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ABSTRACT 

The pathogenesis of Alzheimer‘s disease (AD) is generally attributed to the 
abnormal production and accumulation of β-amyloid protein, in association with 

neurofibrillary tangle (NTF) formation. The production and subsequently accumulation of 

β-amyloid protein in AD brains finally results in direct neuronal toxicity and in microglial 
activation which, through the production of inflammatory mediators, contributes to 

neuronal damage. 

In recent years the scientific community has raised doubts regarding the exclusive 
pathological role of amyloid. Familiar AD, where amyloid deposition is supposed to play 

a prevalent pathogenetic role, represents a condition confirming this hypothesis, but the 

vast majority of AD cases are sporadic and in this condition the scenario is complicated 

by the possible role of additional components/pathways involved. In fact, a wide range of 
molecules are present in AD plaques, whose significance has not been clearly 

characterized. Among these, previous studies have identified chitin, an insoluble polymer 

of N-acetyl-glucosamine, in close association with β-amyloid in autoptic sporadic AD 
brains. Chitin was detected by Calcofluor staining both in amyloid plaques and within the 

cytoplasm of surrounding microglia. 

The aim of this study was to investigate whether chitin has a pathogenetic role in AD by 

assessing its biological effects on two important players: neurons and microglia. 
First of all, we have found chitin deposits only in sporadic AD but not in familiar AD and 

Down syndrome, emphasizing the complexity of amyloid-related pathology. Then we 

performed in vitro experiments, in which the exposure of microglial cultures to chitin 
showed that the cells were able to phagocyte small chitin particles, and the process was 

significantly inhibited by β-amyloid. Similarly to what described with β-amyloid, 

phagocytosis of chitin activated microglial cells.  
In addition, experiments with neuronal cultures clearly showed a significant cytotoxic 

effect induced by chitin on neurons to levels comparable to β-amyloid. 

A central point of this research concerned the production of chitin by mammalian cells, 

which lack chitin synthase. In sporadic AD glucose metabolism is frequently impaired 
with activation of the exosamine pathway with consequent production of N-acetyl-

glucosamine. Previous studies suggested that, under such condition, the absence of a 

chitin synthesizing enzyme may be overcome by hyaluronan synthase-1 (HAS-1), that 
has been shown to convert UDP-N-acetyl-glucosamine to chito-oligosaccharides in vitro. 

We demonstrated that in the presence of UDP-N-acetyl-glucosamine, both microglia and 

neurons are able to produce chitin-like deposits that HPLC-MS analysis confirmed to be 

―new-formed‖ chitin-like compounds. Such treatment leads to activation of microglia as 
well as significant neuronal cytotoxicity, mimicking the effect of exogenous chitin. 

Our results indicate that in particular conditions of altered glucose metabolism both 

microglia and neurons produce chitin-like polymers, which may trigger a neurotoxic 
effect either by direct neuronal toxicity and by microglia activation. Moreover, 

preliminary experiments suggest that synaptic transmission is affected in murine 

hippocampal slice cultures treated with UDP-N-acetyl-glucosamine. 
Taken together, these results suggest a cytotoxic role of chitin-like molecules in AD and 

offer new insights in the understanding the complex pathogenesis of AD. 
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INTRODUCTION 

1. ALZHEIMER DISEASE 

1.1 Historical and social background 

Alzheimer disease (AD) is the most common and complex 

neurodegenerative disease that is estimated to affect approximately 15 million of 

people worldwide (Alzheimer‘s Association 2010). It is the most common form of 

dementia that accounts for 50 to 80 percent of total dementia cases. It is 

characterized by deficit in memory, language, executive functions and other 

intellectual abilities serious enough to interfere with daily life. The greatest known 

risk factor is increasing age, and the majority of people with Alzheimer's are 65 

and older. But Alzheimer's is not just a disease of old age; up to 5 percent of 

people with the disease have early onset Alzheimer's (also known as younger-

onset), which often appears when someone is in their 40s or 50s.  

Alzheimer‘s disease was first described in 1906 by the German psychiatrist and 

neuropathologist Alois Alzheimer and was named after him by Emil Kraepelin 

(Kraepelin 1910; Berchtold and Cotman 1998). Alois Alzheimer identified the 

first case of what we know as Alzheimer's disease in a fifty-year-old woman that 

he called Auguste D with  strange behavioral symptoms, including a loss of short-

term memory. The autopsy of the patient showed the presence of neurofibrillary 

tangles (NFTs) and amyloid plaques that are today the key histopathological 

hallmarks of AD.  



 5 

Although the causes of AD are not yet known, most experts agree that, like other 

common chronic conditions, it probably develops as a result of multiple factors 

rather than a single cause.  

Unfortunately AD is reaching epidemic proportions and a cure is not yet available 

with a social and economic impact on all society. 

1.2 Epidemiology and genetic  

Cohort longitudinal studies (studies where a disease-free population is 

followed over the years) provide rates between 10 and 15 per thousand person–

years for all dementias and 5–8 for AD (Di Carlo et al. 2002), which means that 

half of new dementia cases each year are AD. Advancing age is a primary risk 

factor for the disease: every five years after the age of 65, the risk of acquiring the 

disease approximately doubles. There are also sex differences in the incidence 

rates, women having a higher risk of developing AD particularly in the population 

older than 85 (Andersen et al. 1999).  

A small percentage of AD cases, around 5 percent, is caused by genetic mutations 

found in a small number of families worldwide. In these inherited forms of 

Alzheimer‘s, the disease usually develops before age 65, sometimes in individuals 

as young as 30. 

A genetic factor in late-onset AD (older than 65) is apolipoprotein E- ε4 (APOE-

ε4). APOE-ε4 is one of three common forms of the APOE gene, with an important 

role in the catabolism of triglyceride-rich lipoprotein constituent. APOE-ε4 acts as 

a pathological chaperone that promotes deposition of Aβ (Reiman et al. 2009) and 

the phosphorylation of tau (Holtzman et al. 2000), increasing the risk to develop 

AD.  
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The gene for amyloid precursor protein (APP) is on chromosome 21. Down 

syndrome, characterized by duplication of chromosome 21 provides a clear 

mechanism for Aβ deposition: persons affected with this condition develop one 

and an half times as much APP as normal people, resulting in susceptibility to 

Alzheimer‘s dementia at early age (Busciglio et al. 2002). 

There are also familial forms of AD supported by genetic alterations leading to 

increased production of Aβ42: the presenilin is a component of the γ-secretase 

complex involved in the cleavage of APP. The main consequence of the mutation 

of presenilins leads to increase levels of Aβ42 (Rothman and Olney1995). 

Other proteins recently considered genetic risk factors identified are: 

Apolipoprotein J (Lambert et al. 2009), translocase of outer mitochondrial 

membrane 40 homolog (yeast) TOMM40 (a transport of proteins across the 

mitochondrial membrane) and a neuronal sortilin-related receptor (SORL1), 

involved in an APP-recycling pathway whose levels are greatly reduced in 

patients with AD and mild cognitive impairment (Sager et al. 2007; Rogaeva et al. 

2007). 

1.3 Clinical diagnosis  

AD is a progressive dementia with multiple memory deficits as the major 

clinical manifestation. Although AD develops differently for every individual, 

there are many common symptoms.
 
Cortical signs and symptoms such as apraxia, 

aphasia, agnosia and visuo-spatial dysfunction may become apparent over the 

course of the disease. Disturbance of language and behavioural problems emerge 

throughout the various stages of the disease together with mood disturbances such 

as depression, anxiety, apathy, hallucinations and psychosis. In advanced stages of 

AD, patients might exhibit extrapyramidal signs such as tremor and gait 
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disturbance, urinary incontinence, and myoclonus. Gradually, body functions are 

lost, ultimately leading to death (Tabert et al. 2005). 

In 1984, the National Institute of Neurological and Communicative Disorders and 

Stroke and the Alzheimer's Disease and Related Diseases Association (NINCDS-

ADRDA) established diagnostic criteria designed for research purposes and 

clinical definition (McKhann et al. 1984) extensively updated in 2007 and still 

valid (Dubois et al. 2007). These criteria require that the presence of cognitive 

impairment and a suspected dementia, to be confirmed by neuropsychological 

testing such as the ―mini-mental state examination‖ (MMSE), even if the 

confirmation of diagnosis is possible only with autoptic histopathologic evidence. 

The use of imaging studies and laboratory analysis can be used to predict AD: 

functional imaging studies used in clinical research include positron emission 

tomography (PET) and single-photon emission computed tomography scans 

(SPECT), which demonstrate hypometabolism and hypoperfusion, respectively, in 

the temporal-parietal regions bilaterally. In addition, routine chemistry panels, 

blood counts, metabolic panels, spinal fluid analyses, and inflammatory markers 

are used as instruments of early diagnosis.  

