
Fast Location of Similar Code
Fragments Using Semantic ‘Juice’

Arun Lakhotia
Center for Advanced Computer Studies

University of Louisiana at Lafayette
Lafayette, LA, U.S.A.
arun@louisiana.edu

Mila Dalla Preda
University of Bologna

Bologna, Italy
dallapre@cs.unibo.it

Roberto Giacobazzi
University of Verona

Verona, Italy
roberto.giacobazzi@univr.it

Abstract
Abstraction of semantics of blocks of a binary is termed as ‘juice.’
Whereas the denotational semantics summarizes the computation
performed by a block, its juice presents a template of the relation-
ships established by the block. BinJuice is a tool for extracting the
‘juice’ of a binary. It symbolically interprets individual blocks of
a binary to extract their semantics: the effect of the block on the
program state. The semantics is generalized to juice by replacing
register names and literal constants by typed, logical variables. The
juice also maintains algebraic constraints between the numeric vari-
ables. Thus, this juice forms a semantic template that is expected to
be identical regardless of code variations due to register renaming,
memory address allocation, and constant replacement. The terms
in juice can be canonically ordered using a linear order presented.
Thus semantically equivalent (rather, similar) code fragments can
be identified by simple structural comparison of their juice, or by
comparing their hashes. While BinJuice cannot find all equivalent
constructs, for that would solve the Halting Problem, it does signif-
icantly improve the state-of-the-art in both the computational com-
plexity as well as the set of equivalences it can establish. Prelim-
inary results show that juice is effective in pairing code variants
created by post-compile obfuscating transformations.

1. Introduction
There is a growing need for the comparison of binary executables
in applications such as binary patching [5, 17], malware analy-
sis [6, 9, 13] and copyright infringement investigation [1]. In these
applications, it is important that the comparison algorithm account
for changes due to code evolution, changes in compiler optimiza-
tions, and post-compile obfuscations. Furthermore, while binary
patching typically requires comparing a pair of binaries known to
be successive versions of the same software, the other applications
require searching for matches to a given binary within a large col-
lection of binaries. For malware analysis in particular, this collec-
tion may be extremely large, consisting of hundreds of thousands,
if not millions, of malware.

This paper introduces a notion of ‘juice’, a generalization of
the denotational semantics of a program. The juice captures the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPREW ’13 Jan 26, 2013, Rome, Italy.
Copyright c© 2013 ACM 978-1-4503-1857-0/13/01. . . $15.00

essential relations established by a piece of code, independent of
choices of registers and literal constants. The juice then serves as a
template of the code that is invariant against certain choices made
by compilers or by code obfuscation tools.

Table 1 presents an example of binary code, its semantics, and
its juice. The first column presents the hex dump of an executable
code fragment along with its disassembled code, the second col-
umn contains the (denotational) semantics of the code fragment,
and the third column shows its juice. The semantics give the re-
sult of executing the code fragment as a function of the state before
execution. This state is given by the function ‘def’ (for default).
Thus, def(ebx) represents the content of the 32-bit register ebx at
the entry of the code fragment. The semantics indicates that upon
execution of the code fragment, the register eax will contain the
value 5 and the register ebx will contain the result of multiplying
def(ebx) by 5 and adding 20. The presented semantics also con-
tains the steps in computing the value of ebx. It is assumed that the
state of all other register and memory locations remain unchanged.
For simplicity the affect on the flag registers is not presented. The
juice is computed by replacing in the semantics the register names
and literal constants with typed variables and introducing algebraic
constraints. In the presented juice, the symbols N1, N2, and N3
are assumed to be of numeric type and the other symbols are 32-bit
registers. The juice shows that the register variable A will contain
number N1 and register variable B will contain the number com-
puted by multiplying the previous value of B by number N1 and
adding number N2. Further, numbers N1 and N2 are related using
a third number N3 such that number N2 is equal to number N1
multiplied by number N3. In other words, number N3 is a multiple
of number N1.

As illustrated by the above example, the juice of a code frag-
ment is an abstraction of its semantics, which in turn is an ab-
straction of code. In the above example, the semantics in the sec-
ond column may be used to represent all code fragments that re-
sult in eax containing the value 5 and ebx containing the value
def(ebx) × 5 + 20, leaving all other registers and memory un-
changed. The juice, on the other hand, represents all code fragments
whose semantics can be abstracted as the given algebraic and type
constraints. In the above example, the juice represents all code frag-
ments that result in one 32-bit register (A) containing some specific
number (N1) and the value in a second 32-bit register (B) being
multiplied by the previous value (N1) and summed with a second
number (N2), where N2 is a multiple of N1.

