
Stefano Zambon

Accurate Sound Synthesis of 3D
Object Collisions in Interactive
Virtual Scenarios

Ph.D. Thesis

April 23, 2012

Università degli Studi di Verona

Dipartimento di Informatica



Advisor:
prof. Federico Fontana Series N◦: TD-11-12

Università di Verona
Dipartimento di Informatica
Strada le Grazie 15, 37134 Verona
Italy



a mia madre





Abstract

This thesis investigates efficient algorithms for the synthesis of sounds
produced by colliding objects, starting from a physical description of the
problem. The objective of this investigation is to provide tools capable
of increasing the accuracy of the synthetic auditory feedback in virtual
environments through a physics-based approach, hence without the need
of pre-recorded sounds.

Due to their versatility in dealing with complex geometries, Finite El-
ement Methods (FEM) are chosen for the space-domain discretization of
generic three-dimensional resonators. The resulting state-space representa-
tions are rearranged so as to decouple the normal modes in the correspond-
ing equations, through the use of Modal Analysis/Synthesis techniques.
Such techniques, in fact, conveniently lead to computationally efficient
sound synthesis algorithms. The whole mathematical treatment develops
until deriving such algorithms. Finally, implementation examples are pro-
vided which rely only on open-source software: this companion material
guarantees the reproducibility of the results, and can be handled without
much effort by most researchers having a background in sound processing.

The original results presented in this work include:
i efficient physics-based techniques that help implement real-time sound

synthesis algorithms on common hardware;
ii a method for the efficient management of FEM data which, by working

together with an expressive damping model, allows to pre-compute the
information characterizing a resonating object and then to store it in
a compact data structure;

iii a time-domain transformation of the state-space representation of
second-order digital filters, allowing for the exact computation of de-
pendent variables such as resonator velocity and energy, even when
simple all-pole realizations are used;

iv an efficient multirate realization of a parallel bank of resonators, which
is derived using a Quadrature-Mirror-Filters (QMF) subdivision. Com-
pared to similar works previously proposed in the literature, this re-
alization allows for the nonlinear feedback excitation of a multirate
filter bank: the key idea is to perform an adaptive state change in the



ii

resonator bank, by switching the sampling rate of the resonators from
a common highest value, used while processing the initial transient of
the signals at full bandwidth, to a set of lower values in ways to en-
able a multirate realization of the same bank during the steady state
evolution of the signals.



Ringraziamenti

Se sono arrivato alla conclusione dei miei studi di dottorato, nonostante alcune
difficoltà nel percorso, è grazie alle persone che ho avuto la fortuna di incontrare
nel tragitto.

Per il mio revisore Federico Fontana non esisteranno mai ringraziamenti che
riflettono quanto mi ha dato. Mi ha convinto ad iniziare il dottorato, mi ha convinto
a continuarlo e finirlo con un inesauribile supporto morale oltre che scientifico ed
una fiducia immensa.

Ho avuto la fortuna di poter iniziare ad occuparmi di audio digitale grazie a
Davide Rocchesso, che mi ha avviato nel mondo della ricerca fin da giovanissimo
e mi ha trasmesso l’entusiasmo per un argomento straordinario quale la sintesi a
modelli fisici.

Grazie ai revisori di questa tesi per la pazienza nel processo di revisione e
per gli esaurienti commenti su di essa. Un augurio rivolto ad entrambi: per uno
dei “padri fondatori” dell’elaborazione audio in Italia, Giovanni De Poli, spero
che possa vedere i frutti di decadi di lavoro anche nell’affermazione di giovani
ricercatori come Stefano Papetti.

Balazs Bank e Gianpaolo Borin non hanno mai smesso di stupirmi per la loro
competenza fenomenale, ed è d’obbligo ringraziarli per avermene trasmesso una
parte. Oltre all’esperienza lavorativa, le preziosissime informazioni apprese nelle
svariate chiacchierate informali non hanno veramente prezzo.

Un ringraziamento un po’ amaro per i componenti del gruppo suoni del Di-
partimento di Informatica dell’Università di Verona, che purtroppo ha chiuso di
recente i battenti. Son convinto che il suo spirito vada avanti nel lavoro di quanti
ho avuto modo di incontrare l̀ı e che ora proseguono le loro attività nel mondo.
In ordine cronologico, grazie a tutti per avere condiviso questa bella esperienza:
Antonio de Sena, Carlo Drioli, Matthias Rath, Pietro Polotti, Stefano Papetti,
Stefano Delle Monache, Delphine Devallez, Marco Civolani. Un augurio anche ai
“cugini” del gruppo Sound and Music Computing di Padova, in particolare a Fed-
erico Avanzini, sperando che possano continuare sempre a mantenere l’alto livello
di ricerca degli ultimi anni.

Mauro e Loriana Galanti di Viscount International sono da lodare per il loro
sforzo nello sostenere la ricerca a livello di veri e propri mecenati, specie in un
mondo imprenditoriale difficile come quello italiano. Grazie per permettermi di



iv

svolgere uno dei lavori più belli che possa immaginare, e grazie anche a tutte
le straordinarie persone con cui ho la fortuna di collaborare: Sandro Gabrielli,
Maurizio Galanti, Alessandro Larcher, Carmine Cella, Marco Del Fiasco. Una
menzione particolare per Eugenio “lo sciamano del suono” Giordani, per la sua
dedizione e per il suo atteggiamento iper-critico ma sempre costruttivo.

Ringrazio Vesa Valimaki per l’ospitalità in due periodi diversi 2008 presso la
Altoo University di Espoo (Finlandia), e Heidi-Maria Lethonen per la collabo-
razione e la disponibilità. Grazie anche a Jeremy Copperstock per avermi ospitato
nello Shared Reality Lab alla McGill University (Montreal, Canada). Anche se
purtroppo non sono stato in grado di finalizzare opportunamente il mio lavoro in
tale sede, l’esperienza è stata senza dubbio formativa.



Acknowledgements

If, despite some difficulties along the way, I was able to conclude my doctoral
studies, it is mainly for the people that I had the luck to meet in these years.

For my thesis advisor Federico Fontana there will never be appropriate words to
thank him for what he gave me. He convinced me to start the Ph.D., he convinced
me to continue and finish it with an inexhaustible moral and scientific support
and an overwhelming trust.

I was able to start my investigation in digital audio processing thanks to Davide
Rocchesso, who groom me in the world of research since I was very young and
passed me the enthusiasm for an extraordinary topic such as physical-based sound
synthesis.

I would like to thank the reviewers of this thesis for their patience and for the
exhaustive comments that they gave me on this work. I hope that a “founding fa-
ther” of digital audio in Italy, Giovanni De Poli, can see the results of many decades
of work also in the affirmation of young researchers such as Stefano Papetti.

Both Balazs Bank and Gianpaolo Borin never ceased to amaze me for their
amazing expertise, and I thank them for passing me part of it. What I learned
even from informal conversations with you has really no price.

A slightly sad “thank you” goes to all the members of the Sound processing
group at the University of Verona, which unfortunately has recently been shut
down. Thanks to everyone with whom I shared this experience, and good luck with
your current and future carriers: Antonio de Sena, Carlo Drioli, Matthias Rath,
Pietro Polotti, Stefano Papetti, Stefano Delle Monache, Delphine Devallez, Marco
Civolani. Best wishes also to the “cousins” of the Sound and Music Computing
group in Padova, and especially to Federio Avanzini.

Thanks to Mauro and Loriana Galanti of Viscount International for letting me
do one of the best jobs in the world, and for their passion in promoting innovation
and research despite all the difficulties. I am grateful to work with many extraor-
dinary people: Sandro Gabrielli, Maurizio Galanti, Alessandro Larcher, Carmine
Cella, Marco Del Fiasco and, especially, Eugenio “the shaman of sound” Giordani.

I would like to thank Vesa Valimaki for the hosting me at Altoo University of
Espoo in 2008, and Heidi-Maria Lethonen for her collaboration in the same period.
I am grateful to Jeremy Copperstock for welcoming me at the Shared Reality Lab
at McGill University in 2010 and giving me access to his excellent laboratory. Even



vi

if unfortunately I was not able to properly finalize my work there, it was definitely
an important learning experience.



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Sound Synthesis by Physical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Modal Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Physical Modeling of 3D Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Modeling of Thin Shell Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Finite Element Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Modal Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Reduction to Modal Coordinates . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Damping Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Estimation of Damping Parameters . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Radiation Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Accurate Radiation Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.3 Near-Field Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Modal Shapes Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Second-Order Digital Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1 Impulse-invariance Discretization of the Continuous-time Resonator 33
3.2 Space State Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Derived Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Resonator Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Instantaneous Amplitude and Phase . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 Residual Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Impact Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1 Hertz Contact Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Feed-forward Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



Contents 1

5 Efficient Algorithms for Modal Synthesis . . . . . . . . . . . . . . . . . . . . . . 53
5.1 Resonator Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Multirate Implementations of a Resonator Bank . . . . . . . . . . . . . . . . . 55

5.2.1 Multirate Filter Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.3 QMF Subdivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.4 Interpolation Filters Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Handling Nonlinear Feedback :
the Adaptive Multirate Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Part II Appendix

A Example Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.1 Modal Objects Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.2 Sound Object Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.3 Interactive Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.4 Parallel Implementation of the Resonator Bank . . . . . . . . . . . . . . . . . 79

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83





1

Introduction

This thesis deals with the real-time synthesis of sound produced by the collision
of generic three-dimensional objects. Auditory feedback in Virtual Reality (VR)
environments is considered as one main application, although some of the results
contained in this work can be used also for interactive sonification [59] or in the
development of virtual musical instruments [123].

We put the focus on a class of non-speech, non-musical sounds that form an
important part of the so-called everyday auditory phenomena. These phenomena
have been widely studied inside Gaver’s ecological psychoacoustics [48, 49], which
claims that the human brain gathers information on the surrounding environment
and objects also through auditory cues of perception.

According to Hahn et al. [57], integrating the visual display with auditory and
haptic feedback can provide a higher sense of immersion in the virtual environ-
ment compared to rendering only images. These authors list three main problems
that should be addressed by sound generation in VR applications. The first one is
sound modeling, which is seen as the process of synthesizing sounds using a per-
ceptually meaningful mapping between user’s actions and synthesis parameters.
Then, synchronization between sound and other modalities has to be considered,
together with proper sound rendering techniques for positioning the sounds inside
the environment, capable also of taking listening effects into account. Finally, the
whole computational process is compared to the image-rendering pipeline used in
computer graphics.

The algorithms discussed in this work fall into the category of physics-based
sound synthesis methods. Inside the research area of Sound and Music Computing,
which is one of the most recent disciplines in the ACM Computing Classification
System [47], the use of such techniques in the context of VR environments has
been recently highlighted in an extensive survey [97] as one of the most interesting
research topics.

Most of the techniques used for numerical sound synthesis have been developed
initially for computer music applications. Many categorizations have been proposed
for such techniques, e.g. in [103, 108, 119]. Hereafter, we will simply divide them
into two classes: signal-based and physics-based. Techniques which are not explic-
itly targeted at mimicking acoustical phenomena, e.g. abstract algorithms such as
Frequency Modulation (FM), will not be taken into account.



2 1 Introduction

Signal-based models include all the approaches which consider pre-recorded
digital audio signals as an essential part of their information content. The most
common example is Pulse Code Modulation (PCM), which is basically a sample
playback technique with possible filtering and/or envelope signal modulation [103].
The digital samples can also be arranged to form loops, that are used as oscillators
in more complex synthesis environments. It is common to use the term wavetable
synthesis for this case, although in some situations the distinction between the
two methods can be hard to be marked. Due to its ease of implementation and
generally good sound quality, sample playback is by far the most popular method
used today for synthesizing auditory feedback in VR environments. Nevertheless,
there are several limitations exhibited by this approach when used in interactive
applications. Using a common analogy with graphics rendering [104], pre-recorded
sound samples have the same restrictions as digital photos compared to three-
dimensional computer graphic models. In order to synthesize sounds, signals must
be first recorded from real environments or acquired by other audio generation
means. Moreover, the same signals have few possibility to be interactively adapted
to the user’s input, thus largely failing to convey contextual feedback.

Aside of sample reproduction, additive synthesis methods (also called spectral
methods) aim at reproducing a target signal through operations in the frequency
domain. The most common approach devises a separation between sinusoidal and
noisy components [105] within an analysis/resynthesis framework. While offering
more flexibility compared to PCM techniques in terms of better time and frequency
scaling, yet these algorithms start from a recorded signal, moreover it is hard to
map user inputs into corresponding changes of the parameters. Furthermore, the
analysis step can be hard to be applied to non-musical sounds, since in this case
the sinusoidal components can be very close to each other in the frequency domain.

Physically-based sound synthesis models follow a radically different approach.
Here, the sound signal is considered as the final result of a simulation of the object
sound source. For this reason, they are often referred to as source models, i.e.
the goal of the simulation is the mechanical and vibrational behaviour of a given
object/instrument. Compared to signal-based techniques, they provide models that
can directly reproduce the interaction between the user and a simulated object.
This happens because the model parameters are inherently expressed in form of
physical variables such as position, mass and velocity. Furthermore, there is no
need to have a pre-recorded signal: a simple geometrical description of an object,
together with its material properties, contains all the information that is needed
by the model to synthesize sounds.

On the other hand, physical models do not generally achieve the same level
of realism as signal-based methods do when the goal is to reproduce a specific
sound. The main reason for this drawback is due to the limits on the complex-
ity of the models that can be used for real-time simulations running on common
hardware. While the theories behind acoustics and vibration are well known and
consolidated in the respective sub-fields of physics [84], exceedingly high compu-
tational cost for numerical simulation. Thus, the challenge in developing efficient
physics-based algorithms resides in finding the trade-off between accuracy, formal
simplicity of the sounding objects and computational complexity. The next sec-



1.1 Sound Synthesis by Physical Modeling 3

tion reviews some algorithms which have been become popular in Digital Signal
Processing, for achieving a good compromise among these factors.

1.1 Sound Synthesis by Physical Modeling

Exciter Resonator
sound pressure output

force

surface
motion

exciting
actions

Fig. 1.1. Factorization of a physics-based sound synthesis system in exciting and res-
onating components, similar to the one presented in [40].

The history of physics-based sound synthesis dates back to 1971, when Hiller
and Ruiz first used a numerical approximation of a Partial Differential Equation
(PDE) to reproduce the sound of a vibrating string [60]. Since then, much work
has been carried out with the goal of developing efficient algorithms furthermore
suitable for real-time implementations. Usually, it is not sufficient to merely apply
a numerical discretization scheme to a known physical equation. In most cases, the
algorithms are partly rewritten in terms of digital filters and other building blocks
that are typical in Digital Signal Processing. In this way the synthesis can be
combined more efficiently with the rest of the audio system, moreover better per-
ceptual optimizations can be used - we do not need to model what we cannot hear.
Thus, investigation in this area involves a wide array of topics: physics, numer-
ical analysis, digital sound processing, real-time programming, human-computer
interaction, psychoacoustics.

A relevant part of the literature is devoted to the simulation of musical in-
struments. The research has advanced at a point of nurturing some commercial
high-quality products [36, 83, 114, 115]. Another success story of this research is
the contribution to the understanding of acoustics phenomena resulting from dig-
ital sound synthesis models. It is the case of e.g. the ”phantom partials” in piano
sounds, which have been proved to be related to longitudinal string vibration ef-
fects by Bank [13]. For a comprehensive treatment of physical-based instrument
modeling using DSP techniques, the reader can refer to the excellent book by J.O.
Smith [111] or to the review article [123]. On a different perspective, a recent book
by Bilbao [18] approaches the subject from the viewpoint of traditional numer-
ical analysis techniques (mostly finite differences methods) for solving complex
acoustical systems, involving multidimensional wave propagation and nonlinear
vibration.

The design process of algorithms for physics-based synthesis starts from a de-
scription of the original system in terms of functional blocks. One popular ap-
proach [40] divides an acoustical instrument into an exciter and a resonator block.
The exciter is typically a nonlinear lumped system, which elicits the vibrational



4 1 Introduction

phenomenon by injecting energy into the system. In the field of musical instru-
ments, example of exciters are the hammer (piano), finger/plectrum (guitar), reeds
(clarinet), etc. The exciter transmits an excitation force to the resonator block,
producing a vibration on its surface which is the source of the variation of the
acoustic pressure field at the base of the output sound. The resonator is generally
modeled as a linear, spatially-distributed system, described in mathematical terms
by a Partial Differential Equation (PDE). The coupling with the exciter block re-
quires that the resonator transmits the information on the motion of its surface,
which e.g. for impact-like excitations is given by the displacement and velocity at
the contact position. More complex interconnections between different modeling
blocks are discussed among others by Rabenstein et al. in [99].

The diverse techniques for physics-based sound synthesis differ mostly in the
details of the resonator part. Here, a main distinction can be drawn between
white-box and black-box approaches. White-box approaches start directly from
the discretization of PDEs, exposing the internal details of the numerical simula-
tion. Common examples are waveguide modeling [109] (for one-dimensional res-
onators such as strings and pipes), time-domain finite difference methods [18] and
waveguide meshes [17] (for multidimensional resonators like membranes, plates and
rooms), and some of the modal-based approaches discussed in the next paragraph.

Black-box techniques rely instead on a simpler mathematical description of the
resonating system. The resonator is modeled as a lumped system, thus losing the
information on the spatial properties of the interaction. In most cases, the param-
eters of the resonator block are derived using signal-analysis techniques like sinu-
soidal component extraction from a pre-recorded sound. It has become common to
refer to such techniques as Physically-Inspired (or physically-informed) synthesis
methods [33,35,123], since they are somehow a hybrid between signal and physics-
based modeling. Another common simplification within these approaches is the
absence of the feedback from the resonator to the exciter. Instead of being a non-
linearly coupled system, the exciter is also modeled using signal-based methods,
similarly to what happens in source-filter synthesis [103].

Physical modeling for the simulation of everyday sounds was first proposed by
Van den Doel [124, 125], who concentrated his efforts on the modeling of collid-
ing objects. Since then, much work has been done e.g. in improving non-linear
contact models [7], using different kinds of excitations such as friction [8] and inte-
gration with haptics output [5]. A milestone in the definition of the research field
has been the EU-funded project The Sounding Object [104], where simplified al-
though highly-interactive multimodal rendering systems have been described using
an analogy with cartoon-like sounds.

Some recent high-quality results in accurate modeling of generic, non-musical
resonators has come from researchers working in the computer graphics commu-
nity, where the use of physical models for interactive rendering has a long history.
Examples include accurate sound-pressure radiation modeling [66, 87], nonlinear
high-amplitude vibration simulation [29], precise contact modeling [138] and sim-
ulation of fracture phenomena [137]. They all follow a white-box approach, where
every detail of the algorithm is derived from the physical equations describing the
problem. Nevertheless, the computational cost of such techniques is often too high
for real-time simulations on common hardware, and the models themselves are



1.1 Sound Synthesis by Physical Modeling 5

presented in a way which is hard to understand from researchers with usual audio
background.

1.1.1 Modal Synthesis

Almost all the methods for synthesizing non-musical sound objects use some modal
based numerical scheme. Using a term coined by Adrien [3] in the audio signal pro-
cessing literature, a sound synthesis technique whose final implementation consists
of a parallel bank of second-order digital resonators is conventionally referred to
as modal synthesis. However, there are radical differences among the methods re-
garding the procedure used for computing the parameters of the resonators, i.e.
the resonance frequencies, decays and amplitudes. When the synthesis engine sim-
ply consists of a parallel bank of many simple components, the complexity of the
technique resides more in the computation of these micro-parameters than in the
synthesis itself. From here on, we propose to categorize the various modal synthesis
techniques depending on the nature of this computation:

1 Signal-based techniques With these approaches, all the parameters belong-
ing to every resonator are computed from the analysis of a pre-recorded
sound. Modal extraction techniques that have been used include, among oth-
ers, Linear Predictive Coding [35], ARMA system identification made upon
on heterodyne-modulated signals [70], or complex transform-based methods
using Wavelet [39] or Gabor [107] representations.
It should be clear that, while being often improperly cited as physically-based,
these techniques are mostly signal-based. For example, it is not possible to
properly compute physical quantities such as displacement, force or velocity
with these approaches. Moreover, we do not have any access to the spatial
information about the resonator, since a lumped representation is instead used
according to a black-box like approach.

2 Diagonalization of a linear system This traditional approach in Modal Anal-
ysis [58] will be chosen also in the following of this thesis. It starts from a
system of Ordinary Differential Equations with second-order time derivatives,
which comes out of the spatial discretization of a specific PDE describing the
elastic motion of the object under study. Various numerical techniques can be
used for the derivation of this system: common approaches are based on mass-
spring network analogies [27, 104] and Finite Element Modeling [26, 66, 88].
Also finite differences or basically any other numerical discretization method
that leads to a linear system, second-order in time, with symmetric, positive-
definite matrices can be used, although they are less common in literature.
However such a discrete system of ODEs is derived, it is possible to decouple
the equations into normal modes by diagonalizing the system matrix. This
decoupling makes possible to solve N independent ODEs describing corre-
sponding orthogonal normal modes, instead of a coupled system of order N .
The diagonalizing matrix acts as a transformation between physical variables
defined e.g. in Cartesian coordinates, and modal variables in the space spanned
by the normal modes. As far as we are interested only in the value of few phys-
ical variables, like sound pressure or force and displacement at a single contact



6 1 Introduction

point, the number of such transformations that need to be applied is often pro-
portionally low compared to the order of the system. Therefore, modal analysis
algorithms can provide a significant computational advantage over the direct
solution of the initial linear system of equations.
The accuracy and flexibility of the final algorithms depend on the discretization
technique used for the derivation of the coupled linear system. Finite Element
Methods are proposed in this work, in Chapter 2, due to their ease to treat
complex geometries compared to finite differences and mass-spring networks.

3 Spectral Methods Another white-box approach prescribes to use the analyt-
ical solutions of a PDE, typically in terms of Fourier (or related) series expan-
sions. These techniques are called spectral methods in the literature of numer-
ical analysis [25]. Compared to the above-mentioned diagonalization, spectral
methods do not require to discretize the spatial domain. This happens because
the continuous-time equations are solved entirely with an analytic procedure.
In practical implementations these solutions need to be discretized, but their
accuracy is much higher compared to that achieved by direct discretization
of the equation itself1. The drawback of spectral methods is that they can
be applied only when analytical solutions of the PDE can be obtained: this
constraint typically implies strong assumptions on the domain geometry (e.g.
rectangular or circular shapes), on the homogeneity of the material, and on
the boundary conditions.
Spectral methods have been employed for sound synthesis of piano strings [14],
rectangular reverberation plates [133] and circular membranes [6]. A compre-
hensive sound synthesis theory based on spectral methods is the Functional
Transformation Method (FTM) [120], where similar examples of acoustic sys-
tems having simple geometry have been examined.

