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Brain activity is associated with structural changes in the neural connections. However, in
vivo imaging of the outer cortical layers has shown that dendritic spines, on which most
excitatory synapses insist, are predominantly stable in adulthood. Changes in dendritic
spines are governed by small GTPases of the Rho family through modulation of the actin
cytoskeleton.Yet, while there are abundant data about this functional effect of Rho GTPases
in vitro, there is limited evidence that Rho GTPase signaling in the brain is associated with
changes in neuronal morphology. In the present work, both chronic in vivo two-photon
imaging and Golgi staining reveal that the activation of Rho GTPases in the adult mouse
brain is associated with little change of dendritic spines in the apical dendrites of primary
visual cortex pyramidal neurons. On the contrary, considerable increase in spine density
is observed (i) in the basal dendrites of the same neurons (ii) in both basal and apical
dendrites of the hippocampal CA1 pyramidal cells. While confirming that Rho GTPase-
dependent increase in spine density can be substantial, the study indicates region and
dendrite selectivity with relative stability of superficial cortical circuits.

Keywords: dendritic spines, two-photon microscopy, Golgi staining, Rho GTPases, cytotoxic necrotizing factor 1,

brain plasticity, mice

INTRODUCTION
Changes in the structure of synaptic connections underlie various
neurological processes ranging from the development of neuronal
circuitry to injury-related recovery and cognition (Hubel et al.,
1977; Rakic et al., 1994; Florence et al., 1998; Jones and Pons,
1998; Lichtman and Colman, 2000; Keck et al., 2008). In partic-
ular, the rearrangement of neural networks produced by changes
in dendritic spines has been associated with learning and mem-
ory processes (McGaugh, 2000; Chklovskii et al., 2004). Recent
technological advances, including two-photon microscopy and
transgenic mice overexpressing fluorescent proteins have made
possible to image individual dendritic arbors and spines over
long periods of time in living animals. By this technique, active
generation of spines/protrusions was observed in the develop-
ing brain, when the wiring of the neural networks is being
established (Lendvai et al., 2000; Grutzendler et al., 2002; Majew-
ska et al., 2006; Holtmaat and Svoboda, 2009). Although several
studies indicate that synaptic connectivity in adulthood can be
continuously modified by learning-related tasks and environmen-
tal factors (Fox, 2002; Grossman et al., 2002; Knott et al., 2002;
Yang et al., 2009), cortical circuits appear to be rather stable in the
adulthood (Grutzendler et al., 2002; Majewska et al., 2006).

Spine structure changes through the reorganization of the
actin cytoskeleton (Matsuzaki et al., 2004; Okamoto et al., 2004;
Honkura et al., 2008). This latter is regulated by GTPases belong-
ing to the Rho family (Van Aelst and Cline, 2004; Auer et al., 2011;

Chen et al., 2012; Suo et al., 2012), a class of hydrolases ubiqui-
tously expressed in eukaryotic cells that includes Rho, Rac, and
Cdc42 subfamilies (Etienne-Manneville and Hall, 2002). Stud-
ies using neuronal cell lines revealed that both Rac1 and Cdc42
are required for neurite formation and outgrowth; conversely,
Rho activation suppresses neurite outgrowth and induces neu-
rite retraction (Luo, 2000; Lorenzetto et al., 2013). Yet, most of the
aforementioned studies were carried out in cultured neural cells,
and there is little evidence that Rho GTPase signaling in the brain
be associated with changes in neuronal morphology (Cerri et al.,
2011; Suo et al., 2012). In addition, not much is known about the
regional and subcellular distribution of Rho GTPase-dependent
plasticity.

Cytotoxic necrotizing factor 1 (CNF1), a 114 kDa protein
toxin produced by Escherichia coli, produces a rearrangement of
the cytoskeleton in intact cells through permanent activation of
Rho, Rac1, and Cdc42 (Boquet, 2001). This capability, previously
observed in epithelial cells, extends to neurons (Diana et al., 2007;
Malchiodi-Albedi et al., 2012). In the present work, we sought to
determine whether the activation of cerebral Rho GTPases through
CNF1 is followed by changes in neuronal morphology in the adult
mouse brain. We analyzed the fine morphology of hippocampal
CA1 and V1 visual cortex pyramidal neurons by Golgi-Cox stain-
ing. Changes in the structure of neuronal processes in V1 area
of the visual cortex were also followed by chronic in vivo two-
photon fluorescence imaging. The functional relevance of the
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changes observed was investigated by in vitro recording of activity-
dependent plasticity phenomena, such as paired-pulse facilitation
(PPF) and long-term potentiation (LTP). Altogether, our results
indicate that Rho-dependent structural plasticity is substantial and
widespread in hippocampal CA1 pyramidal neurons and weak
in apical dendrites of V1 pyramidal neurons, thus suggesting a
regional and dendritic selectivity.

