
Strings in Proteomics and
Transcriptomics

Algorithmic and Combinatorial Questions

in Mass Spectrometry and EST Clustering

Zsuzsanna Lipták

PhD thesis submitted to the

Technical Faculty of Bielefeld University, Germany

for the degree of Dr. rer. nat.

Supervised by

Dr. Sebastian Böcker

Referees

Dr. Sebastian Böcker, Prof. Dr. Jens Stoye

Defense on

July 11, 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/217514004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

for Nando

3

4

Abstract

This thesis treats two problem areas in bioinformatics which can both be benefi-
cially formalized as string problems.

The first (and larger) part deals with weighted string problems as they arise
from biotechnological mass spectrometry applications. In a mass spectrometry
experiment—put in a simplified manner—the molecular mass of the sample mo-
lecules is determined. The aim is to identify the sample, either with or without
additional information from a database, relying on the fact that the different build-
ing blocks of proteins (namely, amino acids) and of DNA molecules (nucleotides)
have different molecular masses. Viewing proteins and DNA molecules as strings,
this leads naturally to the definition of weighted strings as strings over a finite
alphabet Σ with an additional weight (or mass) function µ : Σ 7→ R

+.
We develop some results in weighted string combinatorics, and then present ef-

ficient algorithms for three weighted string problems which are motivated by mass
spectrometry.

First, the mass decomposition problem is the problem of finding all compomers
whose mass equals a query mass. Here, a compomer is an integer vector specify-
ing the number of occurrences of each character of Σ. A compomer abstracts from
the order of characters in a string and identifies instead all strings with the same
number of occurrences of each character—since these strings all have the same
mass. We also present simulation results and tables detailing the number of com-
pomers for different biomolecules, in the ranges appropriate for mass spectrometry
applications.

Next, we give several efficient algorithms for the submass problem: to test, for
a given weighted string s and a query mass M, whether s has a substring with
mass M; to find where such a substring occurs; and other variants. We present an
algorithm for binary alphabets which runs in time logarithmic in the length of s.
Furthermore, we present several algorithms for the problem where multiple masses
are sought; these algorithms encode the submasses of s in a polynomial and rely
for their efficiency on Fast Fourier Transform for polynomial multiplication.

The third weighted string problem we discuss is de novo peptide sequencing, i.e.,
recovering the amino acid sequence of a sample peptide from tandem MS data,
a specialized mass spectrometry experiment. We describe an algorithm which is
an enhancement of a dynamic programming algorithm presented by Chen et al. in
2000. We describe our implementation and present some simulation results.

The second part of the thesis deals with EST clustering. ESTs (expressed se-
quence tags) are short DNA sequences which are partial copies of mRNAs; they
are produced in a high-throughput manner and submitted to public databases. In

5

EST clustering, the aim is to produce a partition of a large set of ESTs, where each
cluster corresponds to a gene; thus enabling the researcher to identify which genes
were being expressed. Clearly, the quality of the clustering is highly dependent
on the dissimilarity measure (distance/similarity measure) for strings and on the
clustering algorithm employed. We have developed a method for evaluating differ-
ent string dissimilarity measures and clustering algorithms. Finally, we present
simulation results for five dissimilarity measures and one clustering algorithm.

6

Acknowledgements

First and foremost I would like to thank Sebastian Böcker and Jens Stoye. Sebas-
tian has been a wonderful supervisor, with lots of time for his students; he is always
willing to explain or listen—assuming you are fast enough to follow. It’s been great
working with him, and I found his support and advice invaluable. Jens has been
both a great boss and a supportive mentor over these past two years. Bielefeld is a
prime location for bioinformatics research, and I am very happy to have been able
to work here.

Thanks to Marcel Martin and Henner Sudek for implementing and re-imple-
menting (and re-implementing . . .) my algorithms. Particular thanks for being
such smart guys and thinking so much before—or at least during—coding. It’s
been great working with you. Thanks, too, to Matthias Steinrücken; although he
never programmed for me, he saved me in many a desperate situation when I had
some C++ or general software question.

Thanks to the Deutsche Forschungsgemeinschaft (DFG), which has financed me
within the Computer Science Action Program (BO 1910/1-2) for the whole period of
my time at Bielefeld University.

Special thanks to Peter Widmayer at ETH Zürich, who supported me over a period
of several years, and always gave me the freedom to choose what I wanted to do. I
am grateful for the opportunities I was given at ETH and for all the things I learned
there. I would also like to thank the team of the Forum for Women in Computer
Science (Frauenförderung am Departement Informatik). Working with them has
been a very enriching and formative experience for me while at ETH.

I would like to thank the South African National Bioinformatics Institute (SANBI)
in Cape Town, in particular its head, Win Hide; as well as Scott Hazelhurst at the
University of the Witwatersrand (Wits) in Johannesburg. They together financed a
three-month research visit of mine at SANBI and Wits in 2002, and another one for
one month in early 2003. These visits gave rise to our work on EST clustering, part
of which is included in this thesis. I am looking forward to the continuation of this
work. Special thanks to Scott Hazelhurst for being a friend as well as a wonderful
collaborator. Thanks also to Cathal Seioghe, then at SANBI, who coordinated the
masters course at the time, within which I taught three courses.

I want to express my thanks to my co-authors who have taught me how to do
research in a team, and how to write papers together. These are: Sacha Bagin-
sky, Nikhil Bansal, Sebastian Böcker, Mark Cieliebak, Thomas Erlebach, Wilhelm
Gruissem, Scott Hazelhurst, Torsten Kleffmann, Matthias Müller, Arfst Nickelsen,
Paolo Penna, Jens Stoye, Emo Welzl, and Judith Zimmermann. It has been a par-
ticularly enriching experience to work across scientific boundaries: for computer
scientists and biologists to try to understand and learn from each other. In par-
ticular, many thanks to Win Hide at SANBI and to Sacha Baginsky at ETH for

7

spending countless hours trying to explain molecular biology to me. Special thanks
go to Mark Cieliebak, with whom I shared an office and most of my work over a
period of maybe two years at ETH: During this time, we taught each other how to
be researchers.

Special thanks to the group Genome Informatics in Bielefeld, which is an amaz-
ingly nice collection of people. I hope that they have also benefitted from having
had, for the first time, a woman academic among them; I trust the change consisted
not only of no longer being able to tell the same jokes over lunch. On top of the
many seminars, group meetings and academic discussions, from which I gained
a lot, the relaxed atmosphere has been very enjoyable. In particular, thanks to
Michael Kaltenbach (Mitch) who has been a great office mate; Constantin Bannert
(Conni) for his unique and wonderful sense of humour; Klaus-Bernd Schürmann
for initiating the afternoon coffee break; Sergio Carvalho for insights into the Brasil-
ian way of life; Thomas Schmidt for organizing the pool evenings; Rileen Sinha for
our many discussions on subtleties of the English language; Michael Sammeth and
Gregor Obernosterer for lightening things up; Kim Rasmussen for advice on life
with babies in Bielefeld; and the recently arrived Veli Mäkinen, Sven Rahmann,
and Anton Pervukhin. And special thanks to Heike Samuel for her kindness in
dealing with the day to day craze of a group of useless academics.

Many many thanks to Alexander Sczyrba, Ingo Schurr, Klaus-Bernd Schürmann,
Christian Rückert, Hans-Michael Kaltenbach, Lisa Lampert, Mark Cieliebak, Fer-
dinando Cicalese, and Sacha Baginsky for proofreading parts of this thesis.

Finally, I want to thank my many great friends in Germany, Hungary, Switzer-
land, and the U.S., who have given me much support and love over these past
years. I thank Ingo Schurr in particular, from all my heart, for always being there
for me, as a friend and a fellow mathematician. I am grateful to my mother, who
gave me so many opportunities, and to my father, who awakened my interest in
mathematics at an early age. My daughter Réka Cicalese, born 8 January 2005,
showed me wonderful new aspects of life and continues to do so every day. I thank
Ferdinando Cicalese, friend, colleague, and husband, for having turned up in my
life, and for being who he is: simply the most wonderful person in the world.

8

Contents

Abstract 5

Acknowledgements 7

1 Introduction 13

1.1 General biological background . 13
1.2 Weighted strings in computational biology 16
1.3 String dissimilarity measures in computational biology 17
1.4 Overview of the thesis . 18

I Weighted Strings and Mass Spectrometry 19

2 Background I: Mass Spectrometry 21

2.1 What is mass spectrometry? . 21
2.2 Mass spectrometry in proteomics and genomics 25
2.3 Algorithmic challenges in mass spectrometry 27
2.4 Mass tables . 31

3 Combinatorics of Weighted Strings:

Definitions, Problems, and Properties 35

3.1 Definitions and simple properties . 36
3.1.1 Compomers . 36
3.1.2 Compomer decompositions of masses 37
3.1.3 Submasses and subcompomers 38

3.2 Number of decompositions of a mass (integer masses) 39
3.2.1 The Frobenius number . 40
3.2.2 The generating function approach 41

3.3 Number of substrings, subcompomers, submasses 43
3.3.1 Number of substrings of a given string 45
3.3.2 Number of subcompomers of a given string 46
3.3.3 Number of submasses of a given string 49

4 Mass Decomposition Algorithms 51

4.1 Related problems . 51
4.2 The classical dynamic programming algorithm 52
4.3 The extended residue table . 52
4.4 Finding all witnesses . 54

4.4.1 Correctness of the algorithm . 55

9

Contents

4.4.2 Complexity of the algorithm . 56
4.4.3 Runtime heuristic . 56

4.5 Solving related problems with the extended residue table 57
4.6 Simulation results and γ(M) for biomolecules 59

5 Submass Finding Algorithms 65

5.1 First solutions and overview of results 65
5.2 An algorithm for binary alphabets . 67

5.2.1 Algorithm INTERVAL . 69
5.3 Submass finding with polynomials . 70

5.3.1 Searching for submasses using polynomials 70
5.3.2 A Las Vegas algorithm for finding witnesses 73
5.3.3 A deterministic algorithm for finding all witnesses 76

6 De Novo Peptide Sequencing with Mass Spectrometry 81

6.1 Problem definition . 81
6.2 AuDeNS: A tool for automated de novo peptide sequencing 82

6.2.1 The mowers . 84
6.2.2 The sequencing algorithm . 85
6.2.3 Details of efficient implementation 86

6.3 First experimental results . 87

II String Dissimilarity Measures and EST Clustering 91

7 Background II: Expressed Sequence Tags 93

7.1 Why ESTs and EST clustering? . 93
7.2 What are ESTs? . 93
7.3 Properties of ESTs . 94
7.4 EST clustering . 97

8 EST Clustering 99

8.1 Literature on and software for EST clustering 99
8.2 Terminology . 101
8.3 String similarity and distance . 102
8.4 Clustering algorithms . 105
8.5 Clustering evaluation . 106

9 A Method for Evaluating String Dissimilarity Measures 109

9.1 Evaluation method . 109
9.2 ECLEST: A tool for evaluating EST clusterings 110
9.3 Suitability evaluation for single linkage clustering 111

9.3.1 Using ESTSim for Creating Benchmarks of Simulated EST Sets 112
9.3.2 Data used in the experiments . 112
9.3.3 Dissimilarity measures compared 114
9.3.4 Results . 114

9.4 Conclusion . 117

10

Contents

10 Conclusion 119

Bibliography 121

Appendix: List of Publications 133

11

Contents

12

1 Introduction

This thesis is about two applications of the concept of strings in bioinformatics:
weighted strings and string dissimilarity measures.

In recent years, focus in bioinformatics research has shifted away from structural
genomics towards functional genomics: Since the completion of the draft version
of the human genome [Int01, VAM+01], interest has increased in products of the
later steps of protein expression and the general workings of the cell. The respec-
tive areas are referred to as transcriptomics, proteomics, and metabolomics, while
understanding the whole system in all its intertwined complexities, referred to as
systems biology, is now often viewed as the ultimate goal.

Nevertheless, the highly successful abstraction of viewing many biomolecules as
strings, in the computer science meaning of the term, continues to play a vital role.
One fairly new area of research is the study of strings over a finite alphabet where
each character is assigned a positive real number, a weight or mass. In this thesis,
we refer to these strings as weighted strings. Weighted strings appear naturally
in the context of mass spectrometry, which has become the predominant analysis
technique in proteomics. We treat some properties of weighted strings and their
underlying combinatorics, and introduce efficient algorithms for several weighted
string problems.

Another area that continues to hold interest is that of dissimilarity (or distance)
measures between strings, be it for defining an evolutionary distance on genomes
of different species, or, as in the case of EST clustering, for alleviating the effect of
errors that occur in laboratory processes. EST clustering is a major challenge in in-
terpreting the large amounts of EST data available in public databases. We present
a method for evaluating clustering algorithms and string dissimilarity measures for
EST clustering.

1.1 General biological background

The Central Dogma of Molecular Biology states that the flow of information in living
organisms is from DNA to RNA to protein. Its implementation in the eukaryotic cell
is depicted in Figure 1.1. This process is usually referred to as protein expression.

In the first step, transcription takes place: The double-stranded DNA is unwound,
and one strand (the non-coding strand) is copied onto messenger RNA (mRNA).
This is done by DNA-dependent RNA polymerase, which attaches to each base its
Watson-Crick complement1; thus, the newly synthesized mRNA becomes the re-
verse complement of the non-coding strand, or, equivalently, an exact copy of the

1The Watson-Crick complements are: adenine (A)–thymine (T) and cytosine (C)–guanine (G) for DNA;
in RNA, T is replaced by uracil (U).

13

1 Introduction

other (the coding) strand, except that it contains a U in place of each T. The posi-
tion where the transcription starts is called transcription start site (TSS), and where
it ends, polyadenylation site (poly-A site). When the transcription process reaches
the poly-A site, it is terminated and a so-called poly-A tail, a string of a number of
A-bases, is added to the mRNA. This mRNA is also referred to as pre-mRNA.

The second step consists of splicing the pre-mRNA: Certain parts are cut out
(spliced out), and the remaining stretches are bound together, respecting the orig-
inal order. The stretches that are spliced out are called introns and those that
remain exons. The spliced mRNA is sometimes referred to as mature mRNA, but
usually just as mRNA.

Finally, the translation step follows. The mature mRNA is transported to the
ribosome where a protein is assembled according to the sequence of bases in the
mRNA: Each consecutive block of three bases (codons) codes for an amino acid,
according to the genetic code. Not all of the mRNA is translated: at both ends, there
are untranslated regions (UTRs). The 5’-UTR stretches up to the START-codon,
where translation starts, and the 3’-UTR begins at the first STOP-codon, where
translation ends.

The stretch of DNA that is transcribed is referred to as a gene. Genes either code
for proteins or for RNA products; the process of RNA production is similar, except
that the last step does not take place.

AAAAAA

AAAAAA

AAAAAA

AAAAAA

TSS Poly-A-site

DNA

pre-mRNA

pre-mRNA

(mature) mRNA

(mature) mRNA

protein

transcription

splicing

translation

Exon 1

Exon 1

Exon 2

Exon 2

Exon 3

Exon 3

Exon 4

Exon 4

3’-UTR5’-UTR

protein coding region

Figure 1.1: The Central Dogma of Molecular Biology (eukaryotes)

14

1.1 General biological background

The totality of a species’ DNA is called its genome. The study of the genome is
referred to as genomics, consisting, among other things, of finding the sequence of
bases, location of genes, regulatory elements, repeats (structural genomics), and
their role in the complex process of the cell’s functioning, including the correspon-
dence of genes and protein products (functional genomics).

All proteins that are produced by a species’ cells are referred to collectively as its
proteome. Proteins are large molecules that play a fundamental role in all living
organisms. They are made up of smaller molecules (amino acids) that are linked to-
gether in a certain order by peptide bonds. The sequence of amino acids constitutes
the so–called primary structure of a protein. Protein size ranges from below 100 to
several thousand amino acids, where a typical protein has length 300 to 600. Most
proteins are made up of the 20 most common amino acids (listed on page 33). Short
sequences of amino acids, typically around 20 amino acids, are often referred to as
peptides. Proteomics is the study of a species’ proteins: Under what circumstances
are they expressed, by what types of cells, what is their function, how do they in-
terrelate, how are they regulated. Expression studies, for instance, attempt to find
which proteins are expressed at a given time, differentiating according to cell type,
developmental stage, healthy versus pathological tissue, and many other things.
For such studies, it is necessary to be able to identify the proteins isolated in the
wetlab experiment. This can be done either using a protein database, or by de novo
identification, i.e., without employing prior knowledge on existing proteins. For this
analysis, very often mass spectrometry (MS) is used, a technique that makes use of
the different molecular masses of the amino acids, the basic elements of proteins.
A mass spectrometer determines, roughly speaking, the molecular masses of each
of the sample molecules from the molecular mixture given as its input. The output
thus consists of a list of masses along with their intensities, where ideally, each
(mass, intensity)-pair corresponds to a molecule from the sample: The first entry
is this molecule’s mass, while the second is roughly proportional to the number of
molecules of this type in the mixture. We will review in detail the technique of mass
spectrometry in Chapter 2. The bioinformatics challenge lies in interpreting this
output: First, to recover the primary structure (i.e., the order of amino acids) of the
sample molecules from the output, and second, to do this in the presence of the
great amount of noise and other errors that occur in mass spectrometry.

The metabolome consists of all substances present in the cell, such as sugars
or lipids. Mass spectrometry can be and is increasingly employed in metabolomic
studies; the string concept can no longer be applied here, but nonetheless, some of
the same algorithmic problems occur.

Another way to gain information on which proteins are being expressed in a cell at
a given time is to analyze its transcriptome, i.e., all mRNAs present in the cell. Tran-

scriptomics can thus be viewed as lying inbetween genomics and proteomics: mRNA
constites the connection between the genome and the proteome. One common way
of analysing mRNA is by using expressed sequence tags (ESTs). ESTs are short
DNA fragments which are partial copies of mRNAs captured in the cell; they are
manufactured in a laboratory process, which we will review in Chapter 7. In order
to identify which products were being expressed at the time of mRNA extraction in
the cell, EST clustering is a method frequently employed: The ESTs produced from
the extracted mRNAs are clustered in such a way that each cluster corresponds to

15

1 Introduction

a gene, i.e., to a protein or RNA product. We will discuss EST clustering and the
issues involved in detail in Chapter 8.

Two important divergences from the process described above make the analysis of
transcriptome and proteome of an organism particularly challengig: First, alterna-
tive splicing (described in Chapter 7), and second, posttranslational modifications:
these are modifications of the protein, such as phosphorylation, that occur after the
translation step has taken place. Thus, the mass of substrings of the protein can
no longer be derived from knowing the DNA sequence of the corresponding gene
alone.

1.2 Weighted strings in computational biology

The two types of biological macromolecules traditionally under investigation in
bioinformatics, DNA/RNA and proteins, can be conveniently viewed as strings over
a finite alphabet: the alphabet of four nucleotides for DNA and RNA, and that of
20 amino acids for protein. The order of the characters is often referred to as the
biomolecule’s primary structure. By reducing biomolecules to their primary struc-
ture, we ignore the far more complicated 3-dimensional structure of these mole-
cules, which play a decisive role in their function. However, in many applications, it
suffices to know the primary structure, e.g. for database search. Viewing DNA/RNA
and proteins as strings has proved a highly fruitful abstraction in bioinformatics
research.

In mass spectrometry experiments, however, only the mass of the sample
molecule is measured, which is—roughly speaking—the sum of the masses of its
characters. Clearly, two molecules consisting of the same characters have the same
mass, irrespective of the order of the characters. This leads to two closely related
abstractions, weighted strings and compomers: A weighted string is a string over a
finite weighted alphabet, i.e., an alphabet Σ = {σ1, . . . , σk} with an additional mass
(or weight) function µ : Σ→ R

+. The mass of a string is simply the sum of the masses
of its characters. Given a string s over a (weighted or unweighted) ordered alpha-
bet Σ = {σ1, . . . , σk}, its compomer comp(s) is a vector (c1, . . . , ck) with non-negative
integer entries, where ci counts the number of occurrences in s of the character σi.

Apart from mass spectrometry, the study of weighted strings and compomers
has further applications in those problems on strings over an unweighted alphabet
Σ = {σ1, . . . , σk} where the focus of interest are not the strings themselves, but rather
equivalence classes of strings defined by their compomers (i.e., by the multiplicities
of characters). The compomer (c1, . . . , ck) thus represents all strings s = s1 . . . sn

such that the cardinality of character σi in s is exactly ci, for all 1 � i � k. These ob-
jects have been referred to in recent publications variously as compositions [Ben03],
compomers [Böc03a, Böc03b], Parikh-vectors [Sal03], multiplicity vectors [CEL+04];
related mathematical objects are π-patterns [ELP03]. A similar approach are so–
called Parikh-fingerprints [AALS03,Did03]. Here, Boolean vectors of (b1, . . . , bk) are
considered, where bi = 1 if and only if character σi occurs in the string. Applications
range from identifying gene clusters [Did03,SS04] to pattern recognition [AALS03],
alignment [Ben03], or SNP discovery [Böc03b].

Even though weighted strings and compomers have ample applications and offer

16

1.3 String dissimilarity measures in computational biology

a rich area of investigation in their own right, suprisingly little research on them
exists to date. We will present some theoretical results on weighted strings and
compomers, as well as efficient algorithms for several problems in the area.

1.3 String dissimilarity measures in computational

biology

The notion of distance or similarity (which we collectively refer to as dissimilarity)
between strings has been extensively used in bioinformatics research. Applications
include computing the evolutionary distance between species, eliminating the ef-
fects of sequencing or other errors that occur in laboratory processes, and database
search.

In phylogenetic studies (computing evolutionary distance), the underlying as-
sumption is that the closer related two species, the more similar their genomes:
viewed either on the string level—often restricted to highly preserved areas such
as genes—or, increasingly, as regards the order of their genes. When eliminat-
ing sequencing or other errors, the aim is to correctly relate strings to each other
which have been derived from the same original string, as in sequence assembly.
Finally, database search for strings or substrings, as with BLAST [AGM+90] or
FASTA [LP85], can be viewed as a mixture between these two: The aim is to find
strings or substrings in the database which are similar to the query string. These
can then be interpreted in one of two ways: either as related to the query string,
e.g., the same protein from a different species; or as essentially equal to the query
string, e.g., an alternatively spliced version of the same protein, a slightly differing
genomic version due to interpersonal variation, or simply the effect of comparing
two error–ridden laboratory copies of the original string.

The most commonly applied string similarity measures are alignment–based
ones, such as the Levenshtein or edit distance [Lev66], often combined with some
heuristics for speedup. However, subword–based measures are increasingly being
employed, which compare subword–counts of the two strings. Most prominently,
the q-gram distance [Ukk92] has been very successfully applied to approximate
matching problems. For fixed q 2 N (where N denotes the set of positive integers),
the q-gram distance between two strings s and t is the sum, over all substrings w

of length q, of the absolute difference in the number of occurrences of w in s and t.
If we choose q = 1, this is just the L1-distance of the two compomers of s and t, the
so-called compomer distance of s and t.

In this thesis, we investigate the use of different string dissimilarity measures for
EST clustering, and introduce a tool for evaluating them. The tool separates the
three components used in EST clustering algorithms, namely the string dissimilar-
ity measure, the clustering algorithm, and the clustering evaluation, and allows to
test these individually, on simulated or real data.

17

1 Introduction

1.4 Overview of the thesis

The thesis consists of two major parts: Chapters 2 through 6 deal with weighted
string problems motivated by mass spectrometry applications, while Chapters 7, 8,
and 9 treat EST clustering and string dissimilarity measures.

We begin with a brief introduction to mass spectrometry and to its application
in biotechnology, and discuss what kinds of algorithmic problems it gives rise to
(Chapter 2). This chapter also includes a short overview of some of the current
bioinformatics literature on mass spectrometry.

Chapter 3 deals with weighted strings and some of their basic properties. This
chapter contains all definitions and background for the following three chapters,
which deal with particular algorithmic problems arising in mass spectrometry.

In Chapter 4, we discuss the mass decomposition problem, i.e., how to represent
a query mass as the sum of given character masses. We introduce an efficient
algorithm for producing all such decompositions of a query mass, and show how to
use the data structure employed by the algorithm to solve several related problems.
The chapter also includes simulation results as well as results on the number of
decompositions of biomolecules.

Chapter 5 contains algorithms for the submass finding problem, i.e., whether a
weighted string s has a substring t with a given query mass M. In particular, we
give a very efficient algorithm for binary alphabets, and several algorithms based
on Fast Fourier Transform of polynomial multiplication.

Chapter 6 deals with the de novo peptide sequencing problem and introduces
an algorithm which enhances the dynamic programming algorithm introduced
in [CKT+01]. The chapter also contains implementation details of our first pro-
totype and some experimental results.

In the second major part of the thesis, we analyze the problem of EST clustering.
We first give the biological and technical background in Chapter 7, followed by
a chapter on EST clustering and string dissimilarity measures from a computer
science perspective (Chapter 8). In Chapter 9, we give details of the implementation
of a dedicated tool for evaluating EST clusterings, along with experimental results
for a particular clustering algorithm.

We conclude with an outlook to future research and open problems in Chapter 10.
All implementation featured in the thesis was done either with the cooperation

or under the supervision of the author. Parts of Chapters 3, 4, 5, 8, and 9 have
been published in refereed conference proceedings or journals, and the contents
of Chapter 6 as a technical report. Special thanks go to the co-authors of these
publications.

18

Part I

Weighted Strings and Mass
Spectrometry

19

2 Background I: Mass Spectrometry

This chapter starts with a brief introduction to mass spectrometry as applied to
proteomics and genomics (Sections 2.1 and 2.2). Detailed introductions can be
found in [Siu96, KS00]; see also the overview article [AM03]. Section 2.3 gives an
overview of the bioinformatics problems that arise in mass spectrometry applica-
tions, including a brief overview of the research literature. Finally, Section 2.4
includes tables of the molecular masses of amino-acids, nucleotides, and atoms
found in common biomolecules.

2.1 What is mass spectrometry?

A mass spectrometer is a device which, given a sample molecular mixture as input,
determines the molecular mass of the sample molecules, or, more precisely, their
mass-to-charge-ratio, commonly referred to as m/z. The mass spectrometer’s out-
put is referred to as a spectrum. Ideally, a peak in the spectrum indicates the pres-
ence of molecules of the corresponding m/z value in the sample, while the height of
the peak, referred to as intensity or sometimes relative abundance, is proportional
to the number of molecules with this m/z value. However, both the m/z values and
the intensities are influenced by many other factors, as well; in particular, many of
those influencing the intensity value remain unclear. Thus, an observed peak in a
spectrum must be interpreted as merely a hint that there may be a significant num-
ber of molecules with the corresponding m/z value in the sample. See Figure 2.1
for an example of a mass spectrometry (MS) spectrum.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1000 2000 3000 4000 5000 6000 7000 8000

in
te

ns
ity

mass/charge

Figure 2.1: A mass spectrum (DNA base specific cleavage)

The process of measurement is indirect: First, the sample is ionized, and then
some property is measured which can be correlated to its m/z value (e.g., time-of-
flight), or specific ions are separated with a property correlated to a specific m/z

value (quadrupole, ion trap). The exact procedures used depend on the particular

21

2 Background I: Mass Spectrometry

type of technology. We will sketch the two most prevalent ones, MALDI-TOF and
ESI-Quadrupole.

Every mass spectrometer consists of three main components: the ionizer, where
the sample molecules are charged; the analyzer, where, in a vacuum, the sample
molecules are separated, according to their m/z value; and the detector, where the
individual ions are detected.

Ionizer Analyzer Detector

sa
m

p
le

Figure 2.2: General principle of mass spectrometry

The ionizer

A large number of techniques for ionizing molecular mixtures have been introduced
over time. Due to the fragile nature of biomolecules, however, the following two are
predominant in biotechnology:

• Matrix-Assisted Laser Desorption/Ionization (MALDI): Due to Franz Hil-
lenkamp and Michael Karas [KH88, HKBC91]. The sample is dissolved in a
UV-absorbing compound, referred to as the ”matrix”, and left to dry on a
probe. It is then shot at with a pulsed UV laser beam, which causes the
matrix to evaporate, releasing and ionizing the sample molecules in the pro-
cess. Ions with (mostly) single positive charge result from the reaction. These
are then directed into the mass spectrometer. See Figure 2.3 for a schematic
illustration.

ionized sample
molecules

matrix
pulsed laser

Figure 2.3: MALDI

22

2.1 What is mass spectrometry?

• Electrospray Ionization (ESI): Due to John B. Fenn [WDYF85,FMM+89]. The
sample is dissolved in a liquid solvent, and is sprayed from a small diame-
ter needle in the presence of a strong electric field, creating highly charged
droplets. The (usually) positive charge of the droplets causes them to move
toward the negatively charged entrance lens of the instrument, and during
this movement, the droplets are split into smaller charged droplets. (This phe-
nomenon is known as a ”Taylor cone”: When the mutual repulsion on the
surface of the droplet exceeds the forces of surface tension, ions are split off
the droplet.) This process can be aided by a gas flow. The splitting process
continues until the drops contain only single molecules, in proteins with as
much as charge 50+. These molecules are then directed into the mass spec-
trometer. See Figure 2.4.

�����������
�����������
�����������

�����������
�����������
�����������

analyzer
sample in needle

Figure 2.4: ESI

Other techniques include fast atom bombardment (FAB), electron ionisation (EI),
and soft laser desorption (SLD). In fact, the Nobel Prize in Chemistry in 2002 was
awarded jointly to John Fenn for ESI and Koichi Tanaka for SLD [MG02].

One important difference to keep in mind when interpreting mass spectra is that
MALDI results in singly charged ions, while ESI leads to multiply charged ions.
Molecular mass is measured in Dalton (Da), which is approximately the mass of
one proton, and m/z in Thomson (Th), even though m/z values are often used as
a unit-less ratio. Since the output of the mass spectrometer consists of mass-
to-charge-ratios m/z rather than mass values, a sample molecule with molecular
mass 1000 Da which is doubly charged by the addition of two protons would give
rise to a measurement of 501 Th. Moreover, a priori it is impossible to distinguish,
say, between a singly charged ion of mass 1000 Da, and a doubly charged ion of
mass 500 Da. However, a distinction can be made using the isotopic patterns of the
molecules: Isotopes differ in the number of neutrons they have in the nucleus, and
they occur in nature with different frequencies, e.g., 98.892% of carbon atoms have
6 neutrons, while 1.108% have 7 neutrons. Thus, one ion will typically give rise to
one main peak, and several isotopic peaks, which differ by 1 Da for each neutron if
z = 1, and by 0.5 Da if z = 2.

The analyzer and the detector

Many different mass analyzer techniques are in use; again, we concentrate on two
of the most common analyzer techniques for the sake of brevity: time-of-flight ana-
lyzers are predominantly used in connection with MALDI, and quadrupole analyz-

23

2 Background I: Mass Spectrometry

ers with ESI. We briefly sketch the technologies employed. Recall that the analysis
takes place in a high vacuum.

• Time-of-flight (TOF): All ions are accelerated in an electric field with the same
energy, and directed to drift accross the analyzer towards the detector. Thus,
”smaller” (or ”lighter”) ions will arrive sooner at the detector, while ”larger”
(or ”heavier”) ions will take longer. The m/z value is then computed from the
time measured between the acceleration and the arrival at the detector. In
Figure 2.5, we sketch the principle of MALDI combined with a time-of-flight
analyzer.

ionized sample
molecules

matrix

accelerator detector

pulsed laser

analyzer

Figure 2.5: MALDI-TOF

• Quadrupole mass filter: The ions are directed to drift between four parallel
rods with a specific electromagnetic field, which functions as a mass filter:
Only ions with the appropriate m/z are allowed to pass straight through the
field, while the others are diverted and filtered out. A spectrum is obtained by
varying the properties of the field during the experiment. See Figure 2.6.

sample molecules

detector
electromagnetic
field

Figure 2.6: Quadrupole analyzer

24

2.2 Mass spectrometry in proteomics and genomics

The detector can measure the arrival of the ions by converting kinetic energy into
an electrical current. Again, different technologies are used, but the details are not
relevant to interpreting the spectrum.

2.2 Mass spectrometry in proteomics and genomics

Mass spectrometry is widely used in proteomics and genomics for identifying sam-
ple molecular mixtures. These may be protein mixtures, DNA molecules, or metabo-
lites. In the following, we sketch how samples are prepared before they are intro-
duced into the mass spectrometer, and then discuss three common applications of
mass spectrometry in proteomics. Less commonly, mass spectrometry methods are
also used for DNA molecules, for problems such as pathogen identification or SNP
discovery. See Section 2.3 for more details.

Preparation of samples

Before introducing a sample into the mass spectrometer for analysis, it is separated
in a first step. This is necessary since biomolecules are normally presented in
mixtures, e.g. when extracted from the cell. A widely used separation method for
proteins is two-dimensional gel electrophoresis (2DE), where the protein mixture
is separated according to its size/mass, and its isoelectric point/pH-value. This is
done in two steps, where in both, the mixture is allowed to migrate in one direction
on a surface covered with a gel. First, the molecules are separated according to their
size/mass, then introduced on a square probe where they are separated once more
according to their pH-value. This results in spots where molecules are grouped
according to these two values; selected spots are extracted and processed further.
Other separation methods include liquid or gas chromatography (LC or GC), where
the latter is used more commonly for metabolites.

The next step is, in many cases, a biochemical dissociation of the sample mole-
cules. In the case of proteins, the molecular mixture is digested, i.e., a site-specific
cleavage enzyme, most commonly trypsin, is used: Trypsin cuts after each arginine
(one-letter-code R) and lysine (K), unless followed by a proline (P). For DNA mole-
cules, RNAse digestion can be employed, consisting of four base-specific cleavage
experiments: The molecules are cut after each T for thymine cleavage, after each C
for cytosine cleavage etc.

