
A Cross-Level Verification Methodology for Digital
IPs Augmented with Embedded Timing Monitors

Abstract—Smart systems implement the leading technology
advances in the context of embedded devices. Current design
methodologies are not suitable to deal with tightly interacting
subsystems of different technological domains, namely analog,
digital, discrete and power devices, MEMS and power sources.
The interaction effects between the components and between the
environment and the system must be modeled and simulated at
system level to achieve high performance. Focusing on digital
subsystem, additional design constraints have to be considered
as a result of the integration of multi-domain subsystems in
a single device. The main digital design challenges combined
with those emerging from the heterogeneous nature of the whole
system directly impact on performance, hence propagation delay,
of the digital component. In this paper we propose a design
approach to enhance the RTL model of a given digital component
for the integration in smart systems, and a methodology to
verify the added features at system-level. The design approach
consists of “augmenting” the RTL model through the automatic
insertion of delay sensors, which are capable of detecting and
correcting timing failures. The verification methodology consists
of an automatic flow of two steps. Firstly the augmented model
is abstracted to system-level (i.e., SystemC TLM); secondly
mutants, which are code mutations to emulate timing failures, are
automatically injected into the abstracted model. Experimental
results demonstrate the applicability of the proposed design and
verification methodology and the effectiveness of the simulation
performance.

I. INTRODUCTION

The design of modern embedded systems have become
challenging not only for its increasing complexity, but also
for its emergent multidisciplinarity. New generation devices,
known as smart systems, typically incorporate analog, digital
and Micro Electro-Mechanical System (MEMS) components
integrated with application-specific sensors and actuators, mul-
tiple power sources, intelligence in the form of embedded
software [1]. However, current design and simulation method-
ologies are not suitable to manage the integration of intrinsi-
cally heterogeneous components. The involved subsystems are
described using different languages and tools, at different lev-
els of abstraction. New efficient co-design and co-simulations
methodologies are required to deal with interaction effects
between the environment and the system and between the
components.

In the digital domain, the design flow is typically based
on a top-down approach and is highly standardized (e.g.,
commercial, fully automated synthesis and optimization tools,
technology libraries, etc.)[2] and so are the formats and the
models used in these design flows (i.e., VHDL or Verilog). The
new challenges in the context of smart systems do not concern
the design of the single component (which is already a difficult
task). Rather, the integration of multi-domain components in a
single device generates further design constraints to be taken
into account. Such constraints have to address the interaction
effects and, hence, they must be modeled and simulated at
system-level.

Transaction Level Modeling (TLM) is the consolidated
high-level approach in digital design. Combined with Sys-
temC language, TLM facilitates design space exploration and
verification of the system functionality without focusing on
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Fig. 1. Wrapping of digital IP and sensors to generate an “augmented”
description.

the implementation details. This guarantees a sound trade-
off between simulation performance and accuracy for a wide
range of user’s needs during the digital component design
and verification. Moreover, activity research is working on
SystemC-AMS, to model components of different nature at
high abstraction levels [3]. This would allow an homogeneous
simulation scenario for a multi-domain system.

In this context, tools for the automatic abstraction of
existing RTL models represent a valuable support for the
design of modern complex systems. Well-known examples are
the RTL-to-SystemC abstraction tools for reusing RTL models
of IPs [4], [5]. The automatic translation process to TLM
preserves only the functionality and timing properties (yet with
different accuracy levels) of the original IP. On the other hand,
most of the design constraints are related to physical properties
of the circuit (e.g., frequency, power supply, temperature).
As a consequence, the verification of the additional design
constraints is not achievable, at the state of the art, at high
level of abstraction (TLM).

Conversely, verification of physical properties related to
specific design constraints of a given digital IP at RTL has
several limitations:

• the simulation performance at RTL is prohibitive for
reaching high-quality results;

• the manipulation of the RTL code for testing the
system correctness over different metrics values is
time consuming and not scalable to large and complex
systems;

• the verification of the RTL model, once integrated into
a high-level system description (SystemC TLM) of a
smart system requires co-simulation instead of simu-
lation, thus decreasing the simulation performance of
the whole system platform.

The concept of mixed-level modeling or co-simulation indeed
emerged due to the need of efficiency and higher simulation
results. It has been applied, for instance, in design exploration
and validation [6], RTL fault injections with error propagation
at system level [7] and prediction of non-functional properties
such as aging [8]. However, the lower level models act as
bottlenecks in all these mixed-level approaches, thus slowing
down the simulation of the whole system.