Juice may be computed at varying levels of abstractions. For
instance, at the lowest level, one may abstract the register names,
but not the literal constants. Such an abstraction may be used to re-
late code fragments that have the same semantics, modulo register
names. On the other end, the literal constants may be generalized

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/217531706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

401290: b8 05 00 00 00 mov eax,0x5
401295: 81 c3 04 00 00 00 add ebx,0x4
40129b: 6b c3 imul eax,ebx

eax = 5
ebx = (def(ebx) + 4)× 5

= def(ebx)× 5 + 20

A = N1
B = def(B)× N1 + N2

where N2 = N1×N3
and type(A) = type(B) = reg32

(a) Code (b) Semantics (c) Juice

Table 1. Example code, semantics, and its juice

but the algebraic and register size constraints may be ignored, thus
significantly expanding the code fragments that may be placed in
an equivalence class. Consider the juice resulting from ignoring the
register size and algebraic constraints in the example of Table 1.
The resulting juice will relate all code fragments with the seman-
tics that one register, A, of any size contains some number, say N1,
and a second register, B, contains the def(B) × N1+ N2, where
N2 is some number (with no explicit relation to N1).

We have implemented a system BinJuice that computes the
semantics and the juice of individual blocks of instructions, where a
block is defined in the classical sense. The juice of a block consists
of three components: the generalized semantics, the generalized
algebraic constraints, and the type constraints. Depending on the
need of the application, one may use the code (from the original
program), the semantics, or the juice at any of the varying levels of
abstractions.

BinJuice provides an important building block for various ap-
plications requiring comparison of binaries. At the core level, Bin-
Juice abstracts a given binary to its semantics and its juice. A given
pair of binaries can then be compared by matching the semantics,
the juice, or both. BinJuice provides the primitives for finding dif-
ferences in two related binaries as that performed by BinDiff [17]
or BinHunt [5]. On the other hand, the juice extracted by BinJuice
may be used to create features for data mining tools, such as Bit-
Shred [6], BigGrep [8], or Vilo [15], to aid applications that require
searching a large collection of binaries for matches.

This paper makes the following contributions:

• It introduces the concept of juice, an abstraction of semantics
along with algebraic constraints relating literal constants.

• It presents a novel method to compute the algebraic constraints
in the juice.

• It presents an ordering relation that enables fast equality test of
semantic terms and of juice terms.

The rest of this paper is organized as follows. Section 2 presents
an overview of related works. Section 3 presents our algorithm for
computing juice. Section 4 describes the result of our preliminary
experiments in the use of BinJuice. Section 5 discusses the limita-
tions of the method presented, and is followed by our conclusions.

2. Related Works
Previous efforts in finding similar code fragments in binary ex-
ecutables differ in the abstraction applied on the binary and the
method used for performing the match.

Venable et al. [15] present a system Vilo to search a large
database of malware executables for closest matches for a given
malware. They represent an executable using a vector of the n-
perms [9] of its abstracted disassembly—the sequence of mnemon-
ics. Jang et al.’s BitShred [6], like Vilo, uses abstracted disassem-
bly. However, instead of n-perms, they use n-grams.

Cohen et al. [2] split a binary into its respective functions. But
they use a cryptographic hash of the sequence of bytes (almost)

as-is from the code to represent each function. Their focus is on
finding matches for a given function, rather than a given binary.

Jin et al.’s work [7] is closest to ours in that they compute
denotational semantics of individual blocks of code. Like Co-
hen et al. [2], their aim is to find similar functions. They represent a
function using the hashes of the semantics of its blocks. Unlike our
approach, they use the exact semantics of blocks and, hence, cannot
match code segments that differ only on the choice of registers.

Zynamics BinDiff [17] addresses the inverse problem, that of
finding differences in two binary executables. In their application it
is assumed that the binaries being compared are successive releases
of the same program. The comparison is motivated by the desire to
find the location of bug fixes in the latter version. BinDiff constructs
the CFG of each function with abstracted disassembly in each
block, and then uses graph isomorphism to pair matching functions.
The system pairs corresponding functions in the two binaries, and
also pairs their corresponding basic blocks.

