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PREMESSA 

Nell’uomo esiste una differenza nella risposta agli stimoli stressogeni, che dipende dalla 

personale predisposizione all’ansia, detta specificatamente “tratto d’ansia”. La differente 

suscettibilità all’ansia è stata studiata nei roditori creando ceppi selezionati per tratti di elevata e 

bassa ansia; inoltre è stato dimostrato, sia nell’uomo che nei ceppi selezionati di roditori, che 

differenti livelli di ansia basale influenzano la capacità dei soggetti di attuare un determinato 

compito, anche cognitivo. Tuttavia la suscettibilità individuale, all’interno di uno stesso ceppo di 

ratti naïve, è ancora poco studiata. Lo scopo di questo studio quindi è stato quello di valutare le 

possibili differenze interindividuali nel livello d’ansia, all’interno di una popolazione di ratti 

appartenenti al ceppo Wistar, e di fornire indicazioni su come uno specifico tratto d’ansia possa 

influenzare una successiva performance cognitiva, valutata mediante un test cognitivo 

ampiamente utilizzato, il Novel Object Recognition (NOR) test.  

Seguendo questa linea di ricerca poi, abbiamo voluto indagare se il tratto di ansia potesse 

influenzare la suscettibilità del ceppo di topo C57Bl/6J all’insorgenza dell’ epilessia, e se 

l’esposizione ad un fattore fortemente stressogeno per il topo, l’odore di un suo predatore, 

potesse provocare un aggravamento della malattia durante la fase cronica. 

Questo lavoro di tesi mostra come esista una variabilità interindividuale all’interno di una 

popolazione di roditori per quanto riguarda l’ansia di tratto, cioè la componente basale di ansia 

insita in ogni individuo. Questo fattore può influenzare la risposta ad alcuni compiti a cui 

l’animale deve rispondere, come ad esempio quelli cognitivi. Il tratto d’ansia basale potrebbe 

anche influenzare la predisposizione all’insorgenza di una determinata malattia, oppure il 

decorso della malattia stessa. E’ perciò molto importante considerare il tratto d’ansia basale di 

ciascun soggetto sperimentale in tutti gli studi che prevedano una componente comportamentale, 

includendo tale dato come fattore covariato nelle analisi statistiche, così da evitare errori dovuti a 

questa variabile nascosta. 
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PRELIMINARY REMARKS 

 

Human subjects display a great variability in the predisposition to respond anxiogenically to 

stimuli, i.e. trait anxiety. This susceptibility has been studied in rodents through the creation of 

selected strains for anxiety-like behaviour, to obtain extreme anxiety traits. Moreover, anxiety 

has been shown to variously affect physiological processes, such as a cognitive task 

performance, both in humans and selected rodents strains. However, interindividual differences 

in basal anxiety level in naïve rats and how they may affect cognitive functioning have been 

poorly investigated. Therefore, the aim of this study is to provide an evidence of the huge 

interindividual differences in anxiety levels in a population of naïve Wistar rats and demonstrate 

how they can affect a widely used cognitive test, the Novel Object Recognition (NOR) test.  

Following this line of research, in this study we also investigate if trait anxiety could affect 

pathological processes, such as the susceptibility on the onset of a neurological disease, the 

temporal lobe epilepsy, in a population of C57Bl/6J mice. Finally, we evaluate if the exposure to 

a strong stressful factor for mice, such as a predator odor, could induce an increase of the 

pathological process in chronic phase of the illness, for example in the number of seizures, in the 

same epileptic animals. 

These results could show the relevance to consider trait anxiety, the propension to response in a 

manner more or less anxious to a specific stimulus, of each subject, in order to avoid 

interpretative errors during the evaluation of a specific behaviour shown by the subject. 

Therefore we claim the need to consider interindividual differences in emotionality (e.g. anxiety) 

in general, and the need to assess anxiety level while studying rats cognitive abilities. It will be 

possible to include it as a covariate in the statistical analysis, in studies that schedule behavioural 

factors, in order to avoid interpretative errors dued to this hidden variable. 

 

 



2 

 

INTRODUCTION 

 

1. Definition of anxiety and other concepts 

 

1.1 Anxiety 

The term “anxiety” stems from the Greek word ἄγχω (angho, “to squeeze, embrace, or throttle”). 

The term evolved then to the Latin “anxietas”, i.e. trouble of the mind, and the verb “angere”, 

meaning to choke or oppress.  

Kandel (1983) proposed a definition of anxiety, which still remains appropriate; according to the 

Author “anxiety is a normal inborn response either to a threat – to one’s person, attitudes, or self-

esteem – or the absence of people or objects that assure and signify safety”. Moreover Kaplan 

and Sadock stated that anxiety "is characterized by a diffuse, unpleasant, vague sense of 

apprehension, often accompanied by autonomic symptoms, such as headache, perspiration, 

palpitations, tightness in the chest, and mild stomach discomfort" (1996). Anxiety has been 

conceptualized in many ways, and defined as “a trait, a state, a stimulus, a response, a drive and 

as a motive” (Endler et al., 2001). 

The emergence of anxiety as a scientific construct can be traced back in the writings of Darwin 

(1872), who used however the term “fear”. Darwin considered fear to be an inherent and 

adaptive characteristic of both animals and humans that has evolved over generations through 

natural selection. Furthermore, Darwin identified specific behavioural characteristics common 

both to human and non-human animals: “The heart beats quickly and violently […] the skin 

instantly becomes pale […] due to the vasomotor centre being affected in such a manner as to 

cause the contraction of the small arteries of the skin […]. This exudation is all the more 

remarkable, as the surface is then cold, and hence the term a cold sweat; whereas, the 

sudoriphic glands are properly excited into action when the surface is heated. The hairs also on 
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the skin stand erect; and the superficial muscles shiver. In connection with the disturbed action 

of the heart, the breathing is hurried. The salivary glands act imperfectly; the mouth becomes 

dry, and is often opened and shut. I have also noticed that under slight fear there is a strong 

tendency to yawn. One of the best-marked symptoms is the trembling of all the muscles of the 

body; and this is often first seen in the lips. From this cause, and from the dryness of the mouth, 

the voice becomes husky or indistinct, or may altogether fail.” (Darwin, 1872).  

It also assumed that individual with anxiety disorders are prone to perceive false alarm, which 

lead to a constant state of emotional arousal, tension and subjective distress (Beck et al., 1985). 

Moreover these thought are mostly automatic and derived from deeper cognitive structures, 

called schemas.  

These theories were focused on the pathological aspects of anxiety, while new theories place 

more emphasis on the continuities between normal and “abnormal” anxiety, moreover the links 

between cognition and behaviour are highlighted (Barlow, 2002; Rachman, 2004).  

 

1.2   Prevalence and costs of anxiety disorders 

Anxiety occurs so frequently in association with psychological distress, and other psychiatric 

illnesses. It has been noticed that research on anxiety and its disorders has accelerated since the 

1980s. This growth is due to the fact that anxiety has been recognized as one of the most 

prominent and pervasive emotions. Moreover, the introduction of a separate category for anxiety 

disorder and a clearer definition of these disorders, with the introduction of the Diagnostic and 

Statistical Manual for Mental Disorders (DSM), also played an important role in increasing the 

interest paid to that aspect (Rachman, 2004). In regard to the prevalence of anxiety disorders it 

has been reported a one year prevalence of 10.6% and a lifetime prevalence of 16.6%. Among 

the various subtypes of anxiety disorders, generalized anxiety disorder (GAD) is most frequent 

(lifetime prevalence 6.2%) followed by phobias: 4.9% lifetime prevalence for specific phobias, 
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3.1% for agoraphobia and 2.5% for social phobia (Somers et al., 2006). Posttraumatic stress 

disorder (PTSD) and obsessive compulsive disorder (OCD) appear with lifetime prevalence of 

2.1% and 1.3% respectively, whereas panic disorder is the least frequent subtype (lifetime 

prevalence 1.2%; Somers et al., 2006). It has been also reported GAD to be the second most 

frequently seen psychiatric disorder in primary care, following depression (Lepine, 2002).  

With the exception of GAD and PTSD, anxiety disorders typically have an onset in adolescence 

or early adult life, mostly before age of 16, and a considerable degree of persistence over the 

patient's lifetime (Wittchen et al., 2002). 

Anxiety disorders are associated with significant costs to society, which include both direct and 

indirect costs. The first category include psychiatric and psychological counselling, 

hospitalization, emergency room care and drug prescription, whereas indirect costs refers to 

reduced productivity, absenteeism from work and suicide (Lepine, 2002). It has been calculated 

the annual economic burden of anxiety disorders in United States in 1990 to be $42.3 billion, 

$1542 per sufferer (Greenberg et al., 1999). 

The economic burden of anxiety disorders in Europe has been poorly investigated (Sobocki
 
and 

Wittchen, 2005; Löthgren, 2004). Il has been provided an estimate of the total cost of GAD in 

France, ranging from € 2882 to € 4778 per patient per year, with and without comorbidities, 

respectively. In a spanish study on panic disorder, it has been indicated that the total cost was € 

1568 1 year prior to diagnosis and treatment and € 996 the year after diagnosis and treatment 

(Salvador-Carulla et al., 1995). 

 

1.3   Trait Anxiety vs State Anxiety 

A critical role in the development of anxiety and related disorders is certainly played by stressful 

events and threatening situation; however it is clearly visible (even in everyday occasions) that 

people differ in their susceptibility to the impact of stressful events and in their vulnerability in 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T2X-4TC2RTN-1&_user=607988&_coverDate=04%2F30%2F2009&_alid=1432071533&_rdoc=9&_fmt=high&_orig=search&_cdi=4930&_st=13&_docanchor=&_ct=7569&_acct=C000031439&_version=1&_urlVersion=0&_userid=607988&md5=7be465663db36d663218389acc27f3f8#bib40#bib40
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T2X-4TC2RTN-1&_user=607988&_coverDate=04%2F30%2F2009&_alid=1432071533&_rdoc=9&_fmt=high&_orig=search&_cdi=4930&_st=13&_docanchor=&_ct=7569&_acct=C000031439&_version=1&_urlVersion=0&_userid=607988&md5=7be465663db36d663218389acc27f3f8#bbib40
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experiencing anxiety. The existence of individual differences in anxiety proneness is supported 

by both clinical and experimental evidences and has been studied regarding both its biological 

and cognitive determinants (e.g. Bishop, 2007; Rutter, 2009; Gregory et al., 2008). 

To begin with, there is evidence of experiential, biological and cognitive determinants of anxiety 

vulnerability. Indeed, it has been postulated the presence of individual differences in anxiety 

proneness in his theory, which was based on a two-dimensional model of personality: emotional 

instability (neuroticism) and introversion/ extroversion (Eysenck, 1957). Introverts are thought to 

be more prone to conditioning and therefore to acquire conditioned anxieties and fears (Eysenck 

and Rachman, 1965). 

It has been possible to distinguish two separate concepts within the construct of anxiety: one 

referring to the emotional state of an individual at a given time and in a given situation, the other 

referring to a variable of personality that can differentiate between different individuals (Cattel 

and Sheier, 1958). It was, however, Spielberger (1966) the one who formulate a conceptual 

framework of state-trait anxiety and proposed the definitions, still in use, of state anxiety (A-

state) and trait anxiety (A-trait). 

A-trait identifies a predisposition to respond anxiogenically, given the individual’s normal level 

of anxiety, and was defined as “a motive or an acquired behavioural disposition that predispose 

an individual to perceive a wide range of objectively non dangerous circumstances as 

threatening, and to respond to these with A-state reactions disproportionate in intensity to the 

magnitude of the objective danger”. 

A-state refers to a transitory emotion “subjective, consciously perceived feelings of apprehension 

and tension, accompanied by or associated with activation or arousal of the autonomic nervous 

system”. 

It has been also hypothesized that individual differences in A-trait were not displayed directly in 

behaviour, but they determined the cognitive appraisal of a specific stimulus as threatening, 

which leads to an increased A-state (Purdue and Spielberger, 1966). 
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In order to enable the assessment of both these components the “State Trait Anxiety Inventory” 

(STAI) was developed, the inventory included 40 items and contained a trait scale (i.e. how the 

individual generally feels) and a state scale (i.e. how the individual feels at the moment) 

(Spielberger et al., 1970). The inventory was later revised and renamed as STAI form Y 

(Spielberger, 1983). 

Another method to assess anxiety was developed by Endler and colleagues (1991). The “Endler 

Multidimensional Anxiety Scale” (EMAS) assesses both trait and state anxiety together with the 

perception of stressful situation. The Author proposed with this test a multidimensional model of 

anxiety, which posit that a threatening situation is able to induce an increase in the A-state only 

if it is congruent with the facet of A-trait being investigated, thus interactions are not expected 

when the stressful situation is not congruent with the facet of A-Trait under investigation. It is 

possible to distinguish four dimensions of A-trait: Social Evaluation (SE), Physical Danger (PD), 

Ambiguous (AM) and Daily Routines (DR). Moreover EMAS measures two facets of A-state, 

thus Endler distinguished between the emotional component, referred to activation of autonomic 

nervous system (AE: Autonomic Emotion), and the cognitive component (CW: Cognitive 

Worry; Endler, 1991). 

A-trait has been later compared with the concept of anxiety sensivity: anxiety sensivity refers to 

“a specific propensity to respond fearfully to the sensations of anxiety” (Reiss, 1997).  

The relation between these two concepts is still debated: it has been differentiate trait anxiety as 

future anxiety that is based on anxiety from the past, whereas, anxiety sensitivity assesses beliefs 

about the consequences of anxiety (Reiss, 1997). However, it has been proposed that anxiety 

sensivity is one of the three factors that contribute to trait anxiety; the other two factors are 

illness/injury sensivity and fear of negative evaluation (Taylor, 1995). Finally, it has been 

concluded that this concept can be considerate a “bridge between the so-called temperamental 

features of anxiety proneness (i.e. experiences and biological determinants) and the more 

recently introduced cognitive aspects” (Rachman, 2004). 
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1.4   “Normal” Anxiety vs Pathological Anxiety 

Fear and anxiety can be regarded as normal and common experiences, providing adaptive 

reactions to potentially threatening stimuli and an appropriate motivation for action in general. 

Identifying objects or situations that may threaten an organism's survival activates cognitive, 

affective, physiological, and behavioural processes, which serve to ensure the organism's safety 

and to restore its homeostasis (LeDoux, 1996).    

The purpose of these responses is to maintain an appropriate degree of emotionality (i.e. avoid 

pervasive anxiety) under non-threatening circumstances; to respond to potential threats with a 

(transient) “fear” proportional to the danger encountered; to permit adaptive behavioural 

responses, such as escape or avoidance; and to rapidly restore a “normal” emotional status once 

the threat has passed (Heim and Nemeroff, 1999 and Holmes, 2001).  

However, a malfunctioning of mechanisms, which control these responses, due to genetic, 

developmental and/or environmental factors, can provoke a perturbation of equilibrium. 

According to the previously cited Authors this perturbation may provoke an abrupt or gradual 

shift to a new “stasis” (“set-point”) and, in pathological cases, a clinically-defined anxiety 

disorder.  

Indeed, pathological anxiety involves the over-activation of these resources, that is, anxiety can 

become so severe or enduring that it significantly impairs normal functions (Barlow, 2002). 

Although often it may be difficult to clearly distinguish normal from pathological anxiety, some 

criteria have been proposed analysing the different components of anxiety (Starcevic, 2006) 

(Table 1).      

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VB8-4WGDR56-1&_user=500062&_coverDate=08%2F31%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000024641&_version=1&_urlVersion=0&_userid=500062&md5=afeb0b7cb513260e47011f6e597a6768#bib62
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T0R-497R7W5-1&_user=500062&_coverDate=06%2F30%2F2003&_alid=1453333665&_rdoc=32&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=4869&_sort=r&_st=13&_docanchor=&view=c&_ct=971&_acct=C000024641&_version=1&_urlVersion=0&_userid=500062&md5=c1202c7f1884c494c3a7a268d50412c9&searchtype=a#bib937#bib937
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T0R-497R7W5-1&_user=500062&_coverDate=06%2F30%2F2003&_alid=1453333665&_rdoc=32&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=4869&_sort=r&_st=13&_docanchor=&view=c&_ct=971&_acct=C000024641&_version=1&_urlVersion=0&_userid=500062&md5=c1202c7f1884c494c3a7a268d50412c9&searchtype=a#bib998#bib998
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VB8-4WGDR56-1&_user=500062&_coverDate=08%2F31%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000024641&_version=1&_urlVersion=0&_userid=500062&md5=afeb0b7cb513260e47011f6e597a6768#bib7
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Table 1 Criteria to distinguish between normal and pathological anxiety (from Starcevic, 2006). 

Panic disorder without agoraphobia 

Panic disorder with agoraphobia 

Agoraphobia without history of panic disorder 

Generalized anxiety disorder 

Social anxiety disorder (social phobia) 

Specific phobia 

Obsessive-compulsive disorder 

Acute stress disorder 

Post-traumatic stress disorder 

Anxiety disorder due to a general medical condition 

Substance-induced anxiety disorder 

Anxiety disorder not otherwise specified 

 

 

Beside, the issue about differences between “normal” and pathological anxiety is related to the 

debate between a dimensional or categorical nature of anxiety. 