Since many physical properties affect the timings of a
digital IPs, the use of timing monitors allows to capture
all their effects concurrently. Therefore, this paper proposes
a methodology for system-level verification of digital IPs
augmented with embedded timing monitors. The main con-
tributions are the following:
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• a design paradigm based on constraints detection and
correction to augment the functionality of a digital IP
modeled at RTL by embedding timing monitors;

• a verification methodology to abstract the description
of the augmented digital IP to TLM, in order to speed-
up the verification of the design paradigm;

• a new class of TLM mutants, which are timing faults
automatically injected into the abstracted IP to verify
the correctness of the embedded monitors.

The paper is organized as follows. Section II provides
a brief background on constraints detection and correction.
Section III describes the implemented design paradigm to
augment the digital IP functionality. Section IV presents the
cross-level verification methodology for the proposed design
paradigm. Section V shows the effectiveness of the presented
methodology with some experimental results. Finally, conclu-
sions are discussed in Section VI.

II. BACKGROUND ON DETECTION AND CORRECTION
PARADIGM

The design of a digital component incorporated into a
smart system is affected by additional constraints due to the
integration of multi-domain subsystems in a single device.
Constraints here basically imply the metrics to be considered
concurrently [1]. They fundamentally include performance,
reliability/robustness, power consumption and temperature.
These metrics are directly or indirectly related to specific
physical quantities, i.e., frequency (propagation delay), supply
noise, supply current, supply voltage and temperature. The
direct measurement of such quantities allows to define a design
paradigm based on detection and correction of the related
constraints.

Consider a generic digital IP modeled at RTL through a
hardware description language (HDL), as shown in Fig. 1.
For a given metrics, a customized sensor monitors its value
by directly measuring the corresponding physical quantity.
The sensor provides the metrics value (Metrics output) and
signals whether the related constraint is met (Metrics OK
output). Morever, it provides a control signal regulating some
hardware knobs that attempt to ”correct” the corresponding
metrics value. Depending on the given metrics, the robustness
of the IP is increased against different design issues.

The scaling process of CMOS technology generated several
side-effects. Many of these non-idealities, however, have a
direct impact on the performance of digital devices. Process
variability makes delay a non-deterministic quantity, so that
the actual delay becomes instance-specific [9]. Voltage and
temperature variability shift the value of the nominal delay
depending on the operating point [10]. Aging effects such
as Negative Biasing Temperature Instability (NBTI) or Hot
Carrier Injection (HCI), conversely, cause the nominal delay
to drift over time [11]. In order to address all these physical
effects and enhance the global reliability, dynamic on-chip
monitoring of performance is highly demanded.

On-chip delay monitoring architectures proposed in liter-
ature mainly differ on the type of measurement performed:
Absolute measurement of delay values or check whether a
given threshold is exceeded. In the first approach the absolute
measurement of path delay is achieved using either a Time-
to-Digital Converter (TDC) to translate timing information
into digital values [12], [13], [14], [15], or time-to-voltage
conversion to translate path delay into voltage levels [16]. In
the second approach ad-hoc sampling elements replace latches
or flip-flops in the critical paths of the circuit. They detect
the occurrence of a timing violation by observing a signal
transition within a given time window [17] or by performing a
delayed comparison of the monitored signals [18], [19], [20].
Recovery mechanisms are also implemented in order to correct

the detected errors.
Nevertheless, once delay sensors have been embedded into

a digital IP, the detection and correction characteristics must
be verified. Several solutions based on fault injection can be
found in literature [21]. Some techniques rely on simulator
commands to easily manipulate model signals or variables
without altering the HDL code. However such commands are
not standard. Rather, they are restricted to a specific HDL
simulator. Another class of techniques modify the original
RTL code, either by adding saboteur blocks [22] in the design
structure, or by modify the behavior of some components using
mutants [23]. Nevertheless both techniques require additional
control signals to activate the occurrence of a fault and
automatic tools to add/remove the HDL modification.

III. DESIGN OF AUGMENTED DIGITAL IPS FOR
CROSS-LEVEL VERIFICATION

The proposed design methodology augments the function-
ality of a given digital IP in order to enable its cross-level
verification. The constraints detection and correction paradigm
introduced in Section II is implemented by automatically
inserting appropriate sensors into the IP at RTL level. Since
performance is the target constraint, the embedded monitors
are timing sensors. As mentioned in Section II, by sensing the
propagation delay in appropriate locations of the digital IP, the
performance is monitored and optimized to improve the circuit
reliability. Once the augmented digital IP has been converted to
a high-level model (SystemC TLM), the information on delay
is preserved due to the additional functionality implemented by
the sensor. This allows to catch the physical properties (e.g.,
temperature, aging) whose side-effect is to violate performance
constraints.

