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a b s t r a c t

Connexins (Cx) are membrane proteins able to influence trophoblast functions. Here we investigated the
effect of high-frequency electromagnetic fields (HF-EMF) on Cx expression and localization in extravillous
trophoblast cell line HTR-8/SVneo. We also analysed cell ultrastructural changes induced by HF-EMF
exposure. Samples were exposed to pulse-modulated 1817 MHz sinusoidal waves (GSM-217 Hz; 1 h: SAR
of 2 W/kg). Cx mRNA expression was assessed through semi-quantitative RT-PCR, protein expression by
Western blotting, protein localization by indirect immunoflorescence, cell ultrastructure using electron
microscopy.

HF-EMF exposure significantly and selectively increased Cx40 and Cx43, without altering protein
expression. Nevertheless, Cx40 and Cx43 lost their punctuate fluorescence within the cell membrane,
becoming diffuse after HF-EMF exposure. Electron microscopy evidenced a sharp decrease in intercellular
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Ultrastructure gap junction-like structures.
This study is the first to indicate that exposure of extravillous trophoblast to GSM-217 Hz signals can
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. Introduction

In developed countries, the population is constantly exposed
o a large number of devices, such as broadcasting systems and

obile telephones, which generate high-frequency electromag-
etic fields (HF-EMF) ranging from 30 kHz to 300 GHz. Reports of
he effects of these fields on human health are conflicting. For
nstance, an increased risk of brain cancer has been reported by
ome authors [1], while, according to others, human health is not
dversely affected by exposure to permissible radiofrequency (RF)
evels from mobile phones and base stations [2]. As for reproduc-
ion, HF-EMFs do not induce a significant increase in reproductive
isk in the rat, as assessed by classic postnatal morphological and
sychophysiological parameters [3,4]. However, a decrease in the
umber of mouse offspring, a prevalence of males over females
nd an increased incidence of stillbirth provoked by irradiation has
een reported [5]. Furthermore, ultra-high-frequency electromag-

etic field exposure during embryogenesis has been found to induce
genotoxic response in rat haematopoietic tissue [6].

It is conceivable that any obstetric effect of clinical relevance
ould imply some kind of influence upon gestational tissue. In this
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protein localization and cellular ultrastructure.
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context, it has been demonstrated that HF-EMF exposure results
in increased levels of heat-shock protein 70 (HSP 70) in human
amnion cells in vitro [7], but does not affect the expression of this
protein in HTR-8/SVneo cells [8]. However, levels of the inducible
HSP70C transcript were significantly enhanced after 24 h exposure
to GSM-217 Hz signals [9]. In the human first-trimester placenta,
extravillous trophoblast cells (EVT) invade uterine spiral arteries to
generate a high-capacity, low-resistance utero-placental blood flow
for optimal foetal development and growth. Proliferation, migra-
tion and invasiveness of EVTs depend on several factors produced
by decidua, myometrium and the trophoblast itself [10,11], as well
as by gap-junctional intercellular communications (GJIC) [12–15].
These, in turn, are known to influence cell growth, development
and differentiation in normal tissues as well as in some pathologic
conditions [16].

Gap junctions (GJ) are membrane channels constituted by the
association of two hemi-channels, termed connexons, each com-
posed of six connexin subunits. These membrane channels span
the intercellular space, thus providing a pathway for the exchange
of ions, such as Ca2+, and small molecules like cyclic AMP, cyclic

GMP (cGMP), and inositol trisphosphate (IP3). Cxs represent a fam-
ily of closely related membrane proteins with different biophysical
and regulatory characteristics [17]. They are encoded in humans
by a multigene family containing at least 20 members, and their
expression is regulated by several hormones and growth factors

https://core.ac.uk/display/217528325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/08906238
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18]. Cx expression is also affected by chemical pollutants [19], ion-
zing radiations and other environmental stresses [20].

Considering the need to deepen knowledge about the exposure
f gestational tissue to magnetic fields, we decided to investigate
heir effects on HTR-8/SVneo cells. These cells represent a suitable

odel for the experimental study of early trophoblast function,
ecause they are derived from first-trimester EVT, preserving all
f their parental markers and responsiveness towards cell func-
ion mediators [21]. Specifically, we evaluated HF-EMF influence
n Cx gene and protein expression, as well as Cx localization and
ltrastructural cell features.

