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Abstract 

 

In this thesis we describe the developed computer method and experiments performed in 

order to apply whole body 3D scanner technology in support to anthropometry. The output of 

whole body scanners is a cloud of points, usually transformed in a triangulated mesh through 

the use of specific algorithms in order to support the 3D visualization of the surface and the 

extraction of meaningful anthropometric landmarks and measurements. Digital 

anthropometry has been already used in various studies to assess important health-related 

parameters.  

Digital anthropometric analysis is usually performed using device-specific and closed software 

solutions provided by scanner manufacturers, and requires often a careful acquisition, with 

strong constraints on subject pose. This may create problems in comparing data acquired in 

different places and performing large-scale multi-centric studies as well as in applying 

advanced shape analysis tools on the captured models. 

The aim of our work is to overcome these problems by selecting and customizing geometrical 

processing tools able to create an open and device-independent method for the analysis of 

body scanner data. We also developed and validated methods to extract automatically feature 

points, body segments and relevant measurements that can be used in anthropometric and 

metabolic research. 

In particular we present three experiments. In the first, using specific digital anthropometry 

software, we evaluated the Breuckmann BodySCAN for performance in anthropometric 

measurement.  Subjects of the experiment were 12 young adults underwent both manual and 

3D digital anthropometry (25 measurements) wearing close-fitting underwear. Duplicated 
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manual measurement taken by one experienced anthropometrist showed correlation r 0.975-

0.999; their means were significantly different in four out of 25 measurements by Student’s t 

test. Duplicate digital measurements taken by one experienced anthropometrist and two naïve 

anthropometrists showed individual correlation coefficients r ranging 0.975-0.999 and means 

were significantly different in one out of 25 measurements. Most measurements taken by the 

experienced anthropometrist in the manual and digital mode showed significant correlation 

(intraclass correlation coefficient ranging 0.855-0.995, p<0.0001). We conclude that the 

Breuckmann BodyScan is reliable and effective tool for digital anthropometry.  

In a second experiment, we compare easily detectable geometrical features obtained from 3D 

scans of female obese (BMI > 30) subjects with body composition (measured with a DXA 

device) of the same subjects, in order to investigate which measurements on shape descriptors 

better correlate with torso and body fat. The results obtained show that some of the tested 

geometrical parameters have a relevant correlation, while other ones do not strongly correlate 

with body fat. These results support the role of digital anthropometry in investigating health-

related physical characteristics and encourage the realization of further studies analyzing the 

relationships between shape descriptors and body composition. 

Finally, we present a novel method to characterize 3D surfaces through the computation of a 

function called Area Projection Transform, measuring the likelihood of points in the 3D space 

to be center of radial symmetry at selected scales (radii). The transform can be used to detect 

and characterize robustly salient regions (approximately spherical and cylindrical parts) and it 

is, therefore, suitable for applications like anatomical features detection. In particular, we 

show that it is possible to build graphs joining these points following maximal values of the 

MAPT (Radial Symmetry Graphs) and that these graphs can be used to extract relevant shape 
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properties or to establish point correspondences on models robustly against holes, topological 

noise and articulated deformations. 

It is concluded that whole body scanning technology application to anthropometry are 

potentially countless, limited only by the ability of science to connect the biological 

phenomenon with the appropriate mathematical/geometrical descriptions. 
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1. Introduction 

 

Anthropometry has been used for decades in physical anthropology to measure individual 

human beings in order to quantify human physical variations; moreover, it is currently utilized 

in several biological and medical settings in order to obtain population reference data, carry 

out health surveys, perform nutritional assessment and so on. Further, anthropometry is of 

use in forensic medicine to identify individuals, ergonomics to produce best-fitting objects and 

tools as well as the clothing industry to realize optimized garment. 

Along the last 150 years, anthropometry has been manually performed by trained personnel 

using dedicated instruments such as tapes, calipers of different sizes and shapes, stadiometers, 

etc [1]; an advantage of manual anthropometry is that it is relatively cheap and can be 

performed in- and outdoors with minimal effort; drawbacks are, among others, that inter- and 

intra-observer variability in measurement may be fairly large (hence the need for trained 

personnel) [2,3] and the information obtained is limited to actual measurements, because the 

subject must be physically present to allow any measurement. 

More recently, 3D scanning technology has come of age to enable anthropometry in an 

entirely new way (see e.g. [4]). Nowadays, a number of 3D scanners are available on the 

market, which can be adapted to anthropometric measurements; these devices are usually 

developed using laser or Moiré-fringing-based technologies. In the former a laser stripe is 

projected onto the body surface and several cameras acquire images: in this way 3D points 

representing the body shape can be recovered by triangulation. Examples of this kind are the 

scanners developed by Cyberware [5], Hamamatsu [6], Vitronic [7] or Human Solutions [8]. In 

the latter, one or more projectors create light patterns on the body surface and 3D points are 
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estimated by observing the pattern deformations on the body surface with a set of cameras. 

Examples of this kind are the scanners developed by Textile and Clothing Technology 

Corporation [9], Telmat [10] inSpeck [11], and the product used for our experiments, i.e. the 

BodySCAN developed by Breuckmann GmbH [12]. 

This research is focused on the application of modern 3D shape analysis techniques to the 

measurement of body shape (as acquired through body scanner) in order to obtain useful 

information related to the health of the measured subjects. In particular we investigated the 

ability of digital measurements to predict body fat, because fat is involved in important health 

related issues, besides to be usually connected with visible changes in body shape. Moreover, 

computer techniques and tools developed by our team for mesh analysis is described. 

 We start this chapter introducing some basic notions on anthropometry and mesh analysis. 

After, we introduce our experiments with the body scanner e.g. one describing the validation 

of our body scanner and a second where connection of digital measurement with body fat is 

investigated . We report also a computer technique that has been developed by our group for 

body shape analysis. In the second chapter the methods of the experiments are described. In 

chapter 3 the main results of presented research are reported. Obtained results are discussed 

in chapter 4. For clarity, in Figure 1 we show a diagram where the methods and experiments 

presented in the thesis are summarized.   
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Figure 1: we developed two software tools that allow derive anthropometric measurements from scanner data. 
Those data are complex, so a method for analyze them is mandatory. In the manual tool, the agent that analyzes 
them is the human operator, while in the automatic one we use curve skeleton analysis for the purpose. We 
report two anthropometric experiments each using one of the tools. We further developed a new method and 
reported the experiments we performed to investigate its suitability for mesh analysis. 

 

Body fat and anthropometry 

Information about body size and shape has traditionally been used by physicians to assess 

health or nutritional status and guide treatment.  More recently, anthropometric indices have 

been used to classify normal weight, overweight, and obese individuals as well as to identify 

individuals at increased risk of e.g., myocardial infarction. Obesity is has been demonstrated to 

be a risk factor for the metabolic syndrome [13, 14], cancer [15] and poor lung function [16]. 

Interestingly, visceral adipose tissue is most strongly associated with dyslipidaemia, 

dysglycaemia, and indices of cardiovascular disease. Good correlation between visceral fat and 

waist circumference has been repeatedly shown, although several systematic bias are 
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apparent with that measurement; an association between body (visceral) fat and insulin 

resistance, a key factor in type II diabetes and the elusive syndrome X is also present. On the 

contrary, thigh circumference has been shown to be protective for both heart disease and type 

II diabetes mellitus. 

While the gold standard for the assessment of body fat are underwater weight measurement 

and, more recently, DXA exam, several authors [17] studies the application anthropometric 

analysis through body scanner for this aim. 

 

Automatic Measurements 

Body scanning allows to perform a big number of acquisitions in relatively few time. Has 

become desirable for anthropometrists use software tools that automatically process the data 

and perform automatic measurements.  

Methods to extract anthropometric features in an interactive or automatic way have been 

proposed by several authors. In [18] methods for computer assisted estimation of values used 

in the garment industry are presented. 3D scanners are in some cases provided with software 

tools able to extract automatic or semi-automatic sets of measurements. A comparison of data 

provided by some of these tools, showing capabilities but also limitations and inconsistencies 

is presented in [19]. In the CAESAR project, Robinette et al. [4] developed a semi-automatic 

method to locate landmarks based on the placement of markers on the scanned body and the 

user assisted location of markers on scanner images. Landmarks are then labeled and used for 

the measurement estimation. Ben Azouz et al. [20] developed a method to locate 

automatically, using features known as spin images, the landmarks used in the CAESAR project 

and validated the results with manual placement).  
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Results, however, due to the intrinsic complexity of the problem (many features are located 

manually by palpation), are not always accurate. Leong et al [21] computed automatically a set 

of 21 landmarks and 35 feature lines from scanner data, with a method based on the 

processing of depth maps (and therefore pose dependent). Automatic measurements require 

a refined processing of body scanner data, so we will next introduce some notions about the 

way scanner data are structured how can be manipulated and analyzed. 