Two essential requirements must be met by the delay sensor
implementation to guarantee the cross-level verification of the
paradigm: (i) it must be synthesizable, and (ii) it must affect
either functionality or timing of the IP where it is embedded.

This paper proposes two different architectures for an on-
chip delay monitor fulfilling such requirements: an extended
Razor flip-flop and a Counter-based monitor. The two sensors
can be used individually or in combination, depending on the
required level of precision: a generic fail/no fail information
or a more quantitative information about the delay of the logic
block.

A. Modified Razor flip-flop

The first monitor implementation is based on the Razor
flip-flop (FF) concept [18], which has been modified with an
additional multiplexer (see upper side of Fig. 2).

It enhances the FF of critical paths by introducing an
shadow latch that samples the FF input data on the negative
level of the delayed clock signal CLK. Since CLK is delayed
by half CLK period (TCLK

2 ), the Razor working time window
is bounded by the rising and falling edge of CLK (see Fig.
5(a)). The outputs of the FF and shadow latch are compared
and an error signal E is asserted in case of timing failure.
When the control signal R is high, the recovery mechanism
is executed and the error in the faulty FF is corrected. The
correction feature can be selectively activated on each modified
Razor FF acting on the corresponding signal R.

B. Counter-based monitor

The second sensor implementation is an on-chip counter-
based monitor. It relies on a simple counter to measure the
propagation delay on critical paths of the digital IP (see lower
side of Fig. 2). Compared to the modified Razor FF, it provides
an absolute measure of delay through rather than a timing
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Fig. 2. Example of digital IP augmented with the implemented delay
monitors.

failure detection.
Using an additional clock signal (i.e., HF CLK in Fig.

5(b)) with higher frequency multiple of the clock frequency of
the IP (i.e., MAIN CLK), the monitor enumerates the amount
of HF CLK periods elapsed for the signal propagation from
the path start point to the path end point. The measurement
is performed during a predefined time window called observ-
ability window (i.e., OBS WIN in Fig. 5(b)) where all signal
transitions are captured. The duration of OBS WIN is chosen
at design time. Two registers are used to store the counter value
on the occurrence of both rising and falling transitions. The
delay measure is then selected according to the last captured
transition. A control block compares the obtained value with
reference values determined at design time.

In general, the main sensor characteristics depend on
the HF CLK period. Since the counter is synchronous with
HF CLK, the maximum resolution is HF CLK period and the
maximum error is ±THF CLK

2 . The dynamic range depends
also on the length of the observability window, indeed the
maximum measurable delay corresponds to the time interval
beginning with the first MAIN CLK rising edge (signal transi-
tions start to propagate through the monitored path) and ending
with the falling edge of OBS WIN (no more signal transitions
are captured).

IV. VERIFICATION METHODOLOGY

The verification methodology aims at testing the detection
and correction paradigm proposed in Section III at TLM. The
methodology relies on the following steps (see Fig. 3):

1) RTL-to-TLM abstraction of the augmented digital
IP. Given the RTL model of the digital IP and
sensor, which are implemented in synthesizable HDL
(VHDL, Verilog) at RTL, an abstraction tool is ap-
plied to abstract them into SystemC TLM.

2) Injection of mutants in the abstracted digital IP. A set
of C++ functions has been implemented to simulate
timing delays in the digital IP. These functions,
hereafter called mutants, are automatically injected in
the abstracted digital IP to verify, during simulation,
the sensor correctness.

Automatic 

Stimuli 

Generator and 

Sensor Monitor

Digital IP

Sensor

(metrics X)

OutputsInputs

Metrics

Metrics_OK

RTL

VHDL/Verilog-

to-SystemC TLM

TLM simulation platform

Digital IP

Sensor

(metrics X)

Metrics

Metrics_OK

SystemC

TLM

m1 m2

m3 mn

1. RTL-to-TLM

abstraction

2. Injection

of mutants

3. Mutation analysis

Fig. 3. Overview of the verification methodology
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3) Mutation analysis. The abstracted and injected digital
IP and sensor are connected to a stimuli generator,
which aims at generating a meaningful set of input
values for the digital IP to activate each mutant and
to test the detection and correction mechanism.

