LY

_-LJ Dipartimento di Informatica

Universit a degli Studi di Verona

Rapporto di ricerca RR 91/2013

Research report
December 2013

Evaluation of Topological
Relations in a Discrete Vector

Model

Alberto Belussi
Sara Migliorini
Mauro Negri
Giuseppe Pelagatti

Questo rapporto e disponibile su Web all’indirizzo:
This report is available on the web at the address:
http://www.di.univr.it/report

Abstract

A spatial object is characterized not only by its geometric extents, but also
by the spatial relations existing with its surrounding objects. An important
kind of spatial relations is represented by topological relations. Many models
have been defined in literature for formalizing the semantics of topological
relations between spatial objects in the Euclidean 2D and 3D space [6, 3,
2]. Nevertheless, when these relations are evaluated in available systems
many robustness problems can arise, which are essentially related to the
discrete representations adopted by such systems. Moreover, in a Spatial
Data Infrastructure (SDI) the perturbations introduced by the exchange of
data between different systems can increase the robustness problems. The
aim of this report is to define an implementation of topological relations with
reference to a discrete vector model commonly adopted by today’s systems.

Keywords: Robustness
Topological relations
Spatial Data Infrastructure
Discrete representation
Distributed systems

1 Introduction

Topological relationships are a fundamental formal tool for describing spatial
properties of data in geographical applications: this occurs for example in
schema definitions, where spatial integrity constraints have to be defined,
and also in query specification, where spatial filters have to be used for
retrieving information of interest for the user, and in update processes where
topological relations are used to specify data quality [17, 13].

Although many abstract models have been studied in literature [6, 3, 2]
for defining the semantics of topological relationships between geometric ob-
jects embedded in an Euclidean space, the problems arising when topological
relationships are evaluated on real data have been much less explored. In
particular, topological relations have been defined by using the 9-intersection
matrix approach [6] or other axiomatic approaches [16], while for their eval-
uation specific computational geometry algorithms have been implemented
in systems which work on real data represented as vectors in a discrete space.

A consequence of this fact is that the evaluation of topological relations
can be non robust, i.e. it can produce different results on the same data in
different contexts. The existence of robustness problems in the execution of
computational geometry algorithms which use finite numbers (e.g. floating
point) for the representation of coordinates in Euclidean space, instead of
the real numbers theoretically required, is well known [1, 10]. This report
considers the distributed and heterogeneous context of a Spatial Data Infras-
tructure (SDI) in which the problems related to the adopted finite number
representation are made even worse by the data perturbation occurring dur-
ing the exchange between different systems. Such exchanges can introduce
perturbations in geometric representation as a result of the conversions be-
tween different formats and precisions.

LZ Nz I-Z N3 N2
" —)
Ly
N N
Data transfer !
System S, evaluation: System S, evaluation:

N, Touches L, N, Touches L,,
N, Touches L,, N, Disjoint Ly,
N3 In Ly, Ns; Disjoint Ly,
N3 Disjoint L,, Ns Touches L,,
L, Disjoint L, L, Cross L.,

Figure 1: Non robust evaluation of topological relations.

For example, consider a spatial database containing some instances of
two feature types Road Link and Road Node, which are transferred from a

system S to a system Sy. Fig. 1 shows that different topological relations
can be computed by the two systems between the same pairs of object in-
stances. For the sake of this example the intuitive meaning of the topological
relations In, Touches and Disjoint is referred to; their exact meaning will
be defined later. Fig. 1 assumes that node N3 and one endpoint of link Lo
have been slightly perturbed by the data transfer, hence giving rise to the
different evaluations of the relations between N3 and Ls, N3 and Li, and
L1 and Lo, while the different evaluation of the relation between No and L4
is due to different results in computation.

The robustness problem in the evaluation of topological relations is also
related to the dimension of the geometric space of the objects (2D or 3D).
For example, consider two curves which have a clear intersection in 2D:
in this space every system will likely evaluate the topological relation as a
Crosses, but in a 3D space a small difference in the z-value could cause some
system to evaluate the relation as Disjoint while others would evaluate it
as Crosses. Therefore, in many cases a distinct analysis of the robustness of
topological relations in 2D and 3D is necessary.

In literature several robustness rules have been proposed in order to
solve the mentioned robustness problems, and they are to some extent ap-
plied by real systems. The most important one is based on the identification
of common geometric primitives between different objects. These common
primitives can be either stored once and referred to by the objects (topolog-
ical structures [5]) or repeated identically in all objects which share them.
This robustness rule can solve many of the mentioned problems, but not
all of them. A complementary robustness rule, which has been suggested
for instance in [19], consists in ensuring that a minimum distance is kept
between all geometric primitives which are not identical.

The goal of this report is to define an implementation of topological re-
lations using a discrete vector model with is commonly adopted by available
systems. The remainder of the report is organized as follows: Sec. 2 presents
some related results contained in literature. Sec. 3 introduces the geometric
model and the topological relations considered in the following. Sec. 4 for-
malizes the reference discrete vector model, which implements the presented
geometric model, together with a set of elementary predicates, called critical
vector predicates. A critical vector predicate has the following characteris-
tics: it is an elementary predicate which can be evaluated in the discrete
vector model, it is necessary in order to implement some topological rela-
tion and it is critical because its evaluation can be not robust in the defined
reference model. Using the definitions of the previous sections, Sec. 5 and
Sec. 6 shows how each cell of the 9-intersection matrix [6, 3], which describes
a topological relation among two geometries, can be computed by evaluating
a given logical expression containing some vector predicates. Finally, Sec. 7
discusses conclusions and future work.

2 Related Work

Geometric algorithms are typically described assuming an infinite precision
that cannot be provided by the adopted computer representations. This
assumption raises great difficulties in implementing robust geometric al-
gorithms. A variety of techniques have been proposed in recent years to
overcome these issues. For instance, the Exact Geometric Computation
model [1] provides a method for making robust the evaluation of geometric
algorithms. This can be achieved either by computing every numeric value
exactly, or by using some symbolic or implicit numeric representation that
allows predicate values to be computed exactly. Exact computation is theo-
retically possible whenever all the numeric values are algebraic, which is the
case for most current problems in computational geometry. This technique
has made much progress, so that for certain problems the introduced perfor-
mance penalty is acceptable. However, when the computation is performed
on curved objects or in 3D space the overhead is still large. For this rea-
son, an alternative approach has been proposed which is called Controlled
Perturbation (CP) [8] and belongs to the Finite-Precision Approximation
Techniques. This method proceeds by perturbating the input slightly but in
a controlled manner such that all predicates used by the algorithm are guar-
anteed to be evaluated correctly with floating-point arithmetic of a given
precision. The algorithms of the Snap Rounding family, such as the one in
[10] and [9], are examples of this approach. They require the application
of rounding algorithms that convert an arbitrary-precision arrangement of
segments into a fixed-precision representation. However, even if such algo-
rithms guarantee the robustness of the result, the quality of the geometric
approximation in terms of similarity with the original arrangement can be
quite low and some topological relations can be modified. Conversely, the
aim of this paper is to define rules that can guarantee, when they are satis-
fied, that a dataset is robust w.r.t. topological relation evaluation. In case
of rule violations SR algorithms could be one possible mean for modifying
the dataset in order to fulfill the rules.

In the geographical field, topological data models have been defined
which use a representation based on topology instead of on coordinates (see
for instance [5, 18]). A GIS topology is a set of rules that models how points,
lines and polygons share coincident geometries, for instance imposing that
adjacent features will have a portion of common boundary. A topological
data model manages spatial relationships by representing spatial objects
as an underlying graph of topological primitives: nodes, faces and edges.
The original model has been defined for representing objects in a 2D space;
however, several extensions to the 3D space have been defined. The For-
mal Data Structure (FDS) [11] has been the first data structure to consider
spatial objects as an integration of geometric and thematic properties. It
includes three levels: features related to thematic class, four elementary ob-

jects (point, line, surface, and body) and four primitives (node, arc, face,
and edge). The model requires that elementary objects shall be disjoint
and a 1 to 1 correspondence exists between objects and primitives. In order
to overcome some difficulties of FDS in modeling objects with indiscernible
boundary, the TEtrahedral Network (TEN) has been proposed in [14]. This
model includes 4 primitives: tetrahedron, triangle, arc, and node, where the
first one is a real 3D primitive. The Simplified Spatial Model (SSM) [20]
has been the first topological structure that focuses on visualization aspects
of queries as 3D models. It includes only two primitives: nodes and faces,
while an arc can be part of two faces. Finally, the Urban Data Model (UDM)
[4] represents the geometry of a body or of a surface using planar convex
faces, defined as sets of nodes. In [7] the author defines the the concept
of geometric realm as a planar graph over a finite resolution grid. Prob-
lems of numerical robustness and topological correctness are solved below
and within the realm layer so that spatial algebras defined above a realm
enjoy very nice algebraic properties. Realms also interact with a database
management system to enforce geometric consistency on object creation or
update. All these topological representations ensure data quality and rela-
tion preservation, but they cannot be applied in a distributed context where
data is transferred among different systems. On the contrary, in order to
deal with a distributed context where data are exchanged among different
systems and evaluated using different algorithm implementations, this paper
assumes that geometries are represented with a traditional discrete vector
model and defines a set of rules for making robust existing algorithms used
to evaluate topological relations.

