
On the reuse of RTL assertions

in SystemC TLM verification

Nicola Bombieri1,2, Franco Fummi1,2, Valerio Guarnieri1

Graziano Pravadelli1,2, Francesco Stefanni1, Tara Ghasempouri2,

Michele Lora2, Giovanni Auditore3, Mirella Negro Marcigaglia3

1EDALab s.r.l. - Verona, Italy {name.surname}@edalab.it
2Department of Computer Science - University of Verona, Italy2 {name.surname}@univr.it

3STMicroelectronics s.r.l. - Catania, Italy {name.surname}@st.com

Abstract—Reuse of existing and already verified intellectual
property (IP) models is a key strategy to cope with the com-
plexity of designing modern system-on-chips (SoC)s under ever
stringent time-to-market requirements. In particular, the recent
trend towards system-level design and transaction level modeling
(TLM) gives rise to new challenges for reusing existing RTL
IPs and their verification environment in TLM-based design
flows. While techniques and tools to abstract RTL IPs into
TLM models have begun to appear, the problem of reusing,
at TLM, a verification environment originally developed for an
RTL IP is still underexplored, particularly when assertion-based
verification (ABV) is adopted. Some techniques and frameworks
have been proposed to deal with ABV at TLM, but they
assume a top-down design and verification flow, where assertions
are defined ex-novo at TLM level. In contrast, the reuse of
existing assertions in an RTL-to-TLM bottom-up design flow
has not been analyzed yet. This paper proposes a methodology
to reuse assertions originally defined for a given RTL IP, to
verify the corresponding TLM model. Experimental results have
been conducted on benchmarks of different characteristics and
complexity to show the applicability and the efficacy of the
proposed methodology.

I. INTRODUCTION

In the past years, there has been a consolidation of descrip-

tion languages, methodologies and tools for the design and

verification of digital systems at different abstraction levels.

VHDL and Verilog have been recognized to be the de-facto

standard modeling languages for design and verification at

register transfer level (RTL). SystemC and transaction level

model (TLM) [1] have gained a broad consensus for system-

level design and verification, architectural exploration and

HW/SW co-simulation [2].

An important consequence of such a language and paradigm

heterogeneity in the today’s design flows is that an IP model is

often implemented and optimized twice, at RTL and TLM. At

the state of the art, the two implementations are developed

by hands, independently, and, often, by different people.

This makes difficult to maintain consistency between the

two models. While one of the two evolves for any reason

(i.e., customization, update, etc.), the other one needs to be

manually adapted. This approach is, from an industrial point

of view, expensive and not always convenient.

This work has been partially supported by the EU large-scale integrating
project SMAC (SMArt systems Co-design) FP7-ICT-2011-7-288827.

MEM
TLM platform

(SystemC)CPU

TLM IP

Bus/NoC

Checkers

(C++)

SystemC wrapper

TLM assertions

(ex-novo

definition)

Assertion

synthesis

(IBM FoCs)

RTL

assertions

RTL IP

(VHDL, Verilog)

RTL-TLM

Abstraction

(Carbon Design,

HIFSuite A2T)

Existing IP and assertion libraries

Checkers

(C++)

Assertion

synthesis and

integration

(Proposed

approach)

Fig. 1. Reuse of existing RTL IPs and assertions in SystemC TLM design
flows

In this context, methodologies and tools for the automatic

generation of SystemC TLM models starting from existing

RTL IPs have been recently proposed [3], [4], [5] and represent

a valuable support for the design of modern complex systems

(see left-most side of Figure 1).

On the other hand, the introduction of an automated RTL-

to-TLM abstraction flow requires validation strategies to guar-

antee that the abstracted model is correct with respect to the

starting RTL IP and that it behaves correctly once plugged

into the TLM system model.

Different strategies have been proposed to adapt RTL ver-

ification techniques at TLM. Formal equivalence checking

cannot be often applied being the process of abstraction

intrinsically disruptive from a pure equivalence point of view

[6], [7], [8]. In contrast, some simulation-based techniques

[9], [10], [11], [12] and frameworks [13], [14], [15] have

been proposed to allow designers adopting assertion-based

verification (ABV) at transaction level.