It is important to notice that, as in almost any categorization system, there are
some exceptions which do not fall exactly in any of these three classes. In practi-
cal applications one might start from either white-box approach, and then modify
some parameters using signal-based methods. This is the case of the damping pa-
rameters, that will be discussed in detail in the next chapter. Another example
is the perceptual adjustment of physically-computed amplitudes in virtual mu-
sical instruments modeling [134, 135].Sometimes, the theory underpinning some
methods is classified as white-box and then, in practical applications, resorts to
signal-based modal extraction methods for the sake of simplicity [104,125,129].

Some software packages that employ modal synthesis techniques for sound
synthesis of generic objects are nowadays available. Commercial products include
Modalys, developed at the IRCAM [43], and the recent musical synthesizer Croma-
phone by Applied Acoustic Systems [118]. Modalys employs both Finite Element
Methods and spectral methods (e.g. for strings). Observing its functionalities,
Cromaphone is probably based on spectral methods due to the simple geometries
available (strings, rectangular plates, circular membranes). Open-source alterna-
tives are the virtual reality environment Phya [80], which interfaces with a rigid
body engine for graphics rendering, and the Sound Design Toolkit (SDT) [129],

1 Due to their high accuracy, spectral methods are often said to have O(∞) convergence
rate compared to typical O(1),O(2) orders of convergence of traditional methods.



1.2 Thesis Outline 7

developed mainly at the University of Verona and implementing many interaction
primitives (e.g. rolling, crumpling) upon simple contact modeling. However, both
of these open-source alternatives use a signal-driven approach for the modeling of
the resonator, without any possibility to derive the modal parameters from the
physical analysis but for trivial resonators.

1.2 Thesis Outline

Control Rate
Simulation

Audio Rate
Simulation

Rigid body mechanics

Collision Detection

Objects management

Vibrational Simulation

Sound Impact Model

Sound Radiation
Model

Audio
Output

Haptics
Output

Graphic
Rendering

contact
position

contact
impact
velocity

objects
position

acoustic
pressure

surface
vibration

Fig. 1.2. High-level block diagram showing the modules of a physics-based engine for
multimodal rendering.

In this thesis, a white-box framework for the real-time synthesis of generic
three-dimensional objects is presented. The modeling process require only a geo-
metrical and material description of the objects and do not rely on pre-recorded
sound signals.

The sound synthesis algorithm is supposed to be part of a larger system for
multimodal rendering in virtual reality environments. A generic block-diagram rep-
resentation of this system, which mimics and extends the architecture of similar
applications developed in the same context [76, 80, 125], is shown in Fig. 1.2. The
rigid body motion of the objects is carried out using an engine available off-the-
shelf, developed for computer graphics applications [19]. This simulation typically
runs at a sampling rate between 30 and 200 Hz, as slowly as so-called user con-
trol rates operate in many audio systems. Contacts between different objects are
detected using a collision detection algorithm [75], and information on contact
position and impact velocity are transmitted to the sound synthesis engine.

The role of the sound synthesis block, which runs at a much higher sampling
frequency (audio rate), e.g. 44100-48000 Hz, is to simulate the vibrational be-



8 1 Introduction

haviour of the objects. This simulation implies the resolution of contacts at audio
rate and the generation of the sound pressure signal, which can be sent to the au-
dio output eventually preceded by some spatialization and/or postprocessing. The
same vibrational information can also be used for haptic rendering, by properly
sending surface forces to suitable interfaces.

The space-domain discretization of complex-shaped three dimensional objects
is treated in Chapter 2 using the Finite Element Method. The exposition does not
require much background in solid mechanics and/or FEM modeling. Moreover,
only techniques which can be practically reproduced using open-source software
are considered. The goal is to guarantee a certain degree of reproducibility of
the research by people possessing an audio processing background. Most of the
high-quality sound synthesis methods recently proposed by graphic researchers
(e.g. [29,66]) instead require a strong background in advanced numerical methods,
and are often impractical to implement without the use of expensive commercial
software for the pre-processing stage. In the same chapter, novel efficient techniques
for modeling the damping properties and for reducing the memory requirements
in real-time contexts are proposed.

Chapter 3 deals with the time-domain discretization of the normal modes, using
the well-known realization of the second-order digital resonator. As an original
result, a run-time transformation between two common forms of resonators is
presented, with applications for efficient computations of derived physical variables
like velocity, instantaneous amplitude and residual energy.

Chapter 4 briefly discuss some variants that can be used for lumped nonlinear
contact modeling between two objects. The computational aspects of the whole
system are instead described in Chapter 5. The core is a multirate signal processing
framework for modal synthesis, based on a Quadrature-Mirror-Phase (QMF) sub-
division. Its originality resides in the ability to handle nonlinear feedback within
a multirate signal processing architecture. In order to do so, an adaptive system
is described which uses a high fixed sample rate during the contact phase and
then switches at run-time, without audible artifacts, to an efficient multirate im-
plementation which is active for the free evolution of the system. Since the average
duration of the contacts is usually very short (less than 10 milliseconds), the overall
computational cost is significantly reduced.

Finally, Appendix A describes some software applications, working both off-
line and in real-time, that have been developed as a addendum to this thesis.
They consist of tools for computing modal resonators parameters using an open
source software for FEM computations, a graphical application for the analysis
of the resulting resonators, a real-time application where a rigid-body simulator
is connected with a real-time audio synthesis engine, and a fast realization of the
second-order parallel bank using vector and parallel computing techniques.



2

Physical Modeling of 3D Resonators

This chapter focuses on the modeling of the resonator block through the generic
physics-based procedure that has been described previously (see Fig. 1.1. In sum-
mary, the problem can be formulated as to compute the displacement of the vi-
brations in the resonant object by known forces acting on its surface. Once the
dynamical displacement of the surface is known, we have all the information needed
to interface the resonator with the exciter with an appropriate contact model. From
here, we can produce the output sound by modeling the radiation properties of
the object.

In particular, the modeling of generic resonant objects can be simplified by
making the following assumptions:

In order to simplify the modeling for the specific case of generic sounding
objects, we will make the following assumptions:

• Only shell objects are considered, i.e. we will limit our investigation to the
object surface motion.

• Deformations and stress are small enough, such that the law of elasticity will
be linear. Nonlinearities in object motion depend on nonlinear elastic prop-
erties (quite rare, and not leading to vibrations bringing important audible
effects) or geometric properties (affecting high-amplitude deformations). The
latter are more relevant in terms of their consequences to the sound, although
their accurate reproduction increases significantly both the complexity and the
computational cost of the model.

• The material is isotropic, i.e. the stress-deformation relationships will be inde-
pendent of the direction considered. In nature, metals and other stiff materials
(ceramic, glass) are usually isotropic with good approximation. Other materi-
als, like wood, can be highly anisotropic - this fact must be taken into account
for instance when accurately modeling soundboards, like those onboard good
pianos [54].

There are many choices that can be made while selecting among different math-
ematical tools, concerning both the continuous-time equations and the numerical
discretization algorithms. Here we describe in detail the modeling approach that
is at the origin of this thesis work. Although focusing on one of the many pos-
sible derivations capable of figuring out a generic resonator model, the proposed



10 2 Physical Modeling of 3D Resonators

solution satisfies most of the requirements previously introduced, that are needed
for a successful inclusion of the model in an effective virtual reality environment.
Specifically, the geometry and material characterizing an object are sufficient for
providing a complete description of a generic resonator, apart from the fine-tuning
of the decay parameters.

Moreover, the specific type of finite element approach has the valuable prop-
erty of being sufficiently simple to interface with, and to be supported by many
software packages. One of the reasons why FEM are rarely used for physics-based
sound synthesis is that the amount of code that needs to be written to implement
them can be enormous. Another difficulty comes from the fact that researchers in
digital audio usually miss a solid background in solid mechanics, or finite element
techniques. Therefore, a sufficiently simple method furthermore widely supported
by available software packages is fundamental to improve the reproducibility of
the research.

2.1 Modeling of Thin Shell Structures

In this work, we focus our attention on objects that can fall under the category of
thin shell structures, i.e. shells in which the thickness is relatively small compared
to the radius of curvature. The motivations behind this choice are basically of
computational nature. In fact, material points on a shell can be described using
only two coordinates instead of three, thus leading to a significant reduction of
the computational domain. Moreover, we are only interested in the motion on
the surface of the object. Thus, avoiding to compute anything in the inside is
an additional advantage. For these reasons, along with the fact that shells exhibit
good properties as structural elements, the subject has been widely studied, mainly
in various fields of mechanical engineering [113,140]. Other objects such as beams
and plates can be treated as a particular case of shells of zero curvature [113].

By choosing only shell-like bodies we are making a quite hard restriction on
the kind of simulated objects. However, probably this is not a critical problem,
since most fully-solid objects usually show a strong damping behavior [58] and
thus their sound-production mechanism is not very interesting from a perceptual
point of view. Even more, a full three-dimensional treatment would be much more
complicated and will eventually cause numerical problems for shell-like objects
(see [139], chap. 6 and [140], chap. 8).

The motion of a shell is typically defined by its undeformed shape (also called
rest shape or neutral surface) and by a set of material parameters that define how
it deforms under applied forces. Locations on the neutral surface can be defined
by two-dimensional curvilinear coordinates ξ1 and ξ2. Thus, three-dimensional
Cartesian coordinates of the points on the surface can be described by a vector
field x0(ξ1, ξ2). When forces are applied, the object deforms and the new shape is
described by a deformed vector field x(ξ1, ξ2). Usually, the deformation is specified
by the displacement vector field u = x− x0 (see Fig. 2.1).

From the displacement u the elastic strain ε is computed in terms of the spatial
variations of u. Under the hypothesis of “small” displacements, a linear relation-
ship between strain and displacement can be considered. This assumption is needed



2.1 Modeling of Thin Shell Structures 11

u

ξ1

ξ2

Fig. 2.1. Two-dimensional curvilinear coordinates ξ1, ξ2 on a generic shell surface im-
mersed in a 3-dimensional space. The displacement function u(ξ1, ξ2) is computed on this
coordinate system.

in order to derive a linear description of the system. It may be limiting if high-
amplitude excitations have to be considered. Another physical hypothesis that we
will consider is linear elastic behavior, i.e. Hooke’s law applies. This results in a
linear dependence of the stress σ from the strain ε. In our case of interest, this
assumption is not as much critical as the neglect of geometrical nonlinearities [84].

Partial differential equations describing the motion of shells are usually derived
by applying Hamilton’s principle after the imposition of further simplifications.
Popular choices are Rayleigh’s membrane approximation and bending approxima-
tion, which correspond to neglect respectively out-of-plane and in-plane strains.
They can be both seen as a particular case of Love’s equations, which are com-
monly used in many engineering situations [113]. Other types of shell equations
are discussed in reference textbooks as [73,113]. Unfortunately, analytical solutions
to these equations can not be derived, apart from very simplified cases (such as
those using Rayleigh’s approximations) and only for trivial domains (e.g., beams,
spheres, etc.).

Therefore, numerical approximations of the equations are needed. While it is
possible to discretize directly the equations of shell vibration, for example applying
finite differences [116], one common approach in engineering is to use the explicit
Finite Element Method (FEM) [139, 140]. With this method, the domain is dis-
cretized into a finite number of disjoint elements, and a set of ordinary differential
equations (ODEs) is derived for each element. The process is summarized in the
following section.



12 2 Physical Modeling of 3D Resonators

2.1.1 Finite Element Modeling

Finite Element Methods (FEM) are a class of numerical discretization techniques
that are particularly suited to handle problems where the domain exhibits a com-
plex, irregular geometry, often coupled with varying boundary conditions. They
have arisen as de facto standard in fields such as structural mechanics and can
be used for a large variety of physical problems, from heat conduction to fluid
dynamics.

FEM are used to find an approximation for a continuos function that satisfies
some equilibrium expressions, typically derived from a variational principle. Many
reference numerical analysis books (see for example [98]) present the Finite Ele-
ment Method in a way that is similar to other traditional solving techniques such
as finite differences:

1. A partial differential equation is given in both analytical and continuous-time
domains, together with initial and boundary conditions

2. The equation is rewritten in its weak formulation, which can be summarized
very briefly as a version of the problem where the solution is no longer needed
to satisfy the initial continuity properties. In this way, we can approximate the
solution with a set of separate functions defined on a compact support (finite
elements), so that the overall result can admit e.g. discontinuities in the first
derivative along the element borders.

3. The weak formulation of the problem is solved by discretization of the spatial
domain and the Galerkin method is appliedis applied to derive a system of
(usually linear) equations describing the value of the solution in each element.

This approach, although being coherent with the majority of other discretiza-
tion techniques for partial differential equations, has the drawback that the PDE
has to be defined first on the continuos domain. From a practical point of view, this
can pose serious drawbacks since the spatial discretization of a generic surface is
not trivial, and typically involves methods such as Delaunay triangularization [62]
or other mesh-generation techniques. Most of the software packages [65,117] which
perform FEM computations usually assume the spatial domain to be given in some
geometric mesh format. Therefore, we would like to have a mathematical formula-
tion where the equations can be directly derived from a pre-existing subdivision of
the geometrical domain. Fig. 2.2 shows an example triangularization of a smooth
shell-like surface.

FEM pioneer O.C. Zienkiewicz developed a mathematical formulation of the
Finite Element Method for elasticity problems, often called “direct approach” or
“explicit finite element method” [139], where the physical equations are derived
directly on the nodes of the mesh. Therefore, this technique is particularly suitable
for practical software implementations where the geometry of the domain has
already been meshed into the desired elements. In the following, a brief overview
of this approach for elastostatic problems is presented and it is subsequently shown
how it is possible to simulate the dynamical properties of the object.



2.1 Modeling of Thin Shell Structures 13

Fig. 2.2. Example of surface subdivision into triangular elements (triangularization).

Elastostatics Problems

In the direct approach to the Finite Element Method the continuum, which cor-
responds to the object surface in our case, is divided into a finite number of
elements joined at discrete node points. Taking a look at a two-dimensional ex-
ample (Fig. 2.3), the displacement u at any point within the element e can be
approximated as a column vector, ũ:

u ' ũ =
∑
k

Nku
e
k = Nue, (2.1)

in which ue represents a listing of nodal displacements for a particular element
and the components of N are prescribed functions of position.

uy

ux

e

t̄

Fig. 2.3. Triangular finite elements on a planar (2D) domain. The components of the
displacement u are shown for an example node, together with an external force t̄ acting
on the element border.

The functions Nk are usually called shape functions (or interpolation functions)
and their value must be 1 at node k and 0 at all other nodes (Kronecker Delta
property). One of the three linear shape functions defined on a planar triangular



14 2 Physical Modeling of 3D Resonators

element is shown in Fig. 2.4. The elements of the vector ũ are usually named degree
of freedoms (DoF) in standard vibration analysis [58].

1

j

m

i

Ni

y

x
Fig. 2.4. Shape function for a triangular element. It has unitary value on the i-th node
and null value on the other nodes.

With the small deformation assumption, strains at any point inside the element
are then determined as

ε ' ε̃ = Su, (2.2)

where S is a suitable linear operator. Finally, assuming general linear elastic be-
havior (i.e., Hooke’s law applies), the relationship between stresses and strains is
also linear and, neglecting initial strains and stresses, can be expressed as

σ = Dε (2.3)

where D is an elasticity matrix, symmetric in the isotropic case, which contains
the appropriate material properties, i.e. Young’s modulus and Poisson’s ratio.

The variational principle that is used to derive equilibrium conditions is for-
mulated in terms of the total potential energy Π, which is a functional given by
the expression

Π = Λ−W (2.4)

where Λ is the potential strain energy, that can be computed as an integral over
the element volume V e:

Λ =

∫
V e
εTσdV (2.5)

and W is the total work done by external loads on the object:

(ue)T r +

∫
V e

uTbdV +

∫
Ae

uT t̄dA. (2.6)

In the last expression, r is a vector of loads concentrated at node points, b are
distributed body forces acting on a unit volume of material and t̄ is a distributed
external loading acting on a unit area of the element.



2.1 Modeling of Thin Shell Structures 15

Substituting Eq. (2.5) and (2.6) in Eq. (2.4) and imposing the condition that
the total potential energy functional must be stationary for variations of admissible
displacements, it is finally possible to derive the equations of equilibrium for the
node displacements ue:

Keue = fe (2.7)

where Ke is denoted as the element stiffness matrix and can be computed as

Ke =

∫
V e

BTDB, B = SN (2.8)

and, similarly, the element force vector fe is expressed as

fe = r +

∫
V e

NTbdV +

∫
Ae

NT t̄dA. (2.9)

Clearly, the computation of both the element stiffness matrix and force vector
requires the use of numerical integration techniques, apart from the case of con-
centrated loads r, which luckily is the most useful in our situation as will be
discussed in Sec. V.

The same reasoning that led to Eq. (2.7) can be applied to the whole structure,
thus leading to the equation for the displacement of the nodes in every element:

Kug = f . (2.10)

In this case, the stiffness matrix K is assembled from the contributions of each
single element and is generally sparse and banded. Therefore, efficient numeric
techniques can be applied for the numerical solution of Eq. (2.10) [56]. Direct
banded solvers employing Cholesky factorization can be applied on current entry-
level hardware for problems size up to around 50,000 elements. Above this limit,
the main bottleneck is usually found in memory requirements and iterative solvers
have to be used, such as the biconjugate gradient method (BiCG) or the general-
ized minimal residual method (GMRES), eventually preceded by a preconditioning
stage on the system matrix.

The resolution of the mesh is usually defined by a parameter h, which is the
largest radius of an element in the mesh. In audio applications, it is important to
choose h sufficiently small to properly simulate the smallest wavelength of interest.
As a rule of thumb [140], h can be chosen around 5-10 times the smallest wavelength
that we need to simulate. This poses obviously an upper limit on the highest
audio frequency for which the results are significant. However, due to generally
dispersive wave propagation and complex geometries in solid mechanics, it is hard
to determine beforehand the value of h given a maximum frequency of interest
fc, so the parameter might be adjusted according to the results if high-frequency
simulations are needed.

Thin Shell Elements

Although quite simple, the simple matrix assembly procedure previously shown for
elastic planar elements can easily be extended to the treatment of two-dimensional



16 2 Physical Modeling of 3D Resonators

plates which show bending moments. In both literature [140] and FEM software
packages the most common example are the thin-plate (Kirchoff) and thick-plate
(Reissner-Mindlin) approximations.

A shell can be thought essentially as a structure that can be derived from
a plate by molding the flat surface into a curved one. However, shells support
external loads in a way which is radically different from flat plates. It is thus not
trivial to directly apply the explicit FEM formulation to a general curved shell
structure. Here, one common approximation [140] is of a physical, rather than
mathematical, nature. It is assumed that the behavior of a continuously curved
surface can be adequately represented by the behavior of a surface built up of
small flat elements. In this way, displacements and forces acting on a node can be
derived from the formulation used for thin plate elements.

As a first step in the definition of elastic problems for shell elements, both
displacements and forces are derived in a local coordinate system, which varies
from element to element. Referring to Fig. 2.5 and dropping for simplicity of
notation the apex e used in Eq. (2.1), the vector of the nodal displacements for a
single node i is given as

uei = [ui vi wi θxi θyi θzi]
T

(2.11)

and the appropriate nodal ‘forces’ are combined in the vector

fei = [Fxi Fyi Fzi Mxi Myi Mzi]
T
. (2.12)

It has to be noticed that, starting from the formulation of flat elements, the rotation
around the z-axis θz does not enter as a parameter into the deformations of the
strain. However, it is often inserted into the expression together with a fictitious
force moment Mz, as this can be useful for improving the condition number of the
stiffness matrix in case of coplanar elements [140]. This technique is often cited as
drill stabilization in some FEM shell element solvers [65].

With such a choice of element and nodal variables, single blocks of the stiffness
matrix K can be assembled. It is then necessary to transform these single blocks
from local to global coordinates if we want to express equilibrium equations in
presence of external loading forces. This transformation is usually done by apply-
ing a matrix of direction cosines to the nodal displacements and forces for each
element. Typically, it is not necessary to explicit any local coordinate information
while working on common FEM software packages : both the problem formula-
tion and the solution are expressed only in global coordinates, and the task of
converting from and to local coordinates is performed by the solver.

Dynamic Systems

In the previous discussion of the finite element method, a static analysis of the
object was considered, which is summarized by the equilibrium equation (2.10).
The goal of our analysis is to find the dynamical behavior of the object, in order
to compute the displacement at every time instant. This can be accomplished
by adding a kinetic energy term to the potential Π and by applying Hamilton’s
principle, which leads to the follow system of Ordinary Differential Equations
(ODEs):



2.2 Modal Decomposition 17

F zi

F xi

F yi

Myi

Mzi

xiM ui

v i

θxi

θyi

θzi

w i

i

Fig. 2.5. Forces and strains on a flat shell-element node.

Mü + Cu̇ + Ku = f (2.13)

where we have renamed ug in u for simplicity of notation and we have introduced
a mass matrix M and a damping matrix C. The mass matrix for a single element
is defined again by an integral over the element volume:

Me =

∫
V e
ρNTNdV. (2.14)

This system of ODEs completely describes the linear motion of the surface. It
is important to notice that both matrices M and K are simmetric and positive
definite. This is fundamental in the diagonalizing procedure that leads to normal
modes and that will be described in the next section. The nature of the damping
matrix C will be discussed with more detail in a further section. For now, it
may be convenient to assume that it is a linear combination of the mass and
stiffness matrices, although the extraction of normal modes can work even with
more complex formulations of C.

2.2 Modal Decomposition

Modal analysis [58] is a standard tool used for the computation of the solution of
the linear equation of a multiple DoF system as the one described by Eq. (2.13).
It has widely been used in many of the modal synthesis approaches proposed
for real-time sound simulation [26,27,66,88,100,104,124,125] and it is sometimes
employed in computer graphics for the simulations of deformable bodies [52,67,85].



18 2 Physical Modeling of 3D Resonators

The main idea behind modal decomposition is that the linear system of Eq. (2.13)
can be diagonalized into a set of decoupled ODEs. Each ODE obtained in this way
describes the motion of a normal mode of the original system and its solution can
be computed in a numerically efficient way.

2.2.1 Reduction to Modal Coordinates

Given the mass, damping and stiffness matrices M , C and K of Eq. (2.13), there
exists a matrix Φ and a diagonal matrix Ω such that

ΦΩ = M−1KΦ.

