
Dipartimento di Informatica
Università degli Studi di Verona

Rapporto di ricerca
Research report

RR 88/2012
July 2012

Multi-Platform Design of
Smartphone Applications

Giulio Botturi
Davide Quaglia

Questo rapporto è disponibile su Web all’indirizzo:
This report is available on the web at the address:
http://www.di.univr.it/report

In 1969 a 2 Mhz processor (Apollo Guidance Computer) took us to the
moon. Nowadays, a 1Ghz processor does not seem enough to send an

e-mail. In computer science, and in everyday life, low resources require
smart solutions!

ii

Contents

Introduction vii

1 Smartphones 1

1.1 Applications . 2

1.2 Graphical User Interface and User Interaction 3

2 Mobile Application Development 5

2.1 Development Environment . 5

2.2 Application Design . 5

2.2.1 The Portability Problem 8

2.3 Android Platform . 8

2.3.1 Application Structure 9

2.3.2 Activity . 10

2.3.3 Manifest and Resources 12

2.4 Windows Phone Platform . 13

2.4.1 Application Structure 14

2.4.2 Pages . 14

2.4.3 Manifest and Security 16

2.5 Other platforms . 17

3 Model Driven Architecture 19

3.1 Unified Modeling Language 21

3.1.1 Structural Diagrams 21

3.1.2 Behavioral Diagrams 22

3.2 Object Constraint Language 23

3.3 Models and Metamodeling . 24

3.4 OMG’s Standards for Metamodeling 24

3.5 Model Transformations . 25

3.6 The UML Extension Mechanisms 27

3.6.1 Stereotypes and Tagged Values 28

iii

iv CONTENTS

4 Goals 29

5 Proposed Methodology 31
5.1 Platform Independent Model 32

5.1.1 Class Diagram . 33
5.1.2 Enumerations . 35
5.1.3 Object Diagram and GUI Layout 36
5.1.4 Statechart Diagram and Screen Transitions 40

5.2 Platform Specific Model . 44
5.3 Transformations and Rules . 44
5.4 PIM to Android-PSM Transformation 48

5.4.1 Structure Transformation 48
5.4.2 GUI Layout Transformation 51

5.5 PIM to WindowsPhone-PSM Transformation 56
5.5.1 Structure Transformation 56
5.5.2 GUI Layout Transformation 59

5.6 Code Generation . 63
5.7 Android Code Generation . 64
5.8 Windows Phone Code Generation 69
5.9 Computational Analysis . 72

6 Experimental Validation 75
6.1 Application Example . 75

6.1.1 The Platform Independent Model 76
6.2 Evaluation Metrics . 77
6.3 Comparison with Traditional Implementation 78

6.3.1 Android . 78
6.3.2 Windows Phone 7 . 84
6.3.3 Graphical Comparison 86

7 Conclusions 89
7.1 Future Work . 90

A Tables 93

B Figures 95

C Code Listings 103

List of Figures

1.1 Worldwide Smartphone Sales to End Users by Operating Sys-
tem in 2Q11, according to Gartner [1] 2

2.1 WindowsPhone7 software emulator 6

2.2 Traditional software development life cycle 7

2.3 The Android Activity lifecycle 11

3.1 MDA software development life cycle 20

3.2 A class diagram . 21

3.3 An use case diagram . 22

3.4 Models, languages and metalanguages 24

3.5 Overview of layers M0 to M3 26

3.6 Stereotypes definition and application on the Transition ele-
ment of the Statechart Diagram 28

5.1 Block diagram of the proposed methodology 32

5.2 UML Profile for Platform Independent Model 34

5.3 Sample Class Diagram for application structure 36

5.4 The Listbox widget in iOS, Android and WindowsPhone . . . 37

5.5 Sample Object Diagram for GUI Layout 37

5.6 Linear Layout . 38

5.7 Relative Layout . 39

5.8 Sample Statechart Diagram 40

5.9 Back button software implementation on iOS 41

5.10 Screens Stack and Back button default behavior 43

5.11 Screens Stack and Back button redirection 43

5.12 UML Profile for Android PSM 45

5.13 UML Profile for WindowsPhone7 PSM 46

6.1 PIM Class Diagram . 77

6.2 Comparison of the GUI Layout 87

v

vi LIST OF FIGURES

B.1 PIM Object Diagram - part 1 96
B.2 PIM Object Diagram - part 2 97
B.3 PIM Object Diagram - part 3 98
B.4 PIM - Statechart Diagram . 99
B.5 Android PSM - Class Diagram 100
B.6 Windows Phone PSM - Class Diagram 101

Introduction

Technological advancement in the miniaturization of integrated circuits has
made possible the realization of small and smart devices, which we can find in
everyday objects. These devices provide computational capabilities compa-
rable to those that only a decade ago were offered by the high-level personal
computers, and great progresses have been made in terms of size and energy
consumption. An example of a device that has benefited from these pro-
gresses was definitely the mobile phone. Since the introduction of the Global
System for Mobile Communications (GSM), mobile phones have needed more
digital computing power, to perform the task for which they were born. The
evolution of this device, favored by its widespread use, has transformed it
into a tool that integrates advanced features: from the ability to send text
messages up to connect to the Internet. The availability of sufficient comput-
ing power and data storage, has made it possible to extend these capabilities
to the installation of small operating systems, typically closed and propri-
etary. Consequently, the development of software has become an important
aspect of these “smart” phones.
After a more detailed description of smartphones and their potentiality in
Chapter 1, the Chapter 2 deals with the development of mobile applica-
tions, explaining the common approach proposed by the major producers
of development environments. It also focuses on the portability problem of
the application code because there are several different smartphones, each
of whih has different embedded software. The Chapter 3 introduces the
Model-Driven Design, a software development process driven by the activity
of modeling the software system at two main levels of abstraction: platform
independent and platform specific. The key idea is the creation of a model of
the application, that is independent from a specific software platform. The
Platform Independent Model is designed to capture all the structural and
behavioral aspects of application, and will be introduced in Chapter 5. The
chapter goes on explaining the proposed methodology to transform the inde-
pendent model in several models, that are specific to a particular platform.
The last step of this process is the generation of the application code for

vii

viii INTRODUCTION

each specific target platform. In this way it is possible to realize the basic
structure of an application, starting by its abstract description, common to
each smartphone platform. The Chapter 6 presents the experimental valida-
tion. First, a sample application has been modeled at platform-independent
level. Subsequently, the transformation and code-generation rules have been
applied. Finally, the obtained code has been compared with the same appli-
cation, previously developed for Android and Windows Phone. In the end,
the Chapter 7 reports considerations on the obtained results and the main
difficulties encountered.

Chapter 1

Smartphones

Smartphones are high-end mobile phones that the user must be able to han-
dle easily with one hand. At the same time, they must have a display large
enough to reproduce rich Graphical User Interfaces. Operating System pro-
vides advanced Application Programming Interfaces (APIs) that allow run-
ning third-party applications with high integration with hardware and system
functionalities. Typically, smartphones include high-resolution touchscreens,
web browsers that can access and properly display standard web pages rather
than just mobile-optimized sites, and high-speed data access via Wi-Fi and
mobile broadband. Furthermore, device internal storage capacity can often
be expanded by a memory card slot, that allow users to store a big quan-
tity of application data (for example multimedia file, such as music or photo
taken by the integrated camera). These devices must be pocket-size, and
therefore sufficiently slim and small. At the same time, they must integrate
a battery large enough to feed the integrated cpu, the display and all the
other embedded functionality.
Today, all the major producers of mobile phone devices also offer smart-
phones, differentiated by quality, features and price. The offer is therefore
very wide, and each manufacturer chooses which platform (or more than one)
to adopt on their devices. Figure 1.1 shows the market shares of the different
smartphone software platforms, often developed by the same devices manu-
facturers, on the market today.
Despite this variety of platforms, it is possible to recognize many key concepts
about smartphones and smartphone applications. Next sections collects all
this concepts in order to identify terminology and elements to talk about
smartphone applications independently from a specific platform.

1

2 CHAPTER 1. SMARTPHONES

Figure 1.1: Worldwide Smartphone Sales to End Users by Operating System
in 2Q11, according to Gartner [1]

1.1 Applications

The opportunity to develop user applications is a key feature for each smart-
phone platform and it is the main difference between smartphones and feature
phones. The latters, indeed, typically come with a proprietary Operating
System not ready to the installation of third-party applications.
The so-called ”apps” are almost always programmed in an Object Oriented
programming language, like Java, C-Sharp or ObjectiveC, and they are char-
acterized by some basic elements.

• A list of permissions to access device features (integrated camera, ex-
ternal storage) and system functionality (network stack). During the
installation phase the system informs the user what resources the ap-
plication needs to access to.

• Application code

• A description (often in eXtensible Markup Language1) of the GUI lay-
out for each screen.

• A table of resources externalized from application code, like images
and strings. Externalizing resources brings many benefits. Indeed, it
allows to provides alternative resources that support specific device con-
figurations such as different languages or screen sizes, which becomes

1http://www.w3.org/XML/

1.2. GRAPHICAL USER INTERFACE AND USER INTERACTION 3

increasingly important as more devices become available with different
configurations.

Finally, when an application is ready to be distributed, developers can release
them in online App Store, often managed by smartphone OS vendors them-
selves. Typically, the application may be released only after a registration
fee and, in some cases, after an assessment of quality.

1.2 Graphical User Interface and User Inter-

action

Usually a smartphone application involves a number of screens, composed
by a set of widgets, with which users can interact in order to perform several
tasks.

Screens are the way the application presents its own features. One of
them is specified as the ”main” Screen, which is presented to the user when
it launches the application for the first time. Each screen can then start
another screen in order to perform different actions.

Widgets are the basic elements of a graphical user interface, like user
controls in traditional desktop computer GUI. They are very standardized,
and an experienced user on a particular platform can easily switch on a
concurrent platform finding the same graphical components. The look and
feel can be different and customized, but widgets are the same as well as the
way to interact with them.

The simplest form of interaction is the touch of the screen with one finger.
Multi-touch gesture is a very good example of advanced interaction, and
refers to a feature employed by almost all touchscreen devices to perform
various actions:

• A one-finger swipe is used to move one object between two points

• A pinch refers to pinching together the thumb and finger, and is used
to zoom out on an image.

• and many others

A user who tries any smartphone expects to interact in this way, because it
is very intuitive and commonly used.

4 CHAPTER 1. SMARTPHONES

Chapter 2

Mobile Application
Development

Mobile application development is the process by which application software
is developed for small handheld devices such as mobile phones, smartphones
or tablet computers. Such devices are based on a mobile operating system
that manages and controls the device resources, like in a classical pc architec-
ture, with some differences due to limitations in power consumption, memory
usage and computational power. Despite these differences, the development
of mobile user applications involves the use of tools and development envi-
ronments typical of the programming on personal computers.

2.1 Development Environment

The typical development environment includes the compiler, the debugger
and several tools to manage large project and design graphical user interfaces
more efficiently. When the target architecture is different from that on which
we develop, there is the necessity of an emulator. Software Development Kit
(SDK) comes with a target device software emulator, the essential tool that
allows us to run and test applications as if we were using the physical device.
In fact, emulator also reproduces the physical buttons, device features and
functionality, such as network stack or external storage, and can simulate
incoming calls.

2.2 Application Design

The software development process as we know it today is often driven by low-
level design and coding. The typical process, as illustrated in 2.2, includes a

5

6 CHAPTER 2. MOBILE APPLICATION DEVELOPMENT

Figure 2.1: WindowsPhone7 software emulator

2.2. APPLICATION DESIGN 7

Figure 2.2: Traditional software development life cycle

number of phases:

• Conceptualization and requirements gathering

• Analysis and functional description

• Design

• Coding

• Testing

• Deployment

During phasis 1-3 we produce documents and diagrams that guides the sub-
sequent steps, in an incremental and iterative manner. Changes are often
done at the code level only, because the time to update the diagrams and
other high-level documents is not available.

8 CHAPTER 2. MOBILE APPLICATION DEVELOPMENT

2.2.1 The Portability Problem

The first three phases of software development allows us to think the applica-
tion for a generic mobile device, while coding testing and deploying strictly
depend on a specific device. So a long and difficult design work should
be forked into three branches of implementation and testing, one for each
target platform. In fact, reaching a wide audience of users makes it neces-
sary to develop your application for the most popular operating systems for
smartphones on the market, such as Google’s Android, Apple’s iOS, Nokia’s
Symbian, Microsoft’s Windows Phone and so on. In the next sections we
introduce in details two of these smartphone platforms (and briefly discuss
others), in order to identify the common traits of the different environments
and development approaches.
This analysis will address the study of a development methodology that takes
account of these commonalities, focusing on modeling the application inde-
pendently from the target device and automating the porting to different
platforms. The main alternative to this approach to the portability problem,
is the use of a cross-platform middleware. The middleware poses itself be-
tween the below device platform and the application presented to the user.
This involves running the middleware program, that translates and repro-
duces the platform-independent description of the application, with a poten-
tial decrease in performance. This also requires the end user to install the
translation software, to run applications. Two examples of these middleware
are PhoneGap1 (open source) and MonoTouch2 (commercial).

2.3 Android Platform

Android3 is a Linux-based operating system for mobile devices such as smart-
phones and tablet computers, and it is developed by the Open Handset Al-
liance4 led by Google. Android consists on a kernel based on Linux, a mid-
dleware for communications and key applications, including the web browser
and the file manager. Developers can download for free the software devel-
opment kit (SDK), that includes compiler, debugger and the Eclipse plugin
to work more efficiently in the Integrated Development Environment. The
SDK also provides a software emulator for ARM-based mobile devices. Al-
ternatively, applications can be run directly on the physical device connected
via USB cable to the develop machine.

1http://phonegap.com/
2http://xamarin.com/monotouch
3http://www.android.com
4http://www.openhandsetalliance.com/

2.3. ANDROID PLATFORM 9

The language used to program Android applications is Java, with a cus-
tomized class library that bind to some system components (comunication
middleware, device camera and audio, ecc). Android uses the Dalvik Virtual
Machine with just-in-time compilation to run Dalvik dex-code (Dalvik Exe-
cutable), which is usually translated from Java bytecode. Each application
lives in its own security sandbox (runs on a separated Dalvik Virtual Ma-
chine), to secure the system from malicious code. A good starting point to
the study of this platform is [2].

2.3.1 Application Structure

The Android SDK tools compile the code, along with any data and resource
files, into a package, an archive file with the .apk suffix. All the code in
a single .apk file is considered to be one application and is the file that
Android-powered devices use to install the application.

The main component of an android application is the Activity, which rep-
resents a single screen with an user interface.

A package consists of:

• Class files
All the java files that program the behavior of application

• Resources files
An Android application is composed of more than just code. It requires
resources that are separated from the source code, such as images and
anything relating to the visual presentation of the application. For
example, you should define menus and the layout of activity user in-
terfaces with XML files

• XML manifest file
The application must declare all its components in this file. The man-
ifest file also:

– identifies any user permissions the application requires

– declare hardware and software features used or required by the
application

With the SDK can be written different kind of applications, such as user
applications or services (for instance, a background application that waits
for remote connections). We focus our attention on those applications that
involve also the design of a Graphical User Interface (GUI).

10 CHAPTER 2. MOBILE APPLICATION DEVELOPMENT

2.3.2 Activity

An Activity is a basic application component that provides a screen with
which users can interact in order to, for instance, dial the phone or send an
email.

An activity can exist in essentially three states:

• Resumed - The activity is in the foreground of the screen and has user
focus

• Paused - Another activity is in the foreground and has focus, but this
one is still visible

• Stopped - The activity is completely obscured by another activity

The complete activity lifecycle schema is depicted in Figure 2.3. If an activity
is paused or stopped, the system can drop it from memory either by asking
it to finish (calling its finish() method), or simply killing its process.

Activity code and layout are separated into java classes and XML files. To
implement an activity, a class that extends Activity must be created. This
new class should contain a private variable for each widget expected in the
screen and override some callback methods that allow the managing of the
activity life cycle.

The overridden method onCreate is invoked when activity is first cre-
ated and should initialize the private widget variables by calling the func-
tion FindViewById(). This function returns a reference to the widget name
passed as parameter. Other important overridable methods are:

• onDestroy()
Called before the activity is destroyed

• onResume
Called just before the activity starts interacting with the user

Listing 2.1: Sample Activity Class File
1 import it.univr.mapnavigator.R;
2 import android.app.Activity;
3 import android.view.View;
4 import android.view.View.OnClickListener;
5 import android.widget.ImageButton;
6

7 public class MainActivity extends Activity implements OnClickListener {

2.3. ANDROID PLATFORM 11

Figure 2.3: The Android Activity lifecycle
5

12 CHAPTER 2. MOBILE APPLICATION DEVELOPMENT

8 private ImageButton buttonOpen;
9 ...

10

11 @Override
12 public void onCreate(Bundle savedInstanceState) {
13 super.onCreate(savedInstanceState);
14 setContentView(R.layout.mapnav main);
15 setTitle(”MapNavigator”);
16 buttonOpen = (ImageButton) findViewById(R.id.imageButtonOpen);
17 buttonOpen.setOnClickListener(this);
18 }
19

20 public void onClick(View v) {
21 switch (v.getId()) {
22 case R.id.imageButtonOpen:
23 ...
24 break;
25 }
26 }
27 }

The screen layout is described by an XML file, as the following:

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <RelativeLayout xmlns:android=”http://schemas.android.com/apk/res/android”
3 android:layout width=”fill parent”
4 android:layout height=”fill parent”
5 android:weightSum=”1” android:orientation=”vertical”>
6 <ImageButton android:layout height=”wrap content”
7 android:src=”@drawable/mappa”
8 android:id=”@+id/imageButtonOpen”
9 android:layout alignParentLeft=”true”

10 android:layout marginLeft=”51dp”
11 android:layout marginTop=”28dp”>
12 </ImageButton>
13 <TextView android:id=”@+id/textView1”
14 android:textAppearance=”?android:attr/textAppearanceMedium”
15 android:layout width=”wrap content”
16 android:text=”@string/labelApriMappa”
17 android:layout toRightOf=”@+id/imageButtonOpen”
18 android:layout marginLeft=”18dp”
19 </TextView>
20 </RelativeLayout>

2.3.3 Manifest and Resources

Every application must have the AndroidManifest.xml file in its root direc-
tory. The manifest presents essential information about the application to
the Android system, information the system must have before it can run any
of the application code. Manifest must contains the following elements:

• the package name that serves as a unique identifier for the application,

• the set of components of the application, such as activities, services
and so on,

2.4. WINDOWS PHONE PLATFORM 13

• permissions the application must have in order to access protected parts
of the API and interact with other applications.