ABV approaches require the definition of a set of (temporal)

assertions that formally represent the intent of the designers

(specification), and a decision procedure to check the consis-

tency between such assertions and the design under verification

(DUV). ABV has been extensively applied to verify RTL

models, where the trigger mechanism is guaranteed by the

presence of a clock signal. In contrast, the application of ABV

to more abstracted models like, for instance, TLM designs,

is not straightforward. TLM models are represented with a

set of event-based, non-clocked, untimed or timed-annotated

descriptions that cannot easily fit with the concept of explicit

discrete time passing that underlies the semantics of temporal

assertions [14].

All the techniques recently proposed to apply ABV at

TLM can be classified into two categories: techniques that

define a way to specify temporal assertions and that suppose

the presence of an event-based triggering mechanism [16],

or, techniques that correctly synchronize checker activation

and DUV simulation [9]. In both cases, the assertions are

synthesized into checkers, which monitor inputs and outputs of

the DUV during simulation (see right-most side of Figure 1)

by searching for behaviors that are not consistent with respect

to the corresponding assertions. All these works assume a top-

down design and verification flow where assertions are defined

ex-novo at TLM level. In case of bottom-up flows (i.e., RTL

IP reuse), verification engineers define, for the second time,

the set of assertions to check the correctness of the abstracted

TLM models, even when RTL assertions are already available

for the original RTL implementations.

Up to now, no paper exists in the literature that proposes

a strategy for reusing, at TLM, assertions that have been

originally defined at RTL. This work is intended to fill in the

gap by proposing an automatic methodology to reuse RTL

assertions into SystemC TLM models (see central part of

Figure 1). In this way, error-prone and time consuming manual

re-definition is avoided. Thus, verification engineers can focus

their attention on the definition of assertions for checking the

functionality of new components and the correct integration

of the whole TLM system composed of new and abstracted

components.

Experimental results have been conducted on different

benchmarks and several RTL assertions have been synthesized

into checkers to be plugged in the system platform. The results

show the applicability of the methodology in reusing almost

all the existing RTL assertions at TLM. They also show

that the overhead introduced by such checkers in the TLM

simulation platform is acceptable considering the advantages

of the automatic process.

The rest of this paper is organized as follows. Section II

presents a more accurate analysis of the state of the art. Section

III gives an overview of the most important concepts of ABV

and RTL-to-TLM abstraction for a better understanding of the

proposed methodology. Section IV presents the methodology.

Section V reports the experimental results, while Section VI

is devoted to conclusions and remarks.

II. RELATED WORKS

The problem of applying ABV at TLM has been investi-

gated first for cycle-accurate TLM models [2], [17]. In [2]

the assertions and the DUV are modelled by using abstract

state machines and an approach is presented to perform static

verification. In contrast, dynamic ABV is considered in [17],

where a way to wrap C++ checkers into SystemC cycle-

accurate descriptions is presented. However, these solutions

are not suited for higher (asynchronous, untimed or timed-

annotated) TLM levels whose semantics is not based over

discrete time steps.

ABV at higher levels is mainly addressed by defining

new synchronization mechanisms that replace, at TLM, the

traditional RTL synchronization based on clock events. In

[16], [18], general concepts and requirements related to the

use of dynamic ABV at TLM are defined for the specific

case of TLM 1.0. A specific assertion language is proposed to

define assertions independently from the abstraction level, by

assuming an event-based synchronization mechanism instead

of the traditional clock-based approach adopted at RTL. A

SystemC implementation of an ABV framework that relies on

such a language is then described in [13]. Verification of TLM

1.0 models is proposed also in [19], which defines a library

of assertions to allow self-checking of TLM channels.

Synchronization policies between assertion checkers and

DUV have been also proposed in several works. In [9],

checkers generated by using FoCs [20] are considered and

evaluated at the starting of each transaction of SystemC TLM

designs. Automatic generation of checkers suited to perform

dynamic ABV at TLM are also presented in [21], [11].