In [4] the authors face the problem of developing systematic, robust, cor-
rect and efficient implementation strategies and optimized evaluation meth-
ods for topological predicates between all combinations of the three spatial
data types: point, line and polygons. In particular, they recognize four main
problems in existing algorithms: even if the plane sweep algorithm is the
basis of any topological relation evaluation, (1) each topological predicate
usually requires an own, tailored plane sweep algorithm leading to a great
number of algorithms; moreover, (2) different outputs can be required on
the basis of the considered predicate, and (3) each single algorithm is an
ad-hoc implementation for which it is difficult to demonstrate that it covers
all cases and guarantees mutual exclusiveness among relations. Finally, (4)
the kind of query (verification or determination) usually impacts the evalua-
tion process. For solving these issues a two phases approach is proposed: in
a first exploration phase the plane sweep algorithm is used for determining
the given configuration between two spatial objects (e.g. their intersections),
while in a subsequent evaluation phase the collected information is used to
determine the existing relation.

The problem of developing correct and efficient implementation tech-
niques of topological predicates is also treated in [15]. The authors consid-

ers all combinations of complex spatial data types including two-dimensional
point, line, and region objects. The solution consists of two phases: an ex-
ploration phase, which summarizes all intersection and meeting situations in
two precisely defined topological feature vectors, and an evaluation phase,
which determines the kind of the topological predicate. Besides this general
evaluation method, the authors present an optimized method for predicate
verification and an optimized method for predicate determination.

The approach adopted in this paper is different from the one in [4, 15]
because it does not propose different evaluation strategies or algorithms,
but it identifies a set of rules for data representation whose compliance
guarantees a robust evaluation of topological relations using the existing
algorithms. The reason is that in a distributed context it is convenient
to guarantee robustness by modifying the geometry representation in a way
that any algorithm implementation can produce the same evaluation, rather
than rely on a modified implementation that cannot be available everywhere.

3 Geometric Model and Topological Relations

The geometric model considered in this report is compliant with the last
Simple Feature Access (SFA) model of OGC [12]. It contains classes de-
scribing geometries of the 2D space, but with the possibility to store also
the z coordinate usually by representing the height above or below sea level.
Moreover, the type PolyhedralSurface is available for representing 3D sur-
faces, as sets of polygon patches with some constraints. The complete type
hierarchy is shown in Fig. 3.

The main characteristics of these types are supposed to be known by
the reader, please refer to [12] for more details. Anyway, since polyhedral
surfaces are the most complex geometries of the model, their main charac-
teristics are briefly described in Sec. 3.1. Finally, notice that while Point
and LineString geometries can be embedded in 2D or 3D spaces, Polygon
geometries can be embedded only in 2D space and PolyhedralSurface only in
3D space. Another constraint regards LineString geometries for which suc-
cessive collinear segments are not admitted. In the same model a reference
set of topological relations is proposed which is presented in Sec. 3.2.

3.1 Polyhedral Surface

A geometric object described by a polyhedral surface is a three-dimensional
surface embedded in 3D space. A surface of this type is connected and is
defined by a set of surface patches, which satisfies some properties.

A surface patch is an elementary and planar three-dimensional surface
defined in 3D space by assigning a planar ring; this ring, called fe, represents
the external boundary of the surface patch. Notice that a patch can also be
a triangle (producing TIN), but it does not have to. Moreover, without loss

+spatialRS ReferenceSystems::

SpatialReferenceSystem

ReferenceSystems::
+measureRS MeasureReferenceSystem

[I
| Point | Curve | GeometryCollection
o]* 2.% [r A

Helement \+vertex

—I LineString | | Polygon = 0
of* /\ +patch /\
3;@‘ IJrele nent
1% 4ri
| Line || LinearI:i:lg |
|MultiSurface| |Mu1tiCurve| |Mu1tiPoint|
0

—<>| MultiPolygon | | MultiLineString |

Figure 2: Geometric type hierarchy of the Simple Feature Access (SFA)
model of OGC [12].

of generality, the following simplification is introduced w.r.t. the standard:
no holes are admitted in a patch.

The boundary of a polyhedral surface is the set of LineString that
are boundary of one and only one patch of the surface. If the bound-
ary is the empty set, the surface is a cycle and implicitly defines a solid
(phSurface.isCycle()? phSurface.boundary().isEmpty()). Finally, by defini-
tion a polyhedral surface is always simple (phSurface.isSimple() = true).
An example of polyhedral surface is shown in Fig. 3.

[

Figure 3: An example of polyhedral surface.

The following assumptions are also considered through the report: ad-
jacent coplanar patches are not admitted, since they can be substituted by
the patch obtained by merging them, and a polyhedral surface is always a
2-manifold.

3.2 Topological Relation

In order to describe the spatial relations existing between two geometries,
it is necessary to use a reference model. This paper considers the well
known approach of Egenhofer et al. [6] based on the 9-intersection matrix.
Topological relations of the SFA architecture are defined on the basis of this
approach, but the framework proposed in this paper can be applied to any
mutually exclusive set of topological relations, that can be defined by means
of sets of 9-intersection matrices and operates on the set of geometric types
of the SFA architecture.

The 9-intersection matrix is defined by using the concepts of interior
(internal part), boundary and exterior (external part) of a geometric ob-
ject. Given a geometric object a of the abstract type Geometry and the
operations: a.PS() returning the point set represented by a, a.boundary()
returning the geometric object representing the boundary of a (or the empty-
Geometry if a has an empty boundary), the following point sets are defined:

1. interior of a, denoted as I (a): it is the point set a.PS()\a.boundary. PS().
Namely, it is the set of object points that do not belong to its bound-
ary.

2. boundary of a, denoted as B(a): it is the point set a.boundary.PS().

3. exterior of a, denoted as E(a): it is the point set a.space() \ a.PS().
Namely, it is the set of points from the space embedding a that do not
belong to the object itself.

Definition 1 (Topological relation). Given two geometric objects a and b
of any geometric type, the definition of a topological relation is given, using
the combinatorial topology approach and the Dimensionally Extended 9-
Intersection Model (DE-9IM) [3], by assigning the following matrix:

dim(I(a) N I(b)) dim(I(a)NB(b)) dim(I(a)N E(b))

R(a,b) = | dim(B(a)NI(b)) dim(B(a)N B(b)) dim(B(a) (b))
dim(E(a)NI(b)) dim(E(a) N B(b)) dim(E(a) (b))

where the possible values are {F,0,1,2,T,«} with the meaning F: empty

set, 0: point, 1: curve, 2: surface, *: any, T: 0,1,2. O

NnNE
nNE

In order to have a set of topological relations for presenting the examples
in this report, the set RELy, is considered which is made up of the relations:
Disjoint (DJ), Touches (TC), In (IN), Contains (CT), Equals (EQ), Over-
laps (OV) and Crosses (CR) as defined in [3]. This set has the following
characteristics:

e [ts constituent relations are mutually exclusive: if the relation r €
RELy, is valid between two geometric objects, no other relation of
that set is satisfied.

The set is complete: given two geometric objects in a certain spatial
scene, the set will always have a relationship that is true in that scene.

Relations apply to objects of the same type or of different types.

Relations can be applied only between objects defined in the same
space (2D or 3D); comparison between objects defined in different
spaces is not supported.

Definition 2 (Reference set of topological relations RELy,). The formal
definition of each relation in RELy, is presented below together with the
specification of the corresponding set of 9-intersection matrices. Notice that
the set of matrices can change with respect to the considered geometric

types.

In particular, the following notation is used: pt denotes a point, c

denotes a curve, s denotes surface, while a, b are generic geometries.

DJ: a.DJ(b) 2 a.PS()Nb.PS() =)
Ry (pt,pt) = [FFT FFF TFT)
Rgi(pt,c/s) = [FFT FFF T xT]
Rdj (C/Svpt) = Rdj (pta C/S)T
Rgi(c/s,c/s) = [FFT FF x T *T]

TC: a.TC(b) £ (I(a) NI(b) = 0) A (a.PS() Nb.PS() # 0)

Reo(pt,c/s) = [FTF FFF TTT]
Ric(c/s,pt) = Ry(pt,c/s)T
Ric(c,s) = [Fxx «T* T+T)U[FT* %% T+T|U[F** Txx T*T)"
Ric(s,¢) = Rye(c, s)T
Ric(c,c) = [F*T «Tx T+«T|U[F+T Txx T+«T]U[FTT *%* TxT]
Ric(s, s) =

1e(5,8) = [F+T «T* T+T|U[F+T T T+T'U[FTT %%% T*T)!

a.IN(b) = (a.PS() Ub.PS() = a.PS()) A (I(a) N I(b) # D)A
(a.PS() Nb.PS() # b.PS())

Rin(pt,c/s)=[TFF FFF T xT|

Rin(c,c/s) = [T+« F x«F T xT|

Rin(s,s) =[TFF T« F Tx*T]

CT: a.CT(b) £ b.IN(a)

EQ: a.EQ(b) £ (a.PS()Nb.PS() = a.PS()) A(a.PS()Nb.PS() = b.PS())
Reg(a,b) = [TFF FTF FFT]

OV: a.0V(b) £ (I(a) N I(b) # B)A

(dim(a) = dim(b) = dim(I(a) NI(b)))A

(a.PS() N b.PS() # a.PS()) A (a.PS() N b.PS() #
b.PS()

Lonly in 3D spaces

Roy(s,8) =[2+T sxx T xT]
Roy(c,e) = [1#T sx% Tx*T]

e CR: a.CR(b) £ (I(a) NI(b) # D)A
(dim(a) Ndim(b) < max(dim(a),dim(b)))A
(a.PS() N b.PS() # a.PS()) A (a.PS() N b.PS() #

b.PS()
Rer(c,8) = [T+ T sx% TxT]
Rer(s,¢) = Rer(c, s)T
Rer(c,e) = [0« T xxx T xT)|
Rep(s,8) =[1%T sxx TxTJU[0xT xxx T xT) O

4 Discrete Vector Model

This section presents a discrete vector model containing both the data struc-
tures and the operations that are usually implemented in current spatial
database management systems in order to deal with the evaluation of topo-
logical relations. This model has to be considered as a formal description of
a possible implementation of a part of the SFA model, which indeed is an
abstract specification. In particular, we consider the SFA model reduces to
Point, LineString, Polygon and PolyhedralSurface types and we focus on the
implementation of the tests that are necessary for evaluating the topological
relations described by the 9-intersection matrix presented in Def. 1.