. Materials and methods

.1. Cell cultures

The HTR-8/SVneo cell line was kindly provided by Doctor CH Graham of Queen’s
niversity, Kingston, Ontario, Canada. Cells were grown in RPMI 1640 medium sup-
lemented with 10% foetal bovine serum, 2 mM l-glutamine, 100 U/ml penicillin
nd 100 �g/ml streptomycin (Invitrogen Paisley, Scotland, UK). Cells were main-
ained at 37 ◦C in normal atmosphere containing 5% CO2. For the experiments, cells
ere treated with trypsin, removed from culture flasks, then seeded at a density of
× 106 cells per 35 mm-diameter Petri dish. After 24–48 h culture, semi-confluent
onolayers were exposed to treatments.

.2. Semi-quantitative RT-PCR

Total RNA was extracted using the TRIzol reagent (Invitrogen Paisley, Scot-
and, UK) from HTR-8/SVneo cell line. Total RNA was dissolved in RNase-free water
nd subsequently quantified by spectrophotometry. 2 �g of total RNA was reverse-
ranscribed into complementary DNA (cDNA) using 200 Units of Moloney Murine
eukaemia Virus (M-MLV) Reverse Transcriptase (Invitrogen, Paisley, Scotland, UK),
.6 �g of random primers and 40 units of RNaseOUT RNAse inhibitors (Invitrogen
aisley, Scotland, UK), according to the manufacturer’s protocols. Primer pairs used
or each gene product were previously reported [14] and are listed in Table 1. As
normalization control for each RT-PCR experiment, primers specific for 18S rRNA
ere used [22]. For each amplification of Cx and 18S, reactions were performed in
25 �l final volume containing 1 �l of cDNA template, 1.5 mM of MgCl2, 0.2 mM

f each dNTP, 0.4 �M of each primer, and 0.5 U of Platinum Taq DNA Polymerase
Invitrogen Paisley, Scotland, UK).

PCR amplifications for all Cx genes were performed under the following
onditions: initial denaturation (2 min at 94 ◦C) followed by different cycles of denat-
ration (30 s at 94 ◦C), annealing (1 min at the selected annealing temperature),
xtension (1 min at 72 ◦C), and a final extension step (5 min at 72 ◦C). The applied
eaction parameters, which differed between different primer pairs, are reported in
able 1.

To ensure quantification was performed at the midpoint of the linear phase of

mplification, preliminary RT-PCRs were carried out for each gene using different
ilutions (5-, 10-, 20-, and 40-fold) of each cDNA sample and different PCR cycle
umbers.

Equal aliquots of each PCR sample were separated by electrophoresis in a 1.5%
garose gel containing 0.05% ethidium bromide. Quantification of band intensities
as performed by the Gel Doc 2000 video image system (Bio-Rad Laboratories,
ercules, USA). 18S rRNA was used as an endogenous control for normaliza-

ion.

able 1
rimer sequences and PCR conditions.