The resulting molecular mixture is introduced into the mass spectrometer. Sam-
ple identification can then be achieved either by comparing the resulting mass
spectra to a database, or de novo, i.e., without any external information.

Peptide mass fingerprinting

Peptide mass fingerprinting (PMF) [HWS03], also referred to as peptide mass map-
ping, is a method to identify proteins which relies on a protein database. The
sample is digested, most commonly using trypsin as cleavage agent, resulting in a
list of masses of tryptic peptides, the protein’s tryptic mass fingerprint. This finger-
print is compared to a tryptic indexed database, i.e., a protein database which has

25

2 Background I: Mass Spectrometry

EKS DDEHLVVSP WDI ULWDITYEUIDUE

ULASERQU DEHSDVLPV ASFRUFRS DFLR
REVSWKSDIWC LDV TUYRIVDKRTIE

SDFLWEFKSDKWEFSDLFV PEOVF

{

???

digestion

lookup

unknown protein

protein fragments

mass fingerprint

matching protein?

991}

database

mass
spectrometry

748154 223 317 371

EIDGLSIRMCIWEFSDIWEFSFI

SIDLCOWLSOEODFJFFFUIEJFSUFWFHFD

, , , , ,

Figure 2.7: Protein identification with PMF

been preprocessed to include the tryptic fingerprints of all its entries as computed
from the primary structure of the database entries. The term ”fingerprint” here
is misleading: The list of masses cannot be unique, at least in theory, since two
peptides with the same multiplicity of amino acids will have the same mass.

The comparison of the two fingerprints can also be done more precisely: Instead
of only comparing the two lists of masses, one can compare the experimental spec-
trum itself to theoretical spectra of the database proteins, thus also taking the
intensity values of the masses into account. See Figure 2.7 for a schematic view of
PMF.

Tandem mass spectrometry

Tandem mass spectrometry (MS/MS) is another method that can be used for pro-
tein identification using a database. Tandem mass spectrometry consists of two
phases. In the first phase, a spectrum of the sample peptide mixture is produced
as for PMF. Then certain intense peaks in this spectrum are selected one after an-
other, and for every such peak, ions giving rise to this peak are extracted. These
ions are now subjected to another dissociation process, usually collision induced
dissociation (CID), where they are transmitted to a high-pressure region of the tan-
dem mass spectrometer containing gas molecules (so-called MS/MS in space). The
collision with these gas molecules results in fragmentation of the sample ions. The
majority of the ions fragment only once, thus the output of the experiment con-
sists mainly of fragments that are either prefixes or suffixes of the original peptide
string. The fragmentation can occur in several places between two residues along
the backbone of the peptide, each fragmentation site giving rise to different types
of ions, with slightly differing masses. The most common ones are so-called b-ions
(prefixes) and y-ions (suffixes). Typical lengths of peptides are between 10 and 20

amino acids. See Figure 2.8 for a schematic view of MS/MS.
Now, for the identification, again a protein database is used. Details vary in dif-

ferent applications. One possibility, however, is to select in a first step candidate
proteins from the database whose mass fingerprint is close to that of the experimen-

26

2.3 Algorithmic challenges in mass spectrometry

... MMSARGDFLNYALSLMRSHNDEHSDVLPVLDVCSLKHVAYVFQALIYWIKAMNQQ ...

MMSARGDFLNYALSLMRSHN

LD
V

C
SL

DEHSDVLPV

KHVAYVFQALIY
W

IK
AM

NQQ

Protein

MS/MS: phase 1

peptides

digestion of protein

µ = 2260.832

µ = 992.056

µ
=

1987.0
23

DEHSDVLPV

D
DE

DEH

DEHS

DEHSD

DEHSDV

DEHSDVL

DEHSDVLP

V

DVLPV

SDVLPV

HSDVLPV

VLPV

LPV
PV

EHSDVLPV

MS/MS: phase 2
(collision induced dissociation)

prefixes (b−ions) suffixes (y−ions)

CID

µ = 992.056

115.089
244.205

381.346

468.424

583.513

682.646

795.806

892.923

99.133
196.25
309.41

408.543

523.632

610.71

747.851

876.967

Figure 2.8: Tandem mass spectrometry (MS/MS)

tal protein(s); and then to compute theoretical tandem mass spectra of the peptides
selected and compare them to the experimental spectra of the second phase. See
Figure 2.9.

???

digestion

lookup

unknown protein

protein fragments

mass fingerprint

mass
spectrometry

database

experimental spectra

matching protein?

mass
tandem

spectrometry

theoretical spectra

candidate proteins/peptides

in silico
comparison

Figure 2.9: Protein identification with MS/MS

De novo peptide sequencing

A tandem mass spectrum of a peptide as described above can also be used for de

novo peptide sequencing. The goal here is to deduce the primary structure of the
peptide (i.e., the string) from its tandem mass spectrum. The underlying idea is
that if the spectrum is of good quality, then it should contain peaks corresponding
to each prefix and each suffix of the peptide, see Figure 2.10.

2.3 Algorithmic challenges in mass spectrometry

Interpreting mass spectrometry data for identifying biomolecules presents us with
a number of interesting algorithmic and computational problems.

First, the measurements done by the mass spectrometer (the raw data) need to be
converted into a spectrum as visualized in Figure 2.1, i.e., a list of (m/z, intensity)-
pairs. This step involves calibration, the elimination of systematic shifts in the data,
and peak detection, the discretization of the signal. Both of these are usually done

27

2 Background I: Mass Spectrometry

KIL E N R R

K G I R N P E L

G

R

P

Figure 2.10: De novo sequencing with tandem mass spectrum: Prefixes (above) and
suffixes (below) of the solution peptide KGIRRNPEL matching the ex-
perimental spectrum.

by the software of the mass spectrometer, but in fact deserve more attention, and
are increasingly coming under the scrutiny of computer scientists.

All algorithms for interpreting mass spectra need to deal with the large amount of

noise contained in the data, such as chemical substances present in the machine,
residues from earlier experiments, and random noise. The fact that the intensity
value does not in general correspond to the number of molecules measured elim-
inates any straightforward approach such as a general cutoff at a certain peak
height. For example, a tandem mass spectrum ideally contains peaks correspond-
ing to all b- and y-ions (prefixes and suffixes) of the sample peptide; at a typical
length of around 10 amino acids, this would yield about 20 peaks. However, a real-
world tandem mass spectrum consists of several hundred peaks. Thus, noise leads
to additional peaks in the spectrum (w.r.t. to the sample). Another problem are
missing peaks, i.e., peaks that should in theory be present but are not. Yet another
challenge is interpreting the additional information relayed by the distribution of
the different isotopes (esp. of carbon); thus a real peak is expected to have one or
several small accompanying isotopic peaks. This is called isotopic deconvolution.

Protein identification with protein database

We give a schematic overview in Figure 2.11 of some of the algorithmic issues in-
volved in protein identification using a protein database, either with PMF or with
MS/MS. On the left, we see the experimental pipeline: From the unknown protein
or protein mixture, protein fragments (peptides) are won by digestion; these are
introduced into the mass spectrometer, which produces a mass fingerprint of the
sample protein. In the case of PMF, the experimental part ends here; in the case
of MS/MS, more mass spectrometry measurements follow producing tandem mass
spectra of selected peptides. On the right hand side, we see the in silico processing
of the database: First, candidate proteins and peptides have to be identified which
could match the sample. For the comparison with the PMF of the sample protein,
criteria have to be set as to what constitutes a good match. In addition, for MS/MS,
theoretical tandem mass spectra of the peptides selected are produced to be com-

28

2.3 Algorithmic challenges in mass spectrometry

pared with the experimental peptides. Again, a good measure is sought as to when
two spectra (in this case, an experimental and a theoretical one) match well.

digestion

mass
spectrometry

spectrometry
mass

candidate

unknown protein

protein fragments

mass fingerprint/peptides

protein DB

candidate proteins
and peptides

tandem mass spectra
theoretical

matching mass fingerprints

matching spectra

generation

in silico

tandem mass spectra

Figure 2.11: Some algorithmic challenges in protein identification with MS/MS
data using a database (bold arrows)

Several papers have addressed the question of how to match theoretical (i.e., pre-
dicted) and experimental spectra, among them [PDT00,PMDT01], where a so-called
spectral convolution was presented. A probabilistic model (SCOPE) was introduced
in [BE01]. The software Sequest (see below) includes a method of how to match a
predicted and an experimental tandem mass spectrum, described in [EMI94].

A suffix tree was used in [EL02] to efficiently store the large number of candi-
dates from the database. For matching mass fingerprints, the simplest approach is
to assume that the larger the number of matches, the more likely that the correct
protein has been found. This approach was employed in [MHR93] and others. An-
other approach was introduced in [PHB93], where the database was preprocessed,
computing the frequency of peptides within a certain mass range matching proteins
of mass within a given range. This gives information as to the significance of a hit.
The score is then normalized for proteins of a fixed average mass to eliminate the
effect that heavier proteins have more matches. This approach was implemented
in the software Mowse.

Another approach for protein identification with a database is presented
in [LC03b], where the dynamic programming algorithm for de novo sequencing
of [CKT+01] (see next section) is combined with a suffix tree based indexing of
the protein database.

There are two widely used software packages for protein identification with a
database. The first, Sequest [EMI94,YIEM95,YIEMS95,seq], matches tandem mass
spectra to a protein database. It identifies proteins which have peptides (substrings)
whose mass equals the total mass of the tandem mass spectrum (the parent mass);
it assigns a score to each of these according to a scoring function; and then gener-
ates a theoretical tandem mass spectrum for the top 500 peptides, and compares
these with cross-correlation analysis to the experimental spectrum.

The second, Mascot [PPCC99,CC02,mas], allows both interpretation of PMF data
and MS/MS data. For the PMF, the scoring scheme is probability based: the prob-

29

2 Background I: Mass Spectrometry

ability that peptides of the given masses match by chance is estimated. Mascot is
a further development of the software Mowse [PHB93].

The review [YI98] contains an in-depth discussion of protein database searching
with mass spectrometry data, as well as more literature up to 1998.

De novo peptide sequencing with MS/MS data

De novo peptide sequencing with MS/MS data is the task to find the amino acid
sequence that gave rise to a tandem mass spectrum, without querying a database.

Some early papers, such as [SMMK84,HWH86] solved the problem exhaustively,
by generating all amino acid strings with the given total mass, and then comparing
them to the tandem mass spectrum. Others [FGT+97, TJ01] transform the spec-
trum into a graph in which every connected path represents a possible sequence.
They use different algorithms to select good matching sequences among the very
large number of possible paths. The software Lutefisk [TJ97, TJ01, lut] is one im-
plementation.

The spectrum graph approach was enhanced and the sequencing problem formu-
lated in a graph theoretic setting in [DAC+99] but the algorithm was not described.
In 2000, Chen et al. [CKT+01], introduced a dynamic programming algorithm for de
novo peptide sequencing, which was the first efficient algorithm for this problem. It
has since been improved in several directions, among them in [BE03] and [LC03a].
A different dynamic programming approach was introduced in [MZL03,MZL05] and
implemented in a software named Peaks [MZH+03].

We present an enhancement of the approach of Chen et al. in Chapter 6.

DNA mass spectrometry

Mass spectrometry has been applied successfully to identify pathogens [HSB+03]
and SNPs [Böc03b,RDPS+02] in DNA sequences. Moreover, algorithms for de novo
sequencing of DNA sequences of short length (up to 200 bases) are also being de-
veloped [Böc03a,Böc04].

Combinatorial problems

Two basic combinatorial problems frequently arise in the context of interpreting
MS or MS/MS data: The submass finding problem and the mass decomposition
problem.

The submass finding problem can be stated as follows: Given a string s over an
alphabet where each character has a mass (a weighted alphabet, see Chapter 3),
and given a mass M, does s have a substring with mass M? If so, return such a
substring, return the position in s of such a substring, or return all such substrings
with their positions in s. This is motivated by database lookup of peptide mass fin-
gerprints where random fragmentation is used, rather than digestion with a known
enzyme. In this case, preprocessing the database and storing all submasses of all
proteins is not feasible. We will devote Chapter 5 to this problem and its variants.

The mass decomposition problem is the problem of determining, for a given input
mass M, all possible compomers with this mass. Hereby, a compomer (often called

30

2.4 Mass tables

composition in the mass spectrometry literature) is an equivalence class of strings,
where two strings are equivalent if the number of occurrences of each character
is equal, or, in other words, if one is a permutation of the other. We will devote
Chapter 4 to this problem.

2.4 Mass tables

Tables 2.1 and 2.2 contain the molecular masses of the 20 most common amino
acid residues and of the four deoxynucleotides. Table 2.3 contains the molecular
weights of the most common bioatoms (the monoisotopic and average mass for
phosphor are identical, because all but the isotope 31P are radioactive). In Table 2.4,
we list the names and 3- and 1-letter-codes of the amino acids for reference. In
each of these tables, we give both the monoisotopic and the average mass. Here, the
monoisotopic mass is the mass of a molecule whose elemental composition consists
of the most abundant isotopes of those elements; the average mass, instead, is the
weighted average of the isotopic masses, weighted by their abundance. We give
the masses up to maximal precision; however, in applications, lower precisions
are used, depending on the measurement accuracy of the machines. For many
algorithms, the masses need to be scaled up to integers; then, the scaling factor
depends on the desired precision.

amino acid mol. composition monoisotopic mass average mass

A C3H5N1O1 71.037113790 Da 71.079323045 Da
R C6H12N4O1 156.101111044 Da 156.188746822 Da
N C4H6N2O2 114.042927452 Da 114.104467719 Da
D C4H5N1O3 115.026943030 Da 115.089069711 Da
C C3H5N1O1S1 103.009184490 Da 103.143711176 Da
E C5H7N1O3 129.042593094 Da 129.116158896 Da
Q C5H8N2O2 128.058577516 Da 128.131556905 Da
G C2H3N1O1 57.021463726 Da 57.052233860 Da
H C6H7N3O1 137.058911874 Da 137.142140206 Da
I C6H11N1O1 113.084063982 Da 113.160590603 Da
L C6H11N1O1 113.084063982 Da 113.160590603 Da
K C6H12N2O1 128.094963024 Da 128.175293325 Da
M C5H9N1O1S1 131.040484618 Da 131.197889547 Da
F C9H9N1O1 147.068413918 Da 147.178050372 Da
P C5H7N1O1 97.052763854 Da 97.117549470 Da
S C3H5N1O2 87.032028410 Da 87.078627759 Da
T C4H7N1O2 101.047678474 Da 101.105716944 Da
W C11H10N2O1 186.079312960 Da 186.215027571 Da
Y C9H9N1O2 163.063328538 Da 163.177355085 Da
V C5H9N1O1 99.068413918 Da 99.133501417 Da

Table 2.1: Molecular masses of amino acid residues (monoisotopic and average)

31

2 Background I: Mass Spectrometry

nucleotide mol. composition monoisotopic mass average mass

adenine (A) C10H12N5O5P1 313.057605034 Da 313.211002878 Da
cytosine (C) C9H12N3O6P1 289.046371634 Da 289.185716855 Da
guanine (G) C10H12N5O6P1 329.052519654 Da 329.210307591 Da
thymine (T) C10H13N2O7P1 304.046037276 Da 304.197408032 Da

Table 2.2: Deoxynucleotide masses (monoisotopic and average)

element symbol monoisotopic mass average mass

hydrogen H 1.007825032 1.007975974

carbon C 12.0 12.011137239

nitrogen N 14.003074010 14.006726749

oxygen O 15.994914620 15.999304713

phosphor P 30.973761500 30.973761500

sulphur S 31.972070700 32.064388131

Table 2.3: Common bioatoms

32

2.4 Mass tables

amino acid 3-letter-code 1-letter-code

Alanine Ala A
Arginine Arg R
Asparagine Asn N
Aspartate Asp D
Cysteine Cys C
Glutamate Glu E
Glutamine Gln Q
Glycine Gly G
Histidine His H
Isoleucine Ile I
Leucine Leu L
Lysine Lys K
Methionine Met M
Phenylalanine Phe F
Proline Pro P
Serine Ser S
Threonine Thr T
Tryptophan Trp W
Tyrosine Tyr Y
Valine Val V

Table 2.4: Amino acid code table

33

2 Background I: Mass Spectrometry

34

3 Combinatorics of Weighted Strings:
Definitions, Problems, and Properties

This chapter is devoted to the theory of weighted strings.

Weighted string problems differ from traditional string problems in one important
aspect: While there, substructures of strings (substrings, non–contiguous subse-
quences, particular types of substrings such as repeats, palindromes etc.) are
under investigation, here we are only interested in weights of substrings. This
means that, on the one hand, we lose a lot of the structure of strings: e.g. the
weight of a string is invariant under permutation of letters; on the other, we gain
the additional structure of the weight function, such as its additivity. For instance,
the submass finding problem (see Section 3.1.3) seems to be related to the prob-
lem of searching in X + Y, where X and Y are two sets of numbers (see [Fre75]
and [HPSS75]). However, we have been able to extend negative results which have
been reached for that problem [CDF90]: We can show that this approach (using
the naı̈ve solution without preprocessing) cannot lead to an efficient algorithm for
our problem. Likewise, using suffix trees, which can be applied to efficiently solve
a large number of complex string problems, does not seem to help. The longest
common substring problem [Gus97] also has very different characteristics. An-
other problem that may also appear to be close to the submass finding problem is
maximum segment sum [Ben86]; however, it appears that it does not lead to good
solutions, either.

In this chapter, we introduce the problems but do not deal extensively with al-
gorithmic questions, since we will present in later chapters algorithms for several
of these problems. We introduce weighted alphabets, weighted strings, and com-
pomers, the central objects of much of this thesis. Section 3.1 contains definitions
and some simple properties, as well as the problem statements. This is followed by a
section on the theory of mass decomposition when all masses are non-negative inte-
gers, where we introduce the Frobenius number and detail the generating function
approach to computing the number of decompositions of a given mass (Section 3.2).
Finally, in Section 3.3, we discuss three functions defined for weighted strings: the
number of substrings, of subcompomers, and of submasses. We present upper and
lower bounds and extreme examples.

Note that in order to be more general, we give the definitions in this chapter
for arbitrary mass functions, i.e., we allow the masses to be real numbers. The
problems have quite different characteristics, however, if all masses are integers;
for instance, our algorithms in Chapters 4 and 5 assume integer masses. For the
applications, this is no real constraint, since there, the masses can best be viewed
as rational numbers—which can be scaled up to integers, with the scaling factor
dependent on the precision of the measurements and/or the desired precision of
the output. In our simulations, we did exactly this; and it can be seen that our

35

3 Combinatorics of Weighted Strings: Definitions, Problems, and Properties

algorithms perform well even with very high precisions (see Section 4.6).
Partial contents of this chapter have been published in [BL05a] and in [CEL+04].

3.1 Definitions and simple properties

A weighted alphabet (Σ, µ) is a finite alphabet Σ = {σ1, . . . , σk} with a weight or mass

function µ : Σ → R
+. We refer to a string s = s1 . . . sn over Σ as a weighted string,

where we extend µ canonically to Σ� and assign

s 7→ µ(s) :=

|s|∑

i=1

µ(si), (3.1)

the weight or mass of string s. Hereby, |s| denotes the length n of string s = s1 . . . sn.
Since all masses are strictly positive, µ(s) = 0 if and only if s = ε, where ε is the
empty string. We denote by t v s that t is a non-empty substring of s, i.e., that
there are positions 1 � i � j � |s| such that t = si . . . sj. For sake of simplicity, from
now on we always assume that the alphabet is ordered.

3.1.1 Compomers

Compomers have been referred to by many different names, among them Parikh-

vectors, multiplicity vectors, compositions, composions (see Section 1.2 for details
on the literature). Compomers allow to abstract from the order of characters in
a string, and simply count the number of occurrences of each character. In the
following, we denote by N the set of positive integers and by N0 the set of non-
negative integers. We denote the cardinality of a set X by |X|.

Definition 3.1.1. A compomer c over the (ordered) alphabet Σ = {σ1, . . . , σk} is a vec-
tor with non-negative integer entries, i.e., c 2 N

k
0. Σ can be weighted or unweighted.

We denote the empty compomer by 0 = (0, . . . , 0). For a compomer c = (c1, . . . , ck),
we set |c| :=

∑k
i=1 ci, the length of c. Moreover, if the alphabet is weighted with mass

function µ, then we define µ(c) :=
∑k

i=1 ci � µ(σi), the mass of c.

We can now assign to each string s over Σ a compomer over Σ in a natural way:

Definition 3.1.2. Let s be a string over the finite (weighted or unweighted) ordered
alphabet Σ = {σ1, . . . , σk}. Then, comp(s) = (c1, . . . , ck), where for i = 1, . . . , k,

ci :=
��{j | 1 � j � |s|, sj = σi}

�� (3.2)

is the compomer associated with s.

Thus, the i’th component of comp(s) counts the number of occurrences of character
σi in s. Obviously, if c = comp(s), then |c| = |s| and µ(c) = µ(s). For the empty string,
we have comp(ε) = 0, and ε is the only string with this property.

Note that µ(s) depends on the existence of a mass function µ, while comp(s) is
defined for all finite alphabets, weighted or unweighted. We now state some simple
connections between strings and compomers.

36

3.1 Definitions and simple properties

Lemma 3.1.3. Given a compomer c = (c1, . . . , ck) with |c| = n, the number of strings s

with comp(s) = c is
� n
c1,...,ck

�
= n!

c1!���ck!
.

Proof. Clearly, any string s with comp(s) = c has length n. There are
� n
c1,...,ck

�
many

ways of partitioning an n-set into subsets of sizes c1, . . . , ck, which is exactly the
number of ways of positioning the ci many σi’s, for 1 � i � k.

Lemma 3.1.4. Given an integer n � 0, the number of compomers c with |c| = n is
n + k − 1

k − 1

!
. (3.3)

Proof. Consider the following graphical representation of a compomer c = (c1, . . . , ck)

of length n. On a line of n+k−1 dots, place k−1 many crosses in the following way:
Place a cross on dot number c1 + 1, one on dot number c1 + c2 + 2, etc. Conversely,
each placement of k − 1 dots corresponds to a compomer by setting c1 equal to the
number of dots before the first cross, and ci to that of the number of dots between
the (i − 1)’th and the i’th cross. There are obviously

�n+k−1
k−1

�
many ways to do this,

thus follows the claim. For an example, see Figure 3.1.

a a b b b b b d d d e e f f f− −

Figure 3.1: Graphical representation of compomer (2, 5, 0, 3, 2, 3, 0) over the alphabet
Σ = {a, b, c, d, e, f, g}.

Lemma 3.1.5. Given an integer n � 0, the number of compomers c with |c| � n is�n+k
k

�
.

Proof. Follows from Lemma 3.1.4 and the identity
∑m

i=0

�i+r
r

�
=
�m+r+1

r+1

�
for binomial

coefficients, or by introducing an additional ”dummy” character $ 62 Σ and applying
the lemma for alphabet size k + 1.

3.1.2 Compomer decompositions of masses

Given a weighted alphabet (Σ, µ), and a mass M 2 R
+, we are interested in decom-

posing M, i.e., in writing M as a sum of masses of characters from Σ.

Definition 3.1.6. Fix a weighted alphabet (Σ, µ). A mass M 2 R
+ is called decom-

posable over Σ if there is a compomer c with µ(c) = M. Such a compomer c is
called a (compomer) decomposition of M, or a witness of M, i.e., of the fact that M

is decomposable. We denote by γ(M) the number of decompositions of M over Σ.

Recall that the alphabet is ordered; thus if we have two characters with the same
mass, then they give rise to different decompositions. For example, assume that

37

3 Combinatorics of Weighted Strings: Definitions, Problems, and Properties

the alphabet is {a1, a2, a3} and µ(a1) = 2 = µ(a2), µ(a3) = 3, then (2, 0, 1), (1, 1, 1) and
(0, 2, 1) are three different decompositions of 7.

As we will see in Section 3.2, if all character masses are relatively prime (or co-
prime) positive integers, then there exists an integer g 2 N such that all integers
m > g are decomposable but g is not. (If the masses are not relatively prime, then
g = +∞.) This number is referred to as the Frobenius number of the character
masses.

We are interested in the following decomposition problems. Here, the weighted
alphabet (Σ, µ), where Σ = {σ1, . . . , σk}, is fixed, with ai = µ(σi), for i = 1, . . . , k.

DECOMPOSITION DECISION PROBLEM:
Given a mass M 2 R

+, is M decomposable over Σ?

DECOMPOSITION ONE WITNESS PROBLEM:
Given a mass M 2 R

+, return one compomer decomposition of M, if one
exists.

DECOMPOSITION ALL WITNESSES PROBLEM:
Given a mass M 2 R

+, return all compomer decompositions of M.

DECOMPOSITION COUNTING PROBLEM:
Given a mass M 2 R

+, determine γ(M), the number of decompositions of
M.

FROBENIUS PROBLEM:
For integer masses {a1, . . . , ak}, determine the Frobenius number.

In Chapter 4, we will discuss known algorithms solving these problems, and
introduce new ones for all but the counting problem.

3.1.3 Submasses and subcompomers

We now extend the notion of substring to compomers and masses.

Definition 3.1.7. Let s be a string over the weighted alphabet (Σ, µ). A mass M 2 R
+

is a submass of s if s has a substring t with µ(t) = M, or, equivalently, if there exist
positions 1 � i � j � |s| such that µ(si . . . sj) = M. We refer to such a pair (i, j) as a
witness of M in s (i.e., of the fact that M is a submass of s). Similarly, a compomer
c is a subcompomer of s if there exist positions 1 � i � j � |s| with comp(si . . . sj) = c.
Again, we call such a pair (i, j) a witness of c in s.

Note that we exclude 0 both as submass and as subcompomer. Thus, the notions
of submass and subcompomer parallel the notion of non-empty substrings.

Definition 3.1.8. For a string s and a mass M, let κ(M,s) denote the number of
witnesses of M in s. For compomers c and strings t, κ(c, s) and κ(t, s) are defined
similarly: Thus, κ(t, s) is the number of occurrences of substring t in s, and κ(c, s)

the number of occurrences of substrings with mass M.

38

3.2 Number of decompositions of a mass (integer masses)

So, κ(M,s) > 0 if and only if M is a submass of s, and similarly for compomers
and strings. Note that for any M,c, t:

κ(M,s), κ(c, s), κ(t, s) � |s|. (3.4)

We can easily deduce the following relationship: For all s, t 2 Σ�, c 2 N
k
0,M 2 R:

comp(t) = c and µ(c) = M ⇒ κ(t, s) � κ(c, s) � κ(M,s). (3.5)

In Chapter 5, we will introduce several algorithms for finding submasses and
their witnesses in a given string.

Definition 3.1.9. For s 2 Σ�, let s(s),c(s), and m(s) denote the number of different
substrings, subcompomers, and submasses of s, respectively.

Section 3.3 contains a detailed discussion of these cardinalities. In Chapter 5,
which is devoted to submasses of a string, we will develop algorithms for the fol-
lowing problems.

SUBMASS DECISION PROBLEM:
Given a string s and a mass M, is M a submass of s?

SUBMASS ONE WITNESS PROBLEM:
Given a string s and a mass M, return a witness of M in s, if there is one.

SUBMASS ALL WITNESSES PROBLEM:
Given a string s and a mass M, return all witnesses of M in s.

SUBMASS COUNTING PROBLEM:
Given a string s, how many submasses does s have, i.e., determine m(s).

3.2 Number of decompositions of a mass (integer masses)

Let ai denote the mass of character σi, i.e., ai = µ(σi), for i = 1, . . . , k. For simplicity
of exposition, we will assume throughout this section that the masses are pairwise
different positive integers, and that they are ordered, i.e., that 0 < a1 < . . . < ak

holds.1

We are now interested in γ(M), the number of decompositions of M over the
masses {a1, . . . , ak}. There is no “good” closed form known for γ(M). The generating
function method, detailed in Section 3.2.2, yields the best closed form, but it is only
of theoretical interest due to its high computation cost. In Chapter 4, we will see
how to compute γ(M) using a dynamic programming algorithm.

1The only place where it is really necessary that the masses be pairwise distinct is Theorem 3.2.2.

39

3 Combinatorics of Weighted Strings: Definitions, Problems, and Properties

3.2.1 The Frobenius number

We will see in this section that if gcd(a1, . . . , ak) = 1 and k � 2, every sufficiently
large M has at least one compomer decomposition, i.e., there is an M0 2 N such
that γ(M0) = 0 and for all M > M0, γ(M) > 0. This M0 is referred to as the Frobenius

number g(a1, . . . , ak) of the ai’s. Note that conversely, if d := gcd(a1, . . . , ak) > 1, then
there are arbitrarily large numbers that are not decomposable, since only multiples
of d can be represented. It is not necessary, on the other hand, to assume that the
masses be pairwise co-prime.

For k = 2, the Frobenius number has been long known:

Theorem 3.2.1 (J.J. Sylvester). Let gcd(a1, a2) = 1. Then, g(a1, a2) = (a1 − 1)(a2 −

1) − 1.

Proof. We mainly follow [Bra42]. First, define f(a1, a2) as the largest number N0 that
has no decomposition N0 = x1a1 + x2a2 using positive integers x1, x2. Then, clearly,
g(a1, a2) = f(a1, a2) − (a1 + a2). We now show that f(a1, a2) = a1a2, which implies
the claim. First, to see that a1a2 is not decomposable (using positive integers),
assume otherwise. Then, there exist x1, x2 > 0 s.t. a1a2 = x1a1 + x2a2, implying
a1(a2 − x1) = x2a2. Since gcd(a1, a2) = 1, it follows that a2 | a2 − x1, i.e., that a2 is a
divisor of a2 − x. In particular, a2 � a2 − x1, a contradiction to x1 > 0.

Now, let M > a1a2. Choose a � x1 � a2 such that x1a1 � M mod a2 (such an x1

exists because a1 and a2 are relatively prime). Then, x2 := 1
a2

(M − x1a1) > 0 is an
integer, and M = x1a1 + x2a2.

No explicit formulas for the Frobenius number are known for k � 3, but there
has been considerable work on upper bounds. I. Schur in 1935 generalized Theo-
rem 3.2.1 to an upper bound for arbitrary k:

g(a1, . . . , ak) < (a1 − 1)(ak − 1). (3.6)

This was improved upon by A. Brauer (1942) to what remains to date, to our
knowledge, the best bound for the general case:

g(a1, . . . , ak) � k∑

i=2

ai(
di−1

di
− 1), where di = gcd(a1, a2, . . . , ai), i = 1, . . . , k. (3.7)

Proofs for both (3.6) and (3.7) can be found in [Bra42].2

There has been considerable work on bounds for Frobenius numbers for special
cases, see [Ram] for a recent survey; see also [Guy94] and papers quoted therein.
The following asymptotic result can be shown using generating functions [Wil90]:

Theorem 3.2.2 (I. Schur). Given 0 < a1 < . . . < ak 2 N with gcd(a1, . . . , ak) = 1.

Then,

γ(M) ∼
Mk−1

(k − 1)!a1a2 � � �ak
(M→∞).

2The paper [Bra42] includes results by A. Brauer’s professor I. Schur as well as joint results of
Brauer and Schur; however, since Schur was Jewish, he was prevented from publishing or lectur-
ing in 1940’s Germany and finally encouraged Brauer to publish these results alone.

40

3.2 Number of decompositions of a mass (integer masses)

Now, for r = 0, . . . , a1 − 1, let nr be the smallest integer such that nr is decom-
posable over {a1, . . . , ak} and nr mod a1 = r. Note that, if nr = x1a1 + . . . + xkak is a
decomposition of nr, then x1 = 0. The Frobenius number g(a1, . . . , ak) can now be
computed as [BS62]:

Theorem 3.2.3 (Brauer and Shockley, 1962). g(a1, . . . , ak) = max {nr | r =

0, . . . , a1 − 1} − a1.

Proof. Let N := max {nr | r = 0, . . . , a1 − 1} and rN = N mod a1. Then, by definition of
N = nrN

, N − a1 cannot be decomposed, since N − a1 � N mod a1. Conversely, note
that for any M 2 N, M is decomposable if and only if M � nr where r = M mod a1.
In other words, M is decomposable if and only if M > nr−a1, since M � nr mod a1.
Now choose M > N − a1 � nr − a1, with r = M mod a1, thus M is decomposable, as
claimed.

In Chapter 4, we will introduce an algorithm for computing the nr in time O(ka1).
Computing the Frobenius number is NP-hard [Ram96], thus no algorithm can be
expected to have runtime polynomial in

∑
i log ai, the size of the input.

3.2.2 The generating function approach

In this section, we define a generating function whose coefficients equal γ(M). We
then find a function for the coefficients, which can be computed in a preprocessing
step, and then evaluated for each query M. Of course, in general it is not possible to
find a closed form for the coefficients of generating functions. However, in this case,
we can exploit the fact that the roots of the denominator polynomial are complex
roots of unity.

This generating function is one of the classical examples introduced when dis-
cussing how to use generating functions to count objects. Here, we are simply
going into a bit more detail than is usually done. For an introduction to generating
functions, see e.g. [GKP94], Chapter 7, or [Wil90]. We follow mostly [GKP94].