In a discrete vector model each geometry is described as a set of ver-
tices embedded in a discrete space. A vertex is represented as a tuple of
coordinates, namely by two or three real numbers encoded using a discrete
approach, like the floating point model. In the sequel, these numbers are
denoted as finite numbers. In the model definition we aim to identify those
operations that requires a computation on finite numbers thus having a
direct effect on the robustness of topological relation evaluation.

The model is composed of some vector types that are used to implement
the considered SFA types, some basic predicates and operations and some
derived predicate an operations. The following definitions formalize the
vector types.

Definition 3 (Vector types). The discrete vector model considered in this
report is characterized by the following vector types:

o A wertex v is a tuple of finite numbers representing a 2D or 3D coor-
dinate: v = (x,y) or v = (x,y, z), respectively.

e Let (v1,v2) be a pair of vertices, a segment is the linear interpolation
between them.

e Let (v1,...,v,) be a list of vertices, its linear interpolation is a ring if
and only if v; = v, namely it is a cycle.

e A patch is a planar polygon whose boundary is defined by a ring, i.e
(U1, ..., 0,) With v = vy,. O

The discrete representation of a Point corresponds to a single vertex,
while LineString, Polygon and PolyhedralSurface are described as sets of
vertices where a certain interpolation method is applied between consecutive
vertices. In particular, the linear interpolation is the most frequently used.

Definition 4 (Discrete geometry representation). Given a geometry g, its
discrete representation DR(g) is defined as a follows (v denotes a generic
vertex):

e If g € Point then DR(g) = v.

o If g € LineString then DR(g) = (v1,...,vy) with n > 1.
The linear interpolation between any two consecutive vertices v;, v;11
is a segment s;. Therefore, its discrete representation can be simplified
as follows: DR(g) = (s1,...,8m) with m =n—1 and s; = (v, vi41).

o If g € Polygon then DR(g) = ((vi,1,---,01m1)5« (Vk1y- -3 Vkny))
with n; > 2 and k > 0, where each list of vertices is a ring: the first
one represents the outer boundary, while the other ones represent the
inner boundaries (i.e. possible holes). Notice that since a Polygon can
be defined only in a 2D space, all boundary rings are coplanar.

Using the ring definition, the discrete representation of g € Polygon
can be simplified as follows: DR(g) = (r1,,ri) with & > 0, where each
ri = (Vi1,...,Vin,) is a ring .

e If g € PolyhedralSurface then DR(g) = ((vi,1,---,V1,n1), -+ (Vk1s-- -5
Ukm,)) With n; > 2 and k > 0, where each list of vertices is a ring rep-
resenting a polygon without holes. Indeed, without loss of generality
this assumes that no holes are admitted inside a patch.

Using the patch definition, the discrete representation of a Polyhedral-
Surface (Polygon) can be simplified as DR(g) = (p1,...,px) with k > 0
and where each p; is a planar patch defined by the ring (v; 1, ..., vin,)-

O

Considering that we are interesting in identifying the operations that are
necessary for performing the processing required to test topological relations
on the considered SFA types, since we need to study their robustness, we
list hereby the set of operations and predicates that we consider as the
set of basic tools for obtaining this goal. Indeed, each of them identifies a
type of processing on finite numbers that is required in many cases during
topological relation evaluation and that has to be analyzed for accessing its
robustness.

10

Definition 5 (Basic vector operations). The signature of each operation
and predicate follows the syntax (ret type) (geom).(op name) ({par type)
(par name)), where ret type is the return type, geom is the geometric ob-
ject, op name is the operation name, par type is the parameter type and par
name is the parameter name:

Operations

e real v.dist(vertexr vp): it returns the Euclidean distance between a
vertex v and another vertex vyg.

e verter s.start(): it returns the start point of the segment s.
e vertex s.end(): it returns the end point of the segment s.
o vertex s.midpnt(): it returns the midpoint of the segment s.

e segment sy U---U s, it joins two overlapping (or touching) segments
that lie on the same straight line, if the segments are disjoint or do
not lie on the same straight line, it returns the empty geometry.

o set(segment) p.bnd(): it returns the set of segments defining the bound-
ary of the patch p.

Predicates

e boolean v.eq(vertex vy): it is a test of equality between two vertexes.
In particular, two vertices are equal if they are bitwise identical.

e boolean s.cnt(vertex v): it is a test of containment between a vertex
and a segment interior: v C I(s).

e boolean s.int(segment sp): it is a test of intersection between the
interiors of two segments: dim(I(s) N I(sg)) = 0. If the intersection
has dimension 1, it returns false.

e boolean p.cnt(vertex v): it is a test of inclusion between a vertex v
and the interior of a patch p: v C I(p) # 0.

e boolean p.int(segment s): it is a test of intersection between the inte-
rior of a patch p and the interior of a segment s: dim(I(s)NI(p)) = 0.
If the intersection has dimension 1, it returns false.

e boolean p.int(patch pp): it is a test of intersection between the interior
of two patches: dim(I(p)NI(p0)) = 1. If the intersection has dimension
2, it returns false.]

11

In order to discuss the robustness of topological relation evaluations in
the discrete vector model it is necessary to express the tests required by
each cell of of the 9-intersection matrix (see Def. 1) in terms of the basic
predicates introduced above. Since in many cases the same expressions have
to be reused, the common repeated expressions are introduced hereby as
derived operations and derived predicates.

Definition 6 (Derived operations on vector types). The following derived
vector operations are defined on the introduced discrete vector model:

Operations and predicates on vertices

Semantics of operations and predicates is shown in Table 1. In the
sequel the list of operations and predicates is presented (v, v;, v; j represent
a vertex). Notice that, for evaluating topological relations only the test of
equality between two vertices will be required (see subsection 5), since also
the belonging to relation, the test of not empty intersection between two
sets of vertices and the intersection can be derived from it.

e boolean v.bel(set(vertex)V): it tests if v belongs to V = {vy,...,v,}.

o set(vertex) {vi1,...,vin} N{v21,...,v2,m}: it returns the common
vertexes between Vi = {vy1,...,v1,} and Vo = {va1,...,v2m}.

e boolean {vi1,...,v1n} N{vi2,...,v2m} # 0: it returns true if at
least one vertex exists that belongs to both sets {vi1,...,v1,} and
{01,2, ce 7”2,m}~

Table 1: Expressions for derived operations and predicates regarding ver-
tices. Letters v, vy, v denotes vertices, while V, V7 and V5 denotes set of
vertices.

Signature Derivation expression Dep.

boolean v.bel(V) v.eq(vr) V- -V v.eq(vy) v.eq(vp)
set(vertex) Vi N V4 {v] 3 € V1 :v.eq(vi) AJvg € Vot veq(ve)} v.eq(vp)
boolean Vi N Vo # 0 Juy € Vi(Fvy € Va(vr.eq(v2))) v.eq(vg)

Operations and predicates on segments

Semantics of operations and predicates is shown in Table 2. In the
sequel the list of operations and predicates is presented (s, s; represent a
segment). Notice that, for evaluating topological relations only the test of
equality between two vertices and the containment of a vertex in a segment
will be required (see subsection 5), since also the equality relation and the
topological relations: in, overlaps and disjoint between two segments can be
derived from them.

12

o set(vertex) s.bnd(): it returns the boundary of the segments.

e boolean si.eq(segment sg2): it tests the equality between two discrete
segments.

e boolean s.bel(set(segments) S): it tests if s belongs to S = {s1,...,s,}.

e boolean si.in(segment s9): it is a test of inclusion between two seg-
ments s; C So.

e boolean s1.ov(segmentss): it is a test of intersection between two seg-
ments that requires they share a portion of line, but excludes inclusion
or equality (i.e. dim(I(s1) N1I(s2) =1).

e boolean s1.dj(segment s9): it is a test of interior disjointness between
two segments (I(s1) N I(s2) =0).

o set(segments) s.diff(set(segments)S): it computes the difference be-
tween a segment s and a set of segments S that overlap s.