1.4 Pharmacological treatments  

The cause and progression of Alzheimer are not well understood, probably 

because some pathogenetic aspects and the related biochemical and molecular 

mechanisms are still not clear. Current treatments are palliative and no treatments 

that stop or reverse the progression of the disease are available. Up to 2008, more 

than 500 clinical trials have been conducted, but without relevant conclusion 

(Abbott 2008). 
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Currently the U.S. Food and Drug Administration (FDA) and the European 

Medicines Agency (EMA) approved five drugs to treat the cognitive 

manifestations of AD: four are acetylcholinesterase inhibitors 

(Tacrine, Rivastigmine, Galantamin and Donepezil) and the other (Memantine) is 

an NMDA receptor antagonist. Acetylcholinesterase inhibitors may improve some 

cognitive aspects and slow cognitive decline in patients with AD. Reduction in the 

activity of the cholinergic neurons is a well-known feature of AD (Geula and 

Mesulam 1995). Acetylcholinesterase inhibitors are employed to reduce the rate at 

which acetylcholine (ACh) is broken down, thereby increasing the concentration 

of ACh in the brain and contrasting its reduction caused by cholinergic neurons 

loss (Stahl 2000). Clinical studies show conflicting results: some  studies 

supported their efficacy (Birks et al. 2009), but their use is ineffective in delaying 

the onset of AD in patients affected with mild cognitive impairment 

(CMI) (Raschetti et al. 2007). 

1.5 Neuropathology  

From the macroscopic point of view, AD brains show a widening of 

cerebral sulci due to diffuse atrophy with a compensatory ventricular dilatation. 

The cortical atrophy is more important in  hippocampus and medial temporal 

regions, but may involve also frontal, parietal and occipital regions (Figure 1) 
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Figure 1. Macroscopic difference between normal and AD 

brains, with the latter showing decreased brain weight and 

volume due to marked expansion of cortical atrophy as grooves 

and flattening of the convolutions. 

Senile Plaques (SPs) and neurofibrillary tangles (NTFs) are the key 

histopathological hallmarks of AD described by Alois Alzheimer over a century 

ago (Figure 2). SPs are spherical lesions in the cerebal cortex, measuring up to 

100 m. In their fully developed stage, the neuritic plaque have a central core of 

extracellular amyloid protein surrounded by a halo of dystrophic neuronal 

processes with neurofibrillary degeneration. Reactive astrocytes and microglia 

may appear around the periphery of these plaques. The presence of  plaques is 

detected in the hippocampus but also in the neocortex. The  core of the plaques 

consists primarily of a small peptide known as β-amyloid (Aβ) which is derived 

from the larger amyloid precursor protein (APP)  as well as many different Aβ-

associated factors, such as heparan sulfate proteoglycans (O‘ Callaghan et al. 

2008), apolipoproteins, and complement factors. These factors may all influence 

Aβ deposition, aggregation and clearance and therefore seem important in the 

development of human Aβ deposits (Timmer et al. 2010). 



 10 

 

 

The amyloid core has a fibrillary structure and is birifringent at Congo Red 

staining. Each SPs represents a focus of damage of the neuropil that includes axon 

terminals and dendrites of several neurons and probably thousands of synapses. 

Plaques that have the amyloid proteins but lack the neuritic processes are known 

as diffuse plaques. Diffuse plaques do not disrupt the neuropil, and are seen  

sometimes in large numbers in old, non demented persons and are not associated 

with dementia. Many AD patients have also a cerebral amyloid angiopathy and 

granolovacuolar degeneration (Mirra et al. 1993; Perl 2000). 

NFTs are deposits of tau protein filaments in the neuronal body. Similar deposits 

are present in the dystrophic processes that surround the amyloid core of SPs and 

in dendrites (neuropil threads-NTs). In severe AD, the hippocampus often 

contains extracellular NFTs embedded in the neuropil. The mechanism of 

accumulation of tau in NFTs is unclear as it is unclear the relationship between 

tau and Aβ. Cognitive decline correlates more strongly with NFTs load rather than 

with the number of SPs. NFTs in the hippocampus and entorhinal cortex correlate 

with memory impairment, while neocortical NFTs correlate with cognitive 

decline. NFTs are found in many neurodegenerative diseases besides AD, 

including the fronto-temporal dementia, dementia pugilistica, myotonic 

Figure 2. Histological hallmarks of AD brain: amyloid senile plaque (left) and 

neurofibrillary tangles (right). 
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dystrophy, and prion diseases. These evidences indicate that NFTs can cause 

neurodegeneration indepenently of Aβ deposition. On the other hand, neuritic 

plaques are only found in AD. Most cases of AD show a combination of SPs and 

NFTs, but some cases have a predominance of one or the other. 

1.6. Pathogenesis 

1.6.1. Amyloid cascade hypotheses 

The most popular pathogenic hypothesis in AD is the ―amyloid cascade 

hypothesis‖ proposed by John Hardy and David Allsop in 1991. This hypothesis 

suggests that the mismetabolism of amyloid precursor protein (APP) is the 

initiating event in AD pathogenesis, subsequently leading to the aggregation of 

Aβ, specifically Aβ42. The formation of neuritic plaques would is a further 

pathological step with the formation of NFTs and disruption of synaptic 

connections, which lead to a reduction in neurotransmitters, death of  neurons and 

dementia (Hardy and Allsop 1991 ). The APP gene, located on chromosome 21, 

encoding a protein of neuronal membrane that can be expressed in a variety of 

tissues. Aβ peptides are natural products of metabolism consisting of 36-43 

aminoacids and derive from  the proteolisis of the transmembrane protein APP by 

sequential enzymatic actions of enzymes: beta-site amyloid precursor protein 

cleaving enzyme-1 (BACE-1), beta-secretase and gamma secretase, a protein 

complex with presenilin-1 at site catalytic core (Querfurth and La Ferla 2010). 

The result of the action of these enzymes is the formation of two fragments of 40 

and 42 amino acids that are secreted into the extracellular space (Figure 3).  
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These peptides are found in low concentrations in plasma and cerebrospinal fluid 

(CSF) under physiological conditions. An imbalanced clearance of Aβ from 

aberrant cleavage of APP and other mechanisms results in its accumulation up to 

reach a critical concentration of polymerization (Selkoe 1999). Insoluble 

fragments such as Aβ42 precipitate as amyloid fibrils to form the core of AD-

plaques. 

Aβ aggregates spontaneously in various forms: soluble oligomers (2 to 6 

peptides), which assemble into intermediate forms of amyloid (Kayed et al. 2003; 

Klein et al. 2001) or insoluble fibrils with characteristic β-sheets folding, which 

are found in advanced AD; this latter form binds Congo red and appears 

birefringent when viewed at polarized light microscopy. The severity of cognitive 

impairment correlates with the levels of oligomers rather than the total level of Aβ 

in the brain (Lue et al. 1999). The accumulation of amyloid is considered a feature 

necessary but not sufficient for disease development, because the quantity does 

Figure 3. Amyloid cascade hypothesis: The cleavage of APP 

from β and γ secretases lead to the formation of Aβ peptides in 

oligomeric and fibrillar forms that can aggregate in plaques 
and lead to neurotoxicity. 
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not correlate with the degree of dementia and is present (especially in the form of 

diffuse plaques) in an high percentage of non-demented aged subjects. 

Consistent with this hypothesis, Aβ is neurotoxic for neuronal cells (Goodman 

and Mattson 1994) through a variety of mechanisms: disruption of mitochondrial 

function via binding of the Aβ-binding alcohol dehydrogenase protein (ABAD) 

(Lustbader et al. 2004), induction of apoptotic genes through inhibition of Wnt 

(Caricasole et al. 2003 ) and insulin signalling (Xie et al. 2002 ), formation of ion 

channels  (Kagan et al. 2002), triggering loss of calcium homeostasis (Goodman 

and Mattson 1994), stimulation of the JNK/SAPK pathway (Kim et al. 2004 ) or 

activation of microglia cells leading to the expression of pro-inflammatory genes 

and increase of reactive oxygen species with eventual neuronal toxicity and death 

(Bamberger and Landreth 2001). 

1.6.2 Role of tau protein  

The second histopatological hallmark of AD are neurofibrillary lesions 

mainly composed of highly phosphorylated, aggregated assemblies of the protein 

tau. Tau belongs to the family of microtubule-associated proteins (MAPs) and it is 

present principally in the axons in soluble form (Ittner et al. 2010), where 

stabilizes microtubules. Tau contains an unusually high number of putative 

phosphorilation sites. Under pathological conditions some sites are phosphorilated 

to an higher degree than in the healthy brains with a consequent dissociation from 

microtubules, causing axonal collapse. 

High levels of total and phosphorilated tau in the CSF of patients correlate with a 

reduction of cognitive performances in cognitive tests. The analysis of total and 

phosphorilated tau levels in the CSF is today an important diagnostic marker to 

predict the onset of AD in patients with MCI (Mattson et al 2009). The 
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relationship between tau and Aβ in AD is not yet fully understood and is a matter 

of discussion. Experimental evidence indicates that Aβ accumulation precedes and 

drives tau aggregation (Oddo et al 2003; Lewis et al. 2001). Moreover, Aβ-

induced degeneration of cultured neurons and cognitive deficits in mice with an 

Alzheimer‘s disease–like illness require the presence of endogenous tau 

(Roberson et al. 2007; Rapoport et al 2002). 

1.6.3 Neuronal loss and synaptic dysfunction in AD 

The AD brain is characterized by areas of neuronal and synaptic loss. The 

death of cholinergic neurons in the nucleus basalis of Meynert is correlated with a 

deficit in acetylcholine (Ach), a major transmitter believed to be involved in 

memory. In addition, loss of serotoninergic neurons in the median raphe and 

adrenergic neurons in the locus coeruleus lead to deficits in serotonin and 

norepinephrine, respectively. Several studies have examined the relationship 

between cognitive impairment and plaque and tangle burden; although in general 

the number of NFTs correlates better with severity of dementia than amyloid 

plaques, the most robust correlation in the staging of dementia and early AD is the 

magnitude of synaptic loss (Davies et al. 1987 Scheff et al.  2007). Indeed, 

synaptic degeneration appears to be an early event in pathogenesis being evident 

in patients with early AD and MCI (Masliah et al. 2001; Scheff et al 2006, 2007). 