The columns of Φ are the generalized eigenvectors of M and K, and the diago-
nal elements of Ω are the generalized eigenvalues. Because M and K are normally
symmetric positive definite, they can be simultaneously diagonalized by Φ:

ΦTMΦ = M̃

ΦTKΦ = K̃

where M̃ and K̃ are diagonal. When C is a linear combination of M̃ and K̃, it can
also be diagonalized by Φ into the diagonal matrix C̃. Substituting into Eq. (2.13)
and using the transformation to modal coordinates y given by

u = Φy (2.15)

f = Φg (2.16)

yields to the following system of ODEs:

M̃ÿ + C̃ẏ + K̃y = g. (2.17)

In the form of Eq. (2.17), the system equations are linearly independent and
each equation describes a normal mode of the object being modeled. The columns
of Φ = [Φ1, . . . ,ΦN] are the mode shapes and the elements of Ω = [ω1, . . . , ωN ] are
the mode frequencies. Obviously, if the original systems was defined by N DoFs
(the number of elements of u), the diagonalizing procedure will lead to a system
of N normal modes.

The equations (2.16) convert physical variables defined in the original world-
system coordinates u, f into equivalent modal variables defined in the modal coor-
dinate system y,g. This scalar projection can be thought as a similar operation to
the process that converts signals from the time to frequency domain (and vicev-
ersa) in the context of discrete functional transforms such as the Discrete Fourier
Transform.

The ODE describing the motion of the k-th normal mode yk(t) can be explicitly
written as:

ÿk +R(ωk)ẏk + ω2
kyk =

1

m
gk(t), (2.18)

where R(ωk) is a damping term that depends on the form of the damping matrix
C, m is the total object scalar mass and gk(t) is the modal force signal acting on
the k-th normal mode.



2.2 Modal Decomposition 19

This is the well-known equation of the damped harmonic oscillator, with an
external forcing term. An analytic expression for the free evolution of the system,
also referred as the steady-state solution, is obtained by using the Dirac impulse
function δt as the forcing term. The actual solution depends on the particular
form of the damping term R(ωk). We consider here only the case of underdamped
vibration [84], where the condition R(ωk)2/4 < ω2

k holds. Other cases of damping,
such as critically damping (R(ωk)2/4 = ω2

k) or overdamping (R(ωk)2/4 > ω2
k) are

not considered because they lead to non-oscillatory behaviour which has very few
applications for the simulation of acoustic properties of the object.

In the underdamped case, the free solution of the motion of the k-th normal
mode can be written in terms of an exponentially decaying sinusoidal oscillator:

yδ,k(t) = Ake
−t/τk sin(ω̃kt)

Ak =
1

mω̃k

τk =
1

R(ωk)

ω̃k =
√
ω2
k −R(ωk)2 ' ωk

(2.19)

where Ak is the oscillator initial amplitude, τk the oscillator time-constant (often
referred to also as decay time) and ω̃k is the oscillation frequency which, for typical
values of the damping term, can be approximated very well by the modal frequency
ωk.

Modal Weights

Usually, we do not need to know every element of the displacement vector u. For
example, we might only need to know the displacement at a single node un, with
1 ≤ n ≤ N . In this case, the projection described by Eq. (2.16) is simplified into a
scalar product with the vector Φn, i.e. with the n-th column of the modal shape
matrix Φ. In the following, we will refer to any vector which can be used to derive
a physical variable from a scalar product of the modal coordinates as an output
weights vector wout = [wout,1, . . . , wout,N]. More complex output weights vector
can be defined to get the average displacement on a surface area defined by one
or more elements, or the near-field sound pressure generated by the vibration of
the object.

In a similar way, we will refer to a vector which can be used to convert a
continuous-time force signal F (t), having a time-constant spatial distribution on
the object, as an input weights vector win = [win,1, . . . , win,N]. Here, the assump-
tion on the force can be quite strong in many contexts. For example, it is not
possible to express with such a formalism a situation where the spatial distribu-
tion of the force is varying over the time, as it happens during the contact between
two colliding objects. However, as it will remarked in the following chapter, many
simplified models of impact forces can be implemented which do not require time-
varying contact surfaces.

If we take into account the contribute of all the normal modes, we can express
the following Input/Output relation between a force signal Fn acting on the n-th



20 2 Physical Modeling of 3D Resonators

wout,NyN

wout,1

wp,out,1

wp,out,N

pressure

displacement

win,1

win,N

force

H1(s)

HN(s)

y1

Fig. 2.6. Block diagram representing the interaction between a localized force signal and
the output displacement and pressure signals. The scalar products with the input and
output weights act as a change of coordinates between various the physical coordinates
and the continuous-time normal modes Hn(s).

node and the displacement um of the m-the node:

um(t) =

Ñ∑
k=1

wout,kyk(t)

yk(t) = yδ,k ∗ win,kFn(t)

(2.20)

This equation can be interpreted in a signal-processing context as a parallel
bank of continuous-time resonators, leading to the block-diagram of Fig. 2.6 where
the resonator blocks are written in term of their Laplace transforms. The formal-
ism used for input/output weights as transformers between the physical and modal
variables is very similar to already proposed methods in the sound synthesis lit-
erature, e.g. for musical sound synthesis [9, 14] or modal synthesis derived from
mass-spring networks [104].

So far, the modeling equations have been presented in the continuous-time
domain. In order to get a concrete numerical realization, Eq. (2.20) must be dis-
cretized in the time variable. The common way to do so is by using a second-order
digital resonator, which is a cheap computational structure which can approximate
very well the behaviour of the continuous-time resonator defined by Eq.( 2.18). The
details of the most common discretization techniques, along with some properties
of these numerical resonators, are discussed more extensively in the next chapter.

Modal weights can be easily derived from the modal shapes matrix Φ if we
are interested in knowing the exact displacement of a single node for a single
direction in the Cartesian space. This means that, in order to get just the modal
displacement of a single node, we need to employ a set of three different output
weights. If, as it is usual, we need to know the displacement along a contact
surface, the number of weights can rapidly increase and both the computational



2.3 Damping Effects 21

and memory costs can largely overcome those of the discrete-time integration. This
is one of the reasons why modal synthesis is not as popular for graphics simulations,
where it is necessary to update each node coordinate at each time step. In audio,
however, we are usually interested in a small subset of the nodes displacements,
typically those around the contact point with another colliding object. Moreover,
with some simplified contact models e.g. the one that we will be presented in
Chapter 4, only the displacement along the normal to the surface is needed.

With the finite element formulation, it is possible to easily compute the average
normal displacement within one or more elements by exploiting the relationship
between nodal values and displacement given by Eq. (2.1). The average normal
displacement over a triangular element e can be computed as:

¯̂u =
1

Ae

∫
Ae

2∑
k=0

Nkuk · dA =
1

3

2∑
k=0

uk · n̂e, (2.21)

that is we just need to compute a scalar product between the nodal displacement
vectors uk and the normal to the triangular element n̂e, since the integral of the
basis functions over the element surface is equal to Ae/3 in the linear element case.
If we substitute in the previous equation the effect of the diagonalizing matrix
Φ, we can express the m-th output weight corresponding to the average modal
displacement of the k-th element:

wm,k =
1

3

2∑
i=0

Φm, k, i · n̂e, (2.22)

where Φm, k, i is the value of the modal shape matrix Φ for the k-th element and
m-th node along the i-th Cartesian direction. Due to the linearity of Eq. (2.22),
it is easy to compute weights for the average normal displacement over a set of
contiguous elements, by a simple average of the value in each element weighted by
the triangle’s area.

Input weights and normal-averaged input weights are computed in the same
manner as output weights. The only difference, coming from Eq. (2.18), resides in
a scaling with the total object mass. This means that we do not need to separately
precompute and store in memory an input weights vector for real-time simulations.

2.3 Damping Effects

From a theoretical point of view, the damping matrix C can be calculated by
assembling contributions from element damping parameters, using for example
results from linear viscoelastic theory without memory [89]. Useful results can be
obtained with other modal-based approaches where the geometry of the problem is
very simple. For example, in the case of flexible unidimensional strings, viscoelastic
theory easily leads to a compact formulation of the damping matrix [120].

However, for complex shapes this process is quite complicated also because,
in general, the theory of damping is not as well known as the theory of elastic
behavior. Moreover, damping matrices obtained in this way are usually not sym-
metric and positive definite, and so modal analysis of the system requires the use



22 2 Physical Modeling of 3D Resonators

of complex-valued mode shapes. It is therefore common in practical engineering
the use of Rayleigh’s damping assumption or proportional damping [58], which
express C as a linear combination of M and K:

C = αM + βK. (2.23)

The definition of the damping parameters has a fundamental role in defining
the perceptual qualities of the produced sound [71,104]. Due to the nature of the
Rayleigh damping approximation, the parameters α, β have no strict relation to the
physical properties of the object considered. It is thus common to manually adjust
these parameters in order to perceptually control the decay times distribution of
the object. With the Rayleigh damping approximation, the damping term R(ωk)
in Eq. (2.18) assumes the linear form R(ωk) = α + βωk. Thus, the decay times
follow a hyperbolic distribution over the frequency:

τk =
1

α+ βωk
(2.24)

It might be better to control the damping properties via a more meaningful set
of parameters from the sound design point of view. As it has been suggested in [9],
one practical solution is to give the user the controls over the following parameters:

1. The decay time T0 at DC frequency, expressed as T60, i.e. the time necessary
to decrease the amplitude by 60dB [110]

2. The frequency fT/2 (in Hertz) at which the decay time is half of T0.

With this choice, it is trivial to compute the proportional damping parameters
from the user controls:

α =
1

log(1000)T0

β = α
1

2πfT/2

(2.25)

It has to be noted that, with the proportional damping approximation, damping
parameters do not modify the modal shapes matrix Φ computed by the diagonaliz-
ing procedure. In fact, the diagonalizability of the damping matrix C by the modal
matrix Φ does not depend on the particular damping parameters. In practice, this
means that we can compute the modal shapes for the elastic problem in absence
of damping, and then impose a decay-time distribution such as Eq.( 2.24)

If there is a need to model a more complex relationship between mode frequen-
cies and decay times, a generalization of the proportional damping model can be
adopted. Caughey and Kelly [28] proposed a series representation of the damping
matrix C:

C = M
∑
n

αn
[
M−1K

]n
(2.26)

and they showed that such a representation is the necessary and sufficient condition
for existence of classical normal modes for systems without any repeated roots.
In terms of practical implementation, generalized proportional damping leads to
a polynomial distribution of decay rates:



2.3 Damping Effects 23

R(ωk) =

Nd∑
n=0

αnω
n
k . (2.27)

As it will shown in the next paragraph, even a second-order polynomial
(Nd = 2) can give a better approximation than proportional damping for matching
some measured decay distributions. However, increasing further the order of the
polynomial has a serious drawback in the control of the curve, because we need to
specify more parameters and the oscillating behaviour of higher-order polynomial
is often undesirable.

Another generalization of proportional damping in terms of analytical functions
is given by Adhikari [1, 2]. Even in this case the diagonalizability of the damping
matrix is assured, while having more flexibility in modeling the damping behaviour
over frequency. Implementing such an approach to derive more accurate decay
curves is a topic of future research.

2.3.1 Estimation of Damping Parameters

In the previous paragraph, we have used a simple damping model whose param-
eters needed to be manually adjusted by the user in order to achieve the desired
decay properties. It is also possible to estimate such parameters from a recorded
sound of a given object, for example if we want to match the decay properties of
a certain material.

The topic of modal decay estimation for audio systems is widely covered by the
literature. For a detailed review of the most common techniques, in the context of
audio reverberation and musical sound synthesis, see [69]. Here, we will present a
procedure which has been used for the estimation of piano strings decay param-
eters [134, 136]. Nevertheless, the generality of the damping model that has been
assumed makes possible to easily use such techniques for a general class of modal
objects.

We assume a target sound represented as a mono discrete-time signal x(n),
with sampling frequency fs. The goal of the procedure is to estimate the decay
parameters αn in Eq. (2.27), where we also consider the proportional damping
case when Nd = 1. The algorithm can be summarized in two main computational
steps. In the first part, salient modal frequencies are estimated on the signal and
their decay times are computed. Then, once we have this discrete map from fre-
quencies to decay times, we can fit the chosen decay law using standard regression
techniques.

In the detail, the algorithm can be decomposed in the following steps:

1. A set of relevant modal frequencies ωk, 1 ≤ k ≤ Nmodes is estimated with
some traditional peak-picking algorithm on the Short-Time Fourier Transform
(STFT) of the signal (see for example [141], chap. 10 for a reference technique
used in additive synthesis). Since the purpose here is not to extract the whole
modal data, but just the overall damping behaviour, the peak-picking proce-
dure need not to be very accurate. Here we just selected the highest-magnitude
spectral peaks in a STFT frame centered shortly after the start of the signal,
with a preprocessing median-filtering on the spectral envelope to reduce noise
and false peaks [132].



24 2 Physical Modeling of 3D Resonators

Fig. 2.7. Example of modal envelope extraction from a recorded sound. The original
signal had a lenght of 30 sec., which has been appropriately cut by the noise level estima-
tion procedure. The fitted straight-line envelope is shown on the top of the log-envelope
of the heterodyne modulated signal.

2. For each modal frequency ωk, the modal amplitude envelope is computed by
means of heterodyne filtering. A similar procedure is sometimes referred in
literature as frequency zooming [70], and it employs the following steps:
• Shift the frequency of interest around DC, by modulation with a complex-

valued oscillator:
x̃(n) = x(n) e−j

2πωkn

fs

• The complex signal x̃(n) can then be lowpass filtered and downsampled
according to the desired analysis bandwidth. The ratio of downsampling
(referred as zooming factor in [70]) is usually between 50 and 100. The log-
magnitude of the resulting signal is referred to as the modal envelope (or
partial envelope in musical contexts) and can be seen in Fig. 2.7. Note that
the envelope of a single sinusoidal mode should be a straight line in this
logarithmic scale. However, especially for objects with complex geometry
and high stiffness, it is common to observe in a single frequency window
the combined effect of multiple modes, which give rise to beatings in the
amplitude envelope.

• The last part of the signal is cut with a noise floor level estimation simi-
lar to the one proposed in [44]. This is necessary because, otherwise, the
estimation would be very poor especially for high-frequency modes which



2.3 Damping Effects 25

decay shortly after the attack. First, the Root Mean Square (RMS) of the
signal is taken in small (5-10 ms) windows and a straight-line dB envelope
is fitted on the last part of this data. Then, a rough least-square estimate of
a linear envelope is taken on the attack part of the signal, and the effective
data length is computed from the intersection of these two lines.

3. A linear envelope is fitted on the signal obtained at the previous step. The
author has found that, in presence of beatings and/or noisy data, using a robust
regression estimate such as Least Absolute Deviation Regression (LADR) [74]
gives better results than traditional Least Squares techniques. The decay time
τk is directly computed from the first-order coefficient of the fitted line.

4. Once we have a set of modal frequencies ωk and their relative decay times τk,
a polynomial of desired order Nd is fitted over the decay rates rk = 1/τk distri-
bution. The fitting procedure can be compromised by the presence of several
outliers in the decay times estimate. Nevertheless, the employment of a robust
fitting procedure such as LADR has been found to usually perform better than
least-squares fitting in most cases. Fig. 2.8 compares the fitting result of a first-
order polynomial obtained with least-squares regression against a second-order
LADR fit. It can be clearly seen that, especially in the low-frequency range,
the second order model follows better the decay-times distribution.

2000 4000 6000 8000 10000
Frequency [Hz]

0

10

20

30

40

50

60

T
60

 d
e
ca

y
 t

im
e
s 

[s
]

Decay law fitting

Measured data
Proportional damping. Mean RMS err. : 0.89s
Quadratic damping. Mean RMS err. : 0.67s

Fig. 2.8. Fitting of a polynomial damping law over a set of estimated modal frequencies
and decay times (blue dots). The green line shows a linear fit obtained with least-squares
regression, while the red one represents a second-order fit by LADR.



26 2 Physical Modeling of 3D Resonators

The proposed method for estimating the damping parameters is quite simple
to implement and, if the goal is to match the overall damping behaviour, produces
good result. Other methods proposed in literature differ mainly for the way in
which the decay time of the single partial is estimated. In FZ-ARMA modeling [70]
standard system identification techniques (such as Prony’s method or Stieglitz-Mc
Bride iterations [94]) can be used to estimate more than one mode on each single
heterodyne envelope. Recently, a modal estimation procedure for impact sounds
based on Gabor transforms has shown to produce very accurate results [107]. The
technique can also be used for joint frequencies-decays estimation, in applications
where all the synthesis parameters are derived from a prerecorded sound.

2.4 Radiation Modeling

In a virtual reality application sounding objects are immersed in a listening envi-
ronment, which is also described by the listener’s position in the scene. Thus, we
need a method to compute how the vibrations on the surface of the objects are ra-
diated towards the listener according to the law of acoustic pressure propagation in
the air [84]. The phenomenon is hard to model properly and is taken into account
only in few works coming from computer graphics researchers [29,66,87], while it
is almost neglected in all the other publications on interactive sounding objects.
It is however indirectly considered for the synthesis of some musical instruments,
especially for the piano [14], since in this case the instrument body is usually
simulated by measuring its force/pressure impulse response with an experimental
setup.

Radiation from a particular vibration mode interacts with the object’s ge-
ometry in a complicated way to affect its radiation efficiency [31, 84], boosting
radiation from some frequencies and suppressing others. This should be taken
into account into sound modeling, since audible sounds have wavelengths that are
comparable to the size of objects in human environments. In the following, we will
summarize the radiation problem for a surface vibrating with a single harmonic
frequency and we will give an expression for a simple near-field approximation.
Notice that we neglect the effects of reverberation [141], as this will be compli-
cate too much the problem formulation. Eventually, reverberation effects can be
added in a post-processing stage. In addition, the radiation from each object is
investigated separately, i.e. the interaction between different radiating sources is
neglected.

2.4.1 Helmholtz Equation

With acceptable approximations [84], in an homogeneous medium at rest the sound
pressure P satisfies the wave equation

∇2P − 1

c2
∂2P

∂t2
= 0, (2.28)

defined over the domain D = R3 \ O, where O ⊂ R3 is the volume enclosed by
the object. The physical quantity c is the speed of sound and ∇2 is the Laplacian



2.4 Radiation Modeling 27

operator. We denote with x a general “listening” position in the domain, whose
origin is taken arbitrarily inside the object. Let us focus on a single vibrational
mode having frequency ω. We can then consider the case of time harmonic acoustic
propagation, that correspond to assume a pressure field of the form

P (x, t) = <
(
p(x)e−jωt

)
(2.29)

Substituting (2.29) in (2.28), we can see that p satisfies the Helmholtz equation

∇2p(x) + k2p(x) = 0, x ∈ D (2.30)

where k = ω/c is the wave number. Boundary conditions are required to solve
Eq. (2.30) for sound radiation from surface vibrations. First, the normal derivative
of pressure on the vibrating object’s surface ∂D is given by an impedance boundary
condition

∂p

∂n
= −jωρν on ∂D (2.31)

where ∂/∂n denotes the normal derivative on the boundary, taken in the direction
outgoing from the surface, ρ is the fluid density and ν is the surface’s normal veloc-
ity, that can be computed from the mode shape. The second boundary condition
is given by the Sommerfeld radiation conditions, which express the idea that the
acoustic field is traveling outwards towards infinity:

p(x) = O
(
r−1
)

(2.32)

∂p

∂r
(x)− jkp(x) = o(r−1) (2.33)

as r →∞, where r = |x| is the distance of x from the origin.
The solution of each mode’s radiation problem can be done using several nu-

merical methods. Among the different choices, which include for example finite
differences or finite element methods [64], the boundary element method (BEM)
is widely used in the acoustic community [31]. It is based on an integral formu-
lation of the problem via Green’s theorem. The most noticeable advantage of the
method is that the solution at any point in the domain D can be expressed as a lin-
ear combinations of elements defined only on the boundary ∂D, thus significantly
reducing the size of the computational domain.

2.4.2 Accurate Radiation Modeling

We will briefly discuss here one of the advanced algorithms proposed for real-
time radiation modeling [66], based on a multipole expansion of the precomputed
transfer function from BEM simulations. In this work this technique has not been
investigated thoroughly, mainly because contrarily to the Finite Element Method,
there are much fewer Boundary Element Method solvers available and almost none
which is both open source and targeted at acoustic problems. For instance, the
authors of the above mentioned work have used a commercial BEM solver which
cost is somewhere in the ten-thousand dollars range.

Once the pressure field has been computed for each mode, it is possible to
use this information to get the proper modal output weights. The problem here is



28 2 Physical Modeling of 3D Resonators

that, even if the solution of Helmholtz equation is done offline, it is not practical
to store it for a later use at run-time, due to the prohibitive memory requirements
even if we limit the size of the acoustic domain. If BEM is used, the pressure field
p(x) at non-boundary locations x can be computed by a linear contribution of M
boundary elements. Unfortunately, this leads to a computational cost of O(NM)
for N modes, which is still too demanding for real-time use.

Thus, James et al. [66] proposed an algorithm for the fast evaluation of the
pressure field at run-time. As a first offline stage, they solve Helmholtz’s equa-
tion (2.30) for each mode using BEM. Then, the pressure field in the whole do-
main is approximated by a multipole expansion, i.e. by a linear combination of M
spherical multipoles [84]. The order of the multipole is a free parameter in the
approximation procedure and, in their examples, they suggest the use of dipole
sources. Fig. 2.9 shows the results in approximating the radiating field of a single
mode with few dipoles. Multipoles positions are selected using a greedy placement
algorithm, which takes into account the boundary conditions of the original prob-
lem. Finally, the weighted contribution of each multipole is calculated by solving
a least squares problem through truncated singular value decomposition.

Fig. 2.9. Radiation of a mid-frequency mode for a complex geometry object as computed
from a BEM simulation and from a multipole approximation with 63 dipoles. Figure taken
from [66]

Once the multipole sources are placed and their amplitude is known, at run-
time it is possible to sum these contributions according to the relative position
of the listener to the object. This process is referred as Precomputed Acoustic
Transfer (PAT) evaluation. As they are not considering phase-related effects, this
evaluation is performed at control rate (30-100 Hz), so that the computational
amount for this evaluation is significantly cut down. Nevertheless, it is an open
issue how to efficiently include phase information from the multipoles, which can
be used for example for Doppler’s effect simulation.