Listing 2.2: Sample AndroiManifest.xml
1 <?xml version=”1.0” encoding=”utf−8”?>
2 <manifest xmlns:android=”http://schemas.android.com/apk/res/android” android:versionCode=

”1” android:versionName=”1.3” package=”it.univr.mapnavigator”>
3 <uses−sdk android:minSdkVersion=”8” />
4 <uses−permission android:name=”android.permission.WRITE EXTERNAL STORAGE”/>
5 <uses−permission android:name=”android.permission.CAMERA”/>
6 <uses−permission android:name=”android.permission.INTERNET”/>
7 <uses−feature android:name=”android.hardware.camera”/>
8 <application android:icon=”@drawable/mappa2” android:label=”@string/app name”>
9 <activity android:name=”mapnavigator.activity.MainActivity” android:label=”@string/

app name” android:screenOrientation=”portrait”>
10 <intent−filter>
11 <action android:name=”android.intent.action.MAIN” />
12 <category android:name=”android.intent.category.LAUNCHER” />
13 </intent−filter>
14 </activity>
15 <activity android:name=”mapnavigator.activity.FileChooserActivity” android:label=”@string/

sceglimappa” android:screenOrientation=”portrait”/>
16 <activity android:name=”mapnavigator.activity.NavigatorActivity” android:launchMode=”

singleTask” android:theme= ”@android:style/Theme.NoTitleBar.Fullscreen”></activity>
17 <activity android:name=”mapnavigator.activity.CameraActivity” android:screenOrientation

=”portrait”/>
18 </application>
19 </manifest>

Resources are arranged in xml files contained in /res directory. Here’s a
brief summary of some resource type:

• Drawable define various graphics with bitmaps,

• Layout define the layout of application UI,

• Menu define the contents of application menus,

• String define strings and string arrays (and include string formatting
and styling).

Android assigns a constant to each resource. This constant allows direct
access to the resource within the application code.

2.4 Windows Phone Platform

In 2010 Microsoft presented Windows Phone 7 (WP7 from now on), his new
operating system for smartphone. WP7 is radically different from previous

14 CHAPTER 2. MOBILE APPLICATION DEVELOPMENT

versions, which had a Graphical User Interface modeled on those of desk-
top versions, not suitable for modern touchscreens. Microsoft, like Google,
provides a Software Development Kit to allow developers to design, compile,
debug and deploy their own applications. The SDK comes with the Windows
Phone Emulator, a desktop application that emulates a Windows Phone de-
vice. Emulator provides a virtualized environment in which applications can
be debugged and tested without the physical device.

Windows Phone is based on a set of technologies:

• .Net Framework and the main language of the framework, C-Sharp

• Extensible Application Markup Language (XAML)

• Silverlight, the application framework that provides a retained mode6

graphics system similar to Windows Presentation Foundation7 (used
for desktop GUI), and integrates multimedia, graphics, animations and
interactivity into a single runtime environment. In Silverlight appli-
cations for Windows Phone, user interface is declared in XAML and
programmed using a subset of the .NET Framework.

2.4.1 Application Structure

The structure is similar to that seen in Android. Application code is sep-
arated, as usual, from the GUI description, that is coded into XAML files.
Resources table is quite different, and can includes only images, strings or
generic files embedded in the application package.

2.4.2 Pages

The different screens of the application are represented by a number of Pages.
Each page is defined by a class that extends PhoneApplicationPage. This
class is splatted into two partial classes by VisualStudio8 IDE, hiding to
developer some methods and internal variables.

6Retained mode rendering is a style for application programming interfaces of graphics
libraries, in which the libraries retain a complete model of the objects to be rendered

7http://msdn.microsoft.com/en-us/library/aa970268.aspx
8Microsoft Visual Studio is an integrated development environment (IDE) from Mi-

crosoft. It is used to develop console and graphical user interface applications along with
Windows Forms applications, web applications, web services and smartphone application
in both native code together with managed code for all platforms supported by Microsoft
Windows, Windows Phone, .NET Framework, .NET Compact Framework and Microsoft
Silverlight.

2.4. WINDOWS PHONE PLATFORM 15

Listing 2.3: A page class
1 using System;
2 using System.Windows;
3 using System.Windows.Controls;
4 using Microsoft.Phone.Controls;
5

6 namespace MapNavigator {
7 public partial class MainPage : PhoneApplicationPage {
8 public MainPage() {
9 InitializeComponent();

10 }
11

12 private void buttonOpen Click(object sender, RoutedEventArgs e) {
13 NavigationService.Navigate(new Uri(”/ResourcesPage.xaml”, UriKind.Relative));
14 }
15 }
16 }

Listing 2.4: Parzial class hidden to developer
1 namespace MapNavigator {
2 public partial class MainPage : Microsoft.Phone.Controls.PhoneApplicationPage {
3 internal System.Windows.Controls.Grid LayoutRoot;
4 internal System.Windows.Controls.StackPanel TitlePanel;
5 internal System.Windows.Controls.TextBlock ApplicationTitle;
6 internal System.Windows.Controls.Grid ContentPanel;
7 internal System.Windows.Controls.Button buttonOpen;
8 internal System.Windows.Controls.TextBlock textBlock1;
9

10 private bool contentLoaded;
11

12 [System.Diagnostics.DebuggerNonUserCodeAttribute()]
13 public void InitializeComponent() {
14 if (contentLoaded) return;
15 contentLoaded = true;
16 System.Windows.Application.LoadComponent(this, new System.Uri(”/MapNavigator;

component/MainPage.xaml”, System.UriKind.Relative));
17 this.LayoutRoot = ((System.Windows.Controls.Grid)(this.FindName(”LayoutRoot”)));
18 this.TitlePanel = ((System.Windows.Controls.StackPanel)(this.FindName(”TitlePanel”)));
19 this.ApplicationTitle = ((System.Windows.Controls.TextBlock)(this.FindName(”

ApplicationTitle”)));
20 this.ContentPanel = ((System.Windows.Controls.Grid)(this.FindName(”ContentPanel”)));
21 this.buttonOpen = ((System.Windows.Controls.Button)(this.FindName(”buttonOpen”)));
22 this.textBlock1 = ((System.Windows.Controls.TextBlock)(this.FindName(”textBlock1”)));
23 }
24 }
25 }

Hidden code is auto-generated (before compilation phase) by a tool, based
on the description of the GUI Layout. This is the code that at run time
initializes GUI components, combined with private local variables that refers
to them. The explicit function (like FindViewByID seen in paragraph 2.3.2)
to obtain a reference to a GUI component is FindName().

The screen layout is described by an XAML file, as the following:

1 <phone:PhoneApplicationPage
2 x:Class=”MapNavigator.MainPage”

16 CHAPTER 2. MOBILE APPLICATION DEVELOPMENT

3 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>
4

5 <!−−LayoutRoot is the root grid where all page content is placed−−>
6 <Grid x:Name=”LayoutRoot” Background=”Transparent” ShowGridLines=”False”>
7 <Grid.RowDefinitions>
8 <RowDefinition Height=”Auto”/><RowDefinition Height=”∗”/>
9 </Grid.RowDefinitions>

10 <StackPanel x:Name=”TitlePanel” Grid.Row=”0” Margin=”12,17,0,28”>
11 <TextBlock x:Name=”ApplicationTitle” Text=”MAP NAVIGATOR” Style=”{

StaticResource PhoneTextNormalStyle}”/>
12 </StackPanel>
13 <Grid x:Name=”ContentPanel” Grid.Row=”1” Margin=”12,0,12,0”>
14 <Button Height=”100” HorizontalAlignment=”Left” Margin=”70,97,0,0” Name=”

buttonOpen” VerticalAlignment=”Top” Width=”100” Click=”buttonOpen Click
”>

15 <Button.Background>
16 <ImageBrush ImageSource=”/MapNavigator;component/Images/misc gift 48.

png” />
17 </Button.Background>
18 </Button>
19 <TextBlock Height=”30” HorizontalAlignment=”Left” Margin=”220,134,0,0”

Name=”textBlock1” Text=”Apri mappa” VerticalAlignment=”Top” Width=”
174” />

20 </Grid>
21 </Grid>
22 </phone:PhoneApplicationPage>

2.4.3 Manifest and Security

Every application must have the AndroidManifest.xml file in its root di-
rectory, and it presents essential information required in application startup
phase. Furthermore, when applications are submitted to the Windows Phone
Marketplace, information from the manifest file is used in the certification
process.
App element (at line 3 in the following example) supplies information such
as the product ID, version, and type of application.

Listing 2.5: Sample WMAppManifest.xml
1 <?xml version=”1.0” encoding=”utf−8”?>
2 <Deployment xmlns=”http://schemas.microsoft.com/windowsphone/2009/deployment”

AppPlatformVersion=”7.0”>
3 <App xmlns=”” Title=”MapNavigator” RuntimeType=”Silverlight” Version=”1.0.0.0” Genre

=”apps.normal”
4 Author=”MapNavigator author” Description=”Sample description” Publisher=”MapNavigator”

>
5 <IconPath IsRelative=”true” IsResource=”false”>ApplicationIcon.png</IconPath>
6 <Capabilities>
7 <Capability Name=”ID CAP NETWORKING”/>
8 <Capability Name=”ID CAP WEBBROWSERCOMPONENT”/>
9 </Capabilities>

10 <Tasks>
11 <DefaultTask Name =” default” NavigationPage=”MainPage.xaml”/>
12 </Tasks>
13 <Tokens>
14 <PrimaryToken TokenID=”MapNavigatorToken” TaskName=” default”>

2.5. OTHER PLATFORMS 17

15 <TemplateType5>
16 <BackgroundImageURI IsRelative=”true” IsResource=”false”>Background.png</

BackgroundImageURI>
17 <Count>0</Count>
18 <Title>MapNavigator</Title>
19 </TemplateType5>
20 </PrimaryToken>
21 </Tokens>
22 </App>
23 </Deployment>

Capabilites element, reported in sample code 2.5 al line 6, collects all the
permissions that the application needs in order to access the system network
stack and run the default web browser.

2.5 Other platforms

Android and Windows Phone, although based on different technologies and
languages, are very similar because they shares application structure e devel-
opment approach. Other platforms adopt a similar development schema, and
following are reported some considerations about some of them. iOS (iPhone
OS prior to June 2010) is Apple’s mobile operating system. Apple does not
license iOS for installation on non-Apple hardware, and the official Software
Development Kit runs only on Mac OS X operating system. Objective C is
the Object Oriented language used to program the applications, while the
UI Layout is described separately, according to the schema seen for android
and Windows Phone. The scenario of the most recent Symbian platform
is instead dominated by the QT9 library, a cross-platform application and
UI framework. Even in this case, the QT framework works taking separate
the description of the graphical interface, by binding interactions with the
elements that compose the GUI to the application code written in C.

9http://qt.nokia.com/products/

18 CHAPTER 2. MOBILE APPLICATION DEVELOPMENT

Chapter 3

Model Driven Architecture

The Model Driven Architecture1 (MDA) is a framework for software devel-
opment defined by the Object Management Group2. Key to MDA is the
importance of models in the software development process. Within MDA
the software development process is driven by the activity of modeling your
software system. The MDA development life cycle does not look very differ-
ent from the traditional one, but the major differences lies in the nature of
the artifacts that are created during the developement process. The artifacts
are formal models, i.e., models that can be understood by computers. The
following three concepts are at the core of the MDA.

Platform Independent Model PIM is a model of software system that
is independent of the specific technological platform used to implement it.

Platform Specific Model PSM is a model of a system targeted to a
specific execution environment linked to a specific technological platform.
This model is indispensable for the actual implementation of a system.

Model transformation For each specific technology platform a separate
PSM is generated from the PIM.

MDA therefore divides software development in three main steps:

• creation of the Platform Independent Model,

• transformation of Platform Independent Model in Platform Specific
Model,

1http://www.omg.org/mda/
2http://www.omg.org

19

20 CHAPTER 3. MODEL DRIVEN ARCHITECTURE

Figure 3.1: MDA software development life cycle

• generation of Software (code).

The MDA’s idea borns with the evolution of visual modelization lan-
guages, such as UML. MDA is specifically intended to provide a conceptual
framework, as comprehensive as possible, for a model-based approach to de-
velopment. Often the purpose of modeling is simply intended to provide
formal documentation of the application and everything that is “not pro-
gramming” is still seen with suspicion. On the contrary the development
by models should allow greater focus on providing solutions to challenging
problems of development.

The basis for model development is the Unified Modeling Language, a
formal language that can describe “what” makes the application, even before
understanding “how” it does.

3.1. UNIFIED MODELING LANGUAGE 21

Figure 3.2: A class diagram

3.1 Unified Modeling Language

UML is a standardized general-purpose modeling language consisting of a
family of graphical notations, that help to describe and to design software
systems. UML diagrams represent two different views of a system model,
static and dynamic, that covers structural and behavioral aspects.

Follows a brief description of the major and useful diagrams. For a com-
plete discussion of Unified Modeling Language see UML Distilled [3] and
UML explained [4].

3.1.1 Structural Diagrams

Structural diagrams show static structure of the system and its parts on
different abstraction and implementation levels, and how those parts are
related to each other. The elements in a structural diagram represent the
meaningful concepts of a system, and may include abstract, real world and
implementation concepts.

Class Diagram shows structure of the designed system at the level of
classes and interfaces, shows their features, constraints and relationships -
associations, generalizations, dependencies, etc.

22 CHAPTER 3. MODEL DRIVEN ARCHITECTURE

Figure 3.3: An use case diagram

Object Diagram is a graph of instances, including objects and data val-
ues. An object diagram is an instance of a class diagram; it shows a snapshot
of the detailed state of a system at a point in time

Component Diagram shows components and dependencies between them.
These diagrams are useful when we divide the system in components and
want to show their interrelationships trough interfaces.

3.1.2 Behavioral Diagrams

Behavioral diagrams depict behavioral features of a system or business pro-
cess. They capture the varieties of interaction and instantaneous state within
a model as it “executes” over time.

Use Case Diagrams are a technique for capturing the functional require-
ments of a system. They can be used to describe a set of actions (use cases)
that some systems should or can perform in collaboration with one or more
external users (actors).

State Machine Diagram shows discrete behavior of a part of designed
system through finite state transitions. Behavior is modeled as a traversal of

3.2. OBJECT CONSTRAINT LANGUAGE 23

a graph of state nodes connected with transitions. Transitions are triggered
by the dispatching of series of events and, during the traversal, the state
machine could also execute some activities.

Activity Diagram shows flow of control or object flow with emphasis on
the sequence and conditions of the flow. The actions coordinated by activity
models can be initiated because other actions finish executing or because
objects and data become available.

Sequence Diagram shows how processes operate with one another and in
what order. A sequence diagram shows object interactions arranged in time
sequence. It depicts the objects and classes involved in the scenario and the
sequence of messages exchanged between the objects needed to carry out the
functionality of the scenario. Sequence diagrams typically are associated with
use case realizations in the Logical View of the system under development.

3.2 Object Constraint Language

Object Constraint Language (OCL) is an expression language that enables
one to describe constraints on object-oriented models and other object mod-
eling artifacts. UML has some weak points in the behavioral or dynamic part.
It includes many different diagrams to model dynamics, but their definition
is not formal and complete enough to describe how to transform a PIM in a
PSM and cover all behavioral aspects in a precise manner. OCL is a precise
text language that provides constraints and object query expressions on any
MOF model or meta-model that cannot otherwise be expressed by diagrams.
OCL can also used for the following purposes:

• Specifying initial attribute values

• Specifying guard conditions in statecharts

• Specifying constraints between elements of different diagrams

• Specifying the derivation rules for attributes or associations

For more details on OCL language refer to The Object Constraint Lan-
guage, Precise Modeling with UML [5].

24 CHAPTER 3. MODEL DRIVEN ARCHITECTURE

Figure 3.4: Models, languages and metalanguages

3.3 Models and Metamodeling

A model is a description of a system written in a well-defined language, that
is a language suitable for automated interpretation by a computer. Because
modeling languages do not have to be text based (they can have a graphical
syntax, as we have seen in section 3.1), it is necessary a different mechanism
for defining languages in the MDA context. This mechanism is called meta-
modeling, and this argument is discussed in Chapter 8 in [6].
Every kind of element that a modeler can use in his model is defined by the
metamodel of the language the modeler uses. Because a metamodel is also
a model, metamodel itself must be written in a well-defined language. This
language is called metalanguage. Backus-Naur Form (BNF), a grammar to
define languages, is an instance of metalanguage.

In MDA framework a metalanguage plays a different role than a modeling
language, because it is a specialized language to describe modeling language.
The metamodel completely defines the language. Figure 3.4 shows the rela-
tionship between a model, its language and the metalanguage.

3.4 OMG’s Standards for Metamodeling

As seen in the previous section, a metalanguage is a language itself and it can
be defined by a metamodel written in another metalanguage. In theory there
is an infinite number of layers of model-language-metalanguage relationships.
The standards defined by the OMG use four layers.

Layer M0: The instances At the M0 layer there is the running system
in which the actual (“real”) instances exist.

3.5. MODEL TRANSFORMATIONS 25

Layer M1: The Model of the System This layer contains, for example,
a UML model of the system and defines concepts like Customer with the
properties name, street, city There is a relationship between the M0 and M1
layers, and the concepts at the M1 layer are all classifications of instances at
the M0 layer.

Layer M2: Model of the Model The elements that exist at the M1 layer
(classes, attributes, and other model elements) are themselves instances of
classes at M2, the next higher layer. An element at the M2 layer specifies the
elements at the M1 layer. The model that resides at the M2 layer is called
a metamodel. Every UML model at the M1 layer is an instance of the UML
metamodel as defined in UML 2.0 Specification [7].

Layer M3: The Model of M2 This is a metameta layer and between
elements of M2 and M3 exists the same relationship that is present between
elements of layers M0 and M1, and elements of layers M1 and M2. Layer
M3 defines the concepts needed to reason about concepts from layer M2.
MetaObject Facility3 (MOF) is the standard M3 language defined by OMG.
All modeling languages (like UML) are instances of the MOF.

Figure 3.5 summarizes the relationships between the layers.

Another important OMG’s standard is XML Metadata Interchange (XMI)
that can be used to exchange any metadata whose metamodel can be ex-
pressed in MOF. The most common use of XMI is as an interchange format
for UML models, although it can also be used for serialization of models of
other languages (metamodels).

3.5 Model Transformations

A transformation is the generation of a target model from a source model.
The process is described by a transformation definition, which consists of a
number of transformation rules, and is executed by a transformation tool. A
transformation rule maps an element from the source model to the specific
one (or more than one) in the target model. It also can add attributes or
relations between elements in the target model, depending on the purpose of
the transformation.

3http://www.omg.org/mof/

26 CHAPTER 3. MODEL DRIVEN ARCHITECTURE

Figure 3.5: Overview of layers M0 to M3

3.6. THE UML EXTENSION MECHANISMS 27

In MDA approach there are a number of features of the transformations
process that are desirable:

• Traceability, which means that an element in the target model must
be traced back to the element(s) in the source model from which it is
generated

• Incremental consistency, which means that when target-specific in-
formation has been added to the target model and it is regenerated,
the extra information persists.

• Bidirectionality, which means that a transformation can be applied
not only from source to target, but also back from target to source.

3.6 The UML Extension Mechanisms

UML provides a lightweight extension mechanism by defining custom stereo-
types, tagged values and constraints. UML Profiles Diagrams allow adapta-
tion of the UML metamodels for different platforms or domains. For example,
semantics of standard UML metamodel elements could be specialized in a
profile. In a model with the profile “Java model” generalization of classes
should be able to be restricted to single inheritance.
The profiles mechanism is not a first-class extension mechanism. It does not
allow to modify existing metamodels or to create a new metamodel as MOF
does. Profile only allows adaptation or customization of an existing meta-
model with constructs that are specific to a particular domain, platform, or
method.

