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Abstract 
Tobacco use through cigarette smoking is the leading preventable cause of death in the 

developed world. The pharmacological effect of nicotine plays a crucial role in tobacco 

addiction. Nicotine dependence has a huge impact on global health and although several 

medications are available, including a wide range of nicotine-replacement therapies 

(NRTs), bupropion, and recently approved nicotinic receptor partial agonist varenicline, 

at best only about a fifth of smokers are able to maintain long-term (12 months) 

abstinence with any of these approaches. Thus, there is a need to identify more effective 

treatment to aid smokers in maintaining long-term abstinence.  

Nicotine is positively and negatively reinforcing and leads to the development of 

“operant conditioning” (motivated behaviour to nicotine consumption) in smokers 

during the acquisition phase of addiction. Several preclinical and clinical studies have 

also underlined the importance of non-pharmacological factors, such as environmental 

stimuli, in maintaining smoking behaviour and promoting relapse. Initially neutral 

stimuli that are repeatedly paired with a reinforcing drug (e.g. lighter) acquire a new 

conditioned value (conditioned stimuli, CS) through “Pavlovian conditioning” and 

become able to elicit craving even in the absence of the drug. Indeed smokers are 

particularly reactive to smoking/nicotine related CS. This phenomenon is called cue-

reactivity and involves a vast array of physiological, psychological and also behavioural 

responses, such as decrease in heart rate and blood pressure and/or increase in skin 

conductance and skin temperature, increase in craving and urge to smoke and/or mood 

change, and also change in smoking behaviour (e.g., latency to smoke, cigarette puff 

volume and frequency, amount of cigarette consumed and relapse to smoking 

behaviour). Given the importance of the learned association between stimuli and 

nicotine in the phenomenon of relapse to nicotine-seeking behaviour, it has been 

proposed that treatment that disrupts the nicotine-associated memories could act as a 

pro-abstinent and anti-relapse therapy.  

After learning experience, memories are stored by a process called consolidation. 

Operant conditioning (also called instrumental learning) and Pavlovian conditioning 

lead to different drug-related memories formation (instrumental memories and 

Pavlovian memories) responsible for the relapse even after prolonged abstinence. For at 

least a century it has been a dogma that initially labile memory (short-term memory) is 

consolidated by the passage of time and become stable and permanent (long-term 
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memory). However converging evidence from animal and human studies have revealed 

that memories may return to a vulnerable phase during which they can be updated, 

maintained and even disrupted. The retrieval of a memory indeed may destabilize the 

consolidated memory that requires a new process to be maintained. This hypothetical 

process is called reconsolidation. There is strong evidence that Pavlovian fear memories 

undergo reconsolidation and it was proposed that interventions to disrupt 

reconsolidation may help for specific and selective inhibition of fear related memories 

and, similarly, appetitive memories (i.e., for drug addiction). The disruption of drug-

related memories reconsolidation has been proposed as a potential therapeutic target to 

prevent the CS-induced relapse in ex drug-addicts. Several animal studies have shown 

that the reconsolidation of some drug-related memories can be disrupted by the 

administration of an amnestic drug contingently upon retrieval of the memory acting at 

specific molecular levels (i.e. adrenergic and glutamatergic systems). However it is not 

known if all memories or only certain kind of memories could be retrieved and 

reconsolidated or disrupted. To date reconsolidation of instrumental memories is still 

under discussion and behavioural experiments targeting the pure instrumental memory 

reconsolidation disruption are needed to clarify this issue.  

There are many boundary conditions related to memory retrieval and reconsolidation 

(i.e., retrieval session duration, memory age and strength). Furthermore memory 

reconsolidation disruption could only be determined through its absence during 

reinstatement or renewal test in behavioural studies. This make difficult to interpret the 

lack of effect of amnestic drugs observed in some circumstances. Infact it is hard to 

understand if reconsolidation disruption is inhibited by the presence of boundary 

conditions or by the fact that some memories can not be reactivated and disrupted. From 

this perspective ex-vivo molecular experiments performed after memory retrieval could 

directly demonstrate memory reactivation and confirm reconsolidation occurrence 

supporting behavioural data. It has been demonstrated that zinc finger 268 (Zif268) 

expression increases in basolateral amygdala after the presentation, in a memory 

reactivation session, of conditioned stimuli compared to non conditioned. Since Zif268 

is also considered a specific marker correlating memory reconsolidation, 

immunohistochemistry assessment of the expression level of Zif268 in BLA after 

memory reactivation can help to estabilish if memory reconsolidation is engaged, or 

not, in our laboratory conditions.  

The main objective of the present thesis was to study if it is possible to disrupt 
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Pavlovian and instrumental nicotine-related memories reconsolidation by β-adrenergic 

receptor antagonist propranolol, or N-methyl-d-aspartate receptors (NMDARs) 

antagonist MK-801 respectively. We also verified the feasibility and reliability of 

Zif268 expression assessment by immunohistochemistry after retrieval of Palovian 

memory in rodents. 

The experimental approach used to address this issue was the laboratory model of 

nicotine self-administration in rats, based on the paradigms of operant and Pavlovian 

conditioning to nicotine and nicotine-associated cues. We performed two studies in 

which the pharmacological treatment (propranolol or MK-801) was associated to 

retrieval of Pavlovian or instrumental nicotine-related memories. We therefore assessed 

the effect of these pharmacological treatments on relapse to nicotine seeking behaviour. 

Retrieval of Pavlovian memories consists in presenting the CS in the absence of US. 

Retrieval of instrumental memories consists in allowing the animal to press the lever 

previously paired to nicotine reinforcement, without nicotine infusion. We also 

performed an immunohistochemistry assay in which the Zif268 level of expression was 

determined in basolateral amygdala after nicotine CS presentation. 

Results showed that propranolol given after retrieval of Pavlovian memories (30 CS 

presentations) did not reduce the relapse to nicotine seeking behaviour compared to 

control groups that received vehicle injection in both retrieved or no-retrieved groups. 

As suggested by Tronson and Taylor (2007), memory extinction (a new learning by 

which CS previously associated with a reinforcer become newly associated with no 

outcome) instead of memory reconsolidation, may occur under similar conditions after 

memory retrieval. The length of the retrieval session is an important determinant of 

whether reconsolidation or extinction occurs after memory retrieval and it could be the 

critical factor in extinction and reconsolidation protocols. However there were no 

differences between retrieved and no-retrieved control groups suggesting that retrieval 

session was not inducing memory extinction in our conditions. Given that only 

Pavlovian memories were retrieved in our retrieval session by the CS presentation, it 

could be that instrumental memories (not retrieved indeed not disrupted) supported 

lever pressing during reinstatement test. It could also be possible that instrumental 

memories do not undergo reconsolidation and could not be disrupted. To address this 

issue we tested the effect of MK-801, known to be more effective against instrumental 

memory than propranolol, given 30 minutes before the retrieval of instrumental 

memories. Results showed that instrumental memory retrieval per se increased nicotine-
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seeking behaviour in vehicle treated rats. Pre-retrieval MK-801 injection reduced the 

difference in nicotine-seeking behaviour between retrieval and no-retrieval condition 

that is observed with vehicle, but did not prevent the relapse to nicotine-seeking 

behaviour when compared to control groups. This effect suggests a potential role of 

MK-801 in inhibition of the memory destabilization process instead of reconsolidation 

disruption. Further experiments in which MK-801 was given after memory 

destabilization was engaged (i.e. given after memory retrieval) showed that MK-801 

prevented the relapse to nicotine-seeking behaviour. Finally immunohistochemistry 

showed an increased level of Zif268 expression in basolateral amygdala after retrieval 

of Pavlovian nicotine-related memories. These data confirm the validity and feasibility 

of immunohistochemistry to assess the expression of molecular markers correlating 

reconsolidation such as Zif268 after memory retrieval. 

In conclusion, our findings suggest that: i) propranolol did not disrupt Pavlovian 

memory reconsolidation in our conditions, ii) MK-801 given prior to retrieval session 

could prevent instrumental memory destabilization, but did not disrupt memory 

reconsolidation in our conditions, iii) MK-801 given after retrieval session disrupted 

memory reconsolidation in our conditions, iiii) immunohistochemistry is a feasible 

technique to investigate the expression of molecular markers correlating reconsolidation 

such as Zif268, thus it can be used to support our future behavioural studies. These data 

suggest that instrumental memory could be responsible for the lack of effect of some 

anti-relapse pharmacological treatments and that this kind of memory can be disrupted. 

New and specific pharmacological intervention, acting at specific molecular 

mechanisms that underlies reconsolidation of different kind of memories (i.e. Pavlovian 

but also instrumental memories), could be used as a potential co-adjuvant to current 

therapeutic interventions for smoking cessation and abstinence maintenance. 
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1. INTRODUCTION 

Tobacco use is the leading global cause of preventable and premature death. It is one of 

the main causes for a number of chronic diseases, including cancer, lung diseases and 

cardiovascular diseases. Cigarette smoking is also a risk factor for respiratory tract 

infections, reproductive disorders, osteoporosis, adverse post-operative events such as 

delayed wound healing, duodenal and gastric ulcers and diabetes (Vineis et al., 2004). 

Tobacco use kills nearly 6 million people and causes hundreds of billions of dollars of 

economic damage worldwide each year. If the current trends continue, by 2030 tobacco 

will kill more than 8 billion people worldwide each year (World Health Organization 

Report 2011). Seventy percent of smokers say that they would like to quit, eighty 

percent who attempt to quit on their own return to smoking within a month, and each 

year, only three percent of smokers quit successfully.  

Smoking-related diseases are a consequence of prolonged exposure to toxins in tobacco 

smoke; therefore the most dangerous aspect of smoking is that constituents are highly 

addictive.  

Tobacco addiction is reported both in the Diagnostic and Statistical Manual of Mental 

Disorders, 4th edn. and in the World Health Organization’s International Classification 

of Diseases, version 10. 

The criteria for defining drug dependence are the following: 

Primary criteria: 

• Highly controlled or compulsive use 

• Psychoactive effects 

• Drug-reinforced behaviour 

Additional criteria: 

• Addictive behaviour often involves 

-Stereotypic patterns of use 

-Use despite harmful effects 

-Relapse following abstinence 

-Recurrent drug cravings 

• Dependence-producing drugs often induce 

-Tolerance 

-Physical dependence 

-Pleasant (euphoriant) effects. 
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Tobacco dependence fit all the above criteria. It is a behavioural disorder due to chronic 

exposure to a psychoactive substance, nicotine (Abrams et al., 1999). Importantly, 

smokers do not just self-administer nicotine while smoking, but they experience the 

pharmacological effect of nicotine in a context rich of environmental stimuli. Indeed, 

tobacco addiction arises from an interplay of: i) pharmacological effect of nicotine, ii) 

psychological and physiological susceptibility of the individual (e.g. genetic 

predisposition, psychiatric disorder, impulsivity) and, iii) social and environmental 

influences (including tobacco product and marketing) (Caggiula et al., 2001, Field et al., 

2009; Karp et al., 2006; Pomerleau, 1995; Rodriguez et al., 2008). 

 

1.1. Neurobiology of Nicotine 

1.1.1. Absorption 

Nicotine is an alkaloid that constitutes approximately 0.6–3.0% of the dry weight of 

tobacco. It is a psychoactive addictive drug. Inhalation of smoke from a cigarette distils 

nicotine from the tobacco in the cigarette. Smoke particles carry nicotine into the lungs, 

where it is rapidly absorbed into the pulmonary venous circulation. The nicotine then 

enters the arterial circulation, rapidly crosses the blood barrier in approximately 7-10 

seconds and move into the brain, where it binds to nicotinic cholinergic receptors 

(nAChR) (Hukkanen et al., 2005).  

 

1.1.2 Nicotinic cholinergic receptors and neuroadaptation 

nAChR is a ligand-gated ion channel that normally binds acethylcholine (Albuquerque 

et al., 2009). It consists in five peptidic subunits: the mammalian brain expresses nine α 

subunits and three β subunits. Usually the receptor is composed of two α and three β 

subunits arranged to form a pore (Jensen et al., 2005). The receptor α4β2 is the most 

abundant and the principal mediator of nicotine dependence. Ligand binding occurs via 

the α subunit, producing a conformation change that opens the cationic channel and 

allows sodium and calcium ion influx, after few milliseconds the channel close and 

become desensitized. In the absence of agonist, the receptor return to the standby stage 

where it is closed but “activable”. Moreover chronic nicotine exposure increases 

nicotine or acethylcholine (ACh) binding sites in the brain, a phenomenon known as up-

regulation. 

When brain nicotine levels decrease, e.g. during abstinence, the up-regulated 



 10 

receptors return to the standby state leading to a hyperexcitability of cholinergic 

system. This hyperexcitability is associated with withdrawal effect: the symptoms of 

craving and withdrawal, indeed, begin in smokers when the up-regulated 

desensitized α4β2 receptors become responsive during a long period of abstinence, 

such as overnight. Nicotine binding of these receptors during smoking alleviates 

craving and withdrawal (Dani & Heinemann, 1996). Smokers regulate the daily 

amount of cigarette smoking in order to maintain near-complete saturation, and thus 

desensitization, of the α4β2 receptors. Thus smokers are probably attempting to 

avoid withdrawal syndrome when maintaining a desensitized state.  