General case

Let gcd(a1, . . . , ak) = 1. Denote by [zn]F(z) the nth coefficient of the generating func-
tion F(z) =

∑
n�0 fnzn, thus [zn]F(z) = fn. Now define the generating function

G(z) =
∑

n�0

gnzn := (
∑

n�0

zna1)(
∑

n�0

zna2) � � � (∑
n�0

znak). (3.8)

Then gn, the nth coefficient of G(z), equals the number of compomers with mass
n. To see this, note that G(z) is a convolution, and each of the factor generating
functions

∑
n�0znar , r = 1, . . . , k, has coefficients which equal 1 if the index is a

multiple of ar, and 0 otherwise. Thus, each compomer c = (c1, . . . , ck) with µ(c) =∑k
r=1 cr � ar = n contributes exactly one to gn.
We will apply the following theorem (cited from [GKP94]):

Theorem 3.2.4 (General Expansion Theorem for Rational Generating Func-

tions). If a generating function R(z) can be written as R(z) = P(z)/Q(z), where

41

3 Combinatorics of Weighted Strings: Definitions, Problems, and Properties

Q(z) = q0(1 − ρ1z)
d1 � � � (1 − ρℓz)

dℓ , all ρr, r = 1, . . . , ℓ, distinct, and P(z) is a polyno-

mial of degree less than deg Q, then

[zn]R(z) = f1(n)ρn
1 + . . . + fℓ(n)ρn

ℓ , (3.9)

where each fr is a polynomial of degree dr − 1 and leading coefficient

br =
P(1

ρr
)

(dr − 1)!q0

∏
j6=r(1 −

ρj

ρr
)dr

. (3.10)

In order to be able to apply Theorem 3.2.4, we write G(z) from (3.8) as follows,
employing basic identities for generating functions:

G(z) =
1

1 − za1

1

1 − za2
� � � 1

1 − zak
=

P(z)

Q(z)
, where P(z) � 1. (3.11)

Now, each factor (1 − zs), s = a1, . . . , ak, can be explicitly decomposed into linear

factors, since the zeros lie exactly at the complex sth roots of unity ω
j
s = e2πi

j
s ,

j = 0, . . . , s − 1. Therefore,

(1 − zs) = −

s−1∏

j=0

(z − ωj
s) = −

s−1∏

j=0

(−ωj
s)(1 −

1

ω
j
s

z). (3.12)

Thus, we get the desired form for Q(z):

Q(z) = (−1)k
k∏

r=1

ar−1∏

j=0

(−ωj
ar

)

︸ ︷︷ ︸
q0

(1 − ρ1z)
d1 � � � (1 − ρKz)dK , (3.13)

where K is the number of distinct roots of unity taken over all ars, and the ρs are

inverses of the ω
j
rs, and thus roots of unity themselves (of the same order). By

comparing the constant coefficient with (3.11), we see that q0 = 1, thus

Q(z) = (1 − ρ1z)
d1 � � � (1 − ρKz)dK . (3.14)

Now, by Theorem 3.2.4, we have that

[zn]G(n) = f1(n)ρn
1 + . . . + fK(n)ρn

K =: g(n). (3.15)

The polynomials fj, j = 1, . . . , K, have degree dj − 1, where dj is the multiplicity
of zero ρj. Note that 1 has multiplicity exactly k, since it is a root of each of the
factors (1 − zar), r = 1, . . . , k, and all other roots have multiplicity < k, since we have
assumed that the ar are co-prime.

Thus, when we have a query M, we simply have to evaluate g(M), which involves
evaluating polynomials in M of degree at most k, and exponentiation to the power
M, both of which require time O(log M).

42

3.3 Number of substrings, subcompomers, submasses

Pairwise co-prime masses

We now assume that the masses a1, . . . , ak are pairwise co-prime, i.e., that
gcd(aj, aj0) = 1 for j 6= j 0.
Lemma 3.2.5. The polynomial Q from (3.11) has a root ρ 6= 1 with multiplicity d if

and only if there are d distinct numbers from {a1, . . . , ak} with a common factor, i.e., if

there is A � {a1, . . . , ak} with |A| = d and m > 1 such that for all a 2 A, m | a.

Proof. Obvious.

Since gcd(aj, aj0) = 1 for j 6= j 0, by Lemma 3.2.5, the only root with multiplicity
greater than 1 is 1, with multiplicity k, as before. Thus, all djs equal 1, for j =

2, . . . , K. Let ρ1 = 1. From (3.15) we get

[zn]G(n) = f1(n) ρn
1︸︷︷︸

=1

+ f2(n)
︸ ︷︷ ︸
deg=0

ρn
2 + . . . + fK(n)

︸ ︷︷ ︸
deg=0

ρn
K (3.16)

= f1(n) + b2ρ
n
2 + . . . + bKρn

K, (3.17)

where

br =
∏

j6=r

(1 −
ρj

ρr
)−1, for r = 2, . . . , K, by Equation (3.10). (3.18)

Computation

The computation time (both for the general and the pairwise co-prime case) is more
or less independent of the query M - to be more precise, the computation for the
preprocessing is high but independent of M, while the query step runs in timeO(log M).

3.3 Number of substrings, subcompomers, submasses

In this section, we will investigate the three functions s, c, and m. Hereby, we
denote by |s|σ = |{i | 1 � i � |s|, si = σ}|, the number of occurrences of character σ in
the string s.

Recall the definitions s(s) = |{t | t v s}|, c(s) = |{comp(t) | t v s}|, m(s) = |{µ(t) |

t v s}|. Note again that these definitions exclude the empty string. For a string s

with |s| = n, we have, by Equation (3.5), and the fact that the character masses
µ(σ), σ 2 Σ, are strictly positive,

n � m(s) � c(s) � s(s) � n(n + 1)

2
. (3.19)

But are these bounds tight? The first inequality is, which can be seen by the fact
that m(σn) = n for any σ 2 Σ. For the last inequality, equality can be attained by the
string σ1σ2 . . . σn, where σi 6= σj for i 6= j. However, this latter example requires that
the alphabet have cardinality greater or equal to n; since we assume the alphabet

43

3 Combinatorics of Weighted Strings: Definitions, Problems, and Properties

to be constant and finite, this example does not extend to arbitrary n. Furthermore,
the first example string uses only one character, which is a special case again.

Thus, the question is, are there non-trivial strings Sn, Tn of length n with m(Sn),
c(Sn), s(Sn) = Θ(n2), and m(Tn), c(Tn), s(Tn) = Θ(n)? In this section, we will show
that this is indeed the case (where for m, we need an additional strong condition
on the mass function µ). Note that in order to exclude trivial examples, we are only
interested in strings Tn which use all alphabet characters.

Let |Σ| = k. For n 2 N, n � k, define strings Sn and Tn:

Sn := σ
m1

1 σ
m2

2 . . . σ
mk

k , (3.20)

Tn := (σ1 . . . σk)mσ1 . . . σr, (3.21)

where
∑k

i=1 mi = n s.t. for all i = 1, . . . , k, mi = bn
k
 or mi = bn

k
 + 1, i.e., all mi are

approximately equal, and m = bn
k
, r = n mod k. In particular, if n is a multiple of k,

then mi = m for all i = 1, . . . , k, and n = m � k. Then

Sn = σm
1 σm

2 . . . σm
k , (3.22)

Tn = (σ1 . . . σk)m. (3.23)

The following theorems state that the strings Sn and Tn maximize resp. minimize
the three functions s,c,m up to a factor of 2.

Theorem 3.3.1 (Asymptotically maximal strings). Let n 2 N and ni 2 N for i =

1, . . . , k such that
∑k

i=1 ni = n.

1. Sn has quadratic values s,c,m: s(Sn),c(Sn) = Θ(n2), and for certain classes of

weight functions, m(Sn) = Θ(n2).

2. Sn maximizes s up to a factor of 2, for n multiple of k and equal multiplicities:

For m = n
k
,

s(Sn) � 1

2
max{s(s) | s 2 Σn, |s|σi

= m for i = 1, . . . , k}.

3. Sn maximizes c: c(Sn) = max{c(s) | |s| = n}. Moreover, for any fixed multiplicities

ni, i = 1, . . . , k, the string σ
n1

1 σ
n2

2 . . . σ
nk

k maximizes c:

c(σ
n1

1 σ
n2

2 . . . σ
nk

k) = max{c(s) | s 2 Σn, |s|σi
= ni for i = 1, . . . , k}.

4. There are classes of mass functions such that Sn maximizes m: m(Sn) =

max{m(s) | |s| = n}. Moreover, for these mass functions, the string σ
n1

1 σ
n2

2 . . . σ
nk

k

maximizes m for any fixed multiplicities ni 2 N0, i = 1, . . . , k:

m(σ
n1

1 σ
n2

2 . . . σ
nk

k) = max{m(s) | s 2 Σn, |s|σi
= ni for i = 1, . . . , k}.

Theorem 3.3.2 (Asymptotically minimal strings). Let n 2 N.

1. Tn has linear values s,c,m: s(Tn),c(Tn),m(Tn) = Θ(n).

44

3.3 Number of substrings, subcompomers, submasses

2. Tn minimizes s up to a factor of 2, for n multiple of k and equal multiplicities: For

m = n
k
,

s(Tn) � 2 �min{s(s) | s 2 Σn, |s|σi
= m for i = 1, . . . , k}.

3. Tn minimizes c up to a factor of 2, for n multiple of k and equal multiplicities: For

m = n
k
,

c(Tn) � 2 �min{c(s) | s 2 Σn, |s|σi
= m for i = 1, . . . , k}.

4. There are classes of mass functions such that Tn minimizes m up to a factor of

2, for n multiple of k and equal multiplicities: For m = n
k
,

m(Tn) � 2 �min{m(s) | s 2 Σn, |s|σi
= m for i = 1, . . . , k}.

We devote the rest of this section to the proof of these two theorems.

3.3.1 Number of substrings of a given string

We first prove a lemma which we will need for the above theorems.

Lemma 3.3.3 (Linear and quadratic examples for s). For all n 2 N, there exist

strings S, T 2 Σn such that s(S) = Θ(n2) and s(T) = Θ(n) and |S|σ, |T |σ � 1 for all σ 2 Σ.

In particular, for m, r, n1, . . . , nk 2 N such that r < k and
∑k

i=1 ni = n,

1. a) s((σ1 . . . σk)m) = (m − 1)k2 + 1
2
(k2 + k),

b) s((σ1 . . . σk)mσ1 . . . σr) = (m − 1)k2 + 1
2
(k2 + k) + r � k,

2. s(σ
n1

1 σ
n2

2 . . . σ
nk

k) = n +
∑

1�i<j�k ni � nj.

Proof. 1.(a) For fixed length n 0 � (m − 1)k, there are k different substrings of length
n 0, namely si . . . si+m for i = 1, . . . , k. There are k substrings of length (m − 1)k + 1,
k − 1 substrings of length (m − 1)k + 2, and so on, and finally, exactly one substring
of length m � k = n. Thus, s((σ1 . . . σk)m) = (m − 1)k � k +

∑k
i=1 i.

1.(b) In addition to substrings of (σ1 . . . σk)m, each of the final r positions of s

contributes k different new substrings, namely those beginning within the first
block σ1 . . . σk and ending in this position.

2. First consider substrings that start and end with the same character σi. For
fixed 1 � i � k, there are ni different substrings of this type, yielding

∑k
i=1 ni = n

different substrings. All other substrings start with some character σi and end
with a different character σj, where i < j. For each pair (i, j), there are ni � nj differ-
ent choices of the first and final positions, which all generate different substrings.
Thus, s(σ

n1

1 σ
n2

2 . . . σ
nk

k) = n +
∑

1�i<j�k ni � nj.
Since the alphabet size k is constant and m = bn

k
, we have s((σ1 . . . σk)mσ1 . . . σr) =

Θ(n). On the other hand, let for all i = 1, . . . , k, ni = bn
k
 or ni = bn

k
 + 1 such that

∑k
i=1 ni = n, i.e., let all ni be roughly equal. Then this yields s(σ

n1

1 σ
n2

2 . . . σ
nk

k) =
∑k

i=1 ni +
∑

1�i<j�kninj � n +
�k
2

� � (n
k
)2 � n + 1

2
n2 = Θ(n2).

45

3 Combinatorics of Weighted Strings: Definitions, Problems, and Properties

For n = m �k, the string Sn = σm
1 σm

2 . . . σm
k is thus maximal up to a factor of 2 w.r.t.

s, since s(Sn) = n+ k−1
2k

n2 � 1
2

n(n+1)
2

. In the next section, we will prove a lower bound
on c(s) (Lemma 3.3.4), which depends on the multiplicities |s|σi

of the different
characters. For equal multiplicities |s|σi

= m = n
k

for all i, this lower bound is
m
2

(k2+k), implying s(s) � c(s) � m
2

(k2+k). Since s((σ1 . . . σk)m) = (m−1)k2+1
2
(k2+k) �

2 � m
2

(k2 + k), the string Tn = (σ1 . . . σk)m is minimal up to a factor of 2 w.r.t. s.

Computation of s(s)

The number s(s) can be computed using a suffix tree: In a suffix tree, each sub-
string is represented by a unique path from the root. Thus, adding up the label
lengths of the edges of the suffix tree of s will yield just s(s). The suffix tree of s can
be computed in time O(n), where n = |s|, see e.g. [Gus97]. The number of edges is
linear in n, thus s(s) can also be computed in linear time. Moreover, we can enu-
merate all substrings of s in time O(s(s)), if we only output tuple (i, j) for substring
t = si . . . sj. If we output each substring t itself, we obtain a runtime of O(

∑
tvs |t|).

3.3.2 Number of subcompomers of a given string

For a lower bound on c, we define the index of the first occurrence of a character
σ 2 Σ in a string s = s1 . . . s|s| as Firstposσ(s) := min({i | si = σ} [{|s| + 1}).

Lemma 3.3.4 (Lower bound on c). Let n 2 N and s = s1 . . . sn 2 Σn. Then

c(s) �∑
σ2Σ

|s|σ � Firstposσ(s). (3.24)

In particular, if |s|σ = m = n
k

for all σ 2 Σ, then c(s) � m
2

(k2 + k).

Proof. Let x = sn. If x does not occur in s1 . . . sn−1, then appending x to s1 . . . sn−1

generates n new subcompomers, i.e.,

c(s) = c(s1 . . . sn−1) + n = c(s1 . . . sn−1) + Firstposx(s1 . . . sn−1). (3.25)

On the other hand, if x does occur in s1 . . . sn−1, then it generates at least Firstposx

(s1 . . . sn−1) many new subcompomers, since for those substrings starting in posi-
tions i = 1, . . . ,Firstposx(s1 . . . sn−1) and ending in sn = x it will hold that |si . . . sn|x =

|s1 . . . sn−1|x + 1. Thus, in both cases we get

c(s) � c(s1 . . . sn−1) + Firstposx(s1 . . . sn−1). (3.26)

Applying this n − 1 times, we obtain

c(s) � 1 +

n∑

i=2

Firstpossi
(s1 . . . si−1). (3.27)

Let i 2 {2, . . . , n}. If si occurs in s1 . . . si−1, then Firstpossi
(s1 . . . si−1) = Firstpossi

(s).
In the sum above, this happens |s|si

− 1 times. For the first occurrence of char-
acter si in s, let b = Firstpossi

(s); then Firstpossi
(s1 . . . sb−1) = Firstpossi

(s) by

46

3.3 Number of substrings, subcompomers, submasses

definition. Since Firstposs1
(s) = 1, we can write 1 +

∑n
i=2 Firstpossi

(s1 . . . si−1) =∑
σ2Σ Firstposσ(s) � |s|σ.
For fixed multiplicities n1, . . . , nk, the sum

∑
σ2Σ Firstposσ(s) � |s|σ is minimized

over all strings with these multiplicities if all different characters occurring in s

are positioned in the first positions of s, ordered ascending according to their
multiplicities. In particular, if each letter occurs exactly m times, we obtain
c(s) � m

∑k
i=1 i = m

2
(k2 + k).

Lemma 3.3.5 (Linear and quadratic examples for c). For all n 2 N, there exist

strings S, T 2 Σn such that c(S) = Θ(n2) and c(T) = Θ(n) and |S|σ, |T |σ � 1 for all σ 2 Σ.

In particular, for m, r, n1, . . . , nk 2 N such that r < k and
∑k

i=1 ni = n,

1. a) c((σ1 . . . σk)m) = (m − 1) � (k2 + 1 − k) + 1
2
(k2 + k),

b) c((σ1 . . . σk)mσ1 . . . σr) = (m − 1) � (k2 + 1 − k) + 1
2
(k2 + k) + r(k − 1),

2. c(σ
n1

1 σ
n2

2 . . . σ
nk

k) = n +
∑

1�i<j�kni � nj.

Proof.

1.(a) Let S := (σ1 . . . σk)m. First consider only substrings with length n 0 � (m − 1)k

and observe that for n 0 = ℓ � k, there is exactly one subcompomer (ℓ, . . . , ℓ) for all
substrings of length n 0. Otherwise, if n 0 = ℓ � k + p where 0 < p < k, then for each
1 � j � k, there is a substring t with subcompomer

|t|σi
=

{
ℓ + 1 if there is q 2 {0, . . . , p − 1} s.t. i = (j + q) mod k,

ℓ otherwise.
(3.28)

Putting this together yields (m − 1)(1 + (k − 1)k). Finally, for lengths n 0 > (m − 1)k,
the numbers of different subcompomers decrease one by one: There are k different
subcompomers of substrings with length (m−1)�k+1, k−1 with length (m−1)�k+2 and
so on, yielding

∑1
i=k i = 1

2
(k2 + k) different subcompomers. Thus, c((σ1 . . . σk)m) =

(m − 1) � (k2 + 1 − k) + 1
2
(k2 + k).

1.(b) This is a simple extension of 1.(a), noting that each of the last r positions
of s will contribute k − 1 new subcompomers for substrings ending in this position:
For σj, 1 � j � r, the compomer of the substring si . . . sm�k+j will be new for all
i 2 {1, . . . , j, j + 2, . . . , k}.

2. Observe that for string S = σ
n1

1 . . . σ
nk

k , c(S) = s(S), and thus, c(S) = n +∑
1�i<j�k ninj by Lemma 3.3.3.
Similar to the proof of Lemma 3.3.3, we have c((σ1 . . . σk)m) = Θ(n) for constant k

and c(σ
m1

1 σ
m2

2 . . . σ
mk

k) = Θ(n2) for roughly equal multiplicities mi.

For equal multiplicities |s|σi
= m = n

k
for all i, the lower bound on c is m

2
(k2 + k).

Since c((σ1 . . . σk)m) = (m − 1) � (k2 + 1 − k) + 1
2
(k2 + k) � 2 � m

2
(k2 + k), the string

Tn = (σ1 . . . σk)m is minimal up to a factor of 2 w.r.t. c.
The next two lemmas are used to prove a tight upper bound on c (Lemma 3.3.8).

Hereby, we denote by [Λ] the characteristic value of a proposition Λ, i.e., [Λ] = 1 if
Λ is true, and [Λ] = 0 otherwise.

47

3 Combinatorics of Weighted Strings: Definitions, Problems, and Properties

Lemma 3.3.6 (Maximal growth of c). Let n 2 N, x 2 Σ and s = s1 . . . sn 2 Σn.

1. If s does not contain character x, then c(sx) = c(s) + (n + 1).

2. If s contains character x, then c(sx) � c(s) + n − |s|x + [sn = x].

Proof. 1. Obvious.
2. There are c(s) different compomers of substrings starting and ending within

s. Furthermore, n substrings of sx start within s and end in x. For each index
1 � i � n − 1 s.t. si = x, we have comp(si . . . sn) = comp(si+1 . . . snx). Thus, none of
these substrings has a new compomer. There are |s|x such substrings if sn 6= x, and
|s|x − 1 otherwise.

The next lemma shows that concentrating each character in blocks maximizes
the number of subcompomers.

Lemma 3.3.7 (c–maximal strings). Let n 2 N and fix 0 � n1, . . . , nk 2 N such that∑k
i=1 ni = n. Then,

c(σ
n1

1 . . . σ
nk

k) = max{c(s) | s 2 Σn, |s|σi
= ni for all i = 1, . . . , k}. (3.29)

Proof. By induction on n: For n = 1, the claim is obvious. Choose s 2 Σn+1 and
denote by ni := |s|σi

for i = 1, . . . , k. (Thus, we now have
∑k

i=1 ni = n + 1.) Up to
relabeling (which leaves c invariant), we may assume that the last character of s is
σk, thus we can write s = s 0σk. If nk = 1, then

c(s) = c(s 0) + (n + 1) by Lemma 3.3.6� c(σ
n1

1 . . . σ
nk−1

k−1) + (n + 1) by the induction hypothesis

= c(σ
n1

1 . . . σ
nk

k) by Lemma 3.3.5.

Otherwise, nk > 1, and

c(s) � c(s 0) + n − |s 0|σk
+ 1 by Lemma 3.3.6� c(σ

n1

1 . . . σ
nk−1
k) + n − (nk − 1) + 1 by the induction hypothesis

= n +
∑

1�i<j<k

ninj +

k−1∑

i=1

ni(nk − 1) + n − (nk − 1) + 1 by Lemma 3.3.5

= n +
∑

1�i<j<k

ninj +

k−1∑

i=1

ni(nk − 1) +

k−1∑

i=1

ni + 1 since n + 1 =

k∑

i=1

ni

= (n + 1) +
∑

1�i<j�k

ninj = c(σ
n1

1 . . . σ
nk

k).

Lemma 3.3.8 (Tight upper bound on c). Let s 2 Σn. Then c(s) � n+
∑

1�i<j�k mimj,

where mi = bn
k
 or mi = bn

k
+ 1 for i = 1, . . . , k and

∑k
i=1 mi = n. In particular, if n is a

multiple of k, then c(s) � k−1
2k

n2 + n. This latter bound is tight.

48

3.3 Number of substrings, subcompomers, submasses

Proof. Let s 2 Σn. Denote by ni := |s|σi
for i = 1, . . . , k. Then, by Lemma 3.3.7,

c(s) � c(σ
n1

1 . . . σ
nk

k) = n +
∑

1�i<j�k ninj. Let f(x1, . . . , xk) :=
∑

1�i<j�k xixj. Function

f attains its maximum on the set Bn := {(x1, . . . , xk) |
∑k

i=1 xi = n} if all values are
approximately equal, i.e., max{f(Bn)} = f(m1, . . . ,mk) where for all i, mi = bn

k
 or

mi = bn
k
 + 1 and

∑k
i=1 mi = n. Moreover, since c(σ

m1

1 . . . σ
mk

k) = n +
∑

1�i<j�kmimj,
this bound is tight. If n is a multiple of k, then mi = n

k
for all i, and thus:

max{c(s) | |s| = n} = n +

k

2

!
(
n

k
)2 =

k − 1

2k
n2 + n. (3.30)

Computation of c(s)

The question of the value of c(s) for a given string s is equivalent to the question of
how many different compomers comp(t) the set Ls := {t | t v s} has. If we denote by
Σ� the free commutative monoid over Σ, then any language L � Σ� induces a subset
L� of Σ�, namely L� := {

∏
a2Σa|t|a | t 2 L} (see [ABB97]). Now, we have c(s) = |L�s |.

We are not aware that |L�s | has been characterized in the literature.
We can compute c(s) trivially by enumerating all substrings of s, computing their

compomers, and ordering them. This can be done in time O(s(s) � log(s(s))).

3.3.3 Number of submasses of a given string

If we have m(s) = c(s), all results of the previous section carry over: We can give a
linear lower and tight quadratic upper bound, and can specify strings with a linear
resp. quadratic number of submasses, the latter attaining the upper bound. We
therefore define the UNIQUE DECOMPOSITION PROPERTY:

A mass function µ has the UNIQUE DECOMPOSITION PROPERTY (UDP) if,
for all strings s and t:

µ(s) = µ(t) ⇐⇒ for all σ 2 Σ : |s|σ = |t|σ.

This just means that the masses are linearly independent over the integers. With
the UDP, a mass M has at most one decomposition M =

∑
σ2Σ ν(σ) � µ(σ) where

ν(σ) 2 N0.
With the UDP, we have m(s) = c(s) for all s. Note that this condition never holds

if the masses are integers or rational numbers. If, however, we allow real numbers
as masses, i.e., if µ : Σ → R

+, then the masses can be chosen to satisfy the UDP.
For example, if Σ = {a, b}, then µ with µ(a) = 1 and µ(b) = π has the UDP.

We can even achieve that m(s) = c(s) with integers if the masses may depend on
the input size. Then, we can set µ(σi) := (n + 1)i−1 for all i = 1, . . . , k. However, this
results in exponentially large masses.

Computation of m(s)

In Chapter 5, we will give several algorithms for computing the number of sub-
masses of a given string s.

49

3 Combinatorics of Weighted Strings: Definitions, Problems, and Properties

50

4 Mass Decomposition Algorithms

In this chapter, we present an algorithm for solving the following problem. Fix a
weighted alphabet (Σ, µ) where µ : Σ 7→ N:

DECOMPOSITION ALL WITNESSES PROBLEM:
Given a mass M 2 N, return all compomer decompositions of M.

Note that this is the integer version of the general problem presented in Chapter 3
(page 38). For the mass spectrometry applications, integer weights can be achieved
by scaling up the character masses by a chosen precision factor. We give simulation
results in Section 4.6 for precisions 0.01 and 0.001, realistic precisions of current
mass spectrometers.

Let Σ = {σ1, . . . , σk} and a1, . . . , ak denote the character masses, i.e., µ(σi) = ai

for i = 1, . . . , k, and let (w.l.o.g.) a1 be the smallest character mass. Without loss
of generality, we assume that the masses are all distinct; the generalization to
non-distinct alphabets is straightforward. In [BL05b], we presented a new efficient
algorithm for computing the Frobenius number g(a1, . . . , ak). The best known algo-
rithm to date had been due to Nijenhuis [Nij79], which runs in time O(k a1 log a1) orO(a1(k+ loga1)), depending on the implementation of the priority queue used by the
algorithm. It constructs a data structure of size a1, which we refer to as ”residue
table,” requiring O(a1) additional memory for the construction; using the residue
table, the Frobenius number can be easily computed. Our algorithm in [BL05b]
also constructs the residue table but only requires O(ka1) time and no additional
memory. The algorithm has been implemented and found to be also fast in practice;
both by us and by Wagon and co-workers [BHNW].

The algorithm presented in this chapter extends the ideas in [BL05b]. It con-
structs a data structure of size ka1 in a preprocessing step, which can then be used
to produce all witnesses for a query mass M. In addition, it also allows solving the
DECISION, ONE WITNESS and FROBENIUS problems. We first describe the classical
dynamic programming algorithm which is often employed for related problems; via
backtracking in the table, all witnesses for the query can be produced.

The contents of this chapter have been partially published in [BL05a]. Implemen-
tation and simulations by Marcel Martin and Henner Sudek.

4.1 Related problems

The problem of identifying compomers that add up to a given mass can be posed as
a Money Changing Problem: Given k positive integers a1, . . . , ak (the coin denomina-
tions), and an integer M, are there non-negative integers ci such that

∑
i ciai = M?

In other words, is it possible to return exactly M as change? This problem is NP-
complete, when both the alphabet and the query vary [Lue75], and can be solved

51

4 Mass Decomposition Algorithms

in pseudo-polynomial time by a dynamic programming algorithm [MT90]. It follows
from the NP-completeness result for this problem that we cannot expect to find an
algorithm that will solve this problem in polynomial time in all parameters of the
input: the alphabet size k, the input size of the character masses

∑
i log ai and that

of the query, log M.
Note that the problems considered here differ from what is often referred to as

Coin Change Problem or Change Making Problem, where a decomposition of a query
M using a minimal number of coins is sought. There, the decision problem is trivial,
since usually, a coin of denomination 1 is assumed [MT90].

4.2 The classical dynamic programming algorithm

We sketch a dynamic programming algorithm, which is a variation of the classical
algorithm usually introduced for the Coin Change Problem (where the number of
coins is to be minimized), originally due to Gilmore and Gomory [GG65,MT90].

Given query mass M and the a1, . . . , ak, a two-dimensional Boolean table B of size
kM is constructed such that

B[i,m] = 1 if and only if m is decomposable over {a1, . . . , ai}. (4.1)

The table can be computed with the following recursion: B[1,m] = 1 if and only if
m mod a1 = 0, and for i > 1,

B[i,m] =

{
B[i − 1,m] if m < ai,

B[i − 1,m] ∨ B[i,m − ai] otherwise.
(4.2)

The table is constructed up to mass M, and then a straightforward backtracking
algorithm computes all witnesses of M. Running time for solving the All Witnesses
Problem is O(kM) for the table construction, and O(

∑
c2C(M) |c|) = O(γ(M) � 1

a1
M) for

computation of the witnesses, while storage space is O(kM).
For the DECISION and ONE WITNESS PROBLEMS, it suffices to construct a one-

dimensional Boolean table A of size M, using the recursion A[0] = 1, A[m] = 0 for
1 � m < a1; and for m � a1, A[m] = 1 if exists 1 � i � k s.t. A[m−ai], and 0 otherwise.
Construction time is O(kM) and one witness c can be produced by backtracking
in time proportional to |c|, which can be in the worst case 1

a1
M. Of course, both of

these problems can also be solved using the full table B.
Finally, a variant computes the number γ(M) of decompositions of M in the last

row, where the entries are integers, using the recursion C[i,m] = C[i−1,m]+C[i,m−

ai].
In the following sections, we will present more efficient algorithms which all use

a data structure of size ka1: the Extended Residue Table.

4.3 The extended residue table

In this section, we introduce the Extended Residue Table and its construction al-
gorithm, EXTENDED ROUND ROBIN. Recall that a1 is the smallest character mass.

52

4.3 The extended residue table

Now, for any M � 0 and any i, 1 � i � k, it can be immediately seen that

M is decomposable ⇒ M + ai is decomposable. (4.3)

In particular, Equation (4.3) holds for i = 1. For r = 0, . . . , a1−1, let nr be the smallest
integer such that nr is decomposable. Then, for any M � 0 with M � r mod a1,

M is decomposable ⇔ M � nr. (4.4)

Thus, if we only want to know whether a mass is decomposable, we only need
the values nr for each r = 0, . . . , a1 − 1. However, for the DECOMPOSITION ALL WIT-
NESSES PROBLEM, more information is needed: Namely, for each r = 0, . . . , a1 − 1

and each i = 1, . . . , k, the smallest number nr,i congruent r modulo a1 such that nr,i

is decomposable over {a1, . . . , ai}. More formally, the Extended Residue Table is a
two-dimensional table of size ka1, consisting of entries ert(r, i) such that

ert(r, i) = min{n | n � r mod a1 and n is decomposable over {a1, . . . , ai}}, (4.5)

where ert(r, i) =∞ if no such integer exists.

Example 1. Let k = 4 and the masses be 6, 7, 11, 15. We give the Extended Residue
Table in Figure 4.1.

r a1 = 6 a2 = 7 a3 = 11 a4 = 15

0 0 0 0 0
1 ∞ 7 7 7
2 ∞ 14 14 14
3 ∞ 21 21 15
4 ∞ 28 22 22
5 ∞ 35 11 11

Figure 4.1: Extended Residue Table for alphabet 6, 7, 11, 15 (Example 1).

A variation of the Extended Residue Table consisting of only the last column was
introduced in [BL05b]. Proofs of correctness can be found there. Here, we give a
brief review of the basic construction algorithm. The pseudo-code can be found in
Figure 4.2.

The table is constructed column by column. Let us look at column i > 1, and
first assume that gcd(a1, ai) = 1. We maintain a value n and an index r, where
r = n mod a1. In each step, n is updated n ← n + ai, r is updated accordingly, and
the next entry to be filled in is ert(r, i), which will be assigned min(ert(r, i − 1), n).
Now we continue with n← ert(r, i).

For the example in Figure 4.1, let us look at column 3. We start at ert(0, 3), which
equals 0, add a3 = 11, compute r ← 11 mod 6 = 5. Since 11 < ert(5, 2) = 35, we
set ert(5, 3) ← 11. Next, we have n ← 11 + 11 = 22, r ← 22 mod 6 = 4, and because
22 < 28 = ert(4, 2), we set ert(4, 3)← 22. Then, n← 22+11 = 33, and r← 33 mod 6 = 3,
but since 33 > 21 = ert(3, 2), we set ert(3, 3) ← ert(3, 2) = 21. The remaining two

53

4 Mass Decomposition Algorithms

entries also both get the corresponding values from the previous column, and we
are done when we encounter r = 0 again.

In the case where gcd(a1, ai) = d > 1, we need to repeat the simple algorithm
above for t = 0, 1, . . . , d − 1 separately. Look at the last column in the example.
We have gcd(6, 15) = 3, so t = 0, 1, 2 (line 4 in Figure 4.2). Let’s look at t = 2. We
first have to find the minimum amongst the entries ert(q, i − 1), for q = 2, 5 (line
5), since this is the one we will start with (line 6). In this case, it is ert(5, 3) = 11,
and thus r = 5. We set ert(5, 4) ← 11, add 15, end up with 26, which is larger than
14 = ert(2, 3) = ert(26 mod 6, 3), and thus we have ert(2, 4) ← 14. We are done after
1 = 6/3 − 1 steps, since the next step would bring us back to residue class r = 5,
which we have already processed.

Algorithm EXTENDED ROUND ROBIN

1 initialize ert(0, i) = 0 and ert(r, i) =∞ for r = 1, . . . , a1 − 1, i = 1, . . . , k;
2 for i = 2, . . . , k do
3 d← gcd(a1, ai);
4 for t = 0, . . . , d − 1 do
5 find n = min{ert(q, i − 1) | q mod d = t};
6 ert(n mod a1, i)← n;
7 if n <∞ then repeat a1/d − 1 times
8 n← n + ai; r← n mod a1;
9 n←min{n, ert(r, i − 1)};
10 ert(r, i)← n;
11 end;
12 done;
13 done.