In the discussion of the results, they note how, in general, a complex-shape
object requires a number of multipoles that increases with the frequency ω of the
mode. This is quite intuitive, as many direction-depending acoustic phenomena are



2.4 Radiation Modeling 29

usually relevant only in the high-frequency range [84]. As a direct consequence,
high-frequency modes can have a much more expensive PAT evaluation than low-
frequency modes. This can easily lead to high computational costs in the presence
of many objects with several high-frequency modes.

Further research in radiation has been presented by the same authors in a work
focused mainly on nonlinear shell vibration by modal synthesis [29], where the large
number of dipoles required for high-frequency modes is significantly reduced with
a technique called Far-Field Acoustic Transfer Maps (FFAT). The key idea is to
use a far-field approximation in terms of a combinations of spherical functions
instead of dipoles.

A different approach for accurate radiation modeling has been followed by
O’Brien et al. [87], where nonlinear finite elements are used to discretize not only
the vibrational behaviour of the object surface, but also the surrounding air space.
Even nowadays, the method is extremely expensive due to the large number of
elements required and thus not suitable for real-time implementations.

2.4.3 Near-Field Approximations

As we have seen, accurate radiation modeling is usually a hard task, due to the
complex preprocessing techniques and the significantly increase in computational
cost. Even the most efficient of the algorithms cited in the previous paragraph can
require up to 50 output weights per mode, whose computational cost is roughly
more than one order of magnitude of the cost for the time-domain realization of a
single resonator.

A simpler yet less effective approach is to model only the near-field radiation
for each mode, as it has been suggested in [88]. The pressure field near the surface
of a triangular element e is given by:

pe =
Z

Ae

∫
Ae

ve · n̂e, (2.34)

where Z is the material-air impedance and ve is the displacement velocity on the
element, i.e. the first time derivative of the displacement ue. The procedure for
computing the pressure output weights is then similar to the one we used previously
to compute the average normal displacement in Eq. (2.21). The time-derivative of
the continuous-time impulse response of a single resonator Eq. (2.19) is:

ẏδ,k(t) = Ake
−t/τk

(
1

τk
sin(ω̃kt) + ω̃k cos(ω̃kt)

)
, (2.35)

thus we can express the (complex-valued) pressure output weights for the k-th
mode as:

wp,out,k = ωk

∫
A

Φk · n̂
(
− 1

τk
+ j(ω̃k +

π

2
)

)
, (2.36)

i.e. an integral over the whole surface A of the scalar product between the k-
th column of the modal shape matrix Φ and the normal to the surface, plus
a phase offset of π/2 due to the cosine in the derivative of the impulse response.
Chapter 2 shows how it is easily possible to incorporate phase shifts in the common



30 2 Physical Modeling of 3D Resonators

implementations of a digital resonator. The integral of Eq. (2.36) can be performed
using the expression we have already derived for the average normal displacement
over a set of elements in Eq. (2.22). The summation has to be carried among all the
elements, but it can quickly done offline without hurting real-time performance.

2.5 Modal Shapes Reduction

Among all the data vectors that we need to store for the real-time simulation of an
object, the output weights are by far the most demanding structure. For instance,
the accurate simulation up to 15 KhZ of a bell-shaped steel object having a radius
of around 20 cm results in a triangular mesh of approximately 9000 elements for
250 modes. If full three-dimensional displacement weights are computed, we need
to store 250× 9000× 3 = 6, 750, 000 floating point values (around 27 MegaBytes).
This is clearly a huge number for the sound synthesis of a small object, especially
on modern hardware where memory access costs are usually much bigger than
those for floating point operations.

Fig. 2.10. Multi-resolution mesh for storing modal shapes can be obtained by mesh
refinement (via Loop Subdivision Surfaces) or coarsening (e.g. with the Quadric Edge
Collapse algorithm).

The problem of modal shapes reduction has already been addressed in the
computer graphics community, e.g. with the use of compression techniques based
on Wavelet transforms [68]. However, for audio simulation we can further sim-
plify the question by a drastic reduction of mesh complexity used for real-time
simulations. It is necessary to separate the mesh resolution requirements for the
offline and real-time steps of the simulation. During offline FEM computation of
the modal shapes, a high resolution mesh is required to get accurate results for
high-frequency modes. For the real-time simulation phase, however, large meshes
are intractable and, moreover, from a perceptual point of view it is not needed to
model precisely the amplitude distribution of the high-frequency partials [104].

Even in most rigid body simulators used in virtual reality environments, it is
a common practice to store the physical simulation mesh with a lower resolution
compared to the one used for graphics rendering [20]. We applied the following
procedure to handle different resolution meshes for modes extraction and output
weights storage:



2.6 Conclusion 31

1. The starting mesh is usually the one used for graphics rendering. Typically,
the resolution of this model is not high enough for accurate FEM simulations
and often too big for real-time simulations.

2. The starting mesh is refined into a finer one by using the Loop Subdivision
Surfaces algorithm [77]. The algorithm is widely known in computational ge-
ometry and it is based on an iterative mesh refinement via binary subdivisions
of triangular splines.

3. Eventually, a coarser mesh than the original one can be obtained by a mesh
reduction algorithm, such as the Quadric Edge Collapse method [78]. The
drawback of these methods is that it is hard to ensure that each triangle in
the coarse mesh can be composed exactly by a number of triangles of the
finer mesh. On the other side, there are robust implementations available in
common meshing softwares [30].

4. The fine mesh is used for FEM elasticity computation and modal shapes ex-
traction. The results are stored in an intermediate file and the mesh nodes are
inserted in a OctTree structure [38] for fast position-based queries.

5. Pressure output weights are computed directly from the fine mesh, since we
need to store just one weight for each mode.

6. For each triangular element in the coarse mesh, we need to compute the aver-
age modal displacement. This is done by finding the fine mesh elements that
compose the larger element in the low-resolution mesh. First, we perform an
OctTree query on the previously stored point tree using a search radius of
twice the circumcenter of the coarse triangle element. Then, we perform a
point-in-triangle test [38] to keep only the fine triangles whose vertices com-
pletely fall inside the coarse triangle. Finally, we compute the average normal
displacement on this set of elements using Eq. (2.22)

With the proper use of available meshing software and programming library,
the procedure is simple to implement. Details on the tools used are discussed in
Appendix A. Referring to the above-mentioned example of the bell-shaped steel
object, it is possible to reduce the memory requirements as low as 50,000 floating
point values for a typical run-time mesh of 200 triangles, i.e. we can achieve good
perceptual approximations with less than 1% of the memory required for the full
mesh.

2.6 Conclusion

In this chapter, the theoretical foundations of Finite Element Modeling for vibroe-
lastic simulations were reviewed, along with some operations that significantly
reduce the cost of models in a real-time context. Although it might look compli-
cated, the procedure of obtaining the real-time data structures starting from a
geometrical mesh and material properties is quite simple with the proper software
aids, which are discussed in Appendix A. Summarizing the content of the previous
paragraphs, the steps of the procedure are:

1. Refine the starting mesh in order to fit the requirements for FEM simulations



32 2 Physical Modeling of 3D Resonators

2. Define the necessary FEM parameters, such as material properties (density,
Poisson’s ratio, Young’s modulus) and boundary conditions

3. Use of any standard FEM software with support to triangular shell elements
to assemble the system matrices M and K

4. Obtain the modal shapes matrices and modal frequencies via diagonalization of
the system matrix, possibly with the use of a eigenvalue linear algebra package
(e.g. ARPACK [72])

5. Precompute the pressure output weights vector, then eventually precompute
the average normal displacement weights on a reduced mesh

6. Define modal decay times either by manual adjustment of significant param-
eters or by analysis of a target sound. These parameters do not depend on
FEM discretization and can be modified at any time.

At this point, all the information that is needed for the simulation of a 3D
resonator is available, i.e. frequencies, decay times and modal weights. In the next
chapter we will see how we numerical equivalents of the continuous-time resonator
can be derived for the integration in the time domain.



3

Second-Order Digital Resonators

The fundamental building block of every modal synthesis implementation is the
discrete-time digital resonator, which numerically implements the second-order
ODE of the damped harmonic oscillator acting under an external force Eq. (2.18).

In the following, the numerical details necessary to the simulation of this system
are discussed. One of the most common implementations, the all-pole second-order
digital resonator, is chosen as the best compromise in terms of accuracy and ef-
ficiency for the realization of resonating objects. The other method considered is
the so-called quadrature-phase resonator (often improperly cited as state-variable
resonator), which offers a greater flexibility for the run-time control of the pa-
rameters but comes at almost twice the computational cost of the simple all-pole
resonator. Floating-point realizations will be assumed, and thus all the details re-
garding round-off and accumulation errors in fixed-point implementations will be
neglected.

A simple and efficient way to convert filter state variables between all-pole
and quadrature-phase implementations is presented. Such a transformation can
be useful whenever derived variables like velocity and energy of oscillation are
needed while using all-pole filters.

3.1 Impulse-invariance Discretization of the
Continuous-time Resonator

The discretization with respect to time of Eq. (2.18) can be done by various meth-
ods, the most popular choices being the bilinear and impulse-invariance trans-
form [91]. Both techniques lead to stable filters whenever the continuous-time sys-
tem is also stable, which is always the case for the damping behaviour considered.
However, resonators obtained by bilinear transform, as they are e.g. formulated
in [104], suffer from the frequency-warping phenomenon, i.e. there is a nonlinear
warping between the continuous and discrete time frequency axes, which has to
be corrected by pre-warping the resonating frequency [110]. Moreover, digital fil-
ters obtained in this way have a direct path between the input and output of the
system. This means that, whenever the resonator is connected in feedback with
other systems, methods to compute delay-free loops have to be used [24,46].



34 3 Second-Order Digital Resonators

Here, the impulse-invariance transform is used. Basically, it involves sampling
the continuous-time impulse response with a time period of T seconds, correspond-
ing to a sampling frequency of fS = 1/T Hz. Since the continuous-time system
defined by Eq. (2.18) is band-limited within a very good approximation in the un-
derdamped case, the aliasing coming from this transform is usually negligible. The
only obvious precaution we need to take is to avoid implementing any mode which
resonant frequency is near or above the Nyquist frequency fS/2. Moreover, the
discrete-time impulse response of a resonator will have a leading zero, thus avoid-
ing most delay-free loops whenever the system is connected e.g. with an exciter
block.

Sampling the continuous-time impulse response Eq.(2.19) yields to:

yδ[n] = yδ(nT ) = TA0e
−Tτ sin(2πfrTn), (3.1)

where we have dropped for the sake of clarity the subscript k since we will refer to a
single resonator for the following of the chapter. As for the continuous system, the
parameters are the resonator amplitude A, the time constant τ and the resonant
frequency fr. Taking the Z-transform of Eq. (3.1) gives a second-order discrete-time
system which has complex-conjugated poles1:

pr = R ejωr , p∗r = R e−jωr (3.2)

R = e−
T
τ (3.3)

ωr = 2πfrT. (3.4)

The resulting system has the following transfer function:

H(z) =
b1z
−1

1 + a1z−1 + a2z−2

b1 = A0 R sin(ωr)

a1 = −2 R cos(ωr)

a2 = R2.

(3.5)

The corresponding difference equation used for the state update is:

y[n] = b1u[n− 1] − a1y[n− 1] − a2y[n− 2], (3.6)

i.e. we are using a standard Direct Form I realization [110]. Note that the input
signal u[n] does not have any direct relationship with the continuous displacement
variable u used in Chapter 2.

For the numerical integration of whole resonators such as those described in
Chapter 2, it is sufficient to substitute the structure of the digital resonator in
place of the continuous-time blocks of the diagram in Fig. 2.6 and optionally use
two set of output weights if both pressure and displacement variables need to be
computed. The resulting DSP algorithm is a weighted bank of N parallel second-
order resonators and is depicted in the block diagram of Fig. 3.1. It is of course
possible to incorporate the input weights and one of the two sets of output weights
into the numerator coefficients b1,k. Usually, the output weights vector which is
used most often (e.g. the one for sound pressure) is chosen for this operation.

1 For the algebraic details, see for example [9], Chapter 2.3 or [92], Appendix A



3.1 Impulse-invariance Discretization of the Continuous-time Resonator 35

−a1,N

−a2,N

wout,Nyk

−a1,1

−a2,1

wout,1

y1

z−1

z−1

z−1

z−1

z−1

wp,out,1

wp,out,N

b1, 1

b1, N

pressure

displacement

win,1

win,N

force

Fig. 3.1. Full block diagram for the discrete-time realization of a modal resonator.

Initial Phase Offsets

The resonator in Eq. (3.5) has a zero-phase offset, i.e. its amplitude is null at
time instant n = 0. Physically, this corresponds to a system which has null initial
conditions, being at rest at the beginning of the simulation. It might be useful
for some applications (especially radiation, see Chapter 2) to consider resonators
which have an initial phase offset ϕ0 at time instant n = 0. Considering again
the Z-transform of the proper discrete impulse response, it is easy to derive the
transfer function of the system for this situation:

H(z) =
b0z + b1z

−1

1 + a1z−1 + a2z−2

b0 = A0 sin(ϕ0)

b1 = A0 R sin(ωr − ϕ0)

a1 = −2 R cos(ωr)

a2 = R2.

(3.7)

Note that in this case there is a delay-free path between the input and the
output, since the coefficient b0 is generally non-null. Nevertheless, most of the
situations where the phase offset can be used (e.g. for radiation modeling) do
not involve feedback connections with other blocks, so this feature just cost one
additional per-sample multiplication.



36 3 Second-Order Digital Resonators

Resonator Bandwidth

In the context of practical audio applications, it is often useful to examine the
digital resonators defined by Eq. (3.5) as traditional bandpass filters [110]. The
most relevant property of a bandpass filter, beside its resonant frequency fr, is the
resonance bandwidth ∆f , which is typically defined as the width of the frequency
interval where the magnitude response of the filter is above -3 dB of its peak
response.

5300 5350 5400 5450 5500
Frequency [Hz]

40

60

80

100

M
a
g
n
it

u
d
e
 [

d
B

]

T60 = 0.1

T60 = 5.0

T60 = 250.0

Fig. 3.2. Magnitude of the Frequency Response Function of three different digital res-
onators, having the same center frequency and varying decay times, expressed here as
T60. The resonating frequency is set at one of the discrete points used for transfer func-
tion evaluation, in order to have an exact (up to numerical round-off errors) magnitude
value at that frequency.

It is useful to first define the Q factor of the resonator [91], which is usually
expressed as the ratio of resonance frequency and bandwidth:

Q =
fr
∆f

. (3.8)

We are only considering underdamped resonators, and so the constraints on the
damping term stated in Chapter 2 translates into the inequality Q > 1/2. In terms
of the previously discussed resonator parameters, it is easy to derive Q in terms
of those values as:



3.2 Space State Formulations 37

Q =
πτ

fr
. (3.9)

Consequently, the bandwidth ∆f of the resonator can be expressed as:

∆f =
f2r
πτ
. (3.10)

Note that the expressions are not dependent on the particular discretization tech-
nique used. In fact, they are just relations between the continuous-time parameters
and are also valid for the continuous-time resonator described by Eq. (2.18).

Eq. (3.10) states that the resonator bandwidth is inversely proportional to the
decay-time of the resonator. It is also possible to note that the amplitude of the
resonant peak varies significantly for different decay times, and also with frequency
(not shown in the plot). This comes from the fact that we are forcing a constant
time-amplitude peak A on the resonator. The problem is well known in digital
filter design contexts [110]. For some audio applications, it might be better to
have a constant-peak-gain resonator, by scaling the input coefficient b1 with the
magnitude response of the transfer function Eq.(3.5) computed at the resonant
frequency (see [110] for the details in the case of all-pole and two-zero resonators).
However, in this way we are obviously modifying the time-amplitude of the impulse
response, loosening in some way the connection with the continuous-time modal
resonator.

3.2 Space State Formulations

With the Direct Form I realization of the all-pole resonator, it is necessary to
update at each time sample the current and previous output value of the filters,
which are then stored in the delay elements shown in the diagram of Fig. 3.1). It
is possible to rewrite the difference equation Eq. (3.6) in state-space form [110]:[

y[n]
y[n− 1]

]
=

[
−a1 0

0 −a2

] [
y[n− 1]
y[n− 2]

]
+

[
0
b1

]
u[n]. (3.11)

If we denote with the state with the vector x[n] = [y[n], y[n− 1]]
T

, we can
rewrite the filter update equation in canonical form as:

x[n] = Ax[n− 1] + Bu[n] (3.12)

y[n] = CTx[n] +Du[n], (3.13)

where CT = [1, 0]
T

and D = 0.
State-space representations are a popular form to express a different realization

of the second-order resonator, derived from the quadrature-phase oscillator [79].
The idea behind these structures is to decouple the oscillating and damping be-
haviour in the numerical scheme, whereas both parameters are forcedly coupled in
the recursive coefficients a1, a2 of Eq. (3.5). The difference equation2 is expressed
with a couple of variables x[n], y[n] which have a relative phase-offset of 90 degrees:

2 Note that, for consistency with the all-pole equation, we have chosen to add the input
to the “sine” variable y instead than to x as it is done in [79].



38 3 Second-Order Digital Resonators

x[n] = Rxx[n− 1]−Ryy[n− 1]

y[n] = Ryx[n− 1] +Rxy[n− 2] + b1u[n],
(3.14)

with Rx = R cos(ωr) and Ry = R sin(ωr) being the cartesian coordinates of the
complex pole. The correspondent canonical state-space form is:

xQ[n] = AQ xQ[n− 1] + BQ u[n] (3.15)

y[n] = CT
Q x[n] +Du[n]. (3.16)

The subscript Q has been used in order to distinguish between the previ-
ous state-space relation. In this case the state-to-output matrix is CT

Q = [0, 1]
T

.
It is immediate to see that, from the form of the state update matrix AQ, the
quadrature-phase resonator requires twice the floating point operations at each
sample compared to the all-pole resonator.

The advantage of the quadrature-phase resonator resides in the possibility to
independently change at run-time the resonance frequency ωr and the decay time,
by acting on the pole radius R. With the all-pole resonator, it is only possible
to change the decay time without artifacts, e.g. by precomputing a set of proper
recursive coefficients a1, a2. This has been used for example for the modeling of
musical instruments, such as the piano, which exhibit complex two-stage decay
modal envelopes [135]. However, it is not trivial to change the frequency of an
all-pole resonator without causing audible jumps in the output amplitude.

Another benefit of the quadrature-phase form is the direct access to the cosinu-
soidal variable y1[n]. In physical modeling sound synthesis, this value is very useful
for computing derived physical variables such as resonator velocity Eq. (2.35) or
energy. We might ask if it is possible to compute such quantities from the states
of the all-pole resonator, without recurring to numerical derivation techniques.

We consider a digital resonator in free evolution, i.e. the input signal u is null
in Eq. (3.6). In order to take into account the previous history of the resonator,
we can explicitly add an instantaneous amplitude An and a phase offset ϕn in the
expression of the steady-state response:

y[n] = An R
n sin(ωrn+ ϕn). (3.17)

The goal is to express the cosinusoidal state x[n] = AnR
n cos(ωrn + ϕn) in

terms of the two sinusoidal states y[n], y[n − 1]. Expanding the expression for
y[n− 1] and using some basic trigonometry yields to:

y[n− 1] = AnR
n−1 sin(ωr(n− 1) + ϕn)

= R−1AnR
n sin((ωrn+ ϕn)− ωr)

= R−1AnR
n

(
sin(ωrn+ ϕn) cosωr − cos(ωrn+ ϕn) sinωr

)

= R−1

(
y[n] cosωr − x[n] sinωr

)
.

(3.18)

Consequently, the quadrature component x[n] can be expressed as:



3.3 Derived Variables 39

x[n] =
y[n] cosωr −Ry[n− 1]

sinωr
. (3.19)

In terms of state-space vectors, the mapping between the quadrature-phase
state vector xQ and the all-pole vector x is written with a transform matrix S:

xQ = Sx =

− R
sinωr

cosωr

sinωr

0 1

x. (3.20)

The matrix S is non-singular under the assumptions we made for the resonator
parameters. The inverse relationship, which can be used to go back to the all-pole
states, is

x = S−1xQ =

[− R
sinωr

cosωr

sinωr

0 1

]
xQ. (3.21)

From a computational point of view, the cost of integrating an all-pole res-
onator and then apply the transformation to get the quadrature-phase states is
obviously larger than that required by directly running a quadrature-phase res-
onator. Nevertheless, the transformation turns out very useful whenever we need
the flexibility of quadrature-phase filters only for a small amount of time. For ex-
ample, energy estimation techniques as the one proposed in the next paragraph
are usually performed once every audio buffer (usually 64-512 samples). Another
situation typically happens when we require velocity information only during a
short contact phase, as it is required for hysteretic impact models (see Chapter 4).

In these cases, we can simply use a cheap all-pole resonator and switch to and
from the quadrature-phase form only for a limited amount of simulation time.
Consequently, it is possible to save a significant amount of computations without
sacrificing the accuracy of the results, since (up to machine floating-point precision)
the transformation of Eq. (3.20) is numerically exact.

3.3 Derived Variables

In this section, we will make use of the state transform Eq. (3.20) to derive the
expressions for some useful variables when the simple all-pole resonator is used.

3.3.1 Resonator Velocity

The expression for the velocity of a continuous-time modal resonator Eq. (2.35)
can be easily used in discrete-time implementations once we know the quadrature-
phase variable x[n], which in this case comes from the derivative of the sinusoidal
oscillation. Simply inserting the transformation Eq. (3.20) into the sampled version
of Eq. (2.35) yields to the following equation:

v[n] = b0,vy[n] + b1,vy[n− 1]

b0,v =
ωr cosωr

T sinωr
− 1

τ

b1,v = − Rωr

T sinωr
,

(3.22)



40 3 Second-Order Digital Resonators

0 50 100 150

−30

−20

−10

0

10

20

30

40

Time [samples]

V
el

oc
ity

 [
m

/s
]

 

 
QP transform
16x upsampled FD

Fig. 3.3. Velocity of a modal resonator composed of 64 second-order filters. The out-
put computed with the proposed quadrature-phase method (solid blue line) is plotted
against the result obtained by finite difference (with 16x upsampling) of the resonator
displacement.

where v[n] is the discrete-time resonator velocity expressed in terms of the state
variables y[n], y[n−1]. Fig. 3.3 shows one complex situation where the velocity of a
64-modes resonator struck by a nonlinear hammer model is computed in this way.
The result is practically indistinguishable from the reference, which is taken as the
velocity computed from a 16x upsampled displacement signal via first-order finite
differences. Actually, the small differences come from the truncation error of finite
differences, while the velocity computed by Eq. (3.22) is numerically exact. We
have put the example just to show that, even if we did not directly considered the
input signal in the derivation of Eq. (3.19), the results are still valid with transient
excitations.