Operations and predicates on patches

Semantics of operations and predicates is shown in Tab. 3 and Tab. 4. No-
tice that, for evaluating topological relations the necessary tests on patches
are: containment and overlapping of a segment in a patch, and relations
overlaps, disjoint, in and equals between patches. Moreover, for specifying
the containment of a segment in a patch in particular cases, an additional
operation is introduced, called p.bnd,,(s), that returns the set of boundary
segments of a patch p that overlap or are contained in a segment s. Finally,
we remark that for evaluating the overlaps relation between a patch and a
segment the predicate p.cnt(s) is not necessary. In the sequel p, p; represent
a patch:

o set(vertex) p.ver(): it returns the patch vertexes.

e boolean p.cntini(segment s): it is a test of inclusion between a segment
and a patch interior (I(s) C I(p)).

e boolean p.cnt(segment s): it is a test of inclusion between a segment
and a patch (s C p).

e boolean p.ov(segments): it is a test of overlapping between a segment
interior and a patch interior (dim(I(s)NI(p)) =1A=(I(s) C I(p)).

e boolean p.dj(segments): it is a test of disjointness between a segment
interior and a patch interior (I(s) N I(p) = 0).

e boolean pi.eq(patch py): it is a test of equality between p; and ps.

13

Table 2: Expressions for derived operations and predicates regarding seg-
ments. Letter s denotes a segment, while S is a set of segments

Signature

Derivation expression

Dependency

set(vertex) s.bnd()

{s.start(), s.end()}

s.start(), s.end()

boolean s1.eq(s2)

(s1.start().eq(sa.start()) A
s1.end().eq(ss.end())) V

(s1.start().eq(sz.end()) A
s1.end().eq(sa.start()))

v.eq(vg)

boolean s.bel(.S)

ds; € S(s.eq(s;))

v.eq(vo)

boolean s1.in(s2)

(s1.start().eq(sz.start()) A
S9.cnt(sy.end(
(s1.start().eq(sz2.end()
so.cnt(s1.end()))
(s1.end().eq(sa.start(
sg.cnt(sy.start())) V
(s1.start().eq(s2.end()
s9.cnt(sy.end()))

(sa.cnt(sy.start()) A

so.cnt(s1.end()))

v.eq(vo), s.cnt(v),
s.start(), s.end()

boolean s1.0v(s2)

(s1.cnt(sq.start()) A

sg.cnt(sy.end())) V

(s1.cnt(sg.start()) A

so.cnt(sy.start())) V

(s1.cnt(sq.end()) A

so.cnt(s1.end())) V

(s1.cnt(sz.end()) A

so.cnt(sy.start()))

s.ent(v)
s.start(
s.end()

NG

)

boolean s1.dj(s2)

—s1.4nt(s2) A —181.00(s2)A
—81.1n(s2) A —s1.eq(s2)A

—89.11(81)

v.eq(vo), s.cnt(v)
s.int(sg),

set(segm) s.diff(S)

s.diff(S) = {s; | s;.in(s) AVs; € §
(si.dj(s;))} NSUs.diff(s) = SUs

e boolean py.inta(patch po): it is a test of interior intersection of dimen-
sion 2 between two patches interior (dim(I(p1) N I(p2)) = 2).

e boolean pj.in(patch py): it is a test of inclusion between two patches

(p1 C p2).

e boolean p;.dj(patch ps): it is a test of interior disjointness between two
patches (I(pl) NI (p2) = 0).

e boolean pi.ou(p2): it is a test of interior overlapping between two
patches (dim(I(p1) N1(p2)) =2 AN —(I(p1) C I(p2)) N —(I(p2) C

I(Pl)))-

14

O]

Table 3:

Expressions for derived operations and predicates regarding

patches. Letters p, p; denote patches, s, s; denote segments, v, v; are ver-

tices.
Signature Derivation expression Dependency
set(vertez) p.bnd(), s.start(),
p.ver() Usep.onag 5-bnd() s.end()
Yo € s.bnd()(p.cnt(v) V
ds; € p.bnd()(s;.cnt(v) V s.start(), s.end()
boolean v.bel(s;.ond()))) A s.ent(v), p.ent(v)

D-cnting(s)

Vsp € p.bnd()(—s.int(sp) A
=s.00(sp))A
(s.ray(p.bnd()) mod 2) =1

s.int(so), s.ray(S)
v.eq(vo)

set(segments)
p.bndy, (8)

{sp | sp € p.bnd() A (sp.ou(s) V sp.in(s))}

p.bnd(), s.start(),
s.end(), s.cnt(v),
v.eqlvo)

p.cntini(s) V

p.bnd(), p.cnt(v),

boolean s.start(), s.end(),
s, € p.bnd()(sp.0v(s)) A .
p.cnt(s) P o di pn 5 N s.cnt(v), s.int(so),
Vsj € (s.diff(p.bndyy(s)))(p-cntini(s;)) s.my(S),v.eq(vg)
(Fv € s.bnd()(p-cnt(v) V v.bel(p.ver())V
ds,, € p.bnd()(sp-cnt(v))) A
(3s1 € p.bnd()(s1.9nt(s)) V
FJu; € p.ver()(s.cnt(v;) A
—dsy € p.bnd()(v;.bel(s2.bnd()) A
(s2.00(s) V s2.in(s)))))) p.bnd(), p.ent(v),
boolean V (3s1 € p.bnd()(s1.int(s)) A s.start(), s.end(),
p.ov(s) dso € p.bnd()(—s2-€q(s1) N sa.int(s))) s.int(sp), s.cnt(v),
V (Fv; € pver()(s.cnt(v;) A v.eq(vp)
—3sg € p.bnd()(v;.bel(s2.bnd()) A
(82.00(8) V s2.in(s))) A
Ju; € p.ver()(—w;.eq(vy) A s.cent(v;) A
—3sy € p.bnd()(v;.bel(s2.bnd()) A
(s2.00(s) A s2.1n(8)))))
boof.ac;;'(s) —p.ant(s) A —p.ent(s) A —p.ov(s) p.int(s), p.bnd()
p.cnt(v), s.ray(S),
s.start(), s.end(),
s.int(sg), s.cnt(v),
v.eq(vo)
boolean Vs1 € p1.bnd()(Is2 € p2.bnd()(s1.eq(s2))) A
pr.eq(p2) Vsa € pa.bnd()(3Is1 € p1.bnd()(s2.€q(s1))) p-bnd(), v-eq(vo)

15

Table 4: FExpressions for derived operations and predicates regarding
patches. Letters p, p; denote patches, s, s; denote segments, v, v; are ver-
tices. (Cont.)

Signature Derivation expression Dependency

(3si € p1.bnd()(pa.cnt(s;) V pa.ov(s;)) A
ds; € p1.bnd()(—sj.eq(si) A
boolean (p2.cnt(s;) V pa.ov(s;))))V the same as
p1.inta(p2) (3si € pa2.bnd()(p1.cnt(s;) V pr.ov(s;)) A p.cnl(s)
ds; € po.bnd()(—sj.eq(si) A
(pr-cnt(s,) V pr-on(s;))))

(Vs1 € p1.bnd()(p2-cnt(s1) V

boo;?z'xir;(m) Jdsg € pa.bnd()(s1.€q(s2) V s1.in(s2)))) ;}fni?:)le as
A —p1-eq(p2)
boolean ' . the same as
pr.di(ps) —p1.int(pe) A —pr.intz(p2) A —p1.eq(p2) p.cnt(s)—k
p1-int(p2)
boolean p1.inta(p2) A —pr.an(pe) A —pa.in(pr) the same as
p1.0v(p2) A —p1.eq(ps) p.cnt(s)

A E
— s
[J

Figure 4: Examples of possible cases that make true the predicate p.cnt(s).
Notice that segments s4 and sp do not satisfy the predicate the p.cntine(),
while all the other segments do.

In order to simplify as much as possible the specification of the evaluation
tests for topological relations, which are illustrated in the next subsection we
introduce some derived operations and predicates that apply to geometries
of types: Linestring, Polygon and Polyhedral Surface. These operations are
presented in Table 5.

5 Testing Topological Relation in the Discrete Vec-
tor Model

This section shows how each cell of the 9-intersection matrix, that describes

the relation among the discrete representation DR(g1), DR(g2) of two ge-
ometries g1, g2, can be computed by evaluating a given logical expression

16

Table 5:

Expressions for derived operations and predicates regarding

linestrings (line), polygons (poly) and polyhedral surfaces (psur). Moreover,
DR(line) = In = {s1, ..., sk} (k > 0), DR(poly) = pg = {ring,...,ring;} =
{paty,...,pat;} (I > 1) and DR(psur) = ps = {p1,...,pm} (m > 0).