MATERIALS AND METHODS
MORPHOMETRICAL ANALYSIS OF Golgi-Cox STAINED SECTIONS
Animals
The experiments were carried out on eight male C57BL/6J mice
(Harlan Italy, S. Pietro al Natisone, Udine, Italy) aged 3 months at
the time of the treatment. The mice were housed at 21 ± 1◦C at
constant humidity (55%) and in a 12/12 h dark–light cycle, with
light phase from 08:00 to 20:00. Food and water were provided ad
libitum. The use and care of the animals was compliant with the
Italian law (DL 116/92) and with the guidelines of the European
Communities Council (1986).

Intracerebroventricular injections
Under general anesthesia (sodium pentobarbital, 50 mg kg−1 i.p.),
a 27G needle mounted on a 25 μl Hamilton microsyringe was
placed in the right lateral cerebral ventricle with a stereotaxic tech-
nique (coordinates from bregma and skull bone: A/P = −1.0 mm,
L/M = +1.0 mm, D/V = −3.0 mm; Paxinos and Franklin, 2004).
The mice were injected 3.3 μl of 1.0 fmol kg−1 CNF1 (GenBank
X70670.1, n = 4) or vehicle (20 mM TRIS-HCl buffer, pH 7.5;
n = 4). Five minutes post-injection, the needle was removed and
the surgical wound sutured. From this time on, the mice were
housed in individual cages and monitored for general conditions
for the following 7 days.

Golgi-Cox impregnation of brain tissue
Ten days post-injection, the animals were deeply anesthetized
with sodium pentobarbital (50 mg kg−1 i.p.) and perfused tran-
scardially with 150 ml of saline at room temperature. Brains
were prepared for Golgi-Cox staining as previously described
(Glaser and Van der Loos, 1981). Briefly, the brains were
removed from the skull and immediately stored in Golgi-Cox
solution (1% potassium dichromate/1% mercuric chloride/0.8%
potassium chromate) at room temperature for 6 days. Subse-
quently, they were transferred into a sucrose solution (30%)
and stored at room temperature for 3 days. Then, coronal
sections of the brains (100 μm thick) were prepared using a
vibroslicer. The sections were mounted on gelatinized slides
and stained according to the procedure previously described
(Gibb and Kolb, 1998). The slides were covered and left dry-
ing at room temperature overnight. On the following day, the
brain sections were observed under light microscope (Zeiss
Axioskop, Germany) at 4×–100× magnification, the latter in oil
immersion.

Morphological analysis
Measurements were performed in fully impregnated pyrami-
dal neurons displaying dendritic tree without obvious trunca-
tions. Sixteen neurons from hippocampal CA1 (A/P stereo-
taxic coordinates from bregma: −1.5 to −2.5 mm; two

neurons/hemisphere/mouse/treatment; Figures 1A–F) and 16
from V1 visual cortex with cell soma in the layer V (A/P
stereotaxic coordinates from bregma: −2.6 to −3.2 mm; two neu-
rons/hemisphere/mouse/treatment; Figures 2A–F; Paxinos and
Franklin, 2004) were analyzed.

The neurons were traced and analyzed using Neurolucida soft-
ware (MicroBrigthtField, Williston, VT, USA). The tracings (see
Figures 1B,E and 2B,E) were carried out on images obtained
from a camera (Optronics, Chelmsford, MA, USA) connected to
the microscope. The morphological analysis (Figures 1G–L and
Figures 2G–L) was performed by two different operators that were
blind to the treatment of the animal.

Dendrites length and branching Dendrites were assigned to
three different classes: apical, basal, and oblique. For the branch-
ing analysis, the basal dendrites were classified using a“centrifugal”
method (Uylings et al., 1986). The branches arising from the soma
were classified as order I, the bifurcations which arose from the
branches of the order I were named as order II, and so on. The
dendrites that belonged to the apical ones were defined as oblique
dendrites. The analyzed dendrites did not have truncated ramifi-
cations and were checked for continuity with the neuron to avoid
misattribution to neighboring neurons and erroneous dendritic
spine counting. Neurons were selected so that they had an order of
ramification for the basal dendrites ≥III and a number of branches
detaching from the soma of at least of three dendrites. The neurons
were traced along their entire length. Sholl analysis was performed
to determine the cumulative dendritic length and the number of
dendritic intersections within concentric spheres centered on the
neuron soma.

Spine density Neurons were first identified under low-
magnification (20×). Subsequently, they were traced under
high-magnification (100×). All protrusions showing a clear con-
nection to the dendritic shaft were considered as spines and traced
for subsequent analysis. The spine density was defined as the num-
ber of spines on 1 μm of dendritic length. Spines were counted
on the whole and entire apical and oblique dendritic lengths but
only on basal dendrites with order III of branching or higher. Sholl
analysis was performed to determine spine densities by distance
from the neuron soma.

IN VIVO SPINE IMAGING
Animals and surgical preparation
Male 3/4-month old C57BL/6J transgenic mice, in which a Thy-1
promoter drives the expression of green fluorescent protein (GFP,
line M) in a subset of cortical neurons (Feng et al., 2000) were used
for the study. Surgical procedures were performed as described
previously (Holtmaat et al., 2009; Laperchia et al., 2013). Briefly,
mice were deeply anesthetized with an i.p. injection of avertin
(400 mg kg−1). Before surgery, dexamethasone (2 mg kg−1 i.m.)
and carprofen (0.3 ml of a 0.50 mg ml−1 solution i.p.) were injected
to prevent cerebral edema and inflammation and to limit pain.