 

Mesh processing  

The output of a 3D scanner is a numeric representation of a surface. The scanner reconstruct 

the acquired surface of the physical body in a digital form that is composed by a big number of 

triangles (from some tens of thousands to a million depending on the desired resolution) 

positioned in the 3D space. The union of those 3D digital triangles is called triangular mesh or, 

simply, mesh. In Figure 2 is shown an example of a mesh generated by the scanner. A detail of 

the mesh is magnified to show the composing triangles. 

 

Figure 2: Mesh example, a particular has been magnified and edges enhanced in order to show triangles 
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Mesh processing is the science of the designing design efficient algorithms for the analysis, 

elaboration and transmission of digital 3D surfaces.  It’s a fast growing field of computer 

graphics whose importance has been improved by diffusion of relatively cheap scanners. Mesh 

processing techniques uses special data structures to maintain information and requires 

special mathematical applications (i.e. topology and differential geometry applied to surfaces). 

Research on this field is strongly applied in multimedia, biomedical (especially imaging) and 

scientific computing. Most of the algorithms adopted in this research pertain to this field. 

Mesh Segmentation  

One of the most important area of mesh processing research is mesh segmentation, that study 

those algorithms devoted to distinguish different subparts in a given 3D mesh or shape. This 

subdivision can be conducted through several criteria, that can be purely geometrical or (in 

more recent development) try to be semantic, i.e. distinguish features that is relevant in the 

context of the specific shape. A huge literature is available on mesh segmentation. However, 

not so many paper deal with the reliable partitioning of a human body model into semantically 

consistent parts. A recent detailed review on scanned human body processing methods [22], 

presents and compare only few methods applied in literature to perform this task, most of 

them limited to standard postures, except for those based on Reeb Graphs [23,24]. Mortara et 

al. [25] proposed the use of a surface point classification called plumber in order to identify 

tubular region and extract body parts, performing also anthropometric measurements. Yu et 

al. [26] proposed a method able to find automatically joints by computing specific 

measurements on volume sections. The method, however, requires a previous detection of 

body landmarks and limbs direction. 
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Salient point detection 

Another way we can use to analyze meshes is through the automatic identification of salient 

points, that are points that possess specific properties in the context of the shape. The notion 

of salient point in computer graphics is operatively equivalent to that of “anatomical 

landmark” in anthropometry.  Several approaches have been proposed to detect and describe 

salient points or geometrical location characterizing 3D shapes. Most of them are designed to 

find surface features through curvature analysis at different scales and to describe them with 

feature vectors depending on the local neighborhood. A curvature-base notion of mesh 

saliency has been proposed in [27] and many papers presented related methods to detect and 

describe salient points on surfaces [28,29]. Shape descriptors can be purely local [30, 31] or 

add global information to obtain a more reliable point characterization [32]. Local and global 

descriptors can then be used for shape retrieval applications with approaches like bag of 

features or similar ones [33, 34]. 

Curve skeleton analysis 

A popular method to characterize salient locations of 3D shapes is using the 1D curve skeleton 

[35], a subset of the medial axis [36]. Examples of 3D curve skeletons are shown in Figure 3. 

Curve skeleton analysis of shape has been introduced for analysis of 2D objects represented in 

images and subsequently extended in the field of 3D. Briefly speaking, skeleton analysis try to 

interpret the shape as sustained by a geometrical curve (like the anatomical skeleton) that 

approximate the centerline in those parts of the shape where is possible to individuate it. 

Thanks to its 1D structure, curve skeleton captures well the tree-like structure of many real 

objects and has been used widely used in shape recognition and matching tasks [37]. The curve 

skeleton, however, is not well defined where the shape is not approximately tubular and 
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different algorithms used to compute it give different results and are often sensitive to noise 

and topological changes. 

  
 

Figure 3: Examples of curve skeletons of 3D shapes 

 

The literature on curve skeleton extraction is also huge and research on this topic is still active. 

Despite its apparent simplicity, in fact, the extraction of a 1D connected curve skeleton from 

volume data presents several problems, and even the definition of a curve skeleton is not easy, 

as pointed out by Cornea et al. [38]. 

The first methods successfully applied were those based on topological thinning [39], i.e. the 

iterative removal of external voxels preserving the topology or on the computation of distance 

maps from the border as in the voxel coding method [40]. They gave useful results, especially 

in the medical field, where the estimation of a centerline path in vessels is fundamental their 

characterization and measurement. These techniques, however, usually required interaction 

to place seed points or extremal points of the skeleton to be preserved. Furthermore results 

obtained were usually not reliable for non-tubular objects. 
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A variety of approaches has then been proposed to overcome these problems. Telea and van 

Wijk [41] used the intersection of 2d skeletons for a fast 3D skeleton extraction, Cornea et al. 

[42] used a fast marching method, Sharf et al. [43] obtained the skeleton “on the fly” while 

reconstructing the mesh with a surface growth. Shapira et al. [40] used a function defined on 

the surface (Shape Diameter Function) in order to find approximate skeletal points then fitted 

into curves. Dey and Sun [44] removed ambiguities in curve-skeleton definition by considering 

it as the subset of the medial axis where a function called Medial Geodesic Function can be 

defined and is singular. A similar approach, but defined on voxelized volumes has been used by 

Reniers et al. [45]. Drawbacks of these approaches are the complexity of the discretization 

steps and the computational weight of the geodesic path evaluation. 

 

Aims 

We had three main research aims. The first is the validation of the Breuckmann Body Scanner, 

the whole body scanner device that has been used for my research. The second aim is the 

investigation of ability of full-automatic anthropometric digital measurements to correlate 

with relevant health related parameters. The third aim is the development of a robust method 

for mesh analysis. Each aim was pursued with distinct experiments labeled Experiment 1, 

Experiment 2, and Experiment 3. 

 

Experiment 1 

Validation of the Breuckmann BodyScan for anthropometry  

Traditional anthropometry, performed with tape and calipers, is time consuming and is prone 

to measurement errors when performed by less than higher trained personnel; moreover it 
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can be uncomfortable for measured subjects that are usually undressed during the 

measurement [17]. On the other hand, over the last several years, while 3D whole-body 

scanners spread, a number of three-dimensional (3D) anthropometric studies have been 

performed using fast and contact free measurements obtained by those devices. Examples are 

Caesar project [4], SizeUK [46] and SizeUSA [47].  

The first goal we pursue is to evaluate the reliability of Breuckmann BodyScan for 

anthropometry, comparing its performance with measurements obtained through traditional 

manual anthropometry.  

 

Experiment 2 

Health-related shape analysis of 3D Scanner Data 

In the second aim presented in this thesis, we test the ability of body scanner to execute 

automatic measurements correlated with important physiological parameters relating the 

body fat. Body shape measurements (e.g. W/H ratio) can be used as an indirect assessment of 

fat content and distribution and are known to correlate with the risks of developing certain 

diseases, e.g. the metabolic syndrome and diabetes. 3D scanners are able to provide complete 

digital models of the subjects bodies, encoding a huge amount of information that can be 

processed automatically making it easier for physicians to evaluate compact descriptors that 

can be correlated with body composition or diagnostic variables. 

From the digital models, in fact, it is possible to extract not only a wide set of measurements 

usually picked up from manual anthropometry, but also, using geometry processing 

techniques, to derive parameters related to curvatures, statistical variations of local and global 
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properties, salient points location, etc. that may well capture most relevant shape variations in 

the analyzed population. 

It may be difficult, however, to compare manual anthropometric measurements and 

parameters computed on digital models, because the first ones are based on the identification 

of anatomical landmarks, obtained through observation and palpation by expert 

anthropometrists which are difficult to be located only on the basis of marker-less digital 

acquisitions. 

For this reason we decided not to compare directly manual anthropometry with digital 

evaluation of geometrical parameters, but we focused our investigation on measurements that 

are objective and easily (or automatically) computed from optical scanner data to see if they 

correlates with composition data to a comparable (or better) extent of traditional 

measurements. 

For the measurement has been employed an automatic tool we developed (briefly described 

in Methods) device independent able to process raw body scanner data performing re-

meshing, body segmentation and skeletonization that provides automatically a set of 

geometrical descriptors of the torso region. We computed this set of parameters on 3D models 

of obese female subjects that also underwent traditional anthropometric procedures and dual-

energy X-ray absorptiometry (DXA). 

To investigate the medical interest of shape related parameters, we evaluated the ability of 

the computed descriptors and of a set of traditional anthropometric measurements (e.g. 

selected diameters and lengths), to predict total body fat or trunk fat (as measured by DXA) by 

means of linear regression analysis. The use of 3D body scanners for studying obesity is not 

entirely new; several scanner manufacturers provide software tools to collect sets of 

measurements that can be used to analyze body shape, and these anthropometric data have 
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been recently correlated with metabolic parameters in validation studies [48,49,50]. A relevant 

drawback of these tools is that they are not standardized: parameters often are strongly 

dependent on the acquisition device, and on pose [19], and there are not advanced tool to 

extract all the relevant medical information from the whole geometry. 