Profiles can be dynamically applied to a model and in general is charac-
terized by one or more of the following elements:

• rules that specify when a model of the profile should be considered “well
formed”. These rules take the form of additional constraints (respects
to those defined by the UML standard) which restrict the possibilities
of use and composition of the language elements,

• stereotypes, tagged value and constraints in addition to those present
in the UML standard,

• additional semantic information (natural language) for the elements of
UML which is permitted in the context of the profile,

• a set of default model elements, instance of the UML standard con-
structs.

28 CHAPTER 3. MODEL DRIVEN ARCHITECTURE

(a) (b)

Figure 3.6: Stereotypes definition and application on the Transition element
of the Statechart Diagram

3.6.1 Stereotypes and Tagged Values

A stereotype is an extension of a standard language construct. Stereotypes
are one of the basic mechanisms to define specialized versions of UML for
particular contexts. In particular it defines how an existing metaclass may
be extended as part of a profile. They appear in UML diagrams as text labels
in angle brackets, as shown in Figure 3.6.

Chapter 4

Goals

This thesis is focused on the study of a Model-Driven approach to the smart-
phone applications design. The analysis outlined in chapters 1 and 2 has led
to highlight the commonalities between several smartphone software plat-
forms. Establishing a development methodology based on Model Driven
Design involves the following goals.

1. Definition of a UML profile for the creation of the Platform Indepen-
dent Models of smartphone applications, according to the Model Driven
Architecture. Using elements and diagrams of UML as metamodel, it
is possible to give a representation of the application structure and
behavior, thus creating a model that is independent from any specific
platform. Profile is needed to provide a set of classes, constraints,
and relations to describe structural (for example, GUI layout) and be-
havioral (transitions between application screens) aspects. All these
elements are described by UML metamodel, and represent an abstrac-
tion of all the structural and behavioral elements that can be found on
all platforms.

2. Detailed description of model transformations to obtain Platform Spe-
cific Models. One transformation is needed for each target platform,
and this step is crucial to get an automated procedure implementable
in a tool. A transformation defines the rules to map a platform inde-
pendent element (for instance, a widget class provided by UML profile)
in the specific one in the target platform.
PIM and PSM are not only a representation of the application struc-
ture (screens, widgets and GUI layout), but also a basic UML model
that can be developed and integrated, like in a typical UML design.
So, developer can insert in PIM (as well as in PSM) other classes, at-

29

30 CHAPTER 4. GOALS

tributes and methods useful for the application functionality and logic.
All these classes should be reported, by the transformation, in PSM.

3. Generation of the application code from the Platform Specific Model.
Many UML tools already allow code generation from class diagrams,
but in this case the task is more complex, because we should generate
code from behavioral diagrams. Furthermore, the code to be gener-
ated concerns not only methods signature and class structure, but also
blocks of code that implement specific functionality, such as screen tran-
sitions. These blocks can be generated by parameterized templates of
code.

4. Quality assessment of a sample application obtained by model transfor-
mations and code generation, by comparison with the same application
realized via traditional (and totally manual) development approach. To
achieve this purpose it is necessary to define some evaluation metrics,
highlighting the pros and cons of the proposed methodology.

Chapter 5

Proposed Methodology

This chapter introduces a methodology to implement the Model Driven De-
sign approach to the development of smartphone applications. In particular
the aim is to design the structural aspect of the application, such as the
Graphical User Interface and the structure of classes that govern the applica-
tion logic, and the behavioral aspect, namely the management of transitions
between the screens of the GUI in response to user interaction and system
events.
This design must be done thinking independently by a particular software
platform, reasoning with the elements and characteristics of smartphone ap-
plications. The subsequent transformation from the abstract model to the
various specific models for each target platform must be implementable by
an automated tool. Finally, this tool must be able to generate the applica-
tion code (classes, method signatures and some blocks of code), avoiding the
developer to write repetitive code.
The proposed methodology refers to the development of the most common
type of smartphone applications. Typically “apps” involves a number of
screens, composed by a set of witgets, with which users can interact in order
to perform different tasks. Other applications that require advanced graphics
or customized widgets, like games, cannot be abstracted from the specific tar-
get platform. These applications are not covered in this discussion because
of their specific nature.

With regard to extensibility and flexibility, the Model-Driven Design is not
a monolithic process. It is separated in three main steps, each of which can be
taken as a base to integrate and reuse external code and models. Indeed, at
each level (platform independent, platform specific, and application code) it
is possible to extend the application model with previously designed classes,
or to integrate the generated application code with other code already devel-

31

32 CHAPTER 5. PROPOSED METHODOLOGY

Figure 5.1: Block diagram of the proposed methodology

oped. This is especially useful in PSM, where we can model class libraries for
specific and complex functionality that the application can take advantage.
In this way it is also possible, at the platform-specific level, to reuse parts
of an application previously modeled for a specific platform, for example,
the GUI Layout of some Windows Phone Pages. The process is therefore
not stand-alone, but it allows the integration with what already exists and
that has not been previously modeled thinking independently from a specific
platform. Figure 5.1 schematically summarizes this scenerario.

5.1 Platform Independent Model

The first step is to define the language, that is the metamodel, with which to
describe the PIM. One possibility is to realize a specific metamodel to “talk
about” elements and concepts of the application domain. Instead the choice
was to adopt the whole UML metamodel 1 and specify a Profile Diagram
to provide classes, interfaces and other artifacts to describe the Platform
Independent Model. This choice was made necessary because PIM is not
just a representation of the structure of the application, but also a basic

1http://www.omg.org/technology/documents/modeling spec catalog.htm

5.1. PLATFORM INDEPENDENT MODEL 33

model that developers can integrate with other classes or methods, like in a
typical UML design.

The UML Profile for Platform Independent Model provides the following
elements:

• A list of Widget Classes, each of which represents a particular Widget
that can be found in every smartphone platform. All these classes ex-
tends an abstract class Widget, that has a set of attribure that describe
the position on the screen. Developer can specializes a widget class in
order to design a custom widget class.

• A class Screen, that represents a single screen of the GUI

• Menu and Submenu classes. Menu, indeed, are not considered widgets
because they cannot be placed freely in the screen, but typically they
are managed directly by the system.

• A stereotype ScreenTransition applicable to the element Transition
of the UML metamodel in a StateChart Diagram.

• A list of Enumerations that represent user-defined data types. They are
useful for those attributes which are bound to particular and significant
values.

Figure 5.2 depicts the entire proposed UML Profile.
The next sections discuss the use of three UML diagrams, each of which

constitutes a fundamental element in the model to represent structural and
behavioral aspects of the application.

5.1.1 Class Diagram

Class Diagram defines the structure of the smartphone application. A num-
ber of classes represent the basic elements of Graphical User Interface, such
as screens, widgets and menu. Other classes collect information about ap-
plication (title, permissions, version) and the abstract device. Table A.1
summarizes the classes provided by Profile.
For each screen, a class that extends the abstract class Screen, must be added
to the model. The following attributes characterize an application screen:

• widgets collects all the widgets that make up the GUI

• orientation specifies screen orientation (landscape or portrait)

34 CHAPTER 5. PROPOSED METHODOLOGY

Figure 5.2: UML Profile for Platform Independent Model

5.1. PLATFORM INDEPENDENT MODEL 35

• fullScreen specifies whether the screen should cover the system menu
and the entire display

• layout specifies the layout of the widgets on the screen. A Linear
layout places each widgets in a new line, instead Relative layout places
widgets relative to the others that are around. Section 5.1.3 clarifies
how to manage GUI Layout.

• menu links the current screen to an instance of the class Menu, that
represents a Menu and its submenu.

The class Application collects, in addition to general information, the
list of resources that the application needs to access. Device resources are
quite standard on every platform, and refer to:

• Personal Information Manager - information like messages, personal
contacts, calendar and so on

• Network communication - the protocol stacks, such as IP or Bluetooth

• Device Camera - the integrated camera that allows the user to take
photos and record video

• ExternalStorage - additional memory cards for expand device storage
capacity

• Phone - outgoing and incoming phone calls

The developer can treat the PIM as is usual in UML design. Other custom
classes, not falling in those supplied by the Profile, can enrich the diagram.
These classes do not represent domain-specific elements, but contribute to
enrich the model in order to design the application features and logic.

5.1.2 Enumerations

In the UML profile there are four Enumerations, useful for those attributes
which are bound to particular and significant values:

1. OrientationEnum [Landscape, Portrait] refer to the orientation of
the device

2. ResourcesEnum [PIM, Network, Camera, ExternalStorage] lists the
resources that the application needs to access.

36 CHAPTER 5. PROPOSED METHODOLOGY

Figure 5.3: Sample Class Diagram for application structure

3. ScreenLayoutEnum [Linear, Relative] indicates the layout of the
widgets in a screen.

4. SpecialButtonEnum [back, home] is used by the stereotype Screen-
Transition in StateChart Diagram, explained in section 5.1.4

5.1.3 Object Diagram and GUI Layout

Graphical User Interface is a critical aspect of smartphone application, and
implementing a model that is independent of a specific platform is an hard
task. The proposed UML profile comes with a set of widget classes that can
be found in all the major smartphone platforms. Classic widgets can be di-
vided in command widget (Button or ImageButton), input widget (Textbox,
Textarea), output widget (Label, Imagebox), structured widget (Listbox)
and other widgets like Checkbox and Progressbar. Each platform also takes
custom widgets that cannot be generalized. This is a limitation to the design
of the GUI, but it is a good starting point to generate the graphical interface
structure for each target platform. Subsequently, it can be expanded and
adapted to specific needs (whenever custom widgets are needed), but having
already designed and reasoned about its features. Figure 5.4 shows a sample
implementation, on different platforms, of the Listbox widget.

The proposed Platform Independent Model of Screen GUI adopts two lay-
out type:

5.1. PLATFORM INDEPENDENT MODEL 37

(a) (b) (c)

Figure 5.4: The Listbox widget in iOS, Android and WindowsPhone

Figure 5.5: Sample Object Diagram for GUI Layout

38 CHAPTER 5. PROPOSED METHODOLOGY

Figure 5.6: Linear Layout

• The relative layout in which each widget can specifies the other wid-
gets that has around itself (above, below, right, left). The attributes
marginLeft, marginRight, marginTop and marginBottom are the only
ones that must be obligatorily specified, and they represent the dis-
tances between the widgets. So, a widget can be placed specifing its
distance from the top-left corner of the screen, leaving empty above,
bottom, toLeftOf and toRightOf attributes, or specifing the distance
from other widgets.

• The simple Linear layout, that places all widgets one below the others,
according to the order in which they appear in the attribute widget of
the class Screen

In Relative layout the following two recursive functions can be used to
compute, from the PIM layout representation, the absolute coordinates of
the top-left corner of a widget:

getX(w) =

{
w.marginLeft if w.toRightOf undefined
w.marginLeft + getX(w.toRightOf) otherwise

getY (w) =

{
w.marginTop if w.above undefined
w.marginTop + getY (w.above) otherwise

5.1. PLATFORM INDEPENDENT MODEL 39

Figure 5.7: Relative Layout

Different smartphones can have different screen resolutions. In the PIM it
is necessary to choose a reference resolution and a reference screen density.
A good choise is HVGA resolution (320x480) at 160pdi, adopted by several
entry-level and mid-level smartphones. Other smartphones can have a higher
density, e.g. 240dpi. Density-independent pixel (dp) is virtual pixel unit
that can be used when defining UI layout, to express layout dimensions or
position in a density-independent way. The density-independent pixel is
equivalent to one physical pixel on a 160 dpi screen, which is the baseline
density assumed for a “medium” density screen. The conversion of dp units
to screen pixels is simple: px = dp ∗ (dpi/160). All the coordinates used in
Platform Independent Model are expressed in term of density-pixel unit, and
refer to the HVGA screen resolution and to the screen density of 160dpi.

To describe the screen layout it is necessary to instantiate screen and widget
classes, and to set the attributes to the appropriate values. To do so, UML
Object Diagram can be used to describe relationships between screens
and widgets. Once specialized the screen class and selected the widgets
composing the GUI, the corresponding widget classes must be instantiated
with the appropriate attributes values.
To make the diagram suitable for processing by automated rules, certain
conventions must be respected.

1. The Instance Specification of each class specializing the class Screen

must be linked, by the Dependency Association,

40 CHAPTER 5. PROPOSED METHODOLOGY

Figure 5.8: Sample Statechart Diagram

• to each Instance Specification of widgets composing the UI of the
screen

• to the Instante Specification of the menu (if there is one) compos-
ing the UI of the screen

2. Each Instance Specification of a Submenu belonging to a Menu M , must
be linked by the Dependency Association to the Instance Specification
of M .

3. Each Instance Specification of a ListboxItem belonging to a Listbox

L, must be linked by the Dependency Association to the Instance Spec-
ification of L.

4. No other Dependency Association must be used

5.1.4 Statechart Diagram and Screen Transitions

Once defined the structure of the application, it is usefull to describe the
interactions that the user can done with the Graphical User Interface. Ev-
ery application have a main screen, which is presented to the user when it
launches the application for the first time. Next, user can perform a task
that involves to interact with many different screens.
The transition between two screens can happen as a result of certain events:

5.1. PLATFORM INDEPENDENT MODEL 41

Figure 5.9: Back button software implementation on iOS

1. A Click or Touch event raised by a widget. The user interacts with
a widget on the current screen. Each widget can react to the user’s
“touch” action

2. Invocation of a particular class method that explicitly performs the
transition.

3. The user presses a special device button, like “Home” or “Back” but-
ton. Almost all smartphones has two special button: Home to put the
application in background and to show the main system screen, and
Back to return to the previous screen. iPhone is a special case. It has
only one button, a clean and minimalist style. Nevertheless, the Back
button is typically implemented in the GUI, as shown in figure 5.9.

4. A Click or Touch event raised by a submenu of a screen menu.

Furthermore, whenever a system event happens, the application can react
performing a specific action. Common system events are, for instance, the
low battery alert or incoming call alert. Usually these events are managed
by an event handler, and they fall in the second case of the previous list.

UML Statechart Diagram can be used to model Screens and their Tran-
sitions. It is a representation of a Finite State Machine where:

42 CHAPTER 5. PROPOSED METHODOLOGY

• a state is the union of all configurations of a screen class,

• the initial state is the main Screen of the application,

• the oriented arc from state A to state B represents the transition from
screen A to screen B,

• the input are the union of current-screen class methods, current-screen
widgets and special buttons,

• no output is defined,

• the set of final states are not defined.

The sequence of screen transitions can be seen as a stack. Whenever the
user performs a screen transition, the system puts the target screen on the
stack, as shown in figure 5.10. An implicit oriented arc between states A
and B, labeled with “Back button” input, is added whenever an oriented arc
exists between states B and A. The default behavior of Back button removes
from the stack che current screen and put in foreground the previous screen.
Developer can alter the default behavior intercepting the pressure of the back
button, to performing a different screen transition. In this case, an oriented
arc, labeled with “Back button” input, must be explicitly added to the graph.
Figure 5.11 shows the stack modifications after Back button redirection.

UML Statechart Diagram allows developer to set, on the transition, the
name of the method that triggers the transition itself. Instead stereotype
ScreenTransition should be applied to the UML Transition element, in order
to specify whenever the transition happens after pressing a special button or
after user interaction with a widget. To do so, Stereotype ScreenTransition
provides three tagged values:

• widgets: Widget[0..*]

• submenu: [Submenu [0..*]

• specialButton: SpecialButtonEnum [0..1]

Transition guard can be expressed by OCL constraint. The context of
OCL expressions used in Statechart Diagram must be the package that con-
tains all elements of the PIM. So, expressions can refer to public variables
and methods of all classes in the model. The discussion about the translation
of OCL boolean expression into java (CSharp, ObjectiveC) code is beyond
the scope of this thesis and, in the section illustrating the Code Generation,
the details will be omitted.

5.1. PLATFORM INDEPENDENT MODEL 43

(a)

(b)

Figure 5.10: Screens Stack and Back button default behavior

Figure 5.11: Screens Stack and Back button redirection

44 CHAPTER 5. PROPOSED METHODOLOGY

Figure 5.8 reports a sample Statechart diagram with three state. Transi-
tion from MainScreen to ScreenA fires after touch event on widget button1.
Transition from MainScreen to ScreenB fires after touch event on widget
button2, only if the OCL expression ’mainScreen.var > 10’ holds. Fi-
nally, transition from ScreenB to ScreenA fires after the class method invo-
cation.

5.2 Platform Specific Model

The metamodel, or equivalently the language, chosen to describe the Plat-
form Specific Model is once again UML. But it is not the only, because in
PSM it is necessary to separate GUI layout from the other parts of appli-
cation structure. Indeed, every platform adopts its own language to repre-
sent screens layout, typically a markup language such as XML (eXtensible
Markup Language). Figure 5.1 highlights this separation and reports the
diagrams used to describe the application structure and application behav-
ior (Class Diagram and Statechart Diagram), and the languages to describe
GUI layout, one for each platform. These markup languages may be con-
sidered metalanguages, as seen in section 3.3. For example, Xaml Object
Mapping Specification [8] reports the metamodel specification of XAML (eX-
tensible Application Markup Language), used in WindowsPhone platform.
PSM must also includes the model, represented by the appropriate and spe-
cific metalanguage, of the manifest file, where required.
Another UML Profile must be defined for each target platform, in order to
provide the fundamental platform-specific set of classes and interfaces, the
stereotype for transitions in UML Statechart Diagram and the appropriate
OCL contraints. Figures 5.12 and 5.12 depict respectively Android and Win-
dowsPhone UML Profile. For convenience, in the figure were not reported
all attributes and all methods of the classes, but only those most significant.

5.3 Transformations and Rules

Model transformations represent the core of Model-Driven Design. A trans-
formation consists of a set of rules that map a source model element in the
specific one (or more than one) of the target model, and should meet the
three principles seen in section 3.5: traceability, incremental consistency and
bidirectionality. The main purpose of the next two sections is the definition
of the set of rules that carry out the transformations, in order to make it
possible the algorithmic implementation of the transformations. The rules

5.3. TRANSFORMATIONS AND RULES 45

Figure 5.12: UML Profile for Android PSM

46 CHAPTER 5. PROPOSED METHODOLOGY

Figure 5.13: UML Profile for WindowsPhone7 PSM

5.3. TRANSFORMATIONS AND RULES 47

work on UML metamodel elements (Generalization association, Interface re-
alization, Instance Specification, Dependency relationship and so on), make
use of syntactic constructs such as For each or Exists and tables mapping
PIM elements into PSM elements.
To make more accurate, concise and understandable the rules it is useful to
introduce some sets, definitions and notations:

• Generalization association from class A to class B is an UML associa-
tion that links the specific class A to the generic class B. Namely, B
generalizes the class A and A specializes the class B.

• Interface realization of interface I by class C is an UML specialized
type of implementation relationship between a classifier and a provided
interface.

• Instance Specification I of a class C, is an element that represents an
instance of the class C from the Class Diagram. Instance Specification
uses slots to show the attributes of the object. Each slot corresponds
to a single attribute or feature, and may include a value for that entity.