The dimensional hypothesis states that anxiety can be conceptualized as lying on a continuum; 

one end represent a low amount of anxiety, the opposite end a severe level of anxiety (Endler 

and Kocovski, 2001). According to this point of view the difference between adaptive and 

pathological anxiety is simply one of degree (McLean and Woody, 2001). 

According to the categorical hypothesis anxiety disorders are viewed as qualitatively different 

from a normal level of anxiety (Endler and Kolcovski, 2001). The categorical view focuses on 

the different and specific features the stimuli and the responses involved in the different types of 

disorders. For example anxious response can be cued by a stimulus or spontaneously 

experienced; moreover, anxiety can be managed by avoiding the stimulus or by using ritual or 

safety behaviours as protection from arm (McLean and Woody, 2001).  

Despite the fact that the debate remains still open, the categorical approach is certainly the most 

used for diagnostic purpose. In fact, categories are very helpful in communication and have a 

simplifying quality (i.e. the patient either has or not the disorder) (Endler and Kocovski, 2001). 

The current edition of the Diagnostic and Statistic Manual of Mental Disorder, i.e. DSM-IV 

(American Psychiatric Association, 1994), that is the most used diagnostic manual, contains 
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twelve categories of anxiety disorders, plus the separation anxiety disorder in the case of children 

(see Table 2).  

 
Table 2 Categorization of anxiety related disorders according to DSM-IV (APA, 1994). 

Panic disorder without agoraphobia 

Panic disorder with agoraphobia 

Agoraphobia without history of panic disorder 

Generalized anxiety disorder 

Social anxiety disorder (social phobia) 

Specific phobia 

Obsessive-compulsive disorder 

Acute stress disorder 

Post-traumatic stress disorder 

Anxiety disorder due to a general medical condition 

Substance-induced anxiety disorder 

Anxiety disorder not otherwise specified 

 

 

It has to be mentioned that in both case, i.e. considering anxiety as a dimensional or categorical 

factor, determining the cut-off for a pathological level of anxiety is quite an arbitrary operation; 

however, anxiety symptoms are generally considered to be clinically relevant when they interfere 

with everyday functioning (McLean and Woody, 2001).  

 

 

1.5   Anxiety and fear 

The concept of fear and anxiety are strongly related and often difficult to separate and even from 

a clinical perspective this confusion remains.  

It has been noted that even in DSM IV (1994) there is a lack of a real attempt to define fear and 

distinguish it from anxiety (McNaughton, 2010). However, a definition paragraph for anxiety is 

present in the third edition DSM III (American Psychiatric Association, 1987): “apprehension, 

tension, or uneasiness that stems from the anticipation of danger, which may be internal or 
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external. Some definitions of anxiety distinguish it from fear by limiting it to anticipation of a 

danger whose source is largely unknown, whereas fear is the response to a consciously 

recognized and usually external threat or danger. The manifestations of anxiety and fear are the 

same and include motor tension, autonomic hyperactivity, apprehensive expectation, and 

vigilance and scanning.” (DSM-III-R, 1987). 

It has been analyzed the different defensive responses to threats and proposed a categorical 

separation of fear from anxiety. It was based on immediacy (or certainty) versus potentiality (or 

uncertainty) of threat. Thus, fear is linked to a set of behaviour elicited by a predator and that are 

sensitive to panicolytic but not to anxiolytic drugs. On the contrary, anxiety is linked to 

behaviours elicited by the potential presence of a predator and are sensitive to anxiolytic drugs 

(Blanchard and Blanchard, 1990). 

Similarly, it has been proposed a definition of anxiety as “the apprehensive anticipation of future 

danger or misfortune accompanied by feeling of dysphoria or somatic symptoms of tension, 

when there is no true threat” whether fear is “a feeling of anxiety associated with real external 

(or internal) threat” (Vermetten et al., 2002). 

Another distinction may depend to the fact that fear is considered by many theorists as a basic 

emotion, therefore, it develops on emotional program the basis of an innate emotional program 

when confronted with an identified threat. On the contrary, anxiety is often considerate as a 

secondary emotion, that is an emotion in response to a primary emotional reaction, i.e. fear or 

anger (Barlow, 2002; Greenberg, 2002). 

Furthermore, anxiety involves modulation of  pre-existing fear (or frustration) (McNaughton and 

Corr, 2004). It has been also recognized that there is a considerable functional overlap between 

the generation of fear and anxiety, but there are also functional, behavioural and pharmacological 

distinction. 

On one hand the function of fear is to move animal away from danger and the related behaviour 

consists in a fight/flight/freezing response. Finally fear is insensitive to anxiolytic drugs. On the 
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other hand anxiety has the function of moving animal toward danger, it involves inhibition of 

prepotent behaviours, increased risk assessment and defensive quiescence. Obviously anxiety is 

sensitive to anxiolytic drugs (McNaughton and Corr, 2004). 

 

1.6   Neurobiology of anxiety 

The entire organism is involved in the response to (and modulation of) stress, fear and anxious 

states. Moreover, these states impact upon virtually all major systems: motor, sensory, endocrine, 

immune, cardiovascular and, of course, neural (Millan, 2003). 

It has been formulated one of the most famous theories (James, 1884; Lange, 1887), that 

suggested that one experiences an emotion in response to physiological changes in the body. 

According to the this theory, as an individual perceives a stimulus, the sensory systems send 

information to the brain, which reacts inducing physical (neurovegetative) manifestations (i.e. 

changes in heart rate, muscle tone etcetera). Thus, this theory stated that the physiological 

changes coincide with the emotion itself. 

The Cannon-Bard theory also states that, when a person faces an event that somehow affects him 

or her, the nervous impulse travels straight to the thalamus where the message divides. One part 

goes to the cortex to originate subjective experiences like fear, rage, sadness, joy, etc. The other 

part goes to the hypothalamus to determine the peripheral neurovegetative changes (symptoms). 

According to this theory physiological reactions and emotional experience occur simultaneously. 

Broca (1878) originally coined the term “limbic” for a series of phylogenetically-conserved 

structures, but the central role of this subcortical network of brain structures was hypothesized by 

Papez in 1937 (Fig.1).  
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Fig.1 Papez's emotional circuit (from Dalgleish, 2004). 

 

 

 

The Author argued that sensory messages concerning emotional stimuli that arrive at the 

thalamus are then directed to both the cortex (stream of thinking) and the hypothalamus (stream 

of feeling). Papez also proposed a series of connections from the hypothalamus to the anterior 

thalamus (1) and on to the cingulate cortex (2). Emotional experiences or feelings occur when 

the cingulate cortex integrates these signals from the hypothalamus with information from the 

sensory cortex. Output from the cingulate cortex to the hippocampus (3) and then to the 

hypothalamus (4) allows top–down cortical control of emotional responses. 

In 1949, McLean integrated Papez’s original circuit (hypothalamus, anterior thalamus, cingulate 

gyrus, and hippocampus) with other anatomically and functionally related areas (amygdala, 

septum, and orbitofrontal cortex). 

By now several cortical regions have shown to be relevant in the various components of anxious 

states. The principal structures involved in anxiety, as indicated by McNaughton and Corr 

(2004), are presented, together with the main neuroendocrine responses. 

 

 



13 

 

2. Key brain structures 

 

2.1   Periaqueductal gray 

The Periaqueductal Gray (PAG) is part of the limbic midbrain area. 

The earliest finding regarding the role of PAG in fear and anxiety reported that stimulation of 

PAG provoked deep analgesia in rats and reports of intense fear and panic, associated with 

autonomic changes, in humans (Reynolds, 1969; Nashold et al., 1969).  

Further studies showed that electrical stimulation of rostral dorsolateral PAG in rats and cats 

produced threat display associated with vocalization and strong flight response, whereas 

stimulation of the caudal ventrolateral PAG produced immobility (Behbehani, 1995).  

Thus, a columnar organization of this structure it has been proposed. Indeed, anatomical and 

functional evidences suggested the presence of four longitudinal columns, namely, dorsolateral, 

dorsomedial, lateral and ventrolateral, with distinct features, connections and functions (Bandler 

et al., 1991). 

It has been proposed a PAG-amygdala network, involved in anxiety and activated by threatening 

stimuli. According to this model signals of danger, e.g. the sight of a predator, activate amygdala 

regions which project to the ventral PAG. Activation of this region produces freezing and 

analgesia.  

However,  as the animal encounters danger, e.g. is caught by a predator, a network in the 

amygdala that projects to the lateral PAG is activated and flight responses are produced, along 

with vocalization and autonomic responses.  

Thus, there seems to be an inhibitory interaction between ventral and lateral PAG networks. 

Lateral PAG stimulation produces flight and defensive responses, whereas ventral PAG 

stimulation produces immobility and freezing (Fanselow, 1991).  
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Carobrez and colleagues also demonstrated that dorsal PAG participates in the mediation of 

anxiety/fear-like behavior elicited in the Elevated Plus Maze (EPM), showing correlation among 

behavioural data observed in the EPM, fear-like defensive behaviour and dorsal PAG activity. 

Moreover, it has been shown that dorsal PAG-NMDA-receptor blockade increased EPM open 

arms exploration, reducing anxiety-like behaviour (Carobrez et al., 2001; Kincheski and 

Carobrez, 2009). 

According to McNaughton and Corr PAG is responsible of the lowest levels of control of anxiety 

(2004).      

 

2.2   Hypothalamus 

Hypothalamus plays a crucial role in regulating stress response. Indeed, many of the 

neuroendocrine and autonomic changes resulting from stress, fear and anxiety may be 

understood from the projections that the hypothalamic nuclei receive from many limbic and 

brain stem structures. 

Among the first experiments showing an involvement of hypothalamus in emotional responses 

are the series of experiments conducted in the 1920s by Hess, who implanted electrodes into the 

hypothalamic region of cats. Electrical stimulation led to an 'affective defence reaction' that was 

associated with increased heart rate, alertness and a propensity to attack. Hess could induce 

animals to act angry, fearful, curious or lethargic as a function of which brain regions were 

stimulated (as reported by Dalgleish, 2004). 

It has been reported that the blockade of gamma-aminobutyric acid (GABA) function in the 

posterior hypothalamus of rats elicits a pattern of physiological and behavioural arousal, 

consisting of increases in heart rate, respiration and blood pressure as well as intense locomotor 

stimulation and a selective enhancement of avoidance behaviour. Moreover, endogenous GABA 
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acts in the posterior hypothalamus to regulate the level of experimental anxiety in rats (Shekhar 

et al., 1990). 

The medial hypothalamus, has been shown to be implicated in the regulation of different 

behaviours and physiological functions, such as food ingestion and metabolism, reproduction, 

and defense. This regions contains different cell groups, which are strongly interconnected and 

seems to be especially involved in the integration of innate responses to environmental threats 

(Canteras, 2002). 

Medial hypothalamus has been shown to be involved in controlling defensive behaviour and its 

dysfunction has been related to panic disorder (Blanchard et al., 2001; McNaughton and Corr, 

2004).  

Moreover, it has been postulated that this structure would control the simplest  behavioural 

reactions, when facing a situation in which immediate danger is present (McNaughton and Corr, 

2004).        

 

2.3   Amygdala 

A key role in the regulation and experience of emotional states in general is certainly played by 

the amygdala, involved in the recognition of signals of danger and in the control of autonomic 

and behavioural reaction responses to external threat. There are several human and animal 

evidences supporting the central role of amygdala in anxiety and fear (Etkin et al., 2009). 

The amygdala is a complex of different nuclei situated in the anterior portion of the temporal 

lobe and has a close anatomical and functional relationship with the hippocampal formation; 

these two structures form the two major subcortical telencephalic limbic areas. Amygdala 

possesses an extensive pattern of reciprocal connections with cortical, limbic, monoaminergic 

and other structures implicated in the emotional, cognitive, autonomic and endocrine response to 

stress (Gray and Magnuson, 1992; LeDoux, 2000; Carrasco and Van de Kar, 2003) (Fig.2).  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T0R-497R7W5-1&_user=10&_coverDate=06%2F30%2F2003&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9e5df5d0087a77934d1252395662b72b&searchtype=a#bib819#bib819
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T0R-497R7W5-1&_user=10&_coverDate=06%2F30%2F2003&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9e5df5d0087a77934d1252395662b72b&searchtype=a#bib1286#bib1286
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T0R-497R7W5-1&_user=10&_coverDate=06%2F30%2F2003&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9e5df5d0087a77934d1252395662b72b&searchtype=a#bib350#bib350
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Fig.2 Schematic representation of the organization of structures involved in the integration and induction of anxious 

states. Abbreviations (clockwise) indicate PF/F: prefrontal/frontal; ENT: entorhinal; CX: cortex; MB (SMB): 

mammillary bodies (supramammillary bodies); CING: cingulate; ASSN: association; THAL: thalamus; INS: 

insular; SS: somatosensory; STT: spinothalamic tract; PBN: parabrachial nucleus;  DMV/NAMB: dorsal motor 

nucleus of the vagus/nucleus ambiguous; HR: heart rate; AP: arterial pressure; LAT HYPOTH: lateral 

hypothalamus; PVN: paraventricular nucleus; ACTH: adrenocorticotropic hormone; NRPC: nucleus reticularis 

penduncocellularis; PAG: periaqueductal gray; FMN: facial motor nucleus; VTA: ventrotegmental area; LC: locus 

coeruleus; DLTN: dorsolateral segmental nucleus; DA: dopamine; NA: noradrenaline; ACh: acetylcholine and 

NACC: nucleus accumbens. (From Millan, 2003) 
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Output pathways are primarily derived from the central nucleus, which is part of the 

centromedial amygdala (CMA) and projects to the brain stem, hypothalamic and basal forebrain 

targets, and from the contiguous bed nucleus of the stria terminals, whereas the basolateral 

amygdaloidal complex (BLA) is principally responsible for the receipt and filtering of cortical 

and subcortical (mostly thalamic) sensory input (Gray and Magnuson, 1992; Walker et al., 

2003). It has been reported that in rodents, BLA encodes the threat value of a stimulus, while the 

central nucleus is essential for the basic species-specific defensive responses associated with fear 

(Davis and Whalen 2001). 

In humans amygdala has been shown to be activated by emotional stimuli with negative valence; 

moreover, lesions of the amygdala are associated with inability to label fearful facial expressions 

and to encode fear-based memories (Phan et al., 2002; Wager et al., 2003). Moreover, invasive 

stimulation of human amygdala with microelectrodes produces subjective reports of fear and 

anxiety (Lanteaume, 2007).  

Synaptic plasticity in the amygdala has been shown to be implicated in the induction, processing 

and extinction of conditioned fear, in the generation of anticipatory anxiety and in the 

coordination of the global response to threats. Such phenomena are highly relevant to behaviour 

in experimental models in rodents, as well as to GAD and phobias in man (Davis, 1992; LeDoux, 

2000; McGaugh et al., 2002). 

Amygdala also responds to anxiety provoking environmental cues with a neutral valence, to 

emotional stimuli processed outside of awareness, in this case the activation is greater in the 

most anxious subjects, and to emotional stimuli processed under limited attentional resources 

(Herry et al., 2007; Etkin et al., 2004; Bishop et al., 2004).  

Therefore, amygdala plays a central role in both subjective and attentional-vigilance aspects of 

the processing of threatening stimuli; thus, abnormalities in this system may be associated with 

hyperarousal and hypervigilance, which manifest in anxiety disorders (Etkin et al., 2009).  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T0R-497R7W5-1&_user=10&_coverDate=06%2F30%2F2003&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9e5df5d0087a77934d1252395662b72b&searchtype=a#bib819#bib819
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T0R-497R7W5-1&_user=10&_coverDate=06%2F30%2F2003&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9e5df5d0087a77934d1252395662b72b&searchtype=a#bib2461#bib2461
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T0R-497R7W5-1&_user=10&_coverDate=06%2F30%2F2003&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9e5df5d0087a77934d1252395662b72b&searchtype=a#bib2461#bib2461
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T0R-497R7W5-1&_user=10&_coverDate=06%2F30%2F2003&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9e5df5d0087a77934d1252395662b72b&searchtype=a#bib514#bib514
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T0R-497R7W5-1&_user=10&_coverDate=06%2F30%2F2003&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9e5df5d0087a77934d1252395662b72b&searchtype=a#bib1286#bib1286
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T0R-497R7W5-1&_user=10&_coverDate=06%2F30%2F2003&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9e5df5d0087a77934d1252395662b72b&searchtype=a#bib1286#bib1286
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T0R-497R7W5-1&_user=10&_coverDate=06%2F30%2F2003&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9e5df5d0087a77934d1252395662b72b&searchtype=a#bib1469#bib1469
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Several authors also proposed a distinction between the neural substrates of anxiety and fear, the 

core of this distinction has been reported to be amygdala (Fig.3).  

 

 

Fig.3 Hypothetical scheme  suggesting  a different involvement of central amygdala nucleus and bed nucleus of stria 

terminalis in fear versus anxiety, respectively. (from Lang et al., 2000).  

 

Both central nucleus of the amygdala and bed nucleus of stria terminals have  highly similar 

hypothalamic and brainstem targets known to be involved in specific signs and symptoms of fear 

and anxiety.  