  
1.1.3 Nicotine and neurotrasmitters release 

nAChRs are localized mainly at presynaptic level on a number of different type of 

neurons, such as on glutamatergic, dopaminergic, noradrenergic and gamma 

aminobutyric acid (GABA) neurons in the ventral tegmental area (VTA), substantia 

nigra, and striatum (Figure 1). Thus nicotine modulates not only ACh level but also 

dopamine (DA), glutamate and GABA activity (Albuquerque et al., 1997; Alkondon et 

al., 1997; Gray et al., 1996; Guo et al., 1998; Ji et al., 2001; Jones et al., 1999; Jones & 

Wonnacot, 2004; Li et al., 1998; Mansvelder & McGehee, 2000; Marubio et al., 2003; 

McGehee & Role, 1995; McGehee et al., 1995; Radcliffe & Dani, 1988; Radcliffe et al., 

1999; Role & Berg, 1996; Wonnacott, 1997, Yin and French, 2000).  
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Figure 1. Schematic drawing of dopaminergic, gabaergic, glutamatergic and cholinergic 

neurons interaction. nAChRs are localized mainly at presynaptic level on glutamatergic, 

dopaminergic, and gabaergic neurons. Abbreviations in the text, D1 = dopamine receptor 1, 

mGluR2/3 = metabotropic glutamate receptor type 2 or 3. Image taken from Balfour, 1994. 

 

It is widely accepted that nicotine dependence, similarly to other drugs of abuse (such as 

cocaine, amphetamine, etc.), arises from nicotine action on dopaminergic neurons in the 

mesocorticolimbic system. This system is also called reward pathway and involves 

dopaminergic neurons located in VTA and their projection into the striatum, amygdala, 

prefrontal cortex and the shell of nucleus accumbens (Figure 2).  
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Figure 2. Schematic drawing of mesocorticolimbic pathway, mediating nicotine dependence.  

Nicotine stimulates nAChR located in the VTA, resulting in release of DA in the nucleus 

accumbens. Neurons projecting from the prefrontal cortex and amygdala modulate the release of 

DA in the nucleus accumbens. GABAergic neurons projections modulate DA release in nucleus 

accumbens and VTA. Image taken from Le Foll & George, 2007. 

 

It has been well established that the activation of mesocorticolimbic DA pathways is 

associated with drug reward (Di Chiara, 2000), where increased neuronal firing in the 

VTA (Clarke, 1990; French, et al., 1996) and DA release in the nucleus accumbens (Di 

Chiara and Imperato, 1988) are neurochemical correlates of psychostimulant self- 

administration. Laboratory animals self-administer nicotine, indicating that the drug 

exerts effects on mesocorticolimbic DA neurotransmission in a comparable manner to 

other psychostimulant drugs of abuse. Supporting a predominant role for enhanced 

dopaminergic neurotransmission, nicotine concentrations self-administered by rodents 

and humans also increase DA release in the nucleus accumbens (Imperato, et al., 1986; 

Nisell, et al., 1994) and activate DA neurons in the VTA (Pidoplichko, et al., 1997). 

Moreover it has been shown that inhibition of DA release in nucleus accumbens by 

antagonist drugs attenuates reinforcing properties of nicotine, leading to a decrease in 

nicotine self-administration in rats (Corrigal & Coen, 1989; Stolerman & Shoaib, 
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1991.). 

As stated above, nicotine also augments both glutamate and GABA release: the former 

one facilitates DA release, the latter inhibit DA release. Chronic exposure to nicotine 

induces desensitization of some types of nAChR, but not all. As a results GABA 

inhibitory action diminishes while glutamate-mediated excitation persists, leading to an 

increase dopaminergic neurons firing and enhancement in responsiveness to nicotine 

(Mansvelder & McGhee, 2000; 2002).  

Nicotine also affects the release of endogenous opioid peptides. Nicotine binding to 

nAChR within hypothalamus induces the release of a precursor of ß-endorphin. It is 

thought to be involved in mood regulation, decrease response to stress, conserve energy 

and relaxation (Cesselin, 1995). 

As far as concerns serotonergic transmission, it has been shown that chronic nicotine 

exposure produces a selective decrease in the concentration of 5-HT in the hippocampus 

(Benwell & Balfour, 1979). The effect of this neuroadaptation is still unclear, however, 

considering the findings that 5-HT deficits have been implicated in depression and 

anxiety, it may be hypothesized that during chronic nicotine exposure and withdrawal, 

the decrease in serotonin function plays a role in the onset of negative affective 

symptoms, such as depressed mood and irritability (Schwartz, 1984). 

 

1.1.4 Nicotine effects and withdrawal 

The activation of peripheral nAChRs increases noradrenaline release, with concomitant 

increase in heart rate, blood pressure, and respiratory rate. Centrally nicotine improves 

working memory functions, learning and attention; it also induces pleasure and reduces 

stress and anxiety. At the initial experience it can give nausea/disorientation. 

After a first experience of smoking, as a result of pharmacological and non-

pharmacological factors, an individual frequently elects to repeat the experience (Rose, 

2006). This leads to the next stage where the prolonged exposure to smoke induces a 

neuroadaptation in the brain, increasing the reinforcing effects of nicotine (Soria, et al., 

1996). When CNS nicotine level ceases abruptly following smoking cessation, it 

produces temporary imbalances in neurological systems before compensatory 

mechanisms are triggered to restore homeostasis (Lowinson, 2005). This imbalance is 

associated with unpleasant withdrawal effects such as irritability, headache, nausea, 

constipation or diarrhoea, falling heart rate and blood pressure, fatigue, drowsiness or 

insomnia, depression, increased hunger and energy, lack of concentration, anxiety, and 
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cravings for cigarettes (Benowitz, 1988) which are powerful incentives to take 

up/relapse smoking again (Hughes, 1992; Hughes et al., 1984; 1990). Thus basis of 

nicotine addiction is a combination of positive reinforcement of mood and avoidance of 

withdrawal symptoms. In addition, conditioning has an important role in the 

development of tobacco addiction. 

 

1.1.5 Neuroplasticity 

Neuroplasticity induced by drugs can be considered initially as transient changes that 

are antecedent to developing a new behaviour (that takes hours to weeks) and, then, 

stable neuroplasticity that corresponds to persistent information that is retrieved to guide 

the execution of learned behavior (from weeks to being permanent). Drug addiction is a 

pathology in mechanisms of brain neuroplasticity that are used to establish the adaptive 

hierarchy of behaviours that ensure survival (Kalivas and O’Brien, 2008). Thus, 

enduring drug-induced neuroplasticity establishes a maladaptive orientation to the 

environment that manifests as the two cardinal features of addiction: i) impaired ability 

to regulate the drive to obtain and use drugs (ie, relapse), ii) reduced drive to obtain 

natural rewards.  

 
1.1.6 Pharmacological smoking cessation treatment 

First-line pharmacological treatments of tobacco dependence recommended by clinical 

practice guidelines are nicotine replacement therapy (NRT), bupropion and varenicline 

(Lerman et al., 2007). 

Nicotine replacement therapy (NRT) is the only first-line smoking cessation treatment 

available without prescription and has increased short-term smoking cessation rates by 

50–70% (Rigotti, 2002). NRT reduces the severity of withdrawal symptoms such as 

anxiety, insomnia, depressed mood, and inability to concentrate (Ford and Zlabek, 

2005). Smoking whilst using NRT provides a deterrent, as the high nicotine doses can 

produce aversive effects such as nausea, palpitations, hypotension, and altered 

respiration (Frishman, 2007). NRT treatments are available as a nasal spray, chewing 

gum or transdermal patches.  However, despite initial benefits, around 95% of ex-

smokers who had undergone transdermal patch NRT relapsed after a period of time 

(Clinical Practice Guideline Treating Tobacco Use and Dependence 2008 Update Panel, 

Liaisons, and Staff.  U.S.A. Public Health Service report. Am J Prev Med. 2008 35:158-

76.).  
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Bupropion is an antidepressant drug; its primary pharmacological action is thought to be 

noradrenergic and dopaminergic reuptake inhibition. It binds selectively to DA 

transporter, but its behavioural effects have often been attributed to its inhibition of 

noradrenaline reuptake (Balfour, 2001). It also acts as a nAChRs antagonist. Its efficacy 

might be explained by its antidepressant effect, indeed depression is a withdrawal 

symptom that reliably predict relapse among abstinent smokers (Hughes, 2007). 

Moreover, its antagonist-like activity on nAChR decreases the reinforcing effect of 

nicotine. 

Varenicline is nAChR partial agonist. It activates DA reward system with less abuse 

liability of nicotine. Indeed it produces a lesser, slower DA release than nicotine with a 

longer duration of action. Moreover, when varenicline is combined with nicotine, it 

attenuates nicotine induced DA release in nucleus accumbens (Rollema et al., 2007). 

Behavioural interventions play an integral role in smoking cessation, either in 

conjunction with medication or alone. They employ a variety of methods to assist 

smokers in quitting, ranging from self-help materials to individual cognitive-

behavioural therapy. These interventions teach individuals to recognize high-risk 

smoking situations, develop alternative coping strategies, manage stress, improve 

problem solving skills, as well as increase social support (Clinical Practice Guideline 

Treating Tobacco Use and Dependence 2008 Update Panel, Liaisons, and Staff. U.S.A. 

Public Health Service report. Am J Prev Med. 2008 35:158-76.). 

	  
1.2 Psychobiology of tobacco addiction 

The severity of nicotine dependence (abuse liability, frequency of consumption, high 

rate of relapse) is similar to other drug dependence, such as opiates or cocaine. In 

contrast, the reinforcing properties of nicotine is subtle compared to other drug. It 

suggests that the reinforcing effect of nicotine is necessary but not sufficient to explain 

tobacco dependence (Caggiula, 2002). Furthermore several preclinical and clinical 

studies have underlined the importance of non-pharmacological factors, such as 

environmental stimuli, in maintaining smoking behaviour and promoting relapse. 

 

1.2.1 Operant Conditioning 

Operant conditioning (also called instrumental conditioning or instrumental learning) is 

a form of learning that occurs through rewards and punishments for behavior and in 

which an individual's behavior is modified by its consequences; the behaviour may 
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change in form, frequency, or strength (Skinner, 1938). Operant conditioning is 

distinguished from Pavlovian conditioning in that operant conditioning deals with the 

modification of "voluntary behaviour" or “operant behavior”. Operant behavior operates 

on the environment and is maintained by its consequences. Since nicotine is positively 

and negatively reinforcing operant behavior in smokers is triggered and maintained by 

nicotine per se at the beginning but other factors and interactions became important with 

the passage of time (Chiamulera, 2005; Everitt and Robbins, 2005).  

 

1.2.2 Pavlovian Conditioning 

A stimulus that is repeatedly and contingently paired with an unconditioned stimulus 

(e.g. nicotine effect) acquires a Pavlovian conditioned value (Pavlov, 1927). Thus with 

regular smoking within a complex individual and social context, smokers associate 

specific situation, mood or environmental factors with the rewarding effect of nicotine. 

These smoking-associated stimuli may trigger physiological, psychological and 

behavioural reactivity in smokers, and it is widely accepted that they can precipitate 

relapse in ex-addicts (Abrams, 1999; Drummond, 2000; Niaura et al., 1988). There are 

two classes of conditioned stimuli: proximal discrete cues that become conditioned 

stimuli (CS) after association to drug effects (e.g. cigarettes, lighter), and distal stimuli 

that are present in the environmental context (e.g. bar and people around) (Conklin et 

al., 2008). 

 

1.2.2 Nicotine’s multiple-action 

Several studies suggest that in addition to its primary reinforcing properties, nicotine 

has a second effect that may be important in promoting smoking behaviour. Nicotine is 

a cognitive enhancer drug and may enhance the salience of other reinforcers, including 

the CS that has acquired conditioned values by repeated pairing with nicotine effect 

(Caggiula et al., 2002). Nicotine activates and potentiates information processing at 

those brain areas and pathways where reinforcement and sensory transmission are 

integrated into emotional, motivational and cognitive processes that control for smoking 

behaviour. Smoking behaviour may therefore be maintained by a “multiple-action” 

effect of nicotine: i) as a primary reinforcement and, ii) as an enhancer of the multiple 

smoking/smoking-associated stimuli processing. This model may help to explain how 

nicotine could play a central role in initiation, maintenance and difficulty to stop 

smoking, despite of its mild reinforcing properties (Chiamulera, 2005). 
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1.2.3 Cue reactivity 

Cue reactivity is the vast array of responses that are observed when addicts or ex-

addicts are exposed to drug-related CS (Drummond, 2000). These responses can be: i) 

physiological, such as decrease in heart rate and blood pressure and/or increase in skin 

conductance and skin temperature, ii) psychological, such as increase in craving and 

urge to smoke and/or mood change, iii) and also behavioural, such as cigarette-seeking 

and change in smoking behaviour (e.g. latency to smoke, cigarette puff volume and 

frequency, amount of cigarette consumed and relapse to smoking behaviour). Several 

factors may influence smokers’ cue reactivity: type of stimuli (e.g. distal vs. proximal) 

(Conklin et al., 2008), degree of nicotine dependence (Payne et al., 1996) impulsivity, 

genetic, comorbidity (Drummond, 2000), contextual factor drug-availability or 

expectation (Field & Duka, 2001).  