3.3.2 Instantaneous Amplitude and Phase

One common interpretation for the state variables of the quadrature-phase res-
onator is to associate them to the real and imaginary components of a complex
resonator [79]:

z[n] = x[n] + jy[n]. (3.23)



3.3 Derived Variables 41

In this way, it is immediate to express the instantaneous amplitude A[n] and
phase ϕ[n] using the well-known properties of complex numbers. With respect to
the usual all-pole states y[n], y[n− 1] we have:

A[n] =

√(
cotan (ωr) y[n]− R

sinωr
y[n− 1]

)2

+ y[n]2 (3.24)

ϕ[n] =
y[n] sinωr

y[n] cosωr −Ry[n− 1]
. (3.25)

0 50 100 150 200 250
Time [samples]

1.0

0.5

0.0

0.5

1.0

1.5

A
m

p
lit

u
d
e

Resonator output
Amplitude envelope

Fig. 3.4. Output of a 6 Khz resonator at fS = 44100 Hz, with decay-time T60 = 0.5
sec, excited with a 12 samples Hanning window. The amplitude envelope extracted by
Eq. (3.25 is plotted with a dashed red line.

Fig. 3.4 shows an example of envelope computation via Eq. (3.25). It can be
seen that, even in this case, the technique works well also during the transient
excitation.

A different method for the computation of the amplitude envelope of a second-
order resonator has been used in [12]. There, the author approximated resonator
velocity by the means of first-order centered finite differences, leading to the ex-
pression

A[n] =

√√√√(y[n] + y[n− 1]

)2

+

(
y[n]− y[n− 1]

ωr

)2

, (3.26)



42 3 Second-Order Digital Resonators

which might be slightly faster depending on the implementation architecture
(one less multiplication than Eq. (3.25) ). However, while the approximation of
Eq. (3.26) has found to be very good for most practical resonator parameters, it
might have some problems in estimating the amplitude for fast-decaying, high-
frequency resonators.

3.3.3 Residual Energy

Due to the elastic component in the modal ODE Eq. (2.18), the mechanical res-
onator stores an internal energy during the forced motion, and releases it while
moving in free conditions.

For the continuous-time resonator, it can be shown [12] that the energy that
remains in vibration from a generic time tn to full decay is

E(t0) =

∫ ∞
tn

y(t)2dt

=

∫ ∞
tn

(
A0e

− t
τ sin(ωrt)

)2
dt

=

∫
tn

A2
0e
− 2t
τ

1− cos(2ωrt)

2
dt

'
∫ ∞
tn

A2
0

2
e−

2t
τ dt

=
A2

0τ

4
e−

2tn
τ .

(3.27)

The approximation resides in neglecting the integral of the cosine function, which
unless in the case of very small decay time is usually much smaller than the
contribution of the exponential function.

The expression can be further developed into

E(tn) =
(
A0e

− tnτ
)2

= A(tn)2
τ

4
, (3.28)

i.e. the residual energy is simply given by the square of the instantaneous amplitude
multiplied by one fourth of the decay time. Using the formula for the all-pole
resonator amplitude Eq. (3.25) yields to the following result holds in the discrete-
time domain:

E[n] =
τ

4

((
cotan (ωr) y[n]− R

sinωr
y[n− 1]

)2

+ y[n]2

)
. (3.29)

3.4 Conclusion

The second-order all-pole resonator is probably the most common block in audio
physical modeling by modal synthesis. In this chapter, its numerical details were
described and a comparison with the more expensive yet more flexible quadrature-
phase resonator was given. Finally, a novel transformation procedure between the



3.4 Conclusion 43

two form of resonators has been proposed. This mapping comes useful in all the
situations where the flexibility of the quadrature-phase resonator is required only
for a short amount of simulation time. We also apply the mapping to get some
derived physical quantities directly from the two states of the all-pole resonator.





4

Impact Modeling

In this chapter we review some techniques for the simulation of contact-like exci-
tation between two modal resonators. Accurate simulation of contact mechanics
phenomena can be very computationally demanding for high sample rates such
those used for audio rendering. Therefore, hard assumptions and simplifications
need to be made in order to formulate algorithms suitable for real-time implemen-
tation.

High-quality models of contact have been used by Bensoam for offline sound
rendering, without and with friction simulation [15,16]. The contact between two
deformable objects, defined by their FEM discretization, is solved using a vari-
ational approach that consider a non-penetration constraint between the bodies.
Much of the complexity of the method resides in the update at each time-step of the
contact surface, which varies over time and requires expensive collision-detection
algorithms for its update.

Another accurate yet expensive technique has been recently proposed by Zheng
and James [138]. According to the authors, a frictional multibody contact formu-
lation is employed together with an accurate numerical scheme that reduces the
artifacts present in simpler models. Vibrational contact damping and coupled en-
ergy transfer between the bodies are also taken into account.

A simplified spatially-lumped contact model which is suitable for real-time im-
plementations, derived from Hertz’s contact law [55], is used here for audio-rate
simulations following a common approach in sound synthesis [7]. Similar methods
are widely used for robotic simulations, especially when interactive haptics feed-
back is provided [53]. By properly combining many short impacts, more complex in-
teraction mechanisms such as rolling and crumpling can be implemented [101,104].

The definition of the contact model used within this thesis starts from the gen-
eral architecture of the considered VR environment (see Fig. 1.2), where the audio
synthesis module is controlled by a low-rate rigid body engine as e.g. those used for
computer graphics simulations [19]. Within these engines, contacts between rigid
bodies are already solved with e.g. impulse-based techniques [81]. However, the
same algorithms cannot be use to model vibrational excitation by impact at audio
rates, mainly because they assume the bodies to be rigid instead than elastic.

Nevertheless, rigid body simulators can prove useful in providing the control-
rate information necessary to initialize a proper audio-rate impact model. Most of



46 4 Impact Modeling

the available rigid body engines, e.g. the Bullet framework [106] employed in this
work, offer the possibility to query their internal collision detection engine about
which objects are in contact and where the contact position is on their surface.
Together with the information on the rigid body motion of the objects we are
thus able to set the initial conditions required for the initialization of the audio-
rate contact engine. Depending on the particular rigid body implementation, a
threshold on the minimum relative velocity between two objects may be applied
in order to avoid spurious contacts. Care needs to be taken in the calibration of
the threshold, since high values can limit the possibility of modeling light micro-
impacts such as those occurring in rolling motion.

O1

O2

O1

O2

mH,1

mH,2

Fig. 4.1. Proxy impacts between two sounding objects. Instead than direct coupling of
the two resonators, we connect each object with a point mass impacting along the surface
normal and initialized using the parameters of the other body.

We assume that the contact time is shorter than the simulation time of a
control-rate frame, which is usually a good approximation since contacts rarely
exceeds 10 milliseconds and typical control rates are in the range from 30 to 100
Hz. There is no feedback from the audio-rate contact engine and the rigid body
simulation, i.e. the two impact models (rigid and vibrational) are assumed to be
independent for the sake of simplicity.

Another strong simplification resides in the nature of the coupling between
the motion of two colliding objects. Full-coupling between objects is theoretically
possible with the above mentioned assumptions, and has been tried as the first
approach for the system hereby presented. However, full three-dimensional dis-
placement of the surface nodes need to be computed, leading to a larger memory
cost than the one required by storing only the normal component as it was pro-
posed in Eq. (2.21). Moreover, we have to integrate the objects’ rigid body motion
in a three-dimensional space at audio-rate. Besides these computational disadvan-
tages, there are more important problems that arise from the integration with a



4.1 Hertz Contact Model 47

system (the rigid body engine) over which we do not have full control. During the
experiments, the author has found out that this kind of three-dimensional coupling
requires implicit numerical methods for the integration of contact motion in order
to guarantee the stability, when much more efficient explicit methods can be used
for impacts with a point-like unidimensional mass as it is the case e.g. in [7] or in
the modeling of piano hammer-string interactions [14].

Given the previous considerations on the complexity of full coupling with three-
dimensional objects, we chose to approximate the contact interaction between two
resonators using a proxy impact scheme. The idea behind this approach is depicted
in Fig. 4.1. We associate to each object On (n = 1, 2) a lumped mass mH,3−n
whose value and motion are set from the other object’s state at the moment of the
impact. In other words, the first object is excited by a point mass which correspond
to the second object and viceversa. As an additional simplification, the objects are
considered to have negligible rigid body motion during the short contact phase.
In this way, with the proper choice of a coordinate system parallel to the contact
surface normal and with the use of average weights given by Eq. (2.21), we have
reduced the spatial domain of the simulation to one dimension.

The point masses mH,n act as proxies between the two resonators and permit
the reuse of simple and efficient methods for impact simulation. However, we are
neglecting any energy exchange between the two objects, which somehow reduces
the accuracy of the simulation. Nevertheless, this is not a strict assumption since
we already assumed the absence of feedback from the audio-rate contact engine to
the control-rate simulation, for practical integration with the rigid body simulator.

4.1 Hertz Contact Model

The Hertzian theory of contact approximates the force between two colliding ob-
jects with a lumped expression that depends on the relative motion of the bod-
ies [55]. The main assumptions behind the theory are linear elastic behaviour1,
absence of friction and smooth contact surfaces which are small compared to the
objects’ radius.

With another physical approximation, the objects are permitted to penetrate
with each other, so that the force can be conveniently expressed as a nonlinear
funcion of the relative indentation δu between the objects:

F (δu) =

{
K(δu)α if δu ≥ 0

0 if δu < 0.
(4.1)

In the original theory, the constants K and α are derived analytically from
the objects geometry and elastic parameters for some simple shapes, e.g. for the
contact between two elastic spheres or cylinders. However, following a common

1 This assumption on the linearity of the system might seem counter-intuitive, since the
force is expressed using a nonlinear relation. The nonlinearity in Eq. (4.1) comes from
the time-dependent variation of the contact surface area. In other words, it can be said
that Hertz theory trades time variance with nonlinearity for the system description.



48 4 Impact Modeling

approach used for sound synthesis applications, we use them here as free param-
eters set by the user, corresponding to the relative hardness between the objects.
Within the context of lumped physical modeling, Eq. (4.1) can also be interpreted
by considering a nonlinear spring connected in series with the point mass mH. It
has been noticed that large variations of K need to be applied in order to produce
perceivable differences in the output sound. For this reason, it might be prefer-
able to control the derived variable K̃ = K1/α which behaves better under this
aspect [22].

−a1,N

−a2,N

wout,Nyk

−a1,1

−a2,1

wout,1

y1

z−1

z−1

z−1

z−1

z−1

wp,out,1

wp,out,N

b1, 1

b1, N

pressure

displacement

win,1

win,N

force

F (δu)

− 1

mHfS

1

fs

uH

δu

z−1

z−1

z−1

F

u

Fig. 4.2. DSP block diagram for the excitation of a modal resonator with a contact force
computed from the nonlinear impact with a point mass.

With the proxy-mass impact approach, the indentation variable is computed
as δu = u−uH, where u is the object displacement along the normal as computed
from the weighted output of the resonator bank and uH is the position of the proxy



4.1 Hertz Contact Model 49

mass, whose update is simply given by Newton’s equation:

üH = −F (δu)

mH
. (4.2)

We chose to employ the explicit Euler method for the numerical discretization
of Eq.s (4.1, 4.2). We can then complete the description of the audio-rate simulation
with the inclusion of the feedback loop shown in Fig. 4.2. As it has been noted
in [14], although the explicit scheme can be unstable, the presence of a double
integrator limits such instabilities in a parameter range which is well above the
common values used in physical simulations of real objects.

While not often used in previous sound synthesis realizations, it is easily pos-
sible to extend Eq. (4.2) in order to include the effects of viscous damping and
gravity:

üH = −F (δu)

mH
+ blossu̇H + gn, (4.3)

where bloss is a generic viscous coefficient and gn is the component of the gravity
force along the normal to the contact surface. Example force simulations with
varying loss coefficients are shown in Fig. 4.2 for the contact of a proxy mass
against a bell-like object with a radius of 50cm and implemented by approximately
200 resonators.

0 50 100 150 200 250 300 350
Time [samples]

0

100

200

300

400

500

600

Fo
rc

e
 [

N
]

bloss = 0.0

bloss = 100.0

bloss = 1000.0

102 103

Frequency [Hz]

40

35

30

25

20

15

10

5

0

M
a
g
n
it

u
d
e
 [

d
B

]

Fig. 4.3. Contact forces between a proxy mass and a bell-like FEM resonator imple-
mented with modal synthesis, for varying values of the viscous damping parameter bloss.
Initial impact velocity is 5m/s and the contact parameters are K̃ = 5000N/m, α = 3.0.
The sampling rate is set to 44100 Hz.

4.1.1 Hysteresis

Experimental measurements have shown that impacts between real objects are
bettered approximated with a hysteretic contact force, i.e. the force law shows a



50 4 Impact Modeling

102 103

Frequency [Hz]

40

30

20

10

0

M
a
g
n
it

u
d
e
 [

d
B

]

0 50 100 150 200 250 300 350
Time [samples]

100

200

300

400

500

600
Fo

rc
e
 [

N
]

µ = 0.0

µ = 0.2

µ = 0.5

Fig. 4.4. Contact force simulation with the same parameters as those used for Fig. 4.3,
but with varying hysteresis coefficient µ.

different behaviour between the compression and relaxation phases of the impact.
A compact lumped model which includes this effect has been developed by Hunt
and Crossley in 1975 [63] and first used for sound synthesis by Avanzini et al. [7,
104]:

F (δu, δu̇) =

{
K(δu)α · (1 + µδu̇) if δu ≥ 0

0 if δu < 0.
(4.4)

As it can be seen from the previous equation, hysteretic behaviour is modeled
with a term dependent on the relative compression velocity δu̇ and weighted by
the coefficient µ. Fig. 4.4 shows the resulting forces for varying values of µ. The
plotted spectral magnitudes show how with higher hysteresis coefficient the system
assumes a more pronounce low-pass characteristic.

Numerical discretization is very similar to non-hysteretic Hertz contacts. We
use here the same state-space description of the proxy mass in terms of its position
and velocity as it is proposed in [104]. However, instead of approximating the
resonator velocity u̇ with e.g. first-order time-domain finite differences of the object
displacement u, we are able to get an “exact” value by using the transformation
to quadrature-phase components presented previously in Eq. (3.22). Especially
if there are high-frequency modes in the resonator, numerical differentiation can
lead to inaccuracies or worse instabilities in the system. This can be informally
explained in DSP terms by noting that numerical differentiation acts as a high-pass
filter which, combined with the bandwidth expansion of the nonlinear function,
can quickly drive the system beyond the Nyquist limit.

Various numerical schemes for the discretization of the contact model described
by Eq. (4.1) have been recently reviewed in terms of energy conservation for the
case of the impact of an inertial mass against a rigid surface [92, 93]. In the same
work, analytical results on the Hamiltonian of the system at the end of the contact
phase are used to improve the accuracy of numerical schemes. However, results



4.2 Feed-forward Approximations 51

directly applicable to the impacts with resonating objects are still an ongoing
research.

4.2 Feed-forward Approximations

Hertzian-like impacts involve a quite strong simplification of the complex physi-
cal interactions happening during contact, necessary to achieve efficient solutions
to the problem. Nevertheless, there are situations where even simpler and faster
methods might be chosen. The most common approach, followed among the others
in [125], consists in the use of a precomputed feed-forward force, defined e.g. by a
raised-cosine function:

F (t) =

{
AF

(
1− cos( 2πt

tF
)
)

if t ≤ tF,

0 otherwise.
(4.5)

The signal-based parameters are the force amplitude AF and the duration of
the contact tF. The direct relationship with the user interaction parameters is lost
with this approach and is not possible to model of rapid multiple impacts due to
the object’s vibration (see e.g. the two peaks in Fig. 4.3). On the other hand, these
parameters are orthogonal if considered as conventional synthesis controls of gain
and cutoff frequency, whereas the same variables are intrinsically coupled when
using physical parameters. Thus, the signal-based parameters might be preferable
whenever the goal is to precisely control the sound for a restricted class of ob-
jects. Complex feed-forward excitation signals, including the modeling of repeated
pulses, have been developed for ad-hoc cases such as hammer-string contact force
approximations in the piano [127,134].

A common problem of simple feed-forward excitation function such as Eq. (4.5)
is that it is not possible to differentiate the influence of impact velocity from
the hardness of the objects, since both lead to shorter, higher-amplitude signals.
While comparing feed-forward formulations to the output of impacts against a hard
surface, the author has empirically found out that a better model may be given in
terms of Kaiser windows [91]. Preliminary experiments seem to show that the β
parameter of these windows can be associated with material properties (mass and
hardness), in a way that does not depend on the initial impact velocity. Further
work needs to be carried out in this sense in order to validate these observations
by e.g. analytical solutions of the contact problem.





5

Efficient Algorithms for Modal Synthesis

This chapter deals with the computational aspects of modal synthesis, analyzing
optimizations of the parallel second-order bank of resonators that can give the
same perceptual results at less expense in CPU time. This kind of optimizations
are often necessary when we need to simulate in real-time many objects, each one
composed by a large number of modes. Although some non-trivial psychoacoustics
phenomena such as frequency masking [34] can be exploited, we make use only of
simpler principles like amplitude thresholding. In this way, the resulting algorithm
might not be the fastest possible, but it is easy to assess the perceptual equivalence
without resorting to psychoacoustics experiments.

A different approach that can be used to effectively render many modes in
real-time is to make use of parallel and vectorial operations available on modern
hardware. The parallel bank of second-order resonators, in the absence of feedback
interaction, can be clearly classified as an embarrassingly parallel algorithm [61].
Therefore, optimal linear speed-up can be obtained on most parallel hardware
for feedforward structures, while with the proper assumptions even feedback in-
teractions can benefit from parallelization. We do not explicitly analyze parallel
structures for the algorithms presented in this chapter, although the question has
been considered in the choice of methods. Instead, an example of data-parallel im-
plementation of a modal synthesis engine is reported in Appendix A for the case
of general purpose computer CPUs.

5.1 Resonator Pruning

The first optimization that can be used in order to decrease the computational cost
of the system is simply a reduction of the number of resonators. Modal synthesis
frameworks are intrinsically scalable, in the sense that we can for example put
a limit on the highest frequency of the modes in order to reduce the total cost.
Clearly, this trivial limit can have an impact on the overall sound quality of the
synthesis. It is thus more interesting to derive resonator pruning techniques that do
not have impact on the perceptual result. The techniques can be divided into off-
line approaches, where we completely exclude some resonators from the synthesis,



54 5 Efficient Algorithms for Modal Synthesis

and on-line methods that activate and deactivate the modes by evaluating their
impact on the current simulation instant.

In the context of sound synthesis for virtual reality environments, some meth-
ods have already been proposed in literature. Bonneel et al. [21] developed a sound
synthesis pipeline based on the short-time Fourier Transform of a damped sinu-
soid. The method can provide a high speed-up over time-domain synthesis, at the
cost of increased latency and by assuming a sparse mode distribution in the fre-
quency domain. This assumption is valid when modal parameters are estimated
using signal analysis techniques, but is often violated when FEM or other numeri-
cal methods are used for the computation of complex-geometry objects resonances.
Moreover, some artifacts in the attack can be present depending on the frame size
and the type of windows chosen, and nonlinear feedback between resonators is not
possible.

Van den Doel et al. [126] discussed a method for reducing the number of modes
estimated from impulse responses of everyday objects. They exploit masking phe-
nomena by choosing a small subset of the original detected modes with appropriate
thresholding on a Bark scale representation. Another signal based technique, devel-
oped in a more general context, has been investigated extensively by Bank [10,11].
Here, the resonator poles can be estimated with various methods (e.g. Prony or
warped filter design) and the zeroes are then optimized in a least-square sense to
match the target impulse response.

Run-time pruning of the resonators has been used by Van den Doel in another
work [41], where non-audible modes are turned off during the simulation based
on frequency masking considerations. There is a trade-off between computational
speed-up and sound quality, and the pruning procedure itself has a non-negligible
cost. The computational speed-up that can be achieved ranges between 2 and 10.
However, if vector computation of the modes is employed, the method might not
be as profitable as in the scalar case, since in most cases only one or two of the
modes inside a vector block are turned off at run-time. Moreover, this type of
run-time resonator deactivation requires a conditional statement inside the loop
for the update of the resonators. If sample-by-sample synthesis is required, which
is the case with feedback interactions, the evaluation of the condition can often
lead to drastic reductions e.g. in compiler and CPU pipeline optimizations [42].

In this work, a conservative approach to mode pruning is taken, leading to
a modest amount of computational savings but without affecting the quality of
the synthesis. Off-line mode pruning is done by simply putting a threshold on
the absolute value of pressure output weights (see Eq. 2.36). We do not put any
threshold based on the input weights vectors, i.e. the modal shapes, since these
can vary significantly depending on the impact position on the surface. Using for
example a threshold of -60 dB from the highest pressure weight value, the average
number of modes that can be throw away is around 5-10% of the total, depending
on the geometry of the object.

A more efficient reduction of the resonators is actuated at run-time during
the simulation. We consider for this purpose the residual energy of the resonators
as in Eq. (3.29), evaluating only those objects which are evolving in a steady-
state situation, i.e. after the contact phase. In order to not interfere with possible
vector or data parallel implementations, we perform this computation on blocks of



5.2 Multirate Implementations of a Resonator Bank 55

resonators, where the size of the block NB is related to the dimension of the vector
computation unit and usually varies between 4 and 16 on common hardware. Since
the decay times distribution is monotonically decreasing, the algorithm evaluates
first the highest-frequency resonators. The procedure is performed once per every
audio buffer (64-512 samples) and consists of the following steps:

1. For each object of N resonators, a counter Na ≤ N is used for tracking the
number of active modes.

2. When a contact is detected and the impact model is activated, Na is set to
the maximum value N .

3. After the short contact phase, the residual energy Elast of the resonators in
the interval [Na −NB, Na] is computed by summing the energies of the single
modes obtained by Eq. (3.29).

4. The energy computed in the previous step is compared to the mean-square
value of the output of all the objects in the current audio buffer. If the differ-
ence is higher than a determined threshold, e.g. -90 dB, the number of active
resonators for the object is updated as Na ← Na −NB.

In typical simulation conditions, where the average decay time of the modes
is short (less than 1 second) and impacts are relative sparse, the average number
of active resonators at each instant is between 10 and 30 percent of the total.
This technique has been recently employed within a physical-based virtual piano
synthesizer [115, 134] and, together with some advanced polyphony management
methods, makes possible the reduction from more than 15,000 to about 5,000
resonators without noticeable artifacts, even with complex musical interactions.