However, the stress peptide CRH seems to act on receptors in the bed nucleus of the stria 

terminalis. Furthermore, this nucleus seems to be involved in the anxiogenic effects of bright 

lights presented for a long period, but not when the same light has been previously paired with a 

shock. Just the opposite is the case for the central nucleus of the amygdala, which is critical for 

fear conditioning using explicit cues such as light or tone paired with aversive stimulation (i.e., 

conditioned fear) (Lang et al., 2000). 
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2.4   Hippocampal formation 

The hippocampus plays a key role in memory function and on analysing the context in which 

fear is experienced. Indeed, an important aspect of fear response is the incorporation of a 

person’s prior experience (memory) into the cognitive appraisal of stimuli. The hippocampus 

mediates declarative memory function (e.g., recall of facts and lists) and plays a crucial role in 

the integration of memory elements with those present in the context at the time of retrieval and 

in assigning significance for events within space and time.  

This structure is also involved in mediating emotional responses to stressor, as proved by lesions 

of hippocampus in animal studies, which disrupt the formation of emotional memories of the 

context where a stressor took place (Vermetten et al., 2002). 

Several authors reported that hippocampal volume is reduced in patients with long-standing 

depression (e.g. Campbell et al., 2004; Videbech and Ravnkilde, 2004) and severe, unremitting 

post-traumatic stress disorder (PTSD; e.g. Bremner et al., 1995, Gurvits et al., 1996; Lindauer et 

al., 2004). 

However, it has been reported that trait anxiety is positively related to hippocampal volume in 

both depressed patients and normal controls (Rusch et al., 2001). Thus, it has been proposed that 

an enlarged hippocampal volume in anxious individuals could reflect an increased use. However, 

found a positive correlation between anxiety-like behaviour and hippocampus volume in rats 

with an extreme hyper-anxious phenotypes (i.e. HAB, High Anxiety Behaviour rats), but a 

negative correlation in normal rats with an high anxiety behaviour (Kalish et al., 2005).  

Thus, despite being clearly involved in anxiety, the results suggests that the relationship between 

hippocampal volume and trait anxiety is quite complicated. 

It has been claimed a crucial role for the hippocampal formation, which initially constituted the 

core of Gray’s neuropsychology of anxiety (1982). It has been attributed to this formation the 

cognitive aspects of conventional anxiety and GAD (Gray and McNaughton, 2000).        

http://www.nature.com/npp/journal/v31/n5/full/1300910a.html#bib5#bib5
http://www.nature.com/npp/journal/v31/n5/full/1300910a.html#bib34#bib34
http://www.nature.com/npp/journal/v31/n5/full/1300910a.html#bib3#bib3
http://www.nature.com/npp/journal/v31/n5/full/1300910a.html#bib11#bib11
http://www.nature.com/npp/journal/v31/n5/full/1300910a.html#bib19#bib19
http://www.nature.com/npp/journal/v31/n5/full/1300910a.html#bib19#bib19
http://www.nature.com/npp/journal/v31/n5/full/1300910a.html#bib10#bib10
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2.5   Prefrontal cortex 

The final component of every stress and anxiety response involves preparation for a response to 

the potential threat, which requires an integration between brain areas involved in assessing and 

interpreting the potentially threatening stimulus and brain areas involved in the response 

(Bremner et al., 2009) and this role seems to be fulfilled by the prefrontal cortex (PFC).  

For instance, the medial prefrontal cortex (mPFC) has been shown to be involved in “learning 

the emotional and motivational value of stimuli” (Rolls, 1996). It has been also suggested that 

neurons in the PFC can detect changes or reversals in the reward value of learned stimuli and 

change their responses accordingly.   

mPFC areas also modulate emotional responsiveness through the inhibition of amygdala function 

in response to fearful cues. Moreover area 25, which is part of mPFC, also has direct projections 

to brain stem and is involved in the regulation of peripheral responses to stress, such as heart 

rate, blood pressure and cortisol response (Vermetten et al., 2002). 

The medial region of the rat prefrontal cortex also contains both mineralocorticoid and 

glucocorticoid receptors, in addiction lesions of the cingulate gyrus region are associated with 

significantly increased plasma levels of adrenocorticotropic hormone (ACTH ) and cortisol 

(CORT) (Diorio et al. ,1993). It has been claimed that these data are consistent with the idea that 

the prefrontal cortex mediates an inhibitory effect of glucocorticoids on stress-induced HPA 

activity. 

The cingulate cortex is part of the PFC and has been related in particular to agoraphobia, since it 

appears to be involved in spatial analysis (as reported by McNaughton and Corr, 2004).The 

dorsal trend of the prefrontal cortex seems to be involved in complex forms of anxiety, such as 

social anxiety. Indeed, changes in the activation of this cortex have been found with maternal 

separation induced anxiety both in Rhesus monkeys and human infants (Rilling et al., 2001), and 

in patients with social anxiety disorders (Nutt et al., 1998).                 
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3. Neuroendocrine responses 

 

3.1   Serotonin 

Serotoninergic neurones, originating in raphe nuclei, provide a massive input to corticolimbic 

structures involved in the control of anxious states. The dorsal raphe nucleus (DRN) primarily 

innervates the frontal cortex, dorsal hippocampus and amygdala, while the median raphe nucleus 

(MRN) principally projects to hippocampal formation, septum, nucleus accumbens and 

hypothalamus  (Gray, 1987; Millan, 2003). 

These networks seem to fulfil differential roles in the control of anxious states. For example, 

serotoninergic pathways emanating from the DRN have been shown to be specifically involved 

in the control of behaviour in the Vogel conflict test (Pratt, 1992). The response in this test is 

also accompanied by an increase in 5-HT release in the hippocampus (Matsuo et al., 1996). 

Furthermore, it has been reported that a complex and non-uniform role for 5-HT in the control of 

anxiety disorders has also been forwarded as a function of: “(1) whether the anxious state is 

provoked by conditioned or unconditioned fear and (2) contrasting actions of 5-HT in specific 

cerebral regions, notably the amygdala as compared to the PAG” (Millan, 2003). The Author 

also pointed out that in assessing the role of 5-HT in the modulation of anxious states, it has to 

be considered that serotoninergic pathways play a profound influence upon other behaviours, 

such as motor function, impulsivity and cognition. 

Serotonergic pathways innervating structures such as the frontal cortex, amygdala, hypothalamus 

and hippocampus are activated by anxiogenics stimuli, including psychosocial stress, 

conditioned fear and conflict procedures (Pratt, 1992; Rueter et al., 1997, Ishida et al., 2002).  

Finally, serotonergic mechanisms participate in the influence of a broad range of therapeutically-

employed drugs upon emotionality in general, and upon anxious states in particular. Moreover, 

the 5-HT releaser, methylenedioxymethylamphetamine (ecstasy), has been shown to modify 
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anxiety states in a dose and test-dependent manner both in experimental studies and in human 

subjects.  

 

3.2   Dopamine 

Dopaminergic pathways have been mainly studied within the perspective of their role in the 

pathogenesis of depression, drug abuse, schizophrenia and Parkinson’s disease; indeed, all this 

disorders involve a marked dysregulation of dopaminergic transmission.  

Mesocortical and mesolimbic dopaminergic pathways originate in the ventral tegmental area and 

play an important role in the control of mood. Indeed, dopaminergic activity may be critical for 

an appropriate response to stress and fear, as well as cognitive functions (Nioullon, 2002, Pezze 

et al., 2003).  

Moreover, anxious symptoms are frequently co-morbid with (and may exacerbate) drug abuse, 

affective and psychotic disorders, while anxiety, particularly social anxiety, is a prominent, 

precocious and persistent symptom of Parkinson’s disease (Millan, 2003).   

It has been also reported that subjects with high levels of  trait anxiety and very susceptible to 

panic attacks have revealed an enhancement in the activity of central dopaminergic pathways 

(Finlay and Zigmond, 1997; Mizuki et al., 1997).  

Several experimental studies demonstrate that conditioned fear, anxiety and other stressors elicit 

an activation of dopaminergic pathways to the amygdala and adjacent bed nucleus of the stria 

terminals, to the nucleus accumbens and to the frontal cortex and this activation seems to be 

reversible with BDZ-treatment (Suzuki et al., 2002; Pezze et al., 2001; Finlay and Zigmond, 

1997).  

It has been also reported that a psychostimulant and DA releaser, dextroamphetamine, enhances 

the response of the amygdala to aversive stimuli in human subjects (Harari et al., 2002).  
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Other results, deriving from rats studies, suggested that dopaminergic action in the amygdala 

reflects the simultaneous promotion of excitatory input from the somato-sensory cortex, and 

suppression of inhibitory input from the prefrontal cortex (Rosenkranz and Grace, 2001, 2002). 

Dopaminergic mesolimbic projections are critically involved in mechanisms of motivation and 

reward, and a substantial body of evidence suggests that their engagement contributes to the 

preference for (non-aversive) novel stimuli (Millan, 2003). Indeed, It should also be recalled that 

dopaminergic pathways fulfil an important role in the formation, retention and extinction of fear-

related associations and memory (Morrow et al., 1999; Nieoullon, 2002). 

Moreover, in paradigms involving the exploration of unfamiliar environments and other 

measures of neophobia, the reinforcing effects of dopaminergic agents may interact with their 

influence upon anxious states per se and can outweigh the negative impact of stress (Marinelli 

and Piazza, 2002).      

 

3.3   Noradrenaline 

Ascending noradrenergic projections innervate many structures variously involved in anxiety, 

e.g. hippocampus, amygdala, PAG, cortex, hypothalamus, and a main proportion of this input 

derives from the locus coeruleus (LC) (Millan, 2003).  

The marked and substained activation of noradrenergic inputs derives from anxiogenics stimuli 

and stressful and is accompanied by emotional, cognitive and autonomic manifestations, 

particularly studied is NA influence in panic attacks induction. (Ishida et al., 2002; Shekhar et 

al., 2002) 

 

3.4   GABA 

GABAergic neurons constitute the major mode of inhibitory transmission in the Central Nervous 

System and several corticolimbic structures involved in the modulation of anxious states contain 
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these neurons (e.g. hippocampus, amygdala, lateral septum and PAG) (Cherubini and Conti, 

2001, Mody, 2001). 

Moreover, GABAergic pathways also have an inhibitory influence upon the release of many 

other neurotransmitters known to mediate anxiogenics actions. Indeed, they play a suppressive 

influence upon corticolimbic noradrenergic and serotoninergic projections, of which 

hyperactivity is implicated in the induction of anxious states (Millan, 2003).  

Conditioned fear has been shown to be accompanied by an activation of GABAergic 

interneurons in both noradrenergic and serotoninergic cell clusters (i.e. Locus Coeruleus and 

Raphe Nuclei) (Ishida et al., 2002). 

Further, GABAergic neurones are inhibitory to the stress-induced release of dopamine (DA), 

glutamate, corticotrophin-releasing factor (CRF) and several other anxiogenics mediators.  

Thus, the control of anxious states by GABAergic mechanisms implies: “(1) modulation of 

monoaminergic transmission; (2) interactions with monoaminergic receptors postsynaptic to 

monoaminergic projections; and (3) actions independent of monoaminergic pathways” (Millan, 

2003) 

 

4. Stress 

The term stress derives from physical sciences and generally refers to external forces or 

pressures on an object or person. It was firstly used to refer to physiological and biochemical 

reactions evoked by noxious stimuli. These reactions arouse and prepare a subject to a defensive 

behaviour, that is a “flight or fight” response (Cannon, 1929).  

It has been provided an operational definition of stress as “any challenge to homeostasis that 

requires an adaptional response (Newport and Nemeroff, 2002). Often stress is a consequence of 

a change in the external environment that perturbs the internal mileu.” 

Stress involves therefore a stressor, i.e. a stimulus, and a stress response.   
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Stressors include different types of stimuli such as trauma, injury or major life events. It has been 

developed a list of potentially stressful events, examining the medical records of over 5,000 

medical patients as a way to determine whether stressful events might cause illnesses. The result 

was the Social Readjustment Rating Scale (SRRS) (Holmes and Rahe, 1967).  

Stress is generally acknowledged to play a critical role in the pathogenesis of many psychiatric 

disorders (Newport and Nemeroff, 2002). There is, however, a profound difference in the 

vulnerability to stressors among individuals; some people exhibit a lower threshold of tolerance 

for stress, which also seems to predispose them to stress-induced illness or precipitation of a 

psychiatric syndrome. This vulnerability is explained by the diathesis/stress model, which was 

originally used to describe an underlying pathogenic mechanism that remains latent and harmless 

until activated by sufficient stress (Ingram et al., 1998). 

Diathesis/stress models recognize that both genetic inheritance and environmental acquired 

factors contribute to the vulnerability to stress and played a role in influence of stress in 

psychiatric and psychological disorders such as Generalized Anxiety Disorder, Post Traumatic 

Stress Disorder, and Depression (Gregory et al., 2008; Gillespie et al., 2009; Afifi et al., 2010; 

Rutter, 2009).  

 

4.1   Eustress vs Distress 

The word stress and its definition take origin by the physiologist Hans Selye, who discovered 

that different physical stimuli can activate the so called hyphotalamic-pituitary-adrenal axis 

(HPA axis). Generally, stress can be defined as a condition in which a perturbation of 

homeostasis (the equilibrium) of the organism exists, as a consequence of any kind of stimulus 

or factor, internal or external. 

The functional response that the organism can use in order to response to adverse environmental 

stimuli (called “stressors”), that can be a risk for life, is defined “coping strategy”. In particular, 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VB8-4TR384Y-1&_user=500062&_coverDate=02%2F28%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000024641&_version=1&_urlVersion=0&_userid=500062&md5=d07598c1b2b050cf9e8b54b50ea7ef4b#bib80
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in nature animals can react to an external stressful stimulus with a proactive strategy, in which 

animals show an active control on the environmental stimulus, exibit a predisposition to the 

exploration and response to the stimulus without fear; or animals can react with a reactive 

strategy, showing a passive behaviour on the same stimulus. 

Generally, stress is a condition that occurs life of each person; when the subject become, for any 

kind of reason, incapable to react to the stressors, so stress can become an aetiological factor in 

the development of a pathological state. 

As regards the characteristics of stress, Selye identify two different type of stress: eustress, i.e. 

positive stress, and distress, i.e. negative stress.  

Since it is not the nature of the stress to induce a pathological state, but the incapability of 

subjects to adapt to, frequency and duration of the stressful stimulus are the key players for the 

development of pathological condition. On the basis of these two parameters, it is possible to 

distinguish an acute stress and a chronic stress: the first is the state in which subject has a 

sudden decrease in the predictability and/or control of relevant external factors; the second is the 

state in which subject has in front of unexpected external factors that are uncontrollable for long 

time. 

Thus the adaptive responses are sufficient to reinstate homeostasis and terminates after this re-

balance (Engelmann et al., 2004). Distress in the contrary requires a level of performance beyond 

the potential of the individual (Shelly, 2003). 

To conclude, a stressor may cause eustress or distress, depending on its quality and intensity, and 

on how the stressor is perceived and interpreted by the individual (Engelmann et al., 2004).        
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4.2   Neurobiology of stress 

Both, beneficial and deleterious effects of stress are thought to involve the action of 

corticosterone/cortisol secreted from the adrenal glands into the blood. 

One of the main systems activated during the stress response in order to cope with stressors is the 

hypothalamic-pituitary-adrenal (HPA) axis (Fig.4). In fact, the release of glucocorticoids by the 

adrenal glands serves both to alert the organism to environmental or physiologic changes and to 

defend homeostasis. 

The key role in these responses played by the HPA axis was first suggested by Selye (1956), 

who also proposed a model for bodily responses to short-term or long-term stressors: the General 

adaptation syndromes, which include three stages.  

The first stage is alarm and occurs as the threat or stressor is identified or realized and the body 

prepares to deal with it. During this phase activation of the HPA axis, the nervous system (SNS) 

and the adrenal glands take place and the main stress hormones cortisol, adrenaline, and 

noradrenaline, are released to prepare the “fight-or-flight” response.  The second stage is 

resistance (or adaptation), which manifest if the stressor persists and involves coping strategies 

and the attempt of the body to adapt to the strains or demands of the environment. Stress 

hormones levels may return to normality but if the stressful condition persists the body remains 

in a state of arousal. 

The final stage is exhaustion: all of the body's resources are depleted and the body is unable to 

maintain normal function. The initial autonomic nervous system symptoms may reappear 

(sweating, raised heart rate etc.). If stage three is extended, long term damage may result as the 

capacity of glands, especially the adrenal gland, and the immune system is exhausted and their 

function may be impaired, resulting in decompensation (Selye, 1956). 

 

 

http://en.wikipedia.org/wiki/Fight-or-flight_response
http://en.wikipedia.org/wiki/Autonomic_nervous_system
http://en.wikipedia.org/wiki/Decompensation
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4.3   Hypothalamic-Pituitary-Adrenal (HPA) Axis  

Perception of a stressful situations causes initially the activation of the neurons of the 

parvocellular portion of the hypothalamic paraventricular nucleus (PVN). Indeed hypothalamus 

receives inputs from many different brain pathways. The PVN synthesises and releases 

corticotrophin releasing hormone (CRH) and vasopressin (AVP). Both neuropeptides are 

released from neurosecretory nerve terminals at the median eminence and are transported to the 

anterior pituitary through the portal blood vessel system of the hypophyseal stalk. 

In the anterior pituitary CRH and AVP stimulate the production and secretion of 

adrenocorticotropic hormone (ACTH) from corticotrope cells. Finally ACTH is transported by 

the blood to the adrenal cortex of the adrenal gland, where it stimulates the release of 

glucocorticoids (corticosterone in rats, cortisol in humans) into the blood. 