A formal tool for assertion checking of TLM SystemC de-

scriptions is proposed in [14]. The description is first converted

into C code, then monitor logic is implemented by means of

C asserts and finite state machines. Bounded model checking

is finally employed to complete the verification process.

Finally, a methodology to check the functional consistency

between TLM and RTL models is proposed in [22], where

the reuse of TLM assertions at RTL is guarantee by ad-hoc

refinement rules.

All previous approaches assume a top-down design and

verification flow where assertions are originally defined at

TLM, and, possibly, they are reused at lower abstraction levels,

like, for instance, in [23]. In contrast, our approach addresses

a different problem that fits bottom-up flows, i.e., how to reuse

assertions defined at RTL so that they can be used to verify

a TLM design where abstracted versions of existing RTL IP-

cores are plugged into SystemC TLM system platforms.

III. ASSERTION-BASED VERIFICATION IN TLM

This section firstly summarizes the preliminary concepts

related to Property Specification Language (PSL) [24], since

it is one of the most widespread language for specification

of temporal assertions. Then, the most important concepts

related to RTL-to-TLM are presented to better understanding

the assertion integration presented in the following sections.

A. PSL assertions

PSL is nowadays one of the most prominent standards for

defining assertion specification. It defines a concise syntax

with clearly defined formal semantics. PSL has been proposed

(b)

Execution: ps1, ps2, ps3 , ps4

Simulation time

Rising edge

(δ-cycle 0)

Scheduling: ps1, ps2, ps3 , ps4

Execution: pa1

Scheduling: pa1

(δ-cycle 1)

Falling edge

(δ-cycle 0)

Rising edge

(δ-cycle 0)

Scheduling: ps1, ps2, ps3 , ps4

Clock

Cycle

i

Clock

Cycle

i+1
…

Execution: ps1, ps2, ps3 , ps4

Execution: pa1

Scheduling: pa1

(δ-cycle 1)

Falling edge

(δ-cycle 0)

…(a)

ps1 pa1

ps3

sig1

RTL model

in1 in2

out1 out2
(CC i+2) (CC i+2)

(CC i) (CC i)

(CC= clock cycle)

ps = synchronous process

pa = asynchronous process

sig2 sig3

ps2

ps4

…

…

Fig. 2. Dynamic scheduling overview: RTL model example (a) and the
corresponding process scheduling over simulation time (b)

by the Accellera consortium, it is based on the Sugar language

from IBM and it shows many similarities with respect to

SystemVerilog Assertion (SVA), the assertion sub-language of

SystemVerilog. However, while SVA is strictly connected to

SystemVerilog, PSL is a multipurpose, multilevel, multifla-

vor language. It is intended to be used for both functional

verification and functional specification. Thus, it can be seen

as an executable documentation for hardware and embedded

software design.

PSL assertions are built upon four layers which cooperate

to guarantee the expressiveness of the language.

• The Boolean layer is adopted to build basic expressions

commonly used by the other layers;

• The Temporal layer can be considered as the core of

the language since it gives the possibility of describing

temporal relations, evaluated over a set of evaluation

cycles;

• The Verification layer provides the directives for using

assertions during a verification run;

• The Modeling layer can be used to characterize the be-

havior of design inputs and to model auxiliary variables.

Since the approach proposed in this paper is based on

simulation, we consider the ”simple subset” of PSL, which

conforms to the notion of monotonic advancement of time,

and it is close to the notion of simulation itself.

The semantics of PSL assertions is defined with respect

to finite or infinite traces. In dynamic verification, however,

only behaviors that are finite in length are considered. For

this reason, the standard defines four levels of satisfaction of

an assertion: holds strongly, holds, pending (i.e., no bad states

have been encountered but future obligations have not been

met), and fails.