ene Primer sequence Ta
◦C

x32
F: 5′-accaattcttccccatctcc-3′

53R: 5′-ctggtatgtggcatgagca-3′

x37
F: 5′-cagcatggagcccgtgtttgt-3′

58R: 5′-gggacgacttgggggtttttg-3′

x40
F: 5′-ccggcccacagagaagaatgt-3′

60R: 5′-tctgaccttgccttgctgctg-3′

x43
F: 5′-aaagagatccctgcccacatc-3′

60R: 5′-cctggaagaacttagcatcacc-3′

x45
F: 5′-caagtccacccgttttatgtg-3′

60R: 5′-agttcttcccatcccctgat-3

8S
F: 5′-ggaccagaggcaaagcatttgcc-3′

60R: 5′-tcaatctcgggtggctgaacgc-3′
oxicology 28 (2009) 59–65

2.3. HF-EFM exposure

All experiments consisted of control samples kept at 37 ◦C and 5% CO2 in a
FormaTM thermostat. Exposed samples were kept in identical FormaTM thermostats
which also housed the GSM-exposure system. Cells were exposed for 1 h to a 1.8 GHz
sinusoidal wave, whose amplitude was modulated by rectangular pulses with a
repetition frequency of 217 Hz, simulating the E net GSM phone emission when
the user is speaking [23]. The signal was applied at time-averaged SAR values of
2 W/kg, the safety limit for mobile phone emission according to ICNIRP (Interna-
tional Commission on Non-Ionizing Radiation Protection). The exposure system was
developed and built by the Foundation for Research and Information Technologies in
Society (IT’IS Foundation, Zurich, Switzerland) following the specifications outlined
in Schönborn et al. [24] and extensively described in Valbonesi et al. [8]. The sys-
tem consisted of two 128.5 mm × 65 mm × 424 mm brass single-mode waveguide
resonators operated inside the FormaTM thermostat. Each resonator was equipped
with a plastic holder hosting six 35 mm Petri dishes arranged in two stacks. The
carrier frequency, modulation, SAR level and the periodically repeated on and off
exposure time were controlled by a computer. Cells incubated into the waveguide
resonator not selected for irradiation are referred to as sham-exposed samples. The
exposure/sham conditions were assigned to the two waveguides by the computer-
controlled signal unit. All exposure conditions and monitor data of each single
experiment are encrypted in a file, which is decoded by the IT’IS Foundation (Zurich,
Switzerland) after data analysis, to ensure blind conditions for the experiment. Inside
the exposure system developed and built by the IT’IS Foundation dishes are placed
in the H-field maximum of the standing wave inside the waveguide (E polariza-
tion). Petri dishes used are of the appropriate size and contain monostrate of cells in
appropriate amount and type of medium as requested by the dosimetry developed
in the simulation experiments (Schuderer et al., [35]). The simulation results were
verified extensively using a near-field scanner DASY3 (SPEAG) equipped with dosi-
metric field and temperature probes by Schuderer et al. [35]. The results showed
the following: 1. The temperature of the monolayer cells is uniformly distributed
without localized temperature “hot spots” [35]. 2. The increase in temperature due
to the high-frequency EMF is well below 0.1 ◦C per unit SAR, with a thermal time
constant of 280 s for a medium of 3.1 ml in the Petri dish. 3. The temperature differ-
ence between sham and exposed cells is less than 0.1 ◦C. There is no possibility
to assess if temperature changes during the experiment; if the imposed condi-
tions are not respected, the computer automatically switches off the instruments
and the experiment is stopped. However, direct temperature measurements are
routinely performed by us in preliminary experiments using a temperature probe
inserted in the medium (T1V3, SPEAG) so to confirm the results of the simulation
[35].

2.4. Cell viability assay

Cell viability was determined by MTT test, a colorimetric assay based on
tetrazolium salt reduction by metabolically active cells as reported by Mosmann
[25] with slight modifications since the assay was performed in 12 well culture
plates, and optical density was assessed at 570 nm with background correction at
650 nm.

2.5. Functional response determination

Cell functionality was tested measuring responsiveness of adenylyl cyclase to

receptorial and non-receptorial agents by measuring intracellular cAMP levels. Con-
fluent cells were incubated in serum-free RPMI at 37 ◦C for 10 min in the presence of
10−5 M isobutylmethylxanthine (IBMX) (Sigma Chemical Co, St. Louis, MO, USA), a
cAMP phosphodiesterase inhibitor, and the test substances (Sigma Chemical Co, St.
Louis, MO, USA). The reaction was terminated by removing the medium and adding
ice-cold 0.1 N HCl. After centrifugation at 12,500 × g for 10 min, supernatants were

Product length (bp) No. of cycles Ref.