The novelty of our approach is that we aim at working out a new measurement procedure 

using parameters that could be easily obtained from on any sufficiently accurate 3D model, 

possibly with few pose requirements. The software tool and the experimental study here 

described are designed as first steps in the development of an open system for the analysis of 

body shape features related to obesity and other diseases. Material and methods, results and 

discussion of this research are described in the equivalent chapter of the thesis. 

 

Experiment 3 

Development of a new technique for mesh analysis 

During the advancement of this research, it has become clear that the tested method for mesh 

analysis weren’t able to cope with some specific issues of our body scanner data. We found 

two main problems that make our acquired meshes far from ideal. The first is the problem of 

holes, shared by all body scanners, derived from the lack of data where parts of the body are 

out of the optics (camera and/or projector) sight.  

The second problem derives from the fact that, if pose changes, the topology of the acquired 

mesh can change consequently and so assume different conformations. For example, while the 

curve skeleton of a subject in standard anthropometric position is analogue to a center with 

five extremities (head plus four limbs), if we acquire a subject with joint palms the skeleton 

become analogue to a center with three extremities (head and legs) plus a ring formed by the 
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two arms. Those changes in topology can disturb algorithms of pose detection that use 

topology to find discriminate the limbs. Algorithms that are based on geodesic distance (like 

HKS) are similarly troubled by this kind of problems that practically limit the variability of 

subject poses that is suitable for automatic measurement. Finally, the disposition and 

dimension of holes varies as the pose of subject changes, making hole-filling algorithms less 

useful than in fixed-pose anthropometric analysis. 

Those considerations made us put effort in the development of a new algorithm for mesh 

analysis whose premises are good in order to obtain robustness against the presence of holes 

and variability in pose. The algorithm, named Area Projection Transform, is presented in 

Methods and preliminary experiments are shown in Results. 
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2. Materials and Methods 

 

Most of the operations performed in this research have been realized through customized 

computer tools. We developed those tools on the basis of the data produced by BodyScan, but 

they are suitable for the processing and analysis of most of 3D superficial data obtained by 

other analogue devices. In this sense, these are general tools for anthropometric analysis of 

body scanner data. 

Breuckmann BodySCAN 

The Breuckmann BodySCAN uses high-speed cameras and a proprietary algorithm to detect 

the actual position of visible light points projected onto the surface of the body through 

diffraction fringes and reflected to the cameras. Breuckmann BodySCAN typical acquisition 

consists of about 400.000 points with a precision from 0.2 mm to 1.4 mm, with a time 

acquisition of 2.5 or 5.5 seconds, depending on the acquisition mode. In our experiments we 

found that this acquisition time is enough to obtain sufficient quality for the subsequent 

processing. The scanner output consists of a triangular mesh obtained by the registration and 

merging of the points acquired by the different cameras. Meshes are, however, not very clean, 

presenting various types of defects like holes, non-manifold edges, bad shaped triangles and 

outliers, so a pre-processing step is mandatory. Meshes nodes include also grayscale 

information. This is extremely important in order, for example, to acquire landmarks position 

useful for automatic or computer assisted measurements by exploiting natural or added 

texture (i.e. skin markers). 
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Figure 4 shows the acquisition setup. Subjects are usually scanned standing in the anatomical 

position, nevertheless is possible to change the position in order to obtain a better view of 

specific body parts or analyze different situations, e.g. muscle contraction. 

 

Figure 4: The Breuckmann BodySCAN during acquisition 

 

 

Experiment 1 

Validation of the Breuckmann BodyScan 

We describe the methods of the first experiment. Results and discussion of the same are in the 

corresponding chapters. 

Subjects 

Six men and six women, students at the University of Verona, were enrolled in this study after 

informed consent; the study protocol was in accordance to the Helsinki declaration. The main 

physical characteristics of the study group were as follows: mean age 22,7±2,16 years (range: 



26 
 

20-27); mean height 168,2±7,38 cm (range: 159-184); body mass 61,5±6,16 kg (range: 53-70). 

Body mass was assessed to the nearest 0.1 kg using a certified electronic scale (Tanita 

electronic scale BWB-800 MA (Wunder SA.BI. Srl)). Height to the nearest 0.01 m was measured 

using a Harpenden portable stadiometer (Holtain Ltd., Crymych, Pembs. UK). During scanning 

and anthropometry, subjects wore close-fitting underwear. 

BodyMeasure, a tool for digital anthropometry 

In order to perform anthropometric measurements on the models acquired through the body 

scanner, a virtual tool has been employed that allows anthropometrists to perform body 

measurements similar to those performed in classical anthropometric procedures. The virtual 

tool furnishes the digital analogues of tape and calipers. The tool has been developed in a 

previous collaboration with prof. Zancanaro.  

The measurement tool consists of a user friendly interface (see Figure 5) developed using VTK 

[51] and Qt [52] libraries, used to display the acquired triangulated mesh, to select on a sort of 

electronic record measurements names, placing on the mesh the required markers for each 

measurement.  
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Figure 5: User interface of the computer assisted measurement system. 

 

The fit of the stick figure over the curve skeleton obtain head, trunk and limbs size and 

orientation reducing possible errors in the skeletal feature location. In order to perform all the 

standard measurements required the user has the possibility of selecting one or more points 

on the surface and estimate from them different kind of meaures: 

 Height (distance from floor) 

 Distances between selected points 

 Girths passing through a point, parallel to floor or perpendicular to a skeletal line 

 Geodesic paths joining two or more points 

Figure 6 shows examples of measurements performed on the user interface.   
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Figure 6: Examples of measurements performed interactively with the user interface. Landmarks positioning or 
section plane angles can be interactively modified. 

 

Examples of length/distances (which calculation from terminal points coordinates is 

straightforward) are: Radiale-stylion,Midstylion-dactylion,Iliospinale h., Trochanterion h., 

Throcanterion-tibiale lat., Tibiale lat. h., Foot length, Biacromial, Biiliocrestal, Transverse chest, 

A-P chest depth, Biepicondilar humerus, Wrist breadth, Bimalleolar breadth. Examples of girths 

are: Head, Neck, Arm, Forearm, Wrist, Chest, Waist, Gluteal, Mid-thigh, Calf and Ankle. 

The evaluation of girths requires often the extraction of section planes perpendicular to the 

limbs (or neck or trunk) direction. Although most of the girths are parallel to pavement, in 

order to be more accurate we use, for some of the measurement, the information extracted 
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with the skeleton/stick figure. This make the system more robust against changes in the 

standard pose of the subject with respect to other methods. 

 For the simulation of tape measures that cannot be assumed as “planar”, as in the chest girth, 

we used a different girth computation approach, i.e. through the geodesic path. The 

computation of geodesic paths joining a set of landmarks on the original mesh can create 

some problems due to the fact that the meshes obtained from the bodyScan are not clean and 

watertight. In order to obtain accurate measurements we therefore developed an algorithm to 

approximate geodesic distances on the mesh that can handle holes and discontinuities in the 

body surface. It is based on the computation of distance maps computed on the surface: when 

the mesh presents borders, the map at each border point is updated as the minimum between 

the current value due to the node propagation, and the sum of values at other points of the 

same contour border and the Euclidean distance between points. 

With the user interface developed it is easy to simulate interactively the measurement 

procedures usually performed manually on the subjects. It is sufficient to select the name of 

the standard value on an electronic record, select the landmarks related with that 

measurement clicking on the model surface on the interface, check the measurement path 

drawn in the scene and saving the value if everything is correct. 

 

The landmarks used for the anthropometric measurements are marked on the skin of the 

subject drawing a with a dermographic pen before the acquisition. The placement of such 

landmarks is useful for several reasons: 
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 it allows the offine measurement on the mesh of values landmarks that cannot be 

located using image based or geometrical features. Relevant measurements, in fact, 

are based on landmarks placed by physically touching the subject. 

 it allows an easier semi-automatic placement of the points during the computer based 

measurements. 

 reference points can be used to validate automatically the landmark detection 

algorithms based on surface features. 

During the measurement process, the user should click on the mesh in concomitance of the 

visible cross and label the traced point. 

For each simulated measurement, the interface shows the selected points on the skin, and all 

the lines, geodesic paths and sections used for the value estimation. During the process, users 

can always change landmark positions, and, if the measures depend also on the automatically 

extracted section planes, it is possible to correct manually the plane orientation.   

Obtained measures can finally be exported on a spreadsheet for further analysis. 

 

Manual anthropometry 

A set of 28 anthropometric parameters was chosen to include most of the current 

circumferences, lengths, and widths taken in anthropometric surveys (Table 1). Measurements 

were performed on two different occasions by one experienced anthropometrist (CM) 

according to standard procedures [53]. 