Several brain imaging studies have revealed that brain areas of the mesocorticolimbic 

system are specifically activated in smokers exposed to smoking-associated stimuli, and 

that these effects may overlap with those induced by nicotine administration. The fact 

that exposure to smoking cues and nicotine administration activates similar brain 

patterns suggests a causal relationship between nicotine effect through smoking and 

development/maintenance of cue reactivity (Yalachkov et al., 2009). Cue reactivity may 

last in ex-smokers even after years of smoking cessation, and it is the main cause of 

relapse to smoking behaviour (Shiffman, 2009). 

 

1.3 Nicotine-related memories 

Given the importance of the learned association between stimuli and drug, that we can 

also call drug-associated memory, in the phenomenon of relapse to drug-seeking 

behaviour, it has been proposed that treatments that disrupt the drug-associated memory 

could act as a pro-abstinent and anti-relapse therapy (Diergaarde, 2008; Tronson & 

Taylor, 2007). Instrumental memories, in addition to Pavlovian memories, play an 

important role in smokers and also in animal models of drug addiction. Therefore there 

is an increasing interest in investigate the phenomena of drug memories consolidation 

and reconsolidation.  

 

1.3.1 Reconsolidation theory 

Memories are stored after a learning experience through a process called consolidation. 
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For more than 100 years the idea that once consolidated memories become permanently 

stored in the wiring of the brain has been a dogma. In the traditional consolidation 

theory new memories are initially in a “labile” form for a short time (short term 

memory-STM), after which the memory traces are fixed or “consolidated” into the 

physical structure of the brain (long term memory-LTM). In 1968 Lewis and colleagues 

observed that an electroconvulsive shock (an amnestic treatment), provided after the 

memory has been reactivated by its retrieval, could induce amnesia the following day. 

Given that amnesia was not produced in the absence of memory reactivation it has been 

argued that retrieval of memory induced a reactivation of the memory trace, that 

presumably returns to a labile state, which initiated another memory process similar to 

that seen after learning. The processes through which memories are maintained after 

retrieval is called reconsolidation (Figure 3).  

 

Memory traces unbound
Karim Nader

Department of Psychology, McGill University, Montreal, Quebec, Canada H3A 1B1

The idea that new memories are initially ‘labile’ and
sensitive to disruption before becoming permanently
stored in the wiring of the brain has been dogma for
>100 years. Recently, we have revisited the hypothesis
that reactivation of a consolidated memory can return it
to a labile, sensitive state – in which it can be modified,
strengthened, changed or even erased! The data gener-
ated from some of the best-described paradigms in
memory research, in conjunction with powerful neuro-
biological technologies, have provided striking support
for a very dynamic neurobiological basis of memory,
which is beginning to overturn the old dogma.

For .100 years, generations of behavioural paradigms
and technologies have been used to address questions
about the mechanisms that mediate learning and memory
[1–3]. Repeatedly, evidence has been found to suggest that
the properties of the memory trace change in a time-
dependent manner, such that new memories are initially
in a dynamic ‘labile’ form for a short time [short-term
memory (STM)], after which the memory trace is ‘fixed’ or
‘consolidated’ into the physical structure of the brain [long-
term memory (LTM)] [4–6]. For example, electroconvul-
sive shock (ECS) is effective in inducing amnesia if
presented shortly after training (during STM) but not if
given a few hours later (during LTM) [7]. Time-dependent
effects such as these are the cornerstone of memory
consolidation theory (now called cellular consolidation
theory [8]). During the past 40 years, incredible efforts
have been made to describe across all levels of analysis
the processes that contribute to the transformation of a
trace from being labile to being fixed [9,10]. Of note is
the finding that the transcription factor Ca2þ-response-
element-binding protein (CREB), transcription and trans-
lation all seem to be universal neuronal requirements for
traces to enter LTM [11–15] (Fig. 1a).

Early studies on reconsolidation
In 1968, the view that memories are consolidated over
time into a permanent state was challenged by Lewis
and colleagues [16]. In agreement with previous studies,
when ECS was given 24 h after fear conditioning it was
ineffective in generating amnesia. However, if the memory
was reactivated before ECS administration, amnesia was
observed the following day. Given that amnesia was not
produced in the absence of memory reactivation, the
memory is defined as being consolidated by that time.
Therefore, reactivation of a consolidated memory presum-
ably returned it to a labile state, which initiated another

time-dependent memory process similar to that seen after
new learning. This phenomenon is now referred to as
reconsolidation [17–19]. Lewis’ study defined a paradigm
for experimentally differentiating consolidation and recon-
solidation: a necessary criterion if an effect is to be attri-
buted to reconsolidation is that the amnesic agent must be

Fig. 1. Two models of memory processing. (a) The traditional consolidation theory,
which posits a labile, short-term memory (STM) state and a later, consolidated
long-term memory (LTM) state. Once fixed in LTM, the memory is posited to be
permanent. Below each memory state is a list that is typically used to describe
some of the properties of the two states. (b) The memory model proposed by
Lewis [33]. The active state (AS) and inactive state (IS) are analogous to STM and
LTM, respectively. The molecular descriptors in brackets were not part of the
original model but have been inserted for comparison with (a). New memories
enter a labile AS and then with time enter the IS [top red arrow, again similar to
(a)]. Reactivation of memories that are in an IS returns them to the AS (bottom red
arrow). Both new and reactivated memories require protein-synthesis-dependent
mechanisms in order to enter the IS. Contrary to consolidation theory, which
cannot explain the reconsolidation data, this model incorporates both the data
from consolidation and reconsolidation experiments.
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Figure 3. Two models of memory processing. (a) The traditional consolidation memory that 

stated that a labile short-term memory (STM) switch to a consolidated, permanent long-term 

memory (LTM). (b) The memory model proposed by Lewis (1968). The active state (AS) and 
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inactive state (IS) are analogous to STM and LTM, respectively. Memory after learning 

experience is in AS, then it enters in IS by the passage of time.  Retrieval of the memory returns 

it to the AS (Nader, 2003). 

 

Furthermore it has been shown that amnesia can be induced only if the amnestic 

treatment, such as the electroconvulsive shock, is given shortly after retrieval (Misanin 

et al., 1968; Schneider & Sherman; 1968). These findings suggest that retrieval induces 

a transient labile phase of the memory. The time during which memory traces are labile 

is called reconsolidation window and persist for several hours after retrieval (Duvarci & 

Nader, 2004; Nader et al., 2000b; Sara, 2000). 

In the past 10 years the study of reconsolidation have been extended to numerous 

species, including crabs, chicks, honey bees, etc. and to numerous experimental 

paradigms. 

To experimentally demonstrate reconsolidation or the role of a particular molecule in 

reconsolidation, memories must be first consolidated, then reactivated (retrieved) 

contiguously with some forms of manipulation. Finally, modification of the memory 

must be observed.  

Reconsolidation is frequently studied using Pavlovian conditioning paradigms, such as 

fear conditioning. Training consists of pairing a neutral stimulus (conditioned stimulus, 

CS), such as a tone, with a reinforcing stimulus (unconditioned stimulus, US), such as a 

foot-shock. Retrieval is induced in a reactivation session, which occur at least 24 hours 

later and consists in presenting the CS in the absence of US. The manipulation (such as 

the administration of an amnestic drug) is applied either prior or immediately after the 

reactivation session. Finally at least 24 hours later the memory is tested by re-presenting 

the CS and measuring the unconditioned responding, in this case the freezing (measure 

of fear response), compared with animal in the non-manipulated control group. 

Demonstrating reconsolidation not only requires evidence of modification of a 

previously consolidated memory, but also evidence that in the absence of retrieval or if 

the amnestic manipulation is applied outside the reconsolidation window, the memory 

remains unmodified.  

To better understand the cellular and molecular mechanisms underlying reconsolidation 

of particular focus have been the molecular cascades previously demonstrated to be 

important in memory consolidation and those downstream of therapeutically relevant 

neurotransmitter targets including β-adrenergic receptors and N-methyl-d-aspartate 



 20 

receptors (NMDARs). De-novo protein synthesis is required for memory 

reconsolidation; several animal studies have shown that injection of protein synthesis 

inhibitor, such as anisomycin, after retrieval of a previously consolidated memory, can 

disrupt the original memory. It has been shown that the immediate-early genes c-Fos 

and JunB are activated during, and CCAAT-enhancing binding protein-β (C/EBPβ) is 

required for, memory reconsolidation. The gene transcription is initiated by the 

activation of transcription factors such as cAMP response element-binding protein 

(CREB), zinc finger 268 (Zif-268), ELK1 and nuclear factor kB (NF-kB).  These, in 

turn, are activated by upstream kinase, such as extracellular-regulated kinase (ERK) and 

protein kinase A (PKA) (for review see Tronson & Taylor, 2007) (Figure 4). 
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conditioned place preference38,48.
PKA is also required for reconsolidation of auditory 

fear memories. Inhibition of PKA in the BLA by infu-
sions of Rp-cAMPS, a PKA inhibitor, after memory 
retrieval disrupts auditory fear memories6 (FIG. 3) or 
conditioned taste aversion memories49. Moreover, post-
reactivation activation of PKA by injections of the PKA 
activator 6-BNZ-cAMP in the BLA enhances reconsoli-
dation of an auditory fear memory6. Unlike its involve-
ment in memory reconsolidation, amygdalar PKA does 
not seem to be involved in extinction of fear, indicat-
ing differential molecular or anatomical mechanisms 
in these two co-occurring processes6. However, PKA 
is not always involved in reconsolidation in every spe-

cies; a recent study showed that retrieval of a memory 
shortly (6 hours) — but not 24 hours — after train-
ing triggers PKA-dependent reconsolidation50. At 
both times reconsolidation is PSI-dependent. This 
study extends previous models that have shown that 
older memories are more resistant to reconsolidation 
to suggest that, in addition, different processes are 
involved in reconsolidation of older than newer mem-
ories. Whether such differential involvement of PKA 
in memories at different times after training is true in 
mammalian models, or other types of memory, is as 
yet unknown.
Immediate-early genes. Molecular events in reconsolida-
tion have also been examined by imaging cellular activ-

Figure 2 | Key molecular mechanisms of memory reconsolidation. Many individual molecules have been identified as 
being required for memory reconsolidation; however, few papers have put together schematic models for the pathways 
involved. This figure integrates findings from several studies. Of particular focus have been the molecular cascades 
previously demonstrated to be important in memory consolidation and those downstream of therapeutically relevant 
neurotransmitter targets including β-adrenergic receptors (β-AR)70,71,87–90 and NMDARs9,60,91–93 (N-methyl-d-aspartate 
receptors). Molecular signalling cascades downstream of these receptors have been implicated in reconsolidation. Small 
GTPases such as Ras, Raf and Rap activated by Ca2+ influx activate the extracellular signal-regulated kinase pathway 
(ERK)38,46–48,94. Protein kinase A (PKA)6,49,50 is activated by cyclic AMP (cAMP) and acts directly, or indirectly through ERK and 
ribosomal protein S6 kinase (RSK), to activate transcription factors including cAMP response element-binding protein 
(CREB)15,37,38, zinc finger 268 (ZIF268) (REFS 41–45,51,52) and ELK1 (REF. 38), which then initiate gene transcription. The 
immediate-early genes c-Fos and JunB37,38,53–55 are activated during, and CCAAT-enhancing binding protein-β (C/EBPβ)30,34 
is required for, memory reconsolidation. Integrating all the available data aims to identify logical pathways to examine 
next. For example, a role for the calcium/calmodulin (CaM)–CaM-dependent protein kinase kinase (CaMKK)–CaMKIV 
cascade in memory reconsolidation might be inferred from NMDAR activity; however, the involvement of this pathway has 
not directly been examined. AP1, activator protein complex 1 (a complex of c-Fos and c-JUN); CBP, CREB binding protein; 
MEK, mitogen-activated protein kinase/ERK kinase; SRE, serine response element; SRF, serum response factor; TATA, box 
required for transcription. Figure modified, with permission, from Nature Reviews Neuroscience REF. 76  (2001) Macmillan 
Publishers Ltd.
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Figure 4. Key molecular mechanisms of memory reconsolidation. Molecular signalling cascades 

downstream of β-adrenergic receptors (β-AR) and N-methyl-d-aspartate receptors (NMDARs) 

have been shown to be implicated in reconsolidation. Small GTPases such as Ras, Raf and Rap 

activated by Ca2+ influx activate the extracellular signal-regulated kinase pathway (ERK). 

Protein kinase A (PKA) is activated by cyclic AMP (cAMP) and acts directly, or indirectly 

through ERK and ribosomal protein S6 kinase (RSK), to activate transcription factors including 

cAMP response element-binding protein (CREB), zinc finger 268 (ZIF268) and ELK1, which 

then initiate gene transcription. The immediate-early genes c-Fos and JunB are activated during, 
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and CCAAT-enhancing binding protein-β (C/EBPβ) is required for, memory reconsolidation 

(image taken from Tronson &Taylor, 2007). 

 

From an evolutionary perspective, it has been argued that reconsolidation may serve as 

an adaptive update mechanism allowing for new information, available at the time of 

retrieval, to be integrated into the initial memory representation (Alberini, 2005; 

Hupbach et al., 2007; Monfils et al., 2009; Nader, 2003). Other authors proposed that 

reconsolidation might serve to strengthen memory (Inda et al., 2011; Lee, 2009; Sara, 

2000). Indeed different from extinction learning, that is a new learning by which CS 

previously associated with a reinforcer become newly associated with no outcome 

(Tronson and Taylor, 2007), the reconsolidated/modified memory should persist with 

the passage of time because the original memory trace is updated. 