In recent years, biochemical analysis of AD brain have revealed a correlation 

between soluble Aβ levels and the extent of synaptic loss and severity of cognitive 

impairment (Lemere et al 2002; Wang et al. 1999). 

The oligomeric forms of Aβ  are more potent in causing synaptic dysfunction 

(Klein and Krafft 2001; Cleary et al. 2005; Lesné et al. 2006; Shankar et al. 2007, 

2008; Cheng et al. 2007; Selkoe 2008; Walsh and Selkoe 2007; 



 15 

Tomiyama et al. 2010). Aβ oligomers appear to reduce the strength and plasticity 

of glutamatergic synaptic transmission (Hsia et al. 1999; Chapman et al. 1999; 

Mucke et al. 2000; Walsh et al. 2002;  Kamenetz et al. 2003), by reducing the 

number of AMPA and NMDA  surface receptors. Synaptic dysfunction may be 

considered a response to excessive neuronal excitability, in fact, an increase of 

neuronal activity increases the production of Aβ (Shankar et al. 2007). 

Experimental application of Aβ oligomers impair synaptic plasticity by altering 

the balance between long-term potentiation (LTP) and long-term depression 

(LTD) and reducing the numbers of dendritic spines. LTP and LTD are two 

widely used mechanisms of learning and memory and such processes are believed 

to play important roles in neural circuits of the brain (Morris et al. 2003, Lynch et 

al. 2004; Malenka et al. 2004; Whitlock et al. 2006). The term LTP is defined as 

a long-term increase in the transmission of signal between two neurons stimulated 

synchronously. The induction of hippocampal LTP requires a burst of action 

potentials leading to release of glutamate from the presynaptic terminal (produced  

experimentally with a tetanic stimulation). This implicates the opening of AMPA 

receptor channels in the postsynaptic membrane of ions with influx of sodium and 

potassium in the cells, which induces an excitatory postsynaptic potential and 

release of magnesium ions  from the receptors to the NMDA receptor.  

The LTD is a rather long-lasting decrease in synaptic efficacy after 

sustained electrical stimulation in the hippocampus. Similarly to LTP, LTD 

depends critically on the NMDA receptors, with calcium playing again a central 

role. LTD is induced in response to continuous low frequency stimulation: 

postsynaptic repeated entry of small amounts of calcium through 
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NMDAR activates the calcium dependent phosphatase, which removes phosphate 

groups.  

High concentrations of Aβ oligomers have been shown to suppress basal synaptic 

transmission facilitating the endocytosis of NMDA and AMPA receptors and 

leading to an increase in glutamate  concentration at the synaptic level  (Li 

et al. 2009). This involves initially an increase of NMDA receptors followed by 

a receptor desensitization with a consequent synaptic depression (Hsieh 

et al. 2006; Liu et al. 2009). Aβ can have also an influence at the presynaptic level 

depending on its concentration: physiological levels of Aβ enhance synaptic 

activity (Abram et al. 2009; Puzzo et al. 2008), while pathological levels induce 

an increase in postsynaptic LTD and excessive loss of spines dendritic cells. 

1.6.4 Neuroinflammation and immune system activation in AD 

A number of evidences suggests an involvement of inflammatory events 

and immune mechanisms in the pathogenesis of AD, since Aβ activates microglia 

and astrocytes in vitro and in situ around fibrillar plaques (Wyss-Coray and  

Mucke 2002). The central player of neuroinflammation in AD is  principally 

activated microglial cells, probably with a dual role: initially, microglia phagocyte 

and degrade Aβ thus protecting neurons from the cytotoxic effect of Aβ. 

However, chronic exposure to Aβ activates microglia, which release chemokines 

and proinflammatory molecules, with increase  of nitric oxide synthase and hence  

free radicals causing dysfunction and neuronal death (Schultzberg et al. 2007). 

Moreover microglia express receptors for advanced glycation end products 

(RAGE), which bind Aβ, thereby amplifying the generation of cytokines, 

glutamate, nitric oxide and mediate influx of vascular Aβ. Fibrillar Aβ and glial 

activation also stimulate the classic complement pathway (McGeer and McGeer. 
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2001). The inflammatory milieu provokes neuritic changes and breakdown of the 

vascular blood–brain barrier. 

In line with this evidence, pharmacological studies demonstrated that patients 

taking non-steroidal anti-inflammatory drugs had a lower risk of AD as compared 

to age-matched controls (Lleò et al. 2004; Weggen et al. 2003). However, recent 

randomized trials failed to show evidence of reduced risk of AD by non steroidal 

anti-inflammatory agents (Szekely 2008). 

1.7 Other contributing factors 

The role of other factors in the pathogenesis of AD is now beginning to be 

explored. Environment, diet, state of health, oxidative stress, glycation of proteins, 

presence of diabetes can contribute to the loss of neurons and synapses. The 

production of free radicals, by mithocondrial disfunction and oxidative stress is 

accelerated by the action of Aβ and activated microglia in AD. The exposure to 

Aβ inhibits key mitochondrial enzymes in the brain and in isolated mitochondria.  

Cytochrome c oxidase is specifically down-regulated (Caspersen et al. 2005). 

Consequently, electron transport, ATP production, oxygen consumption, and 

mitochondrial membrane potential all become impaired. Another metabolic 

disturbance of emerging importance in AD is type 2 diabetes that is considered 

another risk factor for AD and dementia (Arvanitakis et al. 2004).  

1.8 Controversy on amyloid cascade hypothesis 

For over 100 years the neuroscience community has confirmed the  

pathogenetic role of Aβ, although there is no proof that it is the only causative 

agent of AD. Although a high number of  important studies have been made in 

understanding the molecular and pathological bases of AD, there have been few 
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successes in the clinic and a number of fundamental questions remains 

unanswered. 

The amyloid cascade hypothesis has been invaluable in elucidating the physiology 

of Aβ metabolism, but it has failed in equal measure to produce any tangible 

treatment benefit (Haass 2010; Castellani and Smith 2011). The amyloid 

hypothesis well explain FAD, where genetically mediated high levels of amyloid 

play a prevalent pathogenetic role. In fact, most mutations in the APP and 

presenilin genes on chromosome 21 increase the production of Aβ42, which is the 

main component of senile plaques. Moreover people with Down Syndrome who 

have an extra gene copy almost universally exhibit AD by 40 years of age. In 

addition in vivo studies on transgenic mice that express a mutant form of the 

human APP gene develop fibrillar amyloid plaques and Alzheimer's-like brain 

pathology with spatial learning deficits (Pietropaolo et al. 2011; Lalonde et al. 

2002; Games et al. 1995). All these evidences taken together have promoted the 

―amyloid cascade hypothesis‖ invaluable in elucidating several molecular 

mechanisms in the pathogenesis of AD. Such hypothesis, however, has been 

deeply challenged by the substantial failure of a number of clinical trials to 

improve cognition with agents aiming to decrease β-amyloid burden in AD 

(Holmes et al. 2008, Lemere et al 2010). Indeed the vast majority of cases of AD 

are sporadic, a condition where several factors and additional 

components/pathways are probably involved. 

Not only the substantial differences between familiar and sporadic AD raises 

doubts on the amyloid theory, but also a number of other considerations. Firstly, 

the presence of senile plaques in cognitively normal individuals the poor 

correlation between Aβ plaque burden and disease severity (memory decline) 
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raise questions about the specific and exclusive role of Aβ in AD. In addition, the 

cytotoxicity of Aβ oligomers has not been demonstrated in vivo, since these 

molecules are identified with isolation laboratory procedures in vitro and are 

difficult to characterize in vivo (Castellani and Smith 2011).  

A further complication  derives from the spatial and temporal relation between tau 

and Aβ: inhibition of tau expression blocks seizures induced by Aβ (through 

overstimulation of  NMDA receptors) and improves survival in a transgenic 

mouse model of Alzheimer‘s disease (Roberson et al. 2007). Synaptic damages, 

formation of dendritic spines and Aβ-mediated toxicity are  events that apparently 

occur before NFTs are formed, thus arguing against their relevance in neuronal 

cell death and indeed recent studies have provided evidence that neuronal cell 

death can occur independently of  NFTs  formation (de Calignon et al. 2010, 

Paquet et al. 2009).  

Finally, the poor concordance between the pathological findings and clinical 

phenotype in transgenic mice complicates even more the situation. These 

experimental models mimicking a genetic conditions in fact reproduce only the 

major  neuropathological aspects of AD with extensive deposition of amyloid 

plaques and increased soluble levels of Aβ1–42, but do not display concomitant 

neuronal loss (Hsiao et al. 1996). This is in agreement with earlier data showing 

that amyloid injections in rat brain had no long-term behavioral or 

neuropathological effects (Winkler et al. 1994; Stephenson et al. 1992). Although 

some of the APP transgenic animals with amyloid deposition have been reported 

to display behavioural deficits, it is not clear whether these deficits are due to 

amyloid deposition or to the overexpression of APP. 
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To verify the pathogenicity of amyloid as the unique agents to determine AD, one 

should assess whether  Aβ is able to induce spreading or propagation of the 

disease and initiate a neurodegenerative cascade. In this regard, recent studies 

demonstrated that brain homogenates containing Aβ were sufficient to induce 

AD–like pathology, but not spreading, suggesting that additional cofactors may be 

needed (Meyer-Luehmann et al. 2006). In this directions there are recent studies 

of the group of Aguzzi that hypothesizes that many amyloid proteins are able of 

amplifying themselves via conformational alterations in a similar manner to prion 

protein (Aguzzi and Rajendram 2009).  