A. RTL-to-TLM abstraction of the augmented digital IP

The recent trend towards the use of abstraction levels
higher than RTL has led methodologies and tools to be
developed for reusing RTL models of IPs through automatic
RTL-to-SystemC TLM abstraction [4], [5].

Despite technical differences, all these tools generate Sys-
temC TLM code by translating HDL statements into SystemC
statements and by handling the RTL concurrency through
dynamic scheduling. In dynamic scheduling (see Fig. 4), the
RTL processes (i.e., concurrent statements) are woke up if and
only if there has been an event to which they are sensitive.
The simulated time has a finest granularity equal to one clock
period when the generated TLM model is cycle accurate. On
the clock rising event, all synchronous processes are firstly
run. Then, if any event has been triggered (e.g., write on a
signal), the asynchronous processes sensitive to that event are
woke up. The routine iteratively goes on until there is not any
further event. At each of these iterations corresponds a delta
cycle, which is a simulation cycle in which the simulated time
does not advance [24]. The same procedure is applied for the
falling edge of the clock. When there is not any further process
to wake up, the simulation goes on to the next clock cycle and
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of scenario 1 (Razor sensor) (a) and scenario 2 (Counter-based sensor) (b)

the simulated time is updated.
The SystemC TLM code is generated by translating RTL

processes into C++ functions, and by implementing the dy-
namic scheduling through a C++ routine (i.e., the scheduler of
functions), which reproduces the behavior of the RTL sched-
uler. Fig. 6(a) gives an high-level example of the scheduler
activity of the cycle accurate TLM model generated from a
synchronous RTL model. At each clock event, the scheduler
first invokes the synchronous functions sensitive to the rising
edge of the clock (rising_edge() in Fig. 6 represents
these invocations). Then, the scheduler iteratively invokes the
asynchronous functions (delta_cycle() invocation) and
moves on to the falling edge phase (falling_edge()) to
invoke any process synchronous to the falling edge of the
clock.

The SystemC TLM model must be generated, through any
of the automatic tools in literature, accurate enough to guar-
antee simulation of timing delays. The proposed methodology
applies to two different scenarios:

1) The SystemC TLM model has been generated cycle
accurate. In the SystemC simulation, a TLM trans-
action is run for each RTL clock cycle. A digital IP
augmented with a Razor sensor is an example of this
scenario (Fig. 5(a)).

2) The SystemC TLM model has been generated from
an RTL model with two clock signals. The SystemC
TLM model is cycle accurate for one of them only.
The second clock signal is abstracted, i.e., a number
of this clock cycles are included into one TLM
transaction. Fig. 6(d) gives an high-level example of
the TLM scheduler activity of this scenario, for which
a digital IP augmented with a Counter-based sensor

is an example (Fig. 5(b)).

The generated TLM models are injected with mutants to
simulate timing delays and to test the sensor correctness.

B. Mutant injection in the abstracted digital IP

Mutants are small alterations of the source code generated
through a syntactically correct change [25]. Mutants can be
used to represent faults in the model in terms of deviations
from the expected behavior [26]. Mutation analysis has been
applied to languages for system-level design and verification
such as SystemC [27], [28], [29], [30]. All these papers
propose mutation models to verify the functional correctness
of the SystemC and SystemC TLM descriptions. No one of
these works aim at verifying timing constraints of the SystemC
model through simulation.

In the proposed methodology, mutants are adopted to model
physical delays at high levels of abstraction (i.e., TLM), by
reproducing the effects of a delay rather than the physical
reasons that caused the delay itself.

The proposed mutation model aims at implementing signal
delays in the TLM IP model. A signal delay is implemented by
postponing the actual assignment to the signal (i.e., assignment
statement) forward in the simulation time. Since the simulated
time of the supported SystemC TLM is cycle-accurate, the
granularity of the delays inserted on the signals is defined in
delta cycles (finest granularity with abstraction of simulated
time) and clock cycles (with accurate simulated time). Given
a statement of assignment to a signal (e.g., sig1 = a000
of a synchronous process in Fig. 6(a)), three different mutants
are defined to insert a delay on the signal:

1) Minimum delay mutant. The actual assignment to the
signal is postponed by one delta cycle. In the example
of Fig. 6(b), the statement is delayed jus after the
rising edge of the clock.

2) Maximum delay mutant. The actual assignment to
the signal is postponed just before the next edge of
the clock signal. In the example of Fig. 6(c), the
statement is delayed just before the falling edge of
the clock.

3) Delta delay mutant. The actual assignment to the
signal is postponed exactly of a number of high
frequency clock cycles. In the example of Fig. 6(d),
the statement is delayed of a number of HFCLK clock
cycles equal to reference_delay.