As stated above, it has been shown in several animal studies that memory could also be 

disrupted acting on the molecular mechanisms underlying reconsolidation (for review 

see Tronson and Taylor, 2007; Nader et al., 2000a; Soeter & Kindt, 2011). This offers a 

potential for the treatment of psychiatric disorders characterized by strong pathogenic 

memories, such as post-traumatic stress disorders (PTSD), phobias and also drug 

addiction (Centonze et al., 2005). 

 

1.3.2 Reconsolidation as a potential target in drug addiction treatment: Pavlovian vs. 

instrumental memories reconsolidation 

Drug addiction is increasingly viewed as the endpoint of a series of transitions from 

initial drug use—when a drug is voluntarily taken because it has reinforcing, often 

hedonic, effects—through loss of control over this behavior, such that it becomes 

habitual and ultimately compulsive (Everitt and Robbins, 2005). The change from 

voluntary drug use to more habitual and compulsive drug use represents a transition at 

the neural level depending on the drug-induced neuroplasticity in both cortical and 

striatal structures leading to an improved understanding of associative learning 

mechanisms that conceive of behavioral output as an interaction between Pavlovian and 

instrumental learning processes (Dickinson and Balleine, 1994; White and Mc Donald, 

2002). Drug addiction is a chronic disorder characterized by a high rate of relapse to 

drug use among abstinent. One of the main causes of relapse is the exposure to the CS 

that are associated to drug effect in a Pavlovian manner and influence drug-seeking 

behaviour and relapse through the memory they evoke and the interaction with 
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instrumental memories (Milton and Everitt, 2010). 

Therefore molecular and neuroanatomical processes involved in the reconsolidation of 

drugs-associated memories have been proposed as novel targets for the treatment of 

vulnerability to CS in drug addicts (Tronson & Taylor, 2007; Diergaarde et al., 2008; 

Taylor et al., 2009; Milton & Everitt, 2010). Mechanistic studies identified receptors, 

signalling molecules and transcription factors underlying drugs-associated memory 

reconsolidation (Sadler et al., 2007; Brown et al., 2007; Fricks-Gleason & Marshall, 

2008; Itzhak, 2008; Lee & Everitt, 2008a; Milton et al., 2008a, 2008b; Fuchs et al., 

2009; Ramirez et al., 2009; Sanchez et al., 2010; Théberge et al., 2010; Wu et al., 2011). 

These studies have been focused mostly upon two neurotransmitters receptors, known 

to be involved in the reconsolidation of emotional memories: NMDA subtype of 

glutamate receptor and β-adrenergic receptor. 

It has been shown that NMDARs antagonists, such as MK-801 or D(-)-(2R)-amino-5-

phosphonovaleric acid (D-APV), given shortly after retrieval, may inhibit the 

reconsolidation of drug-associated memory in different Pavlovian conditioning 

paradigms in rats, such as conditioned place preference produced by cocaine (Kelley et 

al., 2007), amphetamine (Sadler et al., 2007; Sakurai et al., 2007), and morphine (Zhai 

et al., 2008); cue-induced reinstatement of alcohol seeking (Von der Goltz at al, 2009); 

and the acquisition of a new instrumental response for a CS previously paired with 

cocaine (Milton et al., 2008a). It has been proposed that a reduction in the expression of 

the immediate-early-gene Zif268 is linked to disruption of memory reconsolidation. 

Indeed Milton and colleagues found that administration of the NMDARs antagonist D-

APV into the basolateral amygdala before a memory reactivation disrupts the 

reconsolidation of cocaine-associated memory in rats trained to cocaine self-

administration and this effect is associated with a reduction in the expression of Zif268.  

Lee (2005) also showed that an infusion of the Zif268 antisense oligodeoxynuclotides 

(ASO) into the basolateral amygdala contingently upon retrieval of cocaine-associated 

memory could disrupt the conditioned reinforcing value of the CS. However it has not 

yet been investigated through which signalling cascade (e.g. ERK activation or protein 

kinase A) expression of Zif268 is activated. On the other hand, in rats trained to self-

administer cocaine, systemic administration of MK-801 contingently upon retrieval, 

showed no effect on subsequent cocaine-primed reinstatement of cocaine-seeking 

behaviour (Brown et al., 2008).  

The first evidence of the role of β-adrenergic receptor in the reconsolidation of 
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appetitive memories had been provided by Diegaarde and colleagues in 2006: in their 

work they showed that the administration of propranolol, an antagonist of β-adrenergic 

receptor, contingently upon retrieval, could reduce the context-induced reinstatement of 

sucrose seeking behaviour in rats trained to sucrose self-administration. Subsequently 

Milton and colleagues (2008b) showed that the administration of propranolol in rats 

trained to self-administer cocaine resulted in a retrieval-dependent impairment in the 

acquisition of a new response for cocaine-conditioned reinforcement, suggesting that 

reconsolidation of cocaine-associated memories had been disrupted. Moreover it has 

been shown that propranolol, administered upon retrieval, could disrupt place 

preference conditioned by cocaine (Bernardi et al., 2006) morphine (Robinson & 

Franklin, 2007). However propranolol, given at retrieval, failed in reducing cue-induced 

reinstatement of cocaine seeking behaviour, following forced abstinence, in rats trained 

to cocaine self-administration (Milton & Everitt 2010). Alberini and collegues 

highlighted the limited efficacy of Propranolol in memory reconsolidation disruption in 

particular when instrumental learning is a relevant component of the memory  

(Muravieva and Alberini, 2010; Milton et al., 2012). There is evidence that protein 

synthesis is always required for memory retrieval and reconsolidation of young and old 

fear related memories and that protein PKA activation is required only for CS induced 

memory retrieval and reconsolidation of young fear related memories but not for motor 

or older and stronger memories (Kemenes et al., 2006; Inda et al., 2011). These data 

suggest potential different molecular mechanisms engaged during reconsolidation 

depending on the age and kind of the memory. The role of PKA in memory 

reconsolidation of cocaine associated CS has been investigated by Sanchez and 

collegues (2010). The molecular cascade that involves PKA activation seems to be 

triggered by β-adrenergic receptor activation and not by NMDARs (Tronson and 

Taylor, 2007). It could be argued that Propranolol, a β-adrenergic antagonist, preventing 

PKA activation can disrupt memory reconsolidation only when PKA is needed and 

recruited. Propranolol limited efficacy in older or instrumental memory could be related 

to the fact that in the reconsolidation process of these memories PKA is not recruited. 

NMDARs antagonists (i.e. MK-801) seem to be more effective in reconsolidation 

disruption of different kind of memory, an effect probably due to the inhibition of key 

molecules like MEK, by interaction with other kinases than PKA. 
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1.4 Aim 

This research originated from the experimental evidences that reconsolidation of some 

drug related memories could be disrupted. However, to date it is not known if all 

memories can be disrupted. A better knowledge of what kind of memory can be 

disrupted is fundamental in preventing the relapse to drug seeking behaviour. 

The aim of this research was to investigate if it is possible to disrupt the 

reconsolidation of different kind of nicotine-related memories by the application of 

drugs acting at specific molecular levels such as adrenergic and glutamatergic systems, 

and whether this disruption prevents the relapse to nicotine-seeking behaviour in a rat 

model of nicotine dependence.  

Since there are many boundary conditions related to memory retrieval and 

reconsolidation (i.e., retrieval session duration, memory age and strength) that could 

interphere with the results of behavioural experiments, in this research we also want to 

validate a cellular and molecular technique that allows a direct demonstration of 

memory reactivation and reconsolidation occurrence.  

Three main issues are addressed:  

1. Is a post-retrieval pharmacological treatment, such as propranolol able to 

disrupt Pavlovian memory reconsolidation of nicotine-related memories and 

prevent the reinstatement of nicotine-seeking behaviour?  

2. Is a pre or post-retrieval pharmacological treatment, such as MK-801 able to 

disrupt instrumental memory reconsolidation of nicotine-related memories and 

prevent the reinstatement of nicotine-seeking behaviour?  

3. The feasibility and reliability of Zif268 (specific marker correlating memory 

reconsolidation) expression assessment by immunohistochemistry after 

memory retrieval in rats.	  

We assessed whether post-retrieval administration of propranolol, and if pre or post-

retrieval administration of MK-801 may reduce reinstatement of nicotine-seeking 

behaviour when rats were placed back in the training context. We also evaluated 

Zif268 level of expression in basolateral amygdala, the most important brain region 

involved in reconsolidation of Pavlovian memories, after retrieval of Pavlovian 

nicotine-related memories. 

We performed three studies: 
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In Study #1 we assessed the effect of Propranolol 10 mg/kg on reinstatement of 

nicotine-seeking behaviour in rats trained to nicotine S/A. Retrieval consisted in 30 CS 

presentations. 

In Study #2 we assessed the effect of MK-801 0,01 mg/kg on reinstatement of nicotine-

seeking behaviour in rats trained to nicotine S/A. Retrieval consisted in allowing rats to 

press the lever previously paired to nicotine 20 times. 

In Study #3 we evaluated Zif268 level of expression in basolateral amygdala by 

immunohistochemistry, after retrieval of nicotine Pavlovian memories. Retrieval 

consisted in 3 CS presentations. 

 

In the study-protocol we included no-retrieved groups and no-treated groups 

(receiving a vehicle injection after retrieval or no-retrieval). These groups allow to 

control for the specificity of the treatment (propranolol, MK-801) effect on nicotine 

Pavlovian or instrumental memories. 

 

 STUDY #1 STUDY #2 STUDY #3 

EXPERIMENTAL 

PARADIGM S/A 
Nicotine Nicotine Nicotine 

RETRIEVAL 

LENGHT 

30 CS 

presentations 

20  

lever presses 

3 CS 

presentations 

TREATMENTS Propranolol MK-801 X 

 

Figure 5. Schematic table of the studies. In the Study #1 we assessed the effect of propranolol 

10 mg/kg applied after 30 CS presentations on reinstatement of nicotine-seeking behaviour. In 

the Study #2 we assessed the effect of MK-801 applied 30 minutes before or 1 hour after the 

first of 20 lever presses on lever previously paired to nicotine, on reinstatement of nicotine-

seeking behaviour. In the Study #3 we evaluated the level of expression of Zif268 2 hours after 

3 CS presentations.  

 

1.4.1 Experimental model 

The experimental model used was intravenous nicotine S/A in rats, a laboratory model 

based on operant and Pavlovian conditioning to nicotine and nicotine-associated cues. 
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The term operant conditioning describes one type of associative learning in which 

there is a contingency between behaviour and the presentation of a biologically 

significant event (e.g. reinforcer). A positive reinforcement occurs when a behaviour 

(lever press) is followed by a stimulus which is appetitive or rewarding (e.g. food or 

nicotine administration), increasing the frequency of that behaviour (conditioned 

response). The term Pavlovian conditioning describes the associative learning in 

which an initially neutral stimulus (e.g. a light) repeatedly paired with an 

unconditioned stimulus (e.g food or nicotine administration-US) become associated to 

unconditioned stimulus and acquired a conditioned values (CS) which may elicit the 

conditioned response (e.g. food or nicotine seeking behaviour) even in the absence of 

US. 

Addiction can not be modelled in animals, at least a whole, however different 

procedures of operant behaviour can be applied as rodent analogues of addiction’s 

major elements including drug seeking and relapse (Ator and Griffiths, 2003; Sanchis-

Segura & Spanagel, 2006). Drug S/A has been widely characterized for all the drugs 

abused by humans, under different modes of administration. The paradigm has a high 

analogy to the pathological condition; it allows to study the underlying neurobiological 

mechanisms, having a high predictive validity for the identification of novel anti-

addiction therapies. In our nicotine S/A models rats are placed in a cage, the so-called 

Skinner box (Figure 6), equipped with two levers, one active and one inactive.  

 



 27 

 
Figure 6. Skinner box photo. The operant chamber is placed in a sound and light-isolating box. 

It is equipped with two levers (one active and one inactive), a catheter connected to a syringe 

pump (for nicotine injection) and with a sugar pellet magazine through which sugar pellet are 

delivered. 

 

Initially rats press the lever by chance. The pressing of active lever results in the 

administration of sugar pellet or nicotine infusion (rats are previously implanted with 

an intrajugular catheter) and in presentation of a cue light (CS). Since the sugar pellet 

or nicotine acts as reinforcement, the lever presses behaviour are repeated and become 

motivated to seek for food or nicotine infusion (conditioned response). Generally this 

training phase lasts until rats reach a stable response over at least three consecutive 

days. Since we were interested in investigating the Pavlovian and instrumental 

memories, our criterion was: i) the stability of animal behaviour (the value of 

reinforcements/session did not vary more than 20% between three consecutive 

sessions) for Pavlovian memory and, ii) an equal number of nicotine sessions (10 

nicotine self-administration sessions) for all animals across the entire training phase 

for instrumental memory in order to have similar memory strength across each 

experimental group. Once trained the nicotine related memories were retrieved by the 

non-contingent presentation of CS (Pavlovian memory reactivation) or allowing 

animals to press the lever previously paired to nicotine without nicotine infusion 

(instrumental memory reactivation). Manipulation such as propranolol or MK-801 was 
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provided before or after the retrieval session. Twenty-four hour later the effect of 

treatment on nicotine related memory was tested by measuring the conditioned 

response (number of lever presses) when the animals were placed in the context 

previously associated to nicotine administration (reinstatement). 
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2. MATERIALS AND METHODS 

2.1 Subjects 

Male Sprague Dawley rats (Harlan, Italy) 240-260 g were used for these studies. All 

animal procedures were carried out in accordance with the Principles of laboratory 

animal care (National Institute of Health publication No.85/23, revised 1985), the 

European Communities Council Directive of 24 November 1986 (86/609/EEC). The 

inter-departmental Centre approved these procedures for Laboratory Animal Service 

and Research of the Verona University, according to art.7 D.L. 116/92 of the Italian 

Legislation. All efforts were made to minimize animal suffering and to keep the number 

of animals used as low as possible. 