Finally, we have to keep in mind that other molecules beside Aβ have been 

identified in AD plaques, whose significance is not yet clearly characterized 

(Strittmatter et al. 1996; Bronfman et al. 1996; Selkoe 2001) and their interactions 

with β-amyloid contributes to complicate the scenario of AD pathogenesis. 

2. CHITIN 

2.1 Chitin: structure and features 

Chitin is the main component of the fungal cell walls and it is present in 

the exoskeleton of arthropods and insects and the microfilaria sheath of 

nematodes, acting as a protective layer against the harsh conditions that may be 

endured by the pathogen or arthropod (Glaser 1957; Nishimura et al. 1984; 

Roncero 2002; Banks 2005). Chitin is a linear polymer of N-acetyl-glucosamine 

units connected through β1-4 glycosidic linkage (Figure 4). It is very similar to 

cellulose, differing for the presence of an acetamido group that participates in the 

formation of intermolecular hydrogen binding, leading to a stiff crystal insoluble 

in almost all solvents. Chitin is the second most abundant glycopolymer on earth, 
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with an estimated 1010 tonnes produced each year. It is generally assumed that 

mammals lack the ability to produce chitin because they do not synthesize the 

enzyme chitin synthase, although display the enzyme responsible for its 

degradation: chitotriosidase. 

 

 

Chitotriosidase is a protein of 50 kDa, member of chitinase family secreted by 

activated macrophages and neutrophils, whose function in humans is unknown; in 

this regard, it may be a relic of an archaic response against chitin-containing 

pathogens (Sotgiu et al. 2005; 2006, 2007; Barone et al. 2007). Nevertheless, 

chitotriosidase has been identified as a potential biomarker because high levels of 

protein have been correlated  with  storage diseases (Gaucher‘s disease), but also 

in some CNS diseases as AD, Stroke and MS (Kumar et al. 1991; Ishii et al. 1998; 

Nunomura et al. 2001).  

A commercial derivate of chitin, chitosan, is obtained by deacetylation of chitin. 

A large number of prostheses such as artificial skin, contact lenses, and surgical 

stitches have been produced from chitin derivates, known to be non toxic, non 

allergenic, not biodegradable and biocompatible and are widely used in medicinal 

practice (Muzzarelli 1997). It is very common for humans to be exposed to 

chitin/chitin derivatives in daily life  

Figure 4. Chemical structure of chitin. 
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The synthesis of chitin is an energy-dependent process requiring N-

acetylglucosamyniltransferase using the uridine diphosphate (UDP)-activated 

monomer as sugar donor (Glaser and Brown 1957). Even if no definitive 

mammalian chitin synthase has been documented, the pathogenetic role of these 

oligosaccharides has been reported in some studies (Semino et al. 1996; Bakkers 

et al. 1997). Previous works have demonstrated that another enzyme like 

Hyaluronan synthase-1 (HAS-1) is able to convert activated glucosamine to chito-

oligosaccharides in vitro using HAS-1 gene product (Bakkers et al. 1997; Semino 

et al. 1996; Yoshida et al. 2002). The presence of DG42 protein (involved in 

chito-oligosaccarid synthesis in Xenopus and also found in zebrafish and mouse 

during embryogenesis) has been demonstrated to produce chito-oligomers capable 

to act as primers in the synthesis of hyaluronan. Overexpression of DG42 in 

mouse cells leads to the synthesis of chito oligomers, and hyaluronan synthase 

preparations also contain chitin synthase activity. Thus, it is conceivable that 

chito-oligomers can act as templates for hyaluronan synthesis (Varki et al. 1996; 

Bakkers et al. 1997). 

2.2 Glucose metabolism in AD  

Brain glucose utilization decreases with age (Ivancevic et al. 2000) and 

this decline is further accelerated in AD. Extensive studies have established an 

impaired  glucose metabolism and utilization in the AD brain (McGeer et al. 

1989, 1990; Heiss et al. 1991; Smith et al. 1992; Minoshima et al. 1995), which 

occurred prior to the appearance of clinical symptoms and in MCI (Pietrini et al. 

1993; Mielke et al. 1994; de Leon et al. 2001; Drzezga et al. 2003, 2005; Mosconi 

et al. 2004). 
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The use of positron emission tomography (PET) and single photon emission 

computed tomography (SPECT) in AD has demonstrated bilateral temporo-

parietal and medial temporal hypoperfusion with subsequent decreased oxygen 

metabolism (Kumar et al. 1991; Ishii et al. 1996, 1997, 1998; Nunomura et al. 

2001). An impaired glucose metabolism is also evidenced by a reduced 

concentration of glucose transporters 1 and 3 (GLUT1) and (GLUT3) in different 

areas of the cerebral cortices of AD (Simpson et al. 1994; Simpson et al. 1994). In 

this regard, it has been suggested that the altered glucose passage through the 

blood brain barrier may be related to congophylic angiopathy, due to increased 

thickness of capillary (Piert et al. 1996). This glucose impairment leads to 

intracellular hyperglycemia which a consequent ―shift‖ in the amount of glucose 

to the hexosamine biosynthesis pathway (HBP), as suggested by the diabetic 

model. Approximately 2–5% of total glucose feeds into the HBP to produce 

glucosamine-6-phosphate and, finally, UDP-Nacetylglucosamine (UDP-GlcNAc) 

(Love and Hanover, 2005). It is possible that upregulation of the hexosamine 

pathway leads to the synthesis of glucosamine polymers (Castellani et al. 2005). 

Some authors have hypothesized that the intracellular hyperglycemia and 

increased glucosamine levels are secondary to hexosamine pathway activation due 

to impaired glucose metabolism and might have glucose and glucosamine 

polymers as end products (Figure 5)  
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2.3 Role of carbohydrates in AD 

The contribution of carbohydrates in AD pathogenesis has largely been 

ignored even if controversy over the role of carbohydrates in amyloidosis has 

existed since the initial recognition of amyloid. Historical studies conduced in  

1854  by Virchow have already  introduced the term ―corpora amylacea‖ to 

describe the microscopic intracellular lesions in the CNS of patients with 

amyloidosis (Rottkamp et al. 2001; Smith et al. 2002; Castellani et al. 2005, 

2007). This  definition was clarified and improved  five years later by Friedreich 

and Kehule. Recently,  several emerging evidences indicate that the interaction of 

amyloid with polysaccharides derived from the impaired glucose utilization  is 

one of the key event in AD pathogenesis. The presence of several deposits derived 

from impared glucose metabolism such as proteoglycans (PGs), are the object of 

different studies. These compound share with Aβ characteristics like relative 

Figure 5. Hexosamine pathway. Approximately 2-5% of total 

glucose feeds into HBP to produce glucosamine-6-phosphate and 
UDP-N-Acetyl-Glucosamine. This last product may be a primer to 

form chitin-like compounds. 
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insolubility, fibrillary structure and β-sheet secondary conformation associated 

with aggregation or polymerization. Those deposits are intrinsic components of 

plaques and NFTs (Wisniewski et al. 1997; Selkoe 2000; Verdier and Penke 2004; 

Ariga et al. 2008). PGs are heterogeneous macromolecules consisting of a protein 

core that is covalently linked to glycosaminoglicans (GAGs). These GAGs side 

chains are composed of repeated disaccharide units of 1-4 linked iduronic acid 

(IdoA)/glucuronic acid (GlcA) and N-acetyl-glucosamine. Amyloid deposits 

containing PGs or GAGs play a clear role in the pathogenesis of AD (Castillo et 

al. 1997; van Horssen et al. 2003; Gruys et al. 2006) enhancing both amyloid 

aggregation and fibril formation (Fraser et al. 1992; Sipe and Cohen 2000; 

Cohlberg et al. 2002). Heparan sulphate proteoglycans (HSPGs) were also found 

in microglial and astroglial cells surrounding senile plaques (O‘Callaghan et al. 

2008). Co-deposition of HSPGs with A  was observed  in the Tg2576 mice 

brain, in which glypican-1 and syndecan-3 were expressed in glial cells associated 

with A deposits (O'Callaghan et al. 2008). These complex macromolecules have 

also been implicated in other neurodegenerative diseases, including Gerstmann-

Straussler syndrome (Snow et al. 1990), Creutzfeldt-Jakob disease, scrapie, (Snow 

et al. 1990) mucopolysaccharidoses (Ginsberg et al. 1999), Parkinson's disease 

(Liu et al. 2005), and other neuromuscular diseases (Peat et al. 2008). Castellani 

(Castellani et al. 2005, 2007) and subsequently our group (Sotgiu et al. 2008) 

showed the presence of glucosamine polymers, in particular chitin in association 

with amyloid deposits in AD. 