B. RTL-to-TLM abstraction

Despite technical differences, the tools for automatic RTL-

to-TLM abstraction [3], [4] generate SystemC TLM code by

translating hardware description language (HDL) statements

into SystemC statements and by handling the RTL concurrency

through dynamic scheduling. In dynamic scheduling (see

scheduler{

rising_edge();

while(events_triggered) {

delta_cycle();

}

falling_edge();

while(events_triggered) {

delta_cycle();

}

}

sig1 = a000;

Statements (e.g., the

above assignement) in a

synch process are

executed in the clock

rising edge phase.

CLK

Fig. 3. Overview of the SystemC TLM scheduling activity

Figure 2), the RTL processes (i.e., concurrent statements) are

woke up if and only if there has been an event to which they

are sensitive. The simulated time has a finest granularity equal

to one clock period when the generated TLM model is cycle

accurate. On the clock rising event, all synchronous processes

are firstly run. Then, if any event has been triggered (e.g., write

on a signal), the asynchronous processes sensitive to that event

are woke up. The routine iteratively goes on until there is not

any further event. At each of these iterations corresponds a

delta cycle, which is a simulation cycle in which the simulated

time does not advance [25].

The SystemC TLM code is generated by translating RTL

processes into C++ functions, and by implementing the dy-

namic scheduling through a C++ routine (i.e., the scheduler

of functions), which reproduces the behavior of the RTL

scheduler.

Figure 3 gives a high-level example of the scheduler ac-

tivity of the cycle accurate TLM model generated from a

synchronous RTL model. At each clock event, the scheduler

first invokes the synchronous functions sensitive to the rising

edge of the clock (rising_edge() in Figure 3 represents

these invocations). Then, the scheduler iteratively invokes the

asynchronous functions (delta_cycle() invocation) and

moves on to the falling edge phase (falling_edge()) to

invoke any process synchronous to the falling edge of the

clock.

Existing tools generate SystemC TLM models that are

accurate enough to guarantee simulation of timing delays. In

this context, the proposed methodology applies to two different

scenarios:

1) The generated SystemC TLM model is cycle accurate.

In the SystemC simulation, a TLM transaction is run

for each RTL clock cycle. The digital IP presented in

Figure 4(a) is an example of this scenario.

2) The generated TLM model derives from an RTL imple-

mentation with two clock signals. The SystemC TLM

model is cycle accurate for one of them only. The

second clock signal is abstracted, i.e., a number of this

clock cycles are included into one TLM transaction. The

digital IP presented in Figure 4(b) is an example.

For both scenarios, the proposed methodology synthesizes

the existing assertions into checkers and integrates such check-

ers into the SystemC TLM code, as detailed in the following

section.

TLM transaction #1

(OP1)

(TLM primitive call)

TLM transaction #2

(OP2)

(TLM primitive call)

TMAIN_CLK

MAIN_CLK

START_MEAS

OBS_WIN OBSERVABILITY

WINDOW

OUT_OK

CURR_CPS

HF_CLK

8LUT_OUT

0 0MEAS_VAL 6 7 8 9 10

THF_CLK

CYCLE 1 CYCLE 2 CYCLE 3

TLM transaction #1

(TLM primitive call)

TLM transaction #2

(TLM primitive call)

TLM transaction #3

(TLM primitive call)

TLM transaction #3

(...)

(TLM primitive call)

(a)

(b)

Fig. 4. Mapping of RTL waveforms to TLM transaction sequences: example
of scenario 1 (a) and scenario 2 (b)

IV. METHODOLOGY

The methodology consists of two main phases:

1) Given a set of assertions defined for ABV at RTL,

applying an automatic checker generator to obtain the

corresponding checkers, as explained in Section IV-A.

2) Checker integration into the abstracted TLM description,

with the aims of exploiting the timing information from

the scheduling activity of the SystemC TLM model to

drive the checkers, as explained in Section IV-B.