The HPA axis is regulated by a negative feedback system at multiple levels via glucocorticoid 

receptors within the hypothalamus and the anterior pituitary, which detect the circulating level of 

glucocorticoids this feedback serves to protect the mechanism against spillover. If level goes 

above the norm production of the initial substances from PVN is down-inhibited (Vermetten et 

al., 2002; Kalat, 1995). 

HPA dysregulation occurs mainly in terms of an exaggerated CRH and glucocorticoids secretion, 

which have been described in several psychiatric disorders, such as melancholic depression, 

anxiety and emotional disturbances (Ehlert et al., 2001). CRH hypersecretion is assumed to 

result by the disinhibition of the negative feedback control, which may be a consequence of 

longstanding hypersecretion of glucocorticoids.  

Glucocorticoids play a central role in the regulation of a wide range of bodily function, such as 

inflammatory and cardiovascular responses, cognitive functions, e.g. information processing, 

learning and memory, metabolic and immune functions (Vreugdenhil and de Kloet, 1998; 

Sapolsky et al., 2000). They have also been shown to have a significant impact on vigilance and 

http://en.wikipedia.org/wiki/Median_eminence
http://en.wikipedia.org/wiki/Blood
http://en.wikipedia.org/wiki/Adrenal_cortex
http://en.wikipedia.org/wiki/Adrenal_gland
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cognitive performance and this influence seems to follow the Yerkes-Dodson Curve (see 

Paragraph 5.1) as studies have shown that circulating levels of glucocorticoids vs. memory 

performance follows an upside down U pattern, much like the Yerkes-Dodson curve. 

It has been identified coping and defense mechanism as the most important cognitive filters 

responsible for the intra and interindividual differences in HPA axis responses (Ursin et al., 

1998). 

 

 

Fig.4 Schematic representation of the hypothalamus-pituitary-adrenal (HPA) axis (from Sandi, 2004). 

 

4.4   Stress and psychopathology 

From both a biological and physiological perspective stress is therefore strongly related to the 

concept of homeostasis, an imbalance between the demands of the threatening situation and the 

ability and possibility to cope with it. 

Thus stress can be beneficial in term of mobilization of resources, but detrimental if the 

perceived demands exceed the resources (Newton and Nemeroff, 2002).  
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Despite the fact that all stress responses are intended to preserve homeostasis, they may result 

adaptive or maladaptive, in the second case they fail in achieving homeostasis and a 

pathophysiological, or psychological, cascade of negative events may ensue (Newton and 

Nemeroff, 2002). 

It has been proposed a psychological diathesis model focusing on relatively stable individual 

differences (e.g., personality traits or cognitive styles) that increase one's vulnerability to stress 

and to the development of psychological disorders. These vulnerabilities are described as stable 

(without intervention), endogenous (i.e., resides within the person), latent (i.e., not easily 

observable), and likely to interact with stress (Ingram & Price, 2001). The notion that cognitive 

processes or appraisal are central in determining whether a situation is potentially threatening 

was already expressed by Lazarus (1966). Thus these processes determine if the situation 

constitutes a harm/loss, a challenge, or is benign and allow to select the appropriate coping 

strategies. 

Diathesis/stress model has been applied to a broad range of disorders, including major 

depression, schizophrenia, chronic fatigue syndrome, PTDS and other anxiety disorders (Newton 

and Nemeroff, 2002).  

 

5. The relationship between anxiety and stress 

Conceptually stress and anxiety are tightly linked. Indeed stress and (state) anxiety often co-

occur and anxiogenics situations lead to an activation of HPA-axis.  

The link between these two aspects also derives from the fact that anxiety and fear can be a part 

of the stress response and constitute a component of a potential stressor (Dietrich, 2008).  

With regard to the effect of stress on anxiety the multidimensional interaction model of stress, 

anxiety and coping proposed by Endler (1989, 1990) provide a useful conceptualization of the 

relationship between these three aspects from cognitive point of view (Fig.5).     

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VB8-4TR384Y-1&_user=500062&_coverDate=02%2F28%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000024641&_version=1&_urlVersion=0&_userid=500062&md5=d07598c1b2b050cf9e8b54b50ea7ef4b#bib81


31 

 

 

Fig.5 Multidimensional interaction model of stress, anxiety and coping (adapted from Endler, 2000). 

 

As previously said, coping strategies are central in stress response and depend on cognitive 

appraisal. A coping style is a characteristic manner of responding to stressful situations (Endler 

and Parker, 1994). There are three basic coping styles in humans: task-oriented coping (i.e. 

focussing on solving the problem or attempting to change the situation), emotion-oriented coping 

(i.e. responses self-oriented, such as emotional responses or self-preoccupation), and avoidance-

oriented coping (i.e. avoiding the stressful situation by seeking social support or distracting 

oneself with other tasks) (Endler, 1990,2000).  

The model also include individual variables, such as trait anxiety (and other traits), vulnerability, 

physiological arousal, and other biological variables and situation variables, i.e. stressful events, 

crises, traumas, and physical environments.  

These variables can interact with one another and their interaction leads to the perception of 

threat, which in turn leads to changes in state anxiety (and there is also feedback to both person 

and situation variables) and ultimately in reactions such as coping responses, defences, illness, 

behavioural, and biological reactions (Endler, 1997). These reactions also feedback to individual 

and environmental  variables. 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VDK-439MCV0-7&_user=500062&_coverDate=06%2F30%2F2001&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000024641&_version=1&_urlVersion=0&_userid=500062&md5=e30d2be5cd227e9dd4a611ca62016312&searchtype=a#bib23
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VDK-439MCV0-7&_user=500062&_coverDate=06%2F30%2F2001&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000024641&_version=1&_urlVersion=0&_userid=500062&md5=e30d2be5cd227e9dd4a611ca62016312&searchtype=a#bib23
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VDK-439MCV0-7&_user=500062&_coverDate=06%2F30%2F2001&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000024641&_version=1&_urlVersion=0&_userid=500062&md5=e30d2be5cd227e9dd4a611ca62016312&searchtype=a#bib21
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VDK-439MCV0-7&_user=500062&_coverDate=06%2F30%2F2001&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000024641&_version=1&_urlVersion=0&_userid=500062&md5=e30d2be5cd227e9dd4a611ca62016312&searchtype=a#bib14
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From a neurobiological perspective, studies on the effect of stress on anxiety related pathology 

and depression have mainly focalized on the imbalance of HPA-axis and glucocorticoid 

receptors induced by prolonged stress, thus this imbalance affects specific neural signalling 

pathways underlying emotion and results in anxiety and stress (Korte, 2001). 

Other studies showed that expositions to a single and unpredictible stressful event is sufficient to 

induce persistent changes in behavioural and physiological parameters in rats (Koolhaas et al., 

1997). Several studies highlighted similar alterations in HPA axis, with the involvement of CRF 

system, consequent by the exposure to social stress in different species (rat, Rattus norvegicus, 

Plotsky e Meaney, 1993; macaque, Macaca radiata, Coplan et al., 1996; baboon, Papio 

cynocephalus, Sapolsky et al., 1997; hamster, Mesocricetus auratus, Jasnow et al., 1999; chick, 

Gallus gallus, Sufka et al., 2006). Moreover, studies developed in cynomolgus macaque 

(Macaca fascicularis) (Shively, 1998) demonstrated a correlation between social anxiety 

disorder and impairment of dopaminergic transmission, and alterations of noradrenergic and 

serotoninergic systems.  

 

5.1   Anxiety and cognitive efficiency 

It has been long hypothesized that anxiety-related behaviour and cognitive processes may 

interact in a fundamental manner. According to some authors, cognitive dysfunctions are even 

suggested to be the primary presenting feature of pathological anxiety (Gray, 1990; 

McNaughton, 1997).  

Behaviourally, abnormalities in attentional control are often seen when subjects are presented 

with threat- related stimuli or distractors thought to be anxiety inducing (Fox and Georgiou, 

2005; Koster et al., 2006). Moreover, it has been shown that individuals who are 

temperamentally anxious show impairments in cognitive tasks, even when they lack any explicit 

threat-related material. To this end, several studies proved that trait anxiety in humans reduces 
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working memory (e.g. Leon and Revelle, 1985; Richards et al., 2000; Derakshan and Eysenck, 

2009), as well as complex reasoning (e.g., Darke, 1988; Richards et al.,  2000; Derakshan and 

Eysenck, 2009).  

Among the first authors, who analysed the relationship between anxiety and cognitive 

performance (i.e. working memory) are Yerkes and Dodson  (1908), who studied the effects in 

mice of different shock intensities on the rate of learning in a discrimination avoidance task. The 

Authors showed that when mice were trained in a simple visual discrimination task to avoid 

shock, their rate of learning improved linearly with an increase in the intensity of the shock. 

However when mice were trained in a more difficult visual discrimination task, their rate of 

learning was more efficient with an intermediate intensity of shock than with the highest 

intensity of shock.  

These findings brought to the creation of the so-called Yerkes-Dodson Law, which essentially 

stated that a high level of motivation can enhance learning on an easy task and impair learning 

on a difficult task (Yerkes and Dodson, 1908).  

Moreover, the relationship between shock intensity and performance on the task is linear 

(increased shock intensity produced increased performance) for the simple discrimination and 

nonlinear (an intermediate intensity of shock produced optimal performance) for the complex 

discrimination.  

According to this law, for complex tasks there is an optimum course of performance that 

describes an inverted U function: at low activation levels are low levels of performance, while 

gradually with increasing activation, also increases the ability to process stimuli, but an excess of 

anxiety impairs the performance (Fig.6). 
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Fig.6 The Yerkes-Dodson law. 

 

From studies in both human and rodents it has also been proved that the relationship between 

memory performances and circulating levels of glucocorticoids manifest the same inverted-U 

shape proposed by Yerkes and Dodson. As an example, in their review Lupien and colleagues 

(2007) reported that long term potentiation (LTP) seems to be optimal when glucocorticoid 

levels are mildly elevated, whereas significant decreases in LTP was observed after 

adrenalectomy or administration of synthetic glucocorticoids.  

Several theories have been proposed to explain how anxiety may exert its influence on cognitive 

performance.  

Processing efficiency theory (PET), suggests that the effect of negative emotions, such as 

anxiety, on cognitive performances may be mediated by their effect on working memory (WM), 

more precisely on the central executive, the component of WM that determines which 

information are to be made available fro conscious processing by exerting control over voluntary 

action (Eysenck and Calvo, 1992).  

Recently, it has been proposed an updated approach, i.e. attentional control theory (ACT), which 

contends that anxiety manifests in an impaired attentional control (Eysenck et al., 2007). This 

theory is founded on the assumption that attention is regulated by two systems: a goal-directed 

attentional system, governed by expectations, knowledge, and current goals and exemplifies top-
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down attentional control, and a stimulus-driven attentional system, sensitive to salient stimuli, 

and exemplifies bottom-up attentional control (Corbetta and Shulman, 2002).  

Anxiety modulates the balance between these two systems, thus, an increasing anxiety leads to 

“…an increased influence of the stimulus-driven attentional system and a decrease influence of 

the goal-directed attentional system” (Eysenck et al., 2007). This imbalance is reflected in 

performance deficits in cognitive tasks.  

From a neuroanatomical perspective it has been reported that mPFC may be one of the areas 

mediating effects of anxiety on cognitive performance.  

Indeed, data from several reports indicate that mPFC is implicated in several processing implicit 

forms of memory, such as temporal order learning, the sequential arrangements of behavioural 

components, the direction of attention to task relevant behaviour, response selection, spatial and 

delayed working memory, short term memory, preference judgments, novelty encoding and 

formation and processing of emotional memory (Wall and Messier, 2000).   

The role of mPFC in the processing of anxiety and in controlling attentional responses may also 

account for ACT theory. Indeed, it has been proposed that approach or withdrawal emotions, i.e. 

anxiety and fear according to Gray’s theory, impair the ability of prefrontal cortex to organize 

behavior over time, this general functions include maintaining the continuity of motivation, 

suppression of interference and shifting of strategy (Tormaken and Keener, 1998). 

 

6. Epilepsy 

Epilepsy is a neurological condition characterized by a paroxysmal event due to abnormal and 

hypersynchronous discharges from an aggregate of neurons in the central nervous system (CNS). 

Epilepsy affects 1% of the general world population, resulting in a condition in which a person 

has recurrent seizures due to a chronic, underlying pathologic process. Epilepsy affects around 
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50 million people worldwide, and nearly 90% of them are found in developing areas (WHO Fact 

sheet N°999). 

Epilepsy is a neuronal malfunctioning, many of the studies have been historically focused almost 

exclusively on the consequences on neuronal alterations, and, in particular, on the unbalance 

between excitability and inhibition (Holmes, 2005). TLE is often associated with a characteristic 

pattern of selective and extensive hippocampal atrophy, referred as hippocampal sclerosis 

(Meldrum and Bruton, 1992). The sclerotic hippocampus is considered to be the source of the 

electrical events that cause spontaneous epileptic seizures (Spencer, 1998). The indirect evidence 

that surgical removal of HS produces clinical improvement (Falconer and Taylor, 1968) 

strengthened the concept that HS itself is an epileptogenic area (Falconer, 1974). However, 

whether hippocampal sclerosis is the consequence of repeated seizures, or whether it plays a role 

in the development of the epileptic focus is still debated (Jefferys, 1999). Both clinical and 

preclinical data suggest that HS can be associated but not necessary for long-lasting epileptic 

condition.  

 

6.1   Animal model of temporal lobe epilepsy 

Temporal lobe epilepsy (TLE) is the most common epileptic syndrome in adult humans 

(Sanders, 2003); for this reason, the neurobiological bases of TLE have been extensively studied 

in preclinical research (Zhang et al., 2002), and adequate animal models paralleling human 

pathology are required. TLE refers to a chronic condition characterized by seizures primarily 

involving the temporal lobe, despite of the fact that other structures, such as the neocortex, may 

be the origin of the seizures (Arzimanouglou et al., 2002). In rodents, systemic administration of 

single dose of pilocarpine, a muscarinic cholinergic agonist, lead to status epilepticus (SE) and, 

after a seizure-free period, to a chronic condition determined by spontaneous recurrent seizures 

(SRSs). 
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Initially, this model has been proposed as sufficiently isomorphic with the human disease 

(Cavalheiro et al., 1996), but several aspects seem to differ significantly, at least concerning the 

extent of damage and the incidence of SE, as well as the inflammatory origin (Fabene er al., 

2008). In fact, 2/3 of human patients suffering TLE presents hippocampal sclerosis, whereas the 

remaining 1/3 presents focal limbic lesions. This latter group does not exhibit pronounced 

segmental neuronal cell loss or concomitant sclerosis (Majores et al., 2004).  

We recently demonstrated the occurrence of spontaneous recurrent seizures (SRSs) in rats with 

preserved hippocampal (and extrahippocampal) morphology and even in absence of status 

epilepticus (SE) (Navarro Mora et al., 2009). 

Pilocarpine-induced non-neural alterations leading to epileptogenesis have been recently more 

clearly indicated: seizures can induce leukocyte–endothelial interactions (Fabene et al., 2008; 

Kleen and Holmes, 2008; Ransohoff, 2009), blood–brain barrier (BBB) leakage (Janigro, 2007) 

and angiogenesis characterized by a poor barrier function (Rigau et al., 2007). The role of other 

non neuronal cells, such as astrocytes, as critical signaling elements that contribute in the 

induction of neuronal death following pilocarpine-induced SE has been also clearly 

demonstrated (Ding et al., 2007). 

Furthermore, we have provided evidences that modulating leukocyte–endothelium interaction we 

can reduce the SRSs frequency up to 60%, even in presence of a severe HS (Fabene et al., 2008). 

These considerations indicate that we should carefully interpret the experimental data obtained in 

animal models of epilepsy and that neuroinflammation has a more important role in the 

etiopathogenesis of epilepsy than previously considered. 

 

6.2   Epilepsy and Inflammation 

Recently, it has been shown that inflammation mechanisms, such as pro-inflammatory cytokines, 

play a role in the pathogenesis of epilepsy (Vezzani and Granata, 2005). CNS inflammation is 
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associated with BBB breakdown, and BBB leakage has been implicated both in the induction of 

seizures and in the progression to epilepsy with chronic seizure generation (Seiffert et al., 2004; 

Marchi et al., 2007). In addition, BBB opening leads by itself to neuronal hypersynchronization 

and epileptiform activity mediated by exposure of astrocytes and neuronal cells to blood albumin 

or potassium ions, respectively (Seiffert et al., 2004; Ivens et al., 2007; van Vliet et al., 2007; 

Marchi et al., 2007). We have recently demonstrated that leukocyte trafficking mechanisms 

induce BBB damage leading to seizure generation in animal models of epilepsy (Fabene et al., 

2008). The role of immune cells in epilepsy was further supported by the study of Kim and 

colleagues demonstrating that leukocyte migration through the brain endothelium breaks down 

BBB and causes severe seizures in an animal model of meningitis (Kim et al., 2009). In support 

of our work, a recent study showed that epileptiform activity is able to rapidly induce expression 

of adhesion molecules on brain endothelium (Librizzi et al., 2007) suggesting that each seizure 

may induce pro-inflammatory mediators able to activate brain endothelium, which in turn may 

favor the generation of other seizures. 