Figure 4.2: Construction algorithm of the Extended Residue Table.

We summarize the complexity of the construction algorithm:

Theorem 4.3.1. The EXTENDED ROUND ROBIN algorithm computes the Extended

Residue Table of a weighted alphabet {a1, . . . , ak} with smallest mass a1 in optimal

runtime O(k a1) and extra memory O(1).

4.4 Finding all witnesses

In this section, we introduce an algorithm to solve the All Witnesses Problem us-
ing the Extended Residue Table. We analyze its complexity and compare it to the
dynamic programming algorithm from Section 4.2. Finally, we discuss a possible
heuristic improvement.

For producing all witnesses of query mass M, we use a recursive algorithm that,
as in the simple backtracking using the DP tableau, maintains a current compomer
c, an index i, and a current mass m. At step i, the entries ck, ck−1, . . . , ci+1 of
compomer c have already been filled in, and the remaining mass m = M−

∑k
j=i+1 cjaj

will be decomposed over {a1, . . . , ai}. The invariant at the call of FIND-ALL(m, i, c) is

54

4.4 Finding all witnesses

that mass m is decomposable over {a1, . . . , ai} and cj = 0 for j = i, i − 1, . . . , 1. We give
the pseudo-code in Figure 4.3.

Algorithm FIND-ALL (mass M, index i, compomer c)

1 if i = 1 then
2 c1←M/a1; output c; return;
3 end;
4 lcm← lcm(a1, ai); ℓ← lcm /ai; // least common multiple
5 for j = 0, . . . , ℓ − 1 do
6 ci← j; m←M − jai; // start with j pieces of ai

7 r← m mod a1; lbound ← ert(r, i − 1);
8 while m � lbound do // m is decomposable
9 FIND-ALL(m, i − 1, c); // over {a1, . . . , ai−1}

10 m← m − lcm; ci← ci + ℓ;
11 done;
12 done.

Figure 4.3: Algorithm for finding all witnesses using the Extended Residue Table.
For a mass M which is decomposable over {a1, . . . , ak}, FIND-ALL(M,k, 0)
will recursively produce all witnesses with mass M.

4.4.1 Correctness of the algorithm

By construction, any compomer computed by FIND-ALL(M,k, 0) will have mass M.
Conversely, fix m decomposable over {a1, . . . , ai}, i > 1, and let

N(m, i) := {m 0 = m − nai | m 0 � 0 and (4.6)

m 0 is decomposable over {a1, . . . , ai−1}}.

We will show that for a call of FIND-ALL(m, i, c), the set of values m 0 for which
a recursive call is made (line 9 in Figure 4.3) is exactly N(m, i). Then it follows
by induction over i = k, k − 1, . . . , 2 that, given c = (c1, . . . , ck) with mass M, the
algorithm will arrive at call FIND-ALL(c1a1, 1, (0, c2, . . . , ck)) and thus output c (line 2):
In the induction step, set m = M −

∑k
j=i+1 cjaj and m 0 = m − ciai.

In order to prove the claim, let ℓ := a1/ gcd(a1, ai) = lcm(a1, ai)/ai, and rq,m :=

m − qai mod a1, for q = 0, . . . , ℓ − 1. Now consider the sets

N(m, i, q) := {m 0 � ert(rq,m, i − 1) | m 0 = m − nai, n � q mod ℓ}, (4.7)

for q = 0, . . . , ℓ − 1.

Observe that N(m, i, q) is exactly the set of values for which a recursive call is made
within the while-loop (line 9) for j = q (line 5). Clearly, [ℓ−1

q=0N(m, i, q) � N(m, i).
On the other hand, let m 0 = m − nai 2 N(m, i). Further, let r = m 0 mod a1 and
q = n mod ℓ. Since r � m 0 mod a1 and m 0 = m − nai � m − qai mod a1, we have
m − qai mod a1 = r. Since m 0 is decomposable over {a1, . . . , ai−1}, it must hold that

55

4 Mass Decomposition Algorithms

m 0 � ert(r, i − 1) by property (4.5) of the Extended Residue Table. Thus, we have

N(m, i) =

ℓ−1[
q=0

N(m, i, q), (4.8)

as claimed.

4.4.2 Complexity of the algorithm

As we have seen, step i of Algorithm FIND-ALL makes one recursive call for each
m 0 2 N(m, i, q), q = 0, . . . , ℓ − 1, where ℓ = lcm(a1, ai)/ai (line 9). By (4.8), each of
these calls will produce at least one witness. In order to check which m 0 are in
N(m, i, q), the algorithm enters the while-loop at line 8, and will thus make one
unsuccessful comparison before exiting the loop. In the worst case, the current
call FIND-ALL(m, i, c) will produce only one witness; in this case, we will have ℓ − 1

additional comparisons. Since for all i = 2, . . . , k, ℓ = lcm(a1, ai)/ai � a1, we have

number of comparisons for FIND-ALL(M,k, 0) � ka1γ(M). (4.9)

The previous discussion yields the following theorem:

Theorem 4.4.1. Given the Extended Residue Table of a weighted alphabet

{a1, . . . , ak} with smallest mass a1, the FIND-ALL Algorithm solves the All Witnesses

Problem for query M in time O(ka1γ(M)).

4.4.3 Runtime heuristic

The following simple heuristic may achieve a runtime improvement of algorithm
FIND-ALL for certain weighted alphabets {a1, . . . , ak}: First sort each column but
the last of the Extended Residue Table in ascending order. Now instead of going
through the values of m − jai for j = 0, . . . , ℓ − 1 (line 5 in Figure 4.3) and comparing
it to ert(r, i − 1) where r = m − jai mod a1 (lines 7 and 8), we check each entry of the
now sorted column i− 1 in ascending order until we exceed the current value m. To
this end, we need to find the value x such that, for given residue r modulo a1, we
have

m − xai = r mod a1, with x minimal. (4.10)

For finding x, we need to compute multiplicative inverses modulo a1, if
gcd(a1, ai) = 1, resp. modulo a1/ gcd(a1, ai) in the general case. These can be com-
puted with the Extended Euclidean Algorithm in a preprocessing step and stored.
In addition, if gcd(a1, ai) > 1, then column i − 1 needs to be split into separate
blocks, and each block sorted separately.

Unfortunately, for our tests with amino acid masses, this heuristic significantly
decreased the performance of the algorithm (data not shown). We suspect that
here, the more complex operations (multiplication, modulo) outweigh any benefit of
reducing the number of comparisons in the original FIND-ALL algorithm.

56

4.5 Solving related problems with the extended residue table

4.5 Solving related problems with the extended residue

table

The Frobenius number g(a1, . . . , ak), the smallest number for which no decomposi-
tion over {a1, . . . , ak} exists, can be computed as [BS62]:

g(a1, . . . , ak) = max
r=0,...,a1−1

{ert(r, k)} − a1. (4.11)

Given the Extended Residue Table, it can be decided in constant time whether a
mass M is decomposable over {a1, . . . , ak}:

M is decomposable over {a1, . . . , ak} ⇔ M � ert(M mod a1, k). (4.12)

Moreover, if one is interested in only one witness for each input, this can be
solved using an additional vector, which we refer to as witness vector. This idea
was first suggested but not detailed in [Nij79]. Along with the Extended Residue
Table, we construct a vector w of length a1 of pairs (index, multiplicity) as follows
(see Figure 4.4):

Algorithm EXTENDED ROUND ROBIN WITH WITNESS VECTOR

1 initialize ert(0, i) = 0 and ert(r, i) =∞ for r = 1, . . . , a1 − 1, i = 1, . . . , k;
2 for i = 2, . . . , k do
3 d← gcd(a1, ai); w(0)← (1, 0);
4 for t = 0, . . . , d − 1 do
5 find n = min{ert(q, i − 1) | q mod d = t};
6 ert(n mod a1, i)← n; counter ← 0;
7 if n <∞ then repeat a1/d − 1 times
8 n← n + ai; r← n mod a1; counter ← counter +1;
9 if n > ert(r, i − 1)

10 then n← ert(r, i − 1); counter ← 0;
11 else w(r)← (i, counter);
12 end;
13 ert(r, i)← n;
14 end;
15 done;
16 done.

Figure 4.4: The Round Robin Algorithm for the Extended Residue Table, computing
in addition a witness vector w of size a1.

The only change to Algorithm EXTENDED ROUND ROBIN in Figure 4.2 is the addi-
tional construction of the witness vector w (lines 3 and 11). We maintain a counter
for the current number of ai’s that have been added up before we encounter a value
in the previous column that is smaller than the current value of n. Note that n still
assumes the minimum of the two values {n, ert(r, i−1)} (line 9 in Figure 4.2 and lines
9-10 in Figure 4.4) as before. We update the entry w(r) (line 11), unless ert(r, i − 1)

is the smaller of the two.

57

4 Mass Decomposition Algorithms

Now the vector w can be used to construct a witness with the very simple algo-
rithm shown in Figure 4.5. (Note that the entries of w are denoted 0 to a1 − 1 to
correspond with those of the Extended Residue Table, see Example 2.)

Algorithm FIND-ONE (mass M)

1 r←M mod a1; m← ert(r, k); c1← (M − m)/a1;
2 while m 6= 0 do
3 (i, j)← w(r);
4 ci← j;
5 m← m − jai; r← m mod a1;
6 done;
7 return c.

Figure 4.5: Algorithm for computing one witness using the witness vector w.

Example 2. Let’s look at the example Σ = {6, 7, 11, 15} again. Vector w will be ((1, 0),
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5)) after the first iteration (i = 2). In the next iteration,
w(4) and w(5) are updated with w(5) = (3, 1) and w(4) = (3, 2). In the final round,
w(3) and w(4) are both set to (4, 1). We end up with vector ((1, 0), (2, 1), (2, 2), (4, 1),
(4, 1), (3, 1)). See Figure 4.6.

For query M = 286, we compute the witness (44, 1, 0, 1).

r a1 = 6 a2 = 7 a3 = 11 a4 = 15 w(r)

0 0 0 0 0 (1,0)
1 ∞ 7 7 7 (2,1)
2 ∞ 14 14 14 (2,2)
3 ∞ 21 21 15 (4,1)
4 ∞ 28 22 22 (4,1)
5 ∞ 35 11 11 (3,1)

Figure 4.6: Extended Residue Table for alphabet 6, 7, 11, 15 with witness vector w

(Example 2).

The construction algorithm EXTENDED ROUND ROBIN WITH WITNESS VECTOR usesO(a1) additional space and time, compared to the EXTENDED ROUND ROBIN Algo-
rithm, thus runs in time and space O(ka1).

The witness vector w has the following property [BL05b]: For r = 0, . . . , a1 − 1, if
w(r) = (i, j), then

j = max{ci | c = (c1, . . . , ck), µ(c) = ert(r, k)}, (4.13)

from which it directly follows that the number of iterations of the while-loop in line
2 (Figure 4.5) is at most k − 1. Thus, the running time of Algorithm FIND-ONE isO(k).

We summarize:

Theorem 4.5.1. Using the Extended Residue Table of size O(ka1), whose construc-

tion time is O(ka1), the FROBENIUS number can be computed in time O(k), and the

58

4.6 Simulation results and γ(M) for biomolecules

DECISION PROBLEM can be solved in time O(1). Using the Extended Residue Ta-

ble with Witness Vector of size O(ka1), whose construction time is O(ka1), the ONE

WITNESS PROBLEM can be solved in time O(k).

4.6 Simulation results and γ(M) for biomolecules

We implemented both the classical dynamic programming algorithm and our algo-
rithm for the DECOMPOSITION ALL WITNESSES PROBLEM in C++. Running times on
a SUN Fire 880, 900 MHz, for the amino acid alphabet, the DNA alphabet, and
bioatoms are shown in Figures 4.7, 4.8, and 4.9. The DNA alphabet of size 4 uses
average masses; the amino acid alphabet of size 19 monoisotopic masses, where the
two amino acids of equal mass, I (Isoleucine) and L (Leucine), have been replaced by
one. For the biocompomers, we consider the most abundant atoms in biomolecules
(H, C, N, O, P, S). (See Section 2.4 for the masses.) We have run simulations for
precisions 0.01 and 0.001. We plot the times for the preprocessing separately from
the algorithms for producing all witnesses. Since our preprocessing algorithm EX-
TENDED ROUND ROBIN does not depend on the input mass, its running time is
constant. Our preprocessing outperforms the dynamic programming by far, while
the runtimes for producing all witnesses are very close. The plots for precision 0.001

start higher than at 0 because in the small mass area, there are no data points.
Obviously, the runtime of any algorithm that produces all witnesses for a query

mass depends on the number of its decompositions. In Figure 4.10, we report, for
different mass spectrometry applications, the number of compomers per mass, to
call attention to the widely differing cases. Considering that the average amino acid
mass is around 100 Da, a mass of 3000 Da corresponds to a string of average length
30. Nucleotide masses are all very close to 300 Da; thus, mass 10000 corresponds to
strings of length up to around 35.

DNA compomers up to 10 000 Da

59

4 Mass Decomposition Algorithms

0

0.05

0.1

0.15

0.2

 0 500 1000 1500

tim
e

[s
]

mass [Da]

Preprocessing (precision 0.01)

DynProg
ExtRoundRobin

0

0.5

1

1.5

2

2.5

 0 500 1000 1500

tim
e

[s
]

mass [Da]

Preprocessing (precision 0.001)

DynProg
ExtRoundRobin

 0

 0.1

 0.2

 0.3

 0.4

 1200 1300 1400 1500

tim
e

[s
]

mass [Da]

Finding all witnesses (precision 0.01)

DynProg
FindAll

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 1200 1300 1400 1500

tim
e

[s
]

mass [Da]

Finding all witnesses (precision 0.001)

DynProg
FindAll

0

10

20

30

40

0 500 1000 1500

tim
e

pe
r

w
itn

es
s

[µ
s

]

mass [Da]

Finding all witnesses (precision 0.01)

DynProg
FindAll

0

10

20

30

40

0 500 1000 1500

tim
e

pe
r

w
itn

es
s

[µ
s

]

mass [Da]

Finding all witnesses (precision 0.001)

DynProg
FindAll

Figure 4.7: Amino acid alphabet. Runtime comparison for finding all witnesses
with precision 0.01 Da (left) and 0.001 Da (right). Top: Preprocessing,
center: query algorithm, bottom: query algorithm, runtime per witness.

60

4.6 Simulation results and γ(M) for biomolecules

 0

 0.1

 0.2

 0.3

 0 2000 4000 6000 8000

tim
e

[s
]

mass [Da]

Preprocessing (precision 0.01)

DynProg
ExtRoundRobin

 0

 0.5

 1

 1.5

 2

 2.5

 0 2000 4000 6000

tim
e

[s
]

mass [Da]

Preprocessing (precision 0.001)

DynProg
ExtRoundRobin

 0

 5

 10

 15

 20

 0 2000 4000 6000 8000

tim
e

[µ
s

]

mass [Da]

Finding all witnesses (precision 0.01)

DynProg
FindAll

 0

 2

 4

 6

 8

 10

 0 2000 4000 6000

tim
e

[µ
s

]

mass [Da]

Finding all witnesses (precision 0.001)

DynProg
FindAll

 0

 2

 4

 6

 8

 10

 0 2000 4000 6000 8000

tim
e

pe
r

w
itn

es
s

[µ
s

]

mass [Da]

Finding all witnesses (precision 0.01)

DynProg
FindAll

 0

 2

 4

 6

 8

 10

 0 2000 4000 6000

tim
e

pe
r

w
itn

es
s

[µ
s

]

mass [Da]

Finding all witnesses (precision 0.001)

DynProg
FindAll

Figure 4.8: DNA alphabet. Runtime comparison for finding all witnesses with pre-
cision 0.01 Da (left) and 0.001 Da (right). Top: Preprocessing, center:
query algorithm, bottom: query algorithm, runtime per witness.

61

4 Mass Decomposition Algorithms

 0

 0.005

 0.01

 0.015

 0.02

 0 300 600 900

tim
e

[s
]

mass [Da]

Preprocessing (precision 0.01)

DynProg
ExtRoundRobin

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 300 600 900

tim
e

[s
]

mass [Da]

Preprocessing (precision 0.001)

DynProg
ExtRoundRobin

 0

 0.01

 0.02

 0.03

 0 300 600 900

tim
e

[s
]

mass [Da]

Finding all witnesses (precision 0.01)

DynProg
FindAll

 0

 0.01

 0.02

 0.03

 0 300 600 900

tim
e

[s
]

mass [Da]

Finding all witnesses (precision 0.001)

DynProg
FindAll

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 300 600 900

tim
e

pe
r

w
itn

es
s

[µ
s

]

mass [Da]

Finding all witnesses (precision 0.01)

DynProg
FindAll

 0

 2

 4

 6

 8

 10

 12

 0 300 600 900

tim
e

pe
r

w
itn

es
s

[µ
s

]

mass [Da]

Finding all witnesses (precision 0.001)

DynProg
FindAll

Figure 4.9: Bioatoms alphabet. Runtime comparison for finding all witnesses with
precision 0.01 Da (left) and 0.001 Da (right). Top: Preprocessing, center:
query algorithm, bottom: query algorithm, runtime per witness.

62

4.6 Simulation results and γ(M) for biomolecules

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000 2500 3000

nu
m

be
r

of
 A

A
-c

om
po

m
er

s
(in

 m
ill

io
ns

)

mass [Da]

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500 600 700 800
nu

m
be

r
of

 A
A

-c
om

po
m

er
s

mass [Da]

 0

 2

 4

 6

 8

 10

 12

 0 2000 4000 6000 8000 10000

nu
m

be
r

of
 D

N
A

 c
om

po
m

er
s

mass [Da]

0

100

200

300

400

500

600

700

0 50 100 150 200

nu
m

be
r

of
 b

io
co

m
po

m
er

s

mass [Da]

Figure 4.10: Top: Number of amino acid compomers up to 3000 Da (left) and up to
800 Da (right). Bottom: Number of DNA compomers up to 10 000 Da
(left) and biomolecules up to 200 Da (right). Computation precision is
0.001 Da, output is merged within 0.1 Da.

63

4 Mass Decomposition Algorithms

64

5 Submass Finding Algorithms

In this chapter, we investigate variants of the SUBMASS DECISION PROBLEM. We
recall the definitions from Chapter 3. Fix a weighted alphabet (Σ, µ).

SUBMASS DECISION PROBLEM:
Given a string s and a mass M, is M a submass of s?

SUBMASS ONE WITNESS PROBLEM:
Given a string s and a mass M, return a witness of M in s, if there is one.

SUBMASS ALL WITNESSES PROBLEM:
Given a string s and a mass M, return all witnesses of M in s.

SUBMASS COUNTING PROBLEM:
Given a string s, how many submasses does s have, i.e., determine m(s).

Let the length of s be n. We will first introduce simple algorithms for these prob-
lems. In Section 5.2, we present an algorithm which solves the SUBMASS DECISION

PROBLEM in query time O(log n), using storage space O(n). The idea is to prepro-
cess and store the submasses using a simple geometric property in two dimensions.
In Section 5.3, we present several algorithms for the multiple mass versions of the
above problems, such as:

MULTIPLE SUBMASS DECISION PROBLEM:
Given a string s of length n and masses M1, . . . ,Mr, return a subset I �
{1, . . . , r} such that i 2 I if and only if Mi is a submass of s.

These latter algorithms rely for their efficiency on Fast Fourier Transform (FFT)
for polynomial multiplication.

Parts of this chapter have appeared in [CEL+02], [CEL+04], and in [BCL04].

5.1 First solutions and overview of results

All these problems (submass decision, one witness, all witnesses, multiple masses,
and counting) can be solved by one of several simple algorithms that we now de-
scribe. The first algorithm, which we refer to as LINSEARCH, moves two pointers
along the string, one pointing to the potential beginning and the other to the po-
tential end of a substring with mass M. The right pointer is moved if the mass
of the current substring is smaller than M, the left pointer, if the current mass is
larger than M. The algorithm solves each of the single-mass problems in O(n) time
and uses O(1) space in addition to the storage space required for the input string

65

5 Submass Finding Algorithms

and the output. (Note that LINSEARCH also solves the SUBMASS ALL WITNESSES

PROBLEM in O(n) time, independent of the number of witnesses, i.e., the output
size, since κ(M) � n for all submasses M of s. Recall that κ(M) is the number of
witnesses of M.)

Another simple algorithm, which we refer to as BINSEARCH, computes all sub-
masses of s in a preprocessing step and stores them in a sorted array, which can
then be queried in time O(log n) for an input mass for the SUBMASS DECISION

PROBLEM and the SUBMASS ONE WITNESS PROBLEM. The storage space required
is proportional to m(s), the number of different submasses of string s, and is thusO(n2), while the preprocessing time is Θ(n2 log m(s)). For the SUBMASS ALL WIT-
NESSES PROBLEM, we need to store in addition all witnesses, requiring space Θ(n2);
in this case, the query time for mass M becomes O(log n + κ(M)).

Alternatively, we can use a Boolean array of size µs for storing all submasses of
s, thus allowing constant time access for queries. We refer to this algorithm as
BOOLEANARRAY. Then the query running time becomes O(1) and the storage space
Θ(µs), where µs = µ(s). This yields query time O(1) for the SUBMASS DECISION

PROBLEM and the SUBMASS ONE WITNESS PROBLEM, and O(κ(M)) for the SUBMASS

ALL WITNESSES PROBLEM.

All these algorithms can of course be extended for the multiple mass versions of
the problems, by simply running the query algorithm r times for r query masses.
This will yield, for LINSEARCH, a query time of Θ(rn) for the three multiple sub-
mass problems. For BINSEARCH, we get Θ(r log n) for the MULTIPLE SUBMASS

DECISION PROBLEM and the MULTIPLE SUBMASS ONE WITNESS PROBLEM, and for
the MULTIPLE SUBMASS ALL WITNESSES PROBLEM, Θ(max(r, K)) query time, where
K =

∑k
i=1 κ(Mi) is the total number of witnesses for the query masses. Note that

any algorithm solving the MULTIPLE SUBMASS ALL WITNESSES PROBLEM will have
runtime Ω(K). For BOOLEANARRAY, the query time for the first two problems is thenO(r), and for the MULTIPLE SUBMASS ALL WITNESSES PROBLEM, Θ(max(r, K)).

Finally, the SUBMASS COUNTING PROBLEM can be solved by simply computing
all masses of substrings of s in time O(n2 log m(s)) = O(n2 log n) by computing
µ(si . . . sj) for each pair of (i, j) and sorting them. Alternatively, using a suffix tree
structure and a linear suffix tree algorithm, in time O(s(s) log n).

In [CEL+04], we introduced an algorithm, referred to as LOOKUP, which solves the
SUBMASS ONE WITNESS PROBLEM (and thus, also the decision problem) in O(n

log n
)

query time and O(n) storage space, using O(n) time and space for the preprocess-
ing. The idea is to speed up LINSEARCH: During the query phase, the algorithm
moves two pointers along the string pointing to the potential beginning and end of
a substring with mass equalling query M. However, the pointers are not moved
character by character, but rather block by block, where each block has length
approximately log n. For each pair of positions, a lookup step in a data structure
is needed which tells us whether the current difference required (between query
M and the mass of the current substring) can be achieved by moving one of the
two pointers within the current block. If this is not possible, the lookup step also
tells us which of the two pointers need to be moved for the next lookup. Carefully
choosing the block size will yield the complexity claimed above. However, this is an
asymptotic result only, since the constants in this running time are so large that

66

5.2 An algorithm for binary alphabets

for a 20-letter alphabet and realistic string sizes, the algorithm is not applicable.

In this chapter, we introduce four new efficient algorithms for different variants of
the submass finding problem. In Table 5.1, we present an overview of the runtimes
for the multiple mass versions of the problems, in comparison to the two simple
algorithms discussed before. We denote by O(A + B) that the preprocessing has
runtime O(A) and the query time is O(B). All our algorithms assume that the
masses are integers, i.e., that µ : Σ → N. Recall that µ(s) denotes the total mass of
the string s.

problem LINS. BINSEARCH our algorithms name/section

DECISION O(rn) O(n2 log n + r log n) O(n2 + r log n)binary alph. INTERVAL, 5.2O(µ(s) log µ(s) + r log n) POLLY, 5.3.1

COUNTING −− O(n2 log n) O(µ(s) log µ(s)) POLLY, 5.3.1

ONE O(rn) O(n2 log n) O(µ(s) log3 µ(s) + r log n) POLLYLASVEGAS ,

WITNESS expected 5.3.2

ALL O(rn) O(n2 log n+ O((Knµ(s) log µ(s))1/2) POLLYDIVIDE,

WITNESSES (r log n + K)) 5.3.3

Table 5.1: Runtime comparison of algorithms for multiple mass problems.

Of our two algorithms for the decision problem, the first one, INTERVAL, assumes
that the string s is a string over a binary alphabet, while the second one, POLLY,
works for arbitrary alphabets. Even though INTERVAL is in general slower—O(n2)

vs. O(µ(s) log µ(s)) for the preprocessing, with identical query time—, its storage
requirements are much better, namely O(n) vs. O(m(s)). This is due to an efficient
storage scheme which encodes masses according to their residue modulo the mass
difference |µ(a) − µ(b)|, where a and b are the two characters of the alphabet.

5.2 An algorithm for binary alphabets

In this section, we present algorithm INTERVAL which solves the SUBMASS DECISION

PROBLEM for an alphabet of size 2. It uses storage space O(n) and has query time
O(log n).

Let s be a string over Σ = {a, b} of length n and fix p � n. Observe that, when
sliding a window of size p over s, then, in one step, the multiplicities of a and b

within the window change at most by one. We represent substrings of s by points
in the N0� N0 lattice, where the two coordinates signify the multiplicities of a and
b:

Sp := {(i, j) 2 N0� N0 | i + j = p, there is a substring t of s s.t. |t|a = i, |t|b = j}. (5.1)

All points in Sp will lie on a line (a diagonal), and moreover, they will be neigh-
bours. We will refer to such a set of neighbours on a line as an interval. Each such
interval has two extremal points.

67

5 Submass Finding Algorithms

Example 3. s = aaaaabaabb. The fig-
ure shows the representation of all sub-
strings of length p = 8. Extremal points
of this interval are (5, 3) and (7, 1). (6,2)

(7,1)

a

b

(5,3)

Assume for a moment that we know the multiplicities of a and b in M, e.g. M =

i � µ(a) + j � µ(b). Then we can easily find out whether M is a submass of s: We
store the Sp’s, for 1 � p � n by their extremal points during the preprocessing
phase. Now we only have to check whether (i, j) 2 Si+j, which takes O(1) time.
This requires storage space linear in n. If, in addition, i and j were known to be
the only feasible multiplicities of a and b (i.e., the unique solution of the equation
x�µ(a)+y�µ(b) = M), then this algorithm would even decide whether M is a submass
of s, and we would be done.

Unfortunately, we do not know the multiplicities of a and b in M. Without loss
of generality, assume µ(a) < µ(b). We define d := µ(b) − µ(a) and use the residue of
M mod d to look up a table. The table, generated during the preprocessing phase,
contains representations of all submasses of s.

Let Mp := {µ(t) | t is a p-length substring of s}. Observe that consecutive elements
of Mp (when sorted) differ by exactly d. Therefore, we can write Mp = {cp + ℓ � d | ℓ =

0, . . . , np − 1}, where cp = min Mp and np = |Mp|. Furthermore, Mp = {rp + ℓ � d | ℓ =

ap, . . . , bp}, where rp = (cp mod d), ap =
�cp

d

�
and bp = ap + np − 1. This says that all

submasses of the same length have the same residue modulo d.

Example 3 cont’d: Let s = aaaaabaabb and µ(a) = 2 and µ(b) = 7. Then d = 5, and

S10 = {(7, 3)} M10 = {35} r10 = 0, a10 = 7, b10 = 7

S9 = {(7, 2), (6, 3)} M9 = {28, 33} r9 = 3, a9 = 5, b9 = 6

S8 = {(7, 1), (6, 2), (5, 3)} M8 = {21, 26, 31} r8 = 1, a8 = 4, b8 = 6

S7 = {(6, 1), (5, 2), (4, 3)} M7 = {19, 24, 29} r7 = 4, a7 = 3, b7 = 5

S6 = {(5, 1), (4, 2), (3, 3)} M6 = {17, 22, 27} r6 = 2, a6 = 3, b6 = 5

S5 = {(5, 0), (4, 1), (3, 2), (2, 3)} M5 = {10, 15, 20, 25} r5 = 0, a5 = 2, b5 = 5

S4 = {(4, 0), (3, 1), (2, 2)} M4 = {8, 13, 18} r4 = 3, a4 = 1, b4 = 3

S3 = {(3, 0), (2, 1), (1, 2)} M3 = {6, 11, 16} r3 = 1, a3 = 1, b3 = 3

S2 = {(2, 0), (1, 1), (0, 2)} M2 = {4, 9, 14} r2 = 4, a2 = 0, b2 = 2

S1 = {(1, 0), (0, 1)} M1 = {2, 7} r1 = 2, a1 = 0, b1 = 1

Observe that rp = (p � µ(a) mod d). Thus, we may have the same residue modulo
d for different values of p. Instead of storing ap and bp for each rp individually
(which could result in linear query time), we will store the union of all intervals
which belong to the same residue r, sorted by their endpoints. This may result in
merging intervals: If [x, y] and [y + 1, z] occur as intervals for the same residue, they
are replaced by [x, z].

68

5.2 An algorithm for binary alphabets

Example 3 cont’d: In the example, this yields the following preprocessed data. For
residues 1 and 4, the intervals have been merged.

residue modulo d union of intervals
0 [2, 5], [7, 7]

1 [1, 6]

2 [0, 1], [3, 5]

3 [1, 3], [5, 6]

4 [0, 5]

5.2.1 Algorithm INTERVAL

In the preprocessing phase, we compute the rp’s, ap’s, and bp’s as above. We then
sort the rp’s, thus obtaining a sorted array q1, . . . , qm, where m � n (since different
Sp’s may have the same residue). For each qℓ, 1 � ℓ � m, we compute a list of
interval endpoints which represents the union of all intervals [ap, bp] with rp = qℓ.
This list consists of one or more disjoint intervals, which we store in sorted order
in an array Aℓ.

Now, when querying whether a given mass M is a submass of s,

Algorithm INTERVAL

1. decompose M = g � d + r, where r = (M mod d) and g 2 N;

2. find index ℓ 2 {1, . . . ,m} such that r = qℓ, using binary search; if no such index
can be found, then M is not a submass of s, and the algorithm outputs NO;

3. otherwise, find whether there is an interval [a, b] in array Aℓ such that g 2 [a, b],
using binary search on (the left endpoints of) the intervals; M is a submass of
s if and only if such an interval exists.

Since the total number of intervals to be stored is n, the storage space needed is
O(n). The first step of the query algorithm takes time O(1). The second step takes
time O(log n), since the number of different residues is at most n. The third step
takes time O(log n), since the maximum number of intervals stored in one array Aℓ

is n. We obtain a total query time O(log n).

Theorem 5.2.1. Algorithm INTERVAL solves the SUBMASS DECISION PROBLEM for

binary alphabets with storage space O(n) and query time O(log n).

The problem in generalizing this approach to larger alphabets is that the algo-
rithm relies on the crucial fact that points representing substrings of the same
length lie on a line and form an interval. This does not generalize to higher dimen-
sions, since there we only know that the points representing substrings of the same
length are connected.

69

5 Submass Finding Algorithms

5.3 Submass finding with polynomials

In this section, we introduce algorithms for the multiple mass versions of the
submass finding problems, i.e., algorithms solving the following problems: Fix a
weighted alphabet (Σ, µ).

MULTIPLE SUBMASS DECISION PROBLEM:
Given a string s with |s| = n and masses M1, . . . ,Mr, return a subset
I � {1, . . . , r} such that i 2 I if and only if Mi is a submass of s.

MULTIPLE SUBMASS ONE WITNESS PROBLEM:
Given a string s with |s| = n and masses M1, . . . ,Mr, return a subset
I � {1, . . . , r} such that i 2 I if and only if Mi is a submass of s, and a set
{(bi, ei) | i 2 I, (bi, ei) is witness of Mi in s}.

MULTIPLE SUBMASS ALL WITNESSES PROBLEM:
Given a string s with |s| = n and masses M1, . . . ,Mr, return a subset
I � {1, . . . , r} such that i 2 I if and only if Mi is a submass of s, and for
each i 2 I, the set of all witnesses Wi := {(b, e) | (b, e) is witness of Mi in s}.

In the rest of the chapter, we assume that all character masses are integers.
Our algorithms are based on encoding the submasses of string s with appropriately
chosen polynomials, and their efficiency derives from using Fast Fourier Transform
(FFT) for polynomial multiplication. The first algorithm we introduce also solves the
SUBMASS COUNTING PROBLEM.

Let µs denote the total mass of the string s, i.e., µs = µ(s). Our algorithms all have
running times which depend on µs, and space complexity O(m(s)). However, we can
use the sparse polynomial multiplication technique of Cole and Hariharan [CH02]
to give Las Vegas variants of our algorithms, where each term µs in the expected
running time can be replaced by m(s)polylog(m(s)). Thus, throughout this section,
we present our runtimes as a function of µs with the understanding that µs is
identical to m(s) up to polylogarithmic factors.

5.3.1 Searching for submasses using polynomials

In this section, we introduce the main idea of our algorithms, how to encode sub-
masses via polynomials. We first prove some crucial properties, and then discuss
algorithmic questions.

