteristic was obtained in three successive stages. 
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Computed tomography scan 

We have studied with computed tomography scan right foot and ankle of a volunteer male of 26 

years (weight 80 kg , height 186 cm), which he has never reported significant podalic trauma. 

The subject to be tested was chosen from a large series of healthy subjects. It has used a Philips 

Brilliamce-64 CT scanner (Philips Medical Systems, Cleveland, Ohio) to acquire 70 slices with 

a thickness of 0.8 mm , with an overlap of 0.4 mm between adjacent slices (Figure 31, left) . 

The acquisition protocol is the one described by Campanelli et al. in which it is sought to max-

imize the neutrality of the joint angles of the ankle and foot (2)(Figure 31, right). The CT data 

were filtered with a filter both for the soft tissues (to facilitate the segmentation of the fat pad), 

and for hard tissue (the bones segmentation of the foot). Two different sets of images were ob-

tained and converted to DICOM format (Digital Imaging and Communication Format). 

Segmentation 

The DICOM data were imported into Amira 3.1.1 (Mercury Computer Systems, Chelmsford, 

MA, USA) to reconstruct 3-dimensional models of foot, ankle, bones and fat pad. The segmen-

tation of the bones has been obtained by semi-automatic tools (mainly by the blow tool, based 

on a semi-automatic method) and done manually slice to slice. In all, 30 foot bones and the dis-

tal parts of the tibia and fibula were segmented. In contrast, the Plantar Fat Pad has been seg-

mented in manual mode, since it is constituted by two parts with different density(fat and con-

nective septa). The contours obtained from each slice were interpolated to obtain polygonal 

surfaces for the HFP and bones. The 3D data obtained were exported as stl format 

(Stereolithography), by defining a 3D surface with the union of triangular surfaces oriented or 

meshed. These surfaces generated are often full of imperfections such as holes: to eliminate 

these problems we made use of the software MeshLab, which through the tool Cleaning and 

Reparing allows you to fill and eliminate such defects. This geometry is now being exported to 

PLY format (Polygon File Format). 

Mesh Generation and Correction 

The surface mesh for each bone geometry, encoded in PLY format, is reconstructed and turned 

in Solidworks CAD (SolidWorks Corporation, Massachusetts, USA) by the tool "Mesh 

Prepaing Wizard". The mesh will have created with the IGES format, compatible with 

ABAQUS, and finally by the tool ABAQUS (Geometry Repair) will be able to eliminate imper-

fections and self-intersecting geometries. Below is a diagram of the methodology adopted for 

3D modeling (Figure 33). 

4.3.2 Finite element Modeling 

The 3D finite element model was imported and assembled in to the full non-linear FEA package 

ABAQUS 6.10.1 (ABAQUS, Inc., Dessault Systemes Simulia Corp., Providence, RI, USA). It 
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is shown in Figure 34 and consists of 30 bones, and includes all the distal phalanges, 3 proximal 

and medial cuneiform, talus, calcaneus, cuboids, navicular, tibia and fibula, and 2 sesamoids: 

inside the software the interactions between the parts, domains of equations, boundary condi-

tions and solution methods were definied. 

Objective of this study is to extract information on the stress and strains within the structure of 

the foot and on the pressure exerted of the platar fatpad, during the application of a static load. It 

is assumed that the foot touches a slim ideal and rigid: a model of an "earth" plan is added to 

model. 

4.3.3 Interactions between parts 

ABAQUS does not recognize any kind of mechanical contact between the parts of the model IF 

they are not specified in the " interaction form": two close surfaces need to have specified an 

interaction between them. 

BONE-BONE INTERACTION (CARTILAGE) 

The 30 bones of the foot-ankle complex interact through 41 facet joints (4 for ankle and 37 for 

foot, including two sesamoids). To simulate the surface interactions between the bone struc-

tures,  ABAQUS uses an automated algorithm to model surface contact. Due to the lubricated 

nature of the articular surfaces, the behavior of the tangential contact between the articular sur-

faces was considered without friction, whereas the normal state is considered to be linear with 

contact stiffness equal to 10 MPa. The cartilage definition has been deducted through the virtual 

anatomical models of Primal Pictures (Interactive Foot and Ankle, Primal Picture Ltd., UK) and 

the manual of Gray (Figure 33, right) . It should be noted that previous studies (3) modelized 

cartilage with a 3D polygon mesh, obtained from the Boolean subtraction between the bone and 

interposed volume. This mesh was glued to the articular surfaces by mesh tie constraints. Our 

studies and tests on the subject have shown that it was possible to create such modeling in 

ABAQUS simply through an interaction sup-sup, an automatic algorithm capable to simulate 

the contact of surfaces and to remove any overclosure problems: this assumption allowed less 

energy and less computational cost. 

