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Summary

Methods for protein structure prediction are flourishing and becoming widely available to
both experimentalists and computational biologists. But, how good are they? What is their range
of applicability and how can we know which method is better suited for the task at hand? These
are the questions that this chapter tries to address, by describing automatic evaluation methods
as well as the world-wide Critical Assessment of Techniques for Protein Structure Prediction
(CASP) initiative and focusing on the specific problems of assessing the quality of a protein 3D
model.
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1. Introduction
Protein structure prediction is a field that has attracted enormous interest

since the very beginning of protein structural biology. The first model of a
protein was produced only about 10 years after the first protein structure was
solved and at a time when only two protein structures were available (1). The
model was a physical one (no molecular graphics available at the time), but
it was a rather good one; it was later established that the root mean square
deviation (rmsd) between the alpha carbons of the model and those of the
subsequently determined experimental structure was around 1 Å, a result that
would be considered interesting even today.
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As of today, hundreds of servers and tools are widely available for producing
a structural model of the protein of interest. The model can then be used as a
structural framework for designing further experiments, interpreting functional
data, assigning its molecular function to the protein, or as a target for drug
design or even as a tool for solving the experimental structure of the protein
and more. However, the quality of a model dictates its possible applications,
and therefore, the admittedly complex problem of assessing beforehand the
quality of models produced by different methods is of outstanding interest.

The issue is obvious: if one produces a model of a protein of known structure,
the suspicion might arise that, unwittingly, data extracted from that structure
are used in some of the steps of the procedure, and therefore, it would not be
correct to extrapolate the results obtained on a test set composed of proteins
of known structure to proteins of as yet unknown structure. On the contrary,
predicting the structure of a protein for which no structural experimental data
are available does not allow the effectiveness of the method to be assessed in
a reasonable and predictable time frame.

The solution is to predict a protein structure “just in time” that is soon before
the experimental structure of the protein is made available or before any method
had a chance of taking the structure of the protein into account for optimizing
its parameters.

The former strategy is used by the Critical Assessment of Techniques for
protein structure prediction (CASP) experiment (2) and the latter by automatic
evaluation servers such as EValuation of Automatic protein structure prediction
(EVA) (3) and Livebench (4).

We will describe these experiments, give some advice about how to make the
best use of the data they produce, and discuss their problems and limitations.

2. Materials
The models submitted to each of the CASP experiments and data related to

their evaluation are available at http://www.predictioncenter.org. A discussion
forum about most of the issues discussed in this chapter can be found at
http://www.forcasp.org.

The EVA and Livebench automatic evaluation servers make their data
available at http://cubic.bioc.columbia.edu/eva/ and http://bioinfo.pl/meta/
livebench.pl respectively.

3. Methods
Predicting the structure of a protein is both an intellectual challenge and

a practical issue, especially in light of the recent genomics and structural
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genomics efforts. The problem is far from being solved in general terms, but it
can be addressed using several heuristic strategies. During evolution, proteins
tend to preserve their structure. It is therefore possible to derive information
about a protein structure on the basis of the structure of an evolutionarily related
protein, which, in turn, can be identified by sequence analysis [comparative
modeling (CM)] (5). Even when no sequence similarity between two proteins
can be detected, they might share structural similarity. In this case, the problem
is to correctly recognize the compatibility of the sequence of the target protein
with a known fold [fold recognition (FR)] (6,7). Finally, a protein might share
neither sequence nor structural similarity with any known protein [new fold
(NF)], and the prediction of its structure has to rely on different approaches.
In many cases, when an NF is discovered, it is observed that it is composed
of common structural motifs at the fragment or super-secondary structural
level. This prompted the development of methods, known under the name of
“fragment-based” (8,9), which try and assemble fragments of proteins of known
structure to reconstruct the complete structure of a target protein.

4. The Difficulty of Evaluating a Prediction
At first sight, it might seem that the evaluation of the correctness of a model

is a straightforward task once the experimental structure is available, but matters
are not so easy.

First of all, the problem of finding the optimal superposition between two
structures, that is, the superposition that minimizes some “distance” measure,
does not have a unique solution. The difference between two superimposed
structures depends on the fraction of the structures that is superimposed (10).
It is entirely possible that one region of a model is very similar to the corre-
sponding region of the target protein but that the similarity is masked if the
whole structure is taken into account in the structural superposition. In other
words, there is a relationship between the quality of a structural superposition
and the fraction of superimposed structure. The identification of well-predicted
regions not only is an issue related to the evaluation of the model but also
might have important biological implications if they correspond to, say, the
active site of the protein.