2.4 Role of chitin-like polymers in AD 

An impared glucose metabolism in AD increases the synthesis of glucose 

and of glucosamine through the activation of HBP. High levels of both glucose 

http://onlinelibrary.wiley.com/doi/10.1002/jnr.22393/full#bib123#bib123
http://onlinelibrary.wiley.com/doi/10.1002/jnr.22393/full#bib98#bib98
http://onlinelibrary.wiley.com/doi/10.1002/jnr.22393/full#bib118#bib118
http://onlinelibrary.wiley.com/doi/10.1002/jnr.22393/full#bib3#bib3
http://onlinelibrary.wiley.com/doi/10.1002/jnr.22393/full#bib23#bib23
http://onlinelibrary.wiley.com/doi/10.1002/jnr.22393/full#bib116#bib116
http://onlinelibrary.wiley.com/doi/10.1002/jnr.22393/full#bib46#bib46
http://onlinelibrary.wiley.com/doi/10.1002/jnr.22393/full#bib41#bib41
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http://onlinelibrary.wiley.com/doi/10.1002/jnr.22393/full#bib105#bib105
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http://onlinelibrary.wiley.com/doi/10.1002/jnr.22393/full#bib65#bib65
http://onlinelibrary.wiley.com/doi/10.1002/jnr.22393/full#bib84#bib84
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and glucosamine are found in AD (Brownlee 2001; Castellani et al. 2005). The 

presence of chitin-likepolymers in AD brains has been detected by Calcofluor 

fluorescence histochemistry (Castellani et al. 2005; Sotgiu et al. 2007). Calcofluor 

white is  a fluorescent dye with great affinity for β1-4 linkage and a very useful 

tool to detect chitin in tissues (Klis et al. 2002; Castellani et al. 2005, 2007; Sotgiu 

et al. 2008). Calcofluor is used in the paper industry, in washing powders and for 

detection of fungal elements in clinical and biological specimens, that fluoresce 

when expose to UV light. 

The staining with Calcofluor (Figure 6) showed the presence of chitin (Castellani 

2004) in all type of plaques as well as in blood vessels affected by amyloid 

angiopathy, whereas but no signal has been detected in pathological conditions 

without amyloid deposits, such as multiple sclerosis (Sotgiu et al. 2008), 

suggesting a strict relationship between chitin and Aβ in amyloidotic conditions. 

  

 

In addition, the treatment of AD sections with chitinase (which degrades chitin to 

chitobiose) and β-N-acetylglucosaminidase significantly diminished Calcofluor 

fluorescence, therefore suggesting that chitin-like polysaccharides are indeed 

present in pathognomonic lesions of AD (i.e. senile plaques and amyloid 

angiopathy) (Castellani et al. 2005, 2007). 

Figure 6. Calcofluor histochemistry on brain tissue from AD patient demonstrates intense 
labelling of amyloid plaques (Sotgiu et al. 2008) and of blood vessel affected by amyloid 

angiopathy (Castellani et al. 2005).  
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Although the two molecules have many characteristics  in common (the 

birefringence to polarized light, the insolubility, the resistance to protease 

activity), the relationship between chitin and Aβ is poorly investigated.  

2.5 Chitin in immune response 

The interest on chitin in human pathology has been focused for its effects 

on the innate and adaptive immune responses both in vivo and in vitro. In fact, 

chitin activates peritoneal macrophages and NK cells to express a number of pro-

inflammatory cytokines such as IL-1 β, colony stimulating factor (CSF) and IFN-γ 

(Shibata et al. 1997, 2000). The intravenous administration of fractionated chitin 

particles into the lung of mice activated alveolar macrophages to express 

cytokines such as IL-12, TNF-α, and IL-18 leading to INFγ production  mainly by 

NK cells (Shibata et al. 1997). Chitin can regulate type 2 immune responses 

(Gavett et al. 1995; Shibata et al. 2001; Strong et al. 2002) stimulating 

macrophages and other innate immune cells. Considering the  ability of chitin to 

stimulate the production of type I cytokines, and the known ability of the type I 

cytokines to inhibit type 2 inflammation (Sur et al. 1996, Gavett et al. 1995), there 

are evidences suggesting that chitin could negatively modulate type 2 immune 

responses (Lee 2008). 

Chitin has a size-dependent role in immune response: large chitin polymers are 

biologically inert, while polymers of intermediate size (40-70 nm) are PAMPS 

(pathogen-associated molecular patterns) that trigger immune response and 

cytokine production (IL-17, TNF, IL-23) through the recognition receptor TLR-2 

signaling pathway and the MYD-88 (Da Silva et al.2008). The smaller fragments 

instead (< 40 nm) stimulate the production of IL-10 by macrophages through a 
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signaling pathway involving NF-B, Dectin-1 and Syk kinase (Da Silva et al. 

2008).  
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MATERIALS AND METHODS 

CELL CULTURES  

Cell lines and primary cultures 

Murine N9 microglial cells were cultured routinely in RPMI media 

supplemented with 10% fetal bovine serum (FBS) (all from Euroclone). 5H-

SY5Y human neuroblastoma cells were grown in RPMI media supplemented with 

10% FBS. Human fibroblasts from muscle biopsy were grown in DMEM 

(Euroclone) 10% supplemented with FBS. All cell lines were supplemented with 

100 U/ml penicillin/streptomycin (P/S) (Euroclone) and were grown in a 

humidified atmosphere with 5% CO2 in 75 cm
2
 cell culture flasks (Corning). Cells 

were grown to ~90% confluency and passaged every 4 days. For 

immunocytochemical experiments cells were seeded onto 12mm
2
 glass coverslips 

and plated at different densities in 24-well (5 × 10
3
 cells per well for N9, 1 × 10

4
 

cells per well for SY5Y and 1× 10
3
 cells per well fibroblasts).  

New-born BALB/c mice were used for the preparation of primary cultures. All 

animals, purchased from Harlan Italy (S. Pietro di Natisone, Italy), were housed in 

pathogen free conditions and treated according to the guidelines of Animal Ethical 

Committee of the University of Study of Verona. Primary microglial cultures 

were prepared from E16-E18 up to 2 days old mice. Briefly, whole brains were 

removed and carefully cleared from the  meninges. Cortices were subsequently 

minced into small pieces and treated with trypsin (Sigma-Aldrich) in the presence 

of DNase I (Sigma-Aldrich) and centrifuged at 1000 rpm for 10 min. After 

digestion, the cell pellet was resuspended in complete medium DMEM, 10% FBS, 
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100 Uml P/S, and 2 mM glutamine (all Euroclone) and plated. Cells were then 

incubated at 37 °C with 5% CO2 in an humidified atmosphere. The medium was 

changed after 3 days. At day 7-8, adherent cells were confluent and consisted of 

astrocytes and microglia. Microglial cells were removed by mild shaking from the 

astroglial layer. The non-adhering cells were centrifuged at 1000 rpm for 10 

minutes and plated on uncoated plastic wells in DMEM supplemented with 10% 

FBS. The day after plating, the medium was replaced with fresh medium to 

remove the non adhering cells. 

Primary hippocampal neurons were prepared from E16-E18 up to 2 days old 

mice. Brains were dissected, the meninges were removed, the hippocampi were 

isolated and mechanically processed as for microglia. Finally they were plated on 

glass coverslips in 24-wells grown in Neurobasal media, 10% FBS, 2 mM 

glutamine, P/S and with B27 supplement (all from Euroclone). The day after 

plating, the medium was replaced with fresh medium to remove the non adhering 

cells. 

Preparation of chitin particles 

Chitin fragments were generated according the modified protocol 

previously described by Shibata et al. 1997. Briefly, chitin powder from shrimp 

shells (Sigma-Aldrich) was suspended at 10 mg/ml in PBS and sonicated three 

times for 5 min. The suspension was filtered with 40 μm sterile strainer and 

autoclaved. Before use, chitin particles were resuspended by brief sonication and 

incubated on cell cultures. 

Chitin synthesis 

Synthesis of the endogenous chitin was obtained by treating different cells 

(N9, primary microglial cultures, SY5Y, primary hippocampal neurons and 
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fibroblasts) with 5 mM N-Acetylglucosamine, 150 M UDP-N-

Acetylglucosamine (all for Sigma) for 72 hours. After this incubation period, 

immunofluorescence was performed with Calcofluor (see below).  

Patients 

Autoptic CNS tissues from 3 sporadic human AD patients, 4 Down 

syndrome cases, 2 familiar AD cases with a mutation on PS1 (E280G and 

DELTA4) and 2 familiar AD patients with a mutation for APP717 (VAL-ILE) 

were obtained from MRC London Brain Bank for Neurodegeneration disease.  

Immunofluorescence and confocal microscopy 

Immunofluorescence assay was performed on both brain tissues and cell 

cultures. Brain sections from autoptic CNS tissues were embedded in paraffin and 

processed for histopathological and histochemical analyses. Section of brains 

were treated with 0.2% Calcofluor (Sigma-Aldrich) in Tris/HCl buffered solution 

(0.1 M, pH9) for 1hour at room temperature as previously described (Castellani et 

al. 2005, Sotgiu et al. 2008). Double immunostainings were performed using 

Congo Red (Electron Microscopy Sciences) to stain amyloid plaques. 

After washing with PBS, sections were viewed on Zeiss Axiolab fluorescent 

microscope and analyzed with AxioVision LE Rel. 4.5 software. 

Cells, grown on coverslips, were fixed in 4% para-formaldehyde and 

permeabilized with 0.5% Triton. Subsequently, they were incubated with 20% 

normal goat serum (Vector) and 1% BSA and then incubated with primary 

antibodies over night at 4 °C: monoclonal rat anti-mouse CD11b (1:100, Serotec), 

polyclonal rabbit anti β-tubulin class III (1:250, Millipore), monoclonal rat-anti 

mouse CD68 (1:200 Chemicon).  
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Double immunostaining were performed using 0.2% Calcofluor (Sigma) for 1 

hour at room temperature. Rhodamine–conjugated chitin binding probe (1:500 

New England Biolabs) was used like primary antibodies overnight. All staining 

for chitin detection were confirmed by the use of this specific probe.  