669 32 Nishimura et al. [14]

433 33 Nishimura et al. [14]

479 35 Nishimura et al. [14]

370 29 Nishimura et al. [14]

574 35 Nishimura et al. [14]

495 30 Spencer et al. [22]



ctive T

n
o

2

b
t
i
d
t
a
b
i
p
s
r
4
(
m
(
I
c
M
u
c
f

2

(
w
b
a
P
w
o
a
a
C
p
a
f
l
w
V
(
s
1
d

2

i
0
c
0
d
(

t

(
f
f
a
m

2

G
p
t
t
f
d

3.3. Cx mRNA expression in HTR-8/SVneo cells

Under basal conditions, semi-quantitative RT-PCR analysis
demonstrated that HTR-8/SVneo cells express detectable levels of
the transcripts for Cx32, Cx37, Cx40, Cx43 and Cx45 (Fig. 2).
F. Cervellati et al. / Reprodu

eutralized by 0.5 M trizma base; the cAMP content was determined by the method
f Brown et al. [26] and expressed as pmoles/106 cells/min.

.6. Western blotting for Cx protein evaluation

After the experimental treatments, cells were washed with ice-cold phosphate-
uffered saline solution (PBS), detached by scraping and transferred to Eppendorf
ubes. After 10 min centrifugation at 800 × g at 4 ◦C, the pellet was resuspended in
ce-cold 10 mM Na-phosphate buffer, pH 7.4, containing 1% Nonidet-P40, 0.5% Na
eoxycholate, 0.1% SDS, 1 �g/ml of pepstatin A, E-64, bestatin, leupeptin and apro-
inin, 25 �g/ml of PMSF. After 30 min on ice samples were centrifuged at 9000 × g
t 4 ◦C for 20 min. The supernatant was diluted 1.5 times with Laemmli buffer [27],
oiled for 5 min and kept at −20 ◦C until use. Sample proteins were assessed accord-

ng to Lowry et al. [28] using bovine serum albumin as standard. Western blotting
rocedures were carried out as we previously reported [29]; briefly, electrophore-
is was carried out with a Mini Protean III apparatus (28 mA, 2 h at 4 ◦C), and the
esolved proteins were transferred onto a nitrocellulose membrane (300 mA, 1 h at
◦C). Connexins were assessed by using Cx40 and Cx43 rabbit polyclonal antibodies

Santa Cruz Biotecnology Inc. CA, USA) against connexins of human origin as pri-
ary antibodies (1:200) overnight and, after washings, with goat anti-rabbit IgG

1:2000) conjugated with horseradish peroxidase for 1 h (Cell signaling Technology
nc. Beverly, MA, USA). Immunoblots were developed by enhanced chemiolumines-
ence reagent, and a densitometric analysis of the films was performed by Image
aster (Amersham-Pharmacia, Milan, Italy) equipped with TotalLab software. Val-

es within each experiment were normalized to the control sample, i.e. unstressed
ells kept at 37 ◦C, and data of connexins were expressed as sham and irradiated
orms.

.7. Indirect immunofluorescence staining of Cx

HTR-8/SVneo cells were incubated in serum-free medium for 24 h, then cells
1.5 × 106/ml) were allowed to adhere onto glass coverslips overnight. Adherent cells
ere prefixed with 1% paraformaldehyde (PFA) for 3 min, washed in phosphate-
uffered salt solution (PBS; 0.01 M, pH 7.2) and labelled with different rabbit
ntibodies raised against the human Cx40 and Cx43 (working dilutions 1:200 in
BS containing 0.05% BSA and 0.1% sodium azide) for 1 h at room temperature (RT)
ithout any cell permeabilization. All antisera specifically recognize the C-terminus

f the different human Cxs; in particular, Cx40 antisera were raised against amino
cids 231-346 mapping within a C-terminal domain of Cx40 of human origin, Cx43
ntisera were raised against amino acids 233-382 mapping at the C-terminus of
x43 of human origin, respectively. Specificity of antibodies binding was accom-
lished by blocking with their cognate peptides. Cells were then washed in PBS
nd incubated with FITC-labelled goat anti-rabbit IgG serum (diluted 1:100 in PBS)
or 1 h at RT in the dark (Santa Cruz Biotecnology Inc. CA, USA). Controls included
abelling with secondary antibody alone in the absence of primary antibody. Cells

ere washed in PBS, postfixed with 3% PFA for 3 min, rinsed in PBS, mounted in
ectashield (Vector Labs, Burlingame CA, USA) anti-fading in the dark and observed

excitation wavelength: 488 nm, emission: 520 nm) with a Epi-fluorescence micro-
cope Nikon Eclipse E800 (Nikon Corporation, UK) equipped with a plan apochromat
00 × 0.5-1,3 oil immersion objective and an mercury lamp source. Amplifier and
etector optimizing parameters were maintained constant for all the experiments.