Gao et al.’s BinHunt [5] also has the same motivation as
BinDiff—to find the differences between successive versions of
a binary. Unlike Bindiff, it aims to use a program’s semantics to
account for differences arising due to code reordering, register
renaming, and differences in compiler optimizations. Like Bin-
Diff, BinHunt too constructs the CFG of individual functions and
then uses graph isomorphism to pair matching functions. It finds
matching blocks by symbolically executing them and then using a
theorem prover to determine whether the blocks are semantically
equivalent. In order to account for register renaming, BinHunt ex-
haustively tries all pair-wise comparisons to check if there exists
“a permutation of the registers and variables between the two ba-
sic blocks such that all matched registers and variables contain the
same value.” This exhaustive exploration makes BinHunt compu-
tationally expensive.

Linger et al.’s recent work in “function extraction” (FX) [10]
takes the semantic analysis of binaries to a new level. Their goal
is to compute the denotational semantics of individual functions
of a binary. They do so by first transforming a potentially irre-
ducible CFG into a reducible CFG—a CFG whose loops are natural
loops—and then computing the semantics of single-entry, single-
exit subgraphs by starting from a CFG block and expanding out-
ward. They encode “semantic reduction theorems” to describe the
relation between high level concepts, such as matrices and vectors,
in terms of flow level structures, such as memory locations. The
issues faced by Gao et al. ’s BinHunt resurface when using Linger
et al.’s FX to determine whether two code fragments are equivalent
modulo register renaming.

Our work is motivated by applications such as that described by
Pfeffer et al. [12] for establishing lineage between malware variant
using the evolutionary history encoded in their code. Any method
for discovering malware lineage would benefit from improved abil-
ity to compare malware binaries.

eax = 5
ebx = 10
mem(def(eax)) = def(ebx)
mem(def(ebx)) = def(eax)

ebx = 10
ecx = 5
mem(def(ebx)) = def(ecx)
mem(def(ecx)) = def(ebx)

R1 = N1
R2 = N2
mem(def(R1)) = def(R2)
mem(def(R2)) = def(R1)

R = N
mem(def(R)) = def(R)

(a) Semantics 1 (b) Semantics 2 (c) Juice (d) Abstracted Juice

Table 2. Challenges in ordering semantic juice

3. Method
The proposed method of extracting a binary’s juice consists of the
following steps:

1. Disassemble the binary.

2. Decompose the disassembled program into procedures and
blocks.

3. Compute the semantics of a block.

4. Compute the juice of a block.

The first two steps are routine, and may be performed by many
tools, such as IDA Pro[4] and objdump [14]. The quality of the
computed semantics and the extracted juice depends on the quality
of the results of these two steps. Since both disassembly and pro-
cedure boundary detection are undecidable problems, any solution
is necessarily an approximation. The disassembly produced by the
aforementioned tools (and others) neither guarantee sound (over
approximate) nor complete (under approximate) solutions. Hence
the soundness or completeness properties of semantics and juice
computations discussed in this paper are predicated upon precise
solutions to the first two steps.

A procedure resulting from step 2 is assumed to be represented
as a control flow graph (CFG). A node of this graph is a block:
a sequence of instructions such that if execution starts at the first
instruction, the control will fall through to the last instruction,
subject to termination. The semantics and juice is computed for
individual blocks. The semantics (or juice) of a procedure is then
represented as a semantic (or juice) graph that is isomorphic in
structure to the CFG and whose nodes represent the semantics (or
juice) of the corresponding node in the CFG.

The crux of the algorithm lies in the computation of semantics
and extraction of juice of an individual block. These are described
below.

3.1 Computing Semantics
A code fragment is mapped to its semantics through symbolic inter-
pretation. The operation encoded by an assembly instruction, such
as ADD, is performed on symbolic values. Whenever the operand
values are known to be of type Int, the computation is performed
immediately by the interpreter, thus resulting in a specific value.
However, when one or both operands of a binary operator are not
Int, then the operation is frozen as a structure r1 op r2. Unary op-
erators are also treated similarly. The symbolic interpreter has the
following function signature.