BONE - FATPAD INTERACTION  

The contacts between the calcaneus and fat pad and between the metatarsal heads and the fatpad 

have been defined through tie constraints: an automated algorithm of ABAQUS maintain  in 

contact two regions (Figure 36). The virtual combination between the two structures was chosen 

to simulate their real anatomical union: the calcaneal fat pad is physically attached to the poste-

rior-inferior portion of calcaneus through a dense network of connective septa: two surface has 

been modelled without  relative and rotational motion. Therefore, the surfaces of the calcaneus 

and the metatarsal heads were defined as master surface, however, the surfaces of the Fatpad as 
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slaves. The real nature of the anatomical region suggests to join fatpad togheter all metatarsal 

heads except for the first, which is attached via 2 sesamoid bones(Figure 36). 

FATPAD - GROUND INTERACTION  

A flat rigid horizontal has been used to model the support of the foot on the ground. The inter-

face foot / floor has been defined by a contact surface, which allows the transmission of the load 

from the hard floor to the foot. The type of approach used to simulate this interaction is of the 

small- sliding tracking node -to-surface contact with tangential and normal. The surface of the 

fatpad was defined as the slave surface and the rigid support of the plan as a master surface. The 

normal contact was defined using the Augmented Lagrange method constrains, already auto-

mated algorithm in ABAQUS . The tangential contact between soil and fatpad was set to 0.6 

using the model of Coulomb friction (8-12)(Figure 37). 

4.3.4 Property of Materials 

All materials were considered isotropic and linearly elastic. The bone behavior was assigned 

linearly elastic with Young's modulus and Poisson's ratio, respectively, equal to 7300 MPa and 

0.3. These values were estimated by averaging between cortical and trabecular bone, by weigh-

ing the contribution in amount of the volume, according to the model of Nakamura et al.(9) 

4.3.5 Load and Boundary conditions 

For this study, the load was considered static (Figure 32): the ground is in the bottom and the 

strength  is applied on the tibia and the fibula, leaving the foot in a natural way to move toward 

the floor. This method is suggested by Ref (7, 13). Until the 1970s it was thought that the whole 

load on the body weight to be transferred to the foot only through the tibia-thallus joint, the it is 

thought fibula to have only the stabilizing function of the ankle. In 1971 Lambert measured the 

load capacity of the fibula by "strain-gauge" (SG), establishing that the fibula carries one-sixth 

(17%) of the applied load. Later, in 1984, Tabeke claimed that 17% of the load was an overes-

timate and by force transducers [27], placed within portions of two severed bone, he estimated 

that the fibula was carrying only 6.4% of the total load(7). In Table 10 it shown the load values 

found in the literature for the fibula. Based on these considerations (13), we divided the 10% of 

half of the body weight of the subject (450 N) on the fibula and the remaining 90% on the tibia. 

In particular, the upper tibia and fibula surfaces are equal at 5.58 cm
2
 and 1.74 cm

2
. In this con-

figuration, the ground was considered linearly elastic with Young's modulus and Poisson's ratio, 

respectively, equal to 17000 MPa and 0.1. 

The applied force has an amplitude as smoothing step (Figure 38). 
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4.3.6 Mesh Generation 

A large variety of solid elements in ABAQUS package can be used for modeling the foot and 

the ankle. Among all continuous elements, hexahedral elements usually give higher accuracy in 

the solution by a lower computational cost particularly considering complex structures with 

large deformations. However, due to the limitations of the algorithm automated meshing in hex-

ahedral mesh ABAQUS to build structures of irregular shape, to mesh foot bones and soft tis-

sues, such as the fatpad, the tetrahedral elements with 4 nodal elements was used. Because of 

incompressible nature and regular geometry of the rigid ground, it was meshed with hexahedral 

elements. In Figure 39, it shown a full view of the mesh of the 3D foot model. 

4.4 Results 

To verify that these assumptions do not affect the prediction of the model, you need to do a 

validation. To obtain the experimental data to compare the predictions of the model, has been 

carried out a posturography static examination test, on a fixed baropodometric platform 

(WINPOD - IMAGO CNS). Contact pressure values at the hell region and a metatarsal heads 

has been compared and processed using MATLAB(The Mathworks Inc., Boston, MA, USA) 

with FEA results(). Numerical simulations were accomplished in about 300 min on a PC DELL 

STUDIO XPS 435MT(Intel® Core i7 CPU 920@2.67GHz, RAM 10.0GB, WinVista 64bit). 

The FEA model predicts maximum plantar contact pressure beneath 4
th
 metatrsal of 94KPa and 

on the hell of 74KPa, the experimental value is 107KPa beneath 4
th
 metatrsal and on the hell is 

88KPa for pure compression and balancing standing case. By coregistration of image between 

experimental data and FEA predicted result the contact area approximately equal to 90cm
2
, 

compared to 115cm
2
 obtained from experimental measurement. 