.8. Ultrastructural study

Cells were scraped and collected in 0.1 M cacodylate buffer (pH 7.4), then spun
n 1.5 ml tubes at 2000 × g for 5 min. Pellets were fixed with 2.5% glutaraldehyde in
.1 M sodium cacodylate buffer for 4 h at 4 ◦C. They were then washed with 0.1 M
acodylate buffer (pH 7.4) three times and post-fixed in 1% osmium tetroxide and
.1 M cacodylate buffer at pH 7.4 for 1 h at room temperature. The specimens were
ehydrated in graded concentrations of ethanol and embedded in epoxide resin
Agar Scientific, 66A Cambridge Road, Stanstead Essex, CM24 8DA, UK).

Cells were then transferred to latex modules filled with resin and subsequently
hermally cured at 60 ◦C for 48 h.

Semi-thin sections (0.5-1 �m thickness) were cut using an ultra-microtome
Reichard Ultracut S, Austria) stained with toluidine blue, and blocks were selected
or thinning. Ultra-thin sections of about 40-60 nm were cut and mounted onto
ormvar-coated copper grids. These were then double-stained with 1% uranyl acetate
nd 0.1% lead citrate for 30 min each and examined under a transmission electron
icroscope, Hitachi H-800 (Tokyo, Japan), at an accelerating voltage of 100 KV.

.9. Statistical analysis
All data were subjected to statistical analysis using PRISM software (version 2.1,
raph Pad Inc.). Data were examined by one-way ANOVA followed by Dunnett’s
ost hoc Multiple Comparison test. Specifically, tests were performed to ensure that
he sham-exposed samples were not significantly different from one another. When
hese conditions were met, a second one-way ANOVA was performed on the data
rom the sham- and HF-EMF-exposed groups. In all cases statistically significant
ifference was accepted when p < 0.05.
oxicology 28 (2009) 59–65 61

3. Results

3.1. Viability of HTR-8/SVneo cells

As revealed by the MTT test, there was no significant differ-
ence in cell viability between the negative control (incubator)
and the sham-exposed cells. Viability of exposed samples (1 h to
GSM-217 Hz signals) was always greater than 98% with respect to
sham-exposed samples.

3.2. Functional response of HTR-8/SVneo cells

In order to investigate cell functionality, we tested the respon-
siveness of adenylyl cyclase to receptorial and non-receptorial
agents by measuring intracellular cAMP levels. Prostaglandin
E2 (PGE2) and epinephrine (EPI) increased cAMP levels in a
dose-dependent manner, reaching a plateau at 10−5 M. Similarly,
forskolin, a direct activator of the catalytic subunit of the enzyme,
dose-dependently enhanced intracellular cAMP concentration,
reaching maximum response at 10−5 M (Fig. 1A), as previously
reported [30]. These effects were not modified by 1 h irradiation
(Fig. 1B).
Fig. 1. Effect of various concentrations of PGE2 (�), epinephrine (�) and forskolin (�)
on intracellular cAMP levels in HTR-8/SVneo cells. (A) Control cells; (B) cells treated
with HF-EMF for 1 h. Data are means ± SEM of five experiments, performed in dupli-
cate on different cell cultures. Basal cAMP level was 6.1 ± 0.5 pmoles/106 cells/10 min
in control cells and 5.7 ± 0.4 pmoles/106 cells/10 min in treated samples. Concentra-
tion at which the compounds stimulation become statistically significant, *p < 0.01,
**p < 0.05 (one-way ANOVA followed by Dunnett’s post hoc Multiple Comparison
test).
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Fig. 2. Semi-quantitative analysis of PCR products of different connexin isoforms in
HTR-8/SVneo cells.
The panel shows the ratio between optical density (OD) of the Cx mRNA isoforms
and 18S mRNA. Data are means ± SEM of at least six independent experiments.
Representative agarose gel electrophoresis of PCR for Cx isoforms and relative control
l
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Fig. 3. Semi-quantitative analysis of PCR products in HF-EMF-exposed HTR-8/SVneo
cells.
The panel shows the ratio between optical density (OD) of Cx mRNA isoform

F
1
H

oading 18S housekeeping gene amplicons is shown in the top of each panel. M:
00 bp ladder DNA marker; lane 1: Cx32; lane 2: Cx37; lane 3: Cx40; lane 4: Cx43;
ane 5: Cx45; and lane 6: 18S housekeeping gene.