The body sites were marked prior to measurement using a dermographic pen; such landmarks 

were found to be easily visible in 3D scanning images in preliminary experiments. 
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Table 1. The set of anthropometric parameters measured in this study. 

Type of measurement Body Site/measure 

Circumferences 

Head 
Neck 

Arm (relaxed) 
Forearm 

Wrist 
Chest 
Waist 

Gluteal (hip) 
Mid-thigh 

Calf 
Ankle 

Lengths/heights 

Shoulder-Elbow 
Radiale-stylion 

Midstylion-dactylion 
Iliospinale to floor 

Trochanterion 
Trochanterion-tibiale 

laterale 
Tibiale laterale 

Tibiale-sfirion tibiale 
Foot 

Widths 

Bi-acromial 
Bi-iliocrestal 

Chest (transverse) 
Chest (A-P) 

Bi-epicondilar (humerus) 
Wrist 
Knee 

Bi-malleolar 

 

Digital anthropometry 

The experienced anthropometrist was instructed to perform digital anthropometry on 3D 

images of the twelve subjects using the same landmarks as for manual anthropometry. Manual 

measurement procedures have been simulated through the development of a user friendly 

measurement interface that enables the operator to easily place landmarks on the virtual body 

surface and automatically obtain the related set of measurements. Our dedicated software 

tool is based on the the VTK library[51] and exploits for the measurement procedures an 
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automatic mesh processing that pre-computes body posture and limb directions and recognize 

the main body parts [54]. 

All measurements were obtained in duplicate. Two naïve anthropometrists carried out the 

same procedure independently from each other. 

Statistical analysis 

Descriptive statistics were calculated for all variables (measurements) by each method 

(manual/digital). Normality of data was assessed with the Kolmogorov-Smirnov test. Reliability 

of measurement was assessed by calculating the product-moment Pearson’s correlation 

coefficient, the Student’s t test (two-tailed), and the intraclass correlation coefficient (ICC; 

Crombach’s alpha using a mixed model [type: consistency]). All statistical analyses were 

performed with the SPSS package (v. 15). The level of significance for all statistical tests was 

set at P=0.05. 

 

Experiment 2 

Health-related shape analysis  

We analyzed data from 25 obese otherwise healthy female subjects, aged 20-60 years and BMI 

30-40 kg/m². The subjects underwent DXA scanning, optical 3D scanning and standard 

anthropometric procedures [1]. During scanning and anthropometry, subjects wore close-

fitting underwear. During DXA examination subjects wore light garment, transparent to X-rays. 

For every single subject, 3D scanning, DXA and manual anthropometry were performed 

sequentially in one session. 
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DXA scanner 

Dual-Energy X-rays absorptiometry represents the de-facto standard measuring tool for body 

composition analysis. It allows to assess body composition in terms of fat, lean and mineral 

mass at the total body as well as regional level [55]. The DXA device used in this experiment is 

the DXA QDR Explorer W (Hologic, MA, USA) of the faculty of Motor Sciences of Verona 

University. The body composition assessment consists of an acquisition step and a subsequent 

definition of body regions on the 2D acquisition performed by an operator (Figure 7). 

Main results of DXA analysis consists in whole-body composition parameters and regional 

composition data. For our experiments we chose three parameters: 

1. Trunk Fat 

2. Subtotal Fat 

3. Subtotal Fat Percentage 

Trunk Fat is the total fat detected in the trunk region (as defined by the operator according to 

stringent anatomical landmarks on the 2D acquisition); Subtotal Fat and Subtotal Fat 

Percentage refer to the fat of the whole body without the head; the reason for that is large 

amount of mineralized tissue in the skull, preventing reliable evaluation of the head fat 

component. Those last two parameters are well-known risk factors for metabolic alterations 

and disease. 
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Figure 7. Whole body composition (BC) images output of a DXA exam. On the left: BC in false colors. On the right: 
regions setting by means of template defined by colored lines (source: Hologic) 

 

Human Analyzer Tool 

Automatic computation of geometrical parameters from generic body scanner data was 

performed with a specifically designed software tool, able to load 3D meshes and provide 

directly geometrical parameters without the necessity of user intervention. 

It performs a preprocessing step able to remove spurious parts of the model and creating a 

new watertight mesh with the Poisson algorithm. This procedure is based on VCG/Meshlab 

scripts [56], integrated in the software package, implemented for the other parts with custom 

C++ code. 
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The subsequent segmentation procedure has been derived from the method described in [57], 

that is based on a curve skeleton extraction and its partitioning based on the extraction of 

features on the major skeletal leaves. In this way it is possible to detect and recognize points 

where head and limbs join the body trunk. This procedure is however not precise when the 

captured shape is not optimal, e.g. arms are partially attached to the trunk or legs are in 

contact under the crotch; these problems are often encountered when dealing with obese 

subjects. 

For this reason we modified it by using special heuristics to refine the position of the feature 

points used to define the body segmentation, e.g. attachments of limbs to the trunk. 

First of all, we observed that, where legs and arms are attached to the trunk, their direction 

should be approximately parallel to the trunk axis. This means that we can use the detected 

endpoints of the limbs to define a plane approximately including the trunk axis, so we can 

define an approximate trunk axis, and approximate transverse and antero-posterior directions. 

We then move the detected leg centerline endpoints toward the trunk until the antero-

posterior distance along the line joining the leg centerline endpoints is not lower than at its 

extrema. 

We adjust then the crotch position and the trunk axis direction analyzing the trunk sections 

perpendicular to the previously detected axis near detected endpoints. 
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Figure 8. Left: segmentation based simply in the extrema of tubular parts (defined by red centerline paths) fails in 
capturing the real position of limb endpoints due to the attachments of limb to the trunk. With the simple 
heuristics describe in the text our software can locate the correct position and obtain a reasonable stick figure 
(blue), body part segmentation (right) and the estimate of the axial, antero-posterior and transverse directions 
useful to evaluate the parameters considered in our study. 

 

Lateral trunk limits (transverse distance from the axis) are obtained detecting the lower part of 

the arms branching and symmetrizing the result, finally the shoulder position is searched as 

the upper points of the intersection of the planes defining these limits with the trunk 

geometry. 

Figure 8 shows an example of automatic body segmentation result with the curve skeleton, its 

initial partitioning, the refined limb extrema defining a reasonable stick figure even for 

overweight subjects. 

Known the body segmentation, the trunk centerline, transverse and antero-posterior 

directions, we can compute a number of parameters (lengths, girths, volumes, etc.), with 

accuracy that is obviously depending on acquisition protocols, body position, etc. In this work 

we selected a few parameters that we assumed could be reasonably accurate correlated with 

the body fat. 
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The software tool performs the automatic evaluation of the parameters (saved as a text file) as 

well as a segmented 3D surface, the computed curve skeleton and stick figure. 

Most trunk measurements are made by means of analysis of profiles curves along trunk 

centerline, so that every profile point characterizes a trunk slice. 

Typical profiles measures are antero-posterior diameter, latero-lateral diameter, mean 

diameter, eccentricity and curve length (the equivalent of “Circumference” in anthropometry) 

of the slice (Figure 9). 

In this way is simple to derive meaningful geometrical measures, like maximum antero-

posterior diameter or maximum curve length. 

 

Figure 9. Example of computed profile curves on the trunk. The curves represent antero-posterior, latero-lateral 
and mean diameters, eccentricity and slice circumference Eccentricity (maximum and minimum diameters ratio) 
profile has been rescaled for clarity. 
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Data comparison 

We performed the comparison analysis of DXA data with automatic and manual 

measurements using Pearson’s linear correlation coefficient. 

Chosen DXA measurements were trunk fat, subtotal body fat and percentage of the former 

over subtotal body mass. Body composition parameters have been correlated with some 

standard anthropometric indexes and circumferences. Standard indices are usually employed 

to evaluate the health status of individuals. Some of them, like BMI and body mass are known 

to be correlated with fat parameters, because fat mass directly influence them. 

We compared then the same DXA parameters with the digital measurements performed on 3D 

mesh summarized in Table 1. 

Table 1. Description of performed automatic digital measurements 

Name Description 

AP max Maximum anteror-posterior diameter 

MD max Maximum mean diameter 

Area max Maximum of slice area 

Height/MD ratio Ratio between the height of the trunk (hips-
shoulders height) and the maximum mean 
diameter. This measurement gives a gross 
shape description of the trunk proportions 

Trunk vol. Volume of the whole trunk, computed as sum 
of the slice areas 

Abdomen subvol. Volume of the lower part of the abdomen, 
from hips to height of max AP 

Min/max circ ratio Ratio between minimum and maximum curve 
lengths 

Min/max area ratio Ratio between minimum and maximum slice 
areas 

AP curv. Curvature of the AP curve in the 
neighborhood the maximum value 

MD curv. Curvature of the MD curve in the 
neighborhood the maximum value 

Circ. curv. Curvature of the Circumference curve in the 
neighborhood the maximum 
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We conceived the set of measurements to capture in various ways the trunk geometry. Some 

of them are similar to the standard anthropometric ones; some others are instead almost 

impractical with standard anthropometry. 