• Dependency relationship from an Instance Specification I1 to another
Instance Specification I2 is called, in UML, a supplier-client relation-
ship, where supplier provides something to the client, and thus the
client is in some sense incomplete while semantically or structurally
dependent on the the supplier element

• WIDGETS = {w|w is a widget class of PIM }. The set collects all
widget classes of the PIM

• Dot notation X.attr is used to refer to an instance specification slot, a
class attribute or a XML tag attribute.

• The notation [...], inside a block of code, represent a parameterized
field.

48 CHAPTER 5. PROPOSED METHODOLOGY

5.4 PIM to Android-PSM Transformation

The next sections describe in detail the rules implementing the transforma-
tion from PIM to Android Platform Specific Model. Rules 1-7, reported in
section 5.4.1, perform the transformation of the Class Diagram, and gen-
erate the new Class Diagram, the android manifest file and the resources
file String.xml. Rules 8-13, reported in section 5.4.2, perform the trans-
formation of the Object Diagram, and generate, for each screen composing
the application, the XML layout file. They also generate Android resource
file for each menu of the Screens, and other specific layout files, such as the
layout file for the ListView entries. Finally, the following rule performs the
transformation of the UML Statechart Diagram:

Statechart Diagram Transformation

• Copy all states, transitions and the initial pseudo-state in the new PSM
Statechart Diagram.

• For each Transition from state Q1 to state Q2, on which is applied the
ScreenTransition stereotype, apply the ActivityTransition stereotype to
the Transition counterpart element in the PSM Statechart Diagram.

• Map the content of the tagged values in the source Stereotype to the
respective tagged values in target Stereotype of type String.

This mapping is necessary because in PIM the tagged values of stereotype
ScreenTransition refer to Instance Specification elements, no longer present
in PSM, because the Object Diagram has been transformed in XML Layout
files.

With regard to the adaptation of the layout to different screen resolutions,
Android transparently handles any scaling of the dp units, as necessary, based
on the actual density of the screen in use. In this way it ensures proper
display of your UI on screens with different densities. For this reason the
coordinates of the widget can be copied from PIM to Android-PSM, without
any conversion.

5.4.1 Structure Transformation

1. Initialization
Create a new Class Diagram and apply to it the Android-PSM UML
Profile.

5.4. PIM TO ANDROID-PSM TRANSFORMATION 49

2. ProfileClass Mapping
This rule maps a PIM class in the Android specific one.

PIM Android PSM
Widget View
Screen Activity
Label TextView
Textbox EditView
Button Button
Checkbox CheckBox
ImageBox ImageView
ProgressBar ProgressBar
Listbox ListView

3. ResourcePermissions Mapping
This rule maps a PIM resource permission in the Android specific one.

PIM Android PSM
Camera android.permission.CAMERA
ExternalStorage android.permission.WRITE EXTERNAL STORAGE
PIM android.permission.READ CONTACTS

android.permission.WRITE CONTACTS
Network android.permission.INTERNET

4. Structure Mapping

• Add, to the Class Diagram, the classes Activity, View and the
interfaces OnClickListener and OnItemClickListener.

• For each Generalization association from class X to class Screen,
add the class X to the target Class Diagram. Link class X,
by the Generalization association, to the class Activity. Link
class X, by Interface realization relationship, to the interface
OnClickListener. Copy attributes and methods from the source
classes, applying the rule ProfileClass Mapping to each at-
tribute, method parameter and method return value.

• For each Generalization association from class X to class W ,
where W ∈ WIDGETS, map, by ProfileClass Mapping rule,
the class W to the Android specific one and add it to the tar-
get Class Diagram. Add the class X to the PSM and link it, by
the Generalization association, to the Android counterpart class

50 CHAPTER 5. PROPOSED METHODOLOGY

of widget W . Finally, copy attributes and methods from the class
X, applying the ProfileClass Mapping rule to each attribute,
method parameter and method return value.

• For each class C, where C /∈ WIDGETS ∪ { Screen, Menu, Sub-
menu, Application, AbstractDevice, ListboxItem }, add a new
class named C in PSM Class Diagram, and copy attributes and
methods from the class C, applying the ProfileClass Mapping
rule to each attribute, method parameter and method return value.

• For each Interface realization of interface I by class C, where I /∈ {
onClickListener, onItemClickListener } add a new interface
I and link it, by Interface realization, to class C in PSM.

5. Interfaces Implementation
For each Instance Specification I of class W , where W = Listbox,
if exists a Dependency relationship from instance specification S to
instance specification I, where S is an instance of a class P specializing
Screen, then link the class P , by Interface realization relationship, to
the interface OnItemClickListener.

6. Resources File Create the String.xml file, that will contain the
string-resources of the application. The first string that the file must
contain is the application name, retrieved from the title attribute2 of
the Application class.

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <resources>
3 <string name=”app name”>[application title]</string>
4 </resources>

7. Manifest File
Let I the instance of the class Application in the Object Diagram.
Create the file AndroidManifest.xml, starting with the following XML
code:

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <manifest xmlns:android=”http://schemas.android.com/apk/res/android”
3 package=”univr.[I.title]”
4 android:versionCode=”1”
5 android:versionName=”[I.version]” >
6 <uses−sdk android:minSdkVersion=”9”/>

followed by the declaration of the resource permissions list, retrived
from the resources attribute of the class Application, and translated
by the rules ResourcePermissions Mapping

2Refer to the Instance Specification of the class in Object Diagram

5.4. PIM TO ANDROID-PSM TRANSFORMATION 51

1 <uses−permission android:name=”android.permission.CAMERA” />
2 <uses−permission android:name=”android.permission.INTERNET”/>
3 ...

followed by the list of the Activity. For each Generalization association
from class S to class Screen, add the following tag:

1 <activity android:name=”[I.package].activity.[S]”/>

5.4.2 GUI Layout Transformation

8. Layout Initialization
For each Instance specification I of class C, where C specializes Screen
class, create an XML file with the same instance name I, and .xml

suffix, starting with the following code:

1 <?xml version=”1.0” encoding=”utf−8”?>

9. String Externalization

• Let T = {Label, Textbox, Button, Checkbox, Menu}
For each Instance Specification I of class C, where C ∈ T , if
exists a Dependency relationship from instance specification S to
instance specification I, where S is an instance of the classScreen,
then append to the String.xml file, created by Resources File
rule, the tag:

1 <string name=”[S] [I] text”>[I.text]</string>

• For each Instance Specification SM of class Submenu, if exists a
Dependency relationship from instance specification M to instance
specification SM , where M is an instance of the classMenu, then
append to the file String.xml, created by the Resources File
rule, the tag

1 <string name=”[M] [SM] text”>[SM.text]</string>

• For each Instance Specification I of class Listbox, if exists a De-
pendency relationship from instance specification S to instance
specification L, where S is an instance of the classScreen, then
append to the file String.xml, created by Resources File rule,
the following tag

1 <string−array name=”[S] [I] items”>
2 ...
3 </string−array>

52 CHAPTER 5. PROPOSED METHODOLOGY

containing a tag <item> for each Dependency relationship from
instance specification I to instance specification Q, where Q is an
instance of the class ListboxItem

1 <item>[Q.text]</item>

10. Screen Attributes Mapping
For each Instance specification I of class S, where S specializes Screen
class, map each slot reported in the following table to the corresponding
Android XML attribute in the tag<Activity>, previously created in
the file AndroidManifest.xml by the rules Manifest File:

Screen AndroidManifest.xml
orientation android:screenOrientation attribute of the tag

<activity>

1 <activity android:name=”name”
2 android:screenOrientation=”[I.orientation]”/>

title android:label attribute of the tag <activity>

1 <activity android:name=”name”
2 android:label=”[I.title]”/>

fullscreen [true] android:theme attribute of the tag <activity>

1 android:theme=”@android:style/Theme.NoTitleBar.Fullscreen”

fullscreen [false] nothing to map

and append, to the XML layout file correspoding to the screen S, the
Android-XML tag that maps the attribute layout:

5.4. PIM TO ANDROID-PSM TRANSFORMATION 53

layout slot Screen Layout XML File
Linear append the tag <RelativeLayout>

1 <RelativeLayout xmlns:android=”http://schemas.android.com/apk/res/
android”

2 android:layout width=”fill parent”
3 android:layout height=”fill parent”
4

5 </RelativeLayout>

Relative append the tag <LinearLayout>

1 <LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
2 android:layout width=”fill parent”
3 android:layout height=”fill parent”
4 android:orientation=”vertical”>
5

6 </LinearLayout>

11. Screen Layout Mapping
For each Dependency relationship from instance specification I1 to in-
stance specification I2, where I1 is an instance of a class S specializing
Screen and I2 is an instance of a class W ∈ WIDGETS, append to
the XML layout file of the screen S the Android-XML tag that maps
the widget W :

Widget Android XML tag
Label <TextView android:id="@+id/[I2]">

Textbox <EditView android:id="@+id/[I2]">

Button <Button android:id="@+id/[I2]">

Checkbox <Checkbox android:id="@+id/[I2]">

Imagebox <ImageView android:id="@+id/[I2]">

Progressbar <Progressbar android:id="@+id/[I2]">

Listbox <Listview android:id="@+id/[I2]">

12. Widget Attributes Mapping
For each Instance Specification I of class W , where W ∈ WIDGETS,
if exists a Dependency relationship from instance specification S to
instance specification I, where S is an instance of a class P specializing
Screen, then map the slots of instance specification I to the appropriate
Android XML attributes, according to the following tables.

Attribute Android XML Value format
width android:layout width

height android:layout height

54 CHAPTER 5. PROPOSED METHODOLOGY

and if the slot layout of instance specification S is equal to Relative

Attribute Android XML Value format
above android:layout above @+id/[I.above]dp
below android:layout below @+id/[I.below]dp
toLeftOf android:layout toLeftOf @+id/[I.toLeftOf]dp
toRightOf android:layout toRightOf @+id/[I.toRightOf]dp
marginTop android:layout marginTop [I.marginTop]dp
marginBottom android:layout marginBottom [I.marginBottom]dp
marginLeft android:layout marginLeft [I.marginLeft]dp
marginRight android:layout marginRight [I.marginRight]dp

13. Widget-Specific Attributes Mapping
For each Instance Specification I of class W , where W ∈ WIDGETS,
if exists a Dependency relationship from instance specification S to in-
stance specification I, where S is an instance of a class P specializing
Screen, then map the slots of instance specification I to the appropri-
ate Android XML attributes, according to the following tables.
Mapping table for the widgets Label, Textbox, Checkbox and Button:

Attribute Android XML Value format
text android:text @string/[S] [I] text

Mapping table for Progressbar widget

Attribute Android XML
maxValue android:max

Mapping table for the Listbox widget:

Attribute Android XML Value format
items android:entries @array/[S] [I] items

Mapping table for the Imagebox widget:

Attribute Android XML Value format
imageSource android:src @drawable/[imageSource]

14. Menu Mapping

5.4. PIM TO ANDROID-PSM TRANSFORMATION 55

• For each Instance Specification S of class Screen, if exists a De-
pendency relationship from instance specification S to instance
specification M , where M is an instance of the class Menu, then
create an XML file named [S] menu.xml, starting with the fol-
lowing code:

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <menu xmlns:android=”http://schemas.android.com/apk/res/android”>
3 <item android:id=”@+id/[S] main menu”
4 android:title=”@string/[S] [M] text”>
5 <menu> ... </menu>
6 </item>
7 </menu>

• For each Dependency relationship from instance specification M
to instance specification SM , where SM is an instance of the
Submenu class, add the XML tag <item>.

1 <item android:id=”@+id/[S] [SM]”
2 android:title=”@string/[M] [SM] text”/>

56 CHAPTER 5. PROPOSED METHODOLOGY

5.5 PIM to WindowsPhone-PSM Transfor-

mation

The next sections describe in detail the rules implementing the transforma-
tion from PIM to Windows Phone 7 PSM. Rules 1-5, reported in section
5.5.1, perform the transformation of the Class Diagram, and generate the
new Class Diagram and the manifest file of the application. Rules 6-11, re-
ported in section 5.5.2, perform the transformation of the Object Diagram,
and generate, for each screen composing the application, the corresponding
XAML layout file. Finally, the following rule performs the transformation of
the UML Statechart Diagram:

Statechart Diagram Transformation

• Copy all states, transitions and the initial pseudo-state in the new PSM
Statechart Diagram.

• For each Transition from state Q1 to state Q2, on which is applied the
ScreenTransition stereotype, apply the PageTransition stereotype to
the Transition counterpart element in the PSM Statechart Diagram.

• Map the content of the tagged values in the source Stereotype to the
respective tagged values in target Stereotype of type String.

This mapping is necessary because in PIM the tagged values of stereotype
ScreenTransition refer to Instance Specification elements, no longer present
in PSM, because the Object Diagram has been transformed in XAML Layout
files.

As mentioned in section 3, the current Windows Phone 7 devices have the
screen resolution of 480x800 pixels. The actual portion of the screen in which
pages can be showed is smaller, 480x720 pixels. This resolution has the same
aspect-ratio of that adopted in the PIM. Hence, in all the transformation
rules that involve coordinates of the widgets, this coordinates must be scaled
by a factor 1.5

5.5.1 Structure Transformation

1. Initialization
This rule defines two global constants, NAMESPACE and MAINPAGE.

5.5. PIM TO WINDOWSPHONE-PSM TRANSFORMATION 57

• Create a new Class Diagram and apply to it the WindowsPhone-
PSM UML Profile.

• Let I the Instance specification of the class Application in the
PIM Object Diagram.

• Let T the unique outgoing Transition from initial pseudo state
and state Q.

• Let NAMESPACE the value of the slot title of I

• Let MAINPAGE the name of state Q

2. ProfileClass Mapping
This rule maps a PIM class in the Windows Phone specific one.

PIM Windows Phone PSM
Widget ContentControl
Screen PhoneApplicationPage
Label TextBlock
Textbox TextBox
Button Button
Checkbox CheckBox
ImageBox Image
ProgressBar ProgressBar
Listbox ListBox

3. ResourcePermissions Mapping
This rule maps a PIM resource permission in the WindowsPhone spe-
cific one.

PIM WP7 PSM
Camera ID CAP CAMERA

ID HW FRONTCAMERA

ID CAP ISV CAMERA

ExternalStorage ID CAP MEDIALIB

PIM ID CAP APPOINTMENTS

ID CAP CONTACTS

Network ID CAP NETWORKING

Phone ID CAP PHONEDIALER

4. Structure Mapping

• Add to the Class Diagram the classes PhoneApplicationPage,
ContentControl.

58 CHAPTER 5. PROPOSED METHODOLOGY

• For each Generalization association from class X to class Screen,
add the class X to the target Class Diagram. Link class X, by the
Generalization association, to the PhoneApplicationPage class.
Copy also attributes and methods from the source classes, apply-
ing the ProfileClass Mapping rule to each attribute, method
parameter and method return value.

• For each Generalization association from class X to class W ,
where W ∈ WIDGETS, map, by ProfileClass Mapping rule,
the class W to the WindowsPhone specific one and add it to the
target Class Diagram. Add the class X to the PSM and link it,
by the Generalization association, to the WindowsPhone coun-
terpart class of widget W . Finally, copy attributes and methods
from the class X, applying the ProfileClass Mapping rule to
each attribute, method parameter and method return value.

• For each class C, where C /∈ WIDGETS ∪ { Screen, Menu, Sub-
menu, Application, AbstractDevice, ListboxItem }, add a new
class named C in PSM Class Diagram, and copy attributes and
methods from the class C, applying the ProfileClass Mapping
rule to each attribute, method parameter and method return value.

• For each Interface realization of interface I by class C, add a new
interface I and link it, by Interface realization, to class C in PSM.

5. Manifest File
Let I the Instance specification of the class Application in the PIM
Object Diagram. Create the WMAppManifest.xml file, starting with
the following XML code

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <Deployment
3 xmlns=”http://schemas.microsoft.com/windowsphone/2009/deployment”
4 AppPlatformVersion=”7.0”>
5 <App xmlns=”” Title=”[I.title]” RuntimeType=”Silverlight”
6 Version=”[I.version]” Genre=”apps.normal”
7 Author=”” Description=”” Publisher=””>
8 <IconPath IsRelative=”true” IsResource=”false”>ApplicationIcon.png</IconPath

>

followed by the declaration of the resource permissions list, retrived
from the resources attribute of the class Application, and translated
by the rule ResourcePermissions Mapping

1 <Capabilities>
2 <Capability Name=”ID CAP NETWORKING”/>
3 <Capability Name=”ID CAP PHONEDIALER”/>
4 ...
5 </Capabilities>

5.5. PIM TO WINDOWSPHONE-PSM TRANSFORMATION 59

followed by

1 <Tasks>
2 <DefaultTask Name =” default” NavigationPage=”MainPage.xaml”/>
3 </Tasks>
4 <Tokens>
5 <PrimaryToken TokenID=”MapNavigatorToken” TaskName=” default”>
6 <TemplateType5>
7 <BackgroundImageURI IsRelative=”true”
8 IsResource=”false”>
9 Background.png

10 </BackgroundImageURI>
11 <Count>0</Count>
12 <Title>MapNavigator</Title>
13 </TemplateType5>
14 </PrimaryToken>
15 </Tokens>
16 </App></Deployment>

The tag DefaultTask will be setted to the appropriate value by the
Statechart rule.