Interpret : seq(Instruction)× State → State

where State = LValue → RValue

The semantics of a program denotes its affect on the store, which
is represented as semantic domain State defined inductively as

follows:

State = LValue → RValue

LValue = Register+ Mem

Mem = RValue → RValue

RValue = Int+ def(LValue)

+ (RValue op RValue) + (opRValue)

The set Register represents the set of general purpose registers,
such as, eax, ebx, etc., as well as flags, such as, zf , cf , of , etc.
The set Mem represents memory. An element of this set maps a
RValue to RValue. The set Int represents the set of numbers. The
operator ‘def’, an element of State, represents the previous state
(being updated). The term ‘r1 op r2’, where r1, r2 ∈ RValue, are
symbolic expressions, and ‘op’ is a binary operator, such as, ‘+’,
‘−‘, etc. Similarly, ‘op r1’, where r1 ∈ RValue represents a unary
operator.

Along with symbolic interpretation, we also assume a function
that performs algebraic simplification of an RValue:

Simplify : RValue → RValue

The function Simplify uses the associative, commutative, and
distributive properties of operations to transform a symbolic ex-
pression to sum-of-product form [11, Chapter 12]. The commuta-
tive and associative properties are used to reorder operands of an
expression into a canonical form. For instance, the expressions:

(def(eax) + 2) + def(ebx),

(def(eax) + def(ebx)) + 2, and
(2 + def(ebx)) + def(eax)

are all transformed to 2 + (def(eax) + def(ebx).
The distributive property is used to refactor an expression so

as to propagate operations of higher precedence deeper within
the expression. Thus, the expression (def(eax) + 2) × def(eax)
is transformed to (def(eax) × def(eax)) + (2 × def(eax). The
algebraic simplifier also includes rules of identities and zeroes
of various arithmetic and logical operators. These identities and
zeroes are also used to simplify expressions, such as reducing an
expression of the form (def(eax) − def(eax)) × def(ebx) to the
integer 0.

In addition, a linear order over RValue is used to map com-
mutative operations to canonical form. Akin to ordering of ground
terms in Prolog, the ordering is defined by using the names and
arity of functions to order terms. A function with smaller arity is
smaller than one with larger arity. Two functions of the same arity
are ordered using lexicographic ordering of their function names.
Numeric values are ordered using numeric order and are consid-
ered smaller than functions and symbols.

The semantics of a code segment ‘c’ is the state ‘s’ resulting
from the mapping Interpret(c, def) = s. In Table 1, the semantics is
presented as ‘updates’ to def . The expression ‘eax = 5’ means that
upon execution of that block of code, register eax will contain the

value 5. Using the linear order over RValue, which is also extended
to LValue, a State can be represented as an ordered sequence of
pairs of LValue and RValue. With the sorted representation, the
semantics of two code segments can be compared in linear time
with respect to the sizes of their states, or can be tested for equality
in constant time using their hashes.

An algebraic simplifier’s ability to map equivalent code to the
same semantic structure depends on, among other things, whether
the rewrite rules used by Simplify are confluent. Completing a set
of rewrite rules to make the set confluent is an undecidable prob-
lem. Thus, the simplifier does not in any way bypass undecidability.
However, as articulated by Linger et al. [10], in spite of its limita-
tion, a simplifier based on (known) algebraic equalities can nor-
malize a large set of expressions, so as to be useful on real-world
code.

3.2 Extracting Juice
The purpose of extracting juice is motivated by the desire to ef-
ficiently determine whether two code segments are semantically
equivalent modulo renaming of registers. Previous works have ad-
dressed this challenge by generating all possible permutations of
renamed code segments and comparing their semantics [5]. While
such a method is safe, it is computationally expensive and does not
scale for the problem of searching for semantically similar code in
a large collection of malware. On the other hand, the semantics of
blocks can directly be used to create a scalable search algorithm
[7], but such an algorithm will not account for register renaming,
and hence be too strict.

As stated earlier, juice is a generalization of semantics along
with type and algebraic constraints. Whereas semantics consists of
ground terms, juice terms may contain logical variables. The gen-
eralization of semantics to juice may be performed by consistently
replacing register names with logical variables. The replacement is
consistent in that two occurrences of the same register name are al-
ways replaced by the same variable. In addition to abstracting the
registers used, one may also abstract the literal constants. In the
example of Table 1, the semantics ‘ebx = def(ebx)×5+20’ gen-
eralizes to ‘B = def(B)×N1+N2’ by consistently renaming its
registers and literal constants. The type of the variables introduced
follows directly from the type of the term they replace. Since the
logical variable B replaces the 32-bit register eax, it follows that B
is of type reg32. Similarly, it follows that N1 and N2 are of type
Int.