Signature

Derivation expression

vertex In.start()
vertex In.end()
set(vertez) In.bnd()

set(vertex) In.intVer()
boolean Iny.eq(Iny)

linestring pg.extBnd()
linestring pg.intBnd()
set(linestring) pg.bnd()
patch pg.extPat()
set(patch) pg.intPat()
boolean pg.eq(pg2)

set(segment) ps.bnd()
set(segment)
ps.intSeg()
set(segment)
ps.intVer()
boolean psy.in(pss)
boolean psi.eq(pss)

if —s;.start.eq(s,.end()) then sy.start() else)

if —s1.start.eq(sg.end()) then si.end() else ()

if —sy.start.eq(sk.end()) then {si.start(),sg.end()}
else ()

{si-start() | s; € In} \ In.bnd()

Vs1 € Ing(3sa € Ina(s1.eq(s2))) A

Vso € Ing(Ts1 € Iny(s2.eq(s1)))

Ting,

if |pg| > 1 then {ring,, ..., ring,} else 0
{pg.extBnd()} U pg.intBnd()

pat,

{paty, ..., pat;}

pg; -extBnd().eq(pgz-.extBnd()) A

Ying € pgy -intBnd() (Ilng €
DGy intBnd()(Iny.eq(in2))) A

Ving € Do intBnd()(Ilny €

pgq-intBnd()(Iny.eq(Inz)))
{s | 3p € ps(s.bel(p.bnd()))}
{s | 3p € ps(s.bel(p.bnd()) N —s.bel(ps.bnd()))}

{v | 3p € ps(Ts € p.bnd()(v.bel(s.bnd()))) A
—3s’ € ps.bnd()(v.bel(s'.bnd())))}

Vpi € ps1(Ipj € psa(pi-eq(p;))

ps1.in(psz) A psa.in(psy)

containing some of the vector predicates previously presented and having
DR(g1), DR(g2) as parameters. This is obtained by considering for each
matrix cell all the possible combinations of geometry types that are admis-
sible. Since this matrix can be used for the definition of any topological
relation, the obtained set of expressions is sufficient for evaluating any topo-
logical relation which is defined by means of a 9-intersection matrix.

This approach is similar to the one applied in [15], but is extended to
the 3D object of the SFA specification. In the following propositions, this
notation is used: pt, In, pg and ps represent the discrete representation
in the vector model of a point, a linestring, a polygon and a polyhedral
surface, respectively. While v, s and p are a vertex, a segment and a patch
of the vector model, respectively. Moreover, since every test on the matrix
diagonal is symmetric, as the intersection test is symmetric, only one versus
is presented for the cells on the diagonal.

Proposition 1 (cell(1,1): Interior-Interior intersection). Given two geome-

17

tries @ and b, the following table shows the cases that might occur in the
evaluation of the predicate dim(I(a) N I(b)), i.e. the cell (1,1) of the 9-
intersection matrix, according to the possible geometric types of a and b

(type(a)/type(b)).

pt In Py ps
pt C.1.1 C.1.2 C.1.3 C.14
see Table 6 see Table 6 see Table 6 see Table 6
In C.1.5 C.1.6 C.1.7 C.1.8
same as C.1.2 see Table 15 (only in 2D space) see Table 7

dim = 0 = always F
other cases in Table 16

pg C.1.9 C.1.10 C.1.11 C.1.12
same as C.1.3 same as C.1.7 (only in 2D space) NA
see Table 9
ps C.1.13 C.1.14 C.1.15 C.1.16
same as C.1.4 same as C.1.8 NA (only in 3D space)
see Table 8

Proof. C.1.12 and C.1.15 are not applicable (NA), since as mentioned in
Sec. 3, polygon geometries can be embedded only in 2D space while poly-
hedral surfaces only in 3D space, and topological relations can be evaluated
only inside the same space. For all the other cases, Tables 6, 16, 15, 7, 9,
8 and 10 in Appendix 6 shows for each pair of geometric types a sequence
of scenes that represent the possible cases of Interior-Interior intersection.
The completeness of the set of considered scenes is discussed hereby for each
case.

C.1.1 — dim=0/T: two points can only intersect each other if they are
equal. No other cases exist.

C.1.2 — dim=0/T: a point pt can intersect the interior of a linestring
In if there exists a segment s; of In that contains pt in its interior or if pt
belongs to the set of internal vertices of In. No other cases exist.

C.1.3 — dim=0/T: a point pt can intersect the interior of a polygon pg if
it is contained in the interior of its external patch and it does not intersect
any internal patch of pg. No other cases exist.

C.1.4 — dim=0/T: a point pt can intersect the interior of a polyhedral
surface ps if it is contained in the interior of one of its patches or it is
contained in one of its internal segments or it is equal to one of its internal
vertices. No other cases exist.

C.1.6 — dim=0: given two linestrings In; and Ing, represented as sets of
segments, they can produce an interior-interior intersection with dimension 0
if their pointset intersection is composed of one or more isolated points. This
can be obtained starting from the intersection of the constituent segments,
called s; and s; respectively, in the following ways: (i) s; and s; share one
endpoint which is not part of the iny boundary or Iny boundary (i.e. Ing

18

and Iny have at least one internal vertex in common); (ii) s; and s; intersect
each other in one point of their interiors; (iii) finally, one endpoint of s;
which is not part of the In; boundary belongs to s; interior or vice versa;
(iv) the other possible scenes, in which the predicate is false, are s; disjoint
sj, i.e. no intersection, or s; overlap/in/contains/equal sj, i.e. intersection
of dimension 1.

C.1.6 — dim=1: two linestring In; and In, can produce an interior-
interior intersection with dimension 1 if their pointset intersection is com-
posed of one or more segments. This can be obtained starting from the
intersection of the component segments, called s; and s; respectively, when
s; overlap/in/contains/ equal s;.

C.1.6 — dim=T: it is obtained by combining the previous two cases.

C.1.7 — dim=1/T: a linestrings In and a polygon pg can produce an
interior-interior intersection with dimension 1 in the following cases: (i)
at least one component segment of n has one end point intersecting the
external patch of pg and not intersecting any internal patches of pg; (ii) at
least one component segment of In crosses one segment of the pg boundary;
(iii) at least one component segment of [n in contained in the external patch
of pg but not in any of its internal patches.

C.1.8 — dim=0: a linestring In and a polyhedral surface ps can produce
an interior-interior intersection with dimension 0 in the following cases: (i)
at least one component segment of In has an intersection of dimension 0
with a patch of ps, or with an internal segment of ps, or with an internal
vertex of ps; (ii) at least one internal vertex of In intersects a patch of ps, or
an internal segment of ps, or an internal vertex of ps; additionally, in both
cases no component segment of In is coplanar and has an intersection with
any patch of ps.

C.1.8 — dim=1: a linestring In and a polyhedral surface ps can produce
an interior-interior intersection with dimension 1 in the following cases: (i) at
least one component segment of In is coplanar and has an interserction with
a patch of ps; (ii) at least one component segment of [n is equal to/contained
or contains/overlaps an internal segment of ps.

C.1.8 — dim=T: a linestring In and a polyhedral surface ps can produce
an interior-interior intersection in the cases of the two previous paragraphs.

C.1.11 - dim=2/T: two polygons pg;, pgs can produce an interior-
interior intersection in the following cases: (i) they have the same external
path; (ii) there exists a segment s of the boundary of pg; that intersects the
external patch of pgy and there is no internal patch of pg, that contains s,
or vice versa.

C.1.16 - dim=0: two polyhedral surfaces ps;, ps, can produce an
interior-interior intersection of dimension 0 in the following cases: (i) ps;
and ps, share a common internal vertex, (ii) an internal vertex of ps; in-
tersects a patch, an internal segment or an internal vertex of ps, (or vice
versa); (iii) the interior of an internal segment of ps; has an intersection of

19

dimension 0 with the interior of an internal segment of ps,; in all cases an
additional condition is required, i.e. any patch of ps; is interior disjoint from
any patch of ps,.

C.1.16 - dim=1: two polyhedral surfaces ps;, ps, can produce an
interior-interior intersection of dimension 1 in the following cases: (i) at
least one patch of ps; has an intersection of dimension 1 with at least a
patch of psy; (ii) at least one patch of ps; has an intersection of dimension 1
with at least one internal segment of ps,; (iii) at least one internal segment
of ps; is equals to/contains/is contained/overlaps with at least one internal
segment of ps;; in all cases an additional condition is required, i.e. no patch
of ps; has an intersection of dimension 2 (coplanarity) with a patch of ps,.

C.1.16 - dim=2: two polyhedral surfaces ps;, ps, can produce an
interior-interior intersection of dimension 2, i.e. at least one patch of ps;
equals to/contains/is contained/ovelaps with at least one patch of pss.

C.1.16 — dim=T: two polyhedral surfaces ps;, psy can produce an interior-
interior intersection if one of the cases described in the previous three points
occurs, without the specified additional conditions.]