Primary visual cortex was identified on the basis of stereotaxic
coordinates (Paxinos and Franklin, 2004). The skull overlying
visual cortex was removed, taking care not to damage the dura.
The dura was covered with a coverglass (5 mm diameter, 0.15 mm
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FIGURE 1 | Rho GTPase activation increases spine density and

dendrite branching in hippocampal CA1 pyramidal neurons. (A,D)

Photomicrographs (scale bar 100 μm); (B,E) Neurolucida tracings; (C,F)

detail of apical dendrite (scale bar 2 μm) of representative Golgi stained
neurons in hippocampal CA1 of C57BL/6J mice treated 10 days before

histology either with vehicle (control, A,C) or 1.0 fmol kg−1 CNF1
i.c.v. (D,F). Spine density (G,J), number of intersections (H,K), and
average dendrite length (I,L) in basal (G,I) and apical (J,L) dendrites are
plotted by distance from cell soma (μm). Mean ± SEM; n = 16 in each
group.

thickness, Warner Instruments, CT, USA), sealed in place with
dental acrylic glue.

Imaging was started 15–20 days after surgery. Between imag-
ing sessions, animals were housed individually in plastic cages.
Fifteen–twenty days after cranial window implantation, 15 mice
were assigned to four groups, 3 of which received i.c.v. injection of
CNF1 (n = 4), CNF1 C866S (a recombinant molecule in which the
enzymatic activity was abolished by replacing serine to cysteine at
position 866; n = 4; Schmidt et al., 1998) or vehicle (20 mM TRIS-
HCl buffer, pH 7.5; n = 4). The injections were performed as
described above (“Intracerebroventricular injections”). A fourth
group of untreated mice (n = 3) was used as additional control.

Imaging
Animals were anesthetized with isoflurane. In vivo images of
GFP-expressing neurons were acquired by a two-photon laser
scanning microscope (2PLSM; TCS-SP5, Leica Microsystems, Ger-
many) equipped with a Ti:Sapphire tunable laser, (680–1080 nm;
Chameleon Ultra, Coherent Inc, CA, USA). The objective was
water immersion HCX APO L 20x/1.00 NA (Leica Microsystems,
Germany). The GFP was excited at 920 nm and the signal was
collected by non-descanned detectors in the range 500–530 nm.

In each animal, the apical dendritic tufts of layer V pyramidal
neurons were imaged for 16 days. In each session, the dendritic
tufts were localized using as a reference the vascular pattern of the
cortical region, and then using low-magnification 2PLSM imaging
to identify the cell of interest by the unique branching pattern of
its apical dendrites. For high-magnification spine imaging, 7–10
fields were selected for each cell. Image stacks consisted of sections
(512 × 512 pixels; 90 nm/pixel, pixel dwell time 2.5 μs) collected
in 1 μm z-step size. Care was taken to achieve almost identical flu-
orescence levels across imaged regions and imaging sessions. All
images in the figures are maximum intensity projections (MIPs)
of z-stacks.

Spine turnover analysis
A total of 2830 spines were tracked in time-lapse images on day
1 before treatment administration and subsequently on day 5,
10, and 15 post-injection. All clear protrusions emanating lat-
erally from the dendritic shaft were measured. Evaluation of spine
appearance/disappearance was based on the following criteria:
spines were considered as lost if they disappeared into the haze
of the dendrite, whereas spines were considered as gained if they
showed clear protrusion from the dendrite.
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Turnover ratios (TORs), i.e., the fraction of spines appearing
and disappearing from an imaging session to the following one
were calculated as (number gained + number lost)/(2 × total
number). The time-dependent survival function was calculated as
SF(t) = N(t)/No, where No is the number of spines at t = 0, and
N(t) is the number of spines of the original set surviving after
time t. By definition, SF(t) is a monotonically decreasing function
of time, and SF(0) = 1 (Holtmaat et al., 2005).

HIPPOCAMPAL AND CORTICAL SLICE PREPARATION AND
ELECTROPHYSIOLOGY
Two groups of C57BL/6J mice, treated with either 1.0 fmol kg−1