 

2.2 Drugs 

Nicotine hydrogen tartrate (Sigma, Italy) was dissolved in heparinized bacteriostatic 

saline (0.9% NaCl + 0.9% benzylalcohol + 1 IU/mL heparin) and pH adjusted to 7.4 

with NaOH. Nicotine unit doses are expressed as mg of free base/kg of body 

weight/infusion. Adjustment of nicotine concentration to changes in rat body weight 

was not needed because rats’ body weight was kept stable at 250 g (± 10g). Propranolol 

hydrocloride (Sigma-Aldrich) was dissolved in saline (0.9% NaCl), while (+)-MK801 

hydrogen maleate (Sigma-Aldrich) was dissolved is ultrapure water (Milli-Q). Both 

propranolol and MK801 were administered via intraperitoneal injection (IP) in a volume 

of 1 mL/kg, immediately after retrieval (or no-retrieval session), or 30 minutes before, 

or 1 hour after, the retrieval (or no-retrieval) session respectively. All doses were 

expressed as salt. 

 

2.3 Surgical procedure 

Rats were anaesthetized with 0.5 mg/kg/0.5 mL medetomidine (Domitor®, Pfizer, 

Italy), 10 mg/kg tiletamine + 10 mg/kg zolazepam (Zoletil 100®, Virbac, Italy; 0.2 

mL/kg intramuscular), and then implanted with a silicon catheter (inner diameter 0.30 

mm, outer diameter 0.63 mm, Cam Caths, Cambridgeshire, UK) in the right jugular 

vein. Immediately after surgery, animals were medicated with 5mg/kg/1 mL 

subcutaneous carprofen (Rymadyl®, Pfizer, Italy) and 25,000,000 IU benzylpenicilline 

+ 1 g/kg dihydrostreptomycin (Rubrocillina Forte®, Intervet, Italy; 1 mL/kg 

subcutaneous), 0.5 mg/kg/0.1 mL intramuscular atipamezole (Antisedan®, Pfizer, 
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Italy). Each day after recovery, animals received 0.1 mL i.v. injection of heparin 

solution (30 IU/mL heparin sodium, Sigma, Italy) before and after the experimental 

session. 

 

2.4 Study #1 

2.4.1 Subjects 

Twenty-seven Male Sprague Dawley rats (Harlan, Italy) were individually housed in a 

temperature controlled environment (19-23 °C) on a 12 hours light–dark cycle with 

light on at 06:30 p.m. All the experimental procedures were conducted within the dark 

phase of the light-dark circle. Animals were food restricted to maintain their body 

weight range between 240-260 g. Food diet (2-4 pellets, for a total of 10-20 g/day) was 

made available after each experimental session. Animals have ad libitum access to 

water except during experimental sessions (3 to max 360 minutes/day). Rats were 

trained or tested once daily.  

 

2.4.2 Apparatus 

This study was conducted in eight identical operant conditioning chambers (Coulbourn 

Instruments, Lehigh Valley, Whitehall, PA, USA) encased in sound-insulated cubicles, 

equipped with ventilation fans (Ugo Basile, Comerio, Italy). Each chamber was 

equipped with two levers, symmetrically centred on the frontal panel, and located 12.5 

cm apart, 2 cm above the grid floor. The food magazine was situated in an opening in a 

panel between the two levers, 1 cm above the floor. This opening was closed during 

nicotine S/A training, retrieval, and reinstatement sessions. A 2 W white house light 

was located 26 cm above the food magazine and activated during the entire session 

duration, except during the time-out period (TO, 60 seconds interval after each 

reinforcement in which levers were inactive). ALP (right or active lever presses) 

corresponding to Fixed Ratio (FR) values, required by the schedule of reinforcement, 

produced the delivery of 45-mg sugar food pellet (Bioser, USA) or the activation of the 

infusion pump (model A-99Z, Razel Scientific Instruments Inc., Stamford, CT, USA), 

except during the retrieval and reinstatement sessions. Nicotine solution was 

administered via the infusion pump at the volume of 0.04638 mL during a 1 second 

period. Nicotine infusion was associated with 1 second illumination of one yellow and 

one green light emitting diode (LED) centrally placed above the food magazine (CS). 

Left lever presses (‘inactive lever presses’) did not have any consequence. All types of 
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lever presses, sugar pellet and infusion deliveries were recorded. Data acquisition and 

schedule parameters were controlled by med-PC software (Med Associates Inc, 

Georgia, USA) running on a PC-computer interfaced with the chambers via interface 

modules (Med Associates Inc.). 

 

2.4.3 Training to lever press 

Following a 24 hours food deprivation period, all rats were trained to lever press for 

food as reinforcement. The final training schedule of reinforcement was FR2. Session 

duration was 60 minutes. Once trained to lever press for food reinforcement (it required 

approximately 2 weeks) rats underwent surgery to implant an i.v. cannula. 

 

2.4.4 Training to nicotine self-administration (S/A) 

After 7 days of recovery, rats were trained to intravenously self-administer nicotine. 

Initially the schedule of reinforcement was FR1: nicotine 0.03 mg/kg/infusion, 1 second 

CS, TO 60 seconds; session duration up to 25 infusions or 180 minutes elapsed. If the 

animals met the criterion of 25 infusions within the end of daily session, the FR value 

was increased to FR2 with session duration lasting up to 60 minutes. Rats were 

considered to reach a stable responding on nicotine S/A under a FR2 schedule of 

reinforcement when the value of reinforcements/session did not vary more than 20% 

between three consecutive sessions. Lever pressing during the TO period was also 

recorded although it did not have any consequence.  

 

2.4.5 Retrieval 

After the nicotine S/A, rats underwent to 30-34 days of forced abstinence in their home 

cage without access to the operant chamber or the experimental room. Then rats were 

divided into two groups respectively exposed to retrieval (Ret) or not (No-Ret). Both 

groups were placed for 20 minutes in the training context. The Ret, but not the No-Ret, 

group was exposed to 30 non-contingent CS presentations (30[FI 40 seconds: 1 second 

CS]). Immediately after the retrieval session (or no-retrieval) both groups of rats were 

treated with vehicle (Ret Veh, No-Ret Veh) or propranolol 10 mg/kg (Ret Prop, No-Ret 

Prop), then returned to their home cage. 
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2.4.6 Reinstatement 

The day after the retrieval (or no-retrieval) session, all the subjects were re-exposed to 

the training context and CS presentation was made contingent upon responding on ALP 

(FR2: 1 second CS, no nicotine, session duration 60 minutes). 

 

2.5 Study #2 

2.5.1 Subjects 

Thirty-five Male Sprague Dawley rats (Harlan, Italy) were individually housed in a 

temperature controlled environment (19-23 °C) on a 12 hours light–dark cycle with 

light on at 06:30 p.m. All the experimental procedures were conducted within the dark 

phase of the light-dark circle. Animals were food restricted to maintain their body 

weight range between 240-260 g. Food diet (2-4 pellets, for a total of 10-20 g/day) was 

made available after each experimental session. Animals have ad libitum access to 

water except during experimental sessions (3 to max 360 minutes/day). Rats were 

trained or tested once daily.  

 

2.5.2 Apparatus 

Behavioural testing was conducted in operant chambers encased in sound-insulated 

cubicles, equipped with ventilation fans (Med Associates Inc., St Albans, Vermont, 

USA). Each chamber was equipped with 2 levers, symmetrically centred on the front 

panel. A 2 W house light was located on the back panel near the chamber ceiling to 

provide ambient illumination during the entire session duration except during the TO. A 

fixed number corresponding to FR of ALP produced the activation of the infusion pump 

(Med Associates Inc.) leading to 1 second nicotine infusion except during TO, retrieval 

and reinstatement sessions. During the retrieval session active or inactive levers 

pressure did not have any consequence. All types of lever presses, sugar food pellet 

deliveries or nicotine infusions were recorded. Data acquisition and schedule parameters 

were controlled by Med-PC software (Med Associates Inc.).  

 

2.5.3 Training to lever press 

Following a 24 hours food deprivation period, all rats were trained to lever press for 

food as reinforcement. The final training schedule of reinforcement was FR1. Session 

duration was 60 minutes. Once trained to lever press for food reinforcement (it required 

approximately 2 weeks), rats underwent surgery to implant an i.v. cannula. 
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2.5.4 Training to nicotine self-administration (S/A) 

After 7 days of recovery, rats were trained to intravenously self-administer nicotine. 

The schedule of reinforcement was FR1: nicotine 0.03 mg/kg/infusion, TO 60 seconds; 

session duration up to 12 infusions or 60 minutes elapsed. Rats were trained for 10 

consecutive sessions and considered to reach a stable responding on nicotine S/A under 

a FR1 schedule of reinforcement when the value of reinforcements/session did not vary 

more than 20% between three consecutive sessions. Lever pressing during the TO 

period was also recorded, although it did not have any consequence. 

 

2.5.5 Retrieval 

After the nicotine S/A phase, rats were divided into two groups respectively exposed to 

retrieval 20 (Ret20) or no-retrieval (No-Ret). On the retrieval session all the groups 

were placed in the training context. The Ret20 group was allowed to 20 ALP presses, as 

well as No-Ret group was exposed to the training context for 1 hour. Both groups 

(Ret20 and No-Ret) were further divided into sub-groups respectively treated with 

vehicle or MK-801 0,01 mg/kg. Vehicle or MK-801 was injected 30 minutes before the 

retrieval session (pre-Ret20 Veh, pre-Ret20 MK-801) or context re-exposure (pre-No-

Ret Veh, pre-No-Ret MK-801) in some sub-groups. In other sub-groups of rats MK-801 

was injected 1 hour after the 1st active lever press (post-Ret20 MK801) or after 1 hour 

of context re-exposure (post-No-Ret MK801). 

 

2.5.6 Reinstatement 

The day after the retrieval (or No-Retrieval) session, all the subjects were re-exposed to 

the training context and lever presses were recorded (FR1: no nicotine infusion, session 

duration 60 minutes). 

 

2.6 Study #3 

2.6.1 Subjects 

Ten Male Sprague Dawley rats (Harlan, Italy) were individually housed in a 

temperature controlled environment (19-23 °C) on a 12 hours light–dark cycle with 

light on at 06:30 p.m. All the experimental procedures were conducted within the dark 

phase of the light-dark circle. Animals were food restricted to maintain their body 

weight range between 240-260 g. Food diet (2-4 pellets, for a total of 10-20 g/day) was 
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made available after each experimental session. Animals have ad libitum access to 

water except during experimental sessions (3 to max 60 minutes/day). Rats were trained 

or tested once daily.  

 

2.6.1 Apparatus 

Behavioural testing was conducted in operant chambers encased in sound-insulated 

cubicles, equipped with ventilation fans (Med Associates Inc., St Albans, Vermont, 

USA). Each chamber was equipped with 2 levers, symmetrically centred on the front 

panel. A 2 W house light was located on the back panel near the chamber ceiling to 

provide ambient illumination during the entire session duration, except during TO 

periods and retrieval session. A fixed number of ALP produced the delivery of 45 mg 

sugar pellet or 5 seconds illumination of a stimulus light (CS) placed above the ALP 

with the activation of the infusion pump (Med Associates Inc.) except during the 

instrumental learning-extinction. During the retrieval session, levers were not available 

and CS was presented on a Fixed-Interval (FI) 60 seconds time schedule. Inactive lever 

presses did not have any consequence. All types of lever presses and nicotine infusions 

were recorded. Data acquisition and schedule parameters were controlled by a Med-PC 

software (Med Associates Inc.).  

 

2.6.2 Training to lever press 

Following a 24 hours food deprivation period, all rats were trained to lever press for 

food as reinforcement. The final training schedule of reinforcement was FR1. Session 

duration was 60 minutes. Once training to lever press for food reinforcement (it 

required approximately 2 weeks), rats underwent surgery to implant an i.v. cannula. 

 

2.6.3 Training to nicotine self-administration (S/A) 

After 7 days of recovery, rats were trained to intravenously self-administer nicotine 

under a schedule of reinforcement of FR1. ALP presses resulted in nicotine 0.03 

mg/kg/infusion, 5 seconds CS. Session duration lasted up to 25 infusions or 60 minutes 

were elapsed. Lever pressing during the 60 seconds TO period was also recorded, 

although it did not have any consequence. Rats were considered to meet the criteria of 

nicotine S/A training once they reached the value of 200 ± 15 (mean ± standard error of 

the mean-S.E.M.) associations between nicotine infusion and CS.  