We also focused on measurements that are reasonably not affected by inaccuracies in mesh 

acquisition and processing, as it would happen if they are performed in regions where the 

original mesh presents holes. 

 

Experiment 3 

Multiscale Area Projection Transform 

Most biological objects presents parts that grossly presents radial symmetry (e.g. spheres, 

cylinders).  The detection and description of this kind of shape could be therefore useful for a 

variety of shape analysis tasks applied to the 3D description of biological objects. 

We present a new spatial transform called multiscale area projection transform (MAPT) 

measuring the local likelihood of points in 3D space to be centers of radial symmetry at 

selected scales. The transform can be easily estimated on triangulated meshes and can be 

used not only to detect salient points and to reconstruct centerlines of tubular shape parts, 

but also to characterize globally the shape: its histograms are able to capture invariant 

features of rigid and articulated bodies and can be used for shape retrieval, comparing very 

well with state of the art techniques. Moreover, joining the detected salient points through 

paths that follows maximal values of MAPT allows to build graphs that can be used to extract 

relevant shape properties of complex articulated models. 
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Area Projection Transform 

Our basic idea is to compute from input surfaces a spatial function that is maximal near 

centers of approximately spherical surfaces with a selected radius R and along centerlines of 

tubular structures with approximately circular section of radius R, so that it can be used to 

locate salient points and regions characterized by radial symmetry. This result can be obtained 

by projecting surface points along the local normal vector  ⃗  at distance R. The likelihood of a 

point    to be center of a radial symmetry can then be assumed to be proportional to the 

number of points of the original surface S that are projected in a neighborhood of    or, in 

other words, to the area of the original surface projected in that neighborhood.  To compute 

this point density for a generic surface S in the 3D space, we consider the transform       ⃗  , 

creating a correspondence between S and its "parallel surface" [58] at the distance R on a 

selected side (moving each point of S along the normal direction  ⃗ , see Figure 10). For each 

point   ⃗⃗⃗  in   , a sphere with radius σ centered in    includes a subset of the surface       ⃗  , 

that is ks(~x)              ⃗  ; we define "area projection transform" APT(~x,S,R,s) the area 

of the subset of S having its parallel surface inside the sphere: 

                   (  
  (             ⃗  )) (1) 

 

If we want to characterize both the sides of the surface we can compute also the contribution 

of the other parallel surface at distance R. i.e.        ⃗  , possibly with opposite sign to 

separate the different kinds of features.    is well defined for continuous surfaces (properties 

of parallel surfaces can be found in [58]), and this is not always the case of data captured by 

scanners or reconstructed from volumetric grids. However we can easily compute the APT as 

the sum of the contributions of all the continuous patches acquired. If we can assign a 

common orientation to the patches we can compute the transform only for a selected 
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orientation (e.g. inside the object), otherwise we can compute the APT as a sum of the 

contributions of the two sides. 

 

Figure 10: Basic idea of the area projection transform: we compute the parallel surface at distance R (only in a 
selected direction or both directions) and we compute the transform in a point  ⃗⃗  as the area of the original 
surface generating the part of the parallel one falling inside a sphere of radius s centered in  ⃗⃗ . 

 

It is easy to understand why this transform captures radial symmetry: a spherical surface with 

radius R projects all its surface on a single point and the APT is non-negligible only within a 

distance s from this point (see Figure 11). A similar reasoning can be done for cylindrical 

surfaces. Radial symmetries will determine maximal regions for the APT and the value of σ 

determines the deviation from a perfect symmetry we want to tolerate when detecting it. 

Furthermore, exact values of the expected maxima of the APT in the case of spheres or 

cylinders can be computed: if the surface S is a sphere with radius R and we compute the APT 

with the same R, the expected value near the center is the area of the spherical surface     , 

independently on the choice of σ (Figure 11). 
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Figure 11: Left, the internal parallel surface at distance R of a sphere S with radius R collapses in the central point. 

The maximal value of the APT computed exactly at scale R is the area of the entire spherical surface, i.e.     . 
Right: for a cylindrical surface of radius R the internal parallel surface at distance R collapses into a line. The APT 
computed at scale R has a maximal value along that line equal to the area of the green part of the cylinder, 
    . 

 

If we make the value of s tend to zero, we can consider  

                
   

             

 
 ⁄       

 (2) 

 

a density function in R3 measuring the amount of points of the original surface mapped in 

each infinitesimal region of the parallel surface. We can, in this way, reinterpret the APT as a 

kernel density estimate of     with a unitary spherical kernel of size σ that could, in principle 

replaced by an arbitrary kernel in a generalized APT definition. 

Handling multiple scales 

When we search for radial symmetry we do not usually want to do it for a fixed R, but we want 

to find features at different scales. If we consider the radius R as a fourth variable in previous 

definitions, we obtain immediately multiscale versions of APT and     . However, in order to 

compare the values at different radii and correctly characterize the scale of the dominating 

symmetries, a good idea is to define a multiscale area projection transform (MAPT) with the 

following two properties: 
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i) a perfect sphere creates a signal with values in its center independent on its radius; 

ii) two surfaces differing for a scaling transform have the same maximum. 

These properties are obtained with the following definition: 

                        (              ) (3) 

 

where             ⁄  and                  . 

The coefficient a makes, in fact, a perfect sphere create a central value equal to 1 

independently on the radius. The choice for σ makes a shape scaled by a factor k produce a 

MAPT maximum at scale kR equal to the maximum of the original one at scale R. The resulting 

MAPT characterizes therefore the shape with values depending on the degree of radial 

symmetry independently on the scale. We know also that maximal value in center of perfect 

spheres should be equal to 1, while cylindrical shapes, following the reasoning of Figure 11, 

should be characterized by maxima equal to                   , still scale independent, 

but depending on the kernel size. A search for similar salient symmetric locations on input 

surfaces can be then performed on the 4-dimensional MAPT estimated for a reasonable range 

of radii, and can be also performed with a joint multiscale approach, combining the maps 

computed at different scales in an unique saliency function (joint multiscale APT). This map can 

be defined as: 

                              (4) 
 

and should still encode the main features related to the shape symmetry, even if it is clearly 

less informative than the 4D function. However, its use reduces the amount of memory 

required, that can be huge if the discretization is fine. Note that if we search for symmetric 

points on the JMAPT, in order to be able to recover their scale, it is useful to create an 
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additional matrix SMAPT(x, y, z) storing the related scale information, e.g. the radius 

corresponding to the maximum of MAPT(x, y, z,R) at each spatial location. 

MAPT and the medial axis transform 

Our transform is also related to the medial axis of a surface [36], e.g. the locus of centers of 

spheres tangent to it in at least two distinct points, widely applied in geometrical processing. 

Actually the joint multiscale APT, defined in Sec.4, when the kernel radius tends to zero, 

vanishes with the exception of the points where there is an exact spherical symmetry of a 

surface part. These points are clearly a subset of the medial axis (centers of spheres tangent to 

the surface in an infinity of points), where the limit values of the function give further 

information related to the spherical parts area values. If we count the area elements projected 

into the kernel volume and consider the set of points where in the limit s!0 the number is 

greater than 1, we can obtain the rest of the medial axis as a limit case from the JMAPT. Being 

possible to enrich the JMAPT with the associated scale, we can actually obtain the complete 

MAT from it. 

In some sense we can consider the JMAPT an approximated and volumetric version of the 

medial axis transform. It is also a robust representation being not much changed by small 

perturbations of the surface (while the medial axis is completely changed by small bumps even 

far from them). 
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Figure 12: The medial axis of a cylinder includes also cones at the extrema (A) and when a small spherical 
perturbation is produced on it a complete line appears (C). This makes its computation on discretized surfaces not 
stable (B,D, computed with public code from [44]) The Joint MAPT is related to the medial axis (see text), but, 
weighting the area approximately tangent to spheres, it is not high in non-symmetrical regions near the bases of 
the cylinder (E) and, adding the small spherical perturbation, only the center of the sphere presents relevant 
values in addition to the axis. 

 

This fact can be understood looking at Figure 12: the ideal medial axis estimated on a cylinder 

is a segment only far from the bases, where it is transformed in two conic surfaces (A). If a 

small perturbation is added, a new complete branch appears even if no tubular parts are 

present (C). Due to this low stability, algorithms for its numerical estimation on meshes 

provide noisy results (B,D). The ideal JMAPT for a cylinder should be maximal on the axis and 

decreasing around it with a behavior depending on the selected parameters. 