After washing with PBS, appropriate biotinilated  secondary antibodies (Vector), 

and  fluorophore-conjugated secondary antibodies (Molecular Probes, Invitrogen) 

were added. Parallel sets of cells were stained with the secondary antibodies with 

omission of the primary antibodies as negative controls.  

Coverslips were mounted on glass
 
slides and observed as above.  

Proliferation, activation and viability assays 

To evaluate cell viability, cells were usually counted on 10 random fields 

following treatment for 48 or 72 hours with 1 mg/ml chitin and 50 μg/ml β-

amyloid fragment 25-35 (Aβ25-35, Bachem). Experiments were performed in 

triplicate and cells blindly counted by two independent investigators. The MTT 

assay is a colorimetric assay for measuring the activity of enzymes that reduce 

MTT, a yellow tetrazole, to purple formazan dye. The assay was used to assess 

the viability, proliferation and activation of living cells. For MTT assay N9 cells, 

were seeded into a flat bottom 96-well plate and incubated at 37 
◦
C for 48 and 72 

hours prior to the addition of 10 µl of MTT solution (Cell proliferation Kit I, 

Roche Diagnostics GmbH) for 4 hours at 37 
◦
C. Absorbance at 655 nm was 

measured after 24 hours with a multi-function reader (BioRad).  

To evaluate the activation of N9 induced by chitin, the supernatant of cells was 

collected and used for the quantitative determination of human tumor necrosis 

factor alpha (TNF-α) according to commercial datasheet protocol (R&D systems). 

LPS 100 g/ml was used as positive control. 
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To determine the mitotic activity of N9 cells before and after treatments, cells 

were exposed to 10 µM BrdU (Sigma) for 4 hours, fixed with methanol for 10 

minutes, treated with 2N HCl and then with Na2B4O7 (0.1M pH 8,5). Double 

immunofluorescence was performed for CD11b and BrdU, whose signals were 

detected with secondary antibodies conjugated with Streptavidine Texas Red 

(Vector) and anti-mouse Alexa 488 (Invitrogen). Nuclei were stained with DAPI 

(Abbott Molecular Inc.). Cells were visualized under the Fluorescent microscope 

(Zeiss MC80) and the rate of mitotic activity was calculated dividing the number 

of BrdU
+
 nuclei for  the total number of cells. 

Electron microscopy  

Microglial cells incubated with chitin were evaluated by transmission 

electron microscopy (TEM) and scanning electron microscopy (SEM). For 

TEM, N9 cells at confluence were treated with 1mg/ml chitin for 48 hours or 

with 5 mM N-Acetyl Glucosamine and with 150 μM UDP-N-Acetyl 

Glucosamine. N9 cells were then collected and centrifuged at 150g, washed 

with HBSS and finally with phosphate buffer. Cells were then fixed with 

1.25% glutaraldheide and 0.5% para-formaldeide in phosphate buffer for 1 

hour  at 4 °C and post-fixed in osmium tetraoxide (OsO4) for 2 hours at 4 °C. 

Cellular pellet was subsequently dehydrated by increasing concentrations of 

acetone and included in Spurr resin. The EM photographs were acquired by a 

scanner at 600 dpi resolution. 

For SEM, cells were fixed in glutaraldehyde 2,5% for 1 hour at 4°C and then post-

fixed in 1% osmium tetroxide for 1 hour, dehydrated in graded acetone, fixed to 

stubs with colloidal silver, spattered with gold with a MED 010 coater and 

examined with DSM 950 Zeiss. 
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HPLC-MASS 

Two samples of 5H-SY5Y neuroblastoma cells were cultured up to 

confluence and treated for 48 hours with 5 mM N-Acetylglucosamine, 150 M 

UDP-N-Acetylglucosamine (control group was not subjected to any treatment). 

Cells were homogenized by pestle and mortar in liquid nitrogen and then placed at 

-80 °C. The powder obtained was dissolved in a solvent extraction (water and 

methanol in the ratio 8:20) sonicated for a couple of times to obtain a supernatant 

and further centrifuged twice at 12000 rpm for 10 minutes. The supernatant was 

placed in a 1 ml sterile syringe, provided with a suitable filter of cellulose (RC 

Minisart 4). The elute was collected in a glass tube with inner chamber of 400 ml. 

For the analysis of HPLC-mass, samples are injected into a system of separation 

consisting of a reverse phase C18 column (HP Alltime C18 3m measuring 150 

mm x 2.1 mm) equipped with a pre-column (HP Alltime C18 5m measuring 7.5 

mm x 4.6 mm) and a mass spectrometer connected to an analyzer ion trap with 

ESI source. Two solvents were used for chromatographic elution: solvent A 

consisting of 94.5% H2O + 5% acetronile + 0.5% formic acid and solvent B 

consisting of 100% acetronile. The spectrophotometer was set to perform an 

analysis in positive ionization mode and not fragmented to the calculation of 

quantities. In addiction it was set in positive mode and fragmented analysis for the 

identification of chitin-like molecules. The data were obtained by analysis in 

positive mode and were processed using mzMine 2.0 software. This has allowed 

the creation of a matrix showing final data. 
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Hippocampal slices 

The hippocampal slices were obtained from BALB/c mice killed by 

decapitation around 60 days. The brains were placed in an ice-cold dissection 

medium and meninges were removed, followed by separation of the temporal 

lobes of both hemispheres. The temporal lobes were sectioned into slices of 200 

m in thickness using a vibratome. The hippocampal slices were used to form 

organotypic cultures which were exposed to exogenous or endogenous chitin and 

subjected to different treatments and subsequently used for Western blotting or 

histochemistry.  

Organotypic cultures  

The slices were kept for 1 hour at 4°C in HBSS supplemented with 2 

mg/ml of D-glucose (Euroclone) and were then transferred into a 6-well plate 

(Corning). Each well contained 2 ml of N-MEM supplemented with 10% FBS, 

P/S. The plates were maintained in a humidified atmosphere with 5% CO2 at 37 

°C and the next day the cultures were tested with: 1 mg/ml of chitin or 5mM of N-

acetylglucosamine plus 150 M UDP-N-acetylglucosamine. Every 2-3 days the 

medium was replaced and treatments re-added. This procedure was repeated for a 

week. 

Organotypic slices embedding 

The organotypic cultures were fixed in 4% para-formaldehyde overnight 

and then embedded in paraffin. 8 m thick sections were subjected to 

immunofluorescence as previously described to detect chitin and microglia (anti-

Iba1 antibody 1:200 Abcam).  
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Western blot analysis  

Organotypic hippocampal slice cultures were cultured and treated as 

described above and subsequently used for protein extraction. Tissues were 

resuspended with 50 l RIPA Buffer (150 mM NaCl, 50 mM Tris-HCl, 1mM 

EDTA, 1% NP-40, 0.1% SDS, 0.5% Deoxycolic acid, pH 8.0) containing protease 

inhibitors (Roche Diagnostics). After 2 hours of homogenization at 4 °C, 

homogenates were centrifuged at 4000 rpm to discard cellular debris and then the 

supernatant was collected and stored at -80°C. Protein content was determined by 

Bradford Assay (Sigma-Aldrich). For western blot analysis, 8g of total protein 

lysates were diluted in Laemli buffer, boiled at 90 °C for 5 minutes and then 

resolved by 12% SDS-PAGE at 100V. Proteins were transferred onto the 

nitrocellulose membrane (Bio-Rad), which were blocked with TBS and 0.1% 

Tween20 and 10% non-fat dry milk (GE-Healthcare) at room temperature. 

Further, proteins were incubated over night at 4 °C with primary antibodies: 

monoclonal anti-syntaxin antibody (Abcam),  polyclonal anti-β-III-tubulin 

antibody and polyclonal anti-Actin antibody (Sigma-Aldrich).  

Anti-mouseor rabbit IgG HRP (GE Healthcare) were added for 1 hour at room 

temperature and chemiluminescent detection was performed with ECL Plus 

advanced (Amersham GE Healthcare). Quantitative analysis of the signal obtained 

was performed by ImageJ software (NIH).  

Statistical analysis 

Statistical comparison of the results was carried out according to the 

Student's T-test. Differences were considered statistically significant when 

p<0.05. 
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RESULTS 

Chitin is present in sporadic AD brains 

Chitin-like deposits in amyloid plaques have been observed with 

Calcofluor or with a specific chitin-binding-probe (CBP) on autoptic AD brains in 

hippocampus and cerebral cortex of sporadic AD cases, but not in determined 

genetic conditions such as Down syndrome, familiar AD cases with a mutation on 

PS1 (E280G and DELTA4), familiar AD with a mutation for APP717 (VAL-ILE) 

(Figure 1a). 

Calcofluor fluorescence in sporadic AD brain was intense with a predominantly 

plaque pattern that strictly co-localize with Congo Red, the typical dye used to 

detect Aβ in AD plaques (Figure 1b).  

Double immunofluorescence with Calcofluor and microglial markers (CD68) 

showed the presence of chitin-like deposits not only in the core of AD plaques but 

also in the cytoplasm of surrounding microglia (Figure 1c).  