A. Generation of checkers

In the first phase, a checker generator (e.g., IBM FoCs [26])

is applied to automatically generate run-time checkers from

a starting set of generic assertions. It is worth noting that

the proposed methodology is independent from the checker

generator employed in this step. The run-time checkers can

be automatically generated in two different ways:

1) Generation of HDL checkers. The first alternative con-

sists of generating checkers in HDL language (which

are usually called monitors in literature). The checker

behavior is implemented thorough HDL processes and

represents the state machine modeling the assertion

semantics. The checkers are connected to the RTL IP

(see Figure 5(a)) and the extended RTL IP can be then

abstracted into SystemC TLM through any automatic

RTL-to-TLM tool.

PSL

assertions

RTL IP model

Checker

#1

Checker

#2
TLM IP model

with integrated

checkers
Generatio of

HDL checkers
RTL-to-TLM

abstraction

ps2

Scheduler
Clock

cycle

i

ps1 ps3

pa2pa1

pa4pa3 pa5

TLM interface

(e.g., b_transport())

cp1

cp2

PSL

assertions

cp1 cp2

Generation of

C++ checkers

Integration

of checkers

(b)

(a)

TLM IP model

C++ checkers

Extended RTL IP

Fig. 5. The generation and integration phases in the two alternatives:
generation of HDL checkers and RTL-to-TLM abstraction (a), generation of
C++ checkers and integration in the abstracted TLM IP model (b)

2) Generation of C++ checkers. The second alternative

consists of generating checkers in C++ (see Figure 5(b)).

In this case, the checker generator generates software

routines that implement the automaton corresponding to

the assertion semantics. In general, the checker generator

generates two routines. The first one has to be invoked

at every event (which is defined by the @-clause in

PSL) of the given assertion (e.g., the rising edge of the

clock). This allows the checker to evolve through the

state machine and to assess the assertion (true/false).

The second routine has to be called whenever the abort

condition of the assertion occurs. The generated routines

are then integrated into the scheduler of the SystemC

TLM model, as explained in the following section.

In the proposed methodology, we adopt the second alter-

native. The choice is driven by portability and performance

aspects. A comparison between the two different approaches

is presented in the following.

B. Integration of checkers in the TLM description

After checkers have been generated, the main focus of the

proposed methodology lies on where to integrate them within

the abstracted TLM description. A strategy is devised to insert

calls to the C++ routines that implement checkers by the

process scheduler (see Figure 5(b)) that is responsible for

carrying out the design functionality in the TLM description.

Since the process scheduler in the abstracted description dis-

tinguishes between synchronous functions and asynchronous

functions, the routine calls are inserted in the proper schedul-

ing function i.e., rising_edge(), falling_edge() or

delta_cycle() (see Figure 3). In order to do so, the @-

clause of the corresponding PSL assertion is examined, since it

regulates how timesteps are determined during the evaluation

of the assertion carried out by the generated checker. Further-

more, if the assertion features an abort clause, it must be

also taken into account, as such a clause is asynchronous with

respect to the @-clause.

If the @-clause refers to the rising edge (or the falling edge)

of the clock signal, then the invocation to the C++ routine

that implements the evolution of the checker is added at the

end of the rising_edge() (or the falling_edge()

scheduling functions). Otherwise, if the @-clause refers to

a non-clock signal, then an if-condition checking whether

the specified event occurred is added at the end of the

delta_cycle() scheduling function. If such condition

evaluates to true, the checker routine is invoked (once in

the whole scheduling cycle) to allow a proper evolution of

the state machine within the checker. Additionally, if the

PSL assertion contains an abort clause, then an if-condition

checking whether the abort condition occurred is added at the

end of the delta_cycle() scheduling function. If such

condition evaluates to true, the corresponding abort routine of

the checker is invoked.

For example, let us consider the following RTL assertion

written in PSL:

assert always ({[*1]; stable(stx)[*16]})
abort preset=’0’ @rising_edge(pclk)

Since the @-clause refers to the rising edge of the pclk

clock signal, an invocation to the C++ routine that evolves the

state machine is added at the end of the rising_edge()

scheduling function. In order to properly take into account

the abort clause, an if-condition checking whether the

preset reset signal is low is added at the end of the

delta_cycle() scheduling function. An invocation to the

abort routine of the checker is then added to this if-branch.