The JMAPT computed with our code on an approximately cylindrical mesh has the expected 

appearance (E). After the "spherical" perturbation, the JMAPT is relevant still on the axis in the 

center of the spherical bump, but is low elsewhere due to the negligible projected surface (F). 

The robustness provided by the local weighting of the symmetric surfaces is different from 

that provided by robust variants of the medial axis. For example the l-medial axis [59] is 

obtained removing centers of spheres with radius lower than a threshold and the scale axis 

transform [60] creates medial surfaces at different scales by extracting medial axes on shapes 
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simplified by "multiplicative scaling" where radii of medial balls are changed. Using the APT 

maps we can as well select  "medial representations" at different scales, but we have also the 

relevance given by the projecting surface area. Our volumetric density cannot replace medial 

surface representations having different nature and applications. However, the use of the 

MAPT as importance and scale-selective weight for medial axis branches could be investigated. 

Centers of Approximate Spherical Symmetry 

Give the MAPT or the JMAPT of a shape, it is possible to extract its salient points, e.g. maxima 

of the 4D or 3D map. The procedure is rather simple. After a non-maxima suppression is 

performed, local maxima are sorted, and those lower than a threshold and those closer to 

another maximum with higher value and of similar scale more than the corresponding radius 

are removed from the list. The extracted points represent loci of maximal "approximated" 

spherical symmetry where the parameter σ(R) used in the Area Projection Transform defines 

the amount of deviation from the perfect sphericity that is tolerated. 

A good property of these points is that they are approximately pose independent for 

articulated shapes and roughly corresponding in similar bodies. We can easily associate a 

descriptor to these points computing five local features. The first two are the local intensity of 

the map and the related scale. The other three are related to the local orientation of the 

projecting surfaces in the neighborhood of the point, e.g. the sphericity, elongation and 

flatness of the map in a neighborhood proportional to the local scale, evaluated from the 

inertia matrix of the MAPT. Another way to estimate local orientation is to collect not only 

intensity projected by sampled points on the surface when building the MAPT on a discretized 

grid, but also direction, at the cost of a huge memory overhead (a tensor for each location and 

each scale must be stored). This description can be sufficient to recognize specific points of a 

shape (e.g. head or trunk of a human body that have unique scale or peculiar sphericity), but is 
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clearly not sufficient to allow a reliable point matching between two corresponding shapes. To 

create a good characterization of points and a global model description we can, however, join 

the points, buinding a graph representation. Our idea is to join the salient points following 

maximal symmetry path, in this way following centers of approximately cylindrical parts 

independently on the quality and on the topology of the shape borders. 

Radial Symmetry Graphs 

We therefore create our "Radial Symmetry Graph" from the CASS points with the following 

procedure: 

 Join each point of the list with all the others by performing fast marching from the 

points with speed proportional to the squared symmetry scaled value mapped in the 

range 0.001 − 1 and extracting minimal paths *61]. This results in lines that tends to 

follow cylindrical part axes when available otherwise follow minimal euclidean paths.   

 (optional) Clean the graph by removing all the paths that are close to another CASS 

point different from its extrema. The structure obtained has some interesting 

properies:  

 It follows tubular parts of the shape: as shown in [62] the JMAPT is maximal along 

cylindrical paths, also robustly against noise and holes.  

 It tends to connect these cylindrical centerlines to centers of spherical structure or to 

corners (creating an approximate spherical symmetry as shown in [62])  

 relevant information is encoded in paths. We can use, to match points or entire 

graphs, not only the information related to node features or to connectivity, but also 

path similarity, as, for example, done in [63]. 

An example of a shape with its generated radial symmetry graph is showed in Figure 13 
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Figure 13: A: Volume rendering of the JMAPT computed on an armadillo mesh. B: CASS points extracted from the 
map represented as spheres of 1/4 of the corresponding scale, rendered with color coded sphericity and Radial 
Symmetry Graph joining all the points. C: Same radial symmetry graphs simplified by removing paths too close to 
salient points different from their extrema. 

 

Note that the complete graph characterize points (and can be used also to characterize entire 

shapes) only through the path behavior. The cleaned graph can describe the global object 

properties also through its connectivity. 

Comparing paths connecting CASS points we have a powerful way to characterize locally and 

match salient points and to match complete graphs. Following the approach of [63] we can, in 

fact compute path dissimilarity by summing two contributions. The first depends on symmetry 

scale difference in N evenly spaced points along the paths (  ⃗⃗⃗⃗     for the first path and   ⃗⃗⃗⃗     for 

the other one). The second depends 

on the difference of the paths lengths l1, l2: 

         ∑
         ⃗⃗⃗⃗              ⃗⃗⃗⃗      

 

        ⃗⃗⃗⃗              ⃗⃗⃗⃗     

 

   

  
       

 

     
 (4) 

Actually to compare our paths we could add also also a JMAPT intensity based dissimilarity 

component: 
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          ∑
         ⃗⃗⃗⃗              ⃗⃗⃗⃗      

 

        ⃗⃗⃗⃗              ⃗⃗⃗⃗     

 

   

 (5) 

Scale information, however, should be more robust against holes with respect to signal 

intensity so it is reasonable to omit the intensity component directly depending on the amount 

of surface projected in the point. Lengths and scales should be approximately pose 

independent and characterize well the shape. 

Once salient points, graphs, paths and path comparison metrics are available, we can use them 

for at least three practical applications, that give the basis for automatic shape analysis: point 

matching, semantic labelling of point, graph matching and intrinsic symmetry detection. The 

approaches we are trying to follow for these tasks will be shown in the results. 
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3. Results 

 

Here are reported the main results of our research. Firstly we validated the anthropometry 

procedures performed through Breuckmann BodySCAN. The second result consists in the 

comparison of newly-obtained semi-automatic measurements method with other health 

related physiological parameters, i.e. total and regional body fat. Finally, we present some 

experiments of mesh analysis performed for test of Area Projection Transform. We applied to 

research on this method in order to overcome the problem of “hole sensitivity” presented by 

most of the conventional tested methods. Nevertheless there aren’t yet direct applications of 

anthropometry, it offers good perspectives for the development of robust algorithms for mesh 

analysis which could lead to new robust procedures of tridimensional morphometry. 

 

 

Experiment 1 

Validation of the Breuckmann BodySCAN 

Manual Anthropometry 

Manual anthropometry showed intraobserver correlation coefficients r for duplicate 

measurements in the range 0.975-0.999 (P<0.0001 for all) but for mydstilion-dactylion 

(r=0.781, P=0.003); the Student’s t test (two-tailed) showed that mean values of duplicate 

measurements for individual anthropometric variables were not significantly different by two-

tailed t test with the exception of mydstilion-dactylion (188.08± vs. 186.17± mm; t=8.815, 

P<0.001) and tibiale laterale to floor (453.17± vs. 451.83± ; t=2.402, P=0.035) as well as, at the 
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limit of significance, bi-iliocrestal (284.58± vs. 283.25± ; t=2.111, P=0.058); and wrist width 

(54.50± vs. 55.17± ; t=2.152 P=0.054). The ICC was in the range 0.955-0.998 (P<0.0001) with 

Cronbach’s alpha ranging 0.977-0.999. 

Digital anthropometry 

Duplicate measurements taken digitally by one experienced anthropometrist and two naïve 

anthropometrists showed intraobserver correlation coefficients r in the range 0.975-0.999 

(P<0.0001 for all). Mean values of duplicate measurements for individual anthropometric 

variables were generally not significantly different intraobserver by two-tailed t test. The ICC 

was in the range 0.759-0.999 (P<0.001-P<0.0001) with Cronbach’s alpha ranging 0.863-0.999. 

Most measures taken by the experienced anthropometrist in the manual and digital mode 

showed ICC ranging 0.855-0.995 (Krombach’s alpha 0.959-0.999), p<0.0001 for all; lower, 

albeit significant, ICC values were found for head circumference (0.446; alpha 0.763 P<0.001), 

wrist circumference and breadth (0.678 and 0.654, respectively), bi-epicondilar humerus 

(0.695; alpha 0.901). 

 

 

Experiment 2 

Health-related shape analysis 

We used our custom software tool to extract the measurements listed in Table 1 on the digital 

models captured by the 3D scanner. Computation time is less than on minute per model on a 

Dell XPS17 laptop with an Intel Core I7 Q740 CPU and 8Gbyte of RAM, running Ubuntu Linux. 

The resulting measurement reports were then imported in Matlab, together with DXA data 

and manual anthropometry measurements in order to perform statistical analysis. 
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In Table 2 Pearson’s Correlation coefficients between three DXA body composition parameters 

and the anthropometric (standard and digital) measurements are shown. 