CNF1 or vehicle were used for in vitro electrophysiology experi-
ments. Intracerebroventricular administration of the test solution
was carried out as described above. Ten–eighteen days post-
treatment, the mice were deeply anesthetized with urethane
(1.5 g kg−1 i.p.) and decapitated. The brains were removed and
the hippocampus and primary visual cortex were isolated. Trans-
verse hippocampal or cortical slices, 400 μm thick, were cut with
a tissue chopper (The Mickle Laboratory Engineering Co. Ltd.,
Gomshall, Surrey, UK), transferred to an incubation glass cham-
ber containing artificial cerebrospinal fluid (ACSF) saturated with

a gas mixture of 95% O2 and 5% CO2 and maintained at room
temperature for at least 2 h. ACSF is a water solution (pH 7.4)
containing (mM): 126 NaCl, 3.5 KCl, 1.2 NaH2PO4, 25 NaHCO3,
2 CaCl2, 1.3 MgCl2, 11 glucose. For electrophysiological exper-
iments, slices were transferred to a submerged-type recording
chamber, placed about 100 μm below the surface and perfused
with oxygenated ACSF (24 ± 1◦C) with a peristaltic pump (Gilson
Minipuls3, WI, USA) at a constant flow rate (2.5–3 ml min−1).
An electrode (stainless steel, 250 μm diameter, tapered tip size 8◦,
5 M�; A-M Systems Inc., WA, USA) was placed into the stratum
radiatum within the CA1 area to stimulate the Schaffer’s collateral-
commissural fibers or in the layer IV of the V1 area of the visual
cortex. Glass micropipettes (OD 1.0 mm, ID 0.7 mm, 1.5–2 M�)
filled with ACSF were placed in the hippocampal dendritic layer
of the CA1 area or in the layer III of V1 for extracellular recording
of field excitatory post-synaptic potentials (fEPSPs). The depth
of the electrodes was adjusted in order to maximize the height of
the fEPSPs, which were evoked by regular stimulation (0.033 Hz;
squared waves, 100 μs; constant current). The responses were
amplified 1000 times and filtered at 10 kHz (L-C low pass filter,
40 dB/decade). The signals were then sampled at 40 kHz, digitized
and stored on disk for subsequent off-line analysis.

FIGURE 2 | Rho GTPase activation increases spine density in basal

but not apical dendrites of V1 visual cortex. (A,D) Photomicrographs
(scale bar 100 μm); (B,E) Neurolucida tracings; (C,F) detail of apical
dendrite (scale bar 2 μm) of representative Golgi stained neurons in
V1 visual cortex of C57BL/6J mice treated 10 days before histology

either with vehicle (control, A,C) or 1.0 fmol kg−1 CNF1 i.c.v. (D,F).
Spine density (G,J), number of intersections (H,K), and average
dendrite length (I,L) in basal (G,I) and apical (J,L) dendrites are
plotted by distance from cell soma (μm). Mean ± SEM; n = 16 in
each group.
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Ten minutes before the induction of LTP and 1 h after LTP,
neurotransmission was studied by recording input–output curves,
i.e., the responses produced by 11 consecutive stimuli of increas-
ing intensity (0–200 μA in steps of 20 μA). Stimulus intensity
used throughout LTP experiments was selected so that fEPSP ini-
tial slopes ranged from 40 to 60% of the maximum obtained in
the first input–output curve. For analysis, only slices that reached
a steady response in 30 min were used. LTP was induced by
three consecutive theta-burst stimulations (TBS, inter-stimulation
interval = 30 s; 10 trains of 4 stimuli at 100 Hz, baseline intensity;
inter-train interval = 200 ms) and recorded for at least 1 h. In
non-potentiated slices, PPF was elicited at six interpulse intervals
(25, 50, 100, 200, 300, and 400 ms, stimulation intensity selected as
for LTP experiments). Data were entered into analysis as a single
subject, and therefore reflect individual mice.

STATISTICAL ANALYSIS
Data were analyzed by analysis of variance (ANOVA). Repeated
measurement designs were implemented for the analysis of
(a) Golgi stained sections morphometrical data, using the
distance from soma as “within subjects” factor; (b) time-
lapse two-photon microscopy data, using time of imaging as
“within subjects” factor; (c) fEPSP input/output curves. LTP
and PPF experiments were analyzed by analysis of covari-
ance (ANCOVA) for repeated measurements, using the aver-
age slope of baseline responses as covariate. All calculations
were performed using StatisticaTM 5.0 or SPSS for Win-
dows.

RESULTS
Rho GTPase ACTIVATION INCREASES SPINE DENSITY IN
HIPPOCAMPAL CA1
Activation of Rho GTPases produces a substantial increase in
spine density on both basal and apical dendrites of hippocam-
pal CA1 pyramidal neurons. In particular, spine density on basal
dendrites was 0.594 ± 0.027 and 0.376 ± 0.021 in CNF1-treated
and vehicle-treated mice, respectively (spine/μm; mean ± SEM;
F1,29 = 36.307, P < 0.0001). The different distribution of
spine density by radius was statistically significant, as well
(F9,261 = 5.494, P < 0.0001; Figure 1G).

On apical dendrites, spine densities were 1.016 ± 0.025 and
0.626 ± 0.018 in CNF1-treated and in vehicle-treated group,
respectively (F1,28 = 112.004, P < 0.0001; Figures 1C,F). The
distribution of spines by radius was also significantly different in
the two groups (F19,532 = 4.419, P < 0.0001; Figure 1J). Spines
increased considerably on segments that usually show little or no
spine density, like the principal dendrite shaft, oblique dendrites,
and the terminal segment of hippocampal apical dendrite.