The two alternatives for generating checkers (i.e., HDL and

C++) are equivalent from the functionality point of view. As

such, an invocation to the routine implementing the evolution

of the checker is performed by the scheduler whenever the

corresponding event specified in the @-clause occurs. The

correspondence between original RTL events and TLM events

is guaranteed whenever the clock accuracy is preserved and

annotated in the TLM description (i.e., in the two scenarios

presented in Section III-B).

The proposed integration methodology offers the follow-

ing advantages over the abstraction of the RTL description

together with RTL checkers:

• It is less time-consuming since the integration of C++

checker routines into the TLM scheduling functions is

more immediate than the integration of RTL checkers

within the starting RTL IP model.

• It relies on a higher-level implementation of the checkers,

TABLE I
CHARACTERISTICS OF THE RTL IPS.

Design
Processes (#) RTL Pipeline Latency

Asynch. Synch. loc stages (#) (cc)

UART 416 77 5866 – 16

Root 2 0 343 – 16

Div 1 5 1283 – 16

QNR 7 17 518 16 16

RLE 14 17 678 9 9

FDCT 259 196 5935 388 67

JPEG 281 231 18381 80 80

Error Correction 6 11 1666 – 130

Lambda Root 0 5 1092 – 790

Omega Phy 17 4 1595 – 294

thus reducing the overhead caused by their introduction.

In fact, directly generated C++ checker routines are

bound to have better performance in simulation than their

abstracted RTL counterparts.

V. EXPERIMENTAL RESULTS

The proposed methodology has been applied to different

VHDL IP descriptions: a UART module, two sub-components

of a face-recognition system (i.e., Root and Div), a JPEG

encoder and its sub-components (i.e., QNR, RLE, FDCT) and

some components of a Reed-Solomon decoder (i.e., Error

Correction, Lambda Root, Omega Phy). Table I reports their

main characteristics in terms of number of synchronous and

asynchronous processes, number of lines of code (loc), number

of pipeline stages, clock cycle latency, and throughput. The

RTL SystemC descriptions have been obtained by using the

HDL conversion tools provided by HIFSuite [4], while the

SystemC TLM descriptions have been generated by HIFSuite

A2T.

To evaluate the simulation overhead caused by the insertion

of run-time checkers three different contexts have been tested

for both the RTL and TLM description. The first one consists

of the IP description at RTL and TLM without any checker.

This allows us to estimate the speed-up due to the RTL-to-

TLM abstraction. The second and third versions represent the

IP model with a few and many C++ checkers, respectively

(in particular, two and forty C++ checkers) to evaluate the

overhead caused by a different amount of inserted checkers.

The set of C++ checkers plugged in both the RTL and TLM

models is the same.

Table II reports the simulation time for each version of both

RTL and TLM, in order to observe the overhead involved

by the plugged checkers at different abstraction levels, as

well as the simulation speed-up between RTL and TLM

simulations. For every design, columns Checkers identifies the

version (i.e., with 0, 2 or 40 checkers), column RTL and

TLM report the execution time (in seconds) employed by

the simulation. The columns Overhead report the overhead

for the checker executions in percentage, with respect to

the equivalent version without checkers. Finally the speed-up

column reports the simulation speed-up between the RTL and

TLM implementations.

The experimental results highlight the impact of the checker

execution over the whole simulation. The highest speed-up is

TABLE II
EXPERIMENTAL RESULTS.