Proposition 2 (cell(1,2): Interior-Boundary intersection). The following
table shows the possible cases that might occur in the evaluation of the
predicate dim(I(a) N B(b)), i.e. the cell (1,2) of the 9-intersection matrix,
according to the possible geometric types of a and b (type(a)/type(b)).

pt In Py ps
pt C.2.1 C.2.2 C.2.3 C.24
alv;ays see Table 11 same as C.1.2 same as C.1.2
In C.2.5 C.2.6 C.2.7 C.2.8
always (only 2D space) (only 3D space)
F see Table 11 same as C.1.6 same as C.1.6
pg C.2.9 C.2.10 C.2.11 C.2.12
always (only 2D space) (only 2D space) NA
F same as C.1.3 same as C.1.7
ps C.2.13 C.2.14 C.2.15 C.2.16
always (only 3D space) NA (only 3D space)

F same as C.1.4 same as C.1.7

Proof. The following cases can be reduced to situations in the previous
proposition. In case C.2.3, pg.bnd() is a set of 2D rings: the test C.1.2
has to be applied to each pair (pt,r;), s.t. r; € pg.bnd(), and at least one
pair must be true. In C.2.4 ps.bnd() is a set of 3D rings: the test C.1.2 has
to be applied to each pair (pt,r;), s.t. r; € ps.bnd(), and at least one pair
must be true. In C.2.7 pg.bnd() is a set of 2D rings: the test C.1.6 has to
be applied to each pair (In,r;), s.t. 7; € pg.bnd(), and at least for one pair
it must be true. In C.2.8 ps.bnd() is a set of 3D rings: the test C.1.6 has
to be applied to each pair (In,r;), s.t. r; € ps.bnd(), at least for one pair it

20

must be true. In C.2.10 In.bnd() is a set of points: the test C.1.3 has to be
applied to each pair (v;,In), s.t. v; € In.bnd(): at least for one pair it must
be true. In C.2.11 pgy.bnd() is a set of 2D rings: the test C.1.7 has to be
applied to each pair (74, pg1), s.t. r; € pgs.bnd(), and at least for one pair it
must be true. In C.2.14 In.bnd() is a set of points: the test C.1.4 has to be
applied to each pair (v;, ps), s.t. v; € In.bnd(), and at least for one pair it
must be true. In C.2.16: ps,.bnd() is a set of 3D rings: the test C.1.7 has
to be applied to each pair (r;,ps1), s.t. r; € psa.bnd(), and at least for one
pair it must be true.

C.2.1, C.2.5, C.2.9, C.2.13: are always false, since pt has empty
boundary, i.e. B(b) = 0 if type(b) = pt.

C.2.12 and C.2.15 are not applicable (NA), because polygons and poly-
hedral surfaces are embedded in two different spaces.

The only cases that remain to be discussed are C.2.2 and C.2.6. Tab. 11
in Sec. 6 shows a sequence of scenes that represent the possible cases of
Interior-Boundary intersection among points and linestrings. The fact that
the set of considered scenes is complete is discussed hereby for each case.

C.2.2 - dim=0/T: a point pt intersects the boundary of a linestring In
if there exists an endpoint of In that is equal to pt. No other cases exist.

C.2.6 - dim=0/T: the interior of a linestring In; intersects the boundary
of another linestring Iny in the following cases: (i) there exists an endpoint
of Iny that intersects an internal vertex of Iny; (ii) there exists an endpoint
of Ins that intersects the interior of a component segment of In;. No other
cases exist. O

Proposition 3 (cell(1,3): Interior-Exterior intersection). The following ta-
ble shows the cases that might occur in the evaluation of the predicate
dim(I(a) N E(b)), i.e. the cell (1,3) of the 9-intersection matrix, according
to the possible geometric types of a and b (type(a)/type(b)).

pt In Py ps
ot C.3.1 C.3.2 C.3.3 C.3.4
equivalent
to see Table 12 see Table 12 see Table 12
- C.1.1
In C.3.5 C.3.6 C.3.7 C.3.8
always (only 2D space) see (only 3D space) see
T see Table 13 Table 13 Table 13
pg C.3.9 C.3.10 C.3.11 C.3.12
always (only 2D space) see
T always T Table 14 NA
ps C.3.13 C.3.14 C.3.15 C.3.16
always always T NA (only 3D space) see

T Table 14

O]

Proof. C.3.1 is equivalent to ~C.1.1 since the exterior of a point intersects

21

another point if they are disjoint, i.e. they are not equal. C.3.5, C.3.9 and
C.3.13 are always true: the exterior of a point pt always intersects any given
line, polygon or polyhedral surface respectively, since a line/polygon/surface
cannot be contained in pt. C.3.10 and C.3.14 are always true: the exte-
rior of a line In always intersects any given polygon or polyhedral surface
respectively, since a polygon/surface cannot be contained in In. C.3.12 and
C.3.15 are not applicable (NA), since polygons and polyhedral surfaces are
embedded in two different spaces. Tables 12, 13 and 14 in Appendix 6 show
a sequence of scenes that represent the possible cases of Interior-Exterior in-
tersection in the remaining cases. The completeness of the set of considered
scenes is discussed hereby for each case.

C.3.2 - dim=0/T: a point pt intersects the exterior of a linestring In, if it
is not poinset contained in In, which can be tested by applying the following
condition: pt is not equal to the endpoints of In and it is not equal to one
of the internal vertices of In and it is not contained in the interior of one of
its component segments.

C.3.3 - dim=0/T: a point pt intersects the exterior of a polygon pg, if it
is not poinset contained in pg, which can be tested by applying the following
condition: pt is not contained in the interior of the external patch of pg or
it is contained in the interior of one internal patch of pg and it is neither
contained in the interior of one component segment s of pg boundary nor it
is equal to one of the endpoints of s.

C.3.4 - dim=0/T: a point pt intersects the exterior of a polyhedral sur-
face ps, if it is not poinset contained in ps, which can be tested by applying
the following condition: pt is not contained in the interior of any patch of
ps and it is not contained in the interior of one component segment s of the
boundary of any patch of ps and it is not equal to one of the endpoints of s.

C.3.6 - dim=1/T: a linestring In; intersects the exterior of another
linestring Ing, if it is not poinset contained in Ing, which can be tested
by applying the following condition: there exists at least one component
segment s of In; which overlaps or contains one component segment of Ing
or s is disjoint from it.

C.3.7 - dim=1/T: a linestring In intersects the exterior of a polygon pg,
if it is not poinset contained in pg, which can be tested by applying the
following condition: either there exists at least one component segment s of
In which is not contained in the external patch of pg or that is contained in
one internal patch of pg or that crosses at least one component segment of
the boundary of pg.

C.3.8 - dim=1/T: a linestring In intersects the exterior of a polyhedral
surface ps, if it is not poinset contained in ps, which can be tested by ap-
plying the following condition: there exists at least one component segment
s of In which is overlap/intersects/is disjoint from all patches of ps and that
is not contained or equal to any internal segment of ps.

C.3.11 - dim=2/T: a polygon pg; intersects the exterior of another poly-

22

gon pgo, if it is not poinset contained in pgs, which can be tested by applying
the following condition: there exists at least one component segment s of
the boundary of pg; which is not contained in the external patch of pgs or
that is contained in the external patch of pgs but it crosses/is contained in
at least one internal patch of pgs.

C.3.16 - dim=2/T: a polyhedral surface ps; intersects the exterior of
another polyhedral surface pso, if it is not poinset contained in pso, which
can be tested by applying the following condition: there exists at least one
patch p; of ps; such that for all patches pa of pse, p1 overlaps/intersects/is
disjoint from po.

O

Proposition 4 (cell(2,2): Boundary-Boundary intersection). The following
table shows all possibile cases in the evaluation of the predicate dim(B(a)N
B(b)), according to the geometric types of a and b (type(a)/type(d)).

pt In Py ps
pt C4.1 C.4.2 C.4.3 C.44
alv;ays always F always F always F
In C.4.5 C.4.6 C.4.7 C.4.8
always (only 2D space) (only 3D space)
F same as C.1.1 same as C.1.2 same as C.1.2
pg C.4.9 C.4.10 C.4.11 C.4.12
always ‘ (only 2D space)
P same as C.4.7 same as C.1.6 NA
ps C.4.13 C.4.14 C.4.15 C.4.16
always (only 3D space)
P same as C.4.8 NA same as C.1.6

]

Proof. The following cases can be reduced to situations in the previous
propositions. In C.4.6 In;.bnd() (Ing.bnd()) is a set of points: the test C.1.1
has to be applied to each pair (v, v2), s.t. v1 € Iny.bnd() and ve € Ing.bnd(),
and at least for one pair it must be true. In C.4.7 In.bnd() is a set of points
while pg.bnd() is a set of 2D ring: the test C.1.2 has to be applied to each
pair (v,7;), s.t. v € In.bnd() and r; € pg.bnd(), and at least one pair must be
true. In C.4.11 pg;.bnd() (pgy.bnd()) is a set of 2D ring: the test C.1.6 has
to be applied to each pair (r1,r2), s.t. r1 € pg;.bnd() and r2 € pgy.bnd(),
and at least for one pair it must be true. Finally, in C.4.16, ps;.bnd()
(psy.bnd()) is a set of 3D ring: the test C.1.6 has to be applied to each pair
(ri,r2), s.t. r1 € ps;.bnd() and ro € ps,.bnd(), and at least for one pair it
must be true.

Cases C.4.12 and C.4.15 are not applicable (NA), since polygons and
polyhedral surfaces are embedded in two different spaces. There is no new
cases to prove with respect to previous propositions.]