 



 35 

2.6.4 Instrumental learning extinction phase (ILEXT) 

Following the nicotine S/A phase, ALP responding was extinguished during an 

instrumental learning extinction phase. On these daily 60 min sessions, subjects were 

placed in the operant chamber and responding on either lever had no programmed 

consequences. Instrumental learning extinction criterion was reached when ALP/session 

were < 50% of ALP at the first instrumental learning extinction session, for at least 

three consecutive sessions (Chiamulera et al., 2010). The inclusion in the experimental 

design of an instrumental learning extinction phase allowed to control for the operant 

conditioning component of nicotine S/A, and to evaluate the specificity of the CS-

induced Pavlovian memory retrieval. 

 

2.6.5 Retrieval 

After the ILEXT phase, rats were divided into two groups exposed to retrieval (3 CS 

presentation; React) or no-retrieval (0 CS presentation; No-React). Both groups were 

placed in a novel context (CxB: Skinner box with thick blank striped sheets on the wall 

and a 1 cm grid on the floor) for 3 or 60 minutes and exposed to 3 [FI 55 seconds: 5-

seconds CS] or 0 CS presentation respectively.  

 

2.6.6 Immunohistochemistry and Zif268 quantification 

Two hours after retrieval (or no-retrieval) rats were rapidly and deeply anesthetized 

with Pentobarbital 65 mg/Kg (Lipomed AG, Switzerland) and transcardially perfused 

with heparin 100 UI/L (Sigma Aldrich, Italy) and paraformaldehyde (PFA) 4% in 

phosphate buffered vehicle solution (PBS). Brains were removed from all the perfused 

animals and post-fixed in 4% paraformaldehyde-PBS for 2 hours. After three PBS 

washes, 30 minutes each, brains were cryoprotected in 30% sucrose-PBS for 48–72 

hours. Free-floating BLA sections (40 µm) were cut using a sliding microtome and 

collected in PBS containing 0.1% sodium azide for storage.  

Three sections were processed for Zif268 immunoreactivity. After extensive washing in 

PBS, endogenous peroxidase was neutralized with hydrogen peroxide 0,75% for 10 

minutes. Then sections were blocked in a solution of 0.5% Horse Serum (HS, 

BioWhittaker) and 0.5% Triton X-100 (Sigma Aldrich) in PBS. Slices were then 

incubated overnight at 4°C in anti-Zif268 antibody (Santa Cruz, rabbit polyclonal, 

1:1000) in PBS-0.5% HS-0.5% Triton X-100. Afterwards 5 washes in PBS-0.5% HS-

0.5% Triton X-100 sections were incubated 2 hours in anti-rabbit biotinilated antibody 
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(GE Healthcare, 1:1000). Following two washes in PBS-0.5% HS-0.5% Triton X-100 

and three washes in PBS, tissue sections were visualized using VectaStain ABC kit 

(Vector Laboratories) and developed in DAB peroxidase substrate (Sigma) for 2-3 

minutes. Sections were mounted on gelatinated slides, dehydrated with 50, 70, 80, 90, 

96% and absolute ethanol. After 5 minutes in xylol slides were cover slipped with 

Entellan (Merck). 

Sections were observed at transmission microscope (Axioskop 2, Zeiss). Two images 

per section (one from each hemisphere), for a total of six images per animal were 

acquired by the connected video camera (COHU High Performance CCD camera). 

Images were acquired with the 10X objective. Quantification of the number of neurons 

positive to Zif268 was done using the NIH software “Image-J” (www.rsbweb.nih.gov). 

Intensity threshold, minimum and maximum cell size parameter values were initially 

determined in an empirical fashion under blind conditions.  

 

2.7 Data Analyses. 

ALP responding on reinstatement session was compared among groups in order to test 

the efficacy of pharmacological treatments (vehicle, propranolol or MK-801) after 

retrieval or no-retrieval conditions. A two-way ANOVA for retrieval and 

pharmacological treatment factors was performed on total ALP/60 minutes on 

reinstatement session for each treatment. The number of ALP/60 minutes was the 

between subjects dependent variable.  

The dependent variable for the immunohistochemistry experiments was the positive 

neurons count for Zif268. Unpaired Student’s t-test for Ret and No-Ret group was 

performed. Statistical significance was reached for P ≤ 0.05. All the statistical analysis 

were performed by using Prism 4 (Graph Pad, U.S.A.). 
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3. RESULTS 

3.1 The Model 

3.1.1 Nicotine self-administration acquisition 

In Studies #1, #2, #3 rats were trained to self-administer nicotine. 

In Study #1 (see experimental design in Figure 13) rats were trained until the number of 

reinforcements/session did not vary more than 20% between the last three consecutive 

S/A sessions (criteria of stability). Training to nicotine self-administration lasted 17.1 ± 

0.2 sessions (mean ± S.E.M). At stability, the average number of nicotine infusions was 

12.5 ± 0.1 (mean ± SEM of the last three self-administration session) (Figure 8, panel 

B). The average number of nicotine-paired lever (ALP) and inactive lever (IL) presses 

across the last three sessions were 40.1 ± 0.9 (baseline) and 2.8 ± 0.4 respectively (mean 

± SEM). The specificity of nicotine seeking behaviour is confirmed by the 

discrimination between ALP and IL (Figure 8, panel A). 
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Figure 8. Nicotine self-administration acquisition in Study #1. A) Mean number of ALP and IL  

(± S.E.M.) across daily sessions are represented by solid and open squares respectively (n=27). 

Discrimination between ALP and IL can be observed across the last three self-administration 

sessions. B) Mean number of reinforcement (nicotine infusion) across daily session. Stability of 

the response can be observed across last three sessions. (ALP: nicotine paired lever; IL: inactive 

lever). 
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In Study #2 (see experimental design in Figure 15) all rats were trained for 10 

consecutive nicotine self-administration sessions and criteria of stability is also checked 

as for Study #1. At stability, the average number of nicotine infusions was 10.9 ± 0.3 

(mean ± SEM of the last three self-administration session) (Figure 9, panel B). The 

average number of ALP and IL presses across the last three sessions was 19.5 ± 1.0 

(baseline) and 4.5 ± 0.6 respectively (mean ± SEM). The discrimination between ALP 

and IL provides goal-directed evidence towards nicotine-seeking behaviour (Figure 9, 

panel A). 
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Figure 9. Nicotine self-administration acquisition in Study #2. A) Mean number of ALP and IL  

(± S.E.M.) across daily sessions are represented by solid and open squares respectively (n=35). 

Discrimination between ALP and IL can be observed across the last three self-administration 

sessions. B) Mean number of reinforcement (nicotine infusion) across daily session. Stability of 

the response can be observed across the last three sessions. (ALP: nicotine paired lever; IL: 

inactive lever). 
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In Study #3 (For experimental design see Figure 17) rats were considered to meet the 

criteria of nicotine S/A training once they reached the value of 200 ± 15 (mean ± 

S.E.M.) associations between nicotine infusion and CS. Training to nicotine self- 

administration lasted 13.7 ± 0.5 sessions (mean ± S.E.M). At stability, the average 

number of nicotine infusions was 16.6 ± 1.1 (mean ± SEM of the last three self-

administration session) (Figure 10, panel B). The average number of ALP and IL 

presses across the last three sessions were 34.1 ± 2.6 and 14.3 ± 0.9 respectively (mean 

± SEM). The specificity of nicotine seeking behaviour is confirmed by the 

discrimination between ALP and IL (Figure 10, panel A). 
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Figure 10. Nicotine self-administration acquisition in Study #3. A) Mean number of ALP and 

IL  (± S.E.M.) across daily sessions are represented by solid and open squares respectively 

(n=10). Discrimination between ALP and IL can be observed across the last three self-

administration sessions. B) Mean number of reinforcement (nicotine infusion) across daily 

session. (ALP: nicotine paired lever; IL: inactive lever). 
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3.1.2 Instrumental learning extinction phase 

In Study #3 rats underwent an instrumental learning extinction phase in order to 

extinguish the operant component of conditioning. Both React and No-React group of 

rats met the criteria of extinguished responding (less than 50% of ALP presses at the 

first instrumental learning extinction phase session, for three consecutive session): 3.8 ± 

0.3 (React) and 5.1 ± 0.5 (No-React) ALP/60 min session (mean ± S.E.M.). The mean 

number ± S.E.M. of ILP/60 min session was 4.2 ± 0.2 and 3.2 ± 0.5 for React and No-

React groups respectively during the last three instrumental learning extinction sessions. 

The criteria of instrumental learning extinction was met after an average number of 11.2 

± 0.8 sessions (mean ± S.E.M.). 
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Figure 11. Instrumental learning extinction in Study #3. Mean number of ALP and IL presses (± 

S.E.M.) across daily sessions are represented by solid and open squares respectively (n= 10). 

Across last three sessions the number of ALP presses were less than 50% of the number of ALP 

presses on the first session. (ALP: nicotine paired lever; IL: inactive lever). 

 

3.1.3 Reinstatement 

In Studies #1 and #2 a reinstatement session was performed 1 day after memory 

retrieval. In order to reinstate the nicotine seeking-behaviour, rats were placed back in 
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the context previously paired with nicotine administration and were exposed to 

conditioned stimuli (Study #1) or to the context only (Study #2) without nicotine 

infusion. Reinstatement of nicotine seeking behaviour is revealed by a significantly 

higher responding/lever presses on lever previously paired with nicotine compared 

(Figure 12, panel B) to the responding during the last instrumental learning extinction 

session (Figure 12, panel A). 
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Figure 12. Example of Reinstatement of nicotine-seeking behaviour (animal code: TOM21). 

Graphs represent number of ALP (ordinates) across minutes (abscissa) during the last 

instrumental learning extinction session (panel A) and reinstatement session (panel B). Each 

step represents a lever press. On reinstatement session a reinstatement of nicotine seeking 

behaviour (lever presses) can be observed. 
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3.2. The Project 

3.2.1. Study #1 
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Figure 13. Schematic diagram of experimental design in Study #1. Rats were trained to nicotine 

self-administration (S/A; approximately 15-20 sessions). One day after the last S/A session they 

underwent 30 days of forced abstinence in home cage. Then they were divided into two groups 

that underwent a retrieval or no-retrieval session respectively. Each group was divided into two 

sub-groups treated with vehicle or propranolol 10 mg/kg immediately after retrieval or no-

retrieval. The day after memory was tested in a reinstatement session that consisted in placing 

the rats in the S/A training context and during which each ALP (nicotine paired lever) press 

resulted in a CS (conditioned stimuli) presentation.  

 

The total ALP presses at the end of the 60 minutes reinstatement session was 41.7 ± 9.1, 

42.5 ± 11.1, 33.7 ± 9.0, 31.4 ± 8.8 (mean ± S.E.M.) respectively for No-Ret Veh (n = 6), 

No-Ret Prop (n = 6), Ret Veh (n = 8), Ret Prop (n = 7) (Figure 14). Two-way ANOVA 

for retrieval (ret) and pharmacological treatment (pharm treat) factors showed no 

statistically significant difference in ALP among groups (ret: F[3,24] = 0.98, p = 0.33; 

pharm treat: F[3,24] = 0.006, p = 0.93; interaction: F[3,24] = 0.03, p = 0.87). The total IL 

presses at the end of the 60 minutes reinstatement session did not differ among groups 

(No-Ret Veh:  6.2 ± 5.4; No-Ret Prop: 2.2 ± 1.6; Ret Veh: 3.0 ± 1.4, Ret Prop: 7.7 ± 

6.4; mean ± S.E.M.).  
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Figure 14. Reinstatement test in Pavlovian memory - Study #1. Propranolol 10 mg/kg had no 

effect on reinstatement test when given after memory retrieval. Data are expressed as total 

number of nicotine-paired lever presses, active lever presses (ALP), at the end of reinstatement 

session (mean ± S.E.M.) for No-Ret Veh group (white column, n = 6), Ret Veh group (white 

column, n = 8), No-Ret Prop group (grey column, n = 6), Ret Prop group (grey column, n = 7). 

Two-way ANOVA showed no statistically significant difference. 

 

In summary no difference among groups was observed on reinstatement test. 

Propranolol 10 mg/kg did not reduce the ALP after memory retrieval or no-retrieval 

conditions. Propranolol did not prevent reinstatement of nicotine-seeking behaviour. 
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3.2.2. Study #2 
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Figure 15. Schematic diagram of experimental design in Study #2. Rats were trained to nicotine 

self-administration (S/A; 10 sessions). One day after the last S/A session they underwent 14 

days of forced abstinence in home cage. Then they were divided into two groups that underwent 

a retrieval (Ret 20; 20 ALP) or No-Retrieval (S/A context) session respectively. Each group was 

divided into two sub-groups treated with vehicle or MK-801 0.01 mg/kg 30 minutes before 

retrieval session. Other two sub-groups received MK-801 1 hour after the first ALP or after 1 

hour of S/A context re-exposure on retrieval session. The day after memory was tested in a 

reinstatement session that consisted in placing the rats in the S/A training context and during 

which each ALP (nicotine paired lever) and IL (inactive lever) were recorded.  