The three mutants are implemented through C++ functions
(i.e., saboteur [22]). An instance of the three mutants is
injected, in the TLM model of the digital IP, on each signal
representing a critical path. The injected mutants are activated,
one at a time, to emulate a specific delay on a signal, as
explained in the following sections.

1) Verification of digital IPs augmented with Razor sen-
sors: The combination of the Minimum and Maximum delay
mutants allows the detection and correction features of the
Razor sensor (see Section III) to be verified at TLM for the
following working time window:

RazorTLM wtw :(CLK rising edge+δ, CLK falling edge−δ)

Both mutants are necessary to guarantee the sensor ver-
ification between the minimum delay (one δ cycle) and the
maximum delay (TCLK

2 ), as explained in Section III-A.

2) Verification of digital IPs augmented with Counter-based
sensors: Given a reference delay value for each target signal,
the Delta delay mutant is applied to insert a number of
clock cycles (HF CLK) of delay on the signal equal to the
reference value. The Delta delay mutant allows the detection
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feature of the Counter-based sensor to be verified at TLM for
the whole observability window (OBS WIN), by preserving
the characteristics of maximum resolution (HF CLK period),
maximum error (−THF CLK

2 ,+THF CLK

2 ) and dynamic range
provided by the RTL simulation, as explained in Section III-B.

C. Mutation analysis of the augmented digital IPs with the
proposed mutants

The abstracted and injected IP and sensors are plugged
to an automatic stimuli generator for mutation analysis. The
stimuli are generated with the aim of activating the injected
mutants and testing the detection and correction mechanism.
The outputs are analyzed by comparing the results of the
injected model with those generated by a non-injected one. In
particular, for the digital IP augmented with the Razor sensor,
the output port E of the Razor (see upperside of Fig. 2) is
observed in combination with all the output ports of the IP:

• If E = 1, the corresponding mutant has been ac-
tivated and detected (i.e., the statement assignment
corresponding to the critical path has been stimulated
during simulation). In this case, the correction feature
of the Razor (i.e., correction of output values with
some clock cycles of delay) can be observed on the
output ports of the IP.

• If E = 0 (and the mutant is switched on), either the
mutant has not been activated because the testbench
has failed to generate a proper input sequence to stress
the mutant (i.e., to reach the assignment statement),
or the mutant models a delay outside the range of
detection of the sensor. In the first case, the IP outputs
of the injected version match with those of the non
injected one. In the second case, the IP outputs of the
injected vs. non inject versions do not match.

For the Counter-based monitor (see lowerside of Fig. 2):

• If MEAS V AL ̸= 0, the corresponding mutant has
been activated and detected;

• If MEAS V AL = 0 (and the mutant is switched
on), the testbench has failed to generate a proper input
sequence to stress the mutant.

TABLE I. CHARACTERISTICS OF THE RTL DIGITAL IP AUGMENTED
WITH THE SENSORS.

Digital IP RTL PI PO FF Gates Processes
and sensor (loc) (#) (#) (#) (#) Synch. Asynch.

FIR + Razor 1,544 75 80 425 10,698 256 846
FIR + Counter-based 2,532 12 27 462 10,324 41 45

V. EXPERIMENTAL RESULTS

The proposed cross-level verification methodology has
been applied to a VHDL RTL model of the Finite Impulse
Response (FIR) digital filter. Two augmented versions have
been generated with the design approach proposed in Section
III: FIR+Razor and FIR+Counter-based monitor.

In both versions, a number of sensors (64 Razors, 1
Counter-based) have been inserted to monitor a corresponding
number of critical paths of the FIR design. Table I shows
the main characteristics of the resulting augmented models.
The table reports the number of lines of code of the starting
RTL code (Column RTL (loc)), the number of primary input
and output pins (Columns PI (#) and PI (#)), the number
of flip-flops (Column FF (#)) and area in terms of NAND2
gates after a synthesis with 666 MHz and 45nm technology
(Column Gates (#)). Column Processes reports information on
the implementation of the FIR functionality, and, in particular,
on the number of synchronous and asynchronous processes
(see Section IV-A).

The augmented digital IPs have been abstracted to SystemC
TLM by using HIFSuite A2T [5]. Table II reports information
on the obtained SystemC TLM descriptions in terms of lines
of code (column TLM IP (loc)) and SystemC TLM generation
time spent by the abstraction tool (TLM gen. time).