Table 2. Correlationm matrix of anthropometric measurements and DXA trunk fat, subtotal 
body fat, and % subtotal body fat 

DXA Parameter 
Anthropo- 
metric Item 

Trunk Fat Subtotal Fat % Subtotal Fat 

BMI 0.8379 0.8466 0.4698 

Weight 0.8314 0.8693 0.3542 

Hips C. 0.7757 0.8970 0.6188 

Waist C. 0.7573 0.4793 -0.0208 

W/H ratio 0.1587 -0.2259 -0.5192 

AP max 0.9128 0.7616 0.3877 

MD max 0.9316 0.8894 0.5224 

Area max 0.9367 0.8794 0.4838 

Height/MD ratio 0.5995 0.6235 0.5326 

Trunk vol * 0.6196 0.2025 0.0495 

Abdomen subvol 0.0863 0.3813 0.4183 

Min/max circ ratio 0.3221 -0.0272 -0.1023 

Min/max area ratio -0.2865 -0.0325 0.0813 

AP curv. -0.3148 -0.3559 -0.3165 

MD curv * -0.3611 -0.0840 0.0704 

Circ. curv * -0.3110 -0.1948 0.0451 

* Some outliers removed (see text) 

In three cases we took out from statistics one or two outliers (one from Trunk vol. and two 

from the curvatures). The table is subdivided in three groups of rows. In the first group, 

correlations with standard anthropometric measures are shown. The second group presents 

digital measurements that are strongly correlated with DXA measured fat. The third group 

shows digital measurements that are poorly or not correlated with DXA data. 

In figures 14 and 15 the  scatter plots for the firs and the second groups of measurements are 

shown. 
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Figure 14. Scatter plots of standard anthropometric measurements vs. DXA measurements. Pearson’s Correlation 
Coefficients are indicated 

Figure15. Scatter plots of selected digital measurements provided by the Human Analyzer software vs. DXA 
measurements. Pearson’s Correlation Coefficients are indicated 

 

Looking at results of standard measurements, we can see that BMI and body weight are well 

correlated with trunk and subtotal fat, as expected. Also hip circumference presents a high 

correlation index with subtotal fat. 
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As to digital measurements, there is a very high correlation (>0.9) of AP max, MD max and 

Area max with Trunk Fat, while the correlation with Subtotal Fat is high, but not as high as with 

Trunk Fat. Height/MD ratio and Trunk Vol correlate less (r≃0.6) with fat measurements. 

As to the Subtotal Fat Percentage, correlations with evaluated standard and digital 

measurements are almost weak. Best found correlated measurements are r≃0.6 with Hips 

Circ. and r≃0.5 with MD max, Area max and Height/MD ratio. 

 

 

Experiment 3 

Area projection transform : applications and experiments 

Here we give some examples to show their practical useful applications of the APT algorithm 

presented in chapter 1, showing some of its properties and its proficiency performing some 

mesh analysis tasks. We will not show the application only to human-shaped meshes, but to 

standard meshes got from open bases of shapes which contains meshes which specific 

properties (e.g the armadillo in different poses). In figures 16 and 17 the values of APT for 

different shapes and radiuses are shown. 
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Figure 16: The ability of MAPT to enhance centers of radially symmetrical parts is evident also in the case of noisy 
captured meshes with large holes, as in the case of this whole body human scan. Volume rendering of APT at 
three different scales (A,B,C) and of JMAPT (D) are shown. 

 

 

Figure 17: APT at different scales creates peculiar structures also on flat and non-spherical or tubular objects. 

 

Salient points detection and characterization 

Salient points related to high radial symmetry can be extracted as local maxima of APT (if we 

consider a specific radius) or of MAPT/JMAPT (if we want to search for all radial symmetries in 

a specific range). A simple salient point detector can be realized with the following procedure: 

computation of the MAPT with evenly sampled radii    (with a sampling step sufficiently 

dense compared to   ); Gaussian smoothing; selection of local maxima of the 4-dimensional 

function with intensity higher than a chosen threshold. Note that this threshold has a well-

defined meaning: we know that the expected value for a perfect sphere is 1, independently of 

the scale. We can choose the threshold as the value t corresponding to the fraction of an 

approximately spherical surface part that we want to detect in the specific application. 

Salient points can be characterized with vector descriptors, including, for example, intensity 

and scale. Further descriptor components can be, for example, blobness, flatness and 

vesselness of the map in a neighborhood of the point that can be estimated from the 

eigenvalues of the inertia matrix. 
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We implemented this salient points detector and tested it on different shapes. The program 

computes from the input surface a reference length s equal to a fixed fraction of the square 

root of the total surface area √        . It then uses this value as minimum radius   , as step 

between the tested radii and as voxel dimension in the MAPT computation. The kernel size 

used at the different scales is given by          . The threshold used to consider the 

detected local maxima salient points is 0.2. 

 

Figure 18: Examples of salient points detected on models of animals and humans. They are represented as 
spheres with radius equal to half the detected scale and color encoding intensity (brightness) and sphericity (red 
component). 

 

On non-perfectly symmetrical objects, salient points are still detected due to the tolerance 

given by s and their sphericity values characterize regions around differently shaped surfaces. 

Figure 18 shows results obtained on meshes representing animals and humans (from the 

SHREC 2011 nonrigid 3D watertight data), where the extracted salient points correspond to 

relevant anatomical features that are detected almost independently on pose. Figure 19 shows 

results obtained on three models of a girl acquired with a commercial whole body scanner 

device. Salient points corresponding to major anthropometric locations are detected and are 

rather similar in different poses even if the quality of the models is low and large holes and 

noise are present. We tested also salient points extraction as maxima of the 3D JMAPT: results 

are rather similar to those obtained on the 4D map, only the characterization with the inertia 

tensor is less reliable due to the mixture of signals at different scales.  
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Figure 19: Salient points are reasonably extracted also in largely incomplete and noisy meshes as those here 
(large holes on visible sides highlighted in green), acquired with a whole body scanner on a subject in varying 
poses. Only maxima larger than a threshold (t = 0.2) are shown. 

 

Lines extraction 

Tubular parts of a shape should be characterized by a region of MAPT or JMAPT with high 

values, but also high vesselness with continuous orientation. Local vesselness and direction 

can be obtained in several ways analyzing local structure of the map or using area projection 

directional information. 

We plan to perform further investigations in order to define the best APT-based 

skeletonization algorithm, meanwhile we used a method commonly applied in medical images 

for vascular segmentation based on Frangi’s hessianbased vesselness estimation [64]. Local 

Hessian at the selected scale is also able to provide vessels direction and lines can be obtained 

tracking lines of maximal vesselness in the direction of the local vessel. To simply test the 

feasibility of the centerline extraction based on APT, we implemented the following simple 

procedure to compute skeletal paths: 

 compute the multiscale vesselness map from the JMAPT; 
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 segment connected regions of non-negligible vesselness and continuous direction; 

 find maxima of the map in each region and select points with the maximum distance 

from this point in opposite directions  

 find the shortest path joining these points using fast marching with vesselness 

dependent speed. 

This simple procedure provided visually reasonable results in tubular parts of the tested 

shapes. The algorithm does not provide connected paths as other methods (it is possible, 

however, to design specific heuristics to obtain such paths if needed). The method has, 

however, other interesting properties: it follows approximately tubular parts independently on 

local topology; in fact lines extracted do not correspond to centerlines of connected 

components, but to centerlines of cylindrical parts, so that, for example thumb skeleton is 

continued within the hand model in Figure 20 A. This can be a relevant advantage for 

applications, as shown in Figure 20 B. 

 

 

Figure 20: Lines extracted from the JMAPT are robust against topological noise. A: Skeletonization of a hand 
model. B: Lines extracted on a human body scan. Arms of the overweight woman are partially attached to the 
body. Curve skeleton algorithms often fail to follow the arms centerlines as in the case of publicly available codes 
based on medial geodesic function (blue) and voxel coding (green). Lines extracted with the APT method (red) 
follow the complete structures. 
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Most skeletonization methods commonly used fail to follow tubular parts partially attached on 

one side (as required for correct anthropometric evaluation), as it happens, for example in the 

case of limbs in scanned human bodies. Lines extracted with publicly available 

implementations of methods based on medial geodesic function [44] and voxel coding [57] do 

not follow the complete arm centerline, but the APT based method does. Furthermore, the 

method works on non-watertight surfaces and it is robust against the presence of relevant 

holes. We show this in the examples of Figure 21 where many of the lines extracted are not 

changed even if a relevant percentage of the meshes triangles are removed. 

 

 

Figure 21: Lines extracted with the JMAPT method are robust against random triangle removal. Left: lines 
extracted on two models from the SHREC 2011 database. Right: lines extracted from the same models removing 
50% of the original faces. 