5.2 Multirate Implementations of a Resonator Bank

One nice properties of the resonators used for modal synthesis is that their band-
width is very small compared to the sampling rate of the overall system, e.g.
44100-48000 Hz. Therefore, it is possible to employ different sample rates for the
simulation of the modes in a multirate fashion [82, 112, 122]. For example, if all
the modes could be simulated at half the required sampling frequency, it would be
possible to achieve almost a 2x speed-up in the computation.

The approach followed for this work is largely inspired by the work of Phillips [95,
96], developed within the context of traditional additive synthesis. Very recently,
a similar approach has been taken for the development of a multirate modal syn-
thesis engine used for sound rendering in videogames [76], although only with
feedforward excitations.

5.2.1 Multirate Filter Banks

The key components of a multirate system are the procedures which define the
signal transformations between the bands. We consider here only sampling rate
conversions by an integer factor N , since they are faster and much easier to im-
plement than non-integer conversions [82].



56 5 Efficient Algorithms for Modal Synthesis

↓ Nu(n) y(n)

↑ Nu(n) y(n)

Fig. 5.1. Block representation of downsampling and upsampling operators.

The most basic operations that can be defined to this purpose are the up-
sampling and downsampling operators, whose block-diagram representations are
shown in Fig. 5.1. Following the notation used in [112], we define the operator
STRETCHN for the upsampling by a factor N as

y(n) = STRETCHN,n(u)
.
=

{
u(n/N), n

N ∈ Z,
0, otherwise.

(5.1)

The operator acts by simply inserting N − 1 zeros between the values of the input
signal u(n). In the frequency domain, the upsampler modifies the Zeta-Transform
of the input U(z) by replicating the spectrum N times, i.e. Y (z) = U(zN ).

0 2 4 6 8 10 12 14
Time [samples]

0.5

0.0

0.5

0 5 10 15 20 25 30
Time [samples]

0.5

0.0

0.5

A
m

p
lit

u
d
e

Fig. 5.2. Downsampling by a factor N = 2 of a discrete damped sinusoidal signal.

In a similar way, we define the downsample operator by taking one every N -th
sample of the input signal:

y(n) = DOWNSAMPLEN,n(u)
.
= u(Nn), n ∈ Z. (5.2)

In Fig. 5.2 the result of downsampling by a factor N = 2 is shown in the case of
a damped sinusoidal signal. The interpretation of downsampling in the frequency



5.2 Multirate Implementations of a Resonator Bank 57

domain can be thought as expanding the frequency axis by a factor N and then
wrapping unto itself N times. With respect to the Zeta transforms of the input
and output signals we have thus

Y (z) =
1

N

N−1∑
m=0

U(e−
2πjm
N z1/N ). (5.3)

Contrarily to most DSP processing blocks, these operators are not time-
invariant. However, it is possible to commute up and downsamplers with mem-
oryless computational blocks like adders and multipliers [112].

In order to suppress the distortions in the frequency domain caused by the
upsampling and downsampling operators, anti-aliasing filters need to be em-
ployed [82]. These are low-pass filters, which are typically designed as linear-
phase FIR filters to avoid further distortions and whose cutoff frequency is set
at ωc = π/2 (i.e., Nyquist frequency) with respect to the lowest sampling rate
considered. Commonly, filters used together with downsampling operations are
called decimators, while the name interpolators is used in the upsampling case.
The details of these filters are discussed in Sec. 5.2.4. In the case of downsam-
pling, it is not possible to change without artifacts the sampling rate if there are
frequency components in the input signal above ω = π/4, i.e. half the Nyquist
frequency of the lower band, independently from the precision of the anti-aliasing
filter used.

A generic structure for the multirate implementation of a modal-based res-
onating object is shown in Fig. 5.3, using a common form employed e.g. in audio
compression systems [112]. An Analysis Bank, composed of downsamplers and in-
terpolating filters, is used to transform the excitation signal u at the full sampling
rate fS,0 into M different frequency sub-bands, each running at a sampling rate
fS,m, 1 ≤ m ≤ M . These sub-bands do not necessarily have to be separated
or, in other words, overlapping of the bands is possible. A separate parallel bank
of second-order resonators is then used to synthesize the output signals in the
different sub-bands. In Fig. 5.3 we have omitted for the sake of simplicity the
output weights of the previous block diagram (see Fig. 3.1), and a single output
signal is shown, although the system can be clearly extended to the multi-output
case of pressure and displacement. Finally, the sub-bands signals are transformed
back to the original sample rate and recombined using a Synthesis Bank, typically
implemented using upsamplers and interpolating filters.

In the case of feedforward excitation signals, the analysis stage can be avoided,
since it is usually possible to directly synthesize the sub-band signals at the proper
sampling rate. The synthesis bank is then the most important part of the system,
and particularly the performance of its interpolating filters is essential in order
to avoid audible artifacts. As we have already mentioned, the upsampler operator
introduces aliasing replica of the normal modes. Non-ideal interpolating filters
cannot completely suppress these aliasing components on the whole frequency
spectrum. Therefore, there will generally be frequency intervals, named deadbands
in [95], which cannot be used for the synthesis at a particular sampling rate.

The multirate architecture of Fig. 5.3 can be naturally extended to the case
of multiple resonating objects. With the feedforward excitation approach, only



58 5 Efficient Algorithms for Modal Synthesis

H1,1

H1,N1

H2,1

H2,N2

H3,1

H3,N3

Analysis

Bank
Synthesis

Bank

u @fS,0

u @fS,1

u @fS,2

u @fS,3

y @fS,0

Fig. 5.3. Multirate implementation of modal synthesis resonators. The excitation signal
u is divided by the Analysis Bank into different frequency bands (3 in this picture), each
one with a different sampling frequency fS,n. A set of resonators is used in each band, and
the output signals are then recombined at the original sampling rate using a Synthesis
Bank.

one synthesis bank is necessary for all the objects, since the lower rate outputs of
multiple sounding objects can be summed before upsampling.

On the other hand, feedback interactions are hard to implement using a mul-
tirate architecture. The main problem comes from the inevitable phase delay of
the interpolation filters in the analysis and synthesis banks. In the presence of a
nonlinearity in the feedback loop, this delay will lead to numerical instabilities,
which are known to arise even in the case of a single-sample delay [23]. In the
following sections, we will see some techniques to bypass this limitation in order
to arrive at multirate systems suitable for modal synthesis.

5.2.2 Prior Work

Multirate schemes for modal synthesis have been previously proposed in literature,
although their use is not very common. Bank [9] suggested a multirate implemen-
tation of a parallel bank of feedforward resonators used for simulating the beating
and two-stage decays phenomena in piano strings. He proposes a multistage struc-
ture with a dyadic frequency subdivision, i.e. the sampling rates of the subbands



5.2 Multirate Implementations of a Resonator Bank 59

Frequency [rad/sample]

π/2π/4π/80

band 1 @ fS

band 2 @ fS/2

band 3 @ fS/4

Fig. 5.4. Overlapping dyadic frequency subdivision used e.g. in [9] for the multirate
implementation of the parallel bank of resonators.

are fS,0 = fS, fS,1 = fS/2, . . ., fS,m = fS/2
m. Each resonator of frequency fr

is then allocated in the m-th band with the lowest possible sampling rate, sat-
isfying the Nyquist criterion fr < fS,m, eventually with some headroom to take
into account the non-ideal behaviour of the interpolating filters near the Nyquist
frequency.

The division of the frequency spectrum of this method is shown in Fig. 5.4.
Using the naming convention of Phillips [95], this is a fully-overlapped octave-
spaced subdivision. The advantage of having overlapping subbands is that it is
always possible to find a suitable band for each resonance frequency fr in order
to synthesize the mode without aliasing: in the worst case, the full sampling rate
fS can be used. However, the logarithmic distribution of the band edges implies
that only few low-frequency resonators can be synthesized with the most efficient
sampling rates, thus limiting the speed-up that can be achieved when many high-
frequency modes need to be simulated.

A different subdivision scheme was employed by Trautmann and Raben-
stein [121], where a DFT-like subdivision of the frequency spectrum is presented
for the multirate realization of modal-based string instruments (see Fig. 5.5). In
this case, the subbands are non-overlapping and the band edges are linearly spaced.
The computational speedup compared to full rate is equal to the number of sub-
bands (i.e. 6x in the case of six subbands), minus the cost for the analysis and
synthesis banks. In the actual algorithm, there is actually a mixture of 6x and
4x downsampling bands and nonlinear feedback interaction are possible with a
modified algorithm running at the lower sampling frequencies.

The main drawback with non-overlapping bands is that there will always be
aliasing for resonators falling inside the transition intervals (the above mentioned



60 5 Efficient Algorithms for Modal Synthesis

Frequency [rad/sample]

0 π/2π/12 π/6 π/4 π/3 5π/12

band 1 @ fS/6

band 2 @ fS/6

band 3 @ fS/6

band 4 @ fS/6

band 5 @ fS/6

band 6 @ fS/6

Fig. 5.5. Uniform frequency subdivision in 6 equal non-overlapping subbands, as used
in [121].

deadbands, or as they are called in [121], “don’t care bands”). Moreover, the
algorithm that is used for the feedback interaction, besides being quite complex
in its formulation, is not equivalent to the full rate excitation, due to aliasing
and delays between modes. This leads to audible artifacts, which are particularly
noticeable with high downsampling ratios.

5.2.3 QMF Subdivision

In the context of additive synthesis, Phillips [95] suggested the use of Quadra-
ture Mirror Filters (QMF) subdivision as a very good compromise between band
overlapping and sampling rate reductions for multirate systems. The technique is
based on a recursive binary division of the frequency spectrum, and is applied here
to modal synthesis exploiting some properties of the considered resonators such as
their fixed frequency and narrow band.

We will neglect for the following of the section the details of the analysis bank,
since the problem will be approached later from a different perspective. Therefore,
the aim will be to develop a synthesis bank that is able to reconstruct the output
signal from a bank of resonators running at lower sampling rates.

The use of QMF banks is well consolidated for e.g. audio compression and
coding, where critically sampled perfect-reconstruction multirate systems are often
developed with this technique [82,122]. QMF banks are defined in a recursive way



5.2 Multirate Implementations of a Resonator Bank 61

LPF HPF

dead band

2

2

H0(z)

H1(z)

y0[n]

y1[n]

Binary Tree Node

Two sub-bands @ fS/2

Synthesis bank output @ fS

Fig. 5.6. Quadrature Mirror Filter subdivision in two equal bands. The signal synthesized
in the lowband can be reconstructed with a conventional 2x upsampler and a lowpass
interpolating filter, while for the high-frequency band a mirror high-pass filter is used.
The operation can be seen as a node in a binary tree for recursive QMF applications.

starting from the basic binary division shown in Fig. 5.6 for the synthesis stage.
The two bands are separated at the angular frequency ω = π/2, i.e. half the
Nyquist frequency, and each one is synthesized with a 2x downsampling rate. The
signal y0(n) in the low-frequency band can be brought to the full sampling rate
by simply using an upsampler followed by a low-pass interpolating filter H0(z).
For the high-frequency band, instead, we synthesize the components in a mirror
frequency scale and apply a high-pass filterH1(z) for the synthesis. The process can
be thought as “keeping the aliased component” that comes from the upsampling
operator instead than discarding it. The following symmetry constraints apply on
the synthesis filters H0(z), H1(z) and on their impulse responses h0(n), h1(n):

H1(z) = H0(−z) (5.4)

h1(n) = (−1)nh0(n). (5.5)

When the interpolation filters H0(z), H1(z) are linear-phase FIR filters, it is
possible to efficiently both the filters using a polyphase decomposition [82], thanks
to the high redundancy in the coefficients of h0(n) and h1(n).

In order to synthesize a parallel bank of resonators with a binary QMF bank, it
is necessary to “invert” the resonance frequencies w′r = π−wr whenever wr > π/2.



62 5 Efficient Algorithms for Modal Synthesis

fS

fS/2

fS/4

fS/8

0 π/2

1 2 3 4 5 6 7 8

1

1

1 2 3 4

2

5678

34 78 5 6

2 4 3 8 7 5 6

Fig. 5.7. Recursive binary subdivision of the frequency spectrum using QMF stages. No-
tice how the spectra in the subbands are shifted and combined according to the mirroring
process of each step.

Notice how the system is much more efficient than the full-overlapping dyadic
subdivision of Fig. 5.4, since we can use the lower sampling rate even for high-
frequency resonators. On the other hand, the basic QMF bank is still a non-
overlapping subdivision scheme, and thus no resonator can be synthesized in the
deadbands near half the Nyquist frequency due to the non-ideal response of the
interpolation filters.

The basic binary QMF bank of Fig. 5.6 can be combined in a recursive way to
form a dyadic, overlapping frequency subdivision, which is illustrated qualitatively
in Fig. 5.7 and in Fig. 5.8. The subbands are divided depending on their depth
m in the tree, which corresponds to a sampling rate of fS/2

m. The output of the
signals coming from the 2m bands at depth m is converted to the m− 1-th band
using m − 1 different QMF basic blocks. The structure can then be described as
a multistage synthesis bank, since for example three binary stages are required to
convert a signal from fS/8 to fS. The total number of frequency bands, counting
all the sampling rates, is 2M+1 − 1, where M is the maximum depth tree depth.

With respect to the frequency subdivision scheme of Fig. 5.8, it is possible
to notice how the deadbands caused by the interpolation filters are inherited by
subsequent bands in the hierarchy, due to the multistage synthesis process. This
poses a limit on the maximum depth of the binary tree, i.e. on the lowest sampling
rate employed by the system. Moreover, each stage adds an amount of latency
due to the need to compensate the group delay of the interpolation filters. We



5.2 Multirate Implementations of a Resonator Bank 63

s0,1

s1,1 s′1,2

s2,1 s′2,2 s′2,4 s2,3

s3,1 s′3,2 s′3,4 s3,3 s′3,8 s3,7 s3,5 s′3,6

fS

fS/2

fS/4

fS/8

Fig. 5.8. Hierarchical division in subbands with a QMF tree. The depth of a subband
sm,k is m and its sampling rate fS/2

m. The notation s′m,k indicates those band whose
frequency spectrum is mirrored (see Fig. 5.7). Deadbands in the upper bands (dashed
red zones) are inherited by the lower ones (inverted dashed gray lines), because of the
multistage structure of the synthesis bank.

consequently chose to limit the structure to a maximum depth M = 3, as it is
done also in [95] and [76].

With recursive QMF trees, it is necessary to find out in which band a resonator
of given angular frequency ωr will be synthesized. For the base, full sampling rate
band we have trivially ωr,0 = ωr, while for the following stages we can use the
recursive relation

ωr,m+1 =

{
2ωr,m if ωr,m < π

2

2(π − ωr,m) if ωr,m ≥ π
2 .

(5.6)

In order to avoid the synthesis of components having audible aliasing counter-
parts, we need to map the deadbands edges on each subband sm,k. We can then
compute the deepest possible frequency ωr,M and check if it falls inside a “dead”
region in its subband sM,k. If this is the case, we go back to the upper band having
depth M−1 and repeat the test, until eventually the single full sampling rate band
is reached. The edges of the deadbands depend on the interpolation filters used
for each stage, and their computation is discussed in the next section. When the
deadbands are narrow enough, it is possible to put a good amount of resonators
in the lowest band, and only few modes (usually less than 10% of the total) have
to be synthesized at full sampling rate.



64 5 Efficient Algorithms for Modal Synthesis

5.2.4 Interpolation Filters Design

The subject of designing linear-phase FIR filters for antialiasing and interpola-
tion in multirate systems is widely discussed in literature [82, 91]. Probably the
most common example in this context are Nyquist M-th band filters, also called
half-band filters when - as it happens in our case - we need to compensate a 2x up-
samping/downsamping stage. The ideal half-band filter has a magnitude response
which is unitary in the interval [0, π/2] and null from ω = π/2 to Nyquist. Prac-
tical filters are instead designed imposing some specifications on the magnitude
response, particularly the passband edge frequency ωp < π/2 and the stopband
edge frequency ωs = π − ωp > π/2. One nice computational property of Nyquist
half-band filters resides in the fact that half of the samples in their impulse re-
sponse are null, and so their implementation requires less multiplications than
general linear-phase filters.

However, especially on modern hardware where the cost of multiplications is
comparable to the one of additions and often much cheaper than the cost for
memory accesses, it might be better to find alternative design methods which
optimize the length of the impulse response. This has the additional advantage
of reducing the latency of the system, which is a relevant factor in interactive
applications. In order to compensate for the group delay of an order D FIR filter,
the usage of a buffer having length at least D/2 is required.

In our modal synthesis frameworks, resonators have narrow bandwidths and
fixed (i.e., not time-varying) frequencies. Therefore, relative small inaccuracies
in the passband of the interpolation filter can be compensated by changing the
amplitude and phase offsets of the resonators, as it has been suggested in [9]. In
order to do so, we simply have to compute the frequency response of the filter at
the resonance frequency, Hm(ωr,m) for the m-th stage in the synthesis bank, and
then scale the input coefficients of the resonator by its inverse.

Phillips [95] suggested the use of the well-known Parks and McClellan equirip-
ple method [94] for the design of interpolation filters within a multirate additive
synthesis context. The specifications are given in terms of the passband and stop-
band edge frequencies ωp, ωs, the amplitude δp of the ripples in the passband and
the attenuated amplitude δs in the stopband. There are no symmetry requirements
on these parameters, as it was the case e.g. with Nyquist filters, and empirical for-
mulae for computing the minimum order D matching a set of specifications are
known. An extensive discussion of various methods for interpolation FIR design
and implementation can be found in [4].

Rather than using conventional design parameters, we exploit here the ability to
compensate magnitude errors in the passband region by changing the coefficients of
the resonators. In other words, we can set a very high passband tolerance in order
to achieve better stopband attenuation with relative low filter lengths. We used
the MATLAB Signal Processing Toolbox procedure firpm to design interpolation
FIR filters with the Parks-McClellan algorithm. It is possible to specify in this
program the relative weight of the passband and stopband error, used for the
error evaluation in the iterative procedure. We found out that even with a relative
weight of 1:1000 (passband:stopband) it is possible to compensate the error in the
passband without degrading the behaviour in the transition band. A filter design
example is shown in Fig. 5.9 for the case of D = 16, ωp = 0.45π, ωs = π − ωp and



5.2 Multirate Implementations of a Resonator Bank 65

0 0.5 1 1.5 2 2.5 3

−100

−80

−60

−40

−20

0

Angular frequency [rad/s]

M
ag

ni
tu

de
 [

dB
]

 

 
Weighted
Unweighted

Fig. 5.9. Frequency response of a linear phase FIR filter of order=16 used for one
interpolation stage (solid blue line). Passband edge frequency is set to ωp = 0.45π. The
result of the conventional unweighted design is also shown (dashed red line). The large
error in the passband can be compensated by weighting the coefficients of the second-
order resonators.

compared to unweighted filter design with the same specifications. As it can be
seen in the picture, the weighted specifications permit to achieve an improvement
of approximately more than 40dB in the stopband attenuation.

When using passband-error compensation, it is hard to judge the quality of
the interpolation procedure by only looking at the magnitude response of the FIR
filter. In fact, by e.g. applying a weight to a component in the passband, we are
automatically using the same scale factor for its aliased component in the stop-
band. Within this synthesis context, it is better to express the accuracy in terms of
attenuation of the aliased component depending on the resonance frequency ωr,m

and on the interpolating filters used in the various upsampling stages.
The amplitude Em(ω) of the highest aliasing component for a frequency ω in

the m-th stage can be computed in a recursive fashion, evaluating the magnitude
response of the filter at both the resonance and aliased frequency. We denote with q
a m-length vector whose elements are 0 or 1 depending if the current QMF stage
is respectively lowpass or highpass. The order is taken from the deepest band;
taking as example the sequence “lowpass, highpass, lowpass” we have q = [0, 1, 0],
corresponding to the subband s′3,4 in Fig. 5.8. Given a frequency ωm inside the



66 5 Efficient Algorithms for Modal Synthesis

m-th subband, the aliasing error Em(ωm) can be computed with the following
algorithm:

ω ← ωm
ω̃ ← π − ω
Em ← 1
for k ← m to 1 do

if q(k) then
ω̃ ← π

2
− ω̃

2

ω ← π − ω
2

else
ω̃ ← ω̃

2

ω ← ω
2

end

Em ← Em ·
Hk,q(k)(e

jω)

Hk,q(k)(e
jω̃)

end

Algorithm 1: Computing the aliasing error function Em(ωm)

The algorithm keeps track of the aliased frequency ω̃ and update the complex-
valued error function Em according to the ratio between the actual aliased error
and the compensation factor. It makes uses of the frequency transfer function of
each stage Hk,q(k) where e.g. H2,0 is the lowpass interpolator for the second stage.
The aliasing attenuation can then be computed as the inverse of the absolute value
of the error function 1/|Em|. In Fig. 5.10 the attenuation with respect to frequency
is plotted for the different stages (1..3) of the synthesis bank. The three figures are
related to different lengths Dm of the interpolation filters hm used for each stage,
which determine a compromise between latency and accuracy in the system. The
total latency for M stages, expressed in full-rate samples is

latency =

M∑
m=1

Dm 2m−1, (5.7)

i.e. simply the sum of the filter orders weighted by the downsampling factor. It
is therefore more convenient to use shorter filter lengths for the lowest sampling
rates, also because in this case the same component will be attenuated by multiple
interpolators.

From the computed aliasing attenuation functions, we can finally derive the
deadband edges for the multirate system with compensation, for example by im-
posing a -60dB threshold attenuation. Due to the ripples in the functions, it might
be useful to apply a moving average filter to the magnitude of the aliasing function
before thresholding, in order to minimize the influence of local minima. The result-
ing widths of the deadband, expressed as percentage of total available bandwidth,
are reported in Tab. 5.1 for the cases corresponding to the plots of Fig. 5.10. We
also computed an average computational speed-up for each latency value, assuming
a constant distribution of resonators along the frequency spectrum and neglecting
the cost of interpolation filters.



5.2 Multirate Implementations of a Resonator Bank 67

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−200

−100

0

M
ag

ni
tu

de
 [

dB
]

Latency = 88 samples

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−300

−200

−100

0

M
ag

ni
tu

de
 [

dB
]

Normalized frequency [π rad/s]

Latency = 128 samples

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−150

−100

−50

0

M
ag

ni
tu

de
 [

dB
]

Latency = 64 samples

 

 

Fig. 5.10. Attenuation of the highest alias replica versus resonance frequency. The three
lines are related to different stages in the synthesis bank: m = 3 (solid blue line), m = 2
(dashed red line), m = 1 (dash-dotted black line). The figure is replicated for different
values of interpolation filter orders, leading to different total latencies (see. Tab. 5.1).