23

Proposition 5 (cell(2,3): Boundary-Exterior intersection). The following
table shows the possible cases in the evaluation of the predicate dim(B(a)N
E(b)), according to the possible geometric types of a and b (type(a)/type(b))

pt In pg ps
pt C.5.1 C.5.2 C.5.3 C.54
always F always F always F always F
In C.5.5 C.5.6 C.5.7 C.5.8
if
In.bnd() # if in.bnd() = 0 ((?nly 2D space) (iny 3D space)
0 then it is T if In.bnd() =0 if In.bnd() =0
then it is . ’ then it is F, then it is F,
otherwise same as . .
T, €39 otherwise same as otherwise same as
otherwise it C.3.3 C.34
is F
Py C.5.9 C.5.10 C.5.11 C.5.12
always T same as C.3.6 (only 2D space) NA

same as C.3.7

ps C.5.13 C.5.14 C.5.15 C.5.16
(only 3D space)

always T same as C.3.6 NA same as C.3.8

Proof. The following cases can be reduced to situation in the previous propo-
sitions. In C.5.6 In;.bnd() is a set of points: the test C.3.2 has to be applied
to each pair (v,lng), s.t. v € In1.bnd(), and at least for one pair it must be
true. In C.5.7 In.bnd() is a set of points: the test C.3.3 has to be applied to
each pair (v,pg), s.t. v € In.bnd(), and at least for one pair it must be true.
In C.5.8 In.bnd() is a set of points: the test C.3.4 has to be applied to each
pair (v,ps), s.t. v € In.bnd(), and at least for one pair it must be true. In
C.5.10 pg.bnd() is a set of 2D rings: the test C.3.6 has to be applied to each
pair (r,In), s.t. © € pg.bnd(), and at least for one pair it must be true. In
C.5.11 pg;.bnd() is a set of 2D ring: the test C.3.7 has to be applied to each
pair (r,pg2), s.t. r € pg;.bnd(), and at least for one pair it must be true.
In C.5.14 ps.bnd() is a set of 3D rings: the test C.3.6 has to be applied to
each pair (r,In), s.t. r € ps.bnd(), and at least for one pair it must be true.
Finally, in C.5.16, ps;.bnd() is a set of 3D ring: the test C.3.8 has to be
applied to each pair (r, psy), s.t. r € ps;.bnd(), and at least for one pair it
must be true.

Cases C.5.12 and C.5.15 are not applicable (NA), since polygons and
polyhedral surfaces are embedded in two different spaces. Cases C.5.1,
C.5.2, C.5.3 and C.5.4 are always false since the boundary of a point is
always empty. Case C.5.5 is true if In.bnd() # 0, since the boundary of a
linestring is composed of two points and at least one always intersects the
exterior of another point, otherwise, it is false. Case C.5.9 (C.5.13) is true
since the boundary of a polygon (polyhedral surface) is a set of 2D (3D)
rings and they always intersect the exterior of a point. There is no new
cases to prove with respect to previous propositions. O

24

The reference set of topological relations considered in this paper can
be implemented using the formulas presented in the previous propositions.
In order to obtain robust tests for their evaluation, the following section
formalizes some assumptions about the distributed environment in which
the data exchange is performed, and on their basis defines some rules that
the vector representation has to satisfy for guaranteeing robustness.

6 Proof Tables

This section reports the proof tables for Prop.-5 in Sec. 5. The following
notation is used inside such tables: pn, In, pg, and ps represent the discrete
representation in the vector model of point, linestring, polygon and polyhe-
dral surface, respectively. Similarly, v, s, and p denotes a vertex, segment,
and patch, respectively.

Table 6: Proof Interior-Interior Intersection (pt/*)

Case Testing conditions Scene
t,/pt

Eﬁni/fo?)T ph-eq(pty)
(pt/In) | ._/n\
dim=0,T Is € In(s.cnt(pt)) V. pt.bel(ln.int Ver())

pg.extPat().cnt(pt) A o
(pt/pg) —3dp € pt.intPat()(p.cnit(pt)
dim=0/T V pt.bel(p.ver())

V 3s € p.bnd()(s.cnt(pt)))

Jp € ps(p.cnt(pt) V
(pt/ps) . S
dim=0/T pt.bel(ps.intVer()) V ’

ds € ps.intSeg()(s.cnt(pt))))

25

Table 7: Proof Interior-Interior Intersection (In/ps) —

(only in 3D space)

Necessary Additional
Case o .y Scene
conditions conditions
s € In(Tp € ps(
p.int(s))V Vs € In(¥p € ps
In/ps dsy € ps.intSeg()((p-int(s) V p.dj(s)))A ;E_ /
dim =0 s.int(s1))V Vs € In(Vsy € ps.intSeg() pe
Juy € ps.int Ver()((s.dj(s1) V s.int(s1)))
s.cnt(vr)))
Inng
Fv € In.int Ver()(o Nl
Ip € ps(p.cent(v))V Vs € In(Vp € ps D)
dsy € ps.intSeg()((p.int(s) V p.dj(s)))A
s1.cnt(v))V Vs € In(Vs1 € ps.intSey() Inne
vy € ps.intVer()((s.dj(s1) V s.int(s1)))A @
v.eq(v1))) -
s € In(Tp € ps(I
(s) Vp.ov(s))V %
In/ps Eilcgtps intSeq /
dim =1 s.0v(s1)Vsy. z(z,(s) L\'
s.eq(s1)))
In/ps s € In(Ip € ps(—p.dj(s))V /\; /
dim=T Js1 € ps.intSeg()(L

s.00(s1) V s.in(s
sl.in(s) V s.eq(
Jvy € ps.intVer(

)V

$1) V s.int(s1))V
)(s.cnt(v1))

Fv € In.intVer()(
Ip € ps(p.cent(v))V
sy € ps.intSeg()(

s1.cnt(v))V
vy € ps.intVer()(
veeg()))

26

Table 8: Proof Interior-Interior intersection (psi/ps2) dim=0/1/2 — (only

in 3D space).

Necessary Additional
Case s .s Scene
conditions conditions
ps1/pse Jv € psy.intVer()(Vp1 € ps1(Vp2 € psa
dim=0 v.bel(psq.intVer())) p1.dj(p2)))
Jv € psy.intVer()(
Jp € psa(p.cnt(v)V
s € p.bnd()(s.cnt(v))))V Vp1 € ps1(Vp2 € psa(
Jv € psg.intVer()(p1.dj(p2)))
Ip € ps1(p.cent(v)V
s € p.bnd()(s.cnt(v))))
dsy € psy.intSeg()(
Jso € psa.intSeg()(vgl 3'5;91)(;])2 € pss o
s1.9nt(s2))) 1-4jP2 /
ps1/psa Ip1 € ps1(Ip2 € psaf Vp1 € ps1(Vpa € psa Pno
dim=1 p1.int(p2))) p1.dj(p2) V p1.int(p2)
Js € psy.intSeg()

Jp € psa(p.cnt(s)V

p-ou(s)))V Vp1 € ps1(Vp2 € psa(Puo
Js € psa.intSeg() p1.dj(p2) V p1.int(p2)

Ip € ps1(p-cnt(s)V
p.ow(s))

Js1 € psy.intSeg()(

Jsg € psa.intSeg()(Vp1 € ps1(Vp2 € psa oo A—r
s1.00(s2) V $1.in(s2)V p1.dj(p2) V p1.int(p2) Z . ,;
s1.€q(s2)))

ps1/ps2 Ip1 € ps1(Ip2 € psa
dim=2 pi.eq(p2) V p1.intz(p2)))

27

Table 9: Proof Interior-Interior Intersection (pg1/pgs) — (only in 2D space)

Case Testing conditions Scene
Pg1/Pg2
dim—2)T Por-ertt at().eq(pgy. exPat())

3s € pg,.bnd()((pgz-extPat().ov(s)V
pga.extPat().cnt(s))A
—3p € pg,.intPat()(p.cni(s)))V
ds € pgy.bnd()((pg:1.extPat().ov(s)V
pg1.extPat().cnt(s))A

—3dp € pgy.intPat()(p.cni(s)))

§§°

Table 10: Proof Interior-Interior intersection (ps/ps) dim=T — (only in 3D

space).
Case Necessary conditions Scene
ps1/psa , same last row of
dimeT JP1 € psi1(3p2 € psa(pr-eq(p2) V pr.intz(p2))) Table 8

ds € psy.intSeg()(Ip € psa(
p.ov(s) V p.cnt(s)))V

Js € psa.intSeg()(Ip € psi(
p.ov(s) V p.cnt(s)))

see Table 8

Js1 € psy.intSeg()(Is2 € psa.intSeg()(
s1.00(82) V s1.int(s2) V s2.in(s1) V s1.eq(s2)V
s1.1nt(s2)))

see Table 8

Jv € psy.intVer()(Ip € psa(p.cnt(v)V
ds € p.bnd()(s.cnt(v))))V

Jv € psq.intVer()(Ip € ps1(p.cnt(v)V
ds € p.bnd()(s.cnt(v))))

see Table 8

Juy € psy.intVer()(Jvg € psa.int Ver()(
v1-€q(v2)))

see Table 8

Table 11: Proof Interior-Boundary intersection (pt/In) and (In/In)

Case Testing conditions Scene
pt/ln G_/ln
dim=0/T pt.bel(In.bnd())

Iny /lng Fv € Ing.bnd() (v.bel(Iny .int Ver())V Ing
dim=0/T s € Iy (s.cnt(v))) ©

28

Table 12: Proof Interior-Ezterior intersection (pt/in), (pt/pg) and (pt/ps)

Case Testing conditions Scene
pt/In 3566 Z?nb;(i%%n(fj qive))(2-)) Pl A In
dim=0/T =" predvi °

Vs € In(—s.cnt(v)))
(—pg.extPat().cnt(pt) A\

pt/pg Ip € pg.intPat()(p.cnt(pt))) A pive
dim=0/T Vin € pg.bnd()(Vs € In(—s.cnt(pt)A S

Vv € s.bnd()(—pt.eq(v)))

Vp € ps(—p.cnt(pt))A E
pt/ps - Dty
dim=0,T Vs € ps.bnd()(8.cnt(pt)/)\ c

Vo € s.bnd()(—pt.eq(v)) o

Table 13: Proof Interior-Exterior intersection (In/In), (In/pg) and (in/ps)

Case Additional conditions Scene

. A
Iny/Ing sy € Ing(Vsg € Ing(s1.dj(s2)V e ~a
dim=1/T s1.1nt(s2) V s1.00(82) V $9.91(s1))) o

Js € In(—pg.extPat().cnt(s))V
In/pg 3s € In(3p € pg.intPat()(p.cnt(s)))V ng
dim=1/T 3, " pg-gnd(])%ﬁ € ln(sz-)mt(sl))) 0)

ds € In(Vp € ps(

In/ps . . A
e p.int(s) V p.dj(s) V p.ov(s))A ps

dim=1/T —3sg € ps.intSeg()(s.in(s2) V s.eq(sz2))) (A/

Table 14: Proof Interior-Exterior intersection (pg/pg) and (ps/ps)— Case
C.3.11 and C.3.16.