One-hour exposure to GSM-217 Hz signals did not change
xpression levels for the Cx32, Cx37 and Cx45 gene products,
hereas it significantly increased that for Cx40 (175%; p < 0.001)

nd Cx43 (166%; p < 0.001) as compared to sham-exposed cells
Fig. 3).

.4. Cx protein expression in HTR-8/SVneo cells
The expression of Cx43 and Cx40 proteins was evaluated using
pecific antibodies (Fig. 4). No significant differences in either Cx43
r Cx40 expression were observed between high-frequency EMF-
xposed and sham-exposed samples.

ig. 4. Western blot detection of Cx protein expression in HF-EMF-exposed HTR-8/SVneo
: Cx detected in sham-exposed cells; lane 2: Cx detected in HF-EMF-exposed cells. De
F-EMF-exposed (black bar) cells, expressed as arbitrary units. Results are the means ± S
and 18S mRNA in sham- (white bar) and HF-EMF-exposed (black bar) cells. Data
are means ± SEM of at least five independent experiments. * p < 0.001 vs relative
sham–exposed cells (one-way ANOVA followed by Dunnett’s post hoc Multiple Com-
parison test).

3.5. Cx immuno-localization in HTR-8/SVneo cells

In sham-exposed cells we found punctate fluorescence for both
Cx40 and Cx43 in plasma membrane clusters (Fig. 5A and C). In HF-
EMF irradiated cells, instead, large amount of fluorescence became
diffuse in plasma membrane (Fig. 5B and D).

3.6. Ultrastructural features of HTR-8/SVneo cells

Electron microscopy examination of selected areas of HTR-
8/SVneo control cells showed that neighbouring cells were in close

apposition with each other, forming compact cellular islets and
maintaining their epithelial phenotype. The fine structure of cells
showed a high nuclear-cytoplasmic ratio and irregularly shaped
plasma membranes presenting several pseudopodial protrusions.
In the extracellular space close to the cells, some gap junction-like

cells. Representative immunoblots of Cx43 and Cx40 are shown: M: marker; lane
nsitometric analysis shows the levels of Cx43 and Cx40 in sham- (white bar) and
EM of five independent experiments, each analysed in triplicate.
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ig. 5. Indirect immunofluorescence staining of Cx in HTR-8/SVneo cells. Sham-ex
MF-exposed cells Cx43 (D).
cale bars = 10 �m.

tructures, exhibiting considerable electron density, were observed.
he cytoplasm of most cells contained single particles and clusters
f glycogen and filaments of collagen-like material, as well as many
ibosomes displayed on the surface of the rough endoplasmic retic-
lum (Fig. 6A). Sham-exposed cells did not show ultrastructural
orphological changes in comparison with control cells (Fig. 6B). In
F-EMF exposed cells, however, remarkable changes were present.

ndeed, retraction of cell surface pseudopods, decrease in cellular
dhesion, widening of intercellular spaces, along with cellular flat-
ening and epithelial-like polygonal cell formation, were observed.
ap junction-like structures were only maintained in the internal
art of tightly adherent cell islets. Cell surface micromorphol-
gy and intercellular junction changes appeared to be closely
elated to cytoskeletal filament disorganization. A marked cytoplas-
ic degranulation and vacuolization was manifested as dilatation

nd fragmentation of the endoplasmic reticulum cisternae. Abnor-
alities in the mitochondrial structure consisted of matrix

welling and vacuolization accompanied by cristae disruption
Fig. 6C).