The problem then remains how does one generate the alge-
braic constraints between the logical variables, for instance, the
constraint ‘N2 = N1×N3’ in Table 1. We present an innova-
tive approach for generating such algebraic constraints. The key
idea is to augment the symbolic interpreter to track the simplifi-
cations it performs. In our example, the term 20 in the expression
‘def(ebx) × 5 + 20’ results from the immediate simplification of
the expression 5 × 4, which in turn follows from the distributive
property of multiplication. In this example, the interpreter will an-
notate the semantics with the tautology ‘20 = 5 × 4’. Then, when
extracting juice, the annotations are also generalized along with
the semantics. Thus, the term 20 is replaced by N2 and 5 by N1
in both the annotation and the semantics, yielding the constraint
‘N2 = N1×N3’.

Having computed the juice for code fragments, the question
still remains: how does one efficiently determine whether two frag-
ments have the same juice? As done for semantics, it would be ideal
if equivalent terms can be mapped to a canonical form. However,
the existence of logical variables in juice terms poses a challenge.
One possibility is to name these variables in the order in which
substitutions are performed, and use the resulting order for com-
parison. Then the juice terms can be ordered using this linear or-

der. When two such ordered juice terms match, the corresponding
code fragments will be equivalent, modulo renaming of variables
and literal constants. However, it is also possible that a different
ordering of variables may lead some other pairs of terms to match,
and thus correctly identify other sets of equivalent code fragments.
Thus, even though an arbitrary order imposed on logical variables
will correctly identify equivalent code fragments, it may also miss
some equivalences.

Since an arbitrary order on logical variable is not satisfactory,
we prefer to assume treat variables as unordered. This leads to a
partial order on juice in which two equations in the juice of a code
segment cannot be ordered linearly if and only if they are variants of
each other, i.e., they are identical except for their variables. Table 2
presents an example to illustrate this. The first two columns of the
table contain the semantics of two code fragments. It is evident that
the semantics are equivalent, except for the choice of registers. The
semantics in column (a) can be transformed to that in column (b)
by replacing the register eax by ecx. The two semantics naturally
result in juice that differs only in the logical variables. One such
juice is given in column (c). Whereas the terms in the semantics
could be linearly ordered, the same is not true of the juice. The two
terms ‘R1 = N1’ and ‘R2 = N2’ cannot be ordered. The same is
true of the other two terms.

Table 2 column (d) shows another abstraction of juice that
trades safety for an increase in the set of code fragments that
may be deemed equivalent. This abstraction takes advantage of the
observation mentioned above that only mutually variant terms in
juice cannot be ordered. In this abstraction, the variant terms in the
juice are unified, yielding a structure that is linearly ordered. As
is evident from the example, such a generalization may result in a
significant loss and may not always be prudent.

4. Preliminary Results
We have developed a system BinJuice that implements the method
described in the previous section. The symbolic interpreter and sim-
plification algorithm of BinJuice are written in SWI-Prolog and
its frontend in Python. The system takes as input disassembled
code, such as that produced by objdump [14]. The Python fron-
tend parses the disassembly, partitions it into procedures, constructs
their CFGs, and then feeds each block of code to the Prolog back-
end over a http connection. The Prolog backend computes each
block’s semantics and extracts its juice. The juice consists of four
components: the generalized semantics, the type constraints, the al-
gebraic constraints, and the generalized code fragment. The gener-
alized code fragment is produced by generalizing the original code
using the same variable substitutions as those used for the general-
ized semantics.

We have studied the efficacy of BinJuice’s semantics computa-
tion and juice extraction capability using two sets of data: 1) vari-
ants of Win32.Evol, a metamorphic virus and 2) ten versions each
of two benign programs downloaded from Github. The first set of
programs represent variants that may be generated by post-compile
obfuscation transformation and the second set represents versions
resulting from normal code evolution.

The purpose of the first study, that with Win32.Evol, was to
determine whether BinJuice can aid in locating matching code
blocks in automatically generated variants. The purpose of the
second study was to determine whether use of juice improved upon
the similarity computation as compared with using semantics or n-
perms.