Total Latency Filter Orders -60dB dead bandwidth Average Speed-up

64 (8, 8, 16) (10%, 42%, 44%) 1.47

88 (12, 12, 16) (5%, 9%, 12%) 3.7

128 (16, 16, 32) (5%, 5%, 3%) 5.67

Table 5.1. Accuracy versus total latency for a 3-stage QMF tree design. Filter orders and
dead bandwidth (expressed as percentage of total available bandwidth) are ordered from
lower to higher sampling rates. Average speed-up is computed assuming a flat frequency
distribution of the resonators.

It is clear to see from this table how there is a compromise between latency,
accuracy and speed-up. If for example we would like to achieve better quality, we
should set a higher threshold for dead bandwidth computation, e.g. -90dB, thus



68 5 Efficient Algorithms for Modal Synthesis

resulting in larger deadbands and, consequently, a higher computational cost since
we can put few resonators in the lowest bands. Nevertheless, some compromises
are better than others: the 64 samples latency case would not probably be worth
to implement in many situations, but this does not mean that such lower laten-
cies cannot be obtained in a multirate system. For example, reducing the number
of stages significantly reduces latency, obviously with an increased computational
cost. Finally, part of the accuracy comes from the Parks-McClellan filter design
parameters for each stage; however, these have to be set by trial-and-error con-
sidering all the parameters, and the results are then evaluated with the aliasing
attenuation functions. It would certainly help to investigate the use of optimiza-
tion techniques to automate this procedure, possibly resulting in an optimal filter
design strategy.

5.3 Handling Nonlinear Feedback :
the Adaptive Multirate Approach

So far, we have focused only on the synthesis bank of the multirate system, with-
out saying anything on how the resonators are excited. We have already noticed
that conventional analysis/synthesis stages are mostly intractable with nonlinear
feedback excitations, due to the phase delay of the interpolation filters.

The solution we propose here exploits the peculiar behaviour of the excitation
forces in our case. The average time duration of collision forces (1 to 10 ms) is
in fact generally very short compared to total simulation time. Therefore, when
the average number of contacts per second is not very large (e.g. max 50 contacts
per second), for most of the time the resonators are running in free evolution, i.e.
without any excitation signal.

With an adaptive approach, we can then use the full sampling rate during
the contact phase, thus avoiding the phase-delay multirate problems, and then
switch to a multirate structure for the free evolution of the system. With the
above mentioned assumptions on the time distribution between forced and steady
state, this method could lead to an amortized computational cost that converges
to the multirate cost in the presence of sparse impacts. Moreover, there is no need
to implement the analysis bank step in the multirate structure, since all the input
are done at full sampling rate.

The main problem we need to consider is how to switch from the full sampling
rate of the resonators to their versions at lower sampling rates, and viceversa when
the object is restruck. This “switch” have to be performed at run-time and pos-
sibly instantaneously in order to avoid amplitude jumps in the output. Following
the same scheme used for the derivation of QMF trees, we will develop first the
formulae for the switch to and from half the sampling rate, and then see how these
can be combined to the generic 2m downsampling factor.

The starting point is the state-space form of the all-pole resonator given in
Eq. (3.11, 3.13). We consider the system in free evolution (i.e., u(n) = 0), which
is described only by its state variable x(n). The corresponding system with half
the sampling rate is described by its evolution equation:

x↓2(n) = A2x↓2(n) + B2u↓2(n), (5.8)



5.3 Handling Nonlinear Feedback : the Adaptive Multirate Approach 69

10 20 30 40 50 60
Time [samples]

2

1

0

1

2

A
m

p
lit

u
d
e

Fig. 5.11. Downsampling the state variables of a second-order resonator. The new states
running at half the sampling rate are shown with the black cross markers.

where the downsampled state x↓2(n) is defined in terms of the original system
variables as:

x↓2(n) =

[
y(n)

y(n− 2)

]
. (5.9)

In other words, downsampling the states correspond to shift the second state
variable by one sample (see Fig. 5.11). Expanding the expression of the full-rate
state Eq. (3.13) for the time instant n− 2 gives:

x(n− 2) = A−2x(n)−A−1Bu(n)−A−2Bu(n− 1). (5.10)

Since we are assuming a null-input signal, the transformation between the full-
rate state x and its downsampled version x↓2 is thus simply given by the inverse
of the square of the state matrix A:

x↓2(n) = S2 x(n)

=

[
0 1
a1
a22

a21−a2
a22

]
, (5.11)

where we have renamed such transformation matrix as S2 for convenience and
a1, a2 are the elements of A, i.e. the state coefficients of the resonator. Notice that
the null-input signal condition is not necessary to derive a transformation of the



70 5 Efficient Algorithms for Modal Synthesis

matrix, since all we have to do is solve the equation defined by 5.10, although the
expression becomes more complicated and has no use in our context.

Thanks to the state-space formulation of the state downsampling operation,
it is easy to formulate expressions for higher sampling ratios 2m by multiplying
together m versions of S2. However, this is not completely correct, since the coef-
ficients a1, a2 in Eq. (5.11) are related to the full sampling rate, while we should
refer to lower rates in successive applications of the transformation matrix. Using
the formulae for the resonators coefficients given in Eq. (3.5), we can relate the
coefficients for a resonator with the same parameters (resonance frequency, decay
time) at different sampling rates:

a1,↓2 = 2a22 − a21 (5.12)

a2,↓2 = a22, (5.13)

which are obviously valid only if the resonance frequency ωr satisfies the Nyquist
criterion for both sampling rates. With this equation, we can now express a recur-
sive algorithm for the computation of the state resampling matrix S2m , which can
e.g. used for successive stages of the QMF tree.

S2m ← I
for k ← 1 to m do

S2m ←

[
0 1
a1
a22

a21−a2
a22

]
S2m

a1 ← 2a22 − a21
a2 ← a22

end

Algorithm 2: Recursive computation of the state resampling matrix S2m

Once we know the QMF stage m for each resonator, the matrices S2m can
then precomputed off-line for all the modes. Due to their structures, only two
floating point values per matrix are needed. In order to instantaneously switch
the states from the full sampling rate to the lower rates, all we have to do is just
multiply the state vector of each resonator with the corresponding matrix, which
again takes only two MACs per mode, i.e. less than the update of a single sample.
Moreover, the weighting coming from interpolation filter compensation can be pre-
applied to the state resampling matrices, and also the phase offset compensation
and QMF mirror frequency inversion thanks to the transform to quadrature phase
components see in Chapter 3.

The state resampling matrices are also always non-singular, meaning that
switching back to the full sampling rate just implies a multiplication with the
inverse of the matrix:

x(n) = S−12mx↓2m(n), (5.14)

where again the inverse matrices S−12m can be precomputed and cheaply applied at
run-time. An example of restriking a resonating object with the multirate approach
is shown in Fig. 5.12.



5.4 Conclusion 71

20 40 60 80 100 120 140 160 180

−10

−5

0

5

10

15

Time [samples]

A
m

pl
itu

de

 

 
Full−rate
Adaptive Multirate

Fig. 5.12. Adaptive multirate restrike of a modal resonator (dashed red line), compared
to the output that uses the full sampling rate for the whole simulation (solid blue line).
Some smalll artifacts shortly after the switch from full-rate to multirate are noticeable,
due to interpolation filters transients.

When multiple objects are implemented sharing the same multirate synthesis
bank, care has to be taken when switching a resonator to and from the multirate
implementation. In this case, the interpolation filters are continuously running and
therefore some audible artifacts will be present due to the memory of FIR filters,
and so some workarounds like e.g. applying an envelope to a copy of the resonator
signal during the switch has to be employed.

5.4 Conclusion

In this Chapter two methods were reviewed which can be used to obtain computa-
tional efficient algorithms for modal synthesis, based respectively on energy-based
resonator pruning at run-time and adaptive multirate structures.

The multirate method proposed here has been developed with the MATLAB
programming language, and considering only the case of a single resonating object.
Future work will require the development of a structured algorithm for the multi-



72 5 Efficient Algorithms for Modal Synthesis

object case, possibly in a low level programming language in order to test the
combined speed-up of multirate and parallel implementations of the resonator
bank. Another interesting topic of research is the analysis of optimal filter design
methods in this context when compensation weights are applied to the resonators.



Part II

Appendix





A

Example Software

The investigation of some techniques presented in this thesis, and in particular
the definition of the requirements of a FEM based real-time audio engine, would
not have been possible without proper validation by software prototypes. In this
appendix, some of the applications developed are discussed briefly, focusing on
the general software architecture and on the choice of external tools/programming
libraries. Implementation details are omitted, with the exception of the last para-
graph which deals with code optimizations that can help the efficiency of modal
synthesis on current general purpose CPUs.

A.1 Modal Objects Data Structures

Meshlab

+ gmsh

Python

pre FEM

Elmer

Shell
Solver

Python

post
FEM

coarse
mesh

material
properties

fine
mesh

Elmer
input

file

Elmer
output

file

Object
.HDF5
file

Fig. A.1. Tools for generating the .HDF5 file containing the data for the modal descrip-
tion of a resonator starting from a geometric mesh and material properties.

The proposed framework for modal synthesis based on Finite Element Methods
is strongly based on a precomputation stage for the parameters of the resonators
(see Chapter 2). We used the Elmer open-source toolkit [65] for FEM simulations,
and developed a partially automated procedure for the generation of data struc-



76 A Example Software

tures suitable for real-time audio rendering, which are organized and stored using
the Hierarchical Data Format (HDF5, [45]).

The pipeline for the creation of such files is shown in Fig. A.1, starting from
a generic geometric mesh and the object material properties, which are density,
Young’s modulus, Poisson’s ratio and shell thickness. Open-source programs Mesh-
lab [51] and gmsh [51] were used for the manipulation and refinement of triangular
meshes. A simple Python [128] script drives the initialization of Elmer ’s solver, by
generating a proper input file and running the sequence of necessary command-
line operations. Among the many solver algorithms present in Elmer, we chose the
ad-hoc version for shell elastostatic problems, using first-order triangular elements.
An example of a generated solver input file (.sif) is shown in Tab. A.1.

The output file generated by Elmer is then processed by a more complex Python
post-processing script, making strong use of the Scipy [32] framework, which is a
MATLAB-like scientific computation environment. In this script, the raw three-
dimensional modal shapes are extracted from the FEM output results and the
modal frequencies computed. In a subsequent phase, both the meshes (coarse and
fine version) are loaded from their file and converted to an ad-hoc structure, and the
scalar modal weights are calculated using the approach described in Sec. 2.2, 2.5.

The hierarchical binary format of HDF files makes possible to store efficiently
both the raw fine mesh data structures and their optimized equivalents on the
coarse mesh. Storing all the information results in large file dimensions (usually
10-50 MegaBytes), but it is possible to keep only the reduced data for real-time
simulations (approximately 50-500 KiloBytes, depending mostly on coarse mesh
size).

A.2 Sound Object Explorer

When dealing with large amounts of data such as those generated by Finite Ele-
ment Analysis, visualization tools become very important for the development and
validation of simulation techniques. For this reason, a GUI application - named
Sound Object Explorer has been developed for the analysis of resonating objects
stored with the custom .HDF5 format previously described. The application is
written in C++ and is based on the graphical toolkit Qt [86] with the use of
OpenGL [90] for 3D graphics rendering and Qwt [102] for scientific data plotting.

The application can be used to visualize the normal modes of an object
(Fig. A.2), e.g. by interactively visualization and animation of the modal shapes
or plotting the averaged pressure and displacement weights for a set of elements
in the mesh. Damping properties can be controlled using the parameters discussed
in Sec. 2.2 and the resulting decay time distribution can be plotted. The program
also integrates a fast engine for modal synthesis with lumped impact excitations,
which can also be visualized at run-time (Fig. A.3). The output signals (computed
sound pressure and displacement at contact point) can be written to an audio
.wav file or in text format for analysis with different tools.



A.3 Interactive Environment 77

Fig. A.2. Some analysis windows of Sound Object Explorer. In clock-wise order starting
from top-left, we have mesh/element selection, modal shapes visualization, modal weights
plot and decay times distribution.

A.3 Interactive Environment

A simple real-time multimodal environment has also been developed, mostly dur-
ing a visit at the Shared Reality Lab at McGill University (Montreal, Canada).
The context of the simulation is a “virtual floor” where sounding objects can be
kicked by the user in real-time. The environment makes use of apposite haptic de-
vices developed for the EU-funded project Natural Walking Environments [130],
such as a matrix of tiles augmented with pressure sensors (Fig. A.4). Haptic feed-
back is provided by shakers positioned under each tile and real-time graphics can
be projected on the floor. The environment is controlled by a network of personal
computers, one for each row of six floor tiles, and sensing data are automatically
sent in broadcast inside the network using the OpensSound Control (OSC ) com-
munication protocol [131].

The overall architecture of the system is depicted in Fig. A.5. User interactions
are detected using a motion-tracking system to analyze body and feet motion, and
by four pressure sensors under the corners of each floor tile. The rigid body sim-
ulation engine is written in C++ using the Bullet physics simulation engine [106]
and basic graphic rendering is provided using the template OpenGL engine pro-
vided with the library. All the communication between control-rate blocks of the
systems is handled by proper OSC messages.

Sound synthesis is performed using the same software developed for the Sound
Object Explorer application, with optimizations for running multiple objects using
a memory pool. The interface between the audio engine and the Bullet simulator
is provided by a structure describing a single impact, i.e. by pointers to a pair of



78 A Example Software

Fig. A.3. Simulation example in Sound Object Explorer. The contact surface is selected
on the mesh (yellow area in the top-left window) and nonlinear contact parameter can
be set with the top-left dialog. A slowed-down animation of the contact can be then
visualized at run-time (right window).

objects, indices of contact elements on the two meshes and initial contact veloc-
ity. User’s feet are modeled inside the engine by using two rectangular rigid (i.e.,
non-sounding) boxes, which serve to initialize the motion of the other objects.
The main difficulty in the implementation resides in getting appropriate impact
data by querying Bullet engine’s state with the provided API. For this purpose,
the Dispatcher class and its method getManifoldByIndexInternal() are used
to query the manifolds (i.e., objects) which are in contact at each control-rate
timestep. We applied a threshold on the minimum impact velocity and on the
minimum time between impacts between the same pair of objects, because oth-
erwise many “spurious” contacts can be falsely detected by the library, e.g. for
non-moving objects.

Haptic feedback relies on a metal plate simulation, which is done using modal
synthesis based on spectral methods, using the code previously developed for a
plate reverb simulation [133]. The purpose is to simulate feedback from a stiff
floor by making all the tiles vibrate accordingly to the position and force of the
walking gestures. Parallel processing is used, since each row of tiles is controlled
separately by a dedicated computer. However, we chose to simply replicate the
same version of the code for each PC: in this way, some computational power
is wasted because every processor performs the update of the same bank of res-
onators, but the implementation is much simpler and no synchronization between
the processes is needed. However, the six running programs differ for the output
weights vectors, in order to compute the vibration for the actuators that they



A.4 Parallel Implementation of the Resonator Bank 79

Fig. A.4. The Cave simulation floor environment at McGill University TODO:nome
lab!. The floor is composed with a 6x6 matrix of tiles having pressure sensors and haptic
actuators.

control. The input of the modal plate engine is given by a structural similar to the
one used for impacts between objects.

A.4 Parallel Implementation of the Resonator Bank

An C++ library for the synthesis of a parallel bank of second-order resonators has
been developed with specific optimizations targeted to generic purpose x86 CPUs.
Exploiting the intrinsic parallel nature of the algorithm, we applied parallelism
using the floating point SSE instructions available on modern processors [50], which
permit Single Instruction Multiple Data (SIMD) computing. In this way, it is
possible to update four (or eight with the newest AVX instructions) resonators
with full vector computation, i.e. the speed-up is linear (4x) compared to the
scalar case.

Using this kind of computation constructs, there are some constraints on the
way the coefficients of the resonator are stored in memory, e.g. only contiguous
memory areas can be used to store a vector of coefficients. When cycling over the
resonators, two possible ways of organizing the data are generally used, known
as Array of Structures (AoS) and Structure of Arrays (SoA). Although AoS is
generally considered faster because of better memory and cache management [42],



80 A Example Software

Motion

Capture

System

Motion

Capture

Plate

Model

Bullet

Rigid Body

Engine

OpenGL

Rendering

Collision

Filtering

Physical

Audio

Engine

foot

position

floor

pressure

floor

haptic

outputs

objects

positions

objects

velocities

objects

impact

data

audio

output

floor

graphics output

Fig. A.5. Architecture of the Real-Time simulation environment with multimodal (au-
dio, graphics and haptics) rendering. Audio-rate blocks are drawed as rectangular boxes,
where instead rounded corners have been used for control-rate blocks directly related to
the Bullet engine.

when dealing with SSE instructions SoA implementations are generally used due
to the contiguity constraint [50]. In our case, and only when we have a fixed
number of weights used, e.g. 2 for one pressure output plus displacement, better
performance may be achieved by using an Array of Vector Structures. Referring
to the example code reported in Tab. A.2, this implies the use of vector fields
packed into a structure, where the size of the vectors equal the one of the SIMD
computing unit. On a Core2Duo@2.4Ghz processor with compiler gcc++4.6, we
benchmarked an average 10% speed increment over straightforward parallel SoA
implementations.

Per-processor parallelism has also been implemented using the OpenMP li-
brary [37], dividing the computational load among different threads when many
sounding objects (i.e., more than one bank of resonators) are simulated. Since all
the feedback is local to each thread, synchronization can be ensured at buffer rate
when the outputs of the different objects are summed together.



A.4 Parallel Implementation of the Resonator Bank 81

Header

CHECK KEYWORDS Warn

Mesh DB "." "."

End

Constants

Gravity(4) = 0 -1 0 9.82

Stefan Boltzmann = 5.67e-08

Permittivity of Vacuum = 8.8542e-12

Boltzmann Constant = 1.3807e-23

Unit Charge = 1.602e-19

End

Simulation

Max Output Level = 3

Coordinate System = Cartesian 3D

Simulation Type = Steady State

Steady State Max Iterations = 1

Output Intervals = 1

Post File = "shell.ep"

! Output File = "shell.dat"

End

Body 1

Equation = 1

Material = 1

Body Force = 1

End

Material 1

Density = 8000

Thickness = 0.001

Youngs Modulus = 200e9

Poisson Ratio = 0.3

End

Body Force 1

Normal Pressure = Real 0

End

Solver 1

Equation = Shell Solver

Procedure = "ShellSolve" "ShellSolver"

Variable = -dofs 6 Deflection

Linear System Solver = Direct

Linear System Direct Method = UMFpack

Steady State Convergence Tolerance = 1.0e-6

Eigen System Select = Smallest magnitude

Eigen Analysis = True

Eigen System Values = 200

Calculate Weights = Logical True

End

Equation 1

Active Solvers(1) = 1

End

Table A.1. Format of the Elmer input .sif file used for Finite Element Analysis compu-
tation.



82 A Example Software

////////////////////////////////////////////////////

// Array of Structures

///////////////////////////////////////////////////

struct FilterData {

float b1;

float a1;

float a2;

float z1;

float z2;

float w_in;

float w_out_x;

float w_out_p;

};

class ResonatorBank {

// ...

// ...

FilterData _resonators_data[N_RESONATORS];

};

////////////////////////////////////////////////////

// Structure of Arrays

///////////////////////////////////////////////////

class ResonatorBank {

// ...

// ...

float _b1[N_RESONATORS];

float _a1[N_RESONATORS];

float _a2[N_RESONATORS];

float _z1[N_RESONATORS];

float _z2[N_RESONATORS];

float _w_in[N_RESONATORS];

float _w_out_x[N_RESONATORS];

float _w_out_p[N_RESONATORS];

};

////////////////////////////////////////////////////

// Array of Vector Structures

///////////////////////////////////////////////////

struct FilterChunkData {

float b1[SIMD_DATA_SIZE];

float a1[SIMD_DATA_SIZE];

float a2[SIMD_DATA_SIZE];

float z1[SIMD_DATA_SIZE];

float z2[SIMD_DATA_SIZE];

float w_in[SIMD_DATA_SIZE];

float w_out_x[SIMD_DATA_SIZE];

float w_out_p[SIMD_DATA_SIZE];

};

class ResonatorBank {

// ...

// ...

FilterChunkData resonators_data[N_RESONATORS / SIMD_DATA_SIZE];

};

Table A.2. C++ code excerpts for data structures regarding the implementation of a
parallel resonator bank using Array of Structures (AoS), Structure of Arrays (SoA) and
Array of Vector Structures (AoVS).



References

1. S. Adhikari. Damping Models for Structural Vibration. PhD thesis, Cambridge
University, Engineering Department, 2000.

2. S. Adhikari. Damping modelling using generalized proportional damping. Journal
of Sound and Vibration, 293(1-2):156–170, 2006.

3. Jean-Marie Adrien. The missing link: modal synthesis, pages 269–298. MIT Press,
Cambridge, MA, USA, 1991.

4. Arian, P. Computationally Efficient Decimators, Interpolators, and Narrow
Transition-Band Linear-Phase Finite Impulse Response (FIR) Filters. PhD the-
sis, Tamper University of Technology, Finland, 2007.

5. F. Avanzini and P. Crosato. Integrating physically based sound models in a mul-
timodal rendering architecture. Computer Animation and Virtual Worlds, 17(3-
4):411, 2006.

6. F. Avanzini and R. Marogna. A modular physically based approach to the sound
synthesis of membrane percussion instruments. Audio, Speech, and Language Pro-
cessing, IEEE Transactions on, 18(4):891–902, 2010.

7. F. Avanzini and D. Rocchesso. Modeling Collision Sounds: Non-linear Contact
Force. In Proc. COST-G6 Conf. Digital Audio Effects (DAFX-01), Limerick, Ire-
land, pages 61–66, 2001.

8. F. Avanzini, S. Serafin, and D. Rocchesso. Interactive Simulation of Rigid Body
Interaction With Friction-Induced Sound Generation. Speech and Audio Processing,
IEEE Transactions on, 13(5 Part 2):1073–1081, 2005.

9. B. Bank. Physics-based Sound Synthesis of String Instruments Including Geometric
Nonlinearities. PhD thesis, Budapest University of Technology and Economics,
Hungary, February 2006. URL: http://www.mit.bme.hu/∼bank/phd.