Furthermore, the measure traditionally used to evaluate structural similarity,
the rmsd, is a quadratic measure. It is defined as the square root of the squared
differences between the coordinates of corresponding atoms, and therefore, it
will weight more regions that are not well superimposed with respect to the rest.
From a biological perspective, if a region of a protein is incorrectly predicted,
do we really care by how much or would we rather just like to say that the
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predicted and experimental regions are more far apart than it is acceptable
to derive meaningful insights from the model? This implies that the number
of atom pairs of the model and the structure that are within an acceptable
distance threshold is probably a better measure for the task of protein structure
prediction evaluation.

Proteins are not static objects, they have a dynamic behavior and some
regions are more flexible than others. We need to make sure that our quality
measure takes this into account and does not penalize a model if it does not
reproduce correctly regions of the experimental structure that have significant
experimental uncertainty.

Furthermore, proteins are often composed of domains, and an evolutionary
relationship between two proteins can be limited to one of the domains and not
to the overall protein sequence.

5. The CASP Experiment
In 1994, John Moult proposed a world-wide experiment named CASP (2)

aimed at establishing the current state of the art in protein structure prediction,
identifying what progress has been made, and highlighting where future effort
may be most productively focused.

Experimental structural biologists who are about to solve a protein structure
are asked to make the sequence of the protein available, together with a tentative
date for the release of the final coordinates. In the past 13 years, structural
genomics consortia have significantly contributed to the set of CASP targets.

Predictors produce and deposit models for these proteins (the CASP targets)
before the structures are made available. Another experiment, synchronized
with CASP and called CAFASP (4), has been testing publicly available servers
on the same set of targets, providing a unique opportunity for evaluating
how much human expert knowledge is important to obtain better models.
Recently, this task has been taken over by CASP itself (11). For testing server
predictions, sequences are automatically sent to participating servers, and the
models received within a short time frame, 48 h, are collected and stored. These
models are also made available to human predictors, who have more time at
their disposal, to avoid duplication of efforts, because many human predictors
make use of automatic server results in their model-building procedure.

Finally, a panel of three assessors compares the models with the structures as
soon as they are available and tries to evaluate the quality of the models and to
draw some conclusions about the state of the art of the different methods. The
experiment is run blindly, that is, the assessors do not know who the predictors
are until the very end of the experiment.
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Each of the routes to the prediction of a protein structure described before
has traditionally been mirrored by a CASP “category,” evaluated by one of
the three assessors. The categories have some degree of overlap: CM targets
for which evolutionary relationships are very hard to identify before knowing
their structure can also be considered in the FR category; NFs can share some
similarity with existing folds and be considered in both FR and NF categories.
Recently, some modifications have been proposed, and the target categories
will be reduced to two: template based and non-template based; but a special
analysis will be performed on the best models to evaluate the accuracy of
details of protein structure predictions, such as positioning of side chains and
correct prediction of loop structures. The reasons for this rearrangement will
become clear later.

The results of the comparison between the models and the target struc-
tures are discussed in a meeting where assessors and predictors convene; the
conclusions are made available to the whole scientific community through the
World Wide Web and through the publication of a special issue of the journal
“Proteins: Structure, Function, and Bioinformatics.”

There are several other categories that have been introduced in CASP
throughout the years, such as prediction of function, of domain boundaries and
of disordered regions, but we will not discuss them here.

The CASP experiment has been extremely successful. It has been repeated
every 2 years since its first edition, and there is no sign that it is going to be
discontinued in the near future (12). It is a very important experiment, which
has the merit of having raised the issue of objective evaluation of structure
prediction methods, of prompting the development of the automatic assessment
methods that will be described later and of fostering the development of similar
initiatives in other fields such as the prediction of protein—protein interaction,
gene finding, and scientific literature mining.

6. CASP Measures
As we mentioned, there are two problems with the measure of the similarity

between a model and a protein structure: the dependence of the solution on
the fraction of superimposed structure and the quadratic form of the rmsd. One
solution to the first problem is to use a graph such as the one shown in Fig. 1,
where the x-axis indicates the fraction of the model that has been superimposed
to the target structure and the y-axis reports the corresponding rmsd value (or
any other similarity measure) (13).