 38 

 

Figure 1. Calcofluor staining on AD brains. (a) Genetic-determined 

conditions didn‘t show positivity for Calcofluor staining. (b) 
Calcofluor fluorescence in sporadic AD brain was intense with a 

predominantly plaque patter that strictly co-localize with the signal of 

Congo Red. (c) Chitin deposits, positive for Calcofluor (A-D) are 

present in the core of AD plaques and also in cytoplasm of 

surrounding microglia CD68
+  

(B-E). Scale bars equal to 50 n. 

Microglia phagocytes chitin particles in vitro  

The experiments on N9 cell lines and primary microglial cultures showed 

that, after 48h of treatment with exogenous chitin, microglial cells are able to 

phagocytes small chitin fragments  as shown by Calcofluor (Figure 2a)  and CBP 

(not shown). The phagocytosis of chitin by N9 has been confirmed at electron 

microscopic levels (Figure 2b and 2c). Chitin deposits were identified in the 

cytoplasm of about 60-75% of N9 and primary  cultures. Interestingly, the 

treatment with Aβ significantly reduced the  phagocytic ability, with  only 20-

35% of cells containing chitin particles (Figure 2d and 2e ). These experiments 

clearly demonstrate the ability of microglia to phagocyte chitin polymers, and that 

process is significantly inhibited by the concomitant presence of Aβ.  
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Figure 2. (a) Microglial cells are able to phagocyte chitin particles, 
which appear positive to Calcofluor staining (blue) in the cytoplasm of 

CD11b
+
 microglial cells (red). By TEM (b) and SEM (c) we observed 

chitin particles in the cytoplasm of N9. (d) 60% of N9 cells contains 
chitin deposits but the treatment with Aβ greatly reduces this 

phagocytic capability with only 30% of the cells containing chitin 

deposits. (e) The experiment was also performed on primary microglial 

cultures with similar results. Scale bar equal to 78,75 n. 



 40 

Chitin induces the activation of microglia 

The exposure to chitin for 48h  had a clear activatory effect on N9 cell 

lines (Figure 3a and 3b) similarly to what has been described for Aβ in literature 

(Wyss-Coray et al 2002; Meda et al. 1995). In particular, we observed a 

significantly metabolic activity (measured by MTT assay) and TNF-α production, 

with no  changes in their proliferation rate (Figure 3c).  

 

Figure 3. Activatory effects of chitin on N9 cells. (a) Activation of 
cellular metabolism observed with MTT assay and (b) TNF-α 

production (LPS was used as a positive control). (c) No changes were 

observed in terms of proliferation evaluated as number of BrdU
+
 cells. 

Chitin induces neuronal toxicity  

At variance with microglia, neurons cells (SY5Y) were not able to 

phagocyte  to chitin  (Figure 4a) for 48h. However we observed a significant 

cytotoxicity induced by either Aβ and chitin with a reduction of visible cells of 

33% (Figure 4b). The same experiment was performed on primary hippocampal 
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neurons, when we  observed a cell reduction of 42% compared to untreated cells 

(Figure 4c).  

To verify whether the cytotoxicity effect observed on neuronal cells was due to a 

unspecific toxicity of chitin particles, we incubated fibroblast cultures to the same 

treatment. 

Although fibroblast had the ability to phagocytes chitin, no difference of cell 

viability was observed (Figure 4d), suggesting that chitin induced a selective 

neuronal toxicity. 

 

Figure 4. (a) No Chitin deposits were detected in β-III-tubulin
+ 

neurons (red) after exogenous chitin treatment; (b) such treatment lead 
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to a significant reduction SY5Y as well as of primary hippocampal 

neurons (c). A similar cytotoxicity was observed after Aβ treatment. 

(d) No significant differences were observed on fibroblasts cells after 

chitin treatment. Scale bar equal to 40n. 

Microglial cells produce chitin-like polymers 

Similarly to the experiments performed with exogenous chitin, we used 

microglial cells to verify if an endogenous chitin synthesis was possible in 

mammalian cells. The treatment for 72h with an excess of N-Acetyl-glucosamine 

and UDP-N-Acetyl-glucosamine (Uridine diphosphate acts as an energetic 

substrate for the enzymatic reaction), lead to the detection with Calcofluor of 

deposits inside the cytoplasm of N9 cells and in the extracellular space (Figure 5a, 

b); such finding was confirm by SEM, which showed deposits on primary 

microglial cultures (Figure 5d) with Calcofluor
 
positivity protruding from N9 cells 

(Figure 5c) deposits present in the cytoplasm of microglia (Figure 5d). Similarly 

to exogenous chitin the treatment with N-Acetyl-glucosamine and UDP-N-Acetyl-

glucosamine lead to activation of N9 cells, shown by MTT assay (Figure 5e).  
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Figure 5. (a,b) Confocal images of microglial cells after the treated 

with N-Acetyl-glucosamine and UDP-N-Acetyl-Glucosamine. 
Calcofluor staining showed the presence of chitin deposits (blue) in 

CD11b
+
 (red) microglial cultures. (c) SEM showed new formed 

chitin-like particles in N9 cells. (d) Primary microglial cells produced 

intra and extra cellular chitin deposits after treatment with UDP-N-
Acetyl-Glucosamine and N-AcetylGlucosamine. (e) Endogenous 

chitin produces activation of N9 cells in terms of metabolic activity 

observed by MTT assay.  
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Neurons produce chitin-like polymers 

We next assessed if neuronal cultures were also able to produce 

endogenous chitin. For this purpose SY5Y and primary hippocampal neurons 

were incubated for 72h with N-Acetyl-glucosamine and UDP-N-Acetyl-

glucosamine. At variance with microglia no chitin deposits were detected with 

Calcofluor staining, albeit  a reduction of cell number (43% and 33% for SY5Y 

and primary cultures respectively) was observed (Figure 6a and 6b). 

To assess the presence of small chitin particles (i.e. below the sensitivity of 

Calcofluor) in neurons, To explain this significant cytotoxicity, we used a 

powerful and sensible technique, the HPLC-MS, Cellular extracts of SY5Y cells 

treated or not with N-Acetyl-glucosamine and UDP-N-Acetyl-glucosamine were 

analyzed by this tool obtaining a typical chromatogram in the treated sample 

(Figure 6c and 6d). Subsequently mass fragmentation showed typical peaks; each 

of one representing a new-formed polymers of N-Acetyl-glucosamine with 

increasing molecular weights (Figure 6e). 
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Figure 6. (a) Cytotoxicity of both exogenous and endogenous chitin 

on SY5Y (b) and primary hippocampal cultures. (c) Ion 

Chromatotogram of SY5Y cell extract after the treatment with UDP-
N-Acetylglucosamine and N-Acetylglucosamine showed  a signal (in 

red) absent in untreated cells (in black). (d) The peak from HPLC may 

be expressed as the area underlying. After separation by 
chromatography, the treated SY5Y sample was analyzed by MS-

fragmentation which showed multiple peaks with molecular weight 

characteristics for polymers of N-acetyl-glucosamine.  In red it is 

represents the number of multiple units of N-acetyl-glucosamine 
(monomer C8H15NO6 MW: 221,2078 g/mol). 
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Chitin production by microglia and synaptic impairment in an ex-vivo 

model. 

A more complex method was used to verify the possibility of an 

endogenous chitin synthesis in an ex-vivo model. Organotypic hyppocampal 

cultures, representing a biological system with physiological cellular connections 

and synapses, were treated repeatedly for a 7 days with N-Acetyl-glucosamine 

and UDP-N-Acetyl-glucosamine.  

After such chronic exposure, Calcofluor staining showed positive signals in 

treated slices, suggesting that the presence of an excess of N-Acetyl-Glucosamine 

and its energetic substrate can produce chitin-like compounds in vivo. 

Double immunofluorescence performed using antibodies anti-Iba-1, and β-III-

tubulin, showed that Calcofluor signals co-localized with microglia, whereas no 

chitin was found on neurons (Figure 8a). To assess the effect of such new-formed 

chitin/ endogenous chitin on neuronal function, we performed a western blot 

analysis on slice cultures homogenates focusing on proteins involved in synaptic 

transmission and neuronal assembly: Syntaxin and β-III-tubulin (Figure 8b). 

Syntaxin 1, also known as HPC1, is an integral membrane protein which along 

with SNAP25 and VAMP/synaptobrevin plays a role in trafficking and membrane 

fusion. β-III-tubulin is a protein that constitute the cytoskeleton of microtubules. 

The subunit β is expressed principally on neuronal terminals (Wang and Nogales 

2005).  

In line with cytotoxicity effect observed in vitro, preliminary results have revealed 

an important reduction in Syntaxin and β-III-tubulin levels obtained with both 

exogenous and endogenous chitin (Figure 8c and 8d). 
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Figure 8. (a) Organotypic hippocampal cultures treated with 
N-Acetyl-glucosamine and UDP-N-Acetyl-glucosamine. 