Design
Checkers RTL Overhead TLM Overhead Speed-up

(#) (s) (%) (s) (%) (x)

UART

0 24.186 – 11.614 – 2.083

2 54.691 55.78 23.718 51.033 2.306

40 588.706 95.892 458.940 97.469 1.283

Root

0 22.749 – 19.941 – 1.14

2 97.438 76.653 36.998 46.105 2.63

40 1422.161 98.4 1203.099 98.343 1.18

Div

0 46.027 – 20.785 – 2.21

2 125.428 63.304 23.045 9.807 5.44

40 1528.480 96.989 665.410 96.876 2.30

FDCT

0 105.587 – 18.566 – 5.69

2 209.647 49.636 34.577 46.305 6.03

40 2250.879 95.309 1054.857 98.240 2.14

QNR

0 94.543 – 12.087 – 7.82

2 202.464 53.30 25.452 52.51 7.96

40 2110.551 95.52 950.844 98.73 2.22

RLE

0 96.124 – 12.985 – 7.40

2 219.795 56.267 28.193 53.942 7.55

40 2207.519 95.646 985.698 98.68266 2.23

JPEG

0 307.831 – 42.022 – 7.36

2 622.943 50.584 82.961 49.347 7.51

40 6257.009 95.080 3084.881 98.638 2.03

Error-correction

0 197.557 – 34.767 – 5.68

2 386.734 48.917 70.015 49.348 5.53

40 3971.001 95.025 2603.490 98.386 1.52

Lambda

0 421.784 – 69.129 – 6.10

2 791.150 46.687 121.791 43.240 6.49

40 7406.187 94.305 3568.100 98.063 2.08

Omega-phy

0 487.543 – 80.937 – 6.02

2 935.102 47.862 144.801 44.105 6.45

40 8945.877 94.550 3978.451 97.97 2.25

achieved in the version with two checkers. This is due to the

fact that the overhead of the checker invocation is less signif-

icant in the TLM descriptions than in the RTL descriptions.

On the other hand, the insertion of the two checkers involves

a significant simulation overhead with respect to the original

version without checkers. The minimum speed-up has been

observed in the version with 40 checkers. In this case, the

checker overhead becomes largely dominant with respect to

the IP functionality itself. As such, the simulation speed-up

obtained by abstracting the RTL IP model into SystemC TLM

is reduced proportionally to the number of checkers plugged

into the model.

We expect that the achieved speed-up ends up being lower

than the one that can be obtained by manually implementing a

”higher-level” TLM description and consequently manually re-

writing the assertions to be used with the new model. However,

this double manual process would be time-consuming and

error-prone. Conversely, the results obtained by using the pro-

posed methodology have been achieved automatically reusing

the already existing verification environment, without relying

on any time-consuming manual transformation.

VI. CONCLUSIONS

This paper presented a methodology to reuse assertions

originally defined for a given RTL IP, to verify the corre-

sponding TLM model. The methodology applies to SystemC

TLM models automatically generated from existing RTL IPs

through any of the abstraction tools available in the commerce.

The methodology consists of two automatic steps, in which

assertions are firstly synthesized into C++ routines and then

inserted in the SystemC TLM model. The experimental results

have been conducted on benchmarks of different characteris-

tics and complexity to show the applicability of the proposed

methodology. The results show the simulation overhead caused

by the automatic aspect of the methodology, which, in our

opinion, is acceptable considering, as the alternative, the

manual effort required to re-implement both the TLM model

and the TLM assertions.

REFERENCES

[1] L. Cai and D. Gajski, “Transaction level modeling: An overview,” in
IEEE/ACM CODES+ISSS, 2003, pp. 19–24.

[2] A. Habibi and S. Tahar, “Design and verification of SystemC transaction-
level models,” IEEE Trans. on VLSI Systems, vol. 14, no. 1, pp. 57–67,
2006.

[3] Carbon Design Systems. Carbon Model Studio. [Online]. Available:
{http://carbondesignsystems.com/}

[4] EDALab. HIFSuite. [Online]. Available: ”http://www.hifsuite.com/”
[5] N. Bombieri, F. Fummi, and G. Pravadelli, “Automatic abstraction of

RTL IPs into equivalent TLM descriptions,” IEEE Trans. on Computers,
vol. 60, no. 12, pp. 1730–1743, 2011.

[6] A. Mathur and V. Krishnaswamy, “Design for verification in system-
level models and RTL,” in Proc. of IEEE/ACM DAC, 2007, pp. 193–198.