Rho GTPase ACTIVATION INCREASES DENDRITE BRANCHING IN
HIPPOCAMPAL CA1
Intersections of CA1 pyramidal neurons apical dendrites were
increased by CNF1 treatment. In treated group the average num-
ber of intersections was 6.597 ± 0.220, whereas in control group
it was 5.133 ± 0.168 (F1,28 = 8.036, P = 0.0084). The difference
was more pronounced in proximal dendrites (F19,532 = 2.791,
P < 0.0001; Figure 1K).

In the same neurons, there was no difference in the average
number of intersections of basal dendrites (9.957 ± 0.362 vs.
9.931 ± 0.410 in CNF1-treated and control group, respectively;
F1,28 = 0.001, P = 0.9762). The trend in the number of inter-
sections according to the distance from the cell soma (radius) is
illustrated in Figure 1H. It appears that intersections are increased
in the proximal dendrites, whereas they tend to decrease in the
distal ones (F9,252 = 2.569, P = 0.0076; Figure 1H).

The trends in dendrite length by distance from cell soma
match those obtained for the number of intersections. The aver-
age length of basal dendrites was not affected by treatment
(125.222 ± 5.031 and 125.309 ± 5.4461 μm in CNF1 and con-
trol group, respectively; F1,29 = 0.0001, P = 0.9931). As for the
number of intersections, CNF1 increased the length of proximal
and reduced that of distal dendrites (F9,261 = 2.654, P = 0.0058;
Figure 1I).

For apical dendrites, the average length was 90.581 ± 3.137
and 71.490 ± 2.611 in CNF1 and control group, respectively
(F1,28 = 6.186, P = 0.0191). The average length of proximal but
not distal sections of dendrites was increased by CNF1 treatment
(F19,532 = 2.286, P = 0.0016; Figure 1L).

Altogether, the results show that the activation of Rho GTPases
stimulates branching of the dendritic tree in the proximal sections
of both apical and basal dendrites in hippocampal CA1. This find-
ing suggests that Rho-dependent neuronal morphogenesis in the
adult brain is not restricted to spines but it involves the dendritic
tree.

Rho GTPase ACTIVATION INCREASES SPINE DENSITY IN BASAL BUT
NOT APICAL DENDRITES IN V1 VISUAL CORTEX
In basal dendrites of V1 visual cortex pyramidal neurons, the
Rho GTPase-dependent increase in spine density was significant,
though less sizeable than in hippocampal CA1. Spine densi-
ties were 0.368 ± 0.021 and 0.288 ± 0.021 in CNF1- and in
vehicle-treated group, respectively (spine/μm; mean ± SEM;
F1,33 = 1.735, P = 0.1968; difference by distance from cell soma:
F9,297 = 3.316, P = 0.0007; effect of distance from cell soma:
F9,297 = 65.250, P < 0.0001; Figure 2G). In particular, at 80–90
and 90–100 μm from the cell soma, spine density was significantly
higher in CNF1-treated mice (P < 0.05).

On the contrary, differences in spine densities were not signif-
icant in apical dendrites of the same neurons. In CNF1-treated
group the average spine density was 0.476 ± 0.015 and in the
control group it was 0.517 ± 0.018 (spine/μm; mean ± SEM;
F1,34 = 0.419, P = 0.5218 by repeated measurement ANOVA;
Figures 2C,F; difference in spine density by distance from cell
soma: F19,646 = 1.122, P = 0.3236; Figure 2J). Spines were
unevenly distributed along the length of the dendrites (effect
of distance from cell soma: F19,646 = 37.257, P < 0.0001;
Figure 2J).

Rho GTPase ACTIVATION DOES NOT AFFECT DENDRITE BRANCHING IN
V1 VISUAL CORTEX
Intersections in apical dendrites were 2.575 ± 0.087 and
2.400 ± 0.092 in CNF1-treated and control group, respectively
(F1,34 = 0.384, P = 0.5398; Figure 2K). No differences in total
intersections were observed in the basal dendrites of CNF1-treated
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mice (5.570 ± 0.358 vs. 5.650 ± 0.311 in CNF1-treated and con-
trol group, F1,28 = 0.013, P = 0.9111; differences in intersections
by distance from cell soma: F9,252 = 2.342, P = 0.0149; effect of
distance from cell soma: F9,252 = 71.122, P < 0.0001; Figure 2H).

The average length of basal dendrites by distance from cell
soma was 70.474 ± 3.921 in CNF1-treated and 76.472 ± 4.801
in control group (μm, F1,27 = 0.370, P = 0.5484; interaction den-
drite length × radius: F9,243 = 1.552, P = 0.1306; Figure 2I).
For apical dendrites, the average length was 40.054 ± 1.488 and
38.362 ± 1.796 in CNF1-treated and control group, respectively
(F1,34 = 0.138, P = 0.7130; differences in the effects of treatment
by radius: F19,646 = 0.701, P = 0.8196; Figure 2L).