Double immunofluorescence showed the presence of new-

formed chitin (Iba-1
+
) in microglial cells after chronic 

treatment. (b) Western blot from treated organotypic slices for 
Syntaxin and β-III-tubulin showed a reduction in the protein 

levels of both proteins exerted by either exogenous or 

endogenous chitin (c-d). 
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DISCUSSION 

The pathogenesis of AD, the most frequent neurodegenerative disorder, is 

far to be clear despite thousands of papers published in the last decades. The two 

major relevant molecules in the pathogenesis of AD are Aβ protein in amyloid 

plaques and hyperphosphorilated tau in NFTs. According to the so-called 

―amyloid cascade hypothesis‖ (Haas and Selkoe 2007), both proteins are required 

to exert neurotoxicity. The cascade begins from imbalanced production and 

clearance of Aβ. Aβ accumulation and deposition may trigger a complex 

downstream cascade that finally resulted in synaptic and neuronal injury leading 

to progressive dementia. Most information regarding such hypothesis has been 

confirmed by the pathological analysis of AD patients with mutations involving 

Aβ-related molecules. The increase of Aβ in genetic AD is due to mutations 

present mostly in three different genes: APP, PS1 and PS2. The paradigmatic 

example is the study of patients with Down syndrome which develop early onset 

dementia associated with Aβ plaques and NFT (Olson and Shwan 1969) as a 

consequence of the over-expression of the APP gene on 21 chromosome (Kang et 

al. 1997). Such studies have provided a valid help in elucidating the molecular 

mechanisms underlying the role of Aβ in AD pathogenesis and have paved the 

road of the research in the last decades. Most of these results have been then 

confirmed in transgenic mice carrying the same mutations. However, the 

translation of such information to sporadic AD did not completely address all the 

complexity of sporadic AD. For example, a direct correlation of amyloid plaques 

load with memory loss has not been found in sporadic AD (Winklhofer et al 
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2008); in addition, amyloid plaques are also found in non-demented old subjects 

(Haass 2010). Finally, the results from recent clinical trials designed (according to 

the amyloid cascade) to decrease the burden of Aβ in sporadic AD have been 

frustrating: even though different pharmaceutical compounds indeed lead to 

reduced Aβ deposits in the brains, the cognitive decline progressed. Based on 

these considerations, it is conceivable that the amyloid cascade hypothesis clearly 

elucidates the physiology of Aβ metabolism and explains several aspects of 

genetic AD, but it can not be applied tout-court to sporadic AD, where it failed to 

produce any tangible treatment benefit (Haass 2010; Castellani and Smith 2011). 

Epidemiological, clinical and pathological evidences rather suggest that the 

pathogenesis of sporadic AD is multi-factorial with the variable contribution of 

environmental and genetic factors, involving additional components/pathways. 

Beside Aβ, a wide range of molecules have been identified in AD plaques, whose 

significance and interaction with Aβ are not yet clearly characterized (Strittmatter 

et al. 1995; Bronfman et al. 1996; Selkoe 2001). For example, heparan sulphate 

proteoglycans, complement factors, acute phase proteins and other molecules 

have been described in AD plaques (Timmer et al. 2010). The contribution of 

these molecules is still a matter of debate: some authors suggest a potential and 

active role, while others consider these molecules only as co-factors in the 

pathogenesis of AD.  

Previous studies have identified the presence of chitin in close association with 

Aβ in autoptic AD brains (Castellani et al. 2005, 2007; Sotgiu et al. 2008) by 

Calcofluor staining both in amyloid plaques and within the cytoplasm of 

surrounding microglia. The detection of chitin in amyloid plaques of sporadic AD 

brains prompted us to investigate if chitin could have a role in the pathogenesis of 
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AD, giving new insights to the complex scenario of the disease. Chitin is a linear 

and insoluble polymer of N-acetyl-glucosamine units connected through β1-4 

glycosidic linkage. It is the main component of the fungal cell walls and is present 

in the exoskeleton of arthropods and insects and the microfilaria sheath of 

nematodes, acting as a protective layer against the harsh conditions (Glaser 1957; 

Nishimura et al. 1984; Roncero 2002; Banks 2005). The detection of chitin-like 

molecules in humans (albeit only in pathological conditions) is quite surprising, if 

we consider that mammalian cells lack the gene codifying for chitin synthase.  

We first compared sporadic and familiar AD brain sections for the presence of 

chitin by Calcofluor and CBP. Interestingly, both techniques revealed chitin-like 

deposits in amyloid plaques only in sporadic AD brains, while no signals have 

been observed in familiar and Down syndrome cases. In line with this, 

preliminary results in transgenic mice ―5XFAD‖ (a mouse model that co-express 

five familiar mutations; Oddo et. al 2003; Oakley et al. 2006) confirmed the 

absence of chitin.  

We then assessed the biological effects of chitin on neural cells in vitro and ex 

vivo. For this purpose, we first exposed microglial cells (both N9 cell line and 

primary cultures) to small chitin particles, since large chitin fragments have been 

shown to be biologically inert (Shibata et al. 1997, Da Silva et. al. 2008). This 

experiment confirmed the ability of microglia to phagocyte chitin particles and the 

process was significantly inhibited by the co-incubation with Aβ. The 

phagocytosis of chitin by microglial cells is probably mediated by the mannose 

receptor, as previously described for splenic macrophages (Shibata et al. 1997). 

Similarly to Aβ, upon chitin phagocytosis microglial cells undergo activation with 

increased metabolic activity and production of inflammatory cytokines. This 
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biological effect of chitin on microglia is similar to that described for Aβ and may 

have relevant implications in AD pathogenesis, since microglia activation may 

contribute to neuronal damage.  

We then evaluated the effect of chitin directly on neurons. At variance with 

microglia, neurons were not able to phagocyte chitin particles, although the 

exposure to chitin induced a significant cytotoxicity both on SY5Y cell line and 

on primary hippocampal neurons. The effect observed was comparable to Aβ-

induced toxicity. Interestingly, no significant toxixicity by chitin was observed on 

fibroblasts cultures, suggesting that chitin induced a selective neuronal toxicity.  

A central point of this research concerned the production of chitin by mammalian 

cells, which lack chitin synthase. In this regard, Semino et al. have shown that the 

absence of chitin synthesizing enzyme may be overcome by hyaluronan synthase-

1, which converts UDP-N-acetyl-glucosamine to chito-oligosaccharides in vitro. 

Thus, a condition characterized by an excess of UDP-N-acetyl-glucosamine may 

predispose to chitin formation through alternative pathways. In this regard, it is 

interesting to note that intracellular glucose metabolism has been demonstrated in 

AD brains with activation of the hexosamine pathway with consequent 

accumulation of its end product, N-acetyl-glucosamine. A point that needs to be 

further investigated concerns the role of this up-regulation of the hexosamine 

pathway in AD. It will be interesting to assess whether this reflects a mere 

consequence of the impairment of the glycolitic pathway or whether it may be 

sustained by a genetic or acquired perturbation of the cerebral glucose metabolism 

in favour of the hexosamine pathway. 

In line with these evidences, we demonstrated that microglia, but not neurons, 

were able to produce Calcofluor-positive signals after exposure to UDP-N-acetyl-
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glucosamine in vitro. The analysis by confocal microscopy confirmed Calcofluor-

positive signals in the cytoplasm of microglia; in addition, such technique 

evidenced the presence of chitin-like deposits in close proximity of the plasma 

membrane as well as in the extracellular space, suggesting that the excessive 

production of chitin is followed by its extrusion. The lack of Calcofluor-positive 

deposits in neurons was probably due to its low sensitivity, since HPLC-MS 

analysis on treated SY5Y cell line treated with UDP-N-acetyl-glucosamine 

confirmed the presence of ―new-formed‖ chitin-like compounds also in neurons. 

We then assessed the effects of ―endogenous‖ chitin on neural cells. We found 

that the new-formed polymers lead to activation of microglia as well as to 

significant neuronal cytotoxicity, mimicking the effects observed with exogenous 

chitin. Thus, our experiments in vitro may recapitulate several aspects of the 

histochemical findings observed in human AD brains. In fact, chitin-like deposits 

have been documented both in vitro and in vivo either in the cytoplasm of 

microglia and in the extracellular space (i. e. amyloid plaques), but not in neurons. 

We further analyzed the effect of endogenous chitin in a more physiological 

setting, using the organotypic slice cultures. In such ex vivo model, hippocampal 

neurons are connected to each other through synapses and are influenced by the 

surrounding glial cells. As shown in vitro, Calcofluor-positive signals were 

detected in microglial cells after treatment with UDP-N-acetyl-glucosamine. 

Moreover, preliminary experiments in murine hippocampal slice cultures 

suggested that synaptic transmission is impaired following exposure to UDP-N-

acetyl-glucosamine, as suggested by a reduction in syntaxin levels by western 

blotting. In parallel, we observed a decrease of β-III-tubulin levels, indicating a 

cytoskeleton disruption, confirming the toxic effect of ―endogenous‖ chitin on 
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neurons, as previously shown in vitro. Preliminary experiments aimed at 

evaluating the effect of this treatment on synaptic transmission by 

electrophysiological techniques showed that the treatment with UDP-N-Acetyl-

glucosamine on hippocampal slices affects LTP similarly to Aβ (Shankar et al. 

2008). 

Taken together, our results indicate that chitin-like molecules may contribute to 

the pathogenesis of sporadic AD. At variance with Castellani who hypothesized 

that chitin may act as a scaffold for the subsequent deposition of A (Castellani et 

al. 2004, 2005, 2007), our results support an active role of this polymer in the 

pathogenesis of AD, due to its neurotoxic effect demonstrated both in vitro and ex 

vivo by impairment of synaptic transmission and neuronal architecture.  

In light of these considerations, future therapeutic strategies for AD should take 

into account the complexity of the disease with the aim not only to reduce 

amyloid burden, but also to act on endogenous chitin, inhibiting key steps in the 

biosynthesis of glucosamine. In this regard, anti-chitin antibodies have been 

produced (Solomon and Frenkel 2002) and a number of molecules interfering 

with chitin synthase (Nikkomycins, Polyoxins and micronazoles) may be also 

considered as additional therapeutic tools in sporadic AD.  
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