In the last edition of CASP, there were almost 30,000 submitted 3D models
(14), and it is not possible for any assessor or user to visually inspect all the
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Fig. 1. A plot describing the quality of two predictions in CASP6 for target T0196 (an
hypothetical protein from Pyrococcus furiosus, PDB code 1XE1). The x-axis indicates
the percentage of aligned residues of the target and experimental structure that are
closer than the threshold reported on the y-axis. As it can be seen from the plot, one of
the models (indicated by the thick line) is closer to the experimental structure for about
60% of the structure, whereas the other turns out to be closer when larger fractions of
the modeled and experimental structures are superimposed.

generated plots; so, it is necessary to convert the information into a numerical
value, for example, a rough estimate of the area under the curve. The Global
Distance Test (GDT-TS), used in CASP, is such a measure. It is defined as the
average percentage of C� atom pairs under a distance cutoff of 1, 2, 4, and 8 Å.

This measure is reasonably satisfactory for highlighting the overall quality
of the prediction of the backbone of the protein, but it does not capture the
details of the structure, for example, the correct prediction of the conformation
of side chains. The latter is evaluated using the number of chi angle values
within a threshold (usually set to 30�).

The next problem is related to the experimental uncertainty of the protein
structure. CASP provides data for the complete model structure but also for
subsets including, for example, all atoms that have a B-factor lower than a
threshold (usually 20 Å), residues whose chi angles can be assigned reliably by
X-ray crystallography, residues buried in the core, and so on.

Last but not least, CASP also analyzes the predictions of each domain of the
target proteins separately.

7. The Problem of Evaluating the Overall Performance of a Method
The final aim of CASP is to highlight which methods work better, and

therefore, it is essential to devise a comprehensive measure of the performance
of a method on the basis of the results that the method achieved on several
targets. And here, things get tricky.
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First of all, not all methods are applied or applicable to all CASP targets, and
therefore, a comparison between two methods needs to take into account how
many models have been submitted using that method, but most importantly,
which models. In fact, not all protein structures are equally difficult to predict,
so that the relative difficulty of a target should be taken into account. The same
problem arises when one wants to ask the obvious question of whether there has
been any improvement of the methods in different editions of the experiment:
each experiment has its own set of targets; therefore, the performance in one
edition should be compared to the performance in another one taking into
account the relative difficulties of the targets. The problem, as we will discuss
in the Subheading 8, is a very complex one, but also extremely important for
protein structure prediction evaluation.

8. Evaluating the Difficulty of a Prediction Target
The difficulty of predicting the structure of a given protein can be evaluated a

posteriori, analyzing how well it has been predicted on average. In some cases,
it is also possible to estimate the difficulty a priori. For example, in CM, one
can see how difficult it is to identify the evolutionary relationship between the
target protein and the protein of known structure that can be used as template
for building the model and how easy it is to obtain a reasonable sequence
alignment using standard methods. In FR predictions, one can measure how
strong is the sequence-structure fitness signal. In both cases, one can also
take into account, in evaluating the difficulty of modeling a protein, how well
automatic methods perform the task.

It should be mentioned upfront that none of these strategies is faultless. For
example, a posteriori evaluation cannot be used to compare two different CASP
experiments, because, hopefully, methods have improved during the two inter-
vening years, and the same is likely to be true for sequence alignment methods.
Another effect, even more difficult to take into account, is the increased size
of databases.

Traditionally, the difficulty of producing a comparative model for a protein
has been measured on the basis of the percent of sequence identity or similarity
between the target protein and the protein of known experimental structure
used as template for modeling. However, although this measure takes into
account the structural effect of the accumulation of mutations in the protein, it
is not equally effective for estimating the difficulty of detecting the relationship
and of obtaining a correct sequence alignment, that is, of detecting the right
correspondence between the amino acids of the target and template proteins. In
fact, most methods for the detection of sequence similarities rely on multiple
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sequence alignment, that is, on information provided by many sequences of the
proteins of the same evolutionary family. The increased size of the database
can therefore be directly responsible for the improvement in the detection of
evolutionary relationships and in the sequence alignment step, which are the
essence of the quality of a model.

In CASP, the difficulty of a prediction is estimated on the basis of both
its sequence and structural similarity with the potential templates. The former
is defined as the fraction of structurally aligned residues (within 5 Å) that are
identical between the target and the template, the second as the fraction of
pairs of target–template C� atoms within 5 Å after optimal superposition (15).
When an 1D scale for target difficulty is needed, the average of the two values
described above are used.