Rho GTPase ACTIVATION DOES NOT AFFECT SPINE DYNAMICS IN THE
SUPERFICIAL V1 VISUAL CORTEX
Although CNF1 does not affect the density of spines and branch-
ing of apical dendrites of layer V pyramidal neurons in V1 visual
cortex, changes in the turnover of spines or dendrite morphology
may have occurred that are not reflected in the morphometry of
Golgi stained cells. For this reason, the stability of apical dendritic
tufts under the effects of CNF1 was studied by repeated, time-lapse
in vivo two-photon imaging (Figures 3A,C). A group of control
mice was treated with CNF1 C866S, a recombinant CNF1 in which
the enzymatic activity was abolished by substitution of serine with
cysteine at position 866 (Schmidt et al., 1998; Figures 3D,F). A
group of mice that received only vehicle injection and a group
of untreated, age-matched mice were used as additional controls
(Figures 3G,I and L,N, respectively).

We monitored the overall effects of Rho GTPase activation dur-
ing the first two weeks after treatment. We did not see any change
in the morphology of the superficial processes of layer V pyrami-
dal neurons of V1 visual cortex. We then evaluated dendritic spine
turnover, stability, and density.

Individual spines observed in the first imaging session, a total
860, 773, 847, and 350 spines in CNF1-, CNF1 C866S-treated, vehi-
cle injected, and untreated group, respectively, were followed up.
The fraction of spines surviving until the last imaging session (sur-
vival fraction, Sf) was calculated. No significant differences were
observed among the four groups in Sf (CNF1: 79.0 ± 2.3%, n = 4;
CNF1 C866S: 82.4 ± 2.1%, n = 4; vehicle: 78.4 ± 6.0%, n = 4;
untreated mice: 83.0 ± 3.0%, n = 3; mean ± SEM; F6,22 = 0.654,
P = 0.686; Figure 3O).

A subpopulation of spines appeared and disappeared across
imaging sessions (Figures 3C,F,I,N). This phenomenon was
observed in all groups. The rate of spine turnover (TOR) was
slightly higher in CNF1 treated mice than in the controls, even
though not significantly (CNF1: 9.8 ± 2.5%, n = 4; CNF1 C866S:
8.3 ± 1.6%, n = 4; vehicle: 9.2 ± 1.8%, n = 4; untreated mice:
8.0 ± 1.5%, n = 3; mean ± SEM; F6,22 = 1.764, P = 0.153;
Figure 3P).

Spine density (average of all time points) was comparable
among the four treatment groups (CNF1: 0.154 ± 0.045, n = 4;
CNF1 C866S: 0.130 ± 0.035, n = 4; vehicle: 0.170 ± 0.050%,
n = 4; untreated mice: 0.152 ± 0.050, n = 3; spines/μm;
mean ± SEM; F9,33 = 1.291, P = 0.279; Figure 3Q).

In conclusion, the activation of Rho GTPases did not induce
changes in the superficial dendritic tree of V1 pyramidal neurons.

Rho GTPase ACTIVATION ENHANCES GLUTAMATERGIC
NEUROTRANSMISSION AND LONG-TERM POTENTIATION IN
HIPPOCAMPAL CA1 BUT NOT IN V1 VISUAL CORTEX
Input–output curves were analyzed by a one-way ANOVA for
repeated measurements, in which treatment (“control,” “CNF1”)
was “between-subjects” factor and both the effects of LTP “pre-
LTP” and “post-LTP”) and the trend of responses at increasing
stimulation intensity (11 levels, “0” to “200”) were "within-
subjects” factor.

The ANOVA on the initial slopes of the fEPSP in the hip-
pocampus showed that the responses recorded during the gen-
eration of input–output curves were significantly different in
control and in CNF1-treated mice (F1,12 = 5.003, P = 0.0451;
Figure 4A). Field EPSP slopes were significantly affected by
stimulation intensity (F10,120 = 23.032, P < 0.0001) and its inter-
action with treatment (F10,120 = 2.531, P = 0.0084) and LTP
(F1,12 = 12.174, P = 0.0045; interaction LTP × stimulation inten-
sity: F10,120 = 4.970, P < 0.0001). Overall, the results indicate that
Rho GTPase activation increases excitatory neurotransmission in
the hippocampal CA1.

The analysis of fEPSP maximal slopes recorded in the layer
III of V1 visual cortex (Figure 4B) shows no significant effects
of treatment (F1,12 = 0.027, P = 0.8711; interaction treat-
ment × stimulation intensity : F10,120 = 0.261, P = 0.9882). The
effects of LTP (F1,12 = 5.291, P = 0.0402; interaction LTP × stim-
ulation intensity: F10,120 = 3.501, P = 0.004) were significant, as
they were the effects of stimulation intensity (F10,120 = 19.116,
P < 0.0001). Apparently, in the layer III of V1 visual cortex,
the activation of Rho GTPases does not affect basal glutamatergic
neurotransmission and LTP.

All slices reached the criterion for LTP. Responses obtained at
baseline intensity were steady both pre and post-TBS. The trend
of fEPSP maximal slopes after TBS in hippocampal CA1 and V1
visual cortex are illustrated in Figures 4C,D, respectively. Sixty
minutes post-TBS, the LTP in hippocampal CA1 area from CNF1-
treated mice was significantly higher than that observed in slices
from control mice (P < 0.05 by ANCOVA, using average fEPSP
slope of 10 pre-TBS responses as covariate). On the contrary, the
difference was not significant in V1 visual cortex. These results
might reflect a plasticizing effect that is selective for hippocampal
CA1. However, the findings may also be explained by the different
slope of the input/output curves observed in CA1 and therefore
do not necessarily reflect a real increase in synaptic plasticity.

