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Abbreviations: DG: Dentate gyrus; GrC: Granule Cell; Gli‐A: 
Gli‐Activator; Gli‐R: Gli‐Repressor; Lep: Leptin; LepR: Lep Receptor; 
RG‐NSCs: Radial Glial Neuronal Stem Cells; PM: Post‐Mitotic; POMC: 
Proopiomelanocortin; Ptch: Patched; SGZ: Sub‐Granular Zone; 
Shh: Sonic hedgehog; Smo: Smoothened; TAN: Transit Amplifying 
Neuroblast.

This story begins in the brain but not with neurogenesis. It starts 
with the 16-kDa Leptin (Lep) cytokine-hormone’s first known role 
as a controller of body energy reserves stored as white fat [1-5]. Lep 
is produced by white-fat adipocytes and then carried into the brain 
across the bloodbrain barrier by endothelial short isoform Lep-a 
receptors (LepR-a’s) or via the cerebrospinal fluid [1-5]. When it 
arrives in the hypothalamus, Lep induces arcuate nuclear anorexigenic 
proopiomelanocortin (POMC)-expressing neurons and orexigenic 
neuropepetide Y/Agouti-related peptide (NPY/AgRP)-expressing 
neurons to suppress appetite and prevent hyperphagic obesity by 
respectively stimulating and silencing these two types of neurons 
[1-5]. It does this via JAK2/STAT3 signaling from the long isoform 
LepR-b’s (also known as ObR-b’s) on these neurons [1-5]. But where 
do the arcuate neurons put their LepR-b’s? Would they not just put 
them into their cytoplasmic membranes? Then the Lep story took an 
unexpectedly exciting turn when novel experimental results strongly 
suggested that the primary cilia protruding from the arcuate neurons 
carried the hyperphagia- and obesity-preventing LepR-b’s. Reportedly, 
these tiny antennae, neurons throughout the brain are endowed with, 
probe their extracellular environments for relevant chemical agents 
and trigger proper responses to these and maybe to any cilia-bending 
mechanical stresses [6,7]. What were these game-changing results? 
Knocking out POMC neurons’ cilia by disabling intraflagellar transport 
[8] or knocking out cilial adenylyl cyclase III in the hypothalamic 
neurons made adult mice unresponsive to Lep, hyperphagic, obese, and 
consequently hyper-leptinemic due to the build-up of Lep-producing 
adipocytes [9-15]. Then there was the Lep-resistant hyperphagia and 
extreme obesity of persons with the Bardet-Biedl syndrome caused 
by the failure of multi-protein complexes (one of which, BBS1, 
binds LepR-b) that transport components for cilial maintenance and 
functions from the Golgi apparatus to the ciliary basal body and from 
there into the cilium [14,16]. There were even more indications of cilial 
LepR-b. In fact, Lep was reported (i) to stimulate the proliferation 
of transit amplifying neuroblasts (TAN’s), the granule cell (GrC) 
progenitors, in the hippocampal dentate gyrus (DG)and, hence, 
the adult neurogenesis that is instead reduced in neurodegenerative 
conditionsand (ii) to improve memory in Alzheimer’s disease (AD)-
model transgenic mice [17-19]. Because of the known role of cilia in 
driving adult neurogenesis [20,21], these findings suggested that LepR-
b’s are concentrated in the cilia of the TANs in the sub-granular zone 
(SGZ) of the adult DG, one of the principal conditionsand al regions 
of adult neurogenesis in rodents and humans [22]. But despite these 
exciting and very convincing indications of LepR-b cilial localization, 
no one seems to have found these receptors in the cilia of hypothalamic 
arcuate neurons or DG GrC’s [23]. Up to now, only Stratigopoulos and 
co-workers [24] have reported that exposing cultured murine arcuate 
neurons to Lep caused Lep•LepR-b complexes to cluster around the 
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cilial basal bodies, the closest points anyone has seen LepR-b’s come 
to cilia, but without actually entering the cilia. However, strong signals 
from Lep•LepR-b complexes clustering around the cilial basal barrier, 
a selective gateway to the cilial inner sanctum [25], might drive 
Lep intracellular signaling mediators into the cilium. The mystery 
engendered by the lack of convincing indications that LepR-b’s 
operate from the primary cilia in hypothalamic arcuate neurons and 