5.5.2 GUI Layout Transformation

6. Layout Initialization
For each Instance specification I of class C, where C specializes Screen
class, create an XML file with the same instance name I, and .xaml

suffix, starting with the following code:

1 <phone:PhoneApplicationPage
2 x:Class=”[NAMESPACE].[C]”
3 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
4 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
5 xmlns:phone=”clr−namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone”
6 xmlns:shell=”clr−namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone”
7 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
8 xmlns:mc=”http://schemas.openxmlformats.org/markup−compatibility/2006”
9 mc:Ignorable=”d” d:DesignWidth=”480” d:DesignHeight=”768”

10 FontFamily=”{StaticResource PhoneFontFamilyNormal}”
11 FontSize=”{StaticResource PhoneFontSizeNormal}”
12 Foreground=”{StaticResource PhoneForegroundBrush}”
13 SupportedOrientations=”” Orientation=””
14 shell:SystemTray.IsVisible=”True”
15 Loaded=”PhoneApplicationPage Loaded”>
16

17 <Grid x:Name=”LayoutRoot” Background=”Transparent” ShowGridLines=”False”>
18 <Grid.RowDefinitions>
19 <RowDefinition Height=”Auto”/>
20 <RowDefinition Height=”∗”/>
21 </Grid.RowDefinitions>
22

23 <StackPanel x:Name=”TitlePanel” Grid.Row=”0” Margin=”12,17,0,0”>
24 <TextBlock x:Name=”PageTitle” Text=”[I.title]” Style=”{StaticResource

PhoneTextNormalStyle}”/>
25 </StackPanel>
26

27 <Grid x:Name=”ContentPanel” Grid.Row=”1” Margin=”0,0,0,0”>
28 </Grid>

60 CHAPTER 5. PROPOSED METHODOLOGY

29 </Grid>
30 </phone:PhoneApplicationPage>

7. Screen Attributes Mapping
For each Instance specification I of class S, where S specializes Screen
class, map each slot reported in the following table to the correspond-
ing XAML attribute of the tag <phone:PhoneApplicationPage> in
S.xmal file, previously created by the Layout Initialization rule:

Screen XAML attribute
orientation SupportedOrientations

Orientation

fullscreen [true] shell:SystemTray.IsVisible="false"

and remove the tag StackPanel x:Name="TitlePanel" from
xaml file

fullscreen [false] shell:SystemTray.IsVisible="true"

The attribute title is mapped into the attribute Text of the tag
¡StackPanel x:Name=”TitlePanel”¿

1 <StackPanel x:Name=”TitlePanel” Grid.Row=”0” Margin=”12,17,0,0”>
2 <TextBlock x:Name=”PageTitle” Text=”[I.title]” Style=”{StaticResource

PhoneTextNormalStyle}”/>
3 </StackPanel>

8. Screen Layout Mapping
For each Dependency relationship from instance specification I1 to in-
stance specification I2, where I1 is an instance of a class S specializing
Screen and I2 is an instance of a class W ∈ WIDGETS, append to
the file S.xaml, within the tag <Grid x:Name="ContentPanel">, the
XAML tag that maps the widget W :

Widget XAML tag
Label TextBlock Name="[I2]"

Textbox TextBox Name="[I2]"

Button Button Name="[I2]" Click="[I2] Click"

Checkbox CheckBox Name="[I2]" Click="[I2] Click"

Imagebox Image Name="[I2]"

Progressbar ProgressBar Name="[I2]"

Listbox ListBox Name="[I2]" SelectionChanged="[I2] SelectionChanged"

5.5. PIM TO WINDOWSPHONE-PSM TRANSFORMATION 61

9. Widget Attributes Mapping
For each Instance Specification I of class W , where W ∈ WIDGETS,
if exists a Dependency relationship from instance specification S to
instance specification I, where S is an instance of a class P specializing
Screen, then map the slots of instance specification I to the appropriate
XAML tag attributes, according to the following tables.

PIM Attribute XAML tag attribute
width Width

height Height

In Windows Phone, the XAML layout description adopts the absolute
layout in which each widget specifies the distances from the top-left
corner of the screen. The two recursive functions getX and getY, in-
troduced in section 5.1.3, can be used to map the PIM positioning
attributes to the PSM specific one.

XAML attribute Value
Margin ”[getX(W)],[getY(W)],0,0”

10. Widget-Specific Attributes Mapping
For each Instance Specification I of class W , where W ∈ WIDGETS,
if exists a Dependency relationship from instance specification S to
instance specification I, where S is an instance of a class P specializing
Screen, then map the slots of instance specification I to the appropriate
XAML attributes, according to the following table:

Widget Attribute XAML attribute
Label text Text
Textbox text Text
Button text Content
Checkbox text Content
Progressbar maxValue Maximum
Imagebox imageSource Source

11. ListView Items Mapping
For each Instance Specification I of class Listbox, if exists a Depen-
dency relationship from instance specification S to instance specifica-
tion I, where S is an instance of a class P specializing Screen, then for
each Dependency relationship from instance specification I to instance
specification Q, where Q is an instance of the class ListboxItem, add
the following nested tag

62 CHAPTER 5. PROPOSED METHODOLOGY

1 <ListBoxItem Content=”[Q.text]” />

in the corrispondent tag <ListBox Name="[I]">

12. Menu Mapping

• For each Instance Specification S of class Screen, if exists a Depen-
dency relationship from instance specification S to instance speci-
fication M , where M is an instance of the Menu class, then append
to the file S.xaml, within the tag <phone:PhoneApplicationPage>,
the following XAML code;

1 <phone:PhoneApplicationPage.ApplicationBar>
2 <shell:ApplicationBar IsVisible=”True” IsMenuEnabled=”True”>
3 <shell:ApplicationBar.MenuItems>
4

5 </shell:ApplicationBar.MenuItems>
6 </shell:ApplicationBar>
7 </phone:PhoneApplicationPage.ApplicationBar>

• For each Dependency relationship from instance specification M
to instance specification SM , where SM is an instance of the
Submenu class, add within the tag <shell:ApplicationBar.MenuItems>,
the following code:

1 <shell:ApplicationBarMenuItem Text=”[SM.text]” Click=”[SM] Click”/>

5.6. CODE GENERATION 63

5.6 Code Generation

The final step of the Model-Driven Design is the generation of the applica-
tion code from each Platform Specific Model. The generated code is both
structural and behavioral code. The structural code concerns the structure
of class files, that is constructors, interfaces implementations and methods
signatures. The behavioral code implements some specific operations, like
screens transitions, Back button redirection or the initialization of GUI. So,
the code generation procedure is based on information coming from the PSM
Class Diagram and from the UML Statechart Diagram for the behavioral as-
pects. This procedure can be implemented by defining a number of rules
that involve a set of parameterized blocks of code.
To make more accurate, concise and understandable the rules it is useful to
introduce some sets, definitions and notations:

• State Q representing the Activity A

• WIDGETS = {w|w is a widget class of AndroidPSM }. The set
collects all widget classes of the PSM

• Dot notation X.attr is used to refer to an instance specification slot, a
class attribute or a XML tag attribute.

• The notation [...], inside a block of code, represent a parameterized
field.

To obtain a complete Eclipse3 project or VisualStudio4 Project, it is nec-
essary to create some other xml and plain-text files, not strictly depending
from the particular application that we are modeling. The discussion of these
files will not be detailed.
The next two sections introduce separately the set of code-generation rules
for both Android and WindowsPhone platform.

3Eclipse is an open-source community that develops open platforms and products.
Google provides the Android Development Tools (ADT), a plugin for the Eclipse IDE
that is designed to give you a powerful, integrated environment in which to build Android
applications.

4Microsoft Visual Studio is an integrated development environment (IDE) from Mi-
crosoft. It is used to develop console and graphical user interface applications along with
Windows Forms applications, web applications, web services and smartphone application
in both native code together with managed code for all platforms supported by Microsoft
Windows, Windows Phone, .NET Framework, .NET Compact Framework and Microsoft
Silverlight.

64 CHAPTER 5. PROPOSED METHODOLOGY

5.7 Android Code Generation

Android associates a constant to each resource of the application, such as
Strings, Layout, Menu, View and Images. These constants make it possibile
to refer to the resources within the application code. So, the first step of
code generation is to create the resource file R.java. Rules 3-4 generate the
structural part of the code and rules 7-9 introduce the blocks of code that
manage the activity transitions.

1. Resource File Initialization

• Create the R.java class file starting with the following code:

1 public final class R {
2 public static final class string {
3 public static final int app name=0x7f1;
4 }
5 public static final class array { }
6 public static final class id { }
7 public static final class layout { }
8 public static final class drawable { }
9 }

• Let C an integer variable, initialized to 1, to the resource file
R.java, by the current rule. This variable will be incremented
by one every time a new resource constant will be added to the
resource file.

• For each <String> tag T in String.xml file add, to the nested
class String in class R.java, the following line of code:

1 public static final int [T.name]=0x7f[C];

• For each <string-array> tag T in String.xml file add, to the
nested class array in class R.java, the following line of code:

1 public static final int [T.name]=0x7f[C];

• For each XML Layout file L (generated by Layout Initialization
rule introduced in section 5.4.2), refering to the Activity A, add
to the nested class layout in class R.java the following line of
code:

1 public static final int layout [A]=0x7f[C];

• For each XML file L (generated by Menu Mapping rule intro-
duced in section 5.4.2), refering to the Menu M , add to the nested
class layout in class R.java, the following line of code:

1 public static final int [M]=0x7f[C];

5.7. ANDROID CODE GENERATION 65

• For each drawable resource D (generated by Widget-Specific
Attributes Mapping introduced in section 5.4.2), add to the
nested class drawable in class R.java, the following line of code

1 public static final int drawable [D]=0x7f[C];

• For each XML Layout file L (generated by Layout Initialization
rule introduced in section 5.4.2), and for each XML tag T , where
T ∈ WIDGETS, add to the nested class id in class R.java, the
following line of code:

1 public static final int [T.android:id]=0x7f[C];

2. Package Generation

• Let T the <manifest> tag of AndroidManifest.xml file (gener-
ated by the Manifest File rule introduced in section5.4.1).

• Create a Java package named [T.package].

• Create three other packages:
[T.package].activity, [T.package].widgets and [T.package].util

3. Structural Code Generation
The generation of structural code can be done by almost all UML Mod-
eling tools, and it simply transforms, in Java code, the structure of the
classes from UML Class Diagram. The procedure generates java code
from classes, attributes, operation signatures, interface realizations and
generalization associations, appending all this code to new java files.
So, the output of this step is a set of raw java files (one for each class
in the PSM Class Diagram) that must be completed with import di-
rectives and several blocks of code.

4. Import Directives Generation
Let T the <manifest> tag of AndroidManifest.xml file (generated by
the Manifest File rule). For each Generalization association from
class A to class Activity, insert in the file [A].java the following
import directives:

1 package [T.package].activity;
2 import [T.package].R;
3 import android.app.Activity;
4 import android.content.Context;
5 import android.content.Intent;
6 import android.view.View;
7 import android.view.View.OnClickListener;
8 import android.widget.AdapterView.OnItemClickListener;
9 import android.os.Bundle;

10 import android.widget.∗;

66 CHAPTER 5. PROPOSED METHODOLOGY

For each Generalization association from class C to class W , where
W ∈ WIDGETS, insert in the file [C].java the following import

directives:
1 package [T.package].widgets;
2 import [T.package].R;
3 import android.content.Context;
4 import android.view.View;
5 import android.widget.[W];

5. Widgets Initialization
For each Activity layout file F , and for each XML tag T in F , where
T ∈ WIDGETS, add to the class F.java the private class variable

1 private [T] [T.android:id];

and the follow initialization code in the overridden method onCreate()

1 [T.android:id] = ([T]) findViewById(R.id.[T.android:id]);
2 if ([T.android:id] != null) [T.android:id].setOnClickListener(this);

For each Activity layout file F , and for each XML tag <ListView>, add
the follow initialization code in the overridden method onCreate()

1 if ([T.android:id] != null) [T.android:id].setOnItemClickListener(this);

6. GUI Layout Initialization
For each Activity A:

• Let M the <manifest> tag of the corresponding XML Layout file

• insert in the overridden method public void onCreate(Bundle

savedInstanceState) of the class A, the following lines of code:
1 super.onCreate(savedInstanceState);
2 setContentView(R.layout.[A]);
3 setTitle([M.android:label]);

7. Activity Menu Initialization
For each Activity A, if exits the XML file A menu.xml (possibly created
by Menu Mapping rule introduced in section 5.4.2), insert in the
overridden method onCreateOptionsMenu() of class A, the following
lines of code:

1 MenuInflater inflater = getMenuInflater();
2 inflater.inflate(R.menu.[A] main menu, menu);
3 return true;

8. Widget Methods Initialization

• For each Activity layout file F , insert, in the method onClick of
class file F .java in the .activity package the switch statement:

5.7. ANDROID CODE GENERATION 67

1 switch (v.getId()) { }

For each XML tag T in F , where T ∈ { Button, CheckBox }, add
a case statement

1 public void onClick(View v) {
2 switch (v.getId()) {
3 case R.id.[T]:
4 [T] Click();
5 break;
6 case ...:
7 ...
8 break;
9 }

10 }

and add the private class method [T] Click()

• For each Activity layout file F insert, in the method onItemClick

(if exists) of class file F .java in the .activity package, the
switch statement and variable declaration:

1 Intent intent;
2 switch (arg0.getId()) { }

For each XML tag T of type ListView in F , add a case statement

1 public void onItemClick(AdapterView<?> arg0, View arg1, int arg2, long arg3) {
2 switch (arg0.getId()) {
3 case R.id.[T]:
4 [T] ItemClick(arg2);
5 break;
6 case ...:
7 ...
8 break;
9 }

10 }

and add the private class method [T] ItemClick(int item)

9. Menu Methods Initialization For each Activity A, if exits the XML
file A menu.xml (possibly created by Menu Mapping rule introduced
in section 5.4.2) then:

• insert in the overridden method onOptionsItemSelected of class
file A.java, in the .activity package, the switch statement:

1 switch (item.getItemId()) { }

• For each <item> tag I in the file XML file A menu.xml, add a case

statement to the Switch in the method onOptionsItemSelected

1 @Override
2 public boolean onOptionsItemSelected(MenuItem item) {
3 switch (item.getItemId()) {
4 case R.id.[I.androi:id]:
5 [I.androi:id] Click();

68 CHAPTER 5. PROPOSED METHODOLOGY

6 break;
7 case ...:
8 ...
9 break;

10 }
11 }

10. Transitions by Widget Interaction

• For each Transition from state Q to state T , for each entry W of
the wigets tagged value of stereotype applied to the transition,
add to the private class method [W] Click() the following code:

1 Intent intent = new Intent(this, [T].class);
2 startActivity(intent);

• For each Transition from state Q to state T , for each entry W
of the wigets tagged value of stereotype applied to the tran-
sition, where W = ListView, add to the private class method
[W] ItemClick() the following code:

1 intent = new Intent(this, [T].class);
2 startActivity(intent);

11. Transitions by Menu Interaction
For each Transition T from state Q to state P and for each entry SM
of the tagged value submenu of the stereotype applied to T , add to the
class method [SM] Click the following code:

1 Intent intent = new Intent(this, [P].class);
2 startActivity(intent);

12. Transitions by Method Invocation
For each State Q and for each outgoing Transition T from state Q to
state S insert, to the method specified by the attribute operation of T ,
the following code:

1 Intent intent = new Intent(this, [S].class);
2 startActivity(intent);

13. Transitions by Back-Button Redirection
For each State Q, if exists an outgoing Transition T from state Q to
state P , for which the tagged value specialButton is defined, then
add to the overridden method onKeyDown of the class Q the following
code:

1 public boolean onKeyDown(int keyCode, KeyEvent event) {
2 switch(keyCode) {
3 case KeyEvent.KEYCODE BACK:
4 Intent intent = new Intent(this, [P].class);

5.8. WINDOWS PHONE CODE GENERATION 69

5 startActivity(intent);
6 break;
7 }
8 return super.onKeyDown(keyCode, event);
9 }

14. Guards on Transitions
Whenever on a transition is specified a guard (in term of OCL boolean
expression), an if (..) statement must be placed before the tran-
sition code. Translating OCL expressions in Java code is a complex
task, but for a subset of the OCL language (in particular, boolean ex-
pression) this operation can be simply automated by external tools,
like the Dresden OCL Library5, obtaining compact java Code. For a
more detailed discussion refer to Compilation of OCL into Java for the
Eclipse OCL Implementation [9].

5.8 Windows Phone Code Generation

The code generation for Windows Phone platform is a bit different. Usually
the generation of structural code can be done by almost all UML Modeling
Tools, and it simply transforms, in target code, the structure of the classes
from UML Class Diagram. The generation of CSharp classes is a more com-
plex task, because in the VisualStudio project for Windows Phone, some
classes are separated in two partial classes, one of which contains code that
is auto-generated (and hidden to the developer) by the IDE. This holds only
for those classes ,specializing PhoneApplicationPage, that contain the code of
the application Pages. Code Generation rules must generate files and classes
conform to those (partially) auto-generated by the VisualStudio IDE.

1. Initialization

• Let I the Instance specification of the class Application in the
PIM Object Diagram.

• Let NAMESPACE the value of the slot title of I

This rule defines the global constants NAMESPACE.

2. Structural Code Generation
For each Generalization association from class X to class PhoneApplicationPage,
create a first file named X.xaml.cs starting with the following code:

5http://www.dresden-ocl.org/index.php/DresdenOCL

70 CHAPTER 5. PROPOSED METHODOLOGY

1 using System;
2 using System.Collections.Generic;
3 using System.Windows;
4 using System.Windows.Controls.Primitives;
5 using System.Windows.Controls;
6 using System.Windows.Documents;
7 using System.Windows.Input;
8 using System.Windows.Media;
9 using System.Windows.Media.Animation;

10 using System.Windows.Shapes;
11 using Microsoft.Phone.Controls;
12 using System.Windows.Threading;
13

14 namespace [NAMESPACE] {
15 public partial class [X] : PhoneApplicationPage {
16 public [X]() {
17 InitializeComponent();
18 }
19

20 private void PhoneApplicationPage Loaded(object sender, RoutedEventArgs e)
21 {
22 // custom initialization code
23 }
24 }
25 }

and a second file named X.g.cs with the following code:
1 using System;
2 using System.Collections.Generic;
3 using System.Windows;
4 using System.Windows.Controls.Primitives;
5 using System.Windows.Controls;
6 using System.Windows.Documents;
7 using System.Windows.Input;
8 using System.Windows.Media;
9 using System.Windows.Media.Animation;

10 using System.Windows.Shapes;
11 using Microsoft.Phone.Controls;
12 using System.Windows.Threading;
13

14 namespace [NAMESPACE] {
15 public partial class MainPage :
16 Microsoft.Phone.Controls.PhoneApplicationPage {
17 internal System.Windows.Controls.Grid LayoutRoot;
18 internal System.Windows.Controls.StackPanel TitlePanel;
19 internal System.Windows.Controls.TextBlock ApplicationTitle;
20 internal System.Windows.Controls.Grid ContentPanel;
21 private bool contentLoaded;
22 [System.Diagnostics.DebuggerNonUserCodeAttribute()]
23 public void InitializeComponent() {
24 if (contentLoaded) {return; }
25 contentLoaded = true;
26 System.Windows.Application.LoadComponent(this,
27 new System.Uri(”/[NAMESPACE];component/[X].xaml”,
28 System.UriKind.Relative));
29 this.LayoutRoot =
30 ((System.Windows.Controls.Grid)(this.FindName(”LayoutRoot”)));
31 this.TitlePanel =
32 ((System.Windows.Controls.StackPanel)(this.FindName(”TitlePanel”)));
33 this.ApplicationTitle =
34 ((System.Windows.Controls.TextBlock)(this.FindName(”ApplicationTitle”)));

5.8. WINDOWS PHONE CODE GENERATION 71

35 this.ContentPanel =
36 ((System.Windows.Controls.Grid)(this.FindName(”ContentPanel”)));
37 }
38 }
39 }

3. Widgets Initialization
For each XAML layout file F , and for each XAML tag T within the
tag <Grid x:Name="ContentPanel"> of F , where T ∈ WIDGETS,
add to the partial class file F.g.cs the internal class variable

1 internal System.Windows.Controls[T] [T.Name];

and the follow initialization code in the method InitializeComponent

1 this.[T] = ((System.Windows.Controls.[T])(this.FindName(”[T.Name]”)));

4. Menu Methods Initialization
For each XAML layout file X, generated by the transformation rule
Layout Initialization, for each XAML tag T of type
<shell:ApplicationBarMenuItem> within the container tag
<phone:PhoneApplicationPage.ApplicationBar> (if it exists), add
to the class file X.cs the method

1 private void [T.Click](object sender, EventArgs e) { }

5. Widget Methods Initialization
For each XAML layout file X, generated by the transformation rule
Layout Initialization, for each XAML tag T within the container
tag <Grid x:Name="ContentPanel">, add one event-handler private
method according to the following table:

Widget Event Handler
Button 1 [T.Name] Click(object sender, RoutedEventArgs e)

Checkbox 1 [T.Name] Click(object sender, RoutedEventArgs e)

Listbox 1 [T.Name] SelectionChanged(object sender, SelectionChangedEventArgs e)

6. Transitions by Widget Interaction
For each Transition T from state Q to state S, for each entry W in
the tagged value wigets of stereotype applied to the transition, where
W ∈ { Button, CheckBox }, add to the method W Click of the partial
class Q.xaml.cs the following code:

1 NavigationService.Navigate(new Uri(”/[S].xaml”, UriKind.Relative));

72 CHAPTER 5. PROPOSED METHODOLOGY

For each Transition T from state Q to state S, for each entry W in
the tagged value wigets of stereotype applied to the transition, where
W = ListBox, add to the method W SelectionChanged of the partial
class Q.xaml.cs the following code:

1 NavigationService.Navigate(new Uri(”/[S].xaml”, UriKind.Relative));

7. Transitions by Menu Interaction
For each Transition T from state Q to state S, for each entry SM in
the tagged value submenu of stereotype applied to the transition, add
to the method SM Click of the partial class Q.xaml.cs the following
code:

1 NavigationService.Navigate(new Uri(”/[S].xaml”, UriKind.Relative));

8. Transitions by Method Invocation
For each Transition T from state Q to state S insert, to the method
(of the class Q.xaml.cs) specified by the attribute operation of T , the
following code:

1 NavigationService.Navigate(new Uri(”/[S].xaml”, UriKind.Relative));

9. Transitions by Back-Button Redirection
For each State Q, if exists an outgoing Transition T from state Q to
state P , for which the tagged value specialButton is defined, then add
to the overridden method OnBackKeyPress of the class Q the following
code:

1 protected override void OnBackKeyPress(CancelEventArgs e) {
2 NavigationService.Navigate(new Uri(”/[P].xaml”, UriKind.Relative));
3 }

10. Guards on Transitions
Whenever on a transition is specified a guard (in term of OCL boolean
expression), an if (..) statement must be placed before the tran-
sition code. Translating OCL expressions in CSharp code is a complex
task, but for a subset of the OCL language (in particular, boolean
expression) this operation can be automated by external tools. For
a more detailed discussion refer to Implementing an OCL Compiler
for.NET [10].