The analysis of fEPSP maximal slopes during PPF by ANCOVA
for repeated measurements using the slope of the first response as
covariate did not show any significant effect of the treatment or its
interaction with inter-stimulus interval, neither in hippocampal
CA1 (Figure 4E) nor in V1 visual cortex (Figure 4F).

THE EFFECTS OF CNF1 DO NOT SHOW HEMISPHERIC DIFFERENCES
The reported effects may be partly explained by a proximity effect,
i.e., the tendency of the treatment to selectively affect cell pro-
cesses that are closer to the injection side. To test this hypothesis,
we compared the effects of the treatment in the morphometry
of Golgi stained CA1 hippocampal neurons of the two brain
hemispheres. If a local effect exists, it should be observed in
the injected side. In general, the effect hemisphere was far from
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FIGURE 3 | Rho GTPase activation does not increase spine density and

turnover in apical dendrites of primary visual cortex. GFP-m mice were
injected with CNF1 (1.0 fmol kg−1 i.c.v., n = 4), CNF1 C866S (1.0 fmol kg−1

i.c.v., n = 4), vehicle (20 mM TRIS-HCl buffer, pH 7.5, n = 4), or did not
received any treatment (n = 3) and transcranial two-photon imaging in
time-lapse of dendritic spines was performed. Examples of images collected
from mice treated with CNF1 (A,C), CNF1 C866S (D,F), vehicle (G,I), and
without treatment (L,N). (A,D,G,L) bright field views of the vasculature
below cranial window. The arrows indicate the region where two-photon

images were acquired. (B,E,H,M) low-magnification images of a
layer V dendritic arbor in visual cortex. (C,F,I,N) time-lapse images of
dendritic branches acquired 1 day before treatment (T0) and 5 (T5),
10 (T10), and 15 (T15) days after injection (from boxed regions in B,E,H,M,
respectively). Figures show an example of persistent (yellow arrows)
and transient spines (red arrows). Mean survival fraction (O), mean
turnover ratios (P) and mean spine density (Q) are plotted as a function
of time. Scale bars = 200 μm (A,D,G,L); 100 μm (B,E,H,M); 5 μm
(C,F,I,N).
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FIGURE 4 | Enhancement of glutamatergic neurotransmission and

long-term potentiation in hippocampal CA1 but not in V1 visual cortex

after Rho GTPase activation. Input–output curves of fEPSPs recorded
10 min before and 1 h after induction of long-term potentiation obtained by
three consecutive theta-burst stimulation (TBS, inter-stimulation
interval = 30 s; 10 trains of 4 stimuli at 100 Hz, baseline intensity; inter-train
interval = 200 ms) in CNF1-treated (1.0 fmol kg−1 i.c.v.), and control
(vehicle-treated) C57BL/6J mice (control, n = 6; CNF1, n = 8); (A)

hippocampal CA1 and (B) V1 visual cortex. Time course of fEPSP slopes
pre- and post-TBS and representative traces (left, control; right, CNF1;
horizontal scale bar: 1.5 ms; vertical scale bar: 1.5 mV) in (C) hippocampal CA1
(control, n = 12; CNF1, n = 13) and (D) V1 visual cortex (control, n = 12;
CNF1, n = 10). Paired-pulse facilitation at different interstimulus intervals
(control: n = 6, CNF1: n = 6) in (E) hippocampal CA1 and (F) V1 visual cortex.
All recordings were performed 10–18 days post i.c.v. injections. Data are
mean ± SEM.

being statistically significant in the ANOVA for repeated measure-
ments on dendritic spine densities, dendrite intersections, and
dendrite lengths. In Figures 5A–D spine density in hippocam-
pal CA1 pyramidal neurons 10 days post-treatment is plotted by
treatment and hemisphere in apical (hemisphere: F1,26 = 0.256,
P = 0.6171; interaction hemisphere × treatment: F1,26

= 0.067, P = 0.7974) and basal dendrites (hemisphere:
F1,27 = 1.192, P = 0.2845; interaction hemisphere × treatment:
F1,27 = 0.049, P = 0.8267). The results suggest that the action
of CNF1 is widespread and not strictly local or dependent on a
gradient of concentration from the injection site.

DISCUSSION
Here we report that Rho GTPase-dependent plasticity is selectively
low in the apical dendrites of layer V pyramidal neurons in primary
visual cortex. Although the rates of spine turnover are somewhat
different across different cortical regions and pyramidal neurons
in primary visual cortex can display a selective stability (Holtmaat
et al., 2005; Majewska et al., 2006), spine plasticity is observed in
the basal dendrites of these cells, indicating a dendrite selectivity
in Rho-dependent plasticity. In addition, the increase in spine
density following Rho GTPase activation in the hippocampal CA1

appears to be much higher than that observed in the cortex. Even
though the rate of spine turnover cannot be inferred from changes
in spine densities, the turnover rate cannot be lower than the rate
of increase in spine density. In conclusion, adult brain areas that
cannot be explored by in vivo multiphoton confocal microscopy
display a much higher increase in spine density than the outer
neocortex. This finding has several implications.