. Discussion

It is well known that successful pregnancy relies upon
rophoblast cell proliferation, migration and invasiveness. Patho-
ogic conditions of pregnancy, such as choricarcinoma and
re-eclampsia, can derive from subversion of above-mentioned
rocesses. Social behaviour of trophoblast cells is regulated,
mong other factors, by gap-junctional intercellular communica-
ion [13,14]. This, in turn, depends on the expression of connexins,

hich can be affected by several types of environmental stresses

19,20]. With regard to human trophoblast, it has been shown
hat Cx40 and Cx45 are typically expressed in the extravillous cell
olumns. Cx40 disappears when the proliferative cell phenotype
hanges to invasive, to be later re-expressed in the trophoblastic
cells Cx40 (A); HF-EMF-exposed cells Cx40 (B); Sham-exposed cells Cx43 (C); HF-

cell aggregates within the decidua [13,14,31]. At the level of placen-
tal bed aggregates also Cx43 and Cx32 are expressed [12,32]. Finally
Cx37, which is typically present in the endothelium of villous arte-
rioles, is also found in extravillous cells, and weakly expressed at
the cytotrophoblast level, as well as between the cytotrophoblast
and syncytial layer [29]. In general, it appears that Cx40 partici-
pates in cell proliferation while Cx43 is involved in the processes of
cell fusion, such as formation of multinuclear aggregates and syn-
cytialization [33]. In vitro studies on isolated cells have shown that
Cx43 is abundant in the normal EVT HTR-8, while it is reduced in
the long-lived (RSVT-2) and undetectable in the immortalized cell
line [34].

In our study, at first we tested the expression of connexin mRNA
in first-trimester human chorionic villi at the 11th gestational week,
confirming the presence of Cx32, Cx37, Cx40, and Cx43, but not
Cx45 mRNA (data not shown). This result is in agreement with lit-
erature data showing that expression of Cx45 disappears after the
9th week, due to sharp oxygen increase at the level of placental
lakes [14]. Chorionic villi were obtained from consenting patients
undergoing villous biopsy for foetal chromosomal analysis, in order
to compare Cx expression with that of an immortalized cell line
such as HTR-8/SVneo. In fact, HTR-8/SVneo were chosen as the cell
model for studying the possible effects of HF-EMF. Chorionic villi
were not suitable for our study protocol on HF-EMF effects, due
to the strict conditions required to fulfil the dosimetric param-
eters of the instruments, in particular a cell monostrate [24,35].
HTR-8/SVneo cells were then chosen as an in vitro model, in order
to analyse the possible effects of HF-EMF on first trimester tro-
phoblast connexin expression and localization. The reason why we

addressed our attention to this topic is because pregnant women
are commonly exposed to a large number of devices generating
high-frequency electromagnetic fields. It is therefore of outmost
importance to assess any possible influence exerted by this sort of
energy upon gestational tissue.
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Fig. 6. Electron microscopy of HTR-8/SVneo cells under different experimental conditions. Confluent culture cells in serum-supplemented medium (A). Cells tightly contacting
each other with gap junction-like structures are represented by arrows. Mitochondria, endoplasmic reticulum, nuclear membranes and euchromatic nucleus with marginal
h (sham
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eterochromatin show normal morphological features; serum-free culture medium
F-EMF-exposed cells showing mitochondrial vacuolization and sharp decrease of
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In HTR-8/SVneo cells at basal conditions we found the tran-
cripts for Cx32, Cx37, Cx40, Cx43 and Cx45. After 1-h exposure
f the samples to HF-EMF, the transcript levels for Cx40 and Cx43
ncreased significantly, while that for the other connexins remained
nmodified. RF-EMF exposure was indeed shown to up- or down-
egulate several genes associated with multiple cellular structures
nd function, such as the cytoskeleton, signal transduction path-
ay, metabolism, and connexons [36]. Since it was reported that

n increase in Cx43 protects astrocytes against cell injury, and
hat Cx40 intensifies the resistance to calcium overload, oxidative
tress, metabolic inhibition, tamoxiphene, and UV irradiation [37],
he increased expression of Cx40 and Cx43 mRNA in response to
rradiation could be interpreted as an attempt to enhance protein
xpression, in order to counteract injury. However, in our experi-
ental model the up-regulation response to HF-EMF at the mRNA