10. B. Bank. Direct design of parallel second-order filters for instrument body model-
ing. In Proc. International Computer Music Conference (ICMC 2007), Copenhagen,
Denmark, pages 458–465, 2007.

11. B. Bank. Perceptually motivated audio equalization using fixed-pole parallel second-
order filters. Signal Processing Letters, IEEE, 15:477–480, 2008.

12. B. Bank. Residual Energy Estimation for Polyphony Management. Internal Tech-
nical Report, Viscount International S.p.A., 2010.

13. B. Bank and L. Sujbert. Generation of longitudinal vibrations in piano strings:
From physics to sound synthesis. The Journal of the Acoustical Society of America,
117:2268, 2005.

14. B. Bank, S. Zambon, and F. Fontana. A modal-based real-time piano synthesizer.
Audio, Speech, and Language Processing, IEEE Transactions on, 18(4):809–821,
2010.



84 References

15. J. Bensoam. A reciprocal variational approach to the two–body frictionless con-
tact problem in elastodynamics. International Journal for numerical methods in
Engineering, 2002.

16. J. Bensoam. Contact problems with friction applied to musical sound synthesis.
The Journal of the Acoustical Society of America, 119:3323, 2006.

17. S. Bilbao. Wave and scattering methods for numerical simulation. John Wiley and
Sons, 2004.

18. S. Bilbao. Numerical Sound Synthesis. Wiley Online Library, 2009.
19. A. Boeing and T. Bräunl. Evaluation of real-time physics simulation systems. In

Proceedings of the 5th international conference on Computer graphics and interac-
tive techniques in Australia and Southeast Asia, pages 281–288. ACM New York,
NY, USA, 2007.

20. A. Boeing and T. Bräunl. Evaluation of real-time physics simulation systems. In
Proceedings of the 5th international conference on Computer graphics and interac-
tive techniques in Australia and Southeast Asia, pages 281–288. ACM, 2007.

21. N. Bonneel, G. Drettakis, N. Tsingos, I. Viaud-Delmon, D. James, et al. Fast modal
sounds with scalable frequency-domain synthesis. ACM Transactions on Graphics,
27:3, 2008.

22. G. Borin. Personal Communication, 2007.
23. G. Borin, G. De Poli, and D. Rocchesso. Elimination of delay-free loops in discrete-

time models ofnonlinear acoustic systems. Speech and Audio Processing, IEEE
Transactions on, 8(5):597–605, 2000.

24. G. Borin, G. De Poli, and A. Sarti. Algorithms and Structures for Synthesis Using
Physical Models. Computer Music Journal, 16:30–30, 1992.

25. J.P. Boyd. Chebyshev and Fourier spectral methods. Dover Publications, 2001.
26. Cynthia Bruyns. Modal synthesis for arbitrarily shaped objects. Comput. Music

J., 30(3):22–37, 2006.
27. C. Cadoz, A. Luciani, and J.L. Florens. CORDIS-ANIMA: A Modeling and Simu-

lation System for Sound and Image Synthesis-The General Formalism. Computer
Music Journal, 17:19–19, 1993.

28. T. K. Caughey and M. E. J. O ‘Kelly. Classical normal modes in damped linear dy-
namic systems. Transaction of American Society of Mechanical Engineers, Journal
of Applied Mechanics, 32:583–588, 1965.

29. J.N. Chadwick, S.S. An, and D.L. James. Harmonic shells: a practical nonlinear
sound model for near-rigid thin shells. In ACM Transactions on Graphics (TOG),
volume 28, page 119. ACM, 2009.

30. P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia.
Meshlab: an open-source mesh processing tool. In Sixth Eurographics Italian Chap-
ter Conference, pages 129–136, 2008.

31. R.D. Ciskowski and CA Brebbia. Boundary Element Methods in Acoustics. Elsevier
Applied Science, 1991.

32. Scipy Developer Community. Scipy - Scientific Tools for Python.
http://www.scipy.org/.

33. P.R. Cook. Physically informed sonic modeling (phism): Synthesis of percussive
sounds. Computer Music Journal, 21(3):38–49, 1997.

34. P.R. Cook. Music, Cognition, and Computerized Sound: An Introduction to Psy-
choacoustics. MIT Press, 2001.

35. P.R. Cook. Real Sound Synthesis for Interactive Applications. AK Peters, Ltd.,
2002.

36. Roland Corporation. V-Piano. http://www.roland.com/V-Piano/.
37. L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory

programming. Computational Science & Engineering, IEEE, 5(1):46–55, 1998.



References 85

38. M. De Berg, O. Cheong, and M. Van Kreveld. Computational geometry: algorithms
and applications. Springer-Verlag New York Inc, 2008.

39. G. De Poli, A. Piccialli, and C. Roads. Representations of musical signals. MIT
press, 1991.

40. G. De Poli and D. Rocchesso. Physically based sound modelling. Organised Sound,
3(1):61–76, 1998.

41. K. Doel, D. Knott, and D.K. Pai. Interactive Simulation of Complex Audiovisual
Scenes. Presence: Teleoperators & Virtual Environments, 13(1):99–111, 2004.

42. K. Dowd. High performance computing. O’Reilly & Associates, Inc. Sebastopol,
CA, USA, 1993.

43. G. Eckel, F. Iovino, and R. Caussé. Sound synthesis by physical modelling with
modalys. In Proceedings of the International Symposium of Music Acoustics, 1995.

44. L. Faiget, C. Legros, and R. Ruiz. Optimization of the impulse response length: Ap-
plication to noisy and highly reverberant rooms. Journal of the Audio Engineering
Society, 46:741–750, 1998.

45. M. Folk, A. Cheng, and K. Yates. Hdf5: A file format and i/o library for high perfor-
mance computing applications. In Proceedings of the Supercomputing Conference,
volume 99, 1999.

46. F. Fontana and F. Avanzini. Computation of delay-free nonlinear digital filter net-
works: Application to chaotic circuits and intracellular signal transduction. Signal
Processing, IEEE Transactions on, 56(10):4703–4715, 2008.

47. Association for Computing Machinery. Acm computing classification system.
http://www.acm.org/class/.

48. W.W. Gaver. How Do We Hear in the World? Explorations in Ecological Acoustics.
Ecological Psychology, 5(4):285–313, 1993.

49. W.W. Gaver. What in the World Do We Hear?: An Ecological Approach to Auditory
Event Perception. Ecological Psychology, 5(1):1–29, 1993.

50. G. Gerbert and A. Bik. The Software Optimization Cookbook, 2nd edition. Intel
Press, 2006.

51. C. Geuzaine and J.F. Remacle. Gmsh: A 3-d finite element mesh generator with
built-in pre-and post-processing facilities. International Journal for Numerical
Methods in Engineering, 79(11):1309–1331, 2009.

52. S. Gibson and B. Mirtich. A survey of deformable modeling in computer graphics.
Technical report, Mitsubishi Electric Research Laboratories, 1997.

53. G. Gilardi and I. Sharf. Literature survey of contact dynamics modelling. Mecha-
nism and Machine Theory, 37(10):1213–1239, 2002.

54. N. Giordano. Mechanical impedance of a piano soundboard. The Journal of the
Acoustical Society of America, 103:2128, 1998.

55. W. Goldsmith. Impact: The Theory and Physical Behaviour of Colliding Solids.
Courier Dover Publications, 2001.

56. G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University
Press, 1996.

57. J.K. Hahn, H. Fouad, L. Gritz, and J.W. Lee. Integrating Sounds and Motions in
Virtual Environments. Presence, 7(1):67–77, 1998.

58. J. He and Z.F. Fu. Modal Analysis. Butterworth-Heinemann, 2001.
59. T. Hermann and A. Hunt. Guest editors’ introduction: An introduction to interac-

tive sonification. Multimedia, IEEE, 12(2):20–24, 2005.
60. L. Hiller and P. Ruiz. Synthesizing musical sounds by solving the wave equation for

vibrating objects. Journal of the Audio Engineering Society, 19(6):462–470, 1971.
61. W.D. Hillis and G.L. Steele Jr. Data parallel algorithms. Communications of the

ACM, 29(12):1170–1183, 1986.



86 References

62. K. Ho-Le. Finite element mesh generation methods: a review and classification.
Computer-aided design, 20(1):27–38, 1988.

63. KH Hunt and FRE Crossley. Coefficient of restitution interpreted as damping in
vibroimpact. ASME Journal of Applied Mechanics, 42(2):440–445, 1975.

64. F. Ihlenburg. Finite Element Analysis of Acoustic Scattering. Springer, 1998.
65. University of Helsinki IT Center for Sciences. Elmer Open Source Finite Element

Software. http://www.csc.fi/english/pages/elmer.
66. D.L. James, J. Barbič, and D.K. Pai. Precomputed acoustic transfer: output-

sensitive, accurate sound generation for geometrically complex vibration sources.
Proceedings of ACM SIGGRAPH 2006, 25(3):987–995, 2006.

67. D.L. James and D.K. Pai. DyRT: dynamic response textures for real time de-
formation simulation with graphics hardware. In Proceedings of the 29th annual
conference on Computer graphics and interactive techniques, pages 582–585. ACM
New York, NY, USA, 2002.

68. D.L. James and D.K. Pai. Multiresolution green’s function methods for interac-
tive simulation of large-scale elastostatic objects. ACM Transactions on Graphics
(TOG), 22(1):47–82, 2003.

69. M. Karjalainen, P. Antsalo, A. Makivirta, T. Peltonen, and V. Valimaki. Estimation
of modal decay parameters from noisy response measurements. Journal of the Audio
Engineering Society, 50(11):867–878, 2002.

70. M. Karjalainen, P.A.A. Esquef, P. Antsalo, A. Makivirta, and V. Valimaki.
Frequency-Zooming ARMA Modeling of Resonant and Reverberant Systems. Jour-
nal of the Audio Engineering Society, 50(12):1012–1029, 2002.

71. R.L. Klatzky, D.K. Pai, and E.P. Krotkov. Perception of Material from Contact
Sounds. Presence: Teleoperators & Virtual Environments, 9(4):399–410, 2000.

72. Rich Lecoucqh. ARPACK numerical analysis library. Available online at
http://www.caam.rice.edu/software/ARPACK/, 2012.

73. A.W. Leissa. Vibration of shells. American Institute of Physics, 1993.
74. Y. Li and G.R. Arce. A maximum likelihood approach to least absolute deviation

regression. EURASIP Journal on Applied Signal Processing, 12(1762-1769):11, 2004.
75. M. Lin and S. Gottschalk. Collision detection between geometric models: A survey.

In Proc. of IMA Conference on Mathematics of Surfaces, volume 1, pages 602–608,
1998.

76. D.B. Lloyd, N. Raghuvanshi, and N.K. Govindaraju. Sound synthesis for impact
sounds in video games. In Symposium on Interactive 3D Graphics and Games, pages
PAGE–7. ACM, 2011.

77. C. Loop. Smooth subdivision surfaces based on triangles. PhD thesis, Department
of Mathematics, University of Utah, 1987.

78. D.P. Luebke. A developer’s survey of polygonal simplification algorithms. Computer
Graphics and Applications, IEEE, 21(3):24–35, 2001.

79. M. Mathews and J.O. Smith III. Methods for synthesizing very high q parametri-
cally well behaved two pole filters. In Proceedings of the Stockholm Musical Acoustics
Conference (SMAC 2003)(Stockholm). Royal Swedish Academy of Music, 2003.

80. D. Menzies. Phya and vfoley, physically motivated audio for virtual environments. In
Proceedings of the AES 35th International Conference in Audio for Games, London
UK. Audio Engineering Society, 2009.

81. B. Mirtich and J. Canny. Impulse-based simulation of rigid bodies. In Proceedings
of the 1995 symposium on Interactive 3D graphics, pages 181–ff. ACM, 1995.

82. S.K. Mitra and Y. Kuo. Digital signal processing: a computer-based approach, vol-
ume 128. McGraw-Hill New York, 1998.

83. Modartt. Pianoteq. http://www.pianoteq.com/.



References 87

84. P.M.C. Morse and K.U. Ingard. Theoretical Acoustics. Princeton University Press,
1986.

85. A. Nealen, M. Muller, R. Keiser, E. Boxerman, and M. Carlson. Physically Based
Deformable Models in Computer Graphics. In Computer Graphics Forum, vol-
ume 25, pages 809–836. Blackwell Synergy, 2006.

86. Nokia. Qt Cross-platform Application and UI Framework. http://qt.nokia.com/.
87. James F. O’Brien, Perry R. Cook, and Georg Essl. Synthesizing sounds from phys-

ically based motion. In SIGGRAPH ’01: Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, pages 529–536, New York, NY,
USA, 2001. ACM.

88. J.F. O’Brien, C. Shen, and C.M. Gatchalian. Synthesizing sounds from rigid-body
simulations. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium
on Computer animation, pages 175–181. ACM Press New York, NY, USA, 2002.

89. R. Ohayon and C. Soize. Structural Acoustics and Vibration: Mechanical Models,
Variational Formulations and Discretization. Academic Press, 1998.

90. OpenGL. OpenGL High Performance Graphics. http://www.opengl.org/.
91. A.V. Oppenheim and R.W. Schafer. Discrete-time signal processing. Prentice-Hall,

Inc. Upper Saddle River, NJ, USA, 1989.
92. S. Papetti. Sound modeling issues in interactive sonification - From basic contact

events to synthesis and manipulation tools. PhD thesis, University of Verona, Italy,
2010.

93. S. Papetti, F. Avanzini, and D. Rocchesso. Numerical methods for a non-linear
impact model: a comparative study with closed-form corrections. Audio, Speech,
and Language Processing, IEEE Transactions on, 19, 2011.

94. T.W. Parks and C.S. Burrus. Digital filter design. Wiley-Interscience, 1987.
95. D.K. Phillips. Algorithms and Architectures for the Multirate Additive Synthesis of

Musical Tones. PhD thesis, School of Engineering, Durham University, UK, 1996.
96. D.K. Phillips. Multirate additive synthesis. Computer Music Journal, 23(1):28–40,

1999.
97. P. Polotti and D. Rocchesso, editors. Sound to Sense - Sense to Sound. A state of

the art in Sound and Music Computing. Logos Verlag, Berlin, 2008.
98. A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics. Springer Verlag,

2007.
99. R. Rabenstein, S. Petrausch, A. Sarti, G. De Sanctis, C. Erkut, and M. Karjalainen.

Blocked-based physical modeling for digital sound synthesis. Signal Processing Mag-
azine, IEEE, 24(2):42–54, 2007.

100. N. Raghuvanshi and M.C. Lin. Interactive sound synthesis for large scale environ-
ments. In Proceedings of the 2006 symposium on Interactive 3D graphics and games,
pages 101–108. ACM New York, NY, USA, 2006.

101. M. Rath and D. Rocchesso. Continuous Sonic Feedback from a Rolling Ball. IEEE
Multimedia, pages 60–69, 2005.

102. U. Rathmann and J. Wilgen. Qwt - Qt Widgets for Technical Applications.
http://qwt.sourceforge.net/.

103. Curtis Roads. The computer music tutorial. the MIT Press, 1996.
104. D. Rocchesso and F. Fontana, editors. The Sounding Object. Mondo Estremo,

Firenze, 2003.
105. X. Serra and J. Smith. Spectral modeling synthesis: A sound analysis/synthesis

system based on a deterministic plus stochastic decomposition. Computer Music
Journal, 14(4):12–24, 1990.

106. Game Physics Simulation. Bullet Physics Library. http://bulletphysics.org.
107. A. Sirdey, O. Derrien, R. Kronland-Martinet, and M. Aramaki. Modal analysis of

impact sounds with esprit in gabor transforms. In Proc. Int. Conf. on Digital Audio
Effects (DAFx-11), IRCAM-Paris, France, 2011.



88 References

108. J.O. Smith. Viewpoints on the history of digital synthesis. In Proceedings of the
1st International Computer Music Conference. International Computer Music As-
sociation, 1991.

109. J.O. Smith. Physical Modeling Using Digital Waveguides. Computer Music Journal,
16:74–74, 1992.

110. JO Smith. Introduction to Digital Filters with Audio Applications. Available online
at http://ccrma.stanford.edu/∼ jos/filters, 2012.

111. JO Smith. Physical Audio Signal Processing. Available online at
http://ccrma.stanford.edu/∼ jos/filters/pasp.html, 2012.

112. JO Smith. Spectral Audio Signal Processing. Available online at
http://ccrma.stanford.edu/∼ jos/filters/sasp.html, 2012.

113. W. Soedel. Vibrations of Shells and Plates. CRC Press, 2004.
114. Viscount International S.p.A. Physis Organs.

http://www.physisorgans.com/index.shtml.
115. Viscount International S.p.A. Physis Piano. http://physispiano.com/.
116. J.C. Strikwerda. Finite Difference Schemes and Partial Differential Equations. So-

ciety for Industrial Mathematics, 2004.
117. Dassault Systemes. Simulia Finite Element Analysis Software.

http://www.3ds.com/products/simulia.
118. Applied Acoustic Systems. Cromaphone Creative Percussion Synthesizer.

http://www.applied-acoustics.com/.
119. T. Tolonen, V. Välimäki, and M. Karjalainen. Evaluation of modern sound synthesis

methods. Technical Report, Helsinki University of Technology, 1998.
120. L. Trautmann and R. Rabenstein. Digital Sound Synthesis by Physical Modeling Us-

ing the Functional Transformation Method. Kluwer Academic/Plenum Publishers,
2003.

121. L. Trautmann and R. Rabenstein. Multirate Simulations of String Vibrations In-
cluding Nonlinear Fret-String Interactions Using the Functional Transformation
Method. Eurasip Journal on Applied Signal Processing, pages 949–963, 2004.

122. PP Vaidyanathan. Multirate digital filters, filter banks, polyphase networks, and
applications: A tutorial. Proceedings of the IEEE, 78(1):56–93, 2002.

123. V. Välimäki, J. Pakarinen, C. Erkut, and M. Karjalainen. Discrete-time modelling
of musical instruments. Reports on progress in physics, 69:1, 2006.

124. C.P. Van Den Doel. Sound synthesis for virtual reality and computer games. PhD
thesis, The University of British Columbia (Canada), 1999.

125. K. van den Doel, P.G. Kry, and D.K. Pai. FoleyAutomatic: physically-based sound
effects for interactive simulation and animation. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, pages 537–544. ACM
New York, NY, USA, 2001.

126. K. van den Doel, DK Pai, T. Adam, L. Kortchmar, and K. Pichora-Fuller. Mea-
surements of perceptual quality of contact sound models. In Proceedings of the
International Conference on Auditory Display (ICAD 2002), Kyoto, Japan, pages
345–349, 2002.

127. S.A. Van Duyne and J.O. Smith. Developments for the commuted piano. In Proceed-
ings of the 1995 International Computer Music Conference, Banff, pages 335–343.
International Computer Music Association, 1995.

128. G. Var Rossum. Python Programming Language. http://www.python.org/.
129. University of Verona VIPS Lab. Sound Design Toolkit (SDT).

http://www.soundobject.org/SDT/.
130. Y. Visell, F. Fontana, B.L. Giordano, R. Nordahl, S. Serafin, and R. Bresin. Sound

design and perception in walking interactions. International Journal of Human-
Computer Studies, 67(11):947–959, 2009.



References 89

131. M. Wright, A. Freed, and A. Momeni. Opensound control: state of the art 2003.
In Proceedings of the 2003 conference on New interfaces for Musical Expression
(NIME), pages 153–160. National University of Singapore, 2003.

132. C. Yeh and A. Röbel. Adaptive noise level estimation. In Proc. of the Int. Conf.
on Digital Audio Effects (DAFx-06), Montreal, Canada, pages 145–148, 2006.

133. S. Zambon. Un modello per la simulazione in tempo reale di un riverbero a piastra.
In Proceedings of the XVII Colloquio di Informatica Musicale, Venezia. Associazione
Informatica Musicale Italiana, 2008.

134. S. Zambon. Physis Piano Project Documentation. Internal Technical Report, Vis-
count International S.p.A., 2012.

135. S. Zambon, E. Giordani, F. Fontana, and B. Bank. Sistema per riprodurre il suono
di uno strumento a corde. Deposited Italian Patent.

136. S. Zambon, H.M. Lehtonen, and B. Bank. Simulation of piano sustain-pedal effect
by parallel second-order filters. In Proc. Int. Conf. on Digital Audio Effects (DAFx-
08), Espoo, Finland, 2008.

137. C. Zheng and D.L. James. Rigid-body fracture sound with precomputed sound-
banks. ACM Transactions on Graphics (TOG), 29(4):69, 2010.

138. C. Zheng and D.L. James. Toward high-quality modal contact sound. In ACM
Transactions on Graphics (TOG), volume 30, page 38. ACM, 2011.

139. O.C. Zienkiewicz and R.L. Taylor. The finite element method. 1. Basic formulation
and linear problems. McGraw-Hill, 1989.

140. O.C. Zienkiewicz and R.L. Taylor. The finite element method. 2: Solid and fluid
mechanics dynamics and non-linearity. repr. McGraw-Hill, 1998.

141. U. Zölzer, editor. DAFX-Digital Audio Effects, 2nd Edition. John Wiley & Sons,
New York, NY, USA, 2011.


	Introduction
	Sound Synthesis by Physical Modeling
	Modal Synthesis

	Thesis Outline

	Physical Modeling of 3D Resonators
	Modeling of Thin Shell Structures
	Finite Element Modeling

	Modal Decomposition
	Reduction to Modal Coordinates

	Damping Effects
	Estimation of Damping Parameters

	Radiation Modeling
	Helmholtz Equation
	Accurate Radiation Modeling
	Near-Field Approximations

	Modal Shapes Reduction
	Conclusion

	Second-Order Digital Resonators
	Impulse-invariance Discretization of the Continuous-time Resonator
	Space State Formulations
	Derived Variables
	Resonator Velocity
	Instantaneous Amplitude and Phase
	Residual Energy

	Conclusion

	Impact Modeling
	Hertz Contact Model
	Hysteresis

	Feed-forward Approximations

	Efficient Algorithms for Modal Synthesis
	Resonator Pruning
	Multirate Implementations of a Resonator Bank
	Multirate Filter Banks
	Prior Work
	QMF Subdivision
	Interpolation Filters Design

	Handling Nonlinear Feedback :  the Adaptive Multirate Approach
	Conclusion

	Part II Appendix
	Example Software
	Modal Objects Data Structures
	Sound Object Explorer
	Interactive Environment
	Parallel Implementation of the Resonator Bank

	References