The mutants defined in Section IV-B have been injected
in the SystemC TLM models. In particular, the Minimum and
Maximum delay mutants have been injected in the FIR+Razor
model, one for each critical path. The injection phase, which
has been made automatic through a SystemC code visitor,
required the names of the RTL signals connected to the input D
of the Razor sensor (see Fig. 2), for each of the 64 instances of
the Razor. Similarly, the FIR+Counter-based monitor has been
injected with three mutants (Minimum, Maximum and Delta
Delay mutants) for the only critical path analyzed. The mutant
injection did not produce a significant increase in the size of
the TLM description, as shown in column Injected TLM (loc)
of Table II.

The mutation analysis presented in Section IV-C has been
finally applied to the obtained TLM models. Inputs stimuli
have been randomly generated. The outputs have been an-
alyzed by comparing the results of the injected model with
those generated by the non-injected one.

As a result of the mutation analysis, all injected mutants
have been detected (Column Killed mutants (%)) in both
designs. In addition, the FIR+Razor IP has been verified to be
able to notify and correct all the injected delays (columns Error
risen (%) and Corrected mutants (%), respectively). In the
mutation analysis of the FIR+Counter-based, not all detected
mutants have been notified as errors. This is due to the fact
that the Counter-based monitor compares the detected delay
with a tolerance threshold (which has been set in a monitor
look-up table). Only mutants resulting in a higher delay have
been notified as errors.

These results confirmed the capability of the SystemC TLM
models simulated with the proposed methodology in detecting
timing delays with a granularity less than the accuracy of the
SystemC simulation (i.e., less than a clock cycle). In particular,
the Counter-based monitor detected errors up to 13 periods of
the high frequency clock and with a tolerance threshold of
8 periods of the high frequency clock. The injected Minimum



TABLE II. EXPERIMENTAL RESULTS OF ABSTRACTION PROCESS, MUTANTS INJECTION AND MUTATION ANALYSIS.

Digital IP RTL sim. TLM IP TLM gen. TLM sim. # injected Injected Injected Killed Corrected Errors Injected Speedup
and sensor (s) (loc) time (s) (s) mutants mutants TLM (loc) mutants mutants risen TLM (s) (x)

FIR + 241.05 32,837 12.58 64.42 128 64 Minimum 33,746 100.00% 100.00% 100.00% 68.19 3.53
Razor 64 Maximum 33,763 100.00% 100.00% 100.00% 67.98 3.55

FIR + 381.68 4,627 2.69 69.86 3
1 Minimum 4,282 100.00% — 0.00% 76.01 5.02

Counter-based 1 Maximum 4,283 100.00% — 100.00% 75.80 5.04
1 Delta 4,282 100.00% — 30.77% 75.89 5.03

Delay mutants have not been detected as errors, as they respect
the threshold (0% of delays are notified as errors). All the
maximum delays have been notified as errors. Finally, delta
delays have been equally distributed over the timing interval
and notified a 30.77% of delays as errors.

The results show that the proposed mutants effectively
reproduce the effect of delays at TLM and that an accurate
verification of the monitor correctness is possible at levels
of abstractions higher than RTL. All features of the proposed
sensors are preserved, from delay identification to delay cor-
rection, depending on the starting monitor characteristics.

Finally, Table II reports the execution times of the detection
and correction paradigm verified at RTL and TLM, to underline
the motivations of this work. Columns RTL sim. (s) and
TLM sim. (s) show the simulation time of the digital IP
before mutant injection. The RTL to TLM abstraction process
reduces the execution time, in average, of 4.5x (3.75x for
the Razor monitor and 5.46x for the Counter-based monitor).
The injection of mutants slows down the TLM simulation, in
average, of 7.1% (Column Injected TLM (s)). However, the
obtained speedup between TLM and RTL simulation is, in
average, of 3.54x for the verification of the FIR+Razor and
5.03x for the verification of the FIR+Counter-based (column
Speedup (x)).

VI. CONCLUSIONS

This paper presented a methodology to verify at system-
level (TLM) digital IPs augmented with embedded timing
monitors. With the abstraction to TLM, the delay on critical
paths is detected since the functionality of the implemented
timing monitors is preserved. This allowed to catch at TLM
the side-effcts of many physical properties on the performance
of digital IPs. The methodology has been applied to the RTL
model of a FIR digital filter, which has been augmented
with a modified Razor and a Counter-based monitor. The
obtained experimental results demonstrate the applicability of
the proposed design and verification methodology and the
effectiveness of the simulation performance.
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