hippocampal DG GrC’s in the absence of the otherwise expected flurry 
of reports from LepR-b-loaded cilia, could be solved if Lep functions first 
by binding to LepR-b’s located in the cell membrane. Then, the activated 
extra-cilial LepR-b’s would stimulate a cilium-based mechanism that 
can drive different processes, including adult neurogenesis. So, what 
could this downstream cilium-based mechanism be and how could 
extra-cilial Lep•LepR-b complexes stimulate it? A very likely possibility 
is the Sonic hedgehog (Shh) signaling mechanism, known to be housed 
in the primary cilium, which Goetz and co-workers have vividly labeled 
a “hedgehog signal-transduction machine” [26] (Figure 1I). Indeed, it 
has very recently been shown that Lep triggers a phosphoinositide-3 
kinase (PI3K)/Akt-mediated stimulation of Shh expression in rat 
hepatic stellate cells [27]. But to find out how Lep and the Shh’s it 
generates might stimulate neurogenesis, we must first look into the 
SGZ of the DG before the appearance of Lep and the Shh’s. Here we 
see a few slowly cycling self-renewing radial glial neuronal stem cells 
(RG-NSC’s) generating rapidly cycling Shh-responsive TAN’s, which, 
unlike their ancestral RG-NSC’s, need their primary cilia and the 
primary cilium Shh mechanism to drive their proliferation [20,21]. In 
the mouse, by about four weeks after the generation of their ancestral 
progenitors from RG-NSC’s in their SGZ niche, TAN’s’ surviving post-
mitotic progeny start ripening. By about four weeks later, they have 
acquired fully mature dendritic spines and mossy fiber boutons and 
have moved up into the GrC layer. There they finally join the veteran 
GrC’s encoding the data converging on them from various regions of 
the neocortex [26,27]. When Lep appears, the Shh’s produced by the 
extracilial Lep•LepR-b-signaling from the cell membrane binds to Ptch 
(Patched) and pulls it out of the cilial membrane [26]. This releases Smo 
(Smoothened) from its cytoplasmic cage, from which it climbs up to the 
tip of the cilium (Figure 1I). There, Smo stops a processing machinery 
producing Gli-R (Gli-repressor) from Gli, but promotes the synthesis of 
the Gli-A (Gli-activator) transcription factor. Incidentally, Gli is carried 
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can arrest the de novo production of the toxic, synapse-disrupting 
amyloid-β1-42 oligomers. However, only time and much more work 
will be needed to test this idea.
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Figure 1: How Lep-induced signals from LepR-b’s stationed in the cell membrane could stimulate the primary cilium-dependent proliferation of TAN’s [20] gener-
ated by RG-NSC’s in the DG of the adult hippocampal system.
(I) Signals from Lep•LepR-b complexes stimulate the production of Sonic hedgehog (Shh), which in turn causes Ptch (Patched) to leave the cilium. The key player 
in this mechanism is Gli, which is carried to the cilium tip and its processing machinery along the cilial microtubule trackway (the axoneme) by the kinesin-II carrier.
(II) In the presence of Ptch and the absence of Shh, Gli is processed by the tip machinery into Gli-R, its transcription repressor form [26]. But the Shh-driven exit 
of Ptch releases Smo’s (Smoothened), which move up to the cilium’s tip and enable the formation of Gli-A, the gene-activating form of Gli that is then transported 
down the trackway by the dynein carrier, and passes through the cilium’s basal barrier.
(III) Gli-A then moves to the nucleus, where it stimulates the expression of the cyclins D and E for the cyclin-dependent protein kinase engines that drive the key 
stages of the pre-replicative build-up to DNA replication. Upon reaching the end of the transit amplifying part of the neuronal maturation program, the accumulated 
TAN’s shut down their proliferative cycling machinery and become post-mitotic (PM) Newborns, which progressively mature and, if lucky enough to survive, be-
come fully Mature GrC’s that enter the GrC layer of the SVZ and join the veteran GrC’s that process the data converging on the DG from the various regions of 
the neocortex.
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