Another possibility is illustrated in Fig. 2. The multiple sequence alignment
for each target available at the time of each experiment can be used to calculate
the pair-wise sequence identity between each pair of sequences and to construct
a graph similar to that shown in the figure. Each node represents one of the
sequences in the multiple sequence alignment, and the lengths of the edges are
proportional to the distance (inversely proportional to the percent of identity)
between the connected nodes. The multiple sequence alignment is a path in
the graph that includes all the sequences. In first approximation, the difficulty
of aligning the target and template sequences depends on the availability of
intermediate sequences, and this is determined by the most difficult pair-wise
alignment that we need to perform to go from the target to the template. In other
words, we might end up aligning a target and a template sequence only sharing

Fig. 2. Graph associated with a multiple sequence alignment containing a target
(gray node) and a template (black node). Edges are weighted with the percent identity
between the sequences they connect. Although the target and the template only share 8%
of identical residues, the recruitment of homologous sequences allows to progressively
align pairs of sequences sharing at least 60% sequence identity.
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a very low sequence identity, but we might achieve this by aligning pairs of
very similar intermediate sequences, starting from the target and “jumping”
from one sequence to another until we reach the template much in the same
way as we might cross a large river jumping from one emerging stone to the
next. The difficulty of crossing the river is not proportional to its width but to
the longest jump that we need to make.

Therefore, given all possible paths including target and template, we are
interested in the one(s) where the maximum distance between each pairs of
traversed nodes is minimal. Once such a path is found, the longest edge in the
path, that is, the sequence similarity between the two most diverse sequences
in the path is an estimate of the difficulty of aligning target and template, given
the distribution of sequences in the multiple sequence alignment (16).

This approach gives, in first approximation, a measure of the difficulty of
aligning the target and template sequence for each target in different exper-
iments, given the database available at the time of the prediction, and can
be used to ask whether the alignment of targets and templates of equivalent
difficulty has become more accurate with time. Figure 3 shows a plot of the
percent of correctly aligned residues (a residue is considered correctly aligned
if, after superposition of the experimental and modeled structure, its C� atom
falls within 3.8 Å of the corresponding experimental atom, and there is no other
C� atom of the experimental structure that is nearer) achieved in the last three

Fig. 3. Scatter plot of the alignment quality obtained in the last three editions of the
CASP experiment as a function of the difficulty of the alignment, computed through
the method depicted in Fig. 2.
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CASP experiments for CM targets as a function of the difficulty parameter
defined above.

As it can be seen, there has been no major improvement in methods for
aligning sequences in the most recent CASP editions, and targets of similar
difficulties are aligned with the same level of accuracy. This is somewhat
disappointing and urges for novel ideas in the area.

Traditional methods for CM are based on the assumption that each of the
modeling steps, including template selection, and alignment, can be optimized
separately. It is easy to argue that a better approach would be to optimize all the
parameters simultaneously. Clearly, this is beyond our present computational
capabilities. However, it is worth noting that the most successful groups in
recent CASP experiments used the strategy of constructing several models for
each target protein and selecting the most likely one only at the end of the
complete model-building procedure. In other words, rather than optimizing each
of the steps of the comparative modeling procedure independently, they chose
to also funnel sub- optimal intermediate results into each subsequent step. This
represents a first degree approximation to a full multi-parameter optimization
procedure, and we argue that this type of strategy should be pursued even more
aggressively in the future.

It should also be mentioned, however, that predictors in CASP are not
necessarily in an ideal position to produce the best models because of the time
limitation imposed by the experiment. Also, the fact that the results are public
and very visible might stop predictors from trying “risky” innovations.

9. New Challenges
There is no doubt that modeling methods are extremely powerful. At present,

experimental structures are known for less than 1% of identified proteins,
whereas relatively reliable models can be produced for up to 20% of proteins.
In addition, models play an important part in a number of methods for obtaining
structural data.

On the contrary, genomic efforts are producing the sequences of an
impressive number of proteins, and there is no hope that all of them can be
studied experimentally in the foreseeable future. Scientists do need to rely more
and more on protein models to understand the function of this plethora of
proteins, and, consequently, the required level of accuracy of a model, especially
in the details of the structure, is increasing. CASP has highlighted a number
of substantial improvements in modeling techniques, such as the develop-
ment of FR and fragment-based methods, but, unfortunately, improvements in
accurately predicting the details of a protein structure (such as positioning of
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side chain and of structurally divergent regions, i.e., regions of the target protein
that deviate substantially from the template) have not been equally satisfactory
(12).

The overall conclusion that can be drawn from the analysis of the thousands
of model submitted by hundreds of groups is that, rarely, a comparative model
is closer to the experimental structure than the template used to build it or
to reliably predict structural divergent regions. Furthermore, there seem to be
no method able to consistently improve the accuracy of an initial model. An
important goal is therefore to foster the development of modeling methods
aimed at reaching an accuracy approaching the experimental error (17).

This is the rationale behind the emergence of a new category in CASP,
aimed, as we mentioned, at evaluating the quality of the details of the models
rather than their overall accuracy. It will be included in the next round of the
experiment, and, hopefully, it will be as effective in pushing the field farther
as the other CASP categories have been in the past.