The Win32.Evol variants were acquired from a previous study
[16]. In that study, the malware was used to infect eight Microsoft
Windows ‘goat’ executables. The infected executables were then
run again to reinfect the goat files. Since the malware is metamor-
phic, at each infection it introduces a modified copy of its code and

push(ebp)
mov(ebp,esp)
sub(esp,16)
mov(eax,dptr(ebp))
push(edi)
push(ebx)
mov(ebx,ebp)
mov(edi,ebx)
pop(ebx)
push(ebx)
mov(ebx,46)
sub(edi,ebx)
pop(ebx)
mov(dptr(edi+42),eax)
pop(edi)
lea(eax,wptr(ebp-16))
push(esi)
mov(esi,1634038339)
mov(dptr(eax),esi)
pop(esi)
push(esi)
mov(esi,32509012)
add(esi,1733712160)
mov(dptr(eax+4),esi)
pop(esi)
push(edx)
mov(edx,4285804)
mov(dptr(eax+8),edx)
pop(edx)
push(eax)

push(ebp)
mov(ebp,esp)
sub(esp,16)
mov(eax,dptr(ebp))
mov(dptr(ebp-4),eax)
lea(eax,wptr(ebp-16))
mov(dptr(eax),1634038339)
mov(dptr(eax + 4),1766221172)
mov(dptr(eax + 8),4285804)
push(eax)

eax = -20 + def(esp)
ebp = -4 + def(esp)
esp = -24 + def(esp)
memdw(-24 + def(esp)) = -20 + def(esp)
memdw(-20 + def(esp)) = 1634038339
memdw(-16 + def(esp)) = 1766221172
memdw(-12 + def(esp)) = 4285804
memdw(-8 + def(esp)) = def(ebp)
memdw(-4 + def(esp)) = def(ebp)

Simplifications performed
1766221172 = 32509012 + 1733712160
-50 = -4 - 46
-20 = -4 - 16
-16 = -20 + 4
-12 = -20 + 8
-8 = -50 + 42

A = -N1 + def(B)
C = -N2 + def(B)
B = -N3 + def(B)
memdw(-N3 + def(B)) = -N1 + def(B)
memdw(-N1 + def(B)) = N4
memdw(-N5 + def(B)) = N6
memdw(-N7 + def(B)) = N8
memdw(-N9 + def(B)) = def(C)
memdw(-N2 + def(B)) = def(C)

where
N6 = N10 + N11
-N12 = -N2 - N13
-N1 = -N2 - N5
-N5 = -N1 + N2
-N7 = -N1 + N9
-N9 = -N12 + N14

(a) Variant 1 (b) Variant 2 (c) Semantics (d) Juice

Table 3. Two variant code segments from Win32.Evol and their semantic juice

creates a new variant. Some goat files were reinfected up to six
times, creating up to six ‘generations’ of infection.

Table 3 gives an example of semantic juice extraction for code
transformed using the metamorphic engine of Win32.Evol. The
code segments in columns (a) and (b) are for corresponding blocks
of the two variants of the malware and are semantically equivalent.
Column (c) shows their (identical) extracted semantics, and it also
shows the tautologies used in algebraic simplification for Variant
1. The example is indicative of what we find for all the variants of
Win32.Evol. The semantics can be used to identify corresponding
blocks of code for variants even though the code for the blocks may
be transformed. Column (d) shows the corresponding juice along
with the algebraic constraints.

Our experience with Win32.Evol showed that the semantics and
juice computed by BinJuice can be used to accurately pair corre-
sponding blocks so long as they were transformed by equivalence
preserving transformations. Win32.Evol contains transformations
that, while preserving the semantics of the overall program, do not
preserve the semantics of a block. For instance, it has transforma-
tions that introduces computation on registers that are known to be
dead at the end of the block. In such a situation, the intersection of
the semantics (juice) of the corresponding blocks always yields the
correct semantics (juice), though the two semantics (juice) are not
structurally equal.

In the second experiment we downloaded ten versions of tinyrb
and mcmap programs from GitHub. Tinyrb is a “tiny and fast subset
of Ruby Virtual Machine” and mcmap is “a tiny map visualizer
for Minecraft.” We compiled the sources using gcc and generated
x86, 32-bit binaries. These were then stripped and used to extract
the following features: n-perms, semantic hashes, and juice hashes.
These features were then used in the MAAGI system to construct
lineage – the evolutionary relationships between the versions [12].