First, Rho GTPases control the polymerization of the actin
cytoskeleton, under the pressure of which dendritic spines are
produced and changed (Matsuzaki et al., 2004; Okamoto et al.,
2004; Honkura et al., 2008). This mechanism is activity-dependent
(Murakoshi et al., 2011). It can be concluded that activity-
dependent structural plasticity, which is thought to be associated
with learning and memory, can be substantial in selected brain
areas.

Second, the selectivity of the increase in the hippocampus
and basal dendrites of cortical neurons explains the controver-
sial findings reported using in vivo chronic multiphoton imaging
when studying experience-dependent changes in dendritic spines.
Indeed, according to our findings, this technique explores areas in
which this Rho-dependent structural plasticity is relatively poor.
The outer neocortex may not be the ideal brain area for exploring
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FIGURE 5 | Effects of Rho GTPase activation on spine density by cerebral

hemisphere. The analysis of spine density by distance from cell soma (μm) in
hippocampal CA1 pyramidal neurons of the left (L, n = 16) and right (R,

n = 16) hemisphere. C57BL/6J mice were injected into the right lateral
ventricle 10 days before histology. Spine density in basal (C,D) and apical
(A,B) dendrites. Data are mean ± SEM.

the physiological relevance of dendritic spine plasticity in adult-
hood. Different techniques permitting the in vivo study of deeper
brain areas will be needed, as well.

Although we cannot rule out the possibility that other mech-
anisms modify dendritic spines on apical cortical dendrites,
regional differences in Rho-GTPase signaling might represent the
cause of the stability of cortical circuits. However, since synaptic
plasticity follows coincident stimulation at single synaptic buttons,
it is also possible that this event is not common in outer cortical
layers. As a third explanation, functional synaptic plasticity, which
triggers structural plasticity, might be reduced in the apical den-
drites of cortical pyramidal neurons. This possibility is suggested
by our electrophysiology findings and it was also previously hinted
(Frankland et al., 2001).

Whether differences in Rho GTPase-dependent plasticity reflect
different distribution of neural activity leading to structural plas-
ticity or functionality of Rho signaling cascade, regional analysis
of Rho GTPase-dependent plasticity may provide information
about the importance of this process in different areas of the
brain. Specifically, our findings might reflect differences in the
physiological role of apical dendrites of cortical pyramidal neu-
rons. Functional split of apical and basal dendrites of layer V
cortical pyramidal neurons of the barrel cortex was reported
(Petreanu et al., 2009). Differences in the degree of structural plas-
ticity (absent in apical, present in basal dendrites) have also been
observed in V1 visual cortex pyramidal neurons (Michalon et al.,
2012). Although a full characterization of V1 inputs by subcellular
areas of the neuron is still to be obtained, it seems that layer II

and III and the upper layer IV, which contain apical dendrites
of layer V pyramidal neurons, receive long-range connections
from the contralateral hemisphere (Rochefort et al., 2009). Thus,
the selective structural stability of outer cortical processes might
be crucial for complex functions requiring the integration of
multimodal inputs.

We also report an increased branching of the hippocam-
pal dendritic tree. The increase was observed after modulation
of a physiological pathway in healthy individuals. Thus, such
changes might occur in the physiological functioning of the
adult brain. This finding suggests that adult activity-dependent
neural morphogenesis may not be limited to spines, but it
might involve the entire neural tree. The presence of these
changes in deep brain structure such as hippocampus, but
not in visual cortex, might explain why this phenomenon has
never been observed with in vivo multiphoton microscopy of
adult mice.

Cytotoxic necrotizing factor 1 substantially increases neural
connectivity. To our knowledge, no molecule, including synthetic
drugs and nervous growth factors, parallels the size of the increase
in the number of dendritic spines produced by CNF1 in vivo.
The increase is equally distributed in the two hemispheres of
the brain and was specially observed on the principal dendrite
shaft, on oblique dendrites and in the terminal part of the hip-
pocampal neuron. It is worth observing that the effect was seen
in adult individuals of a mouse strain displaying excellent perfor-
mance in hippocampal-dependent learning tasks (Rossi-Arnaud
and Ammassari-Teule, 1998). In several disorders, such as those
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associated with intellectual disability, the impoverishment of the
dendritic tree is a consistent stigma (Ramakers, 2002). Reversing
this feature by modulation of Rho GTPases might be of therapeu-
tic value (Bongmba et al., 2011). This effect, together with those
previously described on learning ability (Diana et al., 2007; De
Viti et al., 2010; De Filippis et al., 2012; Borrelli et al., 2013), candi-
dates Rho GTPase modulators as a new avenue for the treatment
of several disorders of the central nervous system (Musilli et al.,
2013).
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