4.5 Discussions 

In this study, a 3D anatomically realistic FE model of foot wasestablished based on CT scan 

slices. In this model the main simplifications are as follows: (i) the ligaments weren’t consid-

ered: several studies show that under conditions of upright posture and static load, the balance is 

maintained only with the single congruence of the articular surfaces, (ii) the geometry of the 

cartilage has not been modeled, which are modeled as an interaction surface-surface,(iii) as-

sumption of non linear hyper-elastic material law for the fatpad, (iv) simplified bone structures 

(no cortical and trabecolar regions). 

 

The experimental plantar contact pressure distribuitions is qualitatibely comparable with the 

predicted FEA results, nominally, the peak pressure values zones at the centre of heel region 

and beneath the metatarsal heads.However in he quantitative point of view the FEA results are 
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higher tha experimental results. The difference may be causaed by the resolution of pressure 

that report an average pressure over a sensor area while the FEA model reposrts the contact 

pressure as calculated from a noda force per element’s surface area. 

The stress distribution pattern was similar to those experimental data in literature (4, 16, 17), in 

which the relatively higher stresses were located in the rearfoot and forefoot. It also can be 

found from Figure 40 that the position and peak value of the stress concentration were compa-

rable with those published experimentally measured plantar pressures (4, 16, 17). 

The difficulty in obtaining a completely static posture thata eplicate the FEA model load condi-

tions was a major experimental problem encountered and ana aspect that must be acconted dur-

ing the results and discussions. 

 

4.6 Conclusions 

FEA(Finite Element Analysis) Models can be a very powerful method to understand the foot 

mechanical behaviour and its implications to human comfort. For the purpose, an anatomically 

detailed foot model was generated from CT scan image data, using segmentation and recon-

struction techniques and 3D CAD modelling. The monitoring of plantar pressure at the foot 

plantar with the fat pad Plantar model will the main objective. Achille tendon and plantar fascia 

weren’t introduce. For this purpose, the effect of the magnitude of load at the Achille tendon 

will be studied in order to understand the effect on the contact pressure distribution, contact area 

and coordinates at the center of pressure. 

After the conclusion of the experimental tuning procedure, a wide variety of insole geometries 

and insole material can be tested to study and improve the life style of patients with foot diseas-

es, such as pronation, painful syndrome, arthritis syndromes, etc.  
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4.8 Tables 

 

MATERIALS YOUNG'S MODULUS POISSON COEFFICIENTS References 

BONE 7300 MPa 0.30 Nakamura et al 

FATPAD 1 MPa 0.45 Jacob e Patil 1999  

GROUND 17000 MPa 0.1 T.-X. Qiu et al(2011) 

Table 9: Properties of Materials 

 

 

 

  

Proprietà Lambert Wnag Takebe Goh 

Carico applicato (Kg) 68 60 60 235 

Metodo SG SG FT FT 

Posizione neutra 17% 11% 6.40% 7.12% 

Table 10: Weight-bearing capacity of the fibula as a percentage of the total load.  SG = strain 

gauge, FT force trasductors [7] 
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4.9 Figure 

 

Figure 29: Backward helix 

 

Figure 30: Finite element Model of the Foot  
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Figure 31: A) Morphology of HFP B) sagittal section of HFP in spatial relationship with the 

heel and the Achilles tendon, C) axial section of HFP in connection with the plantar muscles, D) 

non-structured portion of HFP; E) front and rear sections 

 

 

Figure 32: Loads and Boundary conditions 

 

Load  

Boundary Conditions 
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Figure 33: Workflow methodology for 3D Cad Modelling 

In upper position, on the left: CT image acquisition of HFP, on the right: segmentation of HFP; 

In down Correction of the defects of the talus mesh made with the Repair Geometry tool in 

ABAQUS 
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Figure 34: 3D model of the foot with togheter all the bones and plantar FatPad 

 

 

Figure 35: Left: Facet Joints of the calcaneus (and talus that articulates with the cuboid), right: 

the talus (by Drake, Vogl, Mitchell, Tibbitts and Rivhardson 2008) 
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Figure 36: Interaction between the posterior inferior portion of the heel bone and fat pad (tie 

contrain  interactions) 

 

 

Figure 37:Interaction between the fat pad and the horizontal support 
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Figure 39: Global Mesh of 3D foot Model 

Figure 38: Smooting step 
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Figure 40: FEA Predicted plantar pressure on the plantar fat pad 

 

Figure 41: Experimental foot plantar contact pressure distribution on the baropodometric plat-

form 
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Figure 42: Co-registration of FEA predicted contact pressure on the ground (in violet) into ex-

perimental contact pressure on the baropodometric platform (in green). 
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Figure 43: Von Mises stress(pure compression) 
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Figure 44:Foot section-cut (pure compression) 
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Figure 45: Von Mises Stress (pure compression) of plantar fat pad 

 