5.9 Computational Analysis

The transformation and code-generation rules are the core of the Model-
Driven Design, and it is useful examining the computational complexity of

5.9. COMPUTATIONAL ANALYSIS 73

their implementation. On the one hand, the complexity can be expressed by
evaluating, at the highest level, the number of elements that make up the
application to be modeled. On the other hand, the elements of the meta-
model can be taken as a reference at the lowest level. Transformations act
linearly on the high-level elements, beacuse each element of the PIM is trans-
formed into the corresponding element in PSM. Indeed, each target-platform
version of the modeled application is still composed my the same structural
elements introduced at platform-independent level. For example, Structure
Mapping rule, the main transformation rule of the class diagram, translates
each Screen and custom Widget modeled by developer, into the specific one
for each target platform. Layout Initialization rule creates a XML layout
file for each Screen, and Widget Attributes Mapping enriches the layout
file setting the attributes of each Widget composing the Screen. Some other
rules, such as ProfileClass Mapping and ResourcePermission Map-
ping (they are rules, like the previous, introduced both for Android and
Windows Phone), work in constant time. At metamodel level, the number of
elements increases linearly as the number of screens and widgets introduced
in the PIM. Rules expressed in the form For each Instance Specification I...,
if exists Dependency Relationship D..., such as Widget Attribute Map-
ping, Menu Mapping and several other, have a quadratic time complexity
in the worst-case. Indeed, Instance Specifications set and Dependency Rela-
tionships set may have the same cardinality. The application in sequence of
different rules introduces a multiplicative constant up to 8.
Despite these considerations, the complexity of the transformation and code-
generation process is usually negligible, even in cases of applications with
a large number of screens and widgets. Since the transformation rules are
not implemented in a concrete transformation language, it is not possible to
detail the analysis, which however can be used as base to improve the rules
in a specific implementation.

74 CHAPTER 5. PROPOSED METHODOLOGY

Chapter 6

Experimental Validation

This chapter presents the Platform Independent Model of a sample appli-
cation. The transformation and code-generation rules will be applied, to
compare the resulting application structure with a version of the same appli-
cation, previously developed for both Android and Windows Phone platform.
The output of the rules will be shown by applying them manually, because
the transformations and the code generation have not been implemented in a
tool. The goal is to compare the code (XML GUI Layout and Java/CSharp
code) obtained from an application designed at the Platform Independent
Level, with the code and the structure of the same application, but devel-
oped in the traditional way for different platforms. To make the chapter more
readable, the figures representing the various diagrams of PIM and PSM are
moved to Appendix B. The same thing applies to the code listings, moved
to Appendix C.

6.1 Application Example

The sample application is a restricted version of MapNavigator, an appli-
cation developed during a work finished before the beginning of this thesis.
MapNavigator was designed as a guide tool for the visit of fairs, exhibitions
and museums. Briefly, MapNavigator is useful for organizers / exhibitors,
when they have a map, a set of information about events or points of in-
terest, and they want to define thematic routes to guide the visitors. For
each point of interest (POI) a Quick Response Code1 (QR Code), encoding

1QR Code is the trademark for a type of matrix barcode, first designed for the auto-
motive industry. More recently, the system has become popular outside of the industry
due to its fast readability and large storage capacity compared to standard UPC barcodes.

75

76 CHAPTER 6. EXPERIMENTAL VALIDATION

some static information about the POI, may be generated and placed where
visitors, with their smartphone integrated camera, can acquire it in order to
obtain information about the location where they are. For the exhibitors is
available a tool, not shown in this discussion, that allows to configure the
map and the related points of interest, and make it available to visitors, along
with the application itself.

The application is structured according to the main activities that the user
can perform:

• choose a map, from the internal or external storage memory (screen
ChooseMap)

• consult the map and its points of interest (screen NavigateMap)

• acquire a QRCode with the integrated camera (screen AcquireQRCode)

• consult the points of interest list (screen TagList)

• read the information about a single point of interest (screen TagInfo)

• edit some basic preferences about the application (screen Preferences)

A QR Code can be acquired without having previously loaded a map. In
this way the visitor can however obtain information about a point of interest,
even if it cannot see the position on the map.

6.1.1 The Platform Independent Model

Figures B.1 to B.4 in Appendix B depict the diagrams composing the PIM.
The Class Diagram in Figure 6.1 shows the seven classes, one for each Screen
of the application, specializing the class Screen.

The GUI Layout of each screen is described by the Object Diagram re-
ported in Figure B.1, B.2 and B.3. Finally, the Statechart Diagram describing
the behavioural aspects of the application is depicted in Figure B.4

The code consists of block modules arranged in a square pattern on a white background.
The information encoded ca be made up of four standardized kinds of data (numeric,
alphanumeric, byte/binary, Kanji), or by supported extensions virtually any kind of data.
(Source http://en.wikipedia.org/wiki/QR code)

6.2. EVALUATION METRICS 77

Figure 6.1: PIM Class Diagram

6.2 Evaluation Metrics

To compare the resulting application, obtained applying the transformations
introduced in the previous chapter, it is necessary to define which aspects
to consider. First, the comparison may be done considering the structural
aspects and some behavioral aspects. It does not consider the specific im-
plemented functionalities, since they are outside the scope of the proposed
methodology.
The comparison can be made mainly by assessing the following aspects:

• the number of lines of code and the number of methods composing the
classes and the GUI layout descriptions

• limitations due to the limited number of widgets provided by the UML
Profile for the Platform Independent Model

These aspects regard the possible differences between the code obtained
from the Model-Driven approach and from the traditional one. Furthermore,
we may also compare how much similar are the User Interfaces of the appli-
cations obtained for each target platform.

78 CHAPTER 6. EXPERIMENTAL VALIDATION

6.3 Comparison with Traditional Implemen-

tation

This section shows the Platform Specific Model for the two platforms under
examination, and in parallel compares the code obtained from the transfor-
mation and code-generation rules with the same application code previously
manually developed.

6.3.1 Android

Rule 4 (Structure Mapping): Transformation rule that generates the
class diagram depicted in Figure B.5. The Class Diagram shows the seven
Screen classes that in Android must specialize the class Activity, and the
interfaces implemented by some of them.

Rule 6 (Resource File) and Rule 9 (String Externalization): trans-
formation rules which generate the file containing the strings, used by the
widgets and externalized from the code. The following two listings show, in
order, the file obainted by the transformation and the manually written:

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <resources>
3 <string name=”app name”>MapNavigator</string>
4 <string name=”wellcome buttonOpen text”>Open Map</string>
5 <string name=”wellcome buttonLast text”>Latest Map</string>
6 <string name=”wellcome buttonQRCode text”>Acquire QRCode</string>
7 <string name=”wellcome buttonPrefs text”>Preferences</string>
8 <string name=”preferences labelTitle text”>Preferences</string>
9 <string name=”preferences labelLocation text”>Default maps location</string>

10 <string name=”preferences labelLast text”>Save the latest map</string>
11 <string name=”preferences labelUpdate text”>Search for updates</string>
12 <string name=”preferences buttonSave text”>Save</string>
13 <string name=”navigatemap navmenu text”>Map</string>
14 <string name=”navmenu taglistMenu text”>Point of Interest list</string>
15 <string name=”navmenu qrcodeMenu text”>Acquire QRCode</string>
16 <string name=”tagInfo buttonMap text”>Go to map</string>
17 </resources>

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <resources>
3 <string name=”app name”>MapNavigator</string>
4 <string name=”label1”>Open Map</string>
5 <string name=”label2”>Latest Map</string>
6 <string name=”label3”>Acquire QRCode</string>
7 <string name=”label4”>Preferences</string>
8 <string name=”labelPrefs”>Preferences</string>
9 <string name=”labelPrefsLocation”>Default map location</string>

10 <string name=”labelPrefsLastmap”>Save the latest map</string>
11 <string name=”labelPrefsUpdate”>Search for updates</string>
12 <string name=”buttonSave”>Save</string>

6.3. COMPARISON WITH TRADITIONAL IMPLEMENTATION 79

13 <string name=”menuLabelMain”>Map</string>
14 <string name=”menuLabelTagList”>Point of Interest list</string>
15 <string name=”menuLabelQRCode”>Acquire QRCode</string>
16 <string name=”buttonMap”>Go to Map</string>
17 </resources>

As can be seen, the main difference is the standardized format of the entries
([activityName] [widgetName] text). In the manually version the choice
is up to the developer, and it may not follow a standard schema.

AndroidManifest.xml: the manifest file of the application, generated by
the transformation rule Manifest File, together with the rule Screen At-
tributes Mapping. The code is the same of the manually developed, except
for the name of some Activities.

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <manifest xmlns:android=”http://schemas.android.com/apk/res/android”
3 package=”univr.MapNavigator”
4 android:versionCode=”1”
5 android:versionName=”1.0” >
6 <uses−sdk android:minSdkVersion=”8” />
7 <uses−permission android:name=”android.permission.CAMERA” />
8 <uses−permission android:name=”android.permission.INTERNET”/>
9 <uses−permission android:name=”android.permission.WRITE EXTERNAL STORAGE”/>

10 <application
11 android:icon=”@drawable/ic launcher” android:label=”@string/app name” >
12 <activity android:name=”univr.mapnavigator.activity.Wellcome”
13 android:label=”@string/app name” android:screenOrientation=”portrait”>
14 <intent−filter>
15 <action android:name=”android.intent.action.MAIN” />
16 <category android:name=”android.intent.category.LAUNCHER” />
17 </intent−filter>
18 </activity>
19 <activity android:name=”univr.mapnavigator.activity.ChooseMap”
20 android:label=”Choose Map” android:screenOrientation=”portrait”/>
21 <activity android:name=”univr.mapnavigator.activity.AcquireQRCode”
22 android:label=”Acquire QR Code” android:screenOrientation=”landscape”/>
23 <activity android:name=”univr.mapnavigator.activity.NavigateMap”
24 android:label=”Map” android:screenOrientation=”landscape”
25 android:theme=”@android:style/Theme.NoTitleBar.Fullscreen” />
26 <activity android:name=”univr.mapnavigator.activity.Preferences”
27 android:label=”Preferences” android:screenOrientation=”portrait”/>
28 <activity android:name=”univr.mapnavigator.activity.TagList”
29 android:label=”Tag List” android:screenOrientation=”portrait”/>
30 <activity android:name=”univr.mapnavigator.activity.TagInfo”
31 android:label=”Tag Info” android:screenOrientation=”portrait”/>
32 </application>
33 </manifest>

In the first part of the manifest there are the <uses-permission> tags that
map the attribute resources of the PIM class Application, by the trans-
formation rule ResourcePermissions Mapping.

80 CHAPTER 6. EXPERIMENTAL VALIDATION

GUI Layout The following parallel listings (divided into two pages for
reasons of space) show, on the left, the XML file obtained by the transfor-
mation rules and, on the right, the same XML file manually designed. These
files describe the GUI Layout of the Wellcome screen.

Auto-generated Manually designed

<?xml version=”1.0” encoding=”utf−8”?>
<RelativeLayout xmlns:android=”...”

android:layout width=”match parent”
android:layout height=”match parent”
android:orientation=”vertical” >

<ImageView
android:id=”@+id/imageOpen”
android:layout width=”72dp”
android:layout height=”72dp”
android:layout marginLeft=”40dp”
android:layout marginTop=”40dp”
android:src=”@drawable/icon open” />

<ImageView
android:id=”@+id/imageLast”
android:layout width=”72dp”
android:layout height=”72dp”
android:layout below=”@+id/imageOpen”
android:layout marginLeft=”40dp”
android:layout marginTop=”20dp”
android:src=”@drawable/icon recent” />

<ImageView
android:id=”@+id/imageQRCode”
android:layout width=”72dp”
android:layout height=”72dp”
android:layout below=”@+id/imageLast”
android:layout marginLeft=”40dp”
android:layout marginTop=”20dp”
android:src=”@drawable/icon qrcode” />

<?xml version=”1.0” encoding=”utf−8”?>
<RelativeLayout xmlns:android=”...”

android:layout width=”fill parent”
android:layout height=”fill parent”
android:orientation=”vertical” >

<ImageButton
android:id=”@+id/buttonOpen”
android:layout width=”wrap content”
android:layout height=”wrap content”
android:layout alignParentLeft=”true”
android:layout alignParentTop=”true”
android:layout marginLeft=”38dp”
android:layout marginTop=”55dp”
android:src=”@drawable/icon open” />

<ImageButton
android:id=”@+id/buttonLast”
android:layout width=”wrap content”
android:layout height=”wrap content”
android:layout alignLeft=”@+id/buttonOpen”
android:layout below=”@+id/buttonOpen”
android:layout marginTop=”20dp”
android:src=”@drawable/icon recent” />

<ImageButton
android:id=”@+id/buttonQRCode”
android:layout width=”wrap content”
android:layout height=”wrap content”
android:layout alignLeft=”@+id/buttonLast”
android:src=”@drawable/icon qrcode”
android:layout below=”@+id/buttonLast”
android:layout marginTop=”20dp”/>

The Welcome screen presents a kind of main menu in which every entry has
an icon and, on the right of it, a text label. When the application starts, the
user can ’touch’ the icon of an entry, to perform the correspondent task. The
manually developed application adopts the Android widget ImageButton, a
’touchable’ image, that is not covered by the presented PIM. So, in the Plat-
form Independent Model of the example application, the menu is realized
placing side by side the icon with a labeled button, and this is translated
in the Android PSM with the widgets ImageView and Button. The wid-
get Button is used in place of the text label beside the icon. The listing
on the right side shows that Android-specific advanced attributes, such as
alignParentLeft and alignParentTop (and others not present in this ex-

6.3. COMPARISON WITH TRADITIONAL IMPLEMENTATION 81

ample), can be used to place the widget inside a screen, alternatively to those
basic mapped by the transformation. Nevertheless, these advanced attributes
cannot be abstracted and adopted in the PIM.

Auto-generated Manually designed

<ImageView
android:id=”@+id/imagePrefs”
android:layout width=”72dp”
android:layout height=”72dp”
android:layout below=”@+id/imageQRCode”
android:layout marginLeft=”40dp”
android:layout marginTop=”20dp”
android:src=”@drawable/icon prefs” />

<Button
android:id=”@+id/buttonOpen”
android:layout width=”150dp”
android:layout height=”55dp”
android:layout marginLeft=”20dp”
android:layout marginTop=”45dp”
android:layout toRightOf=”@+id/imageOpen”
android:text=”@string/wellcome buttonOpen text” />

<Button
android:id=”@+id/buttonLast”
android:layout width=”150dp”
android:layout height=”55dp”
android:layout below=”@+id/buttonOpen”
android:layout marginLeft=”20dp”
android:layout marginTop=”40dp”
android:layout toRightOf=”@+id/imageLast”
android:text=”@string/wellcome buttonLast text” />

<Button
android:id=”@+id/buttonQRCode”
android:layout width=”150dp”
android:layout height=”55dp”
android:layout below=”@+id/buttonLast”
android:layout marginLeft=”20dp”
android:layout marginTop=”40dp”
android:layout toRightOf=”@+id/imageQRCode”
android:text=”@string/wellcome buttonQRCode text” />

<Button
android:id=”@+id/buttonPrefs”
android:layout width=”150dp”
android:layout height=”55dp”
android:layout below=”@+id/buttonQRCode”
android:layout marginLeft=”20dp”
android:layout marginTop=”40dp”
android:layout toRightOf=”@+id/imagePrefs”
android:text=”@string/wellcome buttonPrefs text” />

</RelativeLayout>

<ImageButton
android:id=”@+id/buttonPrefs”
android:layout width=”wrap content”
android:layout height=”wrap content”
android:layout alignLeft=”@+id/buttonQRCode”
android:layout below=”@+id/buttonQRCode”
android:layout marginTop=”20dp”
android:src=”@drawable/icon prefs” />

<TextView
android:id=”@+id/label1”
android:layout width=”wrap content”
android:layout height=”wrap content”
android:layout alignTop=”@+id/buttonOpen”
android:layout centerHorizontal=”true”
android:layout marginTop=”24dp”
android:text=”@string/label1” />

<TextView
android:id=”@+id/label2”
android:layout width=”wrap content”
android:layout height=”wrap content”
android:layout alignLeft=”@+id/label1”
android:layout alignTop=”@+id/buttonLast”
android:layout marginTop=”24dp”
android:text=”@string/label2” />

<TextView
android:id=”@+id/label3”
android:layout width=”wrap content”
android:layout height=”wrap content”
android:layout alignLeft=”@+id/label2”
android:layout alignTop=”@+id/buttonQRCode”
android:layout marginTop=”21dp”
android:text=”@string/label3” />

<TextView
android:id=”@+id/label4”
android:layout width=”wrap content”
android:layout height=”wrap content”
android:layout alignLeft=”@+id/label3”
android:layout alignTop=”@+id/buttonPrefs”
android:layout marginTop=”21dp”
android:text=”@string/label4” />

</RelativeLayout>

82 CHAPTER 6. EXPERIMENTAL VALIDATION

Rule 14 (Menu Mapping): Transformation rule that generates the XML
file that describes the structure of the menu that are available in a screen.
The following parallel listings show the description of the menu available in
the screen NavigateMap.