Our preliminary results show that the use of semantics or juice
did not significantly improve upon the lineage computed using n-
perms. Though these results are not exciting, they are also not
conclusive. Since we used the same version of the compiler with
the same optimization levels, the unchanged functions between two
successive versions had exactly the same code. Thus, the similarity
computed using n-perms was just as good as that using semantics
or juice.

Taken together the results of the two preliminary studies indi-
cate that the semantics and juice computed using BinJuice would
be effective in finding similar code fragments in a repository of
malware where post-compile obfuscators are used to generate vari-
ants. However, for a repository of benign programs, the lower cost
features generated using n-perms or n-grams may be sufficient.

5. Limitations
Any method for finding semantically similar code fragments is fun-
damentally limited by Rice’s Theorem. So it is a given that no com-
puter program can precisely identify equivalent (or similar) code
fragments between all pairs of programs. Yet, it is instructive to
identify obvious limitations that may influence the results in prac-
tical real-world programs. These limitations also identify weak-
nesses a malware author may exploit to defeat a system employing
the method presented.

The most significant limitation of the proposed method is that it
is centered around semantics of basic blocks. As a result semanti-
cally equivalent programs that differ in how computation is spread
across the basic blocks would not have similar block semantics or
juice. Such differences in content and structure of blocks may arise
due to differences in compilers and optimization levels. The differ-
ences may also be explicitly forced by post-compile obfuscators.

The block-centric limitation may be overcome by computing the
semantics for single-entry, single-exit subgraphs, as done by Linger
et al. [10]. The benefit comes at a cost, since the number of such
subgraphs is quadratic on the number of blocks. Another alternative
may be to use semantics of n nodes along a path in the CFG,
akin to n-grams. Though this may counter some optimizations and
obfuscations, it is sensitive to even very small changes in semantics
due to small evolutionary changes or due to dead code insertion by
obfuscators. As a result, one may need to use inexact matches on
semantics or juice, thereby making the operation expensive.

As with data flow analysis [11], aliases bring a new set of chal-
lenges. Two code segments may be equivalent under aliasing, for
instance, when two registers hold the address for the same mem-
ory location. Determining such equivalences may require the need
of theorem provers, and may not be amenable to simple structural
comparisons. However, the use of such equivalences may also pro-
duce false matches, causing segments of code to be considered
equivalent under aliasing even though such aliasing may not arise
in the program.

Specific methods of defeating semantics-based (and other)
methods of finding similar code fragments may be found in Coll-
berg and Nagra’s [3] treatise on software obfuscation and deobfus-
cation.

6. Conclusions
This paper introduces two improvements to prior works on the use
of symbolic interpretation to find similar code fragments. First, it
canonicalizes the terms representing the semantics using algebraic
simplification such that equivalence can be determined using struc-
tural equality. This offers a very fast method for comparing the
semantics of code blocks, albeit subject to the limitations of the
algebraic simplifier. Second, it introduces a novel concept: juice—
a generalization of the semantics. Juice is computed by replacing
register names and literal constants in the semantics by typed vari-
ables. More importantly, juice also maintains algebraic constraints
relating those variables. Thus, juice serves as a template of the se-
mantics and may be used to match code fragments that differ due
to register renaming and also choice of constants.

This work is motivated by the need to find similar code frag-
ments in a large repository of binaries, an application in which a
fast method to match semantics (or any abstraction) is a prerequi-
site. Unlike semantic terms, juice terms cannot be linearly ordered
and thus cannot be compared using their hashes. We present further
abstraction of the juice so as to impose a linear order, thereby en-
abling fast comparison. The abstraction comes at a loss of accuracy
whose effect on real-world applications needs to be determined em-
pirically.

7. Acknowledgments
The authors thank Jacob Ouellette and Avi Pfeffer of Charles Rivers
Analytics, Cambridge, MA for their participation in the exper-
iments using BinJuice. This material is based upon work sup-
ported by the Air Force Research Laboratory, Rome, NY and the
Defense Advanced Research Program Agency under Award No.
FA8750-10-C-0171, the Air Force Office of Scientific Research
under Award No. FA9550-09-1-0715, and the Air Force Research
Laboratory, Rome NY under Contract No. FA8750-12-C-0144.