Define, for 0 � i � n,

pi :=

i∑

j=1

µ(sj) = µ(s1 . . . si), (5.2)

the i’th prefix mass of s. In particular, p0 = µ(ε) = 0. The underlying idea is that
any submass can be written as the difference between one prefix mass and another
prefix mass; in particular, if M = µ(si . . . sj), then M = pj − pi−1, see Figure 5.1.

70

5.3 Submass finding with polynomials

��������
��������
��������
��������

i j

Figure 5.1: The submass M = µ(si . . . sj) = pj − pi−1.

We will capture this property by defining two polynomials whose product will
have exactly the submasses of s (save for a shift) as the exponents of monomials
with non-zero coefficients.

Ps(x) :=
∑n

i=1 xpi = xµ(s1) + xµ(s1s2) + . . . + xµs , (5.3)

Qs(x) :=
∑n−1

i=0 xµs−pi = xµs + xµs−µ(s1) + . . . + xµs−µ(s1...sn−1), (5.4)

and consider the product of Ps(x) and Qs(x),

Cs(x) := Ps(x) �Qs(x) =

2µs∑

m=0

cmxm. (5.5)

Recall that we denote by κ(M) the number of witnesses (i, j) of mass M in string
s.

Lemma 5.3.1. Let Ps(x),Qs(x) and Cs(x) from Equations (5.3) through (5.5). Then for

any m � µs, κ(m) = cm+µs , i.e., the coefficient cm+µs of Cs(x) equals the number of

witnesses of m in s.

Proof. By definition, we have

Cs(x) = Ps(x) �Qs(x) =

n∑

j=1

xpj

n−1∑

i=0

xµs−pi = xµs � ∑
1�i,j�n

xpj−pi−1

= xµs � ∑

1�i�j�n

xµ(si...sj) + xµs � ∑

1�j<i�n

x−µ(sj+1...si−1).

Let [xi]A(x) denote the coefficient ai of xi of the polynomial A(x) =
∑

j ajx
j. Then, for

any m � µs,

κ(m) = |{(i, j) | µ(si . . . sj) = m}| = [xm](
1

xµs
Cs(x))

= [xm+µs]Cs(x) = cm+µs .

Lemma 5.3.1 immediately implies the following. Recall that for a proposition Λ,
[Λ] = 1 if Λ is true, and 0 otherwise.1

1We stick to the use of [,] both for the characteristic function of a proposition and for the coefficient
of a polynomial, since this is standard notation, and the two meanings cannot be confused.

71

5 Submass Finding Algorithms

Corollary 5.3.2. For Cs(x) from (5.5), the number of non-zero coefficients greater

than µs equals the number of submasses of s:

2µs∑

m=µs+1

[cm 6= 0] = m(s),

Furthermore,
∑2µs

m=µs+1 cm =
n(n+1)

2
.

Thus, polynomial Cs also allows us to compute the number of submasses of s.

Example 4. Let s = baac, µ(a) = 2, µ(b) = 3, µ(c) = 5. Then,

Ps(x) = x3 + x5 + x7 + x12,

Qs(x) = x12 + x9 + x7 + x5, and

Cs(x) = x8 + 2x10 + 3x12 + 2x14 + x15 + x16 + 2x17 + 2x19 + x21 + x24.

Dividing the terms cix
i with i > 12 by x12 = xµs yields 2x2+x3+x4+2x5+2x7+x9+x12.

This yields the submasses 2, 3, 4, 5, 7, 9, 12 with two witnesses for 2, 5, and 7, and one
witness for each of the other submasses.

Algorithm and analysis

We now present an algorithm to solve the MULTIPLE SUBMASS DECISION PROBLEM

and the SUBMASS COUNTING PROBLEM. The algorithm primarily consists of com-
puting polynomial Cs(x).

Algorithm POLLY

1. Preprocessing step:
Compute µs, compute Cs(x), and store in a sorted array all numbers m−µs for
exponents m > µs where cm 6= 0.

2. Query step:

a) For the MULTIPLE SUBMASS DECISION PROBLEM: Search for each query
mass Mi for 1 � i � r, and return YES if found, NO otherwise.

b) For the SUBMASS COUNTING PROBLEM: Return size of array.

Correctness of POLLY follows immediately from the previous lemmas.

Theorem 5.3.3. Algorithm POLLY solves the MULTIPLE SUBMASS DECISION PROB-
LEM in time O(µs log µs + r log n) and the SUBMASS COUNTING PROBLEM in timeO(µs log µs).

Proof. The polynomial Cs(x) can be computed efficiently using Fast Fourier Trans-
form (FFT) [CT65], which runs in time O(µs log µs), since Cs(x) has degree 2µs.
Hence, the preprocessing step takes time O(µs log µs). The query time for the MUL-
TIPLE SUBMASS DECISION PROBLEM is O(r log m(s)) = O(r log n).

72

5.3 Submass finding with polynomials

Instead of using a sorted array, we can store the submasses in an array of size
µs (which can be hashed to O(m(s)) size) and allow for direct access in constant
time, thus reducing the query time to O(r). As mentioned earlier, we can employ
methods from [CH02] for sparse polynomials and reduce deg Cs to O(m(s)), the
number of non-zero coefficients. However, for the rest of this section, we will refer
to the running time as proportional to µs log µs.

As an aside, note that µs � µmax n, where µmax = max µ(Σ). If the maximal mass
can be viewed as a constant, this yields runtime O(n log n) for the preprocessing
step. It may not always be realistic to assume that µmax is constant, because in
order to enforce that all masses be positive integers, a scaling of the masses may be
necessary, which can blow them up significantly.2 However, even in this case, the
algorithm outperforms BINSEARCH for the SUBMASS DECISION PROBLEM as long as
µmax = o(n

log n
).

Along the same lines, for the SUBMASS COUNTING PROBLEM, our algorithm allows
computation of m(s) in O(µs log µs) = O(nµmax log(nµmax)) time. The naı̈ve solution
of generating all submasses requires Θ(n2 log n) time and Θ(m(s)) space (with sort-
ing), or Θ(n2) time and Θ(µs) space (with an array of size µs). Our algorithm thus
outperforms this naı̈ve approach as long as µmax = o(n

log n
).

5.3.2 A Las Vegas algorithm for finding witnesses

We now describe how to efficiently find a witness for each submass of the string s.
Our high level idea is the following: We first note that given a mass M, if we know
the ending position j of a witness of M, then, using the prefix masses p1, . . . , pn,
we can easily find the beginning position of this witness. To do so, we simply do
a binary search amongst the prefix masses p1, . . . , pj−1 for mass pj − M. Below, we
will define two suitable polynomials of degree at most µs such that the coefficient
of xM+µs in their product equals the sum of the ending positions of substrings that
have mass M.

Now, if we knew that there was a unique witness of mass M, then the coefficient
would equal the ending position of this witness. However, this need not always be
the case. In particular, if there are many witnesses with mass M, then we would
need to check all partitions of the coefficient of xM+µs , which is computationally far
too costly. To get around this problem, we look for the witnesses of M in the string
s, where we do not consider all pairs of positions but instead random subsets of
these.

By using the definition of Q(x) from (5.4), set

Rs(x) :=

n∑

i=1

i � xpi and (5.6)

Fs(x) := Rs(x) �Qs(x) =

2µs∑

m=0

fmxm. (5.7)

In the following lemma, we use the definition of cm from (5.5).

2This can be the case, e.g., for protein strings, where the amino acid masses are known up to a
precision of more than 10−5.

73

5 Submass Finding Algorithms

Lemma 5.3.4. Let m > µs. If cm = 1, then fm equals the ending position of the (sole)

witness of m − µs.

Proof. By definition,

fm =
∑

(i,j) witness of m

j

for any m > µs. If cm = 1, then, by Lemma 5.3.1, m − µs has exactly one witness
(i0, j0). Thus, fm = j0.

Example 5. We continue with Example 4 on string s = baac and masses 2, 3, 5 for
characters a, b, c. We get Rs(x) = x3 + 2x5 + 3x7 + 4x12 and Fs(x) = x8 + 3x10 + 6x12 +

5x14+x15+3x16+6x17+7x19+4x21+4x24. By checking the coefficients of Cs(x), we see
that among the exponents m > µs, c15, c16, c21, and c24 equal 1. Thus, with Fs(x), we
now know that the only witnesses of the submasses 3, 4, 9, and 12 end at positions
1, 3, 4, and 4, respectively.

The algorithm

We now present a Las Vegas algorithm for the MULTIPLE SUBMASS ONE WITNESS

PROBLEM. In the algorithm, we first use polynomial Cs(x) to generate a data struc-
ture containing all submasses of s. We then run a procedure which uses random
subsets to try and find witnesses for each of these submasses. It outputs a set
of pairs (m, jm), where m is a submass of s, and jm is the ending position of one
witness of m. Then, for each query mass which is in this set, we find the beginning
position of the witness in time O(log n) with binary search within the prefix masses,
as described above. For any remaining query masses which are submasses of s, we
simply run LINSEARCH to find a witness.

Algorithm POLLYLASVEGAS

1. Compute Cs(x) from Equation (5.5), and store all submasses of s.

2. Procedure TRY-FOR-WITNESS

(i) For a from 1 to 2 log2 n, do:

(ii) Let b = 2−a/2. Repeat 24 ln n times:

(iii) • Generate a random subset I1 of {1, 2, . . . , n}, and a random subset
I2 of {0, 1, 2, . . . , n − 1}, where each element is chosen indepen-
dently with probability b.

• Compute PI1
(x) =

∑
i2I1

xpi , QI2
(x) =

∑
i2I2

xµs−pi and RI1
(x) =∑

i2I1
i � xpi .

• Compute CI1,I2
(x) = PI1

(x) �QI2
(x) and FI1,I2

(x) = RI1
(x) �QI2

(x).

• Let cm = [xm]CI1,I2
(x) and fm = [xm]FI1,I2

(x).

• For m > µs, if cm = 1 and if m has not yet been successful, then
store the pair (m − µs, fm). Mark m as successful.

74

5.3 Submass finding with polynomials

3. Check which of the query masses is a submass of s by looking them up in the
data structure generated in Step 1. Exclude all queries that are not submasses
of s.

4. For all submasses amongst the queries Mℓ, 1 � ℓ � r, which are marked as
successful (i.e., an ending position was found by procedure TRY-FOR-WITNESS),
find the beginning position with binary search amongst the prefix masses.

5. If there is a submass Mℓ for which no witness was found, find one using
LINSEARCH.

Analysis

We first give an upper bound on the failure probability of procedure TRY-FOR-
WITNESS for a particular query mass M.

Lemma 5.3.5. For a query mass M with κ(M) = κ, and a = dlog2 κe, consider the

Step 2.iii of POLLYLASVEGAS. The probability that the coefficient cM+µs of CI1,I2
(x) for

value a (as defined above) is not 1 is at most 7
8
.

Proof. Let the witnesses of M be {(b1, e1), . . . , (bκ, eκ)}. Clearly 0 � κ � n. We first
analyze the probability of the event that for this particular choice of a, the coefficient
of xµs+M in C(x) is exactly 1. This is the case if and only if |{i : bi 2 I1 and ei 2 I2, 1 �
i � κ}| = 1. Now, for 1 � i � κ, let Ei denote the event Ei = {bi 2 I1} \ {ei 2 I2}. Since
for any i 6= j, we have bi 6= bj and ei 6= ej, it follows that Ei and Ej are independent
events. Thus, the probability that exactly one of the Ei’s holds is

κ2−a � (1 − 2−a)κ−1 > κ2−a � (1 − 2−a)2
a � 1

2
� 1

4
=

1

8
.

The last inequality follows because (1 − ǫ)1/ǫ � 1
4

for any ǫ � 1
2
.

Lemma 5.3.6. Procedure TRY-FOR-WITNESS does not find a witness for a given sub-

mass M with probability at most 1/n3. Moreover, the probability that the procedure

fails for some submass is at most 1/n.

Proof. By Lemma 5.3.5 we know that for any fixed submass M, and for the par-
ticular choice of a, the probability that the random choice of I1 and I2 produces a
unique witness for M is at least 1/8. Since Step 2.iii is repeated 24 ln n times, and all
trials are independent of each other, the probability that there is no unique witness
for any run is at most (7/8)24 ln n � e−3 ln n = 1

n3 . This follows since (1 − ǫ)1/ǫ � e−1

for any 0 < ǫ < 1. Since there are at most O(n2) different submasses in a string
of length n, using the union bound, the algorithm generates a witness for each
distinct submass with probability at least 1 − n2 � 1

n3 = 1 − 1/n.

Theorem 5.3.7. Algorithm POLLYLASVEGAS solves the MULTIPLE SUBMASS ONE

WITNESS PROBLEM in expected time O(µs log3 µs + r log n).

75

5 Submass Finding Algorithms

Proof. Denote the number of distinct submasses amongst the query masses by r 0,
thus, r 0 � r. By Lemma 5.3.6, the probability that procedure TRY-FOR-WITNESS

finds a witness for each of the r 0 = O(n2) submasses is at least 1− 1/n. In this case,
the running time is the time for running the procedure, plus the time for finding
witness beginning positions. On the other hand, the probability that the procedure
fails to find a witness is at most 1/n. In this case, we run LINSEARCH for the missing
query masses, each in time O(n), thus at most in overall time O(r 0n). Plugging it
all together we get: O(µs log µs︸ ︷︷ ︸

Step 1.

+ 2 log n
︸ ︷︷ ︸
Step 2.i

� 24 ln n︸ ︷︷ ︸
Step 2.ii

�µs log µs︸ ︷︷ ︸
Steps 2.iii

)

+ O(r log n)
︸ ︷︷ ︸

Step 3.

+(1 −
1

n
)O(r 0 log n) +

1

n
O(r 0n)

= O(µs log3 µs + r � log n).

5.3.3 A deterministic algorithm for finding all witnesses

Recall that, given the string s of length n and r query masses M1, . . . ,Mr, we are
able to solve the MULTIPLE SUBMASS ALL WITNESSES PROBLEM in Θ(r � n) time andO(1) space with LINSEARCH, or in Θ(n2 log n + r log n) time and Θ(n2) space with
BINSEARCH. Thus, the two naı̈ve algorithms yield a runtime of Θ(min(rn, (n2 +

r) log n)).
Our goal here is to give an algorithm that outperforms the bound above, pro-

vided certain conditions hold. Clearly, in general it is impossible to beat the bound
min(rn, n2) because that might be the size of the output, K, the total number of wit-
nesses to be returned. In the following, we concentrate on the case where K � rn.

First, consider two strings s and t and their concatenation st. We are interested
in submasses of st with a witness that spans or touches the border between s and
t. More precisely, we refer to a witness (i, j) as a border-spanning witness if and
only if i � |s| � j. We can encode such witnesses again in a polynomial, using the
definition of P(x) from (5.3). The idea is that the mass of a border-spanning witness
can be written as the sum of a prefix mass of sR, the reverse string of s, and a prefix
mass of t. Note that here, we also allow 0 as a submass.

Lemma 5.3.8. For two strings s, t, and the polynomial

Ds,t(x) := (x0 + PsR (x)) � (x0 + Pt(x)) =

µ(s)+µ(t)∑

m=0

dmxm, (5.8)

the coefficient dm equals the number of border-spanning witnesses of m in s � t.
Proof. Straightforward.

Example 6. Let s = ba, t = ac, and the masses as before. We get Ds,t(x) = x0 +

2x2 + x4 + x5 + 2x7 + x9 + x12. We compare these to the terms of 1
x12 Cbaac(x) with

76

5.3 Submass finding with polynomials

positive exponent in Example 4, since these yield all non-zero submasses of baac:
2x2 + x3 + x4 + 2x5 + 2x7 + x9 + x12. We see that the (sole) witness of 3 and one of the
witnesses of 5 are not border-spanning witnesses.

The algorithm

The algorithm combines the polynomial method with LINSEARCH in the following
way: We divide the string s into g substrings of approximately equal length. We
then use polynomials to identify, for each query mass M and each witness (b, e) of
M, which substrings the beginning and end index lie in. Then we use LINSEARCH

on these substrings to actually find the witnesses. The crucial observation is given
in Lemma 5.3.9. We now describe the details.

The string s is divided into g substrings of approximately equal length: s = t1 �
t2 � � � tg (where we will choose g below), and denote by Mi,j =

∑j−1
m=i+1 µ(tm). In

particular, if j � i + 1, then Mi,j = 0. We illustrate in Figure 5.2.

������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������

������
������
������

������
������
������

t1

t1 t2 t3 t4

t5

t5 t6 t7

M

M2,4

M − M1,5

Figure 5.2: Illustration for algorithm POLLYDIVIDE.

In order to have a good choice for g, we need to know the total size of the output,
K =

∑r
ℓ=1 κ(Mℓ). This we can obtain by computing Cs(x) and then adding up the

coefficients cMℓ+µs for 1 � ℓ � r. We now set g = d(Kn
µs log µs

)
1
2 e. Observe that if

Kn � µs log µs, then g = 1, in which case we are better off running LINSEARCH. So
let Kn > µs log µs.

In Step 2.(b) of the following algorithm, we modify LINSEARCH to only return
border–spanning submasses. This can be easily done by setting the second pointer
at the start of the algorithm to the last position of the first string, and by terminat-
ing when the first pointer moves past the first position of the second string.

Algorithm POLLYDIVIDE

1. Preprocesssing step:

a) Compute µs and Cs(x) as defined in (5.5), and compute

K =
∑r

ℓ=1 cMℓ+µs . Set g = d(Kn
µs log µs

)
1
2 e.

b) For each 1 � i � g, compute Cti
(x).

c) For each 1 � i < j � g, compute Dti,tj
(x) as defined in (5.8).

2. Query step:

77

5 Submass Finding Algorithms

a) Compute a witness-position-list for each query Mℓ by iterating through
all terms of the Cti

’s and all terms of the Dti,tj
’s. The witness-position-list

of Mℓ contains exactly those i such that Mℓ is a submass of ti, and those
pairs (i, j), such that Mℓ − Mi,j is a border-spanning submass of ti � tj.

b) For each 1 � ℓ � r,

i. If Mℓ’s witness-position-list is empty, then return NO.

ii. For each i in Mℓ’s witness-position-list, run LINSEARCH on ti for Mℓ

and return all witnesses.

iii. For each pair (i, j) in Mℓ’s witness-position-list, run LINSEARCH on ti�tj

for submass Mℓ − Mi,j and return all border-spanning witnesses.

Analysis

The following lemma shows the correctness of algorithm POLLYDIVIDE.

Lemma 5.3.9. For 1 � M � µs,

κ(M) =

g∑

i=1

[xM+µ(ti)]Cti
+
∑

1�i<j�g

[xM−Mi,j]Dti,tj
(x).

Proof. First, observe that for any witness (b, e) of M, there is exactly one pair (i, j)

such that b lies in string ti and e in tj. If i = j, then M is a submass of ti and by
Lemma 5.3.1 contributes exactly 1 to the coefficient [xM+µ(ti)]Cti

(x). Otherwise, i <

j, and M−Mi,j is a submass of the concatenated string ti �tj with the witness (b 0, e 0),
where (b 0, e 0) is shifted appropriately (i.e., b 0 = b −

∑
i0<i |ti0 | and e 0 = e −

∑
j0<j |tj0 |).

Moreover, (b 0, e 0) is a border-spanning submass of ti � tj. Thus, by Lemma 5.3.8,
(b 0, e 0) contributes exactly 1 to [xM−Mi,j]Dti,tj

(x).

For the runtime analysis of POLLYDIVIDE, we first show that the preprocessing
step of POLLYDIVIDE has runtime O(gµs log µs). To see this, observe that the time
for computing the polynomials with FFT is

for Cs(x): O (µs log µs) ,

for the Cti
(x)’s: O0� g∑

i=1

µ(ti) log(µ(ti))

1A ,

for the Di,j(x)’s: O0� ∑

1�i<j�g

(µ(ti) + µ(tj)) log(µ(ti) + µ(tj))

1A .

Together, the terms above yieldO� µs log µs +

g∑

i=1

µ(ti) log(µ(ti))

︸ ︷︷ ︸� µs log µs

+
∑

1�i<j�g

�
µ(ti) + µ(tj)

�
log
�
µ(ti) + µ(tj)

�
︸ ︷︷ ︸� gµs log µs

�
= O (gµs log µs) .

78

5.3 Submass finding with polynomials

The upper bound on the third term follows from
∑

1�i<j�g(µ(ti) + µ(tj)) =
∑g

i=1(g −

1) � µ(ti) = (g − 1)µs and log(µ(ti) + µ(tj)) � log µs.
Now for the query time of POLLYDIVIDE: First, in Step 2a, we compute for each

query Mℓ the witness-position-list that contains all i such that [xMℓ+µ(ti)]Cti
(x) 6= 0,

and all (i, j) such that [xMℓ−Mi,j]Dti,tj
(x) 6= 0. These lists can be computed by iter-

ating first through all non-zero coefficients cm of each Cti
, 1 � i � g, and checking

whether m + µ(ti) is among the query masses. Recall that there are O(µs log µs)

many of these coefficients. Next, we iterate through all non-zero coefficients dm of
each Dti,tj

, 1 � i < j � g, and check whether m + Mi,j is among the query masses.
Again, there are O(gµs log µs) many coefficients to check. Together, we get a runtime
of O(gµs log µs) if we have constant access to the query masses, or O(gµs log µs � log r)

if they are stored in a binary array.
Now, in step 2b, for each query mass Mℓ, we run LINSEARCH for each entry in

the witness-position-list, thus at most κ(Mℓ) many times. The LINSEARCH step for
one entry takes at most 2n/g time. Thus, we get query time O(gµs log µs +Kn

g
). With

g = d(Kn
µs log µs

)
1
2 e, the total runtime becomes O�(Knµs log µs)

1
2

�
, and we have thus

proved the following theorem:

Theorem 5.3.10. Algorithm POLLYDIVIDE solves the MULTIPLE SUBMASS ALL WIT-

NESSES PROBLEM in time O((Knµs log µs)
1
2), where K is the total number of witnesses,

i.e., the output size.

To better understand this result, let κ̄ denote the average size of the output, i.e.,
κ̄ = K/r. Then the runtime is (rκ̄nµs log µs)

1/2. Recall that the running time of the
combination of the naı̈ve algorithms for the MULTIPLE SUBMASS ALL WITNESSES

PROBLEM is O(min(rn, n2 log n)). Thus, our algorithm beats the running time of the
naı̈ve algorithms above if κ̄µs log µs = o(rn) and κ̄rµs log µs = o(n3 log2 n).

A variation for one witness per query

Algorithm POLLYDIVIDE can be straightforwardly adapted to only produce one wit-
ness per query mass, i.e., to solve the MULTIPLE SUBMASS ONE WITNESS PROBLEM.

Then its runtime becomes O((rnµs log µs)
1
2), i.e., somewhere between O(µs log µs)

and O(rn) (since rn needs to be the larger factor if we want to employ the algo-
rithm). If, say, r = O(µs), then we end up with a runtime of O(µs

p
n). Comparing

this to the O(µs polylog µs) runtime of POLLYLASVEGAS leaves us with an extra
p

n

factor which we pay for the deterministic version.

79

5 Submass Finding Algorithms

80

6 De Novo Peptide Sequencing with
Mass Spectrometry

In this chapter, we present the first prototype of the software AuDeNS for novo
peptide sequencing. Recall the problem of de novo peptide sequencing: Given an
MS/MS spectrum, find amino acid sequences which match the spectrum. (For
more detailed description, see Section 2.2.) AuDeNS first preprocesses the input
spectrum with a number of heuristics we refer to as ”grass mowers.” These result
in a weighting of the input peaks. AuDeNS then employs a variant of a dynamic
programming algorithm introduced in [CKT+01] to compute amino acid sequences
matching the spectrum. Hereby, it uses the weighting obtained in the preprocessing
step to score these solutions; only solutions within a user-specified cutoff of the
optimal solution are computed.

We show the results of first simulations, which suggest that AuDeNS performs
well (but not better) in comparison with Sequest [EMI94, seq], a frequently used
software for peptide identification with database–lookup, and Lutefisk [TJ97,TJ01,
lut], a de novo peptide identification tool.

The contents of this chapter have been published in [BCG+02], and parts are
described in [Cie03]. The software has since been further developed, without the
collaboration of this thesis’ author.

6.1 Problem definition

Given a peptide string p = s1 . . . sn, its dissociation pattern is the set

Dp = {m
p
parent,m

b
1, . . . ,mb

n−1,m
y
1, . . . ,m

y
n−1}, where (6.1)

m
p
parent :=

n∑

i=1

µ(si) + offsetparent parent ion (the entire peptide)

mb
r :=

r∑

i=1

µ(si) + offsetb, 0 < r < n b–ions (its prefixes)

my
r :=

n∑

i=r

µ(si) + offsety, 0 < r < n y–ions (its suffixes).

Hereby, offsetparent,offsetb,offsety are positive real numbers. (Usually, offsetparent

and offsety equal the mass of an OH2 group plus that of a neutron, and offsetb

equals the mass of a single neutron.)
A tandem mass spectrum S contains the parent mass mS

parent, followed by a list of
pairs (m(i), a(i)), i = 1, . . . ,N, where the m(i) are molecular masses, and a(i) is the

81

6 De Novo Peptide Sequencing with Mass Spectrometry

abundance of m(i). The entries are ordered w.r.t. their m–values. Typical values
for N range from 35 to 900. A pair (m(i), a(i)) is often referred to as a peak, which
derives from the customary visualization of mass spectra, see Figure 6.1. In the
following, we call peaks that derive from ions of the original peptide peptide peaks,
and the others noise or grass.1 In addition, we are given a mass tolerance ǫ, the
measurement error of the mass spectrometer.

A solution to a given spectrum S is a peptide p such that |m
p
parent − mS

parent| � ǫ.
In addition, we would like to match the masses of Dp with the peptide peaks of
the spectrum, i.e., find pairs (m,m(i)), m 2 Dp and peptide peak i of S, for which
|m − m(i)| � ǫ holds. However, since it is not clear from the outset which peaks of
S are peptide peaks, we allow that peaks not be matched, and in the extreme, that
no peaks match with Dp. Thus, since the only necessary condition for a solution is
that the parent masses match within the given mass tolerance, the solution cannot
be unique. In particular, given one solution of length n, all of its permutations will
match, typically a number exponential in n. Another reason for non–uniqueness
of solutions is that the two amino acids isoleucine (I) and leucine (L) have exactly
the same molecular mass. Increasing the mass tolerance causes further pairs of
amino acids to become indistinguishable. Missing peptide peaks in the spectrum
account further for non–uniqueness of the solution, e.g., an Asparagine (N) and two
consecutive Glycines (G) cannot be distinguished if the peak corresponding to the
first Glycine is missing, since µ(N) = 2 � µ(G).

The aim, therefore, is to output a ranked list of solutions such that the pep-
tide that gave rise to the spectrum has high ranking. A multi–sequence is a finite
set of sequences that we write as a regular expression, e.g., V(N|GG)GYSE(I|L)ER
is short for the set {VNGYSEIER, VNGYSELER, VGGGYSEIER, VGGGYSELER}.
Rather than listing feasible solutions individually, AuDeNS outputs a ranked list
of multi–sequences.

6.2 AuDeNS: A tool for automated de novo peptide

sequencing

In 2000, Chen et al. [CKT+01] introduced a de novo peptide sequencing algorithm
that uses dynamic programming. The algorithm has two variants, but only the
variant for noisy data is applicable to real-life applications. Chen et al. proved that
the algorithm for noisy data has running time at most cubic in the number of peaks
of the given spectrum but did not provide an implementation of their algorithms.
Naı̈ve use of the noisy variant is computationally too complex, since the number of
potential solutions is too large. In addition, measurement errors need to be taken
into account.

We have developed heuristics (which we refer to as “grass mowers”) for assigning
relevance values to the input peaks, and implemented a framework, AuDeNS, that

1Because of their appearance in the visualization, groups of small peaks are sometimes referred to as
grass. Since much of this part of the input is not well interpretable, some of the data preprocessing
is concerned with getting rid of this grass. This is the reason we call our data cleaning algorithms
grass mowers.

82

6.2 AuDeNS: A tool for automated de novo peptide sequencing

first uses the heuristics to preprocess the spectrum, and then employs a modifica-
tion of the noisy sequencing algorithm of [CKT+01] that can handle measurement
errors. We assign relevances to the solutions and only enumerate those within a
user–specified threshold relative to the maximal relevance value. The output of
AuDeNS is a ranked list of “multi–sequences” (sequences that take inherent ambi-
guities of the input into account).

AuDeNS works in the following way: In a first step, it applies the mowers to the
input data, assigning to each input peak i a relevance value r(i), with the default
being r(i) = 1. Hereby, each mower M uses a relevance factor RelM (which can be
set as a parameter of AuDeNS), and the relevance value of peak i is then given by

r(i) := 1 +
∑

M mower

RelM �M(i), (6.2)

where M(i) is the value assigned to peak i by mower M. The relevance of a solution
is then the sum of the relevances of the peaks matched by this solution. All mowers
output values between 0 and 1, and thus, their output can be weighted against
each other by the relevance factors specified by the user. In addition, the mowers
each have parameters that can be specified (see Section 6.2.1 for details). It is
an important aspect of AuDeNS that new mowers can be integrated with minimal
effort.

In a second step, AuDeNS applies the sequencing algorithm. Hereby, the min-
imal quality of the solutions can be specified as a relative value as measured in
comparison to the relevance rmax of a best solution, i.e., a 0 � δ � 1 such that all
solutions with relevance greater or equal to the threshold rδ = (1 − δ) � rmax are to be
computed. First, a table is constructed and rmax is computed. Then, all solutions
with relevance greater or equal rδ are computed and output, using backtracking in
the table.

Global parameters such as mass tolerance and relevance factor of the mowers
allow for a fine–tuning of AuDeNS.

Figure 6.1: A tandem mass spectrum with corresponding relevance values. The
x–axis represents the masses. The upper graph shows the abundance
values of the masses on the y–axis, and the lower graph their relevance
values.

83

6 De Novo Peptide Sequencing with Mass Spectrometry

6.2.1 The mowers

1. Threshold Mower:

Peaks with very small abundance values, are unlikely to be peptide peaks.
The threshold mower marks all peaks with an abundance value above a given
(low) threshold.

2. Window mower:

The window mower has two parameters: the size of a window W and a number
k of peaks per window. It moves along the input, and, for each peak i, marks
the k peaks with highest abundance within the window starting at m(i), i.e.,
those k peaks with highest abundance in the set {j | m(i) � m(j) � m(i) + W}.
The mower assigns each peak i a value proportional to the number of times it
has been marked.

Roughly speaking, high peaks are more likely to be caused by peptide ions
than low peaks. The rationale for the window mower then is twofold: First,
within any window of the approximate size of the smallest amino acid mass,
there can be at most two peptide peaks, namely one b–ion and one y–ion.

Second, when sequencing manually, contiguous regions of m/z values can be
found such that the abundance of the peaks within one region do not differ
very much, while they do differ between different regions. Regions are then
scaled with different factors in order to level the height of the peaks, and then
peaks which are high within their region are considered for the sequencing
process [SJ01].

The reasons are inherent technical characteristics of an ion trap that result
in differential efficiencies of mass measurements over the entire mass range.
During an MS/MS cycle, a selected peptide is excited by resonance excitation
to accomplish collision induced dissociation. However, resonance excitation
and resonance ejection are virtually identical, resulting in the possible loss
or inefficient measurement of product ions during resonance excitation. As
a consequence, low molecular mass ions are often underrepresented in an
MS/MS spectrum (e.g., product ions with less than 30% of the parent mass
are only rarely observed [Arn01]). Another reason for “regional differences” in
mass measurement efficiencies are the inherent biochemical characteristics
of amino acids, either resulting in efficient (e.g. Proline) or inefficient (e.g.
Glycine) dissociation of a peptide bond [SJ01].

Therefore, considering only the absolute abundance of the peaks is not suf-
ficient to identify peptide peaks, but a method that takes the differences be-
tween regions into account is more appropriate, such as employed by the
window mower.

3. Isotope mower:

Typically, single ions give rise to more than one peak in an MS/MS spectrum
due to isotopes. Isotopes differ in the number of neutrons they have in the
nucleus, and they occur in nature with different probabilities (e.g., carbon has
either 6 neutrons, with probability 98.892%, or 7 neutrons, with probability

84

6.2 AuDeNS: A tool for automated de novo peptide sequencing

1.108%). Thus, peaks without corresponding isotope peaks are rather unlikely
to be caused by ions, and the number of isotope peaks of a single peak can be
used to adjust the relevance of a peak.

The isotope mower has a parameter k, the number of isotopes required. It
assigns a value to each peak i proportional to the number of isotopes present
in the spectrum, i.e., for each j, 1 � j � k, it checks whether there is a peak
with mass m such that |m − (m(i) + j)| � ǫ.

4. Intersection mower:

The intersection mower considers all spectra obtained from the same ex-
periment as the current spectrum S that have the same parent mass m 2
[mS

parent − ǫ,mS
parent + ǫ]. It then assigns each peak i in S a value proportional

to the number of other spectra in which it is also contained.

The rationale is the consideration that other spectra with the same parent
mass that stem from the same experimental setup are likely to have been
derived from the same peptide. Even though in theory, many different peptides
will have the same parent mass (e.g., all permutations of the same amino
acids), in reality it is not very likely that different peptides stemming from the
same protein or from the same small number of proteins have the same mass.
(Some preliminary database analysis has shown this probability to be only
between 2 and 7%.)