 

The total ALP presses at the end of the 60 minutes reinstatement session was 12.4 ± 2.8, 

30.8 ± 5.8, 20.2 ± 7.0, 22.7 ± 3.1, 30.0 ± 2.8, 16.5 ± 2.2 (mean ± S.E.M.) respectively 

for pre-No-Ret Veh (n = 5), pre-Ret20 Veh (n = 6), pre-No-Ret MK-801 (n = 5), pre-

Ret20 MK-801 (n = 7), post-No-Ret MK-801 (n = 6), post-Ret20 MK-801 (n = 6). Two-

way ANOVA for retrieval and pharmacological treatment factors showed statistically 

significant effect for interaction (F[5,29] = 7.09, p = 0.003) but not for pharmacological 

treatment (F[5,29] = 0.11, p = 0.89) and retrieval (F[5,29] = 0.52, p = 0.47) when 

comparing ALP/60 minutes on reinstatement session among pre-No-Ret Veh, pre-Ret20 

Veh, pre-No-Ret MK-801, pre-Ret20 MK-801, post-No-Ret MK-801 and post-Ret20 

MK-801groups (Figure 16). Bonferroni’s post-test did not show significant differences 

in ALP when comparing pre-No-Ret Veh vs. pre-No-Ret MK-801 (p>0.05) and pre-

Ret20 Veh vs. pre-Ret20 MK-801 (p>0.05). Bonferroni’s post-test showed significant 
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differences in ALP when comparing pre-No-Ret Veh vs. post-No-Ret MK-801 (p<0.05) 

and pre-Ret20 Veh vs. post-Ret20 MK-801 (p<0.05) (Figure 16). The total IL presses at 

the end of the 60 minutes reinstatement session did not differ among groups (pre-No-

Ret Veh: 5.8 ± 1.8; pre-Ret20 Veh: 8.0 ± 2.6, pre-No-Ret MK-801: 8.6 ± 3.6, pre-Ret20 

MK-801: 5.4 ± 1.6, post-No-Ret MK-801: 6.5 ± 2.0, post-Ret20 MK-801: 2.8 ± 1.1; 

mean ± S.E.M.).  
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Figure 16. Reinstatement test of instrumental memory - Study #2. Instrumental memory retrieval 

per se increased ALP when rats were pre-treated with vehicle (pre-Ret20 Veh; white column). 

Injection of MK-801 0.01 mg/kg prior to retrieval session (pre-Ret20 MK-801; black column) 

or no-retrieval (pre-No-Ret Mk-801; black column) reduced the difference in the number of 

ALP between no-retrieval and retrieval condition that is observed with vehicle (black columns 

vs. white columns), but did not significantly reduce the ALP if compared to control (pre-No-Ret 

Veh, pre-Ret20 Veh; white columns). Injection of MK-801 0.01 mg/kg after context re-

exposure (post-No-Ret MK-801; grey column) induced an increase of ALP if compared to 

control column (pre-No-Ret Veh; white column) while post-retrieval injection of MK-801 (post-
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Ret20 MK-801; grey column) reduced ALP when compared to control column (pre-Ret20 Veh; 

white column). Data are expressed as total number of nicotine-paired lever presses, active lever 

presses (ALP), at the end of reinstatement session (mean ± S.E.M.) for pre-No-Ret Veh (white 

column, n = 5), pre-Ret20 Veh (white column, n = 6), pre-No-Ret MK-801 (black column, n = 

5), pre-Ret20 MK-801 (black column, n = 7), post-NoRet MK-801 (grey column, n = 6) and 

post-Ret20 MK-801 (grey column, n = 6). # = p<0.05, two-way ANOVA; * = p<0.05, 

Bonferroni’s post-test. 

 

In summary instrumental memory retrieval per se increased the number of ALP after 

vehicle treatment. Injection of MK-801 0.01 mg/kg prior to retrieval session, or no-

retrieval, reduced the difference in the number of ALP between retrieval and no-

retrieval condition that is observed with vehicle, but did not significantly reduce the 

ALP if compared to control (pre-Ret20 Veh, pre-No-Ret Veh). Injection of MK-801 

0.01 mg/kg after context re-exposure (no-retrieval condition) induced an increase of 

ALP if compared to control column (pre-No-Ret Veh) while post-retrieval injection of 

MK-801 0.01 mg/kg reduced ALP when compared to control column (pre-Ret20 Veh). 

MK-801 given after, but not prior to retrieval session, prevented reinstatement to 

nicotine seeking behaviour. 
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3.2.3 Study #3 

Nicotine, CS  

(3600 s daily session) 
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No 
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Context B 

NO CS  

 
Figure 17. Schematic diagram of experimental design in Study #3. Rats were trained to nicotine 

self-administration (S/A; approximately 14 sessions) then they underwent an instrumental 

extinction (IL-EXTINCTION) phase in order to extinguish the instrumental learning component 

of conditioning (approximately 11 sessions). The day after the end of IL-EXTINCTION rats 

were divided into two groups that were exposed to 0 (No-Retrieval) or 3 CS (Retrieval) 

presentations respectively in a different context than the S/A and IL-EXTINCION phases 

(Context B). Two hours after memory retrieval (or no-retrieval) rats were sacrified and 

immunohistochemistry to assess the level of Zif268 expression in basolateral amygdala was 

performed. 

 

The two separate groups of rats (React and NoReact) showed similar behaviour at the 

end of the nicotine S/A training phase and of the instrumental learning extinction phase. 

Two hours after reactivation (or no-reactivation) quantification of the number of Zif268 

expressing cells was performed by immunohistochemistry (Figure 18, panel a). 

Reactivation induced an increase in the mean number/mm2 (± SEM) of Zif268 

expressing cells in BLA compared to the no-reactivation condition (reactivation: 192.26 

± 24.92; no-reactivation: 103.67 ± 22.71). Student’s t-test showed a significant 

difference between groups (p= 0.0186) (Figure 18, panel b). 
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Figure 18. Immunohistochemistry assessment of reactivation-induced Zif268 expression in BLA. 

Panel a: representative images of transmission microscope sections of the BLA in rats that 

underwent no-reactivation (No-Reactivated) or reactivation (Reactivated) session. Zeiss 

Axioskop 2. Objective 10X. Scale bar 100 um 

Panel b: number of Zif268 expressing cells / mm2 in BLA in no-reactivated rats (NoReact) and 

reactivated rats (React). Data are expressed as mean ± standard error.  Three 40 um slices, two 

pictures (one for each hemisphere) per slice. N=5. *p<0.05; Student’s t test.  
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Figure 19. Summary of results: ALP on reinstatement session and Zif268 expression after 

memory retrieval. In Study #1, the number of ALP did not vary at any condition. In Study #2, 

retrieval (20 ALP) increased the number of ALP after vehicle treatment; pre-retrieval injection 

of MK-801 did not change the number of ALP; post-retrieval injection of MK-801 increased the 

number of ALP after no-retrieval (0 ALP) and decreased the number of ALP after retrieval (20 

ALP) condition. In Study #1 and Study #2 ALP increase or decrease was referred to respective 

control for each condition. In Study #3, retrieval (3 CS) increased Zif268 expression in 

amygdala compared to no-retrieval (0 CS) condition.  
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Box 1 /  “Old” and “new” molecular markers of memory reconsolidation. 
  
Zif268 and phosphorylated ribosomal protein S6 (rpS6P) expression in rat brain in a fear conditioning 
laboratory model of memory extinction and reconsolidation. 
  
Memory reconsolidation disruption could be determined only through its absence during reinstatement or 
renewal test in behavioural studies. There are many boundary conditions related to memory retrieval: i) the 
length of the retrieval session (shorter session could not reactivate the memory as well as longer session could 
lead to memory extinction instead of reconsolidation); ii) memory strength and age (retrieval of stronger and/
or older memory could be ineffective); iii) certain kind of memories could not be retrieved and 
reconsolidated. The assessment of expression of molecular markers correlating reconsolidation (i.e. Zif268; 
rpS6P) can help to confirm memory reconsolidation occurrence and its disruption in specific laboratory 
conditions. Aim of these experiments was to verify the feasibility and reliability of Zif268 or rpS6P 
expression assessment at different stages of retrieval, reconsolidation or extinction in rodents. To address this 
issue we performed Zif268 or rpS6P immunohistochemistry assay after Pavlovian memory retrieval or 
extinction in a previously validated fear conditioning laboratory model. 
  
Zif268 vs rpS6P 
Zif268 is a standardized and widely used marker correlating reconsolidation. It is usually investigated as 
mRNA by in situ Hybridization (Hall et al., 2001; Thomas et al., 2002). The nuclear localization of Zif268 
protein makes it also a good marker for a quantitative immunohistochemistry assay. The well defined nuclear 
signal allows to count the number of cells expressing Zif268 simply through the count of the number of 
positive nuclei. In our laboratory we have already pharmacologically standardized Zif268 
immunohistochemistry using vehicle vs. cocaine 15 mg/kg I.P. treated rats. 
However Zif268 protein is a product of the immediate early gene Zif268. Although it is accepted as specific 
marker of reconsolidation under certain conditions one have to consider that immediately early gene 
expression is the initial step of a “molecular cascade” that could be activated for, and involved in, many other 
processes. 
rpS6P is a new molecular marker taken in consideration in memory reconsolidation field. Recent studies from 
Hoeffler and Klann (2010) suggest that mammalian target of rapamycin (mTOR) activation is involved in 
memory consolidation through eIF4F complex formation and in memory reconsolidation through rpS6 
phosphorylation. rpS6P is the final step of a “molecular cascade” and could be more specific than an 
immediate early gene expression in the identification of memory reconsolidation process under certain 
conditions. In our laboratory we have already pharmacologically standardized immunohistochemistry as a 
quantitative assay for rpS6P using vehicle vs. ketamine 5 or 10 mg/kg I.P. treated rats. We also performed a 
double-labeled immunofluorescence as qualitative assay of neuronal rpS6P expression in order to exclude 
glial expression in our conditions. 
  
Disruption of Pavlovian fear memory through extinction applied after retrieval and molecular correlates 
Retrieval of consolidated memories induces a labile phase during which memory can be disrupted or updated. 
Monfils and collegues (2009) previously showed that fear memory retrieval increases the level of pGluR1 
receptor, a calcium-permeable–AMPA receptor (CP-AMPAR), in the lateral amygdala while a second CS 
presented 1 hour after the retrieval (mimicking extinction learning applied after retrieval) leads to pGluR1 
dephosphorylation. A central component of Retrieval-Extinction manipulation (Ret-Ext) induced erasure of 
fear is the synaptic removal of CP-AMPARs in the lateral amygdala (Clem and Huganir, 2010), a 
metabotropic GluR1 receptors (mGluR1Rs) dependent mechanism. mGluR1Rs activation has been associated 
with increased phosphorylation of the mammalian target of rapamycin (mTOR) downstream molecule 
ribosomal protein S6 (rpS6P; Antion et al., 2008) and mTOR inhibitor rapamycin disrupts reconsolidation of 
fear memories (Blundell et al., 2008). We tested the effect of retrieval, extinction and Ret-Ext on expression 
of specific marker correlating reconsolidation Zif268, and a new potential marker that is rpS6P, by 
immunolocalization in prefrontal cortex, lateral amygdala and hippocampus. Our results showed that retrieval 
and Ret-Ext, but not extinction, increased Zif268 expression in prefrontal cortex and lateral amygdala. Ret-
Ext, but not retrieval or extinction alone, increased the expression of rpS6P in prefrontal cortex and lateral 
amygdala. Together, these data suggest that: i) reconsolidation is engaged in these laboratory conditions as 
indicated by Zif268 expression after retrieval; ii) extinction, if applied after retrieval, is incorporated in a 
memory reconsolidation process as indicated by Zif268 expression after Ret-Ext; iii) rpS6P that is specifically 
increased after Ret-Ext, but not after retrieval, can not be used as a marker of reconsolidation at least at the 
investigated time point. 
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4. DISCUSSION 

In this project we have investigated whether pre or post-retrieval pharmacological  

treatments, such as propranolol or MK-801 were able to prevent the reinstatement of 

nicotine-seeking behaviour in an animal model of nicotine addictive behaviour. We 

have applied these treatments before or after retrieval of different memories (Pavlovian 

or instrumental memory). In Study #1, Propranolol was given after Pavlovian memory 

retrieval (0 or 30 CS presentation) and in Study #2, MK-801 was given before or after 

instrumental memory retrieval (0 or 20 ALP). In Study #3, the level of Zi268 (a specific 

marker correlating memory reconsolidation) expression in BLA, was investigated by 

immunohistochemistry after retrieval of Pavlovian memory (3 CS presentation). The 

results can be summarized as follows: i) reinstatement of nicotine-seeking behaviour 

has not been impaired by the administration of propranolol 10 mg/Kg given after 

Pavlovian memory retrieval; ii) reinstatement of nicotine-seeking behaviour has not 

been impaired by the administration of MK-801 given prior to instrumental memory 

retrieval even if the difference in the number of ALP between retrieval and no-retrieval 

condition that is observed with vehicle has been reduced; iii) reinstatement of nicotine-

seeking behaviour has been impaired by the administration of MK-801 given after 

instrumental memory retrieval; iiii) immunohistochemistry showed an increased level of 

Zif268 expression in basolateral amygdala after retrieval of nicotine-related Pavlovian 

memories.  

In the first study we were interested to assess whether reconsolidation of nicotine-

related Pavlovian memories could be disrupted by the administration of β-adrenergic 

receptor antagonist propranolol after their retrieval. This is based on the idea that once 

consolidated, Pavlovian memory can be turned into a labile state through its retrieval, 

and disrupted by pharmacological treatments acting at noradrenergic system level, 

before its reconsolidation. The first evidence of the role of β-adrenergic receptor in the 

reconsolidation of appetitive memories had been provided by Diegaarde and colleagues 

in 2006: in their work they showed that the administration of propranolol, an antagonist 

of β-adrenergic receptor, contingently upon retrieval, could reduce the context-induced 

reinstatement of sucrose seeking behaviour in rats trained to sucrose self-administration. 