 

6.3   Epilepsy and Anxiety 

A frequent and clinically important comorbid disorder in patients with epilepsy is fear and 

anxiety (Vazquez & Devinsky, 2003; Beyenburg et al., 2005; Pauli & Stefan, 2009). Up to 50–

60% of patients with chronic epilepsy have various mood disorders including depression and 

anxiety (Beyenburg et al., 2005), and among all types of epilepsy, temporal lobe epilepsy (TLE) 

is most frequently associated with ictal and interictal fear (Cendes et al., 1994; Feichtinger et al., 

2001). The experience of anxiety reported by patients before or in between the occurrence of 

temporolimbic seizures has been attributed to activation of the amygdala and/or hippocampus 

(Gloor et al., 1982), which are critically involved in both the pathogenesis of TLE (Lçscher, 

1998) and fear-related behavior (LeDoux, 2000). 
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However, less has been published on how abnormalities of the HPA axis may explain why 

depressive disorders have the potential to increase the risk of developing epilepsy. Abnormalities 

of the HPA axis have been identified for a long time in humans with MDDs (Charney et al., 

1998), more recently in animal models of epilepsy (Mazarati et al., 2009), and in patients with 

temporal lobe epilepsy (Zobel et al., 2004). Indeed, high cortisol levels are known to be 

neurotoxic and thus may play a fundamental pathogenic role in the development of atrophy of 

temporal lobe structures. Neurons in the paraventricular nucleus of the hypothalamus secrete 

corticotropin-releasing hormone (CRH), which stimulates the secretion of adrenocorticotropic 

hormone (ACTH) from the pituitary gland. ACTH, in turn, releases glucocorticoids from the 

adrenal gland, which have an impact on various brain regions; once in the circulation, they exert 

an inhibitory effect on the HPA axis. Under normal conditions, the hippocampus and amygdala 

also inhibit the HPA axis. High levels of CRH and glucocorticoids occur in acute and chronic 

stress as well as in anxiety, depression and epilepsy. At high concentrations, both hormones have 

been associated with damage to hippocampal formation. High cortisol levels have been 

associated with the development of hippocampal atrophy in animal models and humans. 

In studies with rats and monkeys, dendrites of pyramidal neurons in the CA3 region retract as a 

reaction to stress; if the stressful event is short term, these changes are reversible. If long-lasting, 

the changes become irreversible through a reduction of dendritic branching and loss of dendritic 

spines that are included in glutamatergic synaptic inputs. Stress-induced secretion of glutamate 

in the hippocampus has been suggested by Sapolsky et al. (2000) as a potential mechanism of 

neuronal damage. These investigators suggested that chronic exposure to high glucocorticoid 

concentrations results in energy depletion by blocking glucose uptake in the neuron, making it 

more vulnerable to excitotoxicity, such as that mediated by glutamate, which is released in 

excess after such (and other) insult. 

High cortisol serum levels resulting from chronic stress also have been found to interfere with 

the development of new granule cell neurons in the adult hippocampal dentate gyrus. This effect 
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is thought to be mediated by a decrease in the secretion of brain-derived neurotrophic factor 

(BDNF) in the dentate gyrus, pyramidal cell layer of the hippocampus, amygdala, and neocortex 

(Smith et al., 1995). 

 

6.4   Epilepsy-Stress-Inflammation 

Stressful experiences typically have short-lived neuroendocrine and neurochemical effects, but 

the processes leading to these biological alterations may be sensitized so that later challenges 

promote exaggerated responses. Audet and collegues demonstrated that as stressors and 

immunogenic insults have both been associated with inflammatory immune variations within the 

brain, social stressor would result in augmented corticosterone release and mRNA expression of 

pro-inflammatory cytokines (for example IL-6) within the prefrontal cortex (PFC). IL-1β and 

TNF-α expression enhance after the social stres challenge in mice (Audet et al., 2011). 

 

7. Differences between human data and preclinical studies 

Animal models are used as "experimental preparations developed in one species for the purposes 

of studying phenomena occurring in another species" (McKinney, 1984). These models are 

obviously particularly of help in situations when the impact of stress and/or anxiety cannot be 

studied in humans because of ethical and other like reasons. However, the choice of which 

behavioural and/or biological correlates are to be investigated is not easy, since problems with 

animal models of human psychic disorders include: “(i) the difference between human’s and 

non-human’s nervous systems; (ii) the difficulty in determining analogous behaviours among 

species; and (iii) the need in extrapolation of results from animals to humans” (Kalueff and 

Tuohimaa, 2004). Authors also stated that such difficulties reflect a significant difference in 

aetiology and complexity of anxious or depressive behaviours.  Moreover, it has to be pointed 

out that the data derived from animal models are valid only to the extend that the models are 
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valid, and that the severity of the disorder modelled in animals may not be at the same level of 

the human disorder being modelled (Willner, 1997). 

A useful approach to emotions, involving animal research, is the analysis of its possible 

functional significance, it has been claimed that “important and pervasive human action 

tendencies, particularly those which occur across a wide range of cultures and specific learning 

situations, are very likely to have their origin in the functionally significant behaviour patterns of 

non-human animals” (Blanchard, 1990).  It is well known that most of the physiological changes 

related to anxiety or other emotional states, such as cardiovascular, temperature, respiratory and 

muscle tonicity changes are present in rodents too. Moreover, several studies investigated 

neurobiology of anxious and phobic states both in humans and animals (Belzung and Philippot, 

2007). However, for anxiety the issue concerning the relationships between human and non-

human data is particularly challenging. Indeed, it has been previously mentioned that anxiety is 

often thought of as a secondary emotion in which cognitive appraisal is strongly involved 

(Barlow, 2002).  

To investigate the appraisal component in animals, a phylogenetic approach to anxiety, which 

examines the different facets of human anxiety and their presence at different levels of the 

phylum, has been recently proposed (Belzung and Philippot, 2007).  

As an emotion, anxiety can be conceived as an action tendency resulting from specific appraisal 

of the situation. The concept of action tendency refers, “the inner dispositions (or their absence) 

of performing certain actions or achieving certain relational changes with the environment. In 

other words, an action tendency is the activation of a behavioural plan aiming at changing the 

individual environment relation. Impulses of “moving towards,” “moving away,” and “moving 

against” are examples of action tendencies” (Belzung and Philippot, 2007). 

These behavioural responses, such as withdrawal from danger, absence of movement and 

reduction of non-defensive behaviours, are present in all animal species. Moreover, both in 
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humans and in non-human animals action tendencies could constitute a preparation of the 

organism. 

Regarding the appraisal components it has been proposed a hierarchy of five mechanisms, called 

stimulus evaluation checks (SECs) (Shrerer, 1999).  

The first SEC, “novelty check,” looks for potential changes in the pattern of the situation. In 

animals this component can be detected using habituation; thus, after the repeated exposure of 

the animal to a new stimulation, the subject will establish that it is inconsequential, and will be 

able to ignore it. The second is “intrinsic pleasantness check”, which evaluates the pleasantness 

of the stimulus or the situation, on the basis of innate feature detectors or learned associations. 

This evaluation determines approach or avoidance. This approach-withdrawal mechanism can be 

found in organisms at all levels of complexity with a different sophistication. The third SEC is 

the “goal/need conductiveness check”, which evaluates the relevance of the stimulus for goals or 

needs of organism, the stimulus consistency with the state expected and if the stimulus is 

conductive or obstructive to animal’s goals and needs. The “coping potential check” determines 

the cause of  the event and the capacity of the organism to confront and control it. This ability is 

identifiable in species able to react in different ways, according to the predictability and/or 

controllability of the stimulus. The last SEC is “norm/self compatibility check”, which consiste 

in evaluating the congruence of the vent and the response with social and individual norms. 

According to the Authors this may be the only appraisal component, which cannot observed in 

animals. However, it has been proposed that the presence of the first four SECs could be 

sufficient for a specie to experience full-blown anxiety (Belzung and Philippot, 2007). 

To conclude, it is reasonable to assume that animals experience anxiety and emotional states, 

that need to be assessed through behavioural and/or physiological measure, which implies 

several problems regarding data interpretation. 
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The table (Table 3) represents the core symptoms of different anxiety related disorders, as 

reported by DSM-IV, and how these symptoms may be modelled in mice, though can be 

identified in rats as well (Cryan and Holmes, 2005).  

 

Table 3. How symptoms of anxiety disorders, used in DSM-IV, might be modelled in mice (from Cryan and 

Holmes, 2005). 

 

 

 

Symptoms How might symptoms be modelled in mice 

Avoidance of places from which escape could 

be difficult (agoraphobia) 
increased avoidance of exposed, well-lit 

areas 

Sudden onset of intense fearfulness, often with 

respiratory distress and fear of ‘going crazy’ 

(panic attack) 

Increased flight from a predator 

Anxiety provoked by social situations, leading 

to avoidance behaviour (social phobia) 
Low social interaction with unfamiliar 

conspecific 

Anxiety provoked by a specific feared object, 

leading to avoidance behaviour (specific 

phobia) 

Conditioned taste avoidance 

Re-experiencing a traumatic event, leading to 

increased arousal and avoidance of stimuli 

associated with the event (post-traumatic 

stress disorder) 

Increased freezing response to fear-

conditioned cue or context 

Anxiety-provoking obsessions and anxiety-

reducing compulsions (obsessive–compulsive 

disorder) 

Increased marble burying and excessive 

grooming 

Difficulty concentrating or mind going blank 

(generalized anxiety disorder) 
Impaired sustained attention 

Sleep disturbance/insomnia  Abnormal sleep architecture (measured 

using electroencephalogy) 

Autonomic hyperarousal (tachycardia, 

blushing, sweating and frequent urination) 
Radiotelemetric measurement of heart rate 

dynamics during anxiety-provocation, such 

as increased stress-induced hyperthermia 

Flashbacks of traumatic events  Impairment in extinction of fear memory 

Cognitive bias towards ambiguous or weak 

threat cues  
Increased fear conditioning to partial threat 

cue 

Heightened startle response, particularly in 

threatening contexts 
Increased acoustic startle response and fear 

potentiated startle response 

Separation anxiety  Increased ultrasonic vocalizations in pups 

separated from their mother 

Feelings of losing control or going crazy 

during a panic attack  
Cannot be modelled 



44 

 

   Box 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The issue of animal models 

An animal model is a living organism in which normative biology or behaviour can be studied, or in 

which a spontaneous or induced pathological process can be investigated, and in which the 

phenomenon in one or more respects resembles the same phenomenon in humans or other species of 

animal species (Wessler, 1976). 

In the field of psychiatric pathologies, animal models are used in the attempt to reproduce some of 

the symptoms shown in patients, in order to understand the neurobiological mechanisms that 

underlie these pathologies and to develop new therapeutic approches. More in general, these models 

can be used to mirror a human condition, i.e. anxiety, in a way that offers opportunities to better 

understand its origins, course and/or treatment (Remington, 2009) and its underlying neuronal and 

neuroendocrinal processes (Van der Staay, 2006). 

Other advantages in using animals is the fact that they can be bred, reared, maintained, and observed 

under standardized laboratory conditions, which allows a better scientific control over environmental 

influences or provide the basis for specific manipulation either genetically or environmentally. 

According to Kaplan (1973) “we may say that a system A is a useful model for the system B if the 

study of A is useful for the understanding of B without regard to any direct or indirect causal 

connection between A or B”. Two main concepts in the study of behavioural dysfunction using 

animal models are those  referring to homology and analogy; the first refers to “the relationship of 

two characters that have descended, usually with divergence, from a common ancestral character ” 

(Fitch, 2000) and therefore to a structural similarity between species, whereas analogy refers to a 

functional similarity or “the relationship of  any two characters that have descended divergently from 

unrelated ancestors” (Fitch, 2000). 

During the years, some fundamental criteria for animal models of psychiatric disorders have been 

estabilished, in order to consider those models valid (McKinney e Bunney, 1969;  Deussing, 2006). 

From these parameters, the model must:  

 be based on a theoretical rationale -construct validity-; 

 be reasonably analogous to the human pathology in their symptoms -face validity-; 

 cause of behavioural modifications that can be objectively controlled and monitored -

accuracy-; 

 produce behavioural modifications that can be reversible with the same treatments used 

effectively in humans -predictive validity-; 

 be reproducible -reproducibility-. 

Finnaly all the criteria listed before are applicable to animal tests of emotionality and/or cognition. 
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8.      Assessment of individual differences in rodents 

 

 

9. Animal tests of anxiety 

The growing need to understand and treat anxiety disorder and the development of new 

molecular techniques used in biological research (e.g. creation of transgenic and knockout 

animals, new anxiolytic drugs, etc.) led in the past 15 years to a drastic increase in the number 

studies combining molecular tools with behavioural tests of anxiety (see Fig. 7). More than 30 

Symptoms How might symptoms be modelled in mice 

Avoidance of places from which escape could 

be difficult (agoraphobia) 
increased avoidance of exposed, well-lit 

areas 

Sudden onset of intense fearfulness, often with 

respiratory distress and fear of ‘going crazy’ 

(panic attack) 

Increased flight from a predator 

Anxiety provoked by social situations, leading 

to avoidance behaviour (social phobia) 
Low social interaction with unfamiliar 

conspecific 

Anxiety provoked by a specific feared object, 

leading to avoidance behaviour (specific 

phobia) 

Conditioned taste avoidance 

Re-experiencing a traumatic event, leading to 

increased arousal and avoidance of stimuli 

associated with the event (post-traumatic 

stress disorder) 

Increased freezing response to fear-

conditioned cue or context 

Anxiety-provoking obsessions and anxiety-

reducing compulsions (obsessive–compulsive 

disorder) 

Increased marble burying and excessive 

grooming 

Difficulty concentrating or mind going blank 

(generalized anxiety disorder) 
Impaired sustained attention 

Sleep disturbance/insomnia  Abnormal sleep architecture (measured 

using electroencephalogy) 

Autonomic hyperarousal (tachycardia, 

blushing, sweating and frequent urination) 
Radiotelemetric measurement of heart rate 

dynamics during anxiety-provocation, such 

as increased stress-induced hyperthermia 

Flashbacks of traumatic events  Impairment in extinction of fear memory 

Cognitive bias towards ambiguous or weak 

threat cues  
Increased fear conditioning to partial threat 

cue 

Heightened startle response, particularly in 

threatening contexts 
Increased acoustic startle response and fear 

potentiated startle response 

Separation anxiety  Increased ultrasonic vocalizations in pups 

separated from their mother 

Feelings of losing control or going crazy 

during a panic attack  
Cannot be modelled 
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animal models of anxiety are currently used, some of them rely mostly on physiological (e.g., 

hyperthermia) or endocrine (e.g., plasma corticosterone) responses to stressors; however the 

majority are based on behavioural testing (Ramos, 2008; Rodgers et al., 1997).   
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Fig.71 Number of publications. Pubmed search based on the following search syntax: ("anxiety"[MeSH Terms] OR 

"anxiety"[All Fields]) AND YEAR[dp]. Limits: Species: Animals; Language: English. 

 

Behavioural tests may be classified in conditioned or unconditioned responses to stimuli capable 

of causing anxiety in humans. Tests involving unconditioned responses reflect a spontaneous 

behaviour ad present therefore a higher degree of ecological validity. (Table 4).  

Since 1934, it has been first conceived the open field (OF) test (Hall, 1934), numerous 

behavioural tests have been created to assess emotional reactivity in rodents and the majority of 

them have been used to study potential anti-anxiety agents (Hanson and Nemeroff, 2009).  

Most of the tests currently used  to assess anxiety are still based on behaviours that depend on 

body activity and locomotion, which also imply that “a pure measure of emotionality, devoid of 

non-emotional confounding factors (e.g. motor activity), is unavailable” (Ramos, 2008). For this 

study with put a particular regard for Elevated Plus Maze (EPM). 
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Table 4 Commonly used tests and models of anxiety (adapted from Rodgers et al., 1997). 

 

 

Unconditioned Responses Conditioned Responses 

Elevated plus-maze (Pellow et al., 1985) Active/passive avoidance task (Bammer, 1982) 

Open field (Hall, 1934) Conditioned emotional response (Kamin, 1963) 

Light/dark exploration (Crawley and 

Goodwin, 1980) 
Conditioned taste aversion (Garcia et al., 1955) 

Social interaction (File et al., 1976) Vogel conflict test (Vogel et al., 1971) 

Free exploration (Hughes, et al. 1975) Defensive burying (Pinel and Treit, 1978) 

Fear/defence test battery (Blanchard et al., 

1986) 
Fear potentiated startle (Brown et al., 1951) 

Social competition (Blanchard et al., 1995) 
Geller-seifter conflict (Geller and Seifter, 

1960) 

Holeboard test (Boissier and Simon, 1962) 
Learned helplessness (Seligman and Maier, 

1967) 

 

 

9.1   Elevated Plus Maze 

The Elevated plus maze (EPM) (Fig. 8) paradigm derives from early works on exploratory 

patterns, which were based on the premise that environmental novelty is able to evoke in rodents 

both fear and curiosity, creating the typical approach-avoidance conflict (Rodgers and Dalvi, 

1997). The test was developed as a result of Montgomery’s observation: using Y-mazes 

comprising different numbers of enclosed and open alleys, the Author noted that rats showed 

higher levels of exploration of the enclosed alleys and concluded that the avoidance of the open 

ones was due to the fact that they experienced higher levels of fear (1955).  