5. Complement mower:

If i is a peak in the spectrum which arose from a b–ion, then we expect the
corresponding y–ion to be present in the spectrum, and vice versa. Therefore,
for any peak i in the spectrum, we increase the relevance of i if the complement
peak i 0 with m(i 0) = mparent − offsetparent + offsetb + offsety − m(i) (within ǫ) is
present. This mower is very closely related to the sequencing algorithm we
use, since the algorithm heavily relies on pairs of complement peaks.

6.2.2 The sequencing algorithm

Our sequencing algorithm is based on the dynamic programming algorithm for
noisy data introduced in [CKT+01]. The differences are very small: The algorithm
in [CKT+01] maximizes the sum of weights of peak pairs (edges), while our algorithm
maximizes the sum of the relevance values assigned to the peaks. We refer to this
algorithm as WEIGHTED-CKTRC-ALGORITHM and present it briefly here.

The idea of the WEIGHTED-CKTRC-ALGORITHM is to generate a directed vertex–
labelled graph G = (V, E) with two special vertices x0 and y0, such that any directed
path from x0 to y0 satisfying an additional constraint will correspond to a solution.
For each peak i, there are two vertices xi, yi 2 V, whose masses are the smaller and
the larger value, respectively, of the mass of peak i and its complement w.r.t. the
parent mass. The relevance r(v) of a vertex v is the relevance of the correspondig
peak assigned by the mowers. The reason for generating pairs (xi, yi) of vertices
is that if a peak is a peptide peak, then it is either a prefix (a b–ion) or a suffix (a

85

6 De Novo Peptide Sequencing with Mass Spectrometry

y–ion)—and if the spectrum were perfect, then it would also contain its complement
(see Section 6.2.1).

If two vertices have the same mass within the mass tolerance ǫ, then we merge
them, and assign the new vertex the maximal relevance value among the merged
vertices. The vertices are sorted such that m(x0) < m(x1) < . . . < m(xN) < m(yN) <

. . . < m(y1) < m(y0). (Because of the merging of vertices, the new value of n may
have decreased, but we ignore this detail here.) Hereby, x0 and y0 are two new
vertices with masses m(x0) = offsetb and m(y0) = mparent − offsetparent + offsetb, and
both relevance 1. At this point, for each pair (xi, yi), i = 1, . . . ,N, we know that it
either constitutes noise, or one is a prefix of the peptide and the other a suffix—but
we do not know which is which.

G contains a directed edge (u, v) if m(v) − m(u) can be written as the sum of some
amino acid masses within the mass tolerance (see Section 6.2.3 for details). Call
a directed path P in G k–compatible if P contains at most one vertex of each pair
(xi, yi), i = 1, . . . , k. Any N–compatible directed path P in G from x0 to y0 corresponds
to a solution to the input, because it represents a partial list of prefixes.

We will now fill in a table Q of size (N + 1) � (N + 1) that will be used to compute
paths from x0 to y0. Define w(P), the pathweight of the directed path P in G, as
w(P) :=

∑
v2P r(v). Set

Q(i, j) := max{w(L) + w(R) | L directed path from x0 to xi,

R directed path from yj to y0,

and L [R is max(i, j)–compatible.}

This definition implies Q(i, j) = 0 if no such paths exist, since max ; = 0. The
table Q has the property that Q(i, j) > 0 if and only if there is a path L from x0 to xi

and a path R from yj to y0 such that L [R is max(i, j)–compatible. It can be filled
in using the crucial observation that the maximum path for a given pair xi, yj, i < j,
can be computed using all maximal paths for pairs xi, yk, for k < j. Since j > i, yj

can be added to any such pair L [R without violating the compatibility condition.
The situation is analogous for the case where i > j. Thus, Q(i, j) can be computed
as follows:

Q(i, j) =

max0�k<j{Q(i, k) | (yj, yk) 2 E and (i = k = 0 or Q(i, k) > 0)} + r(yj) if i < j

0 if i = j

max0�k<i{Q(k, j) | (xk, xi) 2 E and (k = j = 0 or Q(k, j) > 0)} + r(xi) if i > j

The value of a maximal path is now rmax = max{Q(i, j) | (xi, yj) 2 E}. Note that
rmax = 0 means that there is no feasible solution to the input, i.e., the parent
mass cannot be written as a sum of amino acid masses within the given error
tolerance ǫ. Now all paths within the given threshold are enumerated recursively
via backtracking in the table.

6.2.3 Details of efficient implementation

1. Enumeration of the multi–sequences:

86

6.3 First experimental results

Entry Q(i, j) contains the maximum weight of any path from x0 to xi and from
yj to y0. Thus, the table Q can be used in a backtracking algorithm to re-
cursively enumerate all paths from x0 to y0 whose weights are above a given
threshold. The use of a threshold allows for pruning the tree of computation
generated by the backtracking process in early stages. This makes the time
spent in the recursion proportional, not to the total number of possible paths,
but to the number of paths that are of interest (whose weights are above the
threshold).

2. Deciding whether a mass is a sum of amino acids

To decide whether a given mass can be represented by a sum of masses of
certain amino acids and to list all such amino acid sequences, we work with
an array of Boolean variables b0, . . . , bM. Variable bi represents masses m 2
[i∆m, (i + 1)∆m). Let mi = i∆m + ∆m/2 be the center mass of the interval
represented by bi. The maximal index M depends on the maximal mass Mmax

considered and is computed as M = dMmax/∆me. We use ∆m = 0.01 Da and
Mmax = 1000 Da.

The variables bi are initialized as follows: If the mass interval represented by
bi contains the mass of any single amino acid, bi is set true, otherwise bi is
set to false. This can be done in 20 + M = O(M) time. In a second phase, we
run from b0 to bM and set bi true, if there is an amino acid mass a such that
the variable bj containing mi − a is true. The second pass takes 20M = O(M)

time steps since there are 20 amino acids.

To answer the question whether a mass sum m measured with error ǫ can be
represented by a sum of masses of certain amino acids, we check all variables
bi that represent part of the interval (m − ǫ,m + ǫ). If one of them is true, the
answer is yes, if all are false, then the answer is no.

3. Enumeration of subsequences:

To enumerate all amino acid sequences for a mass sum m and an error ǫ,
we proceed as follows: For all true bi’s that represent part of the interval
(m − ǫ,m + ǫ), and for all amino acid masses a, we test whether the vari-
able bj containing mi − a is true. If so, we store the letter of amino acid a

and recursively enumerate all sequences for mass mj. This algorithm, how-
ever, enumerates all permutations of all possible sequences. To avoid this, in
recursion depth d we only consider amino acids whose letters are lexicograph-
ically larger or equal to the animo acid letter chosen in depth d − 1. This way,
only distinct sequences with respect to permutation are output.

6.3 First experimental results

The running time of AuDeNS depends on the number of sequences computed. To
create the best 30 sequences, AuDeNS takes less than one second to read, mow,
and sequence a spectrum, on a PC with 700 MHz and 256 MB RAM.

87

6 De Novo Peptide Sequencing with Mass Spectrometry

mower relevance other parameters

threshold 40 threshold 8000
window 10 number of peaks 2, window 50
isotope 10 number of isotopes 1
complement 40
intersection 0

Table 6.1: Parameter settings for AuDeNS in our experiments

We compared the output of AuDeNS to the results of Sequest and Lutefisk. Lute-
fisk needs 2 seconds up to several minutes on the same computer and same spec-
trum to output the best 0 to 5 solutions. However, Lutefisk outputs individual
peptide sequences, as opposed to multi–sequences of AuDeNS. Even without sys-
tematically tuned parameters of the mowers, the best sequence found by Sequest
for a spectrum is very often among the first 30 sequences created by AuDeNS. Oth-
erwise, there are many almost correct sequences among the output. Three selected
example outputs are shown in Figures 6.2 to 6.4. The mower parameters had been
set as shown in Table 6.1. The global parameter ǫ was set to 0.5 Da.

740.0 V(N|GG)GYSE(I|L)E(R|GV)
735.0 V(N|GG)GY(I|L)C(I|L)E(R|GV)
716.0 V(N|GG)GYAGS(I|L)E(R|GV)
715.0 V(N|GG)GYES(I|L)E(R|GV)
715.0 V(N|GG)GYDT(I|L)E(R|GV)
715.0 V(N|GG)GYTPME(R|GV)
711.0 V(N|GG)GYSGA(N|GG)E(R|GV)
705.0 V(N|GG)GYTD(I|L)E(R|GV)

Figure 6.2: Sequest sequence VNGYSEIER has the highest rating in the AuDeNS
output.

655.0 (AG|Q|K)A(I|L|N|GG)AAA(I|L)(N|GG)(AG|Q|K)
655.0 (AG|Q|K)(N|GG)AAAA(I|L)(N|GG)(AG|Q|K)
644.0 (AE|IS|LS|TV|CP)(I|L)AAA(I|L)(N|GG)(AG|Q|K)
615.0 (AG|Q|K)A(I|L|N|GG)AAA(I|L|N|GG)(I|L)(AG|Q|K)
615.0 (AG|Q|K)(N|GG)AAAA(I|L|N|GG)(I|L)(AG|Q|K)
605.0 (AG|Q|K)PSAAA(I|L)(N|GG)(AG|Q|K)
605.0 (AG|Q|K)(N|GG|D)AAAA(I|L)(N|GG)(AG|Q|K)

Figure 6.3: Sequest sequence AEIAAALNK is at third position in the AuDeNS out-
put.

Even though our tool does not perform as well as Lutefisk at the moment, we

88

6.3 First experimental results

496.0 (AG|Q|K)AE(N|GG)(AG|Q|K)SGFFE
495.0 (AG|Q|K)AE(N|GG)AAEFFE
495.0 (AG|Q|K)AE(N|GG)(AG|Q|K)GSFFE
486.0 (AG|Q|K)AE(I|L)GS(N|GG)YFE
486.0 (AG|Q|K)AE(AG|Q|K)(N|GG)SGFFE
485.0 (AG|Q|K)AE(I|L)GS(N|GG)YFE
485.0 (AG|Q|K)AE(N|GG)AA(N|GG)YFE
485.0 (AG|Q|K)AE(AG|Q|K)(AG|Q|K)EFFE
485.0 (AG|Q|K)AE(AG|Q|K)(N|GG)GSFFE
485.0 (AG|Q|K)AE(I|L)E(AG|Q|K)YFE
485.0 (AG|Q|K)AE(N|GG)(AG|Q|K)(AG|Q|K)YFE
485.0 (AAG|AQ|AK)E(N|GG)(AG|Q|K)SGFFE
484.0 (AAG|AQ|AK)E(N|GG)AAEFFE
484.0 (AAG|AQ|AK)E(N|GG)(AG|Q|K)GSFFE
481.0 (AG|Q|K)AE(I|L)ESGFFE
480.0 (AG|Q|K)AE(I|L)EGSFFE
475.0 (AAG|AQ|AK)E(I|L)GS(N|GG)YFE
475.0 (AAG|AQ|AK)E(AG|Q|K)(N|GG)SGFFE
474.0 (AAG|AQ|AK)E(I|L)GS(N|GG)YFE
474.0 (AAG|AQ|AK)E(N|GG)AA(N|GG)YFE
474.0 (AAG|AQ|AK)E(AG|Q|K)(AG|Q|K)EFFE
474.0 (AAG|AQ|AK)E(AG|Q|K)(N|GG)GSFFE
474.0 (AAG|AQ|AK)E(I|L)E(AG|Q|K)YFE
474.0 (AAG|AQ|AK)E(N|GG)(AG|Q|K)(AG|Q|K)YFE
471.0 (AG|Q|K)AE(AG|Q|K)CST(I|L)FE
470.0 (AG|Q|K)AE(I|L)E(AG|Q|K)YFE
470.0 (AAG|AQ|AK)E(I|L)ESGFFE
469.0 (AAG|AQ|AK)E(I|L)EGSFFE
466.0 (AG|Q|K)AE(N|GG)(AG|Q|K)SGFFE
465.0 (AG|Q|K)AE(N|GG)AAEFFE

Figure 6.4: Sequest sequence AKELQEYFK does not appear within the first
30 sequences of AuDeNS but many similar sequences do, e.g.,
(AAG|AQ|AK)E(I|L)E(AG|Q|K)YFE.

believe that it can be developed to match or even outperform Lutefisk for a number
of reasons:

1. In our experiments, AuDeNS has much lower running times than either Lute-
fisk or Sequest, due to a fast algorithm and efficient implementation.

2. AuDeNS is a framework that is capable of having new mowers added to it
with minimal effort. The mowers we employ at the moment are heuristics that
are plausible but need further fine–tuning, in particular with regard to the
parameters.

3. Even without having systematically tuned the parameters of AuDeNS, our out-

89

6 De Novo Peptide Sequencing with Mass Spectrometry

put compares relatively well with that of Lutefisk and Sequest.

We conclude from our first experiments that AuDeNS constitutes a promising
approach to de novo peptide sequencing. Clearly, more work needs to be done in
refining the mowers and adding new ones; in fine-tuning the parameters, possibly
using machine learning algorithms with a training set of mass spectra where the
correct sequence is known; and others.

90

Part II

String Dissimilarity Measures and
EST Clustering

91

7 Background II: Expressed Sequence
Tags

In this chapter, we introduce expressed sequence tags (ESTs), discuss their produc-
tion process and typical properties, and introduce the problem of EST clustering.

7.1 Why ESTs and EST clustering?

The collection of all mRNAs (messenger RNAs) present in the cell is referred to as
the transcriptome. The capture of (mature) mRNA that is on its way to the ribosome
constitutes a method of measuring gene expression, i.e., of detecting which genes
are expressed in the cell. This can be done, for instance, with regard to the type
of cell (type of tissue), developmental stage, or healthy versus diseased tissue. In
addition, mRNA capture has been used for gene discovery, where a gene had not
previously been identified via its protein product or via other gene detection meth-
ods. More recently, mRNA capture has been increasingly used to detect events of
alternative splicing (see Section 7.3).

Since capture of full-length mRNAs is technically very challenging, information
about the transcriptome is most often collected using expressed sequence tags

(ESTs). ESTs are short cDNA (complementary DNA) transcripts of mRNAs, which
are produced in a high-throughput manner. They are available in large numbers
in public databases, and thus constitute an easily available source of information.
EST Clustering is the problem of partitioning (clustering) a set of ESTs into subsets
where each subset (cluster) corresponds to a gene, i.e., two ESTs are members of
the same cluster if and only if they have been derived from mRNAs that are tran-
scripts of the same gene.

Since the completion of the sequencing of the human genome, it has become
apparent that the number of genes is far lower than the estimated number of ex-
pression products (proteins and RNA products). EST clustering can be used for
identifying products of alternative splicing, as well as for gene discovery and for
measuring gene expression.

7.2 What are ESTs?

An EST (expressed sequence tag) is a short cDNA that is manufactured in order to
gather information about mRNAs present in the cell (see Figure 7.1). First, all ma-
ture mRNAs are extracted from the cell. Then, a reverse complement DNA copy
(single-stranded cDNA) is made of the mRNA by reverse transcription, and the
mRNA is digested (destroyed and thus separated from the cDNA strand). Using

93

7 Background II: Expressed Sequence Tags

DNA polymerase, a complementary cDNA-strand is synthesized, and the double-
stranded cDNA is then inserted into a vector, typically a plasmid with which the E.

coli bacterium is infected. The bacterium is then allowed to reproduce, thus creat-
ing many copies (clones) of the original cDNA. Finally, the DNA is extracted from the
bacterium and the clone insert sequenced. Hereby, knowledge of the vector DNA is
employed; primers can be created adjacent to each end of the insert, and thus the
insert is sequenced once from the 5’-end and once from the 3’-end. This yields a
pair of ESTs that are reads of the same cDNA, and which may or may not overlap.
Typically, ESTs are between 300 and 500 bp (base pairs) long.

AAAAAA

AAAAAA

T T T T T T

T T T T T T

AAAAAA

T T T T T T

AAAAAA

AAAAAA

T T T T T T

5’ 3’

5’ 3’

3’ 5’

3’ 5’

3’ 5’

5’ 3’

DNA

(mature) mRNA

mRNA/cDNA-hybrid

single-stranded cDNA

double-stranded cDNA

TSS Poly-A-site

transcription and splicing

cloning

reverse transcription

mRNA digestion

synthesis

sequencing

vector

clone insert

5’-EST 3’-EST

Figure 7.1: EST manufacture (partially adapted from [Chr01], p.6)

7.3 Properties of ESTs

ESTs are manufactured in a high-throughput manner, and they are more error-
prone than DNA reads that are used for genome sequencing. Errors occur at all
stages of EST production:

94

7.3 Properties of ESTs

• Extraction of total mRNA of the cell: In this step, other sequences may also be
captured, such as

– rRNAs (ribosomal RNA)

– pre-mRNAs (before splicing, thus including introns)

– mitochondral DNA (approx. 1-2 %)

– human genomic DNA (from handling the experimental setup)

• Reverse transcription:

– reverse transcriptase works with a 1:3000 error rate

– cDNA length: cDNA can fall off the template mRNA too soon due to ex-
haustion of reverse transcriptase; since up to around 1999, reverse tran-
scription was always made starting at the 3’-end of the mRNA, this pro-
duced many more 3’-end reads than 5’-end reads.

• Cloning:

– the linker used for insertion of the cDNA into the vector may be included
in the read

– contamination with vector DNA

– chimeras caused by recombination in vector

• Sequencing and sequencing software:

– lane-tracking errors (in particular before the introduction of the capillary
gel method)

– robotics errors (spillage)

– base-calling errors: the first approx. 30 bases are bad quality

– where no base can be identified, an N is inserted; however, due to mis-
takes in the base-calling software, an N may represent two bases or even
no base at all.

– incorrect bases or indels.

• Bad annotation: ESTs are often poorly and unreliably annotated in the public
databases, e.g. the tissue specified is incorrect, or sometimes even the or-
ganism is the incorrect one. In particular, clone-linking information, i.e., the
information of which two ESTs form a pair (reads of opposite ends of the cDNA
of the same clone) is often not reliable.

EST errors

Due to the processes detailed above, typical problems when trying to cluster ESTs
include:

• Contamination: Contaminants can include vector, rRNA (ribosomal RNA),
mitRNA (mitochondrial RNA), genomic sequence; and possibly sequence from
other species.

95

7 Background II: Expressed Sequence Tags

• Single base errors: First, single bases may be read incorrectly using Sanger
Sequencing; or, single base errors may be due to the reverse transcription.
Second, polymerase decay may cause an increase in the rate of errors as the
EST is read (there is gentle decay for the bulk of the EST followed by a very
rapid decay at the end). Finally, interference from the primer makes the be-
ginning parts of reads particularly unstable.

• Stuttering: Stuttering is caused by a problem in the sequencing process: the
sequencer slips, and a portion of the EST is re-read. Stuttering can occur
anywhere, but is most likely to occur after repeated Gs or Ts.

• Ligation: Ligation occurs when two ESTs bond together, giving the appearance
of a new EST. The two ESTs that join together need not come from adjacent
parts of an mRNA; indeed, they ususally come from different mRNAs.

Alternative splicing and other problems

Not all mature mRNA transcripts from the same gene are identical: This phe-
nomenon is known as alternative splicing. Forms of alternative splicing include:

• exon skipping: in addition to the introns, some of the exons are also spliced
out;

• alternative transcription start site: transcription begins at a different position;

• alternative polyadenylation site: transcription ends at a different position;

• alternative splice sites: the position of the exon/intron boundary is moved
(exon truncation/exon elongation).

Usually, one transcript is seen as the “canonical” transcript, while the other forms
are referred to as alternative transcripts. The transcript viewed as canonical is the
one that includes all exons, uses specific TSS (transcription start site) and poly-A
(polyadenylation) sites, and is spliced at specific splice sites. This has some justifi-
cation in that TSS, poly-A site, and splice sites can be detected with some certainty
independently of the proof of transcripts, but especially regarding alternative splice
sites, the singling out of one particular product seems problematic. Disregarding
alternative start, poly-A, and splice sites, for a gene with k exons, there are, in the-
ory, 2k−1 different forms: namely all possible choices of exons except the empty set.
However, research seems to concentrate on detecting exon skipping events where
only one exon has been skipped, which yields only k different forms.

Another problem is posed by the occurrence of paralogous genes: These are pairs
of genes in one organism that are the product of a duplication event in the species’
history. Since they are very similar, an EST that is derived from one gene is likely
to also fit to its paralog. Thus, if EST clustering is done on the basis of sequence
similarity, ESTs of paralogous genes are likely to be clustered together.

Finally, repeats and so-called low-complexity regions pose a problem in clustering,
as they do in sequence assembly. Repeats are substrings that occur more than once

96

7.4 EST clustering

within the genome; they can be around 10 bp to several thousand bp long. Low-
complexity regions are strings that have little variation in their base content, e.g.
long stretches of CG pairs.

7.4 EST clustering

EST clustering is done both in individual EST projects (e.g. gene expression
projects), as well as when researchers try to gather information based on the large
number of ESTs publicly available in EST databases. In either case, one is faced
with a large set (up to million or more) of ESTs, which needs to be interpreted. This
leads to the problem of EST Clustering, which has the goal of producing a partition
of the original set such that each cluster corresponds to a gene, i.e., two ESTs are
members of the same cluster if and only if they have been derived from mRNAs that
are transcripts of the same gene. See also [HMP+99] for more background on ESTs
and EST clustering.

All EST clustering tools include some preprocessing of the data. Usually, certain
substrings are masked out, such as known repeats (from repeat databases), vector
DNA (from databases of the vector used in the experiment). Using the example
of two of the most commonly used EST clustering packages, UniGene [BS95] and
StackPack [CvGG+01], we demonstrate some other heuristic techniques employed.

UniGene employs a strategy referred to as clustering in stages. The information
that is available for two ESTs to belong to one cluster is weighted according to its
source (so-called links): mRNA-EST-links, EST-EST-links, and clone links. Then
clusters are formed, where only those strings are grouped together that have strong
links, i.e., links with high weights.

StackPack employs a number of postprocessing steps to the clustered data: Us-
ing different software tools, a consensus is generated for each cluster, then the
consensus is evaluated, several consensi generated (if products of alternative splic-
ing can be detected), some clusters are split (if they represent paralogous genes),
and other clusters are merged using clone-pair information.

In the next chapter, we will concentrate on the clustering method, i.e., the step
after the preprocessing and before the postprocessing.

97

7 Background II: Expressed Sequence Tags

98

8 EST Clustering

In this chapter, we give an overview of some literature relevant to EST clustering and
to the methodology for EST clustering components which we propose in Chapter 9.
This is followed by an overview of different string dissimilarity measures, clustering
algorithms, and clustering validity indices used for EST clustering. The contents of
this chapter have been published in [ZLH04].

8.1 Literature on and software for EST clustering

Several software packages exist that perform EST clustering; among the most
widely used are UniGene [BS95], TIGR [QCL+01], and StackPack [CvGG+01], for
all of which a database of EST clusters exists. The clustering packages usually
consist of several steps that include contamination and repeat masking, clustering,
and consensus computation. Here, we focus on the clustering step. For the clus-
tering, different algorithms are used, both with respect to the clustering algorithms,
and to the criteria (dissimilarity measures1) according to which sequences are clus-
tered together. In the following, we shall refer to the string dissimilarity measure
plus the clustering algorithm together as the clustering method. We will give exact
definitions in the following sections.

In spite of the variety of EST clustering methods, to the best of our knowledge, no
rigorous technique has been put forward for evaluating which one of the existing
or newly suggested ones is best suited. Instead, in most studies, it is not the un-
derlying clustering algorithms and sequence dissimilarity measures that are being
evaluated but the output: The output is evaluated either according to expert knowl-
edge, or according to how well it corresponds to the output of some software that
has proved to be ”good” in the past. While we believe that the former is a valid and,
in fact, invaluable method of evaluation, it is in most cases not feasible. The latter,
on the other hand, hinders innovation for intrinsic reasons. Moreover, since ESTs
are produced according to different processes, they can have different properties
(such as the distribution of errors of different types), and thus, different algorithms
may be more or less appropriate depending on the type of input data.

Most literature on EST clustering proposes a particular EST clustering algorithm,
and validates the clustering computed by comparing it to similar tools, or by ex-
pert examination of the outcome. This is the case, for example, for literature on
well known clustering tools such as UniGene [BS95], TIGR [QCL+01], and Stack-
Pack [CvGG+01]. In 1999, Hartuv et al. [HSL+99] proposed an EST clustering algo-
rithm that employs a string dissimilarity measure and clustering algorithm which

1Recall that we refer both to similarity and dissimilarity/distance measures simply as dissimilarity

measures.

99

8 EST Clustering

both differ from the ones commonly used. The validation of the clusterings is made
both with simulated and with real input data: For simulated data, the result is
compared to the known ideal clustering, while for real data, it is compared to a
very carefully generated clustering, which is judged correct by the authors. The
authors do not claim that their algorithm produces the best clustering, but that it
allows for a large speedup as a preprocessing step to a more careful but more costly
EST clustering method. Recently, two new EST clustering algorithms using suffix
tree-type data structures were suggested: In [MCJ03], Malde et al. use suffix ar-
rays, and the clusterings computed are compared to the output of other clustering
tools. Kalyanaraman et al. [KAKB03], validate their clusterings by comparing them
to clusterings computed by aligning the ESTs to the genome. Burke et al. [BDH99]
compare the results of d2-cluster, the clustering method used by StackPack, to re-
sults produced by UniGene. It is shown that d2-cluster is more sensitive, and this
claim is supported by (i) examining the resulting clusters using biological exper-
tise, and (ii) by deriving upper bounds on the probability of incorrectly clustering
sequences. In addition, a comparison with the Smith-Waterman algorithm is per-
formed, with the explicit assumption that it produces correct results. A large-scale
comparison of four EST assembly tools was conducted by Liang et al. in [LHP+00],
using both real and simulated ESTs; the study includes a comprehensive discus-
sion of the exact behaviour of the four programs and their sensitivity to different
parameters. The focus there, however, is on the assembled sequences (tentative
consensi) rather than on the clusters produced.

Some approaches to protein clustering, e.g. [BSS+01, KSV00], implicitly assume
one clustering algorithm to be better than others, and then use that as a bench-
mark. Several studies have been conducted on clustering for gene expression,
to be more exact, for clustering data from DNA expression arrays. While Wicker
et al. [WDRP02] concentrate on finding the optimal number of clusters, Yeung et

al. [YHR01] develop an internal clustering validation index, which they use to eval-
uate the quality of clusterings produced by three different clustering algorithms,
both on real and on simulated data. This validation index is a (simpler) variation
of one of the four different indices of internal clustering validation used by Datta
and Datta [DD03], who compare six clustering methods for microarray data. This
study is closest to the present one in that it aims at comparing different clustering
methods, without claiming that one particular validation or clustering method is
optimal. Instead, after having demonstrated that the outcome varies significantly
depending on the clustering method used, Datta and Datta offer ”some guidelines
in the choice of a clustering technique to be used in connection with a particular
microarray data set.” The review by Quackenbush et al. [Qua01] discusses relevant
issues in expression analysis with microarray data, including an overview of dif-
ferent clustering algorithms and distance measures, with the focus on the former;
several of these are compared on a simulated data set.

One example of a large-scale comparison of two string (dis)similarity measures

is work by Nash et al. [NBG01]. Here, the Smith-Waterman algorithm and BLAST
are compared for pairwise alignment of protein sequences, and it is shown that in
some cases, BLAST finds matches that Smith-Waterman does not. Even though
the implicit assumption is made that the Smith-Waterman algorithm produces the
‘correct’ answer, no method is supplied for evaluating the quality of the results.

100

8.2 Terminology

Our methodology as presented in Chapter 9 is most similar to that used in phy-

logenetic studies, where a phylogenetic tree is synthetically generated according
to some evolutionary model, and then phylogenetic algorithms are evaluated ac-
cording to how well they can reconstruct the known tree from the leaf data, see
e.g. [MWW02, SEM98]. We are not aware of any study that attempts a rigorous
comparison of EST clustering methods, separating the effects of the string dissimi-
larity measure and the clustering algorithm.

8.2 Terminology

ESTs are produced in a laboratory process, which we detailed in Chapter 7: The
mRNAs present in the cell (the transcriptome) are extracted, reverse transcribed,
inserted into vectors, cloned, and then sequenced. As the reverse transcription is
comparatively error prone, the resulting ESTs are only approximate substrings of
the original mRNAs (save the RNA/DNA substitution of T for U). These mRNAs, hav-
ing undergone the process of splicing, are related to the original genes in the known
way: They can be seen as the concatenation of certain substrings of the gene (the
exons) such that the exon order in the gene is preserved. The phenomenon of alter-
native splicing means that ESTs that have been derived from two different mRNAs
of the same gene do not need to have overlaps; instead, they can have similar sub-
strings which need not be at the ends, or even be contiguous. In addition, ESTs
are more error-prone than, for instance, sequences for shotgun sequencing. Let
Σ = {A,C,G,T} denote the set of bases.2 Let G � Σ+ be the set of (not necessarily
known) genes.

Definition 8.2.1 (EST Clustering). Given a finite set S of strings (ESTs) over Σ,
find a partition C = C1, . . . , Ck of S such that there exist strings (genes) g1, . . . , gk 2 G

where, for all 1 � i � k, s 2 S : (s 2 Ci ⇐⇒ s has been derived from gi). We refer to
the sets Ci as clusters.

Here, a partition of a set S is a collection of disjoint subsets whose union equals
S. Note that Definition 8.2.1 does not require that the genes gi be specified. The
right side of the equivalence is kept in informal terms because the question of how
to capture formally the (physical) process of an EST sequence having been derived
from a gene, is one of the topics we discuss here.

For a set X, let
�X
2

�
denote the set of its subsets with cardinality 2. For a partitionC of S and s 2 S, denote by C(s) the unique cluster C 2 C such that s 2 C. Let C andD be two partitions of the same set S. We call C a refinement of D if for all s, t 2 S:

if C(s) = C(t), then D(s) = D(t). We call it a proper refinement of D if in addition
|C| > |D|.

For strings w, s with |w| � |s|, let freqs(w) := |{i | w = si . . . si+|w|−1}|, the number of
times w occurs in s. Note that this definition allows overlapping occurrences of w.

2In fact, ESTs are strings over the alphabet Σ [{N, X}, where characters N and X are interpreted
either as any of the four characters from Σ or as strings over Σ+ ; usually, the presence of an N
is an artifact of the sequencing process, while X’s are inserted during masking. For the sake of
simplicity, we omit this from our definition.

101

8 EST Clustering

Furthermore, let occs(w) = 1 if w is a substring of s, and 0 otherwise. Substrings
are often referred to as subwords.

In the absence of genes to be compared with, some notion of similarity or dissim-
ilarity is used to cluster individual sequences together. This requires a function,
or dissimilarity measure of pairs of strings D : Σ+ � Σ+ → R. If D is symmetric,
obeys the triangle inequality, is positive, and D(s, t) = 0 implies s = t, then it is
called a metric; if D(s, t) = 0 can hold for some s 6= t, then it is a pseudo-metric. For
string dissimilarity measures, sometimes neither is the case. Given a dissimilarity
measure D and a positive integer m (the window size), definebDm : Σ+� Σ+→ R : bDm(s, t) := min{D(s 0, t 0) | s 0 v s, t 0 v t, |s 0| = |t 0| = m}. (8.1)bDm(s, t) is the minimum dissimilarity of any pair of substrings (windows) of length
m of s and t. If m is clear, we simply write bD for bDm.

8.3 String similarity and distance

Two different, but closely related, concepts are in common use in the literature
on strings: That of similarity and that of dissimilarity/distance. Both are usually
represented by a function D : Σ+ � Σ+ → R, but the former type takes on higher
values the closer (more similar) two strings are, while the latter decreases in this
case. For the sake of consistency, we view all measures as dissimilarity measures;
for alignment (a measure of similarity), we transform the score function into a
penalty function to achieve a measure of dissimilarity (see below).

String dissimilarity measures employed in approximate string matching include
those that are based on alignment and those that are based on subword compar-
isons. Other approaches exist, such as information theoretic ones (as cited in
the review [VA03]), but are not commonly used. In approximate string match-
ing of biological sequences, the most widely employed string dissimilarity mea-
sure is BLAST [AGM+90]. For an overview of approximate string matching,
see [Nav01,Gus97].

Alignment and edit distance

The Levenshtein distance [Lev66], also referred to as unit cost edit distance, of
strings s, t is the minimum length of a sequence of edit operations transforming s

into t, where admissible edit operations are substitutions, insertions, and deletions
of characters. Enhanced cost functions include different cost attached to different
types of operations, and the cost of an operation depending on the characters in-
volved (e.g. substitution of a for c may have different cost from substitution of b

for c). The Levenshtein distance is a metric. An optimal sequence of such trans-
formations can be visualised as an alignment of the two strings, by placing them
under each other character by character, possibly inserting free spaces (gaps), such
that there are no two gaps in one column. By assigning penalties for mismatches
or gaps in an alignment, we can compute an alignment score, a measure of sim-

ilarity. More enhanced scoring functions include affine or more general types of
gap penalty functions: here, the score given to a character aligned with a gap may

102

8.3 String similarity and distance

depend on the number of consecutive gaps before. The alignment score of two
strings is the score of an optimal alignment. To find high-similarity substrings in
two strings, a local alignment is sought. The definition differs in that the alignment
need not continue to the ends of the strings. Another variant is end-space free

global alignment, where gaps at the ends of either string have zero cost. Since we
discuss measures of dissimilarity, we will use alignment scoring functions which
assign positive values to mismatches and gaps, and negative values to matches,
and will refer to such functions as penalty functions.