References
[1] Black Duck: Open source management software & consulting,

https://www.blackducksoftware.com/

[2] Cohen, C., Havrilla, J.S.: Function hashing for malicious code anal-
ysis. In: CERT Research Annual Report 2009, pp. 26–29. Software

Engineering Institute, Carnegie Mellon University (2010), http://
www.cert.org/research/2009research-report.pdf

[3] Collberg, C., Nagra, J.: Surreptitious Software: Obfuscation, Water-
marking, and Tamperproofing for Software Protection. Pearson Edu-
cation (2010)

[4] Eagle, C.: The IDA Pro Book: The Unofficial Guide to the World’s
Most Popular Disassembler. No Starch Press (2008)

[5] Gao, D., Reiter, M.K., Song, D.: BinHunt: automatically finding se-
mantic differences in binary programs. In: Chen, L., Ryan, M.D.,
Wang, G. (eds.) Information and Communications Security, pp. 238–
255. No. 5308 in Lecture Notes in Computer Science, Springer Berlin
Heidelberg (Jan 2008), http://link.springer.com/chapter/
10.1007/978-3-540-88625-9_16

[6] Jang, J., Brumley, D., Venkataraman, S.: BitShred: feature hashing
malware for scalable triage and semantic analysis. In: Proceedings of
the 18th ACM conference on Computer and communications security.
p. 309320. CCS ’11, ACM, New York, NY, USA (2011), http:
//doi.acm.org/10.1145/2046707.2046742

[7] Jin, W., Chaki, S., Cohen, C., Gurfinkel, A., Havrilla, J., Hines, C.,
Narasimhan, P.: Binary function clustering using semantic hashes. In:
Proceedings of the 11th International Conference on Machine Learn-
ing and Applications (ICMLA), (Dec 2012), http://www.contrib.
andrew.cmu.edu/~schaki/publications/ICMLA-2012.html

[8] Jin, W., Hines, C., Cohen, C., Narasimhan, P.: A scalable search index
for binary files. In: Proceedings of 7th International Conference on
Malicious and Unwanted Software (Malware 2012). Fajardo, Puerto
Rico (Oct 2012)

[9] Karim, M., Walenstein, A., Lakhotia, A., Parida, L.: Malware phy-
logeny generation using permutations of code. Journal in Computer
Virology 1(1), 13–23 (2005)

[10] Linger, R., Daly, T., Pleszkoch, M.: Function extraction (FX) research
for computation of software behavior: 2010 development and appli-
cation of semantic reduction theorems for behavior analysis. Tech-
nical Report CMU/SEI-2011-TR-009, Carnegie Mellon University,
Software Engineering Institute (Feb 2011), http://www.cert.org/
archive/pdf/11tr009.pdf

[11] Muchnick, S.S.: Advanced Compiler Design Implementation. Morgan
Kaufmann (1997)

[12] Pfeffer, A., Call, C., Chamberlain, J., Kellogg, L., Ouellette, J., Pat-
ten, T., Zacharias, G., Lakhotia, A., Golconda, S., Bay, J., Hall, R.,
Scofield, D.: Malware analysis and attribution using genetic informa-
tion. In: Proceedings of the 7th IEEE International Conference on Ma-
licious and Unwanted Software (MALWARE 2012). IEEE Computer
Society Press, Fajardo, Puerto Rico (Oct 2012)

[13] Porst, S.: Comparing different versions of SDBot using SABRE Bin-
Diff v1.7 (Sep 2005), http://www.the-interweb.com/bdump/
malware/bindiff.pdf

[14] The GNU Project: GNU binutils, http://www.gnu.org/
software/binutils/binutils.html

[15] Venable, M., Walenstein, A., Hayes, M., Thompson, C., Lakhotia, A.:
Vilo: a shield in the malware variation battle. Virus Bulletin pp. 5–10
(2007)

[16] Walenstein, A., Mathur, R., Chouchane, M.R., Lakhotia, A.: Con-
structing malware normalizers using term rewriting. Journal in
Computer Virology 4(4), 307–322 (Nov 2008), http://link.
springer.com/article/10.1007/s11416-008-0081-5

[17] Zynamics: BinDiff 3.2 manual. http://www.zynamics.com/bindiff/manual/,
http://www.zynamics.com/bindiff/manual/