It has been studied the effect of anti-anxiety drugs and pro-anxiety drugs using an “X-maze” 

which was raised 70 cm above floor level and comprises two open and two enclosed arms 

(Handley and Mithani, 1984).  

Finally in 1985 Pellow and colleagues validate EPM as a measure of anxiety in the rat and 

commented upon the merits of this test, as reported by Rodgers and Dalvi (1997) : “(1) the test is 

fast and simple and does not involve expensive equipment; (2) it is based on spontaneous 

behaviour and thereby avoids lengthy training, the need of food/water deprivation, and the use of 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T0N-4YV82FR-1&_user=607988&_coverDate=07%2F31%2F2010&_alid=1425178862&_rdoc=1&_fmt=high&_orig=search&_cdi=4867&_sort=r&_docanchor=&view=c&_ct=3208&_acct=C000031439&_version=1&_urlVersion=0&_userid=607988&md5=f91c87add73fe34962c7622b07bb9742#bbib3#bbib3
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noxious stimulation; (3) it is able to identify acute anxiolytic effects of benzodiazepine drugs; 

and (4) it is bidirectional sensitive to manipulation of anxiety”. EPM became soon a widely used 

behavioural assay to measure anxiety-related behaviour in rodents. 

The apparatus consisted in maze of four arms in form of a plus: two open arms, and two arms 

enclosed by walls. The test relies on the conflict between tendencies of rodents to explore a 

novel area and avoidance of its aversive features that is fear of open and elevated places (File et 

al., 2004), thus rodents provoked behaviour in the EPM appear to include elements of neophobia, 

exploration and approach/avoidance conflict, therefore is often referred as an “unconditioned 

spontaneous behavioural conflict model” (Wall and Messier, 2001). It still remains unclear 

whether the predominant anxiogenics stimuli is represented by novelty, openness or height, 

however reducing the height or changing light levels did not increase exploration of the open 

arms, while adding a clear plexiglas walls along the edge of one of the open arms did. Thus fear 

of open spaces seems to be the predominant anxiogenics stimulus (Treit et al., 1993). Unlike 

other behavioural assays commonly used to assess anxiety, this test doesn’t rely upon the 

presentation of noxious stimuli (i.e. electric shock, food or water deprivation) and can be 

therefore considered an ethological way to value anxiety-related behaviour in rodents (Carobrez 

and Bertoglio, 2005; Rodgers et al., 1997). 

 

 

Fig.8 Elevated Plus Maze 
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EPM has been shown to have good face validity, for instance the anxiety or fear of open spaces 

seems to be measured with this test; moreover it has construct validity, which is demonstrated by 

the fact that anxiogenics drugs reduce the time spent on the open arms and anxiolytic drugs 

increase it (Pellow, 1985). 

Finally EPM has predictive validity for other anxiety-related measures, which has  been 

demonstrated for example by Frye and colleagues, who reported that rodents showing an 

increased open arm activity also displayed increased central square entries in a brightly lit open 

field (Frye et al., 2000). Furthermore plasma corticosterone is increased with open arms 

exposure and seems to be positively correlated with risk assessment behaviour in EPM (File et 

al., 1994; Rodgers et al., 1999).  

 With the purpose of emphasize the face validity of this model claimed that EPM has to be 

considered an “ethologically valid animal model of anxiety because it uses natural stimuli that 

can induce anxiety to human”. In facts, the fear of novel, open and bright-lit open arms may 

resemble, agoraphobia, vertigo and xenophobia (Dawson and Tricklebank, 1995). 

 

 

 

10. Animal tests of recognition memory 
 

Memory is generally defined as the ability to store, retain and retrieve past events or information.   

However, far from being a single, isolated function, memory consist in a complex network of 

different interrelated functions working together to manage information. Thus, a better definition 

is that of “memory system”, which include several subsystems (Carrillo-Mora et al., 2009). 

Declarative memory supports the recollection of facts and events and the encoding of memories 

in terms of relationships among the elements being learned. The stored representations are 

flexible and can guide successful performance under a wide range of test conditions (Clark and 

Martin, 2005). 
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Recognition memory refers to the capacity to identify a previously encountered item or stimulus 

and is considered a form of declarative. This ability to accurately recognize an item requires the 

encoding of the stimulus into memory; after a delay the subject must be able to subsequently 

discriminate between a novel stimulus and the one that has been previously encountered (Stern 

and Hasselmo, 2008).  

Early work on recognition memory was conducted on monkeys using the delay non-matching to 

sample task (DNMS). In this task the animal shall firstly displace an object in order to receive 

food reward, in the so-called sample phase. After a delay the object of the sample phase is 

presented with a novel object and the animal receives a food reward for displacing the novel 

object, choice phase (Mishkin and Delacour, 1975). 

 

10.1   Novel Object Recognition 

The main assumption at the base of this test is that access to novelty (e.g. an object or an 

environment) can elicit approach behaviours in animals. This type of behaviour was observed for 

example in rats that spent significantly more time sniffing a novel object than two familiar 

objects (Berlyne, 1950). Moreover, it has been demonstrated that rats preferred a familiar 

stimulus over a novel stimulus only when the environment was familiar, that is after 

environmental familiarization (i.e. repeated exposure to the environment) (Sheldon, 1969). 

The Novel Object recognition test (NOR) (Fig.10) is based on the previously cited studies and 

was introduced by Ennaceur and Delacour in 1988, in order to assess the ability of rats to 

recognize a novel object in a familiar environment (Ennaceur and Delacour, 1988).  

NOR is a delayed non-matching to sample task, that is it requires to remember a stimulus over a 

delay in which that stimulus is no longer present (Dudchenko, 2004). 
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The animal is initially placed in a cage with two identical objects and is allowed to explore them 

generally for 10 minutes; after a delay the animal is presented with two different objects, one 

previously encountered (i.e. the familiar object) and a novel one. 

Memory performance in the NOR is based on the natural tendency of animal to approach and 

explore a novel object that have not been paired with a reinforcement stimulus.  Moreover, it 

doesn’t involve reference memory components (e.g. explicit rule learning), thus it can be 

considered a “pure” recognition memory test. The absence of rule learning components also 

imply a logistical advantage in that the task does not require extensive pre-training to teach the 

subject the nonmatching rule (Clark and Martin, 2005). Furthermore, the inherent variability 

introduced during rule acquisition is avoided. 

Finally the test doesn’t involve positive or negative reinforces (e.g. food, electric shocks); on one 

hand this facilitates the interpretation of the effects of brain modification on memory, on the 

other hand it makes NOR comparable to memory tests currently used in humans (Ennaceur and 

Delacour, 1988). Indeed, NOR can be administered to humans, monkeys and rodents essentially 

in the same way, humans and monkeys typically view 2-D pictures and rodents are allowed to 

explore 3-D objects. Several data proved that the behavioural findings have been remarkably 

consistent across species (e.g. see Nemanic et al., 2004; Pascalis et al., 2004; Zola et al., 2000; 

Clark et al., 2000; Hammond et al., 2004). Thus, an interspecies comparison is possible.  

 

Fig.10 Schematic representation of the Novel Object Recognition test. 
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11.  Animal tests of social stress 

It has been demonstrated that social stress has a strong impact on the onset of several 

neurological and psychiatric disorders (Bjorkqvist, 2001). 

Among all animal models of stress, models of social stress have a very important role in the 

preclinical study of anxiety, being very closed to the principle of “construct validity” (see Box 

1). 

In fact, adverse events that involve relationship between individuals, that are able to alter 

stability and adaptation of the subject in the own social environment, can be perceived extremely 

stressful for the animal. 

 

11.1   Predator Odor Exposure 

Predator odor is a stressor of particular relevance to rodents in their natural setting, as an 

appropriate response may ensure their survival (Blanchard and Blanchard, 2003). Predator odors 

elicit responses based on their perceived threat to the rodent rather than in response to a physical 

stimulation (Blanchard et al., 2001, 2003; Day et al., 2004). These responses appear to be innate, 

appearing in both pups and in adults exposed for the first time (Wallace and Rosen, 2000). The 

compound 2,5-dihydro-2,4,5-trimethyl thiazoline (TMT), a sulfur-containing odor isolated from 

fox feces, has been used to induce stress and produce behavioral responses in both laboratory 

and wild rodents and thus does not require any conditioning or learning to elicit a response 

(Soares et al., 2003; Morrow et al., 2000; Wallace and Rosen, 2000, 2001). TMT produces 

reliable fearful responses such as freezing, decreased exploratory behavior and diminished 

grooming behavior. It also consistently activates the hypothalamic–pituitary–adrenal (HPA) axis 

resulting in increased serum corticosterone (CORT) levels (Tanapat et al., 2001; Soares et al., 

2003). 
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For many species, olfaction plays a large role in risk assessment (Kats and Dill, 1998). For 

rodents, the main predators are carnivores, including cats, dogs, mustelids, wolves, and foxes 

(Gillies and Clout, 2003; Glowacinski and Profus, 1997; Goldyn et al., 2003; Masini et al., 

2005). Several studies demonstrate that exposure to the odor of these predators induces species-

specific behavioral antipredator responses (Blanchard et al., 1990a; 2003a; Dielenberg and 

McGregor, 2001). Most of these studies have used feline odors to elicit defensive behaviors, 

including cat collars, cloths rubbed on cats, cat fur, cat bedding, cat urine, cat feces and soiled 

cat litter (e.g. Blanchard et al., 1990b; 2003b; Dielenberg and McGregor, 2001; Li et al., 2004; 

Zangrossi Jr. and File, 1992b). Some other studies have used odors from the red fox (Vernet-

Maury et al., 1968). In 1980, Vernet-Maury reported that TMT is the most effective chemical 

constituent of the fox feces odor for inducing behavioral and autonomic antipredator responses in 

rats. Since its discovery, TMT has been considered by many to be a specific olfactory cue 

associated with the red fox. TMT was not found in analyses of the volatile constituents of dog 

feces (Arnould et al., 1998) or in the anal gland secretions of the dog or coyote (Preti et al., 

1976). However, this compound was first isolated from cooked beef (Mussinan et al., 1977), and 

is also found in wheat flour extrudates (Bredie et al., 2002). Thus, TMT may not necessarily be a 

specific predatory stimulus to rodents, although it could represent an ethologically-relevant odor. 
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EXPERIMENTAL RESEARCH 

 

Differences in cognitive functions and emotional states have been widely studied in non-human 

animals by comparing the performance of different strains and genetically selected rodents in 

learning and memory tasks (see for example Bert et al., 2004; Nguyen et al., 2003; Sik et al., 

2003; Ferguson and Cada, 2004; Holmes et al., 2002). All these data showed that animals, who 

consistently exhibit high levels of anxiety, display poor learning and memory abilities.  

However, although from an evolutionary perspective studying individual differences in outbred 

animal strains is closer to existing natural population, research in these animals is less common, 

probably due to the wider variability in the results obtained.  

Indeed, few studies tested outbred animals of the same strain, gender and age and in all of these 

the sample was relatively small (Schwarting et al., 1998; Ho et al., 2002).  

Tests to assess spatial or recognition memory performance, such as Novel Object Recognition 

(NOR), are widely used in many studies investigating cognitive abilities in rodents Alzheimer 

disease’s models (e.g. Lawlor et al., 2007; Abbas et al., 2009; Peng et al., 2010) and lesioned 

rodents (e.g. Broadbent et al., 2009; Davis et al., 2010) but anxiety level of the animals tested has 

been rarely assessed. 

Indeed, it has been recently pointed out that “there is a traditional dichotomy between 

“emotional” domains (such as anxiety and depression) and “cognitive” domains (such as 

memory and learning) in behavioural neuroscience” (Kalueff and Murphy, 2007).   

The aim of this study is to help overcome this dichotomy. 

We firstly intended to provide an evidence of the huge interindividual differences in anxiety 

levels in naïve Wistar rats and, secondly, to demonstrate how they can affect a widely used 

cognitive test. For the same reasons we intended to evaluate if interindividual differences in trait 
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anxiety in C57Bl/6J mice can reflect a difference in the susceptibility to the onset of a 

neurological disease, the temporal lobe epilepsy, and eventually the progress of the pathology.  

It has been chosen a social stress test, specifically the predator odor exposure, with the purpose 

of mime an ecological condition of stress, closer to the natural and wild conditions in which 

rodents can be in nature. We used TMT (2,4,5-trimethylthiazoline), a synthetic compound 

extracts by anal glands of fox (and that can be found in its feces), commonly used for this type of 

studies. 

 

12.       Anxiety and Physiological Processes: Evaluation in Rats 

Rat represent one of the most used species in biomedical research. In the scientific research is 

mostly used Rattus norvegicus. In nature rat is a night animal, commensal and omnivorous; it is 

able to adapt to the environmental perturbations. 

Rat, by nature, is a social animal, particularly is a colonial animal: the social structure of a 

population of rats is based on a hierarchical order, in which is possible to identify dominant 

subjects and subordinate subjects. 

Rats of the present study belong to Wistar strain, a strain of albino rats, that we chosen for their 

peculiar features of docility, their homology in behavioural response and in susceptibility to 

stress between different subjects of the same strain. 

 

13.       Anxiety and Pathological Processes: Evaluation in Mice 

Mouse also represent one of the most used species in biomedical research. In the scientific 

research is mostly used Mus Musculus. Most of the behavioural characteristics in nature of mice 

are common with rats. 

The study of the influence of anxiety on a pathological process, the temporal lobe epilepsy, lead 

us to choose a mouse model instead a rat model, because of the strong effort that this kind of 
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model needs. Our choice allowed us to keep and observe a larger population of epileptic animals, 

but also it will allow us to continue the future research in this field with genetically modified 

mice, since C57Bl/6J is the background strain for any kind of genetical modification. 
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MATERIALS AND METHODS 

 

All the procedures and protocols of these experiments received authorization from the Italian 

Ministry of Health, and were conducted following the principles of the NIH Guide for the Use 

and Care of Laboratory Animals, and the European Community Council (86/609/EEC) directive. 

 

14.       Anxiety and Physiological Processes in Rats: Experimental Design 

182 male Wistar rats, were housed two per cage 2 weeks before the beginning of the experiment, 

in order to habituate them to the experimental environment.  

Firstly EPM was performed to screen their anxiety-like behaviour to provide information about 

the basal anxiety level. After the testing session body weight of all animals was measured and 

animals were then placed in individual cages (42.5 x 18.5 x 26.5 cm). 

The testing session lasted three days; 20 animals were tested each day in order to test animals in 

the same day period (i.e. 9.00 – 13.00 h). Novel Object Recognition test was performed 10 days 

after EPM was finished, in order to allow animals to return to their pre-EPM anxiety level. 

Successively, a subgroup of animals (n=60), belonging to different profiles of basal anxiety, 

were tested in NOR during a 3 days testing session, 20 animals each day, in the same day period 

(i.e. 9.00 – 13.00 h). 

 

14.1   Subjects and housing 

182 two-months-old male Wistar rats (Harlan Laboratories, Milano, Italy), weighting 250-275g 

at the beginning of the experiment, were used for EPM testing, 60 of them were later submitted 

to the NOR test.  

Subjects were housed in transparent polycarbonate cages (42.5 x 18.5 x 26.5 cm), with a metal 

grid as a cover, with with food and water ad libitum.  
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Cages were changed once a week and animal were handled in those occasions; both cages 

changes and handling were performed by the same experimenters. All the behavioural tests have 

been run in dedicated rooms, equipped by soundproofed walls (three different levels of lead-

sheet in each wall), 17/h air changes, constant temperature (22°±2° C), independent air 

conditioning and and with a 12h/12h light/dark cycle (dark phase: 07.00 – 19.00 h). Thus 

animals were tested during their period of activity. 

Furthermore, the ceiling and the walls of the EPM room are black-painted, and no extra-maze 

cues were present once the behavioural test was running. Testing was performed always by the 

same experimenter.     

 

15.       Behavioural Tests 

15.1   Elevated Plus Maze 

The EPM is commonly used to evaluated the state anxiety in many species of laboratory animals. 

The apparatus used in our laboratory for albino rats is made of black polycarbonate and consists 

of four arms, each 50 cm long and 10 cm wide; there are two open arms, without any wall, 

crossed with two closed arms, with 40 cm high walls. Each arm of the maze is attached to a 

black polycarbonate leg 50 cm long (Fig.11).   

The test consisted in a single 5 minutes long session in which the animal was firstly placed at the 

centre of the maze; the centre of the maze and the open arms are considered “open portion” of 

the apparatus. Animals were then let free to explore the arms.  

After one subject has been tested and before testing the following one, the maze was cleaned 

with paper towels and diluited ethyl alcohol.  

A video recording system was used to register behavioural testing, after which data were scored 

by the experimenter using software The Observer XT (Noldus Information Technology, The 

Netherlands). 
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For each subject the number of entrances in the open and in closed arms and in the centre and the 

time spent in each arm and in the centre were recorded. An arm entry was counted when all four 

paws of the rodent were in the considered arm. 

Time spent in the open arms and in the centre (OT=open time) is to be considered a measure of 

the animal’s level of anxiety, while the frequency of entries in the various arms (TE=total arm 

entries) is an estimate of the rat’s locomotor activity.  

 

 
 Fig.2 Schematic representation of the EPM apparatus and the recording system and the EPM apparatus used in our 

laboratory.  