Computing an optimal local alignment score can be done with the well-known
dynamic programming algorithm of Smith-Waterman. To improve performance,
heuristic algorithms like BLAST [AGM+90] and FASTA [LP85] are used, which em-
ploy filtering techniques to isolate areas where matches are likely to happen. Most
biological clustering methods use BLAST as the underlying dissimilarity measure,
among them UniGene [BS95] and TIGR [QCL+01].

Word frequency counts

Fix a subword size q 2 N, thus q > 0. For ‘small’ q, substrings of length q have
been referred to as q-words, q-mers, or q-grams. Any string s 2 Σ+ can be mapped
to its q-gram vector, or word-frequency vector freqs 2 N

|Σ|q , whose w’th entry is just
freqs(w). The q-gram distance [Ukk92] of two strings is

Dq−gram(s, t) :=
∑

w2Σq

|freqs(w) − freqt(w)|. (8.2)

This is the L1- (or Manhattan) distance of the vectors freqs and freqt. However,
Dq−gram is only a pseudo-metric, since Dq−gram(s, t) = 0 for all s, t with identical
word frequency vectors. Ideas derived from the q-gram distance have been im-
plemented for database search in the QUASAR project [BCF+99], in the software
SWIFT [RSMpt], which can also be employed for clustering ESTs. Note that for
q = 1, we get exactly the L1-distance of the two compomers of s and t, the so-called
compomer distance (cf. Chapter 3).

Another dissimilarity measure using the word frequency vectors is referred to as
d2 [TBDS90]:

Dd2,q(s, t) :=
∑

w2Σq

(freqs(w) − freqt(w))2. (8.3)

This is the squared L2 (or Euclidean) distance of the frequency vectors, hence the
name. Note that

q
Dd2 ,q is a pseudo-metric, but Dd2 ,q is not, because it does not

obey the triangle inequality. In the more general form, fix a lower and an upper
bound l, u on the word size, and set Dd2 (s, t) :=

∑u
q=l Dd2,q(s, t). For EST-clustering,

experimental evidence has shown that fixing q is satisfactory, and commonly Dd2,6

is used. However, it should be noted that this measure is, in theory, not a good
approximation of edit distance: There exist sequences s, t of length 100 such that
Dd2,6(s, t) = 0 but the unit edit distance of s and t is 30. The StackPack EST clus-
tering package uses a variant of bDd2 ,6 with window size m = 100.

103

8 EST Clustering

Fingerprints and subword occurrences

Fingerprints have been employed in computational biology for physical mapping of
DNA (see [Pev00, Chapter 3]) and, more recently, for EST clustering in [HSL+99].
Given a finite set P � Σ+ of words, and a string s 2 Σ+, the fingerprint of s is the set
P \ {t | t v s}, or its representation as a Boolean vector in {0, 1}|P| whose i’th entry
is occs(pi) for some enumeration p1, . . . , pn of P. Extending P to all Σq, we get the
Boolean vector occs 2 {0, 1}|Σ|q with w’th entry occs(w). Again, any distance measure
on Boolean vectors can be applied to define a dissimilarity measure on strings, such
as the Hamming distance:

Dq−occurrence(s, t) :=
∑

w2Σq

|occs(w) − occt(w)|. (8.4)

Another simple dissimilarity measure using subword occurrences is a Boolean
function we refer to as common word, which assigns to two sequences distance 0 if
they share a subword of fixed size K, and 1 otherwise. Formally,

Dcword(s, t) :=

{
0 if there exists w, |w| = K,w v s, t,

1 otherwise.
(8.5)

Since K is typically ‘large’ (say, around 20), we use a different variable from q,
which is usually thought of as being ‘small’, typically up to 10. Note that this dis-
similarity measure is symmetric, but does not obey the triangle inequality, and can
have value 0 for non-identical strings; thus, it is not even a pseudo-metric. The
advantage of the common word function is that clustering can be implemented in
linear time, at least for reasonable size K. The clustering is in general too coarse,
but provided K is chosen well, a better clustering can be produced by refining
it, and thus this method can provide a good initial clustering. It is used, e.g.
in [KAKB03], for determining the order in which to compare the sequences (done
with an alignment-based measure); in [MCJ03], a measure is employed that com-
bines several non-contiguous common words into one dissimilarity score.

We define a further dissimilarity measure, Boolean q-grams, which is an extension
of Dcword, and in some sense complementary to Dq−occurrence: It counts the number
of common q-grams; however, as a dissimilarity measure, we define it to be negative
for each of these common q-grams: DB q-gram(s, t) := −

∑
w2Σq occs(w) � occt(w). So,

DB q-gram is the negative scalar product of the Boolean vectors defined above. Again,
this dissimilarity measure is not a metric, and not even a pseudo-metric.

Sliding windows

In EST clustering, local regions of high similarity are sought. This is reflected by,
e.g. computing local alignments. For subword-based measures, a ’sliding window’
of a fixed size m is used instead. Pairs of subsequences of size m are compared;
comparing all such pairs yields bDm(s, t). Note that even if D is a metric, bD in general
is not, since the triangle inequality may be violated.

To increase time efficiency, sometimes not all pairs of windows are compared.
For instance, the StackPack EST clustering tool uses a variant of bDd2,6, where

104

8.4 Clustering algorithms

all windows in one sequence are compared with every k’th window in the other
sequence:

Dd2 asym(s, t) := min
{
Dd2,6(s

0, t(i)) | |s 0| = m, s 0 v s, i = 0, . . . , b|t|/k}, (8.6)

where k is the skip size, and t(i) := ti�k+1 . . . tmin(i�k+m,|t|) is the substring of t starting
at position i � k + 1. Note that this measure is not symmetric, which is why we refer
to it as asymmetric d2. In contrast, we will refer to Dd2 sym := bDd2 , which compares

all pairs of windows, as symmetric d2.

8.4 Clustering algorithms

Data clustering is the task of grouping together a set of objects into subgroups
according to some property or properties. There are a large variety of cluster-
ing algorithms and a fair amount of terminological inconsistency in the literature.
See [JMF99], whose terminology we follow, for an introduction. We assume in the
following that D : X� X 7→ R is a dissimilarity measure on the set of objects X.

For EST clustering, most often hierarchical clustering algorithms are used. A
sequence of increasingly fine partitions of the data is produced, starting from the
whole set as one cluster, where each partition is a refinement of the previous one.
The process stops when a partition is found that is fine enough according to some
previously defined criterion. Most EST clustering algorithms are single linkage

(nearest neighbour, transitive closure): Two objects x and y are clustered together
if there is a finite sequence x = x1, x2, . . . , xk−1, xk = y such that for all 1 � i < k,
D(xi, xi+1) < θ, for some threshold θ. If the threshold is set beforehand, single link-
age can be viewed as a partitional clustering algorithm; in its general form, it is
a hierarchical clustering algorithm where, usually, different levels correspond to
different values of θ. Other types of clustering algorithms, such as complete linkage

or k-means, are not commonly used for EST clustering.
Clustering can be seeded or unseeded. In seeded clustering, the number of clus-

ters is known beforehand, and a member of each cluster (the seed) is supplied as
part of the input: in EST clustering, this is typically a full-length mRNA. In un-
seeded clustering, no additional information is used and, in particular, the number
of clusters is unknown.

Of the EST clustering methods mentioned in Section 8.1, UniGene uses a hierar-
chical seeded clustering algorithm, where mRNAs are used as seeds, and different
hierarchies represent different types of merging stages: e.g. edges that connect two
ESTs are judged less reliable than those connecting an EST to an mRNA. TIGR
uses single linkage clustering and produces a tentative consensus for each clus-
ter. TGICL [PHL+03], a recent enhancement of TIGR, also uses single linkage, and
so do both [KAKB03] and [MCJ03]. StackPack [CvGG+01] uses single linkage and
different hierarchy levels, where the lowest (least confident) level is ”clone linking”:
Two clusters are merged if they contain two end reads of the same clone. Hartuv et

al. [HSL+99] use the HCS clustering algorithm: Highly connected (i.e., particularly
dense) subgraphs in a threshold graph are output as clusters.

The prevalence of single linkage is due to the fact that EST clustering constitutes
a type of local alignment to an unknown reference sequence (the gene). Thus, the

105

8 EST Clustering

traditional drawback of single linkage, namely that it creates ‘elongated clusters,’
is a desired effect in EST clustering.

8.5 Clustering evaluation

The quality evaluation of a clustering algorithm is referred to in the literature as
cluster validity analysis, clustering evaluation, or goodness of fit. A large number
of different methods are in use. They can be grouped into methods of internal and
external assessment [JMF99]: Internal assessment methods validate some criterion
of internal consistency, while external methods compare the resulting clusters to
an ideal solution. In the following, we only consider methods of external assess-
ment. A score of the goodness of fit of the two clusterings is computed, which is
referred to as a validity index. For comparing partitions, commonly used validity
indices include the Rand Index, the Jaccard Index, and the Minkowski Index. For
an overview of cluster validity indices, see [Dub93, JD88]. Less formal validation
techniques include counting the number of exactly matching clusters or comparing
the number of singleton clusters (as in [MCJ03] and [BDH99] resp.). Two mea-
sures commonly employed in the biological literature are sensitivity and specificity.
Below, we give formal definitions for these validity indices.

Let S be the ground set of size |S| = n, the two partitions under considerationC = {C1, . . . , Ck} and D = {D1, . . . ,Dℓ}. All indices mentioned above are functions of
the number of unordered pairs of elements that were “treated alike” and “treated
differently” by the two clusterings. Set

a1 =
���{{s, t} 2 �S2� | C(s) = C(t) and D(s) = D(t)

}��� ,
a2 =

���{{s, t} 2 �S2� | C(s) 6= C(t) and D(s) 6= D(t)
}��� ,

d1 =
���{{s, t} 2 �S2� | C(s) = C(t) and D(s) 6= D(t)

}��� ,
d2 =

���{{s, t} 2 �S2� | C(s) 6= C(t) and D(s) = D(t)
}��� .

Further, we set a = a1 + a2 and d = d1 + d2. Observe that a is the number of
agreements and d the number of disagreements between the two clusterings. In
the biological literature, it is customary to speak of ‘true/false positives/negatives.’
If we view C as the correct clustering, then a1 is the number of true positives, a2

the number of true negatives, d1 the number of false negatives, and d2 the number
of false positives. We give the definitions of the above validity indices in Table 8.1,
transforming the definition of the Minkowski Index into one employing the values
introduced above.

The Rand Index can also be corrected for chance by the expected difference to a
randomly chosen clustering with the given number of clusters, see [HA85]. We have
decided to use the uncorrected Rand Index because it is not realistic to assume
that the number of clusters is known. Also, correction using the expected score
of a random clustering is assumed to be small and often not worth the additional
computational effort.

106

8.5 Clustering evaluation

Rand Index a

(n
2)

Jaccard Index a1

a1+d

Minkowski Index
�

2d
2(a1+d1)+n

�1
2

Sensitivity a1

a1+d1

Specificity a1

a1+d2

Table 8.1: Common validity indices

107

8 EST Clustering

108

9 A Method for Evaluating String
Dissimilarity Measures and Clustering
Algorithms for EST Clustering

In this chapter, we introduce a methodology for evaluating the different components
involved in EST clustering, depending on the type of input data. We then introduce
the tool ECLEST which we developed for EST clustering evaluation, and present
simulation results. For the simulations, we used artificial data generated by the
tool ESTSim, which was developed and implemented by Scott Hazelhurst at the
University of Witwatersrand for the purposes of this study [HB03].

The software ECLEST was implemented by Judith Zimmermann within her
Diplom thesis [Zim03], which was carried out under the supervision of the author
of this thesis and Prof. Peter Widmayer at ETH Zürich.

The contents of this chapter have been published in [ZLH04].

9.1 Evaluation method

We propose a rigorous method for evaluating the suitability of string dissimilarity
measures and clustering algorithms for EST clustering, depending on the charac-
teristics of the input data. We distinguish between four different components:

1. the input data,

2. the string dissimilarity measure,

3. the clustering algorithm, and

4. the clustering validity index, according to which the quality of the output is
judged.

As input data, we generate simulated ESTs from real cDNAs or full-length mRNAs
according to specifiable error parameters, using the tool ESTSim (EST Simula-

tor) [HB03]. ESTSim generates simulated ESTs from input cDNAs or mRNAs ac-
cording to user-specifiable parameters, and outputs EST-like sequences, identify-
ing which input sequence they were derived from.

We then compute a partition of the set of simulated ESTs with our tool ECLEST
(Evaluator for CLusterings of ESTs). ECLEST computes clusterings of a set of input
sequences, using specified string dissimilarity measures and clustering algorithms,
where both components can be chosen independently. It then computes a score
of the resulting partition by comparing it to the ideal partition, using a specified
validity index. Again, the validity index can be chosen independently of the other

109

9 A Method for Evaluating String Dissimilarity Measures

two components. ECLEST has a modular architecture, which allows different string
dissimilarity measures, clustering algorithms, and clustering validity indices to be
used.

We believe that using simulated data rather than real ESTs is better suited for
this type of study, for two reasons: First, for real ESTs, the ideal clustering is
never known and can at best be approximated by, for example, aligning ESTs to the
genome, or by relying on annotation information, or both. Therefore, any evaluation
will be subject to possible errors made during the experimental phase. Second,
simulated data allow for careful tuning of parameters, such as average sequence
length or single base error distribution, and thus for estimating the impact of an
individual parameter on the methods used: This is, of course, impossible with real
data.

We demonstrate the fitness of our method by presenting the results of a test
study we carried out on 699 cDNA sequences from a mammalian gene collection.
From these, we derived approximately 16,000 simulated ESTs and clustered them
using five different string dissimilarity measures and a single linkage clustering al-
gorithm, computing the clustering quality scores using the Rand Index (for details,
see Section 9.3). We ran two sets of tests, where we varied the error types, in the
first simulating error types and levels as laid down in the guidelines of NCBI, and
in the second, increasing these error levels. We were able to draw statistically sig-
nificant conclusions as to the quality of clusterings produced using these different
string dissimilarity measures.

9.2 ECLEST: A tool for evaluating EST clusterings

The ECLEST tool (Evaluator for CLusterings of ESTs) was implemented in Java 1.4.
It takes as input a set of DNA-strings in FASTA-format and a text-file specifying the
ideal clustering. It then computes and evaluates a clustering of the input strings,
using

1. a specified string dissimilarity measure;

2. a specified clustering algorithm; and

3. a specified clustering validity index.

The input data may be real ESTs, or artificial data such as produced by the
dedicated tool ESTSim (cf. Section 9.3.2).

The interfaces are designed in such a way that ECLEST can be easily extended by
new algorithms in any of the three categories. In the current version, five dissim-
ilarity measures, one clustering algorithm, and one clustering validity index have
been implemented.

The clustering algorithm implemented is single linkage clustering. A partition is
computed with the following property: Given threshold θ,C(s) = C(t) ⇐⇒ exist s = s1, s2, . . . , sk−1, sk = t s.t. for all 1 � i < k, d(si, si+1) < θ.

(9.1)

110

9.3 Suitability evaluation for single linkage clustering

dissim. measure parameters definition

end-space free penalty function f Desfa(s, t) =

alignment (end-space free) min{f(A) | A global alignment of s, t}

common word word size K Dcword(s, t) =

{
0 if 9w, |w| = K, w v s, t

1 otherwise

symmetric d2 bounds u, l Dd2 sym = bDd2 , where
window size m Dd2(s, t) =

∑u
|w|=l(freqs(w) − freqt(w))2

asymmetric d2 bounds u, l Dd2 asym(s, t) = min{Dd2(s 0, t(i)) | |s 0| = m,

window size m s 0 v s, i = 0, . . . , b|t|/k}, using Dd2

skip size k as above and t(i) = ti�k+1 . . . tmin(i�k+m,|t|)

Boolean word size q bDB q-gram, where
q-grams window size m DB q-gram(s, t) = −

∑
|w|=q occs(w) � occt(w)

Table 9.1: Dissimilarity measures currently implemented in ECLEST. All parame-
ters are specified in a configuration file.

The algorithm can be implemented efficiently with a union-find data structure,
starting with a singleton cluster for each element.

For the clustering validation, we implemented the Rand Index (see Table 8.1 on
page 107). The dissimilarity measures are listed in Table 9.1. The implementation
we used is the Smith-Waterman dynamic programming algorithm for the end-space
free alignment; a truncated suffix tree, which is a slight modification of Ukkonen’s
algorithm [JU91], for the common word measure; an incremental computation with
dynamic lists for the symmetric d2 [Haz04], and modifications of these for the assy-
metric d2 and the Boolean q-grams.

For further details, including full implementation details, see [Zim03]. The
ECLEST manual, as well as the Java code, can be found at

http://bibiserv.techfak.uni-bielefeld.de/esteval/,

including instructions on how to extend the application.

9.3 Suitability evaluation for single linkage clustering

We ran two sets of experiments, where we compared the five dissimilarity mea-
sures above, having fixed the clustering algorithm (single linkage) and one valida-
tion index (Rand Index). We used simulated data which we generated using the tool
ESTSim [HB03], which had been developed for the purpose of producing EST–like
sequences from input DNA sequences. We first briefly introduce the software EST-
Sim, then detail the data we used, the parameters of the dissimilarity measures,
and close with a report of our results.

111

9 A Method for Evaluating String Dissimilarity Measures

9.3.1 Using ESTSim for Creating Benchmarks of Simulated EST Sets

ESTSim [HB03] has been designed to create large sets of ”realistic” but artificial
EST sequences. The rationale behind using synthetic data in benchmarking is
the following. When using real data, many unknown characteristics can and do
influence the outcome; in particular, with real ESTs it is not known with complete
certainty which genes they have been derived from. The use of artificial test data
enables us to produce data with a range of different properties. Thus, the effect
of different error models on the effectiveness of the use of certain EST clustering
methods can be tested precisely, which would be impossible using real data.

ESTSim creates artificial ESTs from a set of given cDNA sequences using criteria
specified by the user. The artificial creation of ESTs in this way will lead to the
creation of an EST set whose exact final clustering is known, because each artificial
EST carries an identifier of the sequence it was derived from. So, when testing an
EST clustering method, the output can be evaluated by comparing it to the known
ideal clustering. The approach of ESTSim is similar to that of GenFrag [EB94],
though ESTSim is specifically tailored to EST data and supports more sophisticated
error models. Here, we give a brief overview; full details can be found in [HB03].

ESTSim simulates the production of ESTs from cDNAs or any genomic-like data
with a variety of models. It has been designed in such a way as to generate different
types of data, simulating the different types of errors and error rates, according to
the biological processes used in different laboratories.

Given an input sequence (mRNA or DNA), it is split into fragments (according
to user parameters), the fragments copied a user–specified number of times, and
then each fragment is mutated according to user–specified error models. The errors
modeled include single base errors, stuttering, and ligation, each with parameters
that can be specified by the user. Contamination and repeats have not been mod-
eled because typically, these are masked out in a preprocessing phase for EST
clustering.

For an example of the probability distribution of different single base errors, see
Figure 9.1. ESTSim has been built in a modular way so that it is relatively easy
to build in new error models. However, we believe that the number of parameters
already at the user’s choice allow for a large enough design space to build realistic
data sets.

9.3.2 Data used in the experiments

For our experiments, we used ESTSim to generate simulated ESTs from a collection
of human cDNAs from a mammalian gene collection at http://mgc.nci.nih.gov/.
Non-human cDNAs are removed by using BLAST and common contaminant in-
formation. Since we do not want to include the effects of alternative splicing, we
removed all but one cDNA sequence per gene, by performing complete pair-wise
comparison with BLAST: If the similarity (e-value) exceeded 10−85, one of the two
sequences was removed, because it is likely that they correspond to the same gene.
This yields a set of 699 cDNAs, which we split up into sets of 4 to 10 sequences
each, such that the overall length (number of nucleotides) in each set is roughly

112

9.3 Suitability evaluation for single linkage clustering

the same. We refer to each of these sets as a test set; there are 134 such test sets.
Ten of these we used for preliminary testing.1

We generated two sets of simulated ESTs for each of the test sets, called exper-

iments in the following. The two experiments differed by the parameters used for
ESTSim. Each experiment consisted of running ECLEST, for each test set, on the
ESTs generated by ESTSim from this test set, with the five dissimilarity measures
detailed below, and computing the validity index for each of the five clusterings
produced. We ran 10 preliminary tests for estimating the distribution of the dis-
similarity measures and for setting up our hypotheses, and used the remaining
124 test sets (for technical reasons, 123 for the second experiment) to test these
hypotheses. Each test set included between 200 and 300 ESTs as input to ECLEST.

The first experiment simulates high quality ESTs that meet the standards laid
down by NCBI. The probability graph of a single base error, taking into account
random noise, polymerase decay, and primer interference is shown in Figure 9.1.
A very modest amount of stuttering is permitted: The parameter was chosen such
that stuttering would happen on average with probability 0.005 on a sequence of
10 Gs. In the second experiment, we increased most of the parameters of ESTSim
in such a way as to produce ESTs that have twice as high error probabilities for
most error types. In both experiments, ESTs of length between 300 and 500 bp were
produced, where every base of the original cDNAs appears on average in 5 ESTs; no
reverse reads are produced. We also ignore ligation, to exclude that two clusters be
merged artificially.

We list the settings used for our experiments in Table 9.2. Briefly, samplerandom
x y z w generates fragments of the input sequence of random length between x and
y; each base will appear in z copies on average; and w is the proportion of reverse
complement copies. Regarding the parameters, α is the probability that an arbitrary
base changes randomly; β is the margin (number of bases) at the beginning of the
sequence where errors are most likely to occur; γ is the probability that an error
occurs in the margin; ζ and ξ are two paramaters involved in the formula defining
the effect of the polymerase decay at the end of the sequence; η is the probability
that stuttering happens after a repeat; θ is the ligation parameter; κ, λ, and µ define
the proportion of single base errors that are substitutions, deletions, and insertions,
respectively; and ν gives the proportion of changes resulting in an N. See [HB03]
for a more detailed description.

manner of EST generation α β γ ζ ξ η θ κ, λ, µ ν

Experiment 1 samplerandom 300 500 5 0 0.005 30 0.04 1 2 20 0 10 each 0
Experiment 2 samplerandom 300 500 5 0 0.01 50 0.06 2 3 0 0 10 each 0

Table 9.2: Parameters for ESTSim in the two experiments.

1This includes determining the number of test sets we needed: These preliminary tests revealed that
for statistically significant statements, we needed 120 test sets, hence the total number of test
sets.

113

9 A Method for Evaluating String Dissimilarity Measures

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 50 100 150 200 250 300

P
ro

ba
bi

lit
y

of
 e

rr
or

Base position (assuming sequence 300 long)

Random
Polymer decay

Primer

Figure 9.1: Error probability functions for different single base errors. For clarity,
the y-axis is cropped at y = 0.1.

9.3.3 Dissimilarity measures compared

We compare the five dissimilarity measures detailed in Section 9.2; the parameters
are shown in Table 9.3. We chose these dissimilarity measures for the following
reasons. BLAST is frequently used as dissimilarity measure in EST clustering,
thus in our alignment measure, we use a penalty function which closely emulates
BLAST parameters. We refrained from using BLAST itself, because we are aiming
for a clean comparison which does not include the many heuristics used in a full
BLAST implementation. Asymmetric d2 is used by StackPack [CvGG+01]: We set all
parameters accordingly, except for the threshold, which we optimised ourselves. We
chose symmetric d2 as a comparison to asymmetric d2, in order to see whether the
efficiency gained by comparing only every 50’th window of one of the two sequences
can be justified: If the quality of the clusterings decreases dramatically, it cannot.
Common word seems a good dissimilarity measure as a preprocessing step because
of very efficient implementations; in addition, it may already produce good quality
clusterings. Finally, we chose Boolean q-grams because they, too, are used in
EST clustering. The thresholds θ were set heuristically by running a few tests and
finding the thresholds that maximize the validity score.

9.3.4 Results

We ran 10 preliminary test sets to estimate the distributions of the clustering scores
computed with the different dissimilarity measures, and to set up our hypotheses.
We then ran 124 test sets to test our hypotheses. We summarize the results in

114

9.3 Suitability evaluation for single linkage clustering

measure parameters θ

alignment penalty function f(match) = −1, f(mismatch) = +3,
f(gap opening) = +5, f(gap extension) = +2, f(end space gap) = 0 −20

symmetric d2 fixed word size 6 (u = l = 6), window size m = 100 50

asymmetric d2 fixed word size 6 (u = l = 6), window size m = 100, skip size k = 50 50

common word word size K = 19 1

Boolean word size q = 6, window size m = 100 −13

q-grams

Table 9.3: Dissimilarity measures used in our experiments with parameters and
thresholds.

Table 9.4: Here, we report the mean and standard deviation of the clustering scores
in the two experiments, taken over 134 tests for Experiment 1, and 133 tests for
Experiment 2. (To be exact, since the distributions are unknown, the values are (i)

the average, and (ii) the average squared difference from the average.) Tables 9.5
and 9.6 show how the dissimilarity measures compared to each other in the two
experiments, in absolute numbers and in percentages (rounded to .1%). Entry a/b/c

in cell (i, j) denotes that measure i produced a better clustering than measure j in
a number (percent) of cases; i and j tied in b cases; and j produced a better result
in c cases. We visualize the results for Experiment 2 in Figures 9.2 and 9.3.

NCBI-parameters doubled NCBI-param.s
(Experiment 1) (Experiment 2)
Mean St. dev. Mean St. dev.

alignment 0.9861 0.0181 0.9834 0.0199
symm. d2 0.9768 0.0221 0.9568 0.0306
asymm. d2 0.9718 0.0233 0.9471 0.0334
cword 0.8674 0.2037 0.8405 0.2284
Bool. q-grams 0.8262 0.0586 0.8171 0.0548

Table 9.4: Rand Index of the clusterings compared with ideal clusterings, with two
types of input parameters.

alignment symm. d2 asym. d2 cword

alignment
symm. d2 1.5/41.0/57.5
asymm. d2 0.7/25.4/73.9 0/70.1/29.9
cword 14.2/36.6/49.3 36.6/15.7/47.8 43.3/9/47.8
Bool. q-grams 0/0/100 0/0/100 0/0/100 23.1/0/76.9

Table 9.5: Comparison of measures, for 134 tests with NCBI-like parameters (Ex-
periment 1), in percent.

115

9 A Method for Evaluating String Dissimilarity Measures

alignment symm. d2 asym. d2 cword

alignment
symm. d2 0.8/5.3/94
asymm. d2 0.8/0.8/98.5 0/23.3/76.7
cword 3/39.1/57.9 45.1/3.8/51.1 49.6/0.8/49.6
Bool. q-grams 0/0/100 0/0/100 0/0/100 30.1/0/69.9

Table 9.6: Comparison of measures, for 133 tests with doubled NCBI-parameters
(Experiment 2), in percent.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

Common Word
D2 Symmetric

D2 Asymmetric
Boolean q-grams

End space-free alignment

Figure 9.2: Rand Index for the five different dissimilarity measures for the 133 test
sets in Experiment 2.

Statistical hypothesis testing

From the preliminary test sets it could be seen that the convenient assumption of
normal distribution was untenable, thus we were restricted in the kind of statistical
tests we could use. In all cases, we used either the Friedman ranking test or
the binomial test. The Friedman test utilises only a ranking of the scores rather
than their values. Another limitation is that the Friedman test has been designed
for continuous distributions, an assumption that slightly skews the results when
several identical scores (ties) appear in one test. We therefore ran the test also
by only using those test sets where the results were different for all dissimilarity
measures in question; however, this reduced dramatically the number of test sets
that could be evaluated.

Because of the missing normal distribution assumption, we were unable to make
quantitative statements about how much better one dissimilarity measure performs
than another. All our statements (acceptance or rejection of hypotheses) have been
made with a 95% confidence. We used the statistics program R, version 1.6.1 [The],
to evaluate our data. The first results are:

116

9.4 Conclusion

 0

 0.2

 0.4

 0.6

 0.8

 1

Common Word
d2 Symmetric

d2 Asymmetric
Boolean q-grams

End space-free alignment

Figure 9.3: Mean and standard deviation of the Rand Index for the five different
dissimilarity measures (Exp. 2).

1. In both experiments, the clustering scores of the individual dissimilarity mea-
sures do not follow a normal distribution.

2. In both experiments, the clustering scores of the five dissimilarity measures
do not have the same distribution.

The second statement could be shown both with data that included ties, and with
the much smaller data set without ties. Next we compared those dissimilarity mea-
sures where it seemed reasonable to assume that either they differed significantly
or that they were similar. Since the distribution of the common word measure was
very different from the others, we excluded it from these individual comparisons.
Finally, we tested whether certain dissimilarity measures can be used as prepro-
cessing for others in order to achieve a good result. For technical reasons, this type
of hypothesis was only tested in the first experiment, where ESTs of NCBI-quality
were produced. The results are summarised in Table 9.7.

9.4 Conclusion

We have made two contributions: First, we developed a rigorous methodology for
comparing string similarity measures and clustering algorithms for the purposes
of EST clustering, and introduced a tool, ECLEST, that implements this method.
Second, we presented a preliminary study for the commonly used single linkage
clustering algorithm, using common dissimilarity measures and two sets of typical
values for EST error models.

Our evaluation methodology comprises independently choosing the string dis-
similarity measure, the clustering algorithm, and a clustering validity index to be
employed, and computing a clustering of the data as well as a quality score. The

117

9 A Method for Evaluating String Dissimilarity Measures

with probability
Hypothesis NCBI-param.s doubled

(Experiment 1) NCBI-param.s
(Experiment 2)

symmetric d2 performs as well as alignment < 0.5 > 0.05

asymmetric d2 performs as well as symmetric d2 > 0.5 not: > 0.05

symmetric d2 performs better than Boolean q-grams > 0.95 > 0.95

asymmetric d2 performs better than Boolean q-grams > 0.95 > 0.95

common word followed by symmetric d2

performs as well as symmetric d2 alone > 0.95 —
common word followed by alignment performs
better than symmetric d2 alone not: > 0.5 —

Table 9.7: Statistical results (95% confidence). Hypotheses that could not be vali-
dated are marked by ”not”. A dash ’—’ denotes that the hypothesis was
not tested.

system ECLEST implements all three components; at present, five similarity mea-
sures, one clustering algorithm, and one validity index have been implemented. As
input, either real ESTs or simulated ESTs can be used such as generated by the
tool ESTSim.

The particular experiments we ran illustrated the value of the approach. They
show that certain dissimilarity measures yield better results than others, but also
that some measures compute very similar results. This gives algorithm designers
greater choices in tradeoff considerations, when time and space limitations are vi-
tal. Furthermore, it gives rigorous ways of justifying the choice of certain heuristics
to speed up the clustering process.

118

10 Conclusion

In this thesis, we discussed problems from two areas of bioinformatics, namely
mass spectrometry and EST clustering. Both areas give rise to string problems
which are of interest in their own right, as well as relevant to applications.

We have shown that a wealth of challenging combinatorial problems arise from
mass spectrometry (MS) applications. We presented a consistent formal framework
for the theory of weighted strings and gave efficient algorithms for several weighted
string problems. In particular, the mass decomposition and the submass finding
problems are encountered frequently when dealing with biotechnological MS data;
the former when asking whether and how a mass can be written as a mass of amino
acids (for proteins) or of nucleotides (for DNA); the latter when dealing with MS data
where non-site-specific digestion was used.

Our algorithm for the DECOMPOSITION ALL WITNESSES PROBLEM uses a data
structure whose size and construction time only depend on the alphabet and not
on the query, and can thus be constructed in a preprocessing step. The running
time for a query M is then only dependent on the size of this data structure and
on the number of compomers with mass M, and not on M itself. This is the first
algorithm that solves the problem in time not dependent on the query but only on
the output size. Moreover, the data structure can be used to solve several other
mass decomposition problems, as well (DECISION, ONE WITNESS, FROBENIUS).

For the submass finding problems, we presented a very efficient algorithm for
binary alphabets solving the SUBMASS DECISION PROBLEM, which runs in timeO(log n) and uses space O(n) where n is length of the string s queried. Even though
no biological applications are apparent at present for an alphabet of size 2, it may
be possible to extend the underlying ideas to larger alphabets. Furthermore, we
described several algorithms for different variants of the submass finding problem
(DECISION, COUNTING, ONE WITNESS, ALL WITNESSES) for multiple query masses.
These employ an encoding of submasses in polynomials and derive their efficiency
from Fast Fourier Transform for polynomial multiplication.

We presented an algorithm for the DE NOVO PEPTIDE SEQUENCING PROBLEM

which enhances a known dynamic programming algorithm. We described its im-
plementation and first simulation results.

The other area we treated in this thesis is EST clustering and the use of different
string dissimilarity measures. We presented a framework and a dedicated tool to
evaluate the impact of the choice of dissimilarity measure and clustering algorithm
on clustering quality. EST clustering is the method of choice for extracting infor-
mation from the vast amount of publicly available EST sequences. It is thus of vital
importance to develop stringent methodologies for improving its effectiveness.

119

10 Conclusion

Open Problems

The thesis has opened up a number of directions for further research.
One particularly interesting challenge on the algorithmic side is to extend the

ideas behind the mass decomposition algorithm presented in Chapter 4 in such a
way that we can solve the DECOMPOSITION COUNTING PROBLEM; at the moment,
we can only solve it using the classical dynamic programming algorithm. Another
open question is whether the algorithm INTERVAL for the submass finding prob-
lem (Section 5.2) can be extended to larger alphabets, in order to benefit from its
high efficiency. The algorithms for the submass problems using polynomials (Sec-
tion 5.3) should be implemented and compared to other algorithms in applications.
Finally, the search for a good de novo peptide sequencing algorithm continues.