Auto-generated Manually designed

<?xml version=”1.0” encoding=”utf−8”?>
<menu xmlns:android=”http://schemas.android.com/apk

/res/android” >
<item android:id=”@+id/navigatemap main menu”

android:title=”@string/navigatemap navmenu text”>
<menu>

<item android:id=”@+id/navigatemap taglistMenu”
android:title=”@string/navmenu taglistMenu text”/>

<item android:id=”@+id/navigatemap qrcodeMenu”
android:title=”@string/navmenu qrcodeMenu text”/>

</menu>
</item>
</menu>

<?xml version=”1.0” encoding=”utf−8”?>
<menu xmlns:android=”http://schemas.android.com/apk

/res/android” >
<item android:id=”@+id/mainMenu”

android:title=”@string/menuLabelMain”>
<menu>

<item android:id=”@+id/menuTagList”
android:title=”@string/menuLabelTagList”/>

<item android:id=”@+id/menuQRCode”
android:title=”@string/menuLabelQRCode”/>

</menu>
</item>
</menu>

The menu has two entries: Acquire QR Code and Points of Interest

list. The former allows the visitor to acquire the information encoded in
the QR Code, the latter shows to the user the list of the POI highlighted on
the map.
Also in this case, the main difference is the standardized format of the at-
tributes values (android:title and android:id). In the manually version
the choice is up to the developer, and it may not follow a standard schema.

6.3. COMPARISON WITH TRADITIONAL IMPLEMENTATION 83

Code Generation With regard to the generation of the application code,
in Appendix C the following listings are reported:

• Listing C.1 - Android resource file R.java

This is the file that collects all the resources of the application (wid-
gets, layouts, menu, strings and images) and assigns to them a numeric
constant. This file is substantially the same as the manually generated,
except for the values of the assigned constants.

• Listing C.2 - The auto-generated java file of the activity Wellcome

This file can be compared with the Listing C.3, that reports the manu-
ally developed version. The main difference is the number of methods
and variables added to the class. In fact, to handles the ’touch’ event of
the widgets, the code-generation rules create, for each widget compos-
ing the Activity and that may trigger the event, a private method with
the suffix Click. The invocation of the correct method is handled by
the switch statement in the private method onClick(). Furthermore,
for each widget composing the Activity, the rules add a private variable
to the class. This variable serves as a pointer to the widget and it is
initialized even if it is not necessary and it will never used. The manu-
ally developed file is more compact, because uses a smaller number of
variables and handles the ’touch’ events directly in the private method
onClick().

• Listing C.4 - The auto-generated java file of the activity TagList

This file can be compared with the Listing C.5, that reports the man-
ually developed version. In this file we analyze the generated code in
the presence of the ListBox widget. The code-generation rules add, for
each ListBox widget composing the Activity, the private method with
suffix ItemClick to the class. The switch statement, in the private
method onItemClick, allows to invoke the correct method handler for
the widget that has trigged the onItemClick event. This is necessary
because, implementing the interface OnItemClickListener, only one
main onItemClick event handler can be used. In the manually de-
veloped file, whenever there is only one Listbox widget, the additional
method ItemClick may be omitted.

The examined listings cover the most interesting cases. In all the other
cases, the auto-generated code conforms to what should be developed man-
ually.

Finally, the Listing C.6 shows the auto-generated code of the activity
NavigateMap. This activity implements a Menu and the redirection of the
Back Button to the Wellcome screen.

84 CHAPTER 6. EXPERIMENTAL VALIDATION

6.3.2 Windows Phone 7

Structure Mapping transformation rule generates the class diagram de-
picted in Figure B.6. The Class Diagram shows the seven Screen classes that
in Windows Phone must specialize the class PhoneApplicationPage, and
the interfaces implemented by some of them.

WMAppManifest.xml is the manifest file of the application, generated
by the rule Manifest File. The code is the same of the manually developed.

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <Deployment
3 xmlns=”http://schemas.microsoft.com/windowsphone/2009/deployment”
4 AppPlatformVersion=”7.0”>
5 <App xmlns=”” Title=”MapNavigator” RuntimeType=”Silverlight”
6 Version=”1” Genre=”apps.normal”
7 Author=”” Description=”” Publisher=””>
8 <IconPath IsRelative=”true” IsResource=”false”>ApplicationIcon.png</IconPath>
9 <Capabilities>

10 <Capability Name=”ID CAP NETWORKING”/>
11 <Capability Name=”ID HW FRONTCAMERA”/>
12 <Capability Name=”ID CAP CAMERA”/>
13 <Capability Name=”ID CAP ISV CAMERA”/>
14 <Capability Name=”ID CAP MEDIALIB”/>
15 </Capabilities>
16 <Tasks>
17 <DefaultTask Name =” default” NavigationPage=”Wellcome.xaml”/>
18 </Tasks>
19 <Tokens>
20 <PrimaryToken TokenID=”MapNavigatorToken” TaskName=” default”>
21 <TemplateType5>
22 <BackgroundImageURI IsRelative=”true”
23 IsResource=”false”>
24 Background.png
25 </BackgroundImageURI>
26 <Count>0</Count>
27 <Title>MapNavigator</Title>
28 </TemplateType5>
29 </PrimaryToken>
30 </Tokens>
31 </App></Deployment>

In the first part of the manifest there are the <Capability> tags that
map the attribute resources of the PIM class Application, by the trans-
formation rule ResourcePermissions Mapping .

6.3. COMPARISON WITH TRADITIONAL IMPLEMENTATION 85

GUI Layout The following listings show, in order, the most significant
part of the XAML file obtained by the transformation rules and the same
XAML file manually designed. These files describe the GUI Layout of the
screen Preferences, and they are reported in the Listings C.7 and C.8

1 <Grid x:Name=”ContentPanel” Grid.Row=”1” Margin=”0,0,0,0”>
2 <Image Height=”108” Width=”108” Margin=”30,30,0,0”
3 Name=”imageIcon” Source=”icon prefs.png”/>
4 <TextBlock Height=”38” Width=”150” Margin=”168,75,0,0”
5 Name=”labelTitle” Text=”Preferences” />
6 <TextBlock Height=”30” Width=”225” Margin=”30,168,0,0”
7 Name=”labelLocation” Text=”Default maps location”/>
8 <TextBox Height=”80” Width=”420” Margin=”30,206,0,0”
9 Name=”txtLocation” Text=””/>

10 <CheckBox Height=”53” Width=”300” Margin=”30,301,0,0”
11 Content=”Save the latest map” Name=”checkLast” Click=”checkLast Click”/>
12 <CheckBox Height=”53” Width=”300” Margin=”30,369,0,0”
13 Content=”Search for updates” Name=”checkUpdate” Click=”checkUpdate Click”/>
14 <Button Height=”83” Width=”225” Margin=”144,600,0,0”
15 Content=”Save” Name=”buttonSave” Click=”buttonSave Click” />
16 </Grid>

1 <!−−ContentPanel − place additional content here−−>
2 <Grid x:Name=”ContentPanel” Grid.Row=”1” Margin=”0,0,0,0”>
3 <TextBlock Height=”37” HorizontalAlignment=”Left” Margin=”28,132,0,0”
4 Name=”label2” Text=”Default maps location”
5 VerticalAlignment=”Top” Width=”206” />
6 <TextBox Height=”70” HorizontalAlignment=”Left” Margin=”14,154,0,0”
7 Name=”txtLocation” Text=”” VerticalAlignment=”Top” Width=”456” />
8 <CheckBox Content=”Save the last opened map” Height=”72”
9 HorizontalAlignment=”Left” Margin=”14,230,0,0”

10 Name=”checkLastMap” VerticalAlignment=”Top” Width=”353”
11 Click=”checkLastMap Click” />
12 <CheckBox Content=”Search for update” Height=”72” HorizontalAlignment=”Left”
13 Margin=”12,291,0,0” Name=”checkUpdate” VerticalAlignment=”Top”
14 Width=”353” Click=”checkUpdate Click” />
15 <Image Height=”79” HorizontalAlignment=”Left” Margin=”25,22,0,0”
16 Name=”imageIcon” Stretch=”Fill” VerticalAlignment=”Top” Width=”88”
17 Source=”/MapNavigator;component/icon prefs.png” />
18 <TextBlock Height=”35” Margin=”153,45,204,0” Name=”label1”
19 Text=”Preferences” VerticalAlignment=”Top” />
20 <Button Content=”Save” Height=”68” HorizontalAlignment=”Left”
21 Margin=”114,369,0,0” Name=”buttonSave” VerticalAlignment=”Top”
22 Width=”253” Click=”buttonSave Click” />
23 </Grid>

The values of the attributes Height Width and Margin are obtained from
the PIM values by multiplying the scale factor 1.5, as explained in section
5.5.

The second listing shows that XAML-specific advanced attributes, such
as HorizontalAlignment and VerticalAlignment (and others not present
in this example), can be used to place the widget inside a screen, alternatively
to those basic mapped by the transformation. Nevertheless, these advanced
attributes cannot be abstracted and adopted in the PIM. The transformation
rules can only use the platform-specific attributes that have a counterpart in
the PIM.

86 CHAPTER 6. EXPERIMENTAL VALIDATION

Menu Mapping transformation rule inserts, in the XAML file of the page
providing the menu, the structure description of each submenu. The following
listing shows the description of the menu available in the screen NavigateMap.

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <menu xmlns:android=”http://schemas.android.com/apk/res/android” >
3 <item android:id=”@+id/navigatemap main menu”
4 android:title=”@string/navigatemap navmenu text”>
5 <menu>
6

7 <item android:id=”@+id/navigatemap taglistMenu”
8 android:title=”@string/navmenu taglistMenu text”/>
9 <item android:id=”@+id/navigatemap qrcodeMenu”

10 android:title=”@string/navmenu qrcodeMenu text”/>
11 </menu>
12 </item>
13 </menu>

Also in the menu description in the Windows Phone XAML files, the main
difference is the standardized format of the value of the attribute Click. In
the manually version the choice is up to the developer, and it may not follow
a standard schema.

Code Generation The Listings C.9 and C.10 reports the code of the two
partial classes for the page Preferences. In Windows Phone the differ-
ence between auto-generated code and the manually developed code is min-
imal, due to the different framework provided by the eXtensible Application
Markup Language. In fact, in the XAML file that describe the Pages GUI
layout, the widgets tags can specify which class method handles the events
that they trigger. So, in the class file the developer must only insert the
relative event handlers with the appropriate signatures. On the contrary
of Android, there is no need to insert code to initialize the layout and the
menu. The XAML file describe all these elements and the underlying Sil-
verlight framework initializes them properly.

6.3.3 Graphical Comparison

Finally, the obtained GUI layout for both Android and Windows Phone
can be compared. Figure 6.2 shows the comparison of two screens of the
application. On the left side it reports the Android version, and on the right
side the Windows Phone version. The two layouts are very similar, and they
show how the widgets, abstracted and usable in the PIM, appear on each
target platform.

6.3. COMPARISON WITH TRADITIONAL IMPLEMENTATION 87

(a) Wellcome Screen

(b) Preferences Screen

Figure 6.2: Comparison of the GUI Layout

88 CHAPTER 6. EXPERIMENTAL VALIDATION

Chapter 7

Conclusions

The main goal of the thesis has been the study of a model-driven approach
to the design of multi-platform smartphone applications. In order to achieve
this goal, it has been necessary to analyze the major smartphone platforms
on the market and their software development environments. The analysis
has led to highlight the common aspects between different platforms and
different modes of development. In every development kit, the description
of the Graphical User Interface is separated from the application code. Fur-
thermore, every platform requires a “manifest” file that defines some funda-
mental characteristics of the application, to be provided to the user and to
the system during the installation phase. A smartphone application involves
several number of screens, composed by a set of widgets, with which users
can interact in order to perform several tasks.

The set of widgets provided by the smartphone platforms may be wide, but
all platforms shares a common and standardized subset of them. Then, the
Platform Independent Model has been defined. It allows to design smart-
phone applications independently by a specific platform. The proposed
UML2 Profile for the PIM provides all the fundamental elements (widget
classes, enumerations, and stereotypes) to design applications using three
diagrams: Class Diagram, Object Diagram and Statechart Diagram.

According to the Model Driven Architecture, two Platform-Specific Mod-
els have been described for both Android and Windows Phone platforms,
together with a set of detailed model transformations. Also these models use
Class Diagram and Statechart Diagram, together with specific metamodels
to describe the GUI Layout of the screens composing application.

89

90 CHAPTER 7. CONCLUSIONS

Finally, to complete the model-driven process, a set of code-generation
rules has been created to produce the application code for the two examined
platforms. The code that the rules are able to generate covers the structural
aspects of the application, avoiding the developer to write several repetitive
code. This code represents the structure of the main classes (one for each
screen composing the application) and some initialization code for the GUI
components (widgets, menu and event handlers). Furthermore, the rules
generate code that implement behavioral aspects, e.g. screen transitions,
according to those defined in the Statechart Diagram. In the traditional
approach, this auto-generated code should be manually written several times.

The result covers the entire process of model-driven design, and identifies
the opportunity to develop cross-platform smartphone applications, start-
ing from a platform-independent model, without the use of middleware that
interpret a high-level description of the GUI, in every platform.

In the end, Chapter 6 introduces MapNavigator, a sample application use-
ful for the experimental validation. The chapter presents the Platform Inde-
pendent Model of MapNavigator, and discusses the application of the trans-
formation and code-generation rules. Some evaluation metrics have been
introduced, in order to compare the obtained result with the same applica-
tion developed in the traditional way.

7.1 Future Work

The experimental validation shows a great result in comparison between the
auto-generated code and the manual implementation for each target plat-
form. The obtained GUI is very similar for the two examined platforms,
but they cannot benefit from their specific set of advanced widgets. The
proposed Platform Independent Model shows an example of which can be
abstracted from the major smartphone platforms, but it could be improved
and expanded with more common features (in particular widgets).

The transformation rules have not been implemented in a specific trans-
formation language, due to the complexity to act directly on the entire UML
Meta-model, and to maintain the methodology independent from a specific
implementation. A possible future work is the definition, for the Platform In-
dependent Model, of a custom metamodel representing the language to “talk
about” smartphone applications. This metamodel should be constructed

7.1. FUTURE WORK 91

as an instance of M2-level shown in figure 3.5, and it should provide high-
level elements, such as screens, widgets and a state machine with transitions
between the screens. Such a model would be easier than the entire UML
metamodel (that have a huge number of basic elements) and it would be
more easily manipulated by the transformation language. However, with this
simplified model you lose the ability to design all the other aspects of the
application, not specific for a smartphone. These aspects, concerning classes,
interfaces, operations, and attributes, realize the other specific functionality
of the application to be modeled.

Another aspect to be addressed in detail is the translation of the OCL
boolean expressions, defining the transition guards in the PIM Statechart
Diagram, into Java or C-Sharp code as described in the code-generation
rules Guards on Transitions. Existing tools capable of translating OCL
expressions cover the entire set of OCL constructs [9, 10]. Less complex
techniques should be developed, to easily translate the guards, represented
only by boolean expressions.

92 CHAPTER 7. CONCLUSIONS

Appendix A

Tables

93

94 APPENDIX A. TABLES

Table A.1: List of the Classes in UML Profile for Platform Independent
Model

Name Attributes and Operations
Screen title: String

orientation: OrientationEnum
fullScreen: Boolean
widgets: Widget[1..*]
layout: ScreenLayoutEnum

Menu title: String
Submenu title: String

style: ItemStyleEnum
checked: Boolean
icon: String

Application title: String
version: Integer
resources: ResourcesEnum [0..*]

Widget width: integer
height: integer
above: Widget[0..1]
below: Widget[0..1]
toLeftOf: Widget[0..1]
toRightOf: Widget[0..1]
marginLeft: integer
marginRight: integer
marginTop: integer
marginBottom: integer

Label text: String
Textbox text: String
Button text: String
Checkbox text: String
Imagebox imageSource: String
Progressbar maxValue: integer

getCurrentValue(): integer
Listbox populate(items:Listbox[1..*])
ListboxItem text: String
AbstractDevice displayWidth: integer

displayHeight: integer

Appendix B

Figures

95

96 APPENDIX B. FIGURES

Figure B.1: PIM Object Diagram - part 1

97

Figure B.2: PIM Object Diagram - part 2

98 APPENDIX B. FIGURES

Figure B.3: PIM Object Diagram - part 3

99

Figure B.4: PIM - Statechart Diagram

100 APPENDIX B. FIGURES

Figure B.5: Android PSM - Class Diagram

101

Figure B.6: Windows Phone PSM - Class Diagram

102 APPENDIX B. FIGURES

Appendix C

Code Listings

Listing C.1: Auto-generated Android resources file R.java

1 package univr.MapNavigator;
2 public final class R {
3 public static final class string {
4 public static final int app name=0x7f0;
5 public static final int navigatemap navmenu text=0x7f1;
6 public static final int navmenu qrcodeMenu text=0x7f2;
7 public static final int navmenu taglistMenu text=0x7f3;
8 public static final int preferences buttonSave text=0x7f4;
9 [...]