 

15.2   Novel Object Recognition 

Novel Object Recognition test was performed using a set of four PhenoTyper chambers (Noldus) 

made of transparent polycarbonate (45 x 45 cm) (Fig.12a). The floor of the chamber was covered 

with dark brown sawdust, to allow the detection of the animals with a video-tracking system.  

Two different sets of objects were used, familiar objects consisted in green plastic cubes (4 x 4 

cm) (Fig. 12b), whether novel objects consisted in wooden balls (4,5 cm diameter), attached to 

wooden squared basis (4 x 4 cm) (Fig.12c).  
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a)                 b)         c)    

Fig.12 (a) A PhenoTyper chamber and the objects used in the NOR task: (b) familiar object and (c) novel object. 

 

 

 

The NOR task comprised a familiarization phase, a delay and the test phases. The task was 

preceded by an habituation phase lasting 10 minutes, during which the animal was let free to 

explore the apparatus without any object in it.  

During the familiarization phase (T1), the apparatus contained two identical objects (the familiar 

objects) placed in a symmetrical position about 10 cm away from the wall, opposite to which the 

rat was placed. The rat was always placed in the apparatus from a hole on one wall of the box, 

facing the centre of the apparatus.  

This trial lasted 10 minutes; after that the rat was put back in its home cage.  

Subsequently, after a delay interval lasting 5 minutes, the rat was put back in the apparatus for 

the test phase, or novel trial (T2). During T2 the box contained two dissimilar objects, the 

familiar one and a new one (the novel object). This trial lasted 5 minutes. 

A video recording system placed over each box was used to register behavioural testing; the 

times spent exploring each object, the frequency in approaching each object and the distance 

moved during the first and the second trial were recorded for each subject. The data were scored 

using Ethovision software (Noldus Information Technology, The Netherlands) (Fig.13a).   
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a)       b)   

 

Fig.13 (a) Schematic representation of NOR apparatus (during the test phase) and (b) screenshot from the video 

recorder, rats exploring the objects during the test phase. 

 

 

 

In order to avoid the presence of olfactory trails the objects were thoroughly cleaned after each 

trial. Moreover, a third copy of the familiar object was used during the test phase, in order to 

eliminate the possibility that the subject recognized the familiar object because of a scent-mark 

from the familiarization phase (as opposed to recognizing its visual characteristics). The objects 

are secured to the arena floor so the subject cannot displace them during exploration. 

In addition, locations of the novel object (right or left) was randomized between the subjects to 

reduce potential biases due to preferences for particular locations or objects. 

The basic measure was considered the total time spent by rats in exploring the different objects 

during T1 and T2. Exploration of an object was defined as entering with the nose in an area of 

10,5 x 10,5 x 10,5 x 10,5 cm around the objects. 

Other measure calculated were the number of approaches each animal made to the objects, 

discrimination difference, i.e. the difference between time spent exploring the novel object and 

the time spent exploring the familiar one during T2, and the average duration of an approach, 
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namely the total time spent exploring an object divided the number of approaches to the same 

object.  

 

16.      Anxiety and Pathological Processes in Mice: Experimental Design 

150 male C57Bl/6J mice were housed four per cages 2 weeks before the beginning of the 

experiment, in order to habituate them to the experimental environment. 

Firstly EPM was performed to screen their anxiety-like behaviour to provide information about 

the basal anxiety level. After the testing session body weight of all animals was recorded, and 

animals were returned in their home cages. 

After two weeks, the same animals were treated with pilocarpine, a muscarinic cholinergic agent, 

in order to obtain a widely animal model of temporal lobe epilepsy. After the latent phase of the 

disease, mice were observed by the experimenter for 4 hours/day (from 12:00 p.m. to 4:00 p.m.) 

in their pilocarpine-induced spontaneous recurrent seizures, a behavioural parameter of chronic 

epilepsy. 

35 of all the epileptic mice were individually tested in the Predator Odor Exposure test, in a 

session of 15 minutes, in which animals were recorded and observed in their behaviour. 

Right after the session test, animals were returned in their home cages and observed for other 2 

hours by the experimenter, in order to evaluated their behaviour after the odor exposure. 

 

16.1   Subjects and housing 

150 eight-weeks-old male adult C57Bl/6J mice (Harlan Laboratories, Milano, Italy), weighting 

20-25 g at the beginning of the experiment, were used for EPM testing, were later submitted to 

the pilocarpine-induced status epilepticus, then were exposed by Predator Odor Exposure test.  

Subjects were housed in transparent polycarbonate cages for mice, with a metal grid as a cover, 

with food and water ad libitum.  
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Cages were changed once a week and animal were handled in those occasions; both cages 

changes and handling were performed by the same experimenters. All the behavioural tests have 

been run in dedicated rooms, equipped by soundproofed walls (three different levels of lead-

sheet in each wall), 17/h air changes, constant temperature (22°±2° C), independent air 

conditioning and and with a 12h/12h light/dark cycle (dark phase: 07.00 – 19.00 h). Thus 

animals were tested during their period of activity. 

Furthermore, the ceiling and the walls of the EPM room are black-painted, and no extra-maze 

cues were present once the behavioural test was running. Testing was performed always by the 

same experimenter.     

 

17.       Behavioural Tests 

17.1   Elevated Plus Maze 

The apparatus of Elevated Plus Maze used in our laboratory for C57Bl/6J black mice is made of 

white polycarbonate and consists of four arms, each 30 cm long and 5 cm wide; there are two 

open arms, without any wall, and two closed arms, with 25 cm high walls. Each arm of the maze 

is attached to a white polycarbonate leg 50 cm long. For protocol see Paragraph 15.1. 

 

17.2   Pilocarpine model 

Systemic administration of pilocarpine, a muscarinic cholinergic agent, is widely used in mice in 

order to mime temporal lobe epilepsy. In particularly, pilocarpine injection induce an acute event 

of pathology, named Status Epilepticus (SE), in which the first epileptic convulsion and 

continuous seizure activity appear, usually lasting 1-2 h; a subsequent phase of pathology, named 

silent period, in which epileptogenesis generates and animals don’t show any kind of 

pathological behavior or seizure; finally the chronic phase of the pathology, in which animals 

develope spontaneous recurrent seizures (SRSs) during the rest of life. 
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C57BL/6 mice were pretreated with methyl-scopolamine (1 mg/kg, i.p., Sigma Aldrich, 

Germany) to minimize peripheral muscarinic effects. Thirty minutes later, mice received an 

injection of pilocarpine (300 mg/kg, i.p., Sigma Aldrich, Germany) diluted in 0.01 M phosphate-

buffered saline, pH 7.4 (PBS). Systemic administration of pilocarpine induced in mice with 

continuous seizure activity usually lasting 1–2 h. Behavioral observations of pilocarpine-induce 

seizures during SE were evaluated according to a modified version of Racine scale using 

categories 1–5, with 5 being the most severe. Then after a latent (seizure-free) phase of 1–2 

weeks, mice go on to develop chronic epilepsy characterized by spontaneous convulsions. All 

mice that developed SE also developed spontaneous seizures. SE mice were observed by the 

experimenter every day for two weeks, for 4 hours (from 12 p.m. to 16 p.m.) during the activity 

phase of their circadian rhythm. The frequency of epileptic convusions was monitored online by 

the experimenter.                             

 

17.3   Predator Odor Exposure  

Predator odor exposure, is widely used in order to induce behavioural stressful response in mice. 

2,4,5-Trimethylthiazoline (TMT, Contech Entrerprises Inc., Canada), the most effective 

chemical constituent of the fox feces odor, is used like predator odor for mice. 

35 C57Bl/6J mice, belonging to the population of epileptic mice testing before to the EPM, were 

tested. Mice were subjected individually to a session of predator odor protocol; subjects were put 

into an novel empty cage containing the odorant stimulus (a glass plate with a filter paper soaked 

with 35 μl of TMT) for 15 minutes; control animals were exposed to a no odorant stimulus 

(saline). All sessions were video-recorded and videos were observed and analyzed offline by the 

experimenter, in order to evaluated the manifestation of epileptic convulsions. After the session, 

each animal were put again in its home cage.  
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Fig.14  Predator Odor Exposure setup. 

 

 

18.       Drugs and sostances 

For Pilocarpine model we used: 

- Methilscopolamine: 1 mg/kg, dissolved in 0.01 M phosphate-buffered saline, pH 7.4 

(PBS), and administrated intraperitoneally. 

- Pilocarpine: 300 mg/kg, dissolved in in 0.01 M phosphate-buffered saline, pH 7.4 (PBS), 

and administrated intraperitoneally. 

 

For Predator Odor Exposure we used: 

- 2,4,5-Trimethylthiazoline (TMT): 35 μl in a filter paper. 

- Saline: 35 μl in a filter paper. 
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RESULTS 

 

19.      Anxiety and Physiological Processes 

 

19.1   Elevated Plus Maze Results 

Given that three samples of animals were tested separately, we first checked for the homogeneity 

of the samples, according to their OT (time spent in the open arms and in the centre).  

Both the test of homogeneity of variances (Levene statistic=0.528, p=0.591) and the one-way 

ANOVA (F2,179=1.493, p=0.227) demonstrate that in the three samples the variances are 

homogeneous.  

Total arm entries (TE) was also evaluated as a measure of locomotor activity. We performed the 

test of homogeneity of variances (Levene statistic=0.698, p=0.499) and the one-way ANOVA 

(F2,179=0.407, p=0.666) also on this measure to assess that variances and means of the three 

samples were equal. 

Given these results we considered the entire data pool (n=182) for the subsequent analysis.  

According to their OT value animals were divided in three groups, corresponding to the 

subdivision of the population with the tertiles [1] high anxiety (HA) group; [2] medium anxiety 

(MA) group; [3] low anxiety (LA) group (Fig. 15). 
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TOTAL DURATION IN OPEN ARMS + CENTRE EXPLORATION 

 

 

Fig.153 Distribution of the 182 subjects tested in the EPM test according to their OT (time spent in open arms and  

centre).  

 

 

The Gaussian nature of the data distribution was further assessed the using Kolmogorov-

Smirnov test (statistic= 0.049;  p=.2) (Fig.16). 
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Fig.16 Histogram representing on the x-axis the time spent in the open arms (clustered in 10 seconds intervals) and 

on the y-axis the number of subjects spending a certain amount of time in the open arms and in the centre. 

 
 

Moreover, univariate ANOVA performed on the measure of TE between the three groups 

revealed a significant difference (F2,179=24.234, p=0.000). 

Bonferroni’s post hoc tests revealed that the difference were significant between the HA group 

and the MA group (p=0.00) and  between the HA and LA groups (p=0.00), but not between the 

MA and the LA group. (See Fig.17) 
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TOTAL NUMBER OF ARMS AND CENTRE ENTRIES 

 

 

Fig.17 Means of the total number of entries in any arms by each group. 

 

 

19.2 Novel Object Recognition Results 

60 male Wistar rats that were previously scored with the EPM test were tested with NOR; 19 

subjects belonged to HA group, 15 to the MA group and 26 to the LA group.  

To prevent potential biases due to preferences for particular locations (i.e. right or left) we 

calculated for each animal the difference between time spent exploring the right object and time 

spent exploring the left object during T1 and we exclude from subsequent analysis of T2 data all 

animals, that differed ±1,5 DS from the mean. Overall 7 subjects were excluded, 3 belonging to 

HA group and 4 to LA group. 
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No differences were found in the total time spent exploring both objects in T1 between the three 

groups. 

Regarding the time spent exploring the novel and the familiar object in T2, the paired sample t-

test revealed a significant preference for the novel object in the MA and LA groups (t14=2.54, 

p=.02; t21=2.33, p=.03) and no preference was found in the HA group (Fig.18).  

 

 

DURATION OF OBJECTS EXPLORATION DURING THE NOVEL TRIAL 

Fig.18 Means of the duration of approaches, i.e. the time spent by subjects of each group exploring the two objects 

during T2. 

No differences were found in the paired-sample t-test on the frequency of exploration of each 

object in any group. 

The presence of a significant difference in the exploration time of the familiar object between the 

groups was confirmed by the univariate ANOVA (F2,50= 3,983, p=0,025) and Bonferroni’s post 

hoc test, which was significant for the difference between HA and MA group (p=.02) (Fig.19). 

 

 

 

HA MA LA 
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DURATION OF EXPLORATION OF THE FAMILIAR OBJECT DURING THE TEST 

 

 

Fig.19 Mean of the time spent by each group exploring the familiar object during T2. 

 

No differences were found between the groups in the exploration of the novel object.  

Moreover, no differences were found between the groups in the frequency of exploration of both 

the familiar and the novel objects. 

To have a unitary view of the two variables, i.e. duration and frequency, we also evaluated the 

average duration of an approach, thus duration of the exploration divided by frequency.  

Significatively differences emerged between average duration of novel object approach and 

familiar one only in the MA group (t14=3.05, p=.00).  

No differences were found between the novel and the familiar object in the HA and LA groups 

(Fig. 20). 
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AVERAGE DURATION OF OBJECTS APPROACH 

 

 

Fig.40 Average duration of novel and familiar object’s approach in the three groups during T2. 

 

 

Discrimination difference (d), i.e. the difference in exploration time between novel and familiar 

object in T2, was also assessed, as a measure of the discrimination between the familiar object 

and the novel object. Object recognition is reflected by a positive discrimination score value.  

MA and LA groups reported a positive mean score value, whether HA group a negative score 

value (Fig.21). However the paired sample t-test shows only a tendency to significance (p=.073) 

for the comparison between HA and MA groups. 

 

 

 

 

 

 

 

HA MA LA 
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RECOGNITION DIFFERENCE 

 

 

Fig.51 Mean of recognition difference value of each group. 

 

 

20.     Anxiety and Pathological Processes 

 

20.1   Elevated Plus Maze Results 

150 mice were screened in the Elevated Plus Maze in order to obtain their trait anxiety level. As 

previously related for the population of rats, time spent in the open arms and in the centre (OT) 

of the maze was evaluated. According to this parameter, we checked for the homogeneity of the 

samples, that resultated homogeneous (Levene statistic=0.843, p=0.433). 

Animals were divided in three groups, corresponding to the subdivision of the population with 

the tertiles [1] high anxiety (HA) group; [2] medium anxiety (MA) group; [3] low anxiety (LA) 

group (Fig. 22). 
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TOTAL DURATION IN OPEN ARMS + CENTRE EXPLORATION 

 

 

Fig.22 Distribution of the 150 subjects tested in the EPM test according to their OT (time spent in open arms and  

centre).  

 

 

 

20.2   Pilocarpine Model of Epilepsy Results 

The occurance of status epilepticus (SE)  in comparison to the different traits anxiety was 

evaluated right after the pilocarpine administration. A number of 107 mice, in the population of 

150 pilocarpine-treated  subjects, developed SE (SE mice), whereas 43 mice did not develop SE 

and they were called resistant mice (NO SE mice). More precisely, we observed 39 SE mice and 

11 NO SE mice in the High Anxiety trait group (HA group); 32 SE mice and 18 NO SE mice in 

the Medium Anxiety trait group (MA group); and 36 SE mice and 14 NO SE mice in the Low 

Anxiety trait group (LA group) (Fig. 29). No differences in the Chi-Square test were found 
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between the number of SE mice and NO SE mice, in comparison to different traits anxiety (p= 

0,299). 

 

SE vs NO SE in Anxiety 

 

Fig.23 Number of mice that developed status epilepticus (SE mice) and not (NO SE mice) in comparison to their 

trait anxiety.  

 

Considering SE mice population, we observed  8 SE survival mice, 14 SE mice died right after 

the manifestation of status epilepticus, and 17 SE mice died some days after the manifestation of 

status epilepticus (during the silent period) in the HA group; 14 SE survival mice, 8 SE mice 

died right after the manifestation of status epilepticus, and 10 SE mice died some days after the 

manifestation of status epilepticus (during the silent period) in MA group; 13 SE survival mice, 

12 SE mice died right after the manifestation of status epilepticus, and 11 SE mice died some 

days after the manifestation of status epilepticus (during the silent period) in LA group (Fig. 24). 

No significant differences in the Chi-Square test were found between the number of SE survival 

mice, SE died right after mice and SE died days after mice, in comparison to different traits 

anxiety HA, MA and LA groups (p= 0,309). 
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Fig.24 Different response to pilocarpine injection in mice belonging to the three different trait anxiety levels. 

 

After the silent period of pathology, animals entered in the chronic phase of the illness. 

Considering only the survival mice, we observed that all mice that developed SE (SE mice) 

developed spontaneous recurrent seizures (SRSs), whereas mice that did not develop SE (NO SE 

mice) did not develop SRSs and did not show any kind of pathological behaviour. NO SE mice 

did not continue the study. Frequency of seizures were monitored and the mean of seizures per 

group were analysed. Mice of HA group showed a mean of 3,25 seizures; mice of MA group 

showed a mean of 2,71 seizures and mice of LA group showed a mean of 2,38 seizures (Fig. 25). 

We did not observe any significant difference between the mean of SRSs and the level of trait 

anxiety, as the one-way ANOVA (p= 0,653) and Bonferroni’s post hoc test (HA vs MA p= 

0,535; HA vs LA p= 0,865; MA vs LA p= 0,329) confirmed. 
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Mean of SRSs vs Anxiety 

 

 

Fig.25 Correlation between the mean of the number of seizure and trait anxiety. 