Subsequently it has been shown that propranolol prevented the acquisition of new 

response for cocaine-conditioned reinforcement (Milton et al., 2008b) and disrupted 

place preference conditioned by cocaine (Bernardi et al., 2006) and morphine (Robinson 
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& Franklin, 2007). Therefore we hypothesized that Propranolol given after memory 

retrieval could also prevent reconsolidation of Pavlovian nicotine-related memories 

leading to disruption of the conditioned values of CS and resulting in inhibition of 

nicotine-seeking behaviour reinstatement when CS were presented. Our results showed 

that Propranolol 10 mg/kg did not reduce the number of ALP on reinstatement test, after 

memory retrieval or no-retrieval conditions. Propranolol did not prevent CS-induced 

reinstatement of nicotine-seeking behaviour suggesting that Pavlovian nicotine-related 

memories reconsolidation had not been disrupted. As reported by Tronson and Taylor 

(2007), memory extinction (a new learning by which CS previously associated with a 

reinforcer become newly associated with no outcome) instead of memory 

reconsolidation, may occur under similar conditions after memory retrieval. The length 

of the retrieval session is an important determinant of whether reconsolidation or 

extinction occurs after memory retrieval and it could be the critical factor in extinction 

and reconsolidation protocols. However there were no differences between retrieved 

and no-retrieved control groups suggesting that retrieval session was not inducing 

memory extinction in our conditions. There is evidence that reactivation-dependent 

amnesia for appetitive memories is determined by the contingency of stimulus 

presentation (Lee and Everitt, 2008b) and that only associations that were directly 

reactivated, not those indirectly reactivated underwent reconsolidation in the amygdala 

of the fear-conditioned rat (Debjec et al., 2006). In Study #1 we have only reactivated 

Pavlovian nicotine-related memories, through CS presentation without lever presses 

during retrieval session. Thus it could be that Pavlovian nicotine-related memories were 

not reactivated because there was not contingency of stimulus. However propranolol, 

given at retrieval, failed in reducing cue-induced reinstatement of cocaine seeking 

behaviour, following forced abstinence, in rats trained to cocaine self-administration 

(Milton & Everitt 2010). Furthermore many authors highlighted the limited efficacy of 

Propranolol in memory reconsolidation disruption in particular when instrumental 

learning is a relevant component of the memory  (Muravieva and Alberini, 2010; Milton 

et al., 2012). In addition, Kemenes and collegues (2006) also showed that: i) protein 

synthesis is always required for memory retrieval and reconsolidation of young and old 

fear related memories, but ii) PKA activation is required only for CS-induced memory 

retrieval and reconsolidation of young fear-related memories but not for motor or older 

and stronger memories. These data reflect potential different molecular mechanisms 

engaged during reconsolidation depending on the age and kind of the memory. The role 
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of PKA in memory reconsolidation of cocaine associated CS has also been investigated 

by Sanchez and collegues (2010). The molecular cascade that involves PKA activation 

seems to be triggered by β-adrenergic receptor activation and not by NMDARs 

(Tronson and Taylor, 2007). It could be argued that Propranolol, a β-adrenergic 

antagonist, preventing PKA activation can disrupt memory reconsolidation only when 

PKA is needed and recruited (ie. for Pavlovian memory). Propranolol limited efficacy 

in older or instrumental memory could be related to the fact that in the reconsolidation 

process of these memories PKA is not recruited. Given that in Study #1 only Pavlovian 

nicotine-related memories were retrieved in our retrieval session by CS presentation, it 

could be possible that instrumental memories (not retrieved indeed not disrupted) 

supported lever pressing during reinstatement test. NMDARs antagonists (i.e. MK-801) 

seem to be more effective in reconsolidation disruption of different kind of memory, an 

effect probably due to the inhibition of key molecules like MEK, by interaction with 

other kinases than PKA. However to date it is not clear if instrumental memory can be 

reactivated and undergoes reconsolidation or not. Indeed another hypothesis could be 

that instrumental memories do not undergo reconsolidation and could not be disrupted 

as suggested by Hernandez and Kelley (2004). To address this issue we tested the effect 

of the NMDARs antagonist MK-801 0.01 mg/kg given 30 minutes before the retrieval 

of instrumental memory. Results showed that instrumental memory retrieval per se 

increased nicotine-seeking behaviour in vehicle treated rats. Injection of MK-801 0.01 

mg/kg prior to retrieval session, or no-retrieval, reduced the difference in the number of 

ALP between retrieval and no-retrieval condition that is observed with vehicle, but did 

not significantly reduce the ALP if compared to control. Indeed pre-retrieval MK-801 

injection reduced the difference in nicotine-seeking behaviour between retrieval and no-

retrieval condition that is observed with vehicle, but did not prevent the relapse to 

nicotine-seeking behaviour when compared to control group. Signaling at NMDARs is 

known to be important for memory reconsolidation, but although NMDAR-mediated 

signaling is required for the reconsolidation (restabilization) of conditioned stimulus 

(CS)–drug (Sadler et al., 2007; Brown et al., 2008; Itzhak, 2008; Milton et al., 2008a; 

Milton et al., 2012), CS–spatial (Przybyslawski and Sara, 1997), and CS–fear (Pedreira 

et al., 2002; Lee et al., 2006) memories, antagonism at the GluN2B subtype of NMDAR 

has been shown to prevent the destabilization of CS–fear memories, thereby protecting 

them from the effects of amnestic agents (Ben Mamou et al., 2006). Since memory 

destabilization is the first process engaged after memory reactivation, in order to guide 
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the memory to its reconsolidation this effect suggests a potential role of MK-801 in 

inhibition of the memory destabilization process instead of reconsolidation disruption.  

We performed other experiments in which MK-801 was given after memory 

destabilization was engaged (i.e. given after memory retrieval). Injection of MK-801 

0.01 mg/kg after context re-exposure (no-retrieval condition) induced an increase of 

ALP if compared to pre-No-Ret Veh group, while post-retrieval injection of MK-801 

reduced the number of ALP when compared to control column (pre-Ret20 Veh). It has 

been shown that MK-801 impairs reconsolidation, but also blocks extinction of fear 

memory in rats (Lee et al., 2006). The number of ALP increase observed in post-No-Ret 

MK-801 group could be due to inhibition of a possible context-induced extinction 

process, that is engaged in pre-No-Ret Veh group. There was no significant difference 

in the amount of time spent in the training context among different groups of animals. 

Thus it could be argued that extinction of the training context was a process engaged in 

all groups but it was the main memory trace only in no-retrieved groups. When 20 ALP 

were introduced during retrieval session, instrumental memory reconsolidation was 

engaged and became the main memory trace. A reasonable explanation could be that 

pharmacological intervention acts against the main memory trace resulting in, i) ALP 

increase in post-No-Ret Mk-801 group, where context-induced extinction was the main 

memory trace and was blocked by MK-801, and ii) ALP reduction in post-Ret20 MK-

801, where instrumental memory reconsolidation was the main memory trace and was 

disrupted by MK-801. Post-retrieval MK-801 injection prevented the relapse to 

nicotine-seeking behaviour when compared to control groups suggesting that 

instrumental memory reconsolidation had been disrupted. 

There are some limitations on the use of pharmacological agents to interfere with 

reconsolidation. Milekic and Alberini (2002) showed that in an inhibitory avoidance 

task, the protein synthesis inhibitor anisomycin did not disrupt memory reconsolidation 

if the memories were older than 14 days. Further supporting the idea that the age of the 

initial memory is a relevant factor in the ability of protein synthesis inhibitors to block 

reconsolidation, Suzuki and colleagues (2004) found that memories less than 3 weeks 

old were subject to interruption by post-retrieval anisomycin but older memories (8 

weeks) were not. Not only is the age of the memory important in predicting success of 

pharmacological targeting of reconsolidation, but the type of learning paradigm is a key 

as well. In the fear setting, propranolol administered to rats only works to block the 

reconsolidation of cued or contextual fear memories (Muravieva & Alberini 2010; 
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Debiec & LeDoux 2004; Abrari et al. 2008) and does not always appear to affect 

inhibitory avoidance memories (Muravieva & Alberini 2010). These results suggest that 

strength or age of the emotional memory, as well as the type of response elicited, could 

influence the way that reconsolidation paradigms are applied to reduce responding. 

Furthermore memory reconsolidation disruption could only be determined through its 

absence during reinstatement or renewal test in behavioural studies. This make difficult 

to interpret the lack of effect of amnestic drugs observed in some circumstances. Infact 

it is hard to understand if reconsolidation disruption is inhibited by the presence of 

boundary conditions or by the fact that some memories can not be reactivated and 

disrupted. From this perspective ex-vivo molecular experiments performed after 

memory retrieval could directly demonstrate memory reactivation and confirm 

reconsolidation occurrence supporting behavioural data. It has been demonstrated that 

zinc finger 268 (Zif268) expression increased in basolateral amygdala after the 

presentation, in a memory retrieval session, of conditioned stimuli compared to non 

conditioned (Thomas et al., 2003). Since Zif268 is also considered a specific marker 

correlating memory reconsolidation (Lee & Hynds, 2012) we verified the feasibility and 

reliability of Zif268 expression assessment by immunohistochemistry after memory 

retrieval in rats. Previous studies conducted in our laboratory demonstrated that 3 CS 

presentation was sufficient to induce Pavlovian nicotine-related memory retrieval and 

did not induce extinction. We evaluated Zif268 level of expression in basolateral 

amygdala, the most important brain region involved in reconsolidation of Pavlovian 

memories, after retrieval of Pavlovian nicotine-related memories by 3 CS presentation. 

Immunohistochemistry showed an increased level of Zif268 expression in basolateral 

amygdala after retrieval of Pavlovian nicotine-related memories compared to no 

retrieval condition. These data confirm the validity and feasibility of 

immunohistochemistry to assess the expression of molecular markers correlating 

reconsolidation such as Zif268 after Pavlovian memory retrieval. 
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4.1.Conclusion 

Our findings suggest that: i) propranolol did not disrupt Pavlovian memory 

reconsolidation and did not prevent reinstatement of nicotine-seeking behaviour after 

CS presentation in our conditions, ii) MK-801 given prior to retrieval session could 

prevent instrumental memory destabilization, but did not prevent reinstatement of 

nicotine-seeking behaviour and did not disrupt memory reconsolidation in our 

conditions, iii) MK-801 given after retrieval session prevented reinstatement of 

nicotine-seeking behaviour and disrupted memory reconsolidation in our conditions, 

iiii) immunohistochemistry is a feasible technique to investigate the expression of 

molecular markers correlating reconsolidation such as Zif268, thus it can be used to 

support our future behavioural studies.  

It remains to be addressed if Propranolol given after contingent CS presentation could 

disrupt Pavlovian memory reconsolidation and prevent reinstatement of nicotine-

seeking behaviour. Drug addiction is a chronic disorder characterized by a high rate of 

relapse to drug use among abstinent. One of the main causes of relapse is the exposure 

to the CS that are associated to drug effect in a Pavlovian manner and influence drug-

seeking behaviour and relapse through the memory they evoke and the interaction with 

instrumental memories (Milton and Everitt, 2010). We did not investigate if drugs 

acting at adrenergic level prevent drug-related memory reconsolidation after contingent 

CS presentation. Thus we can not exclude that contingency of stimulus could reactivate 

Pavlovian and instrumental memory at the same time rendering both memories, or their 

interaction, vulnerable to disruption by noradrenergic antagonists. We also did not 

investigate the effect of Propranolol on younger memories than 30 days old memories. 

Performing the latter study we could clarify if Pavlovian nicotine-related memories can 

be differently affected by noradrenergic antagonists depending on their age.  

However our data suggest that instrumental memory is a relevant component that could 

be responsible for the lack of effect of some anti-relapse pharmacological treatments 

and fortunately we confirmed that instrumental memory can be disrupted acting at 

specific molecular level that is NMDARs antagonism. Even in this case we did not 

investigated if instrumental memory older that 14 days was still suscebtible to drugs 

targeting its reconsolidation. It could be of interest to understand if time is a limiting 

factor for pharmacological interventions acting against Pavlovian and instrumental 

nicotine-related memories. 
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We validated a cellular and molecular technique to directly demonstrate memory 

reconsolidation occurrence, but we have only determined Zif268 expression after 

Pavlovian memory retrieval. We should also investigate if the same technique, and the 

same molecular marker can be used to directly demonstrate instrumental memory 

reconsolidation. Future studies, supported by the validated immunohistochemistry 

assessment of Zif268 expression, could thus elucidate if memory reconsolidation occurs 

after retrieval of different memories and using different protocols. In this way we will 

be able to understand if the lack of effect of some pharmacological treatments is due to 

the presence of boundary conditions or to the fact that a different molecular level has to 

be targeted.  

In conclusion our findings suggest that new and specific pharmacological intervention, 

acting at specific molecular mechanisms that underly reconsolidation of different kind 

of memories (i.e. Pavlovian but also instrumental memories), could be used as a 

potential co-adjuvant to current therapeutic interventions for smoking cessation and 

abstinence maintenance. 
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