10. Automatic Evaluation Servers
CASP is aimed at evaluating the state of the art in prediction methods;

however, not all experimentalists interested in obtaining a model of their protein
of interest have access to collaborations with outstanding modeling groups. The
most common route to prediction for the majority of scientists relies on publicly
available automatic servers. It is clearly important to evaluate the accuracy of
these servers on a large set of data and in a continuous fashion.

This need has prompted the development of automatic systems that contin-
uously evaluate automatic prediction methods. They collect the predictions
returned by different servers for new protein structures before any method had
a chance to use them in the training set.

EVA (3) is one of the servers that performs this useful service to the
community. Every day, EVA downloads the newest protein structures from the
Protein Data Bank (PDB) archive (18), extracts the sequences for every protein
chain, and sends them to each prediction server registered for the experiment.
The collected results are then evaluated and made public.

EVA covers several methods that predict solvent accessibility, secondary
structure, and complete 3D modeling. The proteins used in the experiment are
such that no pair of them has more than 33% identical residues over more than
100 residues aligned.

Another continuous benchmarking server is Livebench (19) that limits itself
to the evaluation of 3D models of proteins not sharing a significant sequence
similarity (and therefore deemed to be non-homologous) to any protein of
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known structure. Every week, new entries in the PDB database with a length
comprised between 100 and 500 residues are submitted to participating servers
and their returned predictions collected and analyzed.

The results of both servers, together with some statistical evaluation of
their significance, are publicly available through Internet, and they represent
extremely useful tools that should be consulted before using any prediction
server.

The possibility of automatically collecting the results of several prediction
servers also prompted the development of the so-called metapredictors (20).
These are gateways to various methods for protein structure prediction, which
“outsource” the prediction task to publicly available servers, collect the results,
and evaluate them. Some metapedictors just score the predictions and provide
the user with a ranked list, whereas some others combine the predictions
returning a single model. They usually perform better than single servers and
probably represent the best solution to automatic prediction of protein structure
as of today.

11. State of the Art of Structure Prediction Methods: The Usefulness
of Protein Models

We said in the introduction that the quality of a model dictates its usefulness
for several applications. As we discussed, estimating the quality of a model is
not an easy task. However, some rules of thumb can still be provided, with the
caveat that they are just indications and that each protein modeling experiment
has a story of its own.

Comparative models built on the basis of a significant sequence identity
between target and template, above 50–60% are certainly accurate in their
overall structure and can be reliably used to analyze the conserved regions
of the protein, such as its active site. As we mentioned, apart from special
cases (21), the predictions of structurally divergent regions is likely of being
much less accurate than the rest of the protein, and it is rather risky to derive
biological conclusions from their conformation (22). For very high sequence
identity, above 90%, there are usually very few structurally divergent regions,
but here, the devil is in the positioning of the side chains. It has been shown
that even models of high accuracy would fail if used as targets for drug design
because the positioning of the side chain would not be sufficiently accurate (23).

For comparative models, a user should always take into account that
the accuracy of the model is not uniform throughout the structure and that
functionally important regions are likely to be better conserved, at least for
orthologous proteins, than the rest of the structure. Comparative models based
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on distant evolutionary relationships have been often instrumental in deriving
functional properties of the protein, because these are usually brought about by
the most conserved parts of the structure, which, in turn, are those predicted
more accurately (24).

Models based on low sequence identity (below 30%), FR methods, and
fragment-based methods should only be used as structural frameworks to think
about the protein and certainly not for deriving detailed measures of distances
or energies. Remember that, if the model is built by comparative modeling, we
can at least be sure that the overall topology of the protein is correct, whereas
this might or might not be true for fold recognition and fragment-based models.
In these cases, only experimental verifications of the features predicted by the
model can increase the confidence in a model.

Models can also be used for speeding up the experimental determination of
a protein structure. For example, models with a GDT-TS value above 84 are
consistently able to solve the phase problem in crystallography, that is, to be
used as a tool to estimate the phases of the X-ray diffracted waves, a major
problem in X-ray crystallography (25). Models can also be useful in speeding
up the solution of the structure of proteins by nuclear magnetic resonance
spectroscopy.

The impressive thrust of biological and computational methods makes it very
difficult to predict what we can expect even in the near future. Nevertheless,
more and more protein sequences and structures will become available, and
there is no doubt that the sheer power of the data will help building more
accurate protein structure models. On the contrary, if we look at the history
of the past few years, we cannot but expect that new prediction methods will
appear. It follows that the possibility of exploring the complete space of protein
structure is, finally, within our reach.
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