Case Additional conditions Scene
Js € pg,.extPat().bnd()(P
b/ CpgeatPat().cnt(s)V =
dim=2/T (pgy-extPat().cnt(s)A l’
Jp € pgy.intPat()(p.ov(s) V p.cnt(s))))) P
ps1/ps2 Ip1 € psi(Vp2 € psa(p1-dj(p2)V AT

dim=2/T p1.0v(p2) V pl.int(p2)))

29

Table 15: Proof Interior-Interior Intersection (In/In) Notice that testing
conditions are presented on several rows: each row describes a disjunct which
is a conjuction of a necessary condition and an additional one (usually the
last one is used to take into account the dimension requirement)

Necessary Additional
Case .- .y Scene
conditions conditions
Iny/lng Ing.intVer()N Vs1 € Iny (Vsg € Ing(In;
dim=0 Ing.intVer() # 0 s1.1nt(s2) V $1.dj(s2))) —
v € Iny.intVer()(I
ds € Ing(s.ent(v))) V. Vsy € Ing (Vs € Ing(y\\.
v € Ing.intVer()(s1.1nt(s2) V $1.dj(s2))) «
ds € Inq (s.cnt(v)))
ds; € l'fll(E'SQ € Ing Vs, € lnl(VSQ € an(IV\!
(s1.1n(s2))) s1.1nt(s2) V s1.dj(s2))) -—
/nz
Iny /In ds1 € Iny(3s € Iny V_\IJ -
dz’in—i (s1.€q(s2) V s1.1n(s2)V "2 \
S9.1n(81) V $1.00(s2)) In/\ —
—
Ini/lng Ing. IntVer()N In;
dim=T Ing.IntVer() # 0 —J

Fv € Iny.int Ver()(/
ds € Ing(s.cnt(v)))V .y\\'
Fv € Ing.intVer()(
s € Inq (s.cnt(v)))

ds; € lnl(HSQ € lny
(s1.eq(s2) V s1.in(s2)V
S9.10(s1) V s1.9nt(s2)V
51.00(s2)))

the same scenes of
the 3rd and 4th

Trow.

30

Table 16: Proof Interior-Interior intersection (In/pg)

Case Testing conditions Scene
In/pg ds € In(Fv € s.bnd()(pg.extPat().cnt(v)A el
dim=1,T =3p € pg.intPat()(p.cnt(v)V Q R pg

Js1 € p.bnd(sy.cnt(v)) V v.bel(p.ver())

ds € In(Finy € pg.bnd()(/_\&
ds; € lnll(s.z'nt(sl)))) \Q/

Js € In(pg.extPat().cnt(s) Inng z
—dp € pg.intPat()(p.cnt(s))) @

7 Conclusion and Future Work

Evaluating topological relations in distributed environments with many data-
sets at hand and many systems that interoperate, such as an SDI, can be
a tough task to perform. One reason of this situation regards the quality
of datasets, indeed when the quality of the processed data is low, differ-
ent results can be obtained in different systems regarding the computation
of topological relations among geometries. This issue is usually called ro-
bustness and the goal of this paper is to guarantee the robust evaluation of
topological relations among different systems. In particular, the considered
context has been illustrated by means of (i) a reference vector model for
representing geometries of the Simple Feature Access model extended with
3D types (i.e. including polyhedral surfaces); (ii) a set of basic predicates on
vector geometries, that can be critical with respect in system evaluations;
(iii) a set of problem definitions and assumptions on systems behaviour.

Given such context, the following results have been formally derived: (i)
a set of expressions for testing the conditions of the 9-intersection matrix
cells [6] in terms of vector predicates; (ii) a set of rules that guarantee the
robustness of evaluation for the basic critical predicates; (iii) a set of rules
that guarantees the robustness evaluation of topological relation defined
with the 9-intersection matrix, with respect to the embedding space (2D or
3D) and involved geometric types.

Finally, the results of some experiments on real datasets have also been
presented, in order to show the effectiveness of the proposed approach in
characterizing the robustness of spatial datasets with respect to topological
relation evaluations.

Future work includes the definition of algorithms for rectifying geome-
tries in spatial datasets in order to (i) preserve as much as possible the
existing topological relations and (ii) satisfy the proposed rules for guaran-

31

teeing robustness in topological relations evaluation. Moreover, the study
will be extended to 3D volumes.

References

1]

L. Chen. FEzact Geometric Computation: Theory and Applications.
PhD thesis, New York University, Department of Computer Science,
2001.

Eliseo Clementini and Paolino Di Felice. A Comparison of Methods for
Representing Topological Relationships. Inf. Sci. Appl., 3(3):149-178,
1995.

Eliseo Clementini, Paolino Di Felice, and Peter van Oosterom. A Small
Set of Formal Topological Relationships Suitable for End-User Interac-
tion. In Proceedings of the Third International Symposium on Advances
in Spatial Databases, pages 277-295. Springer-Verlag, 1993.

Volker Coors. 3d-gis in networking environments. Computers, Envi-
ronment and Urban Systems, 27(4):345-357, 2003.

M. J. Egenhofer, A. U. Frank, and J. P. Jackson. A topological data
model for spatial databases. In Proceedings of the 1st Symposium on De-

sign and Implementation of Large Spatial Databases (SSD ’90), pages
271-286, 1990.

M. J. Egenhofer and R. Franzosa. Point-set topological spatial relations.
International Journal of Geographical Information Systems, 5(2):161—
174, 1991.

Ralf Hartmut Giiting and Markus Schneider. Realms: A Foundation for
Spatial Data Types in Database Systems. In Int. Symp. on Advances
in Spatial Databases, volume 692, pages 14-35, 1993.

Dan Halperin. Controlled Perturbation for Certified Geometric Com-
puting with Fixed-Precision Arithmetic. In Proceedings of the Third In-
ternational Congress Conference on Mathematical Software, ICMS’10,
pages 92-95. Springer-Verlag, 2010.

Dan Halperin and Eli Packer. Iterated snap rounding. Comput. Geom.
Theory Appl., 23(2):209-225, 2002.

J. Hobby. Practical segment intersection with finite precision output.

Comp. Geometry Theory and App, 13:Comp. Geometry Th. and App.,
1999.

32

[11]

[12]

[13]

[16]

M. Molenaar. A formal data structure for 3D vector maps. In Proceed-
ings of EGIS590, page 770781, 1990.

OGC. OpenGIS Implementation Standard for Geographic Information
— Simple Feature Access — Part 1: Common Architecture, 2011. version
1.2.1.

Giuseppe Pelagatti, Mauro Negri, Alberto Belussi, and Sara Migliorini.
From the Conceptual Design of Spatial Constraints to their Implemen-
tation in Real Systems. In Proceedings of the 17th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Sys-
tems, pages 448-451, New York, NY, USA, 2009. ACM.

M. Pilouk. Integrated modelling for 3D GIS. PhD thesis, ITC, The
Netherlands, 1996.

Reasey Praing and Markus Schneider. Efficient Implementation Tech-
niques for Topological Predicates on Complex Spatial Objects. Geoin-
formatica, 12(3):313-356, 2008.

David A. Randell, Zhan Cui, and Anthony Cohn. A Spatial Logic Based
on Regions and Connection. In Proceedings of the Third International
Conference on Principles of Knowledge Representation and Reasoning
(KR’92), pages 165-176. Morgan Kaufmann, 1992.

M. Andrea Rodriguez, Nieves Brisaboa, Jazna Meza, and Miguel R. Lu-
aces. Measuring Consistency with Respect to Topological Dependency
Constraints. In Proceedings of the 18th SIGSPATIAL International
Conference on Advances in Geographic Information Systems, GIS ’10,
pages 182-191, New York, NY, USA, 2010. ACM.

David M. Theobald. Topology Revisited: Representing Spatial Re-
lations. International Journal of Geographical Information Science,
15(8):689-705, 2001.

Rodney James Thompson and Peter van Oosterom. Interchange of
Spatial Data-Inhibiting Factors. In Proceeding of the 9th AGILE Inter-
national Conference on Geographic Information Science, 2006.

S. Zlatanova. 3D GIS for Urban Development. PhD thesis, ITC — Fac-
ulty of Geo-Information Science and Earth Observation, The Nether-
lands, 2000.

33

University of Verona -

. Department of Computer Science
I =\ Strada Le Grazie, 15