[7] N. Bombieri, F. Fummi, G. Pravadelli, and J. Marques-Silva, “Towards
equivalence checking between TLM and RTL models,” in Proc. of

ACM/IEEE MEMOCODE, 2007, pp. 113–122.
[8] M. Fujita, “Equivalence checking between behavioral and RTL descrip-

tions with virtual controllers and datapaths,” ACM TODAES, vol. 10,
no. 4, pp. 610–626, 2005.

[9] Y.Lahbib, M.-A. Ghrab, M. Hechkel, F. Ghenassia, and R. Tourki, “A
new synchronization policy between PSL checkers and SystemC designs
at transaction level,” in Proc. of IEEE DTIS, 2006, pp. 85–90.

[10] M. Boulé and Z. Zilic, Generating hardware assertion checkers: for

hardware verification, emulation, post-fabrication debugging and on-

line monitoring. Springer, 2008.
[11] L. Ferro and Laurence, “ISIS: runtime verification of TLM platforms,”

in Proc. of FDL, 2009, pp. 1–6.
[12] N. Bombieri, F. Fummi, and G. Pravadelli, “Incremental ABV for

Functional Validation of TL-to-RTL Design Refinement,” in Proc. of

ACM/IEEE DATE, 2007, pp. 882–887.
[13] W. Ecker, V. Esen, and M. Hull, “Implementation of a transaction level

assertion framework in SystemC,” in Proc. of IEEE/ACM DATE, 2007,
pp. 894–899.

[14] D. Grosse, H. Le, and R. Drechsler, “Proving transaction and system-
level properties of untimed SystemC TLM designs,” in Proc. of

IEEE/ACM MEMOCODE, 2010, pp. 113–122.
[15] N. Bombieri, F. Fummi, G. Pravadelli, and A. Fedeli, “Hybrid, Incremen-

tal Assertion-Based Verification for TLM Design Flows,” IEEE Design

and Test, vol. 24, no. 2, pp. 140–152, 2007.
[16] W. Ecker, V. Esen, and M. Hull, “Execution semantics and formalism

for multi-abstraction TLM assertions,” in Proc. of IEEE/ACM MEM-

OCODE, 2006, pp. 93–102.
[17] Y. Lahbib, R. Kamdem, M.-l. Benalycherif, and R. Tourki, “An auto-

matic ABV methodology enabling PSL assertions across SLD flow for
SOCs modeled in SystemC,” Comput. Electr. Eng., vol. 31, no. 4-5, pp.
282–302, 2005.

[18] W. Ecker, V. Esen, and M. Hull, “Requirements and concepts for
transaction level assertions,” in Proc. of IEEE ICCD, 2006, pp. 286–
293.

[19] A. Ghofrani, F. Javahery, and Z. Navabi, “Assertion based verification
in TLM,” in Proc. of IEEE EWDTS, 2010, pp. 509–513.

[20] Y. Abarbanel, I. Beer, L. Glushovsky, S. Keidar, and Y. Wolfsthal,
“FoCs: Automatic generation of simulation checkers from formal spec-
ifications,” in Proc. of CAV, 2000, pp. 538–542.

[21] L. Ferro, L. Pierre, Y. Ledru, and L. du Bousquet, “Generation of test
programs for the assertion-based verification of TLM models,” in Proc.

of IEEE IDT, 2008, pp. 237–242.
[22] M. Chen and P. Mishra, “Assertion-based functional consistency check-

ing between TLM and RTL models,” in Proc. of IEEE VLSID, 2013,
pp. 320–325.

[23] A. Kasuya and T. Tesfaye, “Verification methodologies in a TLM-to-
RTL design flow,” in Proc. of ACM/IEEE DAC, 2007, pp. 199–204.

[24] Accellera, “Property Specification Language Reference Manual,”
http://www.accellera.org, 2004.

[25] “IEEE Standard SystemC Language Reference Manual,”
http:///ieeexplore.ieee.org, 2006.

[26] IBM. FoCs Property Checkers Generator. [Online]. Available: https:
//www.research.ibm.com/haifa/projects/verification/focs/start.html