 

 

 

After two weeks of behavioural observation of seizures, SE mice were divided into two groups 

and tested in the Predator Odor Exposure Test. 18 mice were exposed to TMT predator odorant 

stimulus (TMT mice), and 17 mice were exposed to saline (CONTROL mice), for 15 minutes. 

After that session, animals returned in their home cage and they were observed again for other 

two hours by the experimenter, in order to monitored the frequency of epileptic convulsions. 

During the Predator Odor session, animals did not show seizures. During the subsequent 

observations, 1 TMT mouse of HA group showed a seizure, 2 CONTROL mice of MA group 

showed a seizure, and 1 TMT mouse of LA group showed a seizure, but no significant 

differences were found. 
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STRESS vs ANXIETY 

 

 

Fig.26 Number of seizures, in the two hours after the predator odor exposure, of SE mice in comparison with their 

trait anxiety. 
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DISCUSSION 

In this project we firstly intended to conduct a population study on anxiety. Furthermore, we 

investigated whether behavioural and cognitive profiles of male Wistar rats in a Novel Object 

Recognition test are related to individual differences in the Elevated Plus Maze. Finally we asked 

whether individual differences in trait anxiety can affect the susceptibility on the onset of 

temporal lobe epilepsy of male C57Bl/6J mice, and eventually the progress of pathology in term 

of worsening of illness, measuring behavioural parameters. 

 

First and foremost, EPM results provided strong evidence for a huge variability in anxiety level 

in naive animals. Rats classified as displaying an elevate anxiety proneness (HA rats) spent on 

average less than 17% of time in the open arms, whether animals belonging to LA group more 

than 60%. Moreover, rats from HA group displayed less locomotor activity if compared to the 

other groups. This data may be due to the tendency of HA rats to enter in closed arms and remain 

there and/or the presence of freezing responses. 

These results are consistent with those reported by other EPM studies conducted on naïve rats, 

which have already shown that rats, although identical in strain, sex and age can differ 

systematically in their behavioural response to the maze (Ho et al., 2002; Schwarting et al., 

1998).  

However, by far such a wide range of subjects, i.e. 182 animals, has never been tested. Thus, not 

only we proved further demonstrations that behaviourally relevant differences in anxiety levels 

can be observed even within a sample of rats identical in age, gender and strain; but also the size 

of our group may help in giving a complete picture of possible individual differences in anxiety 

levels. 

Interestingly, comparing the results with data derived from testing HAB (High Anxiety 

Behaviour) and LAB (Low Anxiety Behaviour)  rats, i.e. selected strains for extreme trait 
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anxiety, with EPM, it emerges that the performance of these strains is similar to that of the HA 

and LA groups we identified in our study. It has been reported that LAB rats spent more than 

60% time in open arms, whether HAB rats less than 20%, very similar results were obtained by 

Landgraf (reported by Salomé et al., 2002).  

It must be taken into account the presence of a great variability in performing behavioural tests 

between different laboratories.  

However, it is clearly demonstrate that animal researches on basal anxiety levels can be 

conducted using naïve animals, instead of selected strains, minimizing all the other confounds.  

In facts, it has been pointed out that the study of selected strains implies several potential 

confounds. For example they reported that, whereas HAB rats, show a positive relationship 

between hippocampal volume and anxiety, NAB (Normal Anxiety Behaviour) rats, i.e. normal 

rats, display a negative relationship (Kalish et al., 2006). Authors claimed that, because of the 

co-segregated biological differences, these animals also differ in depression, locomotion and 

exploration.  

It has been reported that individual differences in EPM behaviour in this sample can predict 

behavioural outcome in other tests of anxiety, such as object burying and active avoidance 

paradigms, but not in models of depression, such as forced swim test (Ho et al., 2002). 

A challenging issue is the one regarding the distinction between trait and state anxiety in animal 

testing. Our intent was to have a measure of anxiety proneness in rats, thus, trait anxiety. 

Tests for animal models such as Elevated Plus Maze, Open Field and Light-Dark Box compare 

animals with an anxiety provoking situation. Therefore, they are considered as modelling state 

anxiety.  

Except for studies on selected strains, the only test that has been proposed as an animal model of 

trait-anxiety is the free exploratory paradigm (Griebel et al., 1993). In this test, animals are given 

the opportunity to freely move around within an environment containing both familiar and novel 

parts. As the animals have a choice between novelty and familiarity, it is expected that 
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individuals with low trait anxiety would exhibit a preference for novelty whereas high trait 

anxiety subjects would prefer familiarity. 

However, this test is not completely free from anxiety provoking stimuli. The presence of a 

novel environment can be considered as potentially threatening. Indeed, even the Authors 

claimed that this approach allows the evaluation of neophobic responses.  

If we consider trait anxiety as a permanent disposition without a specific stimulus to elicit 

anxiety response, this is not the case of free exploratory paradigm. 

Therefore, current behavioural tests only measure state anxiety and are thus considered 

inadequate for modelling a persistent human conditions (Lister, 1990). In addition, as previously 

noticed, genetic models imply several confounds.  

Thus, in animal research on anxiety it could be useful to considered emotional states and traits 

just as two sides of the same coin (Lazarus, 1991).  

An anxious individual would be anxious more often and more intensely than others. Moreover, 

A-trait was originally defined as a predisposition to perceive non dangerous circumstances as 

threatening, and to respond to these “with A-state reactions disproportionate in intensity to the 

magnitude of the objective danger” (Spielberger, 1966).  

Consequently, to measure anxious trait we need to assess how often and intensely the rats 

experience anxious state. A high trait anxiety would correspond to an inner disposition to react 

more anxiously in anxiety-related tests, when compared to the other animals (Ramos, 2008).   

 

NOR data clearly demonstrate that individual anxiety levels significantly affect cognitive 

performance. Indeed, the measures of duration of each object exploration, average duration of 

approaches on the total duration of the test and discrimination difference were concordant, 

showing that MA and LA rats were able to discriminate between the novel and the familiar 

object, whereas HA rats failed to do so and spent the same amount of time exploring both.   
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Moreover the measure of average duration of object approaches during the test phase revealed 

that a clear discrimination between the novel and the familiar object occurred only in MA rats. 

These results suggest a trend similar to the one proposed by Yerkes and Dodson (1908). Indeed 

both excessively high and low anxiety seem to impair recognition memory. 

It has to be point out that this data might reflect both a pure memory impairment or an 

impairment mediated by attentional deficits. Indeed, anxious individuals appear to have a greater 

tendency to explore the environment and such exhaustive scanning augments their capacity to be 

distracted by peripheral events and reflects an inability to maintain attention focused on a 

particular stimulus (Mathews et al., 1990; Shapiro and Lim, 1989). 

Moreover, it is possible to explain HA group failure in objects discrimination. Indeed, it has been 

assumed that anxiety may act modulating the interaction between goal-directed attentional 

system and a stimulus-driven attentional system (Eysenck et al., 2007). Goals can be considered 

“representations that help to control behavior and bias how information is processed” (Gray, 

2001). Anxiety seems to lead to a decreased influence of goal-directed system, i.e. detection of 

novelty, on behaviour and increased influence of the stimulus-driven attentional system, which 

implies an exploration of both objects in the same manner.  

Another problem in the interpretation of results may arouse from the fact that the status of the 

novel object may be confused. Sometimes it has been used for assessing anxiety, and sometimes 

for assessing novelty seeking behaviour (Ennaceur et al., 2009). However, the main difference 

we found was related to the duration of the familiar object exploration, thus, no avoidance 

behaviours toward the novel object, which may reflect anxiety-like behaviour, were detected. 

It has been already noticed that in rodents, NOR task has become particularly popular also to 

investigate neural basis of recognition memory. 

However, by now the findings are rather mixed. For example the question regarding 

hippocampus involvement remains unsolved and discrepancies have been found (Broadbent et 

al., 2009).  
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As the relationship between anxiety and cognition has been extensively investigated in humans 

and several researches have been carried out in non-humans, one may expect this variable to be 

taken into account in all studies assessing memory in rodents as an explanation of interindividual 

variability and as a possible confound.  

However, in their review on pharmacology and neurobiology of novel object recognition, it has 

been reported some possible explanations for discrepancies in data obtained with NOR between 

studies carried out in different laboratories. It is interesting to note that anxiety and/or emotional 

levels of the subjects are not mentioned as possible confounds (Dere et al., 2007).  

To conclude, one of the first questions asked in studies on animal emotionality and affective 

behaviours should be “can my findings be a result of merely altered memory or learning?” 

(Kalueff and Murphy, 2007); we demonstrated that the inverted question should be asked too.  

 

Regarding the population study in mice, in order to evaluate the effect of trait anxiety in a 

neurological disease in preclinical research, we needed to turned our attention from rat model to 

mouse model. This is because mouse is the most appropriate species to the development and the 

study of temporal lobe epilepsy. Moreover, the C57Bl/6J strain, that we used in our study, is the 

genetic background for any model of pathology, in particular for the genetically modified animal 

models. This can gave us the main reason to use mice for the second experiment of the study. 

 There is a strong evidence for a huge variability in anxiety level in naive mice of the same 

strain, gender and age;even in this case, our results are consistent because a population of 150 

animals all together has never been tested and so the size of our group may help in giving a 

complete picture of possible individual differences in anxiety levels. 

Our results showed that there is no differences between mice belonging to different trait anxiety 

group and their susceptibility to the epilepsy. However HA group of mice had a major number of 

subjects that developed status epilepticus in comparison to the other groups of mice (HA: 39 
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SE/50 total mice; see Fig.23); this tendency can give an idea of the strong impact that trait 

anxiety can have on animals. 

Moreover, if we observe the mean of the number of seizures, that mice of each group showed in 

the chronic phase of the illness, and their level of trait anxiety, no significant differences were 

observed. However, in mice that spent less time in the open arm and in the centre of the EPM, 

the HA group, we observed a mean of 3,25 seizures, that is higher than the mean of seizures of 

MA group (2,72 seizures) and the mean of LA group (2,38 seizures). 

Regarding the possible effect of the stressful stimulus, the predator odor exposure, on the 

progress of the illness, we did not find differences in the number of seizures after the exposure of 

TMT odor between the groups HA, MA and LA. These results can be explain by the indication 

that TMT induces freezing and potentiates the analgesia expressed in the presence of a 

conditioned fear stimulus (Bolles and Fanselow, 1980; Fendt and Fanselow, 1999, Walf and 

Frye, 2003). Freezing behavior, analgesia and inhibition of pain could be explained like a 

protection of subjects to a dangerous situation (i.e. predator exposure), in which animals must be 

concetrated to escape and to save themself.   

In the same way, many studies have been demonstrated, over the past 25 years, that TMT 

stimulates autonomic and behavioral changes in rodents and induces increase in corticosterone 

and adreno-corticotropin hormone release in naive animals (Day et al., 2004; Morrow et al., 

2000; 2002). These demonstrations provide the relevance of this model in the induction of stress 

behaviours, as we observed in our mice. The authors highlighted the activation of the 

hypothalamic-pituitary-adrenal-axis. This excessive activation of HPA axis can leand to an 

increased vulnerability of neuronal cells in hippocampal and frontal lobe structures, that are 

involved in the pathogenesis of epilepsy. The opportunity for us to monitor once again each 

subject, exposed to predator odor test, in the EPM test, in order to compare their trait anxiety to 

their state anxiety induced by TMT, was failed because pilocarpine induces some alterations in 

vision mechanisms; animals were not be able to perform the test in the apparatus. 
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Finally, we scheduled the evaluation of hormonal parameters by analysis of blood samples, and 

molecular evaluation of inflammatory parameters, such as dosage of cytokines, chemokines and 

adhesion molecules by the analysis of the brain of subjects; a technical problem in our laboratory 

facilities, in particular the breakdown of the freezer containing the all the samples, caused the 

defreezing and so the lost of all our samples. Future prospective is  to reproduce this study, in 

small scale, in order to complete the work with molecular analysis. 

In conclusion, we claim the need to consider interindividual differences in emotionality (e.g. 

anxiety) in general, and the need to assess anxiety level while studying rats cognitive abilities. It 

will be possible to include it as a covariate in the statistical analysis, in studies that schedule 

behavioural factors, in order to avoid interpretative errors dued to this hidden variable. 

 

FREQUENT PROCEDURAL MISTAKES IN EXPERIMENTAL ASSESSMENT 

 

Discrepancies in literature on behavioural assessment of emotionality and/or cognition in 

animals may be due to procedural differences or mistakes. For example an assumption that is 

frequently made is that all species/strains will display the same behaviour and/or 

pharmacological response to experimental manipulations (Hogg et al., 1996). However, there are 

several evidences of the presence of intra-strains differences (e.g. Walsh,1980, Van Lier et al., 

2003; Ceballos et al., 2006). For example in the original validation of EPM, it has been reported 

that baseline levels of anxiety-like behaviour were different between Lister and Wistar rats 

(Pellow et al., 1985). 

Other factors that may influence animal testing are connected with housing, cleaning and 

laboratories facilities. 

An important factor, which may alter behaviour in several tests, especially those assessing 

anxiety, is social isolation. Different studies demonstrate that isolated rats are more stressed than 

group-housed rats (e.g. Hatch et al., 1963, Brain and Benton, 1979, Sharp et al., 2002a).  
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Husbandry procedures, such as cage cleanings and general health checks, are regularly carried 

out practice in animal laboratories. It has been shown that handling of the subjects and alteration 

of the cage environment may disturb animals, for example by the disruption of odour cues which 

are necessary for social communication and recognition (see Abou-Ismail et al., 2008).  

Indeed, handling and cleaning procedure have been shown to be stressful for rats and induce 

short term-memory changes in a range of behavioural, physiological, endocrinological and 

immunological stress indicators, e.g. heart rate, arterial blood pressure, and body temperature 

(Sharp et al., 2002a, 2002b). 

It has been pointed out that, given these common procedure appears to be stressful over short 

term, the point in the circadian cycle at which are applied may be important. Indeed, in many 

laboratories a light inverted cycle is not used, thus cage cleaning results in being carried out 

during the light phase of the animal, i.e. inactive period, and may result in sleep disruption and 

additive stress (Abou-Ismail et al., 2008)  

Light-dark cycle also influences behavioural performances in the various tests, such as a water 

tank social interaction test in mice (Nejdi et al., 1995) 

Moreover, it is important to note that prior testing and/or manipulations may exert a deep 

influence upon behavioural tests. Acute stressors have been reported to be influential on the 

behaviour exhibited by animals on the EPM; for example, electric shock, forced swim, surgical 

stress and saline injection all enhance anxiety. Similarly, immobilization, social defeat, and 

exposure to cat, cat odour, or conspecific odour reduce the exploration of the open aspects of the 

maze (see Hogg et al., 1996). 

Finally, Dere and colleagues reported that a marked variability has been found comparing 

different studies using NOR and this discrepancies might be due to “(a) differences in animal 

housing conditions, (b) the rodent strains used, (c) the age and sex of the animals, (d) the time of 

day at which the experiments were performed, (e) the dimensions, shape and the illumination of 

the apparatus in which object recognition was tested, (f) whether rich spatial and contextual cues 



87 

 

were present during testing, (g) the type of objects used, (h) the duration of sample and test trials, 

(i) whether a sample trial exploration criterion was used or not, (j) the length of the inter-trial 

interval, (k) the degree of experimental pre-experience of the animals, (l) whether animals were 

subjected to multiple or single object recognition tests, and (m) the measure used to infer object 

recognition” (Dere et al., 2007). 

 

FREQUENT INTERPRETATIVE MISTAKES IN LITERATURE 

 

An approach of subjective experience in animals is offered by cognitive ethology (Griffin, 1976) 

and psycho-ethology. Animal’s subjectivity is dependent on the meaning of environmental cues 

for each individual, constructed from interrelations between the subject and its worlds, through 

perception and action (Von Uexküll, 1956; Nagel, 1974). Therefore, it has been pointed out that 

the interpretation of behaviour should not be based on quantitative analysis of separate items, but 

rather on a global analysis taking into account the context in which items have been expressed 

(Rodgers et al., 1997; Allen, 1998).  

However, interpretation of behaviour, especially spontaneous behavior, in affective terms may 

not be straightforward. For example approach behaviour may be interpreted as a defensive 

reaction toward threatening or dangerous stimuli, or a response to valued and positively 

reinforcing stimuli (Paul et al., 2005).   

Differences in exploratory behaviour have been interpreted as caused by changes in the animal’s 

cognitive appraisal or risk assessment (Rodgers and Cole, 1994), in the likelihood of potential 

predatory attack (Dawson and Tricklebank, 1996) or in the probability of agonistic contact with a 

territory holding dominant conspecific (Hendrie et al., 1996).  

Animals of the same strain manipulated in the same way and tested through the same paradigm 

but by different research teams often express very differently in their behaviour (Crabbe et al., 

1999). Thus, behaviour cannot be considered a linear phenomenon.  
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Inter-individual phenotypic variations should be been attributed to the sum of genetic and 

environmental effects. A parallel could be draw between human personality and the behaviour of 

an individual animal, both are influenced by genes, environment and their interactions (Bouchard 

and Loehlin, 2001). Thus, “ideally, when submitting a rodent to an anxiety test, a picture of at 

least one facet of its ‘personality’ should be obtained.” (Ramos, 2008). 
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