evels was not followed by variations in the related protein expres-
ion, as revealed by Western blot analysis of connexins. We suggest
hat the discrepancy observed after 1 h irradiation may be a con-
equence of rapid turnover due to intense protease activity, as
eported for Cx43 in the adult rat heart [38]. The lack of the pro-
ein level increase following mRNA transcripts changes is however
n agreement with previous data concerning different proteins and
enes in EVTs [9] and other cell systems [39].
Given the elevation of mRNA expression levels for Cx40 and
x43, further experiments were carried out on these connexins.
lthough protein concentration were not modified, localization
f both Cx40 and Cx43 revealed striking changes following HF-
MF exposure. At the plasma membrane level both proteins show
-exposed cells): the cells maintain substantially unchanged their morphology (B);
ellular contacts, as well as cytoplasmic and nuclear degranulation (C).

marked punctuate fluorescence in sham-exposed cells, while they
exhibit a fluorescence diffusion in treated samples. Such a protein
diffusion could account for the gap junction like structure decrease
observed in our experiments at the ultrastructural level. Indeed,
electron microscopy observations indicated that HF-EMF exposure
induces a sharp decrease of cellular adhesion, gap junction-like
structures being preserved only between tightly adherent cell islets.
The Cx delocalization could be a consequence of HF-EMF influence
on cell membrane fluidity. Changes in liposomal permeability were
indeed observed in egg lecithin multilamellar vesicles after expo-
sure to 900 MHz microwave radiation for 5 h [40]. However we
cannot exclude that the ultrastructural changes induced by HF-EMF
exposure derive from alterations other than Cx mRNA expression.

Since trophoblast Cx40 has been reported to participate in cell
proliferation, while Cx43 is involved in syncytialization[13,14,31], it
could be hypothesized that, once significantly increased, they could
affect both processes up to the point of reaching clinical effects. In
particular, Cx40 disappears when the proliferative cell phenotype
changes to invasive, to be later re-expressed in the trophoblas-
tic cell aggregates within the decidua [13,14,31], thus suggesting
that its increment could impair invasive capacity. Extravillous tro-
phoblast plays a fundamental role in modulating the maternal
blood supply to the foetus by increasingly invading the uterine

arteries during pregnancy. Therefore, a prolonged exposition to
HF-EMF able to increase Cx that are known to regulate the above
mentioned trophoblast function, could influence the mechanism
by which oxygen and nutrients are delivered to the foetus, possi-
bly leading either to positive effects, such as a better nutrition and
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xygenation, or to negative ones, such as foetal malformation and
bortion.

Based on the above considerations it appears of outmost
mportance to further investigate both experimental and clinical
mplications of our results, by progressively increasing the time of
rophoblast exposition to HF-EMF.

Searching for a possible influence of exposure on cellular phys-
ology, we tested HTR-8/SVneo cell viability and a functional
esponse. The cAMP signaling pathway was chosen since it plays
mportant roles in these cells [30], and it is also related to the
ell–cell communication events through gap junctions [17]. We
ound that 1-h treatment did not compromise viability, as revealed
y the MTT test. Likewise, the adenylyl cyclase/cAMP signaling
ransduction pathway explored by assay of intracellular cAMP lev-
ls upon receptorial and non-receptorial activation of the enzyme,
as not influenced by irradiation. Similarly, it has been reported

hat 6 h RF-EMF exposure of mouse embryonic stem cells tran-
iently affects the transcript level of genes related to apoptosis and
ell cycle control without any detectable change of cell physiol-
gy, thus suggesting a possible translational and post-translational
ompensatory mechanism [39].

In summary, our study indicates for the first time that 1 h expo-
ure to GSM-217 Hz signals can selectively modify connexin mRNA
xpression pattern and protein localization in extravillous tro-
hoblast derived HTR-8/SVneo cells. However, the up-regulation
f Cx transcripts and protein delocalization induced by irradiation
o not appear associated with detectable changes in the cell func-
ional responses presently examined. More work providing further
nsights on possible effects of HF-EMF on cell–cell interactions in
eveloping gestational tissues is advisable.
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