 

Points matching and semantic labeling through Radial Symmetry 

Graphs 

CASS points computed on models differing for an articulated deformation almost stable and 

are rather similar in object of the same types (e.g. humans, animals). We can therefore try to 

match them, and even if the local characterization is poor, we can exploit for the task 

descriptors based  on the similarity of paths starting from each point (e.g. average/median 

path distances, histograms of paths length or paths features) to characterize them with a 

robust contextual information. We plan to test several descriptors of this kind as future work. 
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In the meanwhile we implemented a simple "counting" procedure to match corresponding 

points of two graphs extracted on similar objects. Given a new graph and a template one we 

perform the following steps: 

 initialize a counter for each label at each point 

 for each path of the new model search for the nearest neighbor among the paths 

extracted on the template and increment the counters of the extremal points 

corresponding to the labels of the corresponding points of the closer path of the 

template. 

  select as the best match the point with the maximally valued counter 

A problem of this procedure is that it cannot distinguish between symmetric parts creating 

points with similar paths. We can, however, modify the procedure performing just a semantic 

labeling of the point set, using in the procedure non unique labels for the template points 

identifying simply a point type (e.g. leg, back, head, ear, etc). 

Figure 22 shows examples of CASS salient points and corresponding "cleaned" symmetry 

graphs. It is possible to see that they resemble curve skeletons in tubular parts, but 

characterize also the other parts linking salient points and their computation is robust against 

noise and holes. 
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Figure 22: Examples of cleaned Radial Symmetry Graphs computed on different shapes. 

 

 A limit in the possibility of using points and paths for matching is surely related to the fact that 

in articulated shapes points can be created by (see the shark in Figure 3). Most of the points 

are, in any case stable in different poses, as shown in Figure 23. 

 

Figure 23: Automatic labelling of the highest valued 15 CASS points for armadillos in different poses obtained 
from a single manually labelled template. 
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We tested the semantic labelling obtained with the simple "voting" procedure on a set of 

models from the SHREC 2011 nonrigid watertight dataset [65]. Labelling a the salient points of 

the template model of an armadillo as head, trunk, back, arms, legs, nose, ear, chest, pelvis we 

were able to assign the right labels to more than 90% of the 15 CASS points of other 10 models 

deformed through an articulated transform (Figure 23) using the labels manually given to a 

single template (pose of Figure 13) as example. 
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4. Discussion 

 

We discuss separately the results of two anthropometric experiments and of area projection 

transform. 

 

Experiment 1 

Validation of the Breuckmann body Scanner for anthropometry  

Body scanners are increasingly used in health assessment and physical anthropology 

[48,49,50,66] and it is probable that they will represent the standard anthropometric tool in 

the future. In this work we evaluated the ability of a 3D scanner, the Breuckmann BodySCAN, 

to allow reliable anthropometric measurements. 

Results show that when duplicate measurements are performed of standard anthropometric 

parameters by and experienced anthropometrist, excellent correlation coefficient r is found in 

either the manual or digital mode; this suggests that digital measurement of anthropometric 

parameters is at least as reliable as manual. In order to check for possible systematic error in 

measurement the t test was also performed, showing significant/borderline difference of the 

duplicate means in four and none anthropometric parameters with the manual and digital 

mode, respectively. This suggests that digital measurements are less prone to systematic 

measurement error. The ICC, an alternative test of reliability using the F test from repeated 

measures analysis of variance, was high (>0.9) for all measurements in the manual mode; in 

the digital mode, the ICC was somewhat lower for some anthropometric parameters, still 
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showing high P values. This indicates that digital measurement is at least comparable to 

manual in terms of reproducibility. 

When the agreement of manual and digital measurements taken by the experienced 

anthropometrist was tested, the ICC resulted good (>0.8-<0.9) to high (>0.9) in the majority of 

anthropometric parameters. As expected, less than satisfactory agreement was found for head 

circumference due to the better performance of manual measurement in minimizing hair bias; 

further investigation is needed to clarify the reason for the relative disagreement in wrist and 

bi-epicondilar measurements. 

Interestingly, when naïve anthropometrists took measurements in the digital mode the 

correlation coefficient r and the ICC for duplicate measurements were mostly high (>0.9) with 

no systematic error (as assessed by t test); this clearly show that digital anthropometry, which 

is independent of subject’s movement/sway as well as most ambient detrimental factors e.g., 

noise, temperature or observer-subject interaction allows for good to excellent measurement 

performance of observers in the absence of specific time-consuming training. 

In conclusion, the Breuckmann BodySCAN revealed a reliable and effective tool for digital 

anthropometry comparing well with traditional manual procedures as well as allowing for 

reproducible measurements in the absence of specific anthropometric training. 

 

Experiment 2 

Health-related shape analysis of 3D Scanner Data 

We evaluated the ability of completely automatic measurements performed on body scanner 

data to predict body fat in obese female subjects. The results obtained suggest that some of 

the tested measurements can predict subtotal body fat similarly to standard anthropometric 
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measurements, while they seem to correlate even better than tape-based anthropometric 

parameters with trunk fat. The high correlation of the maxima of mean diameter and section 

area with subtotal fat is not trivial, and the fact that simple measures on the trunk region are 

correlated with a whole body parameter, not easily estimated by other means deserves 

further investigation. 

An interesting outcome of our analysis is that automatically computed measurements seem to 

be more correlated with trunk fat than similar parameters measured with the tape-based 

method. This could be due to the difficulty to locate precisely the landmarks on obese subjects 

and perhaps the possibly large deformations on the soft tissue created by the tape and calipers 

during the measurement process. This means that, even if the automatic measurement system 

is limited by several factors due to acquisition protocols and processing algorithm, indexes 

evaluated from the automatic system may be more effective than those coming from manual 

measurements (and, clearly, they are computed faster and with no user intervention). 

We plan, however, to improve the accuracy of the automatic system and perform several 

validation tests on them, trying to solve problems that are not well treated by our current 

methods. A source of errors that make some parameters to lose precision, for example, is the 

pose of the arms of the subjects, which make latero-lateral measurements difficult where the 

arm adhered to lateral trunk surface. Moreover, in obese subjects the shape of the abdomen 

region is dependent on the underwear worn during the acquisition. This can introduce some 

errors on measurements localized in this region. 

Experiment 3 

Area projection transform 

We developed a novel method for detecting radial symmetries of 3D shapes by computing a 

spatial function called multiscale area projection transform, defined for generic surfaces and 
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implemented for triangulated meshes. We have shown its possible use for relevant tasks such 

as salient points detection and centerline tracking. The results obtained in a complex shape 

retrieval task with our method based on MAPT histograms revealed its ability to capture both 

global and local object features and are particularly remarkable considering that method is 

scale invariant, can be applied also to non-watertight meshes, it is robust against topological 

noise and could be used as well on dense point clouds instead of meshes, projecting points 

along associated normal and assuming that their density is approximately constant. 

Moreover, we proposed a new robust characterization of shapes based on the extraction of 

salient points (CASS) computed from the Joint Multiscale Area Projection Transform and the 

creation of a graph (Radial Simmetry Graph) obtained by joining these points following 

maximal JMAPT paths. This shape characterization inherits the robustness against noise, holes 

and topological changes of the original transform. The graph structure can be useful for 

matching purposes adding contextual information to the point characterization and could also 

be applied to intrinsic symmetry detection. In a first test we were able to assign a semantic 

label to salient points of articulated objects in different poses from a labelled example, using a 

simple path distance based voting. 

 

Conclusions 

Anthropometry performed through body scanner devices is spreading, resulting in a deep 

change in the way anthropometric analyses are performed. This leads to simpler and faster 

anthropometric procedures. This technology finds new applications every day and there is still 

much to do to exploit it potentials in healthcare. 
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In my opinion one of the major obstacles to the full employing of the technology come from 

the lack of scientific knowledge we have about the connections of so called “body shape” and 

the material living substrate from which the first derive. While the “first layer” of body shape 

determinants i.e. the muscolo-skleletal system and the body fat are object of active research, 

scanner technology is suitable to systematically investigate more subtle but interesting 

connection, e.g with psychology (exploiting the relationship between posture and emotions) 

and epigenetics, as exemplified in [67]. 

Moreover, while 3D shape analysis hasn’t yet defined standardized methods that can cope 

with all desiderata of anthropometry (and, in general, of morphometry applied to biology) 

there is still a lot of research to perform to fill the gap. My experience lead me to consider that 

the field of computer science and biological/medical science can positively stimulate each 

other, the first with innovative investigation instruments, the second with challenging tasks.  

I further observe that, in order to obtain substantial results, this genre of research has 

necessarily to be conducted by multidisciplinary teams, where a hybrid form of knowledge can 

be shared. The different “philosophies” historically implied in different branch of scientific 

knowledge results in communication barriers, a general frame in which such a type of common 

knowledge can be shared could be necessary. Good candidates for this role can be the general 

theory of systems of Von Bertalannfy [68] and the epistemology of complexity [69] 
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