On the theoretical side, one open problem is how to efficiently store compomers,
in particular the set of compomers of a given string. Solving this problem would
have a large number of applications not only when the objects of interest are the
compomers themselves (such as in mass spectrometry), but also in those where for
certain substrings, only the multiplicity but not the order of characters is of interest
(such as gene clusters or certain alignment algorithms).

In the EST clustering area, we plan to extend the framework by implementing
more string dissimilarity measures and clustering algorithms, and to run further
experiments on simulated data as well as on carefully chosen sets of real data.

120

Bibliography

[AALS03] A. Amir, A. Apostolico, G. Landau, and G. Satta. Efficient text finger-
printing via Parikh mapping. Journal of Discrete Algorithms, 1(5-6):409–
421, 2003.

[ABB97] J.-M. Autebert, J. Berstel, and L. Boasson. Context–free languages and
pushdown automata. In G. Rozenberg and A. Salomaa, editors, Hand-

book of Formal Languages, vol. 1, chapter 3, pages 111–174. Springer,
1997.

[AGM+90] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic
local alignment search tool. Journal of Molecular Biology, 215:403–410,
1990.

[AM03] R. Aebersold and M. Mann. Mass spectrometry-based proteomics. Na-

ture, 422:198–207, 2003.

[Arn01] D. Arnott. Basics of triple-stage quadropole/ion-trap mass spectrome-
try: precursor and neutral loss scanning. Electrospray ionisation and
nanospray ionisation. In P. James, editor, Proteome Research: Mass

Spectrometry, pages 11–29. Springer, 2001.

[BCF+99] S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof, E. Rivals, and
M. Vingron. q-gram based database searching using a suffix array. In
Proc. of the 3rd Annual International Conference on Computational Molec-

ular Biology (RECOMB’99), pages 77–83, Lyon, France, 1999. ACM
Press.

[BCG+02] S. Baginsky, M. Cieliebak, W. Gruissem, T. Kleffmann, Zs. Lipták,
M. Müller, and P. Penna. AuDeNS: A tool for automatic de novo peptide
sequencing. Technical Report 383, ETH Zurich, Department of Com-
puter Science, Oct. 2002.

[BCL04] N. Bansal, M. Cieliebak, and Zs. Lipták. Efficient algorithms for find-
ing submasses in weighted strings. In Proc. of the Fifteenth Annual

Combinatorial Pattern Matching Symposium (CPM 2004), volume 3109
of LNCS, pages 194–204, 2004.

[BDH99] J. Burke, D. Davison, and W. Hide. D2 cluster: A validated method
for clustering EST and full-length cDNA sequences. Genome Research,
9(11):1135–1142, 1999.

121

Bibliography

[BE01] V. Bafna and N. Edwards. SCOPE: A probabilistic model for scoring tan-
dem mass spectra against a peptide database. Bioinformatics, 17(Sup-
plement 1):S13–S21, 2001.

[BE03] V. Bafna and N. Edwards. On de novo interpretation of tandem mass
spectra for peptide identification. In Proc. of the Seventh Annual Inter-

national Conference on Computational Molecular Biology (RECOMB’03),
pages 9–18, 2003.

[Ben86] P. J. Bentley. Programming Pearls. Addison–Wesley, 1986.

[Ben03] G. Benson. Composition alignment. In Proc. of the 3rd International

Workshop on Algorithms in Bioinformatics (WABI’03), pages 447–461,
2003.

[BHNW] D. E. Beihoffer, J. Hendry, A. Nijenhuis, and S. Wagon. Faster algo-
rithms for Frobenius numbers. Submitted.

[BL05a] S. Böcker and Zs. Lipták. Efficient mass decomposition. In Proc. of the

ACM Symposium on Applied Computing (ACM-SAC’05), pages 151–157,
2005.

[BL05b] S. Böcker and Zs. Lipták. The money changing problem revisited: Com-
puting the Frobenius number in time O(ka1). In Proc. of the Eleventh

International Computing and Combinatorics Conference (COCOON’05),
2005.

[Böc03a] S. Böcker. Sequencing from compomers: Using mass spectrometry for
DNA de-novo sequencing of 200+ nt. In Proc. of the 3rd International

Workshop on Algorithms in Bioinformatics (WABI’03), pages 476–497,
2003.

[Böc03b] S. Böcker. SNP and mutation discovery using base-specific cleav-
age and MALDI-TOF mass spectrometry. Bioinformatics, Supplement

1 (ISMB’03), pages i44–i53, 2003.

[Böc04] S. Böcker. Weighted sequencing from compomers: DNA de novo se-
quencing from mass spectrometry data in the presence of false negative
peaks. In Proc. of the German Conference on Bioinformatics (GCB’04),
pages 13–23, 2004.

[Bra42] A. Brauer. On a problem of partitions. Amer. J. Math., 64:299–312,
1942.

[BS62] A. Brauer and J. E. Shockley. On a problem of Frobenius. J. Reine

Angew. Math., 211:215–220, 1962.

[BS95] M. Boguski and G. Schuler. ESTablishing a human transcript map.
Nature Genetics, 10(11):369–371, 1995.

122

Bibliography

[BSS+01] E. Bolten, A. Schliep, S. Schneckener, D. Schomburg, and R. Schrader.
Clustering protein sequences—structure prediction by transitive ho-
mology. Bioinformatics, 17(10):935–941, 2001.

[CC02] D. M. Creasy and J. S. Cottrell. Error tolerant searching of unin-
terpreted tandem mass spectrometry data. Proteomics, 2:1426–1434,
2002.

[CDF90] M. Cosnard, J. Duprat, and A. G. Ferreira. The complexity of searching
in X + Y and other multisets. Information Processing Letters, 34:103–
109, 1990.

[CEL+02] M. Cieliebak, T. Erlebach, Zs. Lipták, J. Stoye, and E. Welzl. Algorithmic
complexity of protein identification: Searching in weighted strings. In
Proc. of the 2nd IFIP International Conference of Theoretical Computer

Science (TCS’02), pages 143–156, 2002.

[CEL+04] M. Cieliebak, T. Erlebach, Zs. Lipták, J. Stoye, and E. Welzl. Algorithmic
complexity of protein identification: Combinatorics of weighted strings.
Discrete Applied Mathematics, 137(1):27–46, 2004.

[CH02] R. Cole and R. Hariharan. Verifying candidate matches in sparse and
wildcard matching. In Proc. of the 34th Symposium on the Theory of

Computing (STOC’02), pages 592–601, 2002.

[Chr01] A. Christoffels. Generation of a human gene index and its application to

disease candidacy. PhD thesis, University of the Western Cape, 2001.

[Cie03] M. Cieliebak. Algorithms and Hardness Results for DNA Physical Map-

ping, Protein Identification, and Related Combinatorial Problems. PhD
thesis, Eidgenössische Technische Hochschule (ETH) Zürich, 2003.
Diss ETH no. 15258.

[CKT+01] T. Chen, M.-Y. Kao, M. Tepel, J. Rush, and G. M. Church. A dynamic
programming approach to de novo peptide sequencing via tandem mass
spectrometry. J. Comp. Biol., 8(3):325–337, 2001. A preliminary version
appeared in the Proceedings of the Symposium on Discrete Algorithms
(SODA 2000) in 2000.

[CT65] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation
of complex Fourier series. Mathematics of Computation, 19(90):297–
301, 1965.

[CvGG+01] A. Christoffels, A. van Gelder, G. Greyling, R. Miller, T. Hide, and
W. Hide. STACKdb: Sequence tag alignment and consensus knowl-
edgebase. Nucleic Acids Research, pages 234–238, 2001.

[DAC+99] V. Danćik, T. A. Addona, K. R. Clauser, J. E. Vath, and P. A. Pevzner.
De novo peptide sequencing via tandem mass spectrometry: A graph-
theoretical approach. J. Comp. Biol., 6(3/4):327–342, 1999.

123

Bibliography

[DD03] S. Datta and S. Datta. Comparisons and validation of statistical clus-
tering techniques for microarray data. Bioinformatics, 19(4):459–466,
2003.

[Did03] G. Didier. Common intervals of two sequences. In Proc. of the 3rd

International Workshop on Algorithms in Bioinformatics (WABI’03), pages
17–24, 2003.

[Dub93] R. Dubes. Cluster analysis and related issues. In C. Chen, L. Pau, and
P. Wang, editors, Handbook of Pattern Recognition & Computer Vision,
pages 3–32. World Scientific, River Edge, NJ, 1993.

[EB94] M. Engle and C. Burks. GenFrag 2.1: new features for more robust frag-
ment assembly benchmarks. Computer Applications in the Biosciences,
10(5):567–568, 1994.

[EL02] N. Edwards and R. Lippert. Generating peptide candidates from amino-
acid sequence databases for protein identification via mass spectrome-
try. In Proc. of the 2nd International Workshop on Algorithms in Bioinfor-

matics (WABI’02), pages 68–81, 2002.

[ELP03] R. Eres, G. M. Landau, and L. Parida. A combinatorial approach to
automatic discovery of cluster-patterns. In Proc. of the 3rd International

Workshop on Algorithms in Bioinformatics (WABI’03), pages 139–150,
2003.

[EMI94] J. K. Eng, A. L. McCormack, and J. R. Y. III. An approach to correlate
tandem mass spectral data of peptides with amino acid sequences in a
protein database. Journal of the American Society for Mass Spectrometry

(JASMS), 5:976–989, 1994.

[FGT+97] J. Fernandez-de-Cossio, J. Gonzalez, T. Takao, Y. Shimonishi,
G. Padron, and V. Besada. A software program for the rapid se-
quence analysis of unknown peptides involving modifications, based
on MS/MS data. In 45th ASMS Conference on Mass Spectrometry and

Allied Topics, Slot 074, 1997.

[FMM+89] J. Fenn, M. Mann, C. Meng, S. Wong, and C. Whitehouse. Electro-
spray ionisation for mass spectrometry of large biomolecules. Science,
246:64–71, 1989.

[Fre75] M. L. Fredman. Two applications of a probabilistic search technique:
Sorting X + Y and building balanced search trees. In Conference Record

of Seventh Annual ACM Symposium on Theory of Computing (STOC’75),
pages 240–244, 1975.

[GG65] P. Gilmore and R. Gomory. Multi-stage cutting stock problems of two
and more dimensions. Oper. Res., 13:94–120, 1965.

[GKP94] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics.
Addison-Wesley, second edition, 1994.

124

Bibliography

[Gus97] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge
University Press, 1997.

[Guy94] R. Guy. Unsolved Problems in Number Theory. Springer, 1994.

[HA85] L. Hubert and P. Arabie. Comparing partitions. Journal of Classifica-

tion, 2:193–218, 1985.

[Haz04] S. Hazelhurst. An efficient implementation of the d2 distance function
for EST clustering: preliminary investigations. In Proc. of the Annual

Conference of the South African Institute of Computer Scientists and In-

formation Theoreticians (SAICSIT’04), pages 1–6, 2004.

[HB03] S. Hazelhurst and A. Bergheim. ESTSim: A tool for creating bench-
marks for EST clustering algorithms. Technical Report TR-Wits-CS-
2003-1, School of Computer Science, University of the Witwatersrand,
2003.

[HKBC91] F. Hillenkamp, M. Karas, R. Beavis, and B. Chait. Matrix-assisted
laser desorption/ionization mass spectrometry of biopolymers. Ana-

lytical Chemistry, 63:1193A–1203A, 1991.

[HMP+99] W. Hide, R. Miller, A. Ptitsyn, J. Kelso, C. Gopalkrishnan, and
A. Christoffels. EST Clustering Tutorial, 1999.

[HPSS75] L. Harper, T. Payne, J. Savage, and E. Straus. Sorting X + Y. Communi-

cations of the ACM, 18(6):347–349, 1975.

[HSB+03] R. Hartmer, N. Storm, S. Böcker, C. P. Rodi, F. Hillenkamp, C. Jurinke,
and D. van den Boom. RNAse T1 mediated base-specific cleavage and
MALDI-TOF MS for high-throughput comparative sequence analysis.
31(9):e47, 2003.

[HSL+99] E. Hartuv, A. Schmitt, J. Lange, S. Meier-Ewert, H. Lehrach, and
R. Shamir. An algorithm for clustering cDNAs for gene expression anal-
ysis. In Proceedings of the 3rd Annual International Conference on Com-

putational Molecluar Biology (RECOMB 99), pages 188–196. ACM, 1999.

[HWH86] C. Hamm, W. Wilson, and D. Harvan. Peptide sequencing program.
CABIOS, 2(2):115–118, 1986.

[HWS03] W. J. Henzel, C. Watanabe, and J. T. Stults. Protein idendification: The
origins of peptide mass fingerprints. J. Am. Soc. Mass Spectr., 14:931–
942, 2003.

[Int01] International Human Genome Sequencing Consortium. Initial sequenc-
ing and analysis of the human genome. Nature, 409:860–921, 2001.

[JD88] A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice
Hall, 1988.

125

Bibliography

[JMF99] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review.
ACM Computing Surveys, 31(3):264–323, 1999.

[JU91] P. Jokinen and E. Ukkonen. Two algorithms for approximate string
matching in static texts. In A. Tarlecki, editor, Proceedings of the 16th

Symposium on Mathematical Foundations of Computer Science. (MFCS

’91), volume 520 of LNCS, pages 240–248, Berlin, Germany, 1991.
Springer.

[KAKB03] A. Kalyanaraman, S. Aluru, S. Kothari, and V. Brendel. Efficient clus-
tering of large EST data sets on parallel computers. Nucleic Acids Re-

search, 31(11):2963–2974, 2003.

[KH88] M. Karas and F. Hillenkamp. Laser desorption ionisation of proteins
with molecular masses exceeding 10.000 Daltons. Analytical Chem-

istry, 60:2299–2301, 1988.

[KS00] M. Kinter and N. E. Sherman. Protein Sequencing and Identification

Using Tandem Mass Spectrometry. Wiley, 2000.

[KSV00] A. Krause, J. Stoye, and M. Vingron. The SYSTERS protein sequence
cluster set. Nucleic Acids Research, 28(1):270–272, 2000.

[LC03a] B. Lu and T. Chen. A suboptimal algorithm for de novo peptide sequenc-
ing via tandem mass spectrometry. Journal of Computational Biology,
10(1):1–12, 2003.

[LC03b] B. Lu and T. Chen. A suffix tree approach to the interpretation of
tandem mass spectra: Applications to peptides of non-specific diges-
tion and post-translational modifications. Bioinformatics, Supplement 2

(ECCB), pages ii113–ii121, 2003.

[Lev66] V. I. Levenshtein. Binary codes capable of correcting deletions, inser-
tions, and reversals. Cybern. Control Theory, 10:707–710, 1966.

[LHP+00] F. Liang, I. Holt, G. Pertea, S. Karamycheva, S. Salzberg, and J. Quack-
enbush. An optimized protocol for analysis of EST sequences. Nucleic

Acids Research, 26(18):3657–3665, 2000.

[LP85] D. Lipman and W. Pearson. Rapid and sensitive protein similarity
searches. Science, pages 1435–1441, 1985.

[Lue75] G. S. Lueker. Two NP-complete problems in nonnegative integer pro-
gramming. Technical Report TR-178, Department of Electrical Engi-
neering, Princeton University, March 1975.

[lut] http://www.immunex.com/researcher/lutefisk/.

[mas] http://www.matrixscience.com/.

[MCJ03] K. Malde, E. Coward, and I. Jonassen. Fast sequence clustering using
a suffix array algorithm. Bioinformatics, 19(10):1221–1226, 2003.

126

Bibliography

[MG02] K. Markides and A. Gräslund. Mass spectrometry (MS) and nuclear
magnetic resonance (NMR) applied to biological macromolecules. Ad-
vanced information on the Nobel Prize in Chemistry 2002, October
2002.

[MHR93] M. Mann, P. Hoffsetjrup, and P. Roepstorff. Use of mass spectro-
metric molecular weight information to identify proteins in sequence
databases. Biol. Mass Spectrom., 22(6):338–345, 1993.

[MT90] S. Martello and P. Toth. Knapsack Problems. John Wiley and Sons,
Chichester, 1990.

[MWW02] B. Moret, L.-S. Wang, and T. Warnow. Towards new software for com-
putational phylogenetics. IEEE Computer, 35(7):55–64, 2002.

[MZH+03] B. Ma, K. Zhang, C. Hendrie, C. Liang, M. Li, A. Doherty-Kirby, and
G. Lajoie. PEAKS: Powerful software for peptide de novo sequencing by
MS/MS. 17(20):2337–2342, 2003.

[MZL03] B. Ma, K. Zhang, and C. Liang. An Effective Algorithm for the Peptide De
Novo Sequencing from MS/MS Spectrum. In Proc. of 14th Symposium

on Combinatorial Pattern Matching (CPM’03), pages 266–277, 2003.

[MZL05] B. Ma, K. Zhang, and C. Liang. An effective algorithm for the peptide
de novo sequencing from ms/ms spectrum. Journal of Computer and

System Sciences, 70:418–430, 2005.

[Nav01] G. Navarro. A Guided Tour to Approximate String Matching. ACM

Computing Surveys, 33(1):31–88, 2001.

[NBG01] H. Nash, D. Blair, and J. Greffenstette. Comparing algorithms for large-
scale sequence analysis. In Proc. of the Second IEEE International Sym-

posium on Bioinformatics and Bioengineering, pages 89–96. IEEE Com-
puter Society Press, 2001.

[Nij79] A. Nijenhuis. A minimal-path algorithm for the “money changing prob-
lem”. Amer. Math. Monthly, 86:832–835, 1979. Correction in Amer.

Math. Monthly, 87:377, 1980.

[PDT00] P. A. Pevzner, V. Dančı́k, and C. L. Tang. Mutation-tolerant protein
identification by mass-spectrometry. In R. Shamir, S. Miyano, S. Istrail,
P. Pevzner, and M. Waterman, editors, Proc. of the Fourth Annual Inter-

national Conference on Computational Molecular Biology (RECOMB’00),
pages 231–236. ACM Press, 2000.

[Pev00] P. A. Pevzner. Computational Molecular Biology: An Algorithmic Ap-

proach. MIT Press, 2000.

[PHB93] D. Pappin, P. Hoffsetjrup, and A. Bleasby. Rapid identification of pro-
teins by peptide-mass fingerprinting. Current Biology, 3(6):327–332,
1993.

127

Bibliography

[PHL+03] G. Pertea, X. Huang, F. Liang, V. Antonescu, R. Sultana, S. Karamy-
cheva, Y. Lee, J. White, F. Cheung, B. Parvizi, J. Tsai, and J. Quack-
enbush. TIGR gene indices clustering tools (TGICL): a software system
for fast clustering of large EST datasets. Bioinformatics, 19(5):651–652,
2003.

[PMDT01] P. A. Pevzner, Z. Mulyukov, V. Dančı́k, and C. L. Tang. Efficiency of
database search for identification of mutated and modified proteins via
mass spectrometry. Genome Res., 11(2):290–299, 2001.

[PPCC99] D. N. Perkins, D. J. Pappin, D. M. Creasy, and J. S. Cottrell. Probability-
based protein identification by searching sequence datases using mass
spectrometry data. Electrophoresis, 20:3551–3567, 1999.

[QCL+01] J. Quackenbush, J. Cho, D. Lee, F. Liang, I. Holt, S. Karmycheva,
B. Parviyi, G. Pertea, R. Sultana, and J. White. The TIGR gene in-
dices: analysis of gene transcript sequences in higly sampled eukary-
otic species. Nucleic Acids Research, 29(1):159–164, 2001.

[Qua01] J. Quackenbush. Computational analysis of microarray data. Nature

Reviews Genetics, 2:418–427, 2001.

[Ram] J. L. Ramı́rez-Alfonsı́n. The Diophantine Frobenius Problem. Oxford
University Press. To appear.

[Ram96] J. L. Ramı́rez-Alfonsı́n. Complexity of the Frobenius problem. Combi-

natorica, 16(1):143–147, 1996.

[RDPS+02] C. P. Rodi, B. Darnhofer-Patel, P. Stanssens, M. Zabeau, and D. van
den Boom. A strategy for the rapid discovery of disease markers using
the MassARRAY system. BioTechniques, 32:S62–S69, 2002.

[RSMpt] K. R. Rasmussen, J. Stoye, and G. Myers. Efficient q-gram filters for
finding all ǫ-matches over a given length. Unpublished manuscript.

[Sal03] A. Salomaa. Counting (scattered) subwords. Bulletin of the Euro-

pean Association for Theoretical Computer Science (EATCS), 81:165–179,
2003.

[SEM98] J. Stoye, D. Evers, and F. Meyer. Rose: Generating sequence families.
Bioinformatics, 14(2):157–163, 1998.

[seq] http://fields.scripps.edu/sequest/.

[Siu96] G. Siuzdak. Mass Spectrometry for Biotechnology. Academic Press,
1996.

[SJ01] W. Staudenmann and P. James. Interpreting peptide tandem mass-
spectrometry fragmentation spectra. pages 143–165. 2001.

128

Bibliography

[SMMK84] T. Sakurai, T. Matsuo, H. Matsuda, and I. Katakuse. PAAS 3: A
computer program to determine probable sequence of peptides from
mass spectrometric data. Biomedical Mass Spectrometry, 11(8):396–
399, 1984.

[SS04] T. Schmidt and J. Stoye. Quadratic time algorithms for findig common
intervals in two and more sequences. In Proc. of the Fifteenth Annual

Combinatorial Pattern Matching Symposium (CPM’04), Istanbul July 5-7,

2004, volume 3109 of LNCS, pages 347–358, 2004.

[TBDS90] D. Torney, C. Burks, D. Davison, and K. M. Sirotkin. Computation of
d2: A measure of sequence dissimilarity. In G. Bell and T. Marr, editors,
Computers and DNA, pages 109–125. Addison-Wesley, 1990.

[The] The R Foundation for Statistical Computing. Available at http://www.

r-project.org/.

[TJ97] J. A. Taylor and R. S. Johnson. Sequence database searches via de
novo peptide sequencing by tandem mass spectrometry. Rapid Comm.

Mass Spec., 11:1067–1075, 1997.

[TJ01] J. A. Taylor and R. S. Johnson. Implementation and uses of auto-
mated de novo peptide sequencing by tandem mass spectrometry. Anal.

Chem., 73:2594–2604, 2001.

[Ukk92] E. Ukkonen. Approximate string-matching with q-grams and maximal
matches. Theoretical Computer Science, 92:191–211, 1992.

[VA03] S. Vinga and J. Almeida. Alignment-free sequence comparison—a re-
view. Bioinformatics, 19(3):513–524, 2003.

[VAM+01] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G.
Sutton, H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt, J. D. Go-
cayne, P. Amanatides, R. M. Ballew, D. H. Huson, J. R. Wortman,
Q. Zhang, C. Kodira, X. H. Zheng, L. Chen, M. Skupski, G. Subrama-
nian, P. D. Thomas, J. Zhang, G. L. Gabor Miklos, C. Nelson, S. Broder,
A. G. Clark, J. Nadeau, V. A. McKusick, N. Zinder, A. J. Levine,
R. J. Roberts, M. Simon, C. Slayman, M. Hunkapiller, R. Bolanos,
A. Delcher, I. Dew, D. Fasulo, M. Flanigan, L. Florea, A. Halpern,
S. Hannenhalli, S. Kravitz, S. Levy, C. Mobarry, K. Reinert, K. Rem-
ington, J. Abu-Threideh, E. Beasley, K. Biddick, V. Bonazzi, R. Bran-
don, M. Cargill, I. Chandramouliswaran, R. Charlab, K. Chaturvedi,
Z. Deng, V. Di Francesco, P. Dunn, K. Eilbeck, C. Evangelista, A. E.
Gabrielian, W. Gan, W. Ge, F. Gong, Z. Gu, P. Guan, T. J. Heiman,
M. E. Higgins, R. R. Ji, Z. Ke, K. A. Ketchum, Z. Lai, Y. Lei, Z. Li, J. Li,
Y. Liang, X. Lin, F. Lu, G. V. Merkulov, N. Milshina, H. M. Moore, A. K.
Naik, V. A. Narayan, B. Neelam, D. Nusskern, D. B. Rusch, S. Salzberg,
W. Shao, B. Shue, J. Sun, Z. Wang, A. Wang, X. Wang, J. Wang, M. Wei,
R. Wides, C. Xiao, C. Yan, A. Yao, J. Ye, M. Zhan, W. Zhang, H. Zhang,
Q. Zhao, L. Zheng, F. Zhong, W. Zhong, S. Zhu, S. Zhao, D. Gilbert,

129

Bibliography

S. Baumhueter, G. Spier, C. Carter, A. Cravchik, T. Woodage, F. Ali,
H. An, A. Awe, D. Baldwin, H. Baden, M. Barnstead, I. Barrow, K. Bee-
son, D. Busam, A. Carver, A. Center, M. L. Cheng, L. Curry, S. Danaher,
L. Davenport, R. Desilets, S. Dietz, K. Dodson, L. Doup, S. Ferriera,
N. Garg, A. Gluecksmann, B. Hart, J. Haynes, C. Haynes, C. Heiner,
S. Hladun, D. Hostin, J. Houck, T. Howland, C. Ibegwam, J. Johnson,
F. Kalush, L. Kline, S. Koduru, A. Love, F. Mann, D. May, S. McCaw-
ley, T. McIntosh, I. McMullen, M. Moy, L. Moy, B. Murphy, K. Nelson,
C. Pfannkoch, E. Pratts, V. Puri, H. Qureshi, M. Reardon, R. Rodriguez,
Y. H. Rogers, D. Romblad, B. Ruhfel, R. Scott, C. Sitter, M. Smallwood,
E. Stewart, R. Strong, E. Suh, R. Thomas, N. N. Tint, S. Tse, C. Vech,
G. Wang, J. Wetter, S. Williams, M. Williams, S. Windsor, E. Winn-Deen,
K. Wolfe, J. Zaveri, K. Zaveri, J. F. Abril, R. Guigo, M. J. Campbell,
K. V. Sjolander, B. Karlak, A. Kejariwal, H. Mi, B. Lazareva, T. Hatton,
A. Narechania, K. Diemer, A. Muruganujan, N. Guo, S. Sato, V. Bafna,
S. Istrail, R. Lippert, R. Schwartz, B. Walenz, S. Yooseph, D. Allen,
A. Basu, J. Baxendale, L. Blick, M. Caminha, J. Carnes-Stine, P. Caulk,
Y. H. Chiang, M. Coyne, C. Dahlke, A. Mays, M. Dombroski, M. Don-
nelly, D. Ely, S. Esparham, C. Fosler, H. Gire, S. Glanowski, K. Glasser,
A. Glodek, M. Gorokhov, K. Graham, B. Gropman, M. Harris, J. Heil,
S. Henderson, J. Hoover, D. Jennings, C. Jordan, J. Jordan, J. Kasha,
L. Kagan, C. Kraft, A. Levitsky, M. Lewis, X. Liu, J. Lopez, D. Ma, W. Ma-
joros, J. McDaniel, S. Murphy, M. Newman, T. Nguyen, N. Nguyen,
M. Nodell, S. Pan, J. Peck, M. Peterson, W. Rowe, R. Sanders, J. Scott,
M. Simpson, T. Smith, A. Sprague, T. Stockwell, R. Turner, E. Venter,
M. Wang, M. Wen, D. Wu, M. Wu, A. Xia, A. Zandieh, and X. Zhu. The
sequence of the human genome. Science, 291:1304–1351, 2001.

[WDRP02] N. Wicker, D. Dembele, W. Raffelsberger, and O. Poch. Density of points
clustering, application to transcriptomic data analysis. Nucleic Acids

Research, 30(18):3992–4000, 2002.

[WDYF85] C. Whitehouse, R. Dreyer, M. Yamashita, and J. Fenn. Electrospray
interface for liquid chromatographs and mass spectrometers. Analytical

Chemistry, 57:675–679, 1985.

[Wil90] H. Wilf. generatingfunctionology. Academic Press, 1990.

[YHR01] K. Yeung, D. Haynor, and W. Ruzzo. Validating clustering for gene
expression data. Bioinformatics, 17(4):309–318, 2001.

[YI98] J. R. Yates III. Database searching using mass spectrometry data. Elec-

trophoresis, 19(6):893–900, 1998.

[YIEM95] J. R. Yates III, J. K. Eng, and A. L. McCormack. Mining genomes:
Correlating tandem mass-spectra of modified and unmodified peptides
to sequences in nucleotide databases. Anal. Chem., 67(18):3202–3210,
1995.

130

Bibliography

[YIEMS95] J. R. Yates III, J. K. Eng, A. L. McCormack, and D. Schieltz. Method to
correlate tandem mass spectra of modified peptides to amino acid se-
quences in the protein database. Anal. Chem., 67(8):1426–1436, 1995.

[Zim03] J. Zimmermann. Suitability Comparison of String Distance Measures
for EST Clustering. Master’s thesis, ETH Zurich, Dept. of Computer
Science, Sept. 2003.

[ZLH04] J. Zimmermann, Zs. Lipták, and S. Hazelhurst. A method for evaluating
the quality of string dissimilarity measures and clustering algorithms
for EST clustering. In Proc. of IEEE Fourth Symposium on Bioinformatics

and Bioengineering (BIBE’04), pages 301–309, 2004.

131

Bibliography

132

Appendix: List of Publications

Publications in Refereed Journals

• Nikhil Bansal, Mark Cieliebak, and Zsuzsanna Lipták: Finding Submasses in
Weighted Strings with Fast Fourier Transform. Discrete Applied Mathematics,
Special Issue on Computational Biology, to appear.

• Jonas Grossmann, Franz Felix Roos, Mark Cieliebak, Riko Jacob, Zsuzsanna
Lipták, Lucas K. Mathis, Matthias Müller, Peter Widmayer, Wilhelm Gruis-
sem, and Sacha Baginsky: AuDeNS - A tool for automated peptide de novo
sequencing. Journal of Proteome Research, to appear.

• Mark Cieliebak, Thomas Erlebach, Zsuzsanna Lipták, Jens Stoye, and Emo
Welzl: Algorithmic Complexity of Protein Identification: Combinatorics of
Weighted Strings. Discete Applied Mathematics, Special Issue on Combina-
torics of Searching, Sorting, and Coding, Vol. 137/1: 27-46 (2004).

Publications in Refereed Conference Proceedings

• Sebastian Böcker and Zsuzsanna Lipták: The Money Changing Problem re-
visited: Computing the Frobenius number in time O(ka1). Proceedings of
the Eleventh International Computing and Combinatorics Conference (CO-
COON’05): 965-974 (2005).

• Sebastian Böcker and Zsuzsanna Lipták: Efficient Mass Decomposition. Pro-
ceedings of the ACM Symposium on Applied Computing (ACM-SAC’05): 151-
157 (2005).

• Nikhil Bansal, Mark Cieliebak, and Zsuzsanna Lipták: Efficient Algorithms for
Finding Submasses in Weighted Strings. Proceedings of the Fifteenth Annual
Combinatorial Pattern Matching Symposium (CPM’04): 194-204 (2004).

• Judith Zimmermann, Zsuzsanna Lipták, and Scott Hazelhurst: A Method for
Evaluating the Quality of String Dissimilarity Measures and Clustering Algo-
rithms for EST Clustering. Proceedings of IEEE Fourth Symposium on Bioin-
formatics and Bioengineering (BIBE’04): 301-309 (2004).

• Mark Cieliebak, Thomas Erlebach, Zsuzsanna Lipták, Jens Stoye, and Emo
Welzl: Algorithmic Complexity of Protein Identification: Searching in Weighted
Strings. Proceedings of the 2nd IFIP International Conference on Theoretical
Computer Science (TCS’02): 143-156 (2002).

133

Bibliography

• Zsuzsanna Lipták and Arfst Nickelsen: Broadcasting in Complete Networks
with Dynamic Edge Faults. Proceedings of the 4th International Conference
on Principles of Distributed Systems (OPODIS’00), Studia Informatica Univer-
salis: 123-142 (2000).

Technical Reports

• Sebastian Böcker and Zsuzsanna Lipták: The Money Changing Problem revis-
ited: Computing the Frobenius number in time O(ka1). Technical Report no.
2004-02, Technical Faculty, Bielefeld University (June 2004).

• Scott Hazelhurst, Zsuzsanna Lipták, Judith Zimmermann: A Comparative
Study of Biological Distances for EST Clustering. Technical Report TR-Wits-
CS-2003-3, School of Computer Science, University of the Witwatersrand, Jo-
hannesburg, South Africa (May 2003).

• Sacha Baginsky, Mark Cieliebak, Wilhelm Gruissem, Torsten Kleffmann, Zsu-
zsanna Lipták, Matthias Müller, Paolo Penna: AuDeNS - A tool for de novo
peptide sequencing. Technical Report no. 383, Dept. of Computer Science,
ETH Zurich (Oct. 2002).

• Mark Cieliebak, Thomas Erlebach, Zsuzsanna Lipták, Jens Stoye, Emo Welzl:
Algorithmic Complexity of Protein Identification: Combinatorics of Weighted
Strings. Technical Report no. 361, Dept. of Computer Science, ETH Zurich
(Aug. 2001).

Posters

• Sebastian Böcker, Michael Kaltenbach, Zsuzsanna Lipták: Algorithms for In-
terpreting Mass Spectrometry Data. German Conference on Bioinformatics
(GCB’04), Bielefeld, Germany (2004).

Diplom Thesis (German Masters)

Zsuzsanna Lipták: Zur algebraischen Charakterisierung regulärer Termspra-
chen (On the Algebraic Characterization of Regular Term Languages, in Ger-
man). Freie Universität Berlin, Fachbereich Mathematik (Dec. 1998).

134