10 }
11 public static final class menu {
12 public static final int navmenu=0x7f22;
13 }
14 public static final class layout {
15 public static final int preferences=0x7f23;
16 public static final int wellcome=0x7f24;
17 [...]
18 }
19 public static final class drawable {
20 public static final int ic launcher=0x7f30;
21 public static final int icon help=0x7f31;
22 public static final int icon open=0x7f32;
23 [...]
24 }
25 public static final class id {
26 public static final int buttonLast=0x7f37;
27 public static final int buttonOpen=0x7f38;
28 public static final int buttonPrefs=0x7f39;
29 [...]
30 }
31 }

103

104 APPENDIX C. CODE LISTINGS

Listing C.2: Auto-generated java file of the Wellcome Activity

1 package univr.MapNavigator.activity;
2 import univr.MapNavigator.R;
3 import android.app.Activity;
4 import android.content.Context;
5 import android.content.Intent;
6 import android.view.View;
7 import android.view.View.OnClickListener;
8 import android.widget.AdapterView.OnItemClickListener;
9 import android.os.Bundle;

10 import android.widget.∗;
11

12 public class Wellcome extends Activity implements OnClickListener {
13 private Button buttonOpen;
14 private Button buttonLast;
15 private Button buttonQRCode;
16 private Button buttonPrefs;
17 private ImageView imageOpen;
18 private ImageView imageLast;
19 private ImageView imageQRCode;
20 private ImageView imagePrefs;
21

22 public void onCreate(Bundle savedInstanceState) {
23 super.onCreate(savedInstanceState);
24 setContentView(R.layout.wellcome);
25 setTitle(”Map Navigator”);
26

27 buttonOpen = (Button) findViewById(R.id.buttonOpen);
28 buttonLast = (Button) findViewById(R.id.buttonLast);
29 buttonQRCode = (Button) findViewById(R.id.buttonQRCode);
30 buttonPrefs = (Button) findViewById(R.id.buttonPrefs);
31 imageOpen = (ImageView) findViewById(R.id.imageOpen);
32 imageLast = (ImageView) findViewById(R.id.imageLast);
33 imageQRCode = (ImageView) findViewById(R.id.imageQRCode);
34 imagePrefs = (ImageView) findViewById(R.id.imagePrefs);
35

36 buttonOpen.setOnClickListener(this);
37 buttonLast.setOnClickListener(this);
38 buttonQRCode.setOnClickListener(this);
39 buttonPrefs.setOnClickListener(this);
40 }
41 public void onClick(View v) {
42 switch (v.getId()) {
43 case R.id.buttonOpen:
44 buttonOpen Click();
45 break;
46 case R.id.buttonLast:
47 buttonLast Click();
48 break;

105

49 case R.id.buttonQRCode:
50 buttonQRCode Click();
51 break;
52 case R.id.buttonPrefs:
53 buttonPrefs Click();
54 break;
55 }
56 }
57 private void buttonOpen Click() {
58 Intent intentOpen = new Intent(this, ChooseMap.class);
59 startActivity(intentOpen);
60 }
61 private void buttonQRCode Click() {
62 Intent intentQRCode = new Intent(this, AcquireQRCode.class);
63 startActivity(intentQRCode);
64 }
65 private void buttonLast Click() {
66 Intent intentQRCode = new Intent(this, NavigateMap.class);
67 startActivity(intentQRCode);
68 }
69 private void buttonPrefs Click() {
70 Intent intentQRCode = new Intent(this, Preferences.class);
71 startActivity(intentQRCode);
72 }
73 }

106 APPENDIX C. CODE LISTINGS

Listing C.3: Manually developed java file of the Wellcome Activity

1 package univr.mapnavigator.activity;
2

3 import univr.mapnavigator.R;
4 import android.app.Activity;
5 import android.content.Intent;
6 import android.os.Bundle;
7 import android.view.View;
8 import android.view.View.OnClickListener;
9 import android.widget.ImageButton;

10

11 public class MainActivity extends Activity implements OnClickListener
12 {
13 private ImageButton buttonOpen;
14 private ImageButton buttonLast;
15 private ImageButton buttonQRCode;
16 private ImageButton buttonPrefs;
17

18 @Override
19 public void onCreate(Bundle savedInstanceState)
20 {
21 super.onCreate(savedInstanceState);
22 setContentView(R.layout.main);
23 setTitle(”Map Navigator”);
24

25 buttonOpen = (ImageButton) findViewById(R.id.buttonOpen);
26 buttonLast = (ImageButton) findViewById(R.id.buttonLast);
27 buttonQRCode = (ImageButton) findViewById(R.id.buttonQRCode);
28 buttonPrefs = (ImageButton) findViewById(R.id.buttonPrefs);
29

30 buttonOpen.setOnClickListener(this);
31 buttonLast.setOnClickListener(this);
32 buttonQRCode.setOnClickListener(this);
33 buttonPrefs.setOnClickListener(this);
34 }
35

36 public void onClick(View v)
37 {
38 switch (v.getId())
39 {
40 case R.id.buttonOpen:
41 Intent intentOpen = new Intent(this, ChooseMapActivity.class);
42 startActivity(intentOpen);
43 break;
44 case R.id.buttonQRCode:
45 Intent intentQRCode = new Intent(this, NavigateMapActivity.class);
46 startActivity(intentQRCode);
47 break;
48 case R.id.buttonPrefs:

107

49 Intent intentPrefs = new Intent(this, PreferencesActivity.class);
50 startActivity(intentPrefs);
51 break;
52 }
53 }
54 }

108 APPENDIX C. CODE LISTINGS

Listing C.4: Auto-generated java file of the TagList Activity
1 package univr.MapNavigator.activity;
2

3 import univr.MapNavigator.R;
4 import android.app.Activity;
5 import android.content.Context;
6 import android.content.Intent;
7 import android.view.View;
8 import android.view.View.OnClickListener;
9 import android.widget.AdapterView.OnItemClickListener;

10 import android.os.Bundle;
11 import android.widget.∗;
12

13 public class TagList extends Activity implements OnItemClickListener {
14 private ListView tagList;
15

16 public void onCreate(Bundle savedInstanceState) {
17 super.onCreate(savedInstanceState);
18 setContentView(R.layout.taglist);
19 setTitle(”Tag List”);
20

21 tagList = (ListView) findViewById(R.id.tagList);
22 tagList.setOnItemClickListener(this);
23 }
24

25 public void onItemClick(AdapterView<?> arg0, View arg1, int arg2, long arg3) {
26 Intent intent;
27 switch (arg0.getId()) {
28 case R.id.tagList:
29 tagList ItemClick(arg2);
30 break;
31 }
32 }
33

34 private void tagList ItemClick(int item) {
35 Intent intentQRCode = new Intent(this, TagInfo.class);
36 startActivity(intentQRCode);
37 }
38 }

109

Listing C.5: Manually developed java file of the TagList Activity
1 package univr.mapnavigator.activity;
2

3 import univr.mapnavigator.R;
4 import android.app.Activity;
5 import android.content.Intent;
6 import android.os.Bundle;
7 import android.view.View;
8 import android.widget.AdapterView;
9 import android.widget.AdapterView.OnItemClickListener;

10 import android.widget.ListView;
11

12 public class TagListActivity extends Activity implements OnItemClickListener
13 {
14 private ListView tagList;
15

16 @Override
17 public void onCreate(Bundle savedInstanceState)
18 {
19 super.onCreate(savedInstanceState);
20 setContentView(R.layout.taginfo);
21 setTitle(”Map Navigator”);
22

23 tagList = (ListView) findViewById(R.id.fileList);
24 tagList.setOnItemClickListener(this);
25 }
26

27 public void onItemClick(AdapterView<?> arg0, View viewId, int itemId, long arg3
)

28 {
29 if (arg0.getId() == R.id.tagList)
30 {
31 // ...
32 Intent intentQRCode = new Intent(this, TagInfo.class);
33 startActivity(intentQRCode);
34 }
35 }
36 }

110 APPENDIX C. CODE LISTINGS

Listing C.6: Auto-generated java file of the NavigateMap Activity

1 package univr.MapNavigator.activity;
2

3 import univr.MapNavigator.R;
4 import android.app.Activity;
5 import android.content.Intent;
6 import android.os.Bundle;
7 import android.view.KeyEvent;
8 import android.view.Menu;
9 import android.view.MenuInflater;

10 import android.view.MenuItem;
11

12 public class NavigateMap extends Activity
13 {
14 public void onCreate(Bundle savedInstanceState)
15 {
16 super.onCreate(savedInstanceState);
17 setContentView(R.layout.navigatemap);
18 setTitle(”Map title”);
19 }
20

21 public boolean onCreateOptionsMenu(Menu menu)
22 {
23 MenuInflater inflater = getMenuInflater();
24 inflater.inflate(R.menu.navmenu , menu);
25 return true;
26 }
27

28 public boolean onKeyDown(int keyCode, KeyEvent event)
29 {
30 switch(keyCode)
31 {
32 case KeyEvent.KEYCODE BACK:
33 Intent intentn = new Intent(this, Wellcome.class);
34 startActivity(intent);
35 break;
36 }
37 return super.onKeyDown(keyCode, event);
38 }
39

40 public boolean onOptionsItemSelected(MenuItem item)
41 {
42 switch (item.getItemId())
43 {
44 case R.id.navigatemap taglistMenu:
45 Intent intentOpen = new Intent(this, TagList.class);
46 startActivity(intentOpen);
47 break;
48

111

49 case R.id.navigatemap qrcodeMenu:
50 Intent intentOpen = new Intent(this, AcquireQRCode.class);
51 startActivity(intentOpen);
52 break;
53 }
54 return true;
55 }
56 }

112 APPENDIX C. CODE LISTINGS

Listing C.7: Auto-generated XAML file of the page Preferences

1 <phone:PhoneApplicationPage
2 x:Class=”MapNavigator.Preferences”
3 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
4 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
5 xmlns:phone=”clr−namespace:Microsoft.Phone.Controls;assembly=Microsoft.

Phone”
6 xmlns:shell=”clr−namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone”
7 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
8 xmlns:mc=”http://schemas.openxmlformats.org/markup−compatibility/2006”
9 FontFamily=”{StaticResource PhoneFontFamilyNormal}”

10 FontSize=”{StaticResource PhoneFontSizeNormal}”
11 Foreground=”{StaticResource PhoneForegroundBrush}”
12 SupportedOrientations=”Portrait” Orientation=”Portrait”
13 mc:Ignorable=”d” d:DesignHeight=”768” d:DesignWidth=”480”
14 shell:SystemTray.IsVisible=”True”>
15

16 <Grid x:Name=”LayoutRoot” Background=”Transparent”>
17 <Grid.RowDefinitions>
18 <RowDefinition Height=”Auto”/>
19 <RowDefinition Height=”∗”/>
20 </Grid.RowDefinitions>
21 <StackPanel x:Name=”TitlePanel” Grid.Row=”0” Margin=”12,17,0,0”>
22 <TextBlock x:Name=”PageTitle” Text=”Preferences”
23 Style=”{StaticResource PhoneTextNormalStyle}”/>
24 </StackPanel>
25 <Grid x:Name=”ContentPanel” Grid.Row=”1” Margin=”0,0,0,0”>
26 <Image Height=”108” Width=”108” Margin=”30,30,0,0”
27 Name=”imageIcon” Source=”icon prefs.png”/>
28 <TextBlock Height=”38” Width=”150” Margin=”168,75,0,0”
29 Name=”labelTitle” Text=”Preferences” />
30 <TextBlock Height=”30” Width=”225” Margin=”30,168,0,0”
31 Name=”labelLocation” Text=”Default maps location”/>
32 <TextBox Height=”80” Width=”420” Margin=”30,206,0,0”
33 Name=”txtLocation” Text=””/>
34 <CheckBox Height=”53” Width=”300” Margin=”30,301,0,0”
35 Content=”Save the latest map” Name=”checkLast” Click=”checkLast Click”

/>
36 <CheckBox Height=”53” Width=”300” Margin=”30,369,0,0”
37 Content=”Search for updates” Name=”checkUpdate” Click=”

checkUpdate Click”/>
38 <Button Height=”83” Width=”225” Margin=”144,600,0,0”
39 Content=”Save” Name=”buttonSave” Click=”buttonSave Click” />
40 </Grid>
41 </Grid>
42 </phone:PhoneApplicationPage>

113

Listing C.8: Manually designed XAML file of the page Preferences

1 <phone:PhoneApplicationPage
2 x:Class=”MapNavigator.Preferences”
3 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
4 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
5 xmlns:phone=”clr−namespace:Microsoft.Phone.Controls;assembly=Microsoft.

Phone”
6 xmlns:shell=”clr−namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone”
7 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
8 xmlns:mc=”http://schemas.openxmlformats.org/markup−compatibility/2006”
9 FontFamily=”{StaticResource PhoneFontFamilyNormal}”

10 FontSize=”{StaticResource PhoneFontSizeNormal}”
11 Foreground=”{StaticResource PhoneForegroundBrush}”
12 SupportedOrientations=”Portrait” Orientation=”Portrait”
13 mc:Ignorable=”d” d:DesignHeight=”768” d:DesignWidth=”480”
14 shell:SystemTray.IsVisible=”True”>
15

16 <!−−LayoutRoot is the root grid where all page content is placed−−>
17 <Grid x:Name=”LayoutRoot” Background=”Transparent”>
18 <Grid.RowDefinitions>
19 <RowDefinition Height=”Auto”/>
20 <RowDefinition Height=”∗”/>
21 </Grid.RowDefinitions>
22 <StackPanel x:Name=”TitlePanel” Grid.Row=”0” Margin=”12,17,0,0”>
23 <TextBlock x:Name=”PageTitle” Text=”Preferences”
24 Style=”{StaticResource PhoneTextNormalStyle}”/>
25 </StackPanel>
26 <!−−ContentPanel − place additional content here−−>
27 <Grid x:Name=”ContentPanel” Grid.Row=”1” Margin=”0,0,0,0”>
28 <TextBlock Height=”37” HorizontalAlignment=”Left” Margin=”

28,132,0,0”
29 Name=”label2” Text=”Default maps location”
30 VerticalAlignment=”Top” Width=”206” />
31 <TextBox Height=”70” HorizontalAlignment=”Left” Margin=”

14,154,0,0”
32 Name=”txtLocation” Text=”” VerticalAlignment=”Top”

Width=”456” />
33 <CheckBox Content=”Save the last opened map” Height=”72”
34 HorizontalAlignment=”Left” Margin=”14,230,0,0”
35 Name=”checkLastMap” VerticalAlignment=”Top” Width=”

353”
36 Click=”checkLastMap Click” />
37 <CheckBox Content=”Search for update” Height=”72”

HorizontalAlignment=”Left”
38 Margin=”12,291,0,0” Name=”checkUpdate”

VerticalAlignment=”Top”
39 Width=”353” Click=”checkUpdate Click” />
40 <Image Height=”79” HorizontalAlignment=”Left” Margin=”

25,22,0,0”

114 APPENDIX C. CODE LISTINGS

41 Name=”imageIcon” Stretch=”Fill” VerticalAlignment=”Top”
Width=”88”

42 Source=”/MapNavigator;component/icon prefs.png” />
43 <TextBlock Height=”35” Margin=”153,45,204,0” Name=”label1”
44 Text=”Preferences” VerticalAlignment=”Top” />
45 <Button Content=”Save” Height=”68” HorizontalAlignment=”Left”
46 Margin=”114,369,0,0” Name=”buttonSave” VerticalAlignment

=”Top”
47 Width=”253” Click=”buttonSave Click” />
48 </Grid>
49 </Grid>
50 </phone:PhoneApplicationPage>

115

Listing C.9: Partial class of the page Preferences, obtained by Code-
Generation

1 using System;
2 using System.Collections.Generic;
3 using System.Windows;
4 using System.Windows.Controls.Primitives;
5 using System.Windows.Controls;
6 using System.Windows.Documents;
7 using System.Windows.Input;
8 using System.Windows.Media;
9 using System.Windows.Media.Animation;

10 using System.Windows.Shapes;
11 using Microsoft.Phone.Controls;
12 using System.Windows.Threading;
13

14 namespace MapNavigator {
15 public partial class Preferences : Microsoft.Phone.Controls.PhoneApplicationPage

{
16 internal System.Windows.Controls.Grid LayoutRoot;
17 internal System.Windows.Controls.StackPanel TitlePanel;
18 internal System.Windows.Controls.TextBlock PageTitle;
19 internal System.Windows.Controls.Grid ContentPanel;
20 internal System.Windows.Controls.Image imageIcon;
21 internal System.Windows.Controls.TextBlock labelTitle;
22 internal System.Windows.Controls.TextBlock labelLocation;
23 internal System.Windows.Controls.TextBox txtLocation;
24 internal System.Windows.Controls.CheckBox checkLast;
25 internal System.Windows.Controls.CheckBox checkUpdate;
26 internal System.Windows.Controls.Button buttonSave;
27

28 private bool contentLoaded;
29

30 [System.Diagnostics.DebuggerNonUserCodeAttribute()]
31 public void InitializeComponent() {
32 if (contentLoaded) {
33 return;
34 }
35 contentLoaded = true;
36 System.Windows.Application.LoadComponent(this, new System.Uri(”/

MapNavigator;component/Preferences.xaml”, System.UriKind.Relative)
);

37 this.LayoutRoot = ((System.Windows.Controls.Grid)(this.FindName(”
LayoutRoot”)));

38 this.TitlePanel = ((System.Windows.Controls.StackPanel)(this.FindName(
”TitlePanel”)));

39 this.PageTitle = ((System.Windows.Controls.TextBlock)(this.FindName(”
PageTitle”)));

116 APPENDIX C. CODE LISTINGS

40 this.ContentPanel = ((System.Windows.Controls.Grid)(this.FindName(”
ContentPanel”)));

41 this.imageIcon = ((System.Windows.Controls.Image)(this.FindName(”
imageIcon”)));

42 this.labelTitle = ((System.Windows.Controls.TextBlock)(this.FindName(”
labelTitle”)));

43 this.labelLocation = ((System.Windows.Controls.TextBlock)(this.
FindName(”labelLocation”)));

44 this.txtLocation = ((System.Windows.Controls.TextBox)(this.FindName(”
txtLocation”)));

45 this.checkLast = ((System.Windows.Controls.CheckBox)(this.FindName(”
checkLast”)));

46 this.checkUpdate = ((System.Windows.Controls.CheckBox)(this.FindName
(”checkUpdate”)));

47 this.buttonSave = ((System.Windows.Controls.Button)(this.FindName(”
buttonSave”)));

48 }
49 }
50 }

117

Listing C.10: Partial class of the page Preferences, obtained by Code-
Generation

1 using System;
2 using System.Collections.Generic;
3 using System.Linq;
4 using System.Net;
5 using System.Windows;
6 using System.Windows.Controls;
7 using System.Windows.Documents;
8 using System.Windows.Input;
9 using System.Windows.Media;

10 using System.Windows.Media.Animation;
11 using System.Windows.Shapes;
12 using Microsoft.Phone.Controls;
13

14 namespace MapNavigator
15 {
16 public partial class Preferences : PhoneApplicationPage
17 {
18 public Preferences2()
19 {
20 InitializeComponent();
21 }
22

23 private void buttonSave Click(object sender, RoutedEventArgs e)
24 {
25 NavigationService.Navigate(new Uri(”/NavigateMap.xaml”, UriKind.

Relative));
26 }
27

28 private void checkUpdate Click(object sender, RoutedEventArgs e)
29 {
30

31 }
32

33 private void checkLast Click(object sender, RoutedEventArgs e)
34 {
35

36 }
37 }
38 }

118 APPENDIX C. CODE LISTINGS

Bibliography

[1] Gartner. Gartner Says Sales of Mobile Devices in Second Quarter of 2011
Grew 16.5 Percent Year-on-Year; Smartphone Sales Grew 74 Percent.
2011.

[2] J.F. DiMarzio. Android - A Programmer’s Guide. McGraw-Hill, 2008.

[3] M.Fowler. UML Distilled Third Edition. A Brief Guide to the Standard
Object Modeling Language. Addison Wesley, 2006.

[4] Kendall Scott. UML explained. Addison Wesley, 2001.

[5] J.Warmer and A.Kleppe. The Object Constraint Language Second Edi-
tion, Precise Modeling with UML. Addison Wesley, 2003.

[6] M.Fowler. MDA explained. The Practice and Promise of the Model
Driven Architecture. Addison Wesley, 2003.

[7] Object Management Group. UML 2.0 Specification. OMG, 2005.

[8] Microsoft Corporation. Xaml Object Mapping Specification. MSDN
Library, 2008.

[9] Ayatullah Jibran Shidqie. Compilation of OCL into Java for the Eclipse
OCL implementation. Master thesis, TU Hamburg-Harburg, 2007.

[10] Laszlo Lengyel, Tihamer Levendovszky, and Hassan Charaf. Implement-
ing an OCL Compiler for.NET.

119

University of Verona
Department of Computer Science
Strada Le Grazie, 15
I-37134 Verona
Italy

http://www.di.univr.it

