
RAIRO-Theor. Inf. Appl. 46 (2012) 413–450 Available online at:

DOI: 10.1051/ita/2012012 www.rairo-ita.org

PROBABILISTIC OPERATIONAL SEMANTICS
FOR THE LAMBDA CALCULUS

Ugo Dal Lago
1

and Margherita Zorzi
2

Abstract. Probabilistic operational semantics for a nondeterminis-
tic extension of pure λ-calculus is studied. In this semantics, a term
evaluates to a (finite or infinite) distribution of values. Small-step and
big-step semantics, inductively and coinductively defined, are given.
Moreover, small-step and big-step semantics are shown to produce
identical outcomes, both in call-by-value and in call-by-name. Plotkin’s
CPS translation is extended to accommodate the choice operator and
shown correct with respect to the operational semantics. Finally, the
expressive power of the obtained system is studied: the calculus is
shown to be sound and complete with respect to computable probability
distributions.

Mathematics Subject Classification. 68Q55, 03B70.

1. Introduction

Randomized computation is central to several areas of theoretical computer
science, including computational complexity, cryptography, analysis of computa-
tion dealing with uncertainty, incomplete knowledge agent systems. Some works
have been devoted also to the design and analysis of programming languages
with stochastic aspects. For various reasons, the functional programming paradigm
seems appropriate in this context, because of the very thin gap between the realm
of programs and the underlying probability world.

Keywords and phrases. Lambda calculus, probabilistic computaion, operational semantics.

1 Università di Bologna & EPI FOCUS, Dipartimento di Scienze dell’Informazione Mura
Anteo Zamboni, 7, 40127 Bologna, Italy. dallago@cs.unibo.it
2 Laboratoire d’Informatique L.I.P.N., Université Paris-Nord, supported by ANR Complice
Project, France. margherita.zorzi@univr.it

Article published by EDP Sciences c© EDP Sciences 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/217511512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1051/ita/2012012
http://www.rairo-ita.org
http://www.edpsciences.org


414 U. DAL LAGO AND M. ZORZI

The large majority of the literature on probabilistic functional programming
view probability as a monad, in the sense of Moggi [17,18]. This is the case for the
works by Jones and Plotkin about denotational semantics of probabilistic func-
tional programs [15], or for many of the recently proposed probabilistic functional
programming languages: the stochastic λ-calculus [24] and the λ-calculi by Park
et al. [20, 21]. The monadic structure of probability distributions provides a good
denotational model for the calculi and it makes evident how the mathematical
foundations of probability can be applied directly in a natural way to the seman-
tics of probabilistic programs. This allows, for example, to apply this approach to
the formalization of properties of randomized algorithms in interactive theorem
proving [1]. The monadic approach seems particularly appropriate in applications,
since some programming languages, like Haskell, directly implement monads.

But there is another, more direct, way to endow the λ-calculus with probabilis-
tic choice, namely by enriching it with a binary choice operator ⊕. This way, we
can form terms whose behavior is probabilistically chosen as the one of the first or
of the second argument. It is not clear, however, whether the operational theory
underlying ordinary, deterministic λ-calculus, extends smoothly to this new, prob-
abilistic setting. The aim of this paper is precisely to start an investigation in this
direction. The object of our study will be the nondeterministic λ-calculus, being it
a minimal extension of the ordinary λ-calculus with a choice operator. The subject
of our study, on the other hand, will be the properties of two notions of proba-
bilistic semantics for it, namely call-by-value and call-by-name evaluation. Big-step
and small-step semantics will be defined and proved equivalent, both when defined
inductively and when defined coinductively. CPS translations extending the ones
in the literature are presented and proved to have the usual properties enjoyed
in the deterministic case. Finally, some results about the expressive power of the
obtained calculus are proved.

1.1. Related works

A pioneering investigation in the field of stochastic functional languages is
Probabilistic LCF (PLCF in the following), by Saheb-Djahromi [26]. PLCF is
a typed, higher-order calculus based on Milner’s LCF, Plotkin’s PCF [23] and
Plotkin’s probabilistic domains (further developed by Jones and Plotkin in [15]).
The syntax of PLCF includes two kinds of abstractions which deal separately with
call-by-value and call-by-name evaluation. The author declares the explicit intent
of providing “a foundation for the probabilistic study of the computation” and even
if a number of important aspects are unexplored, the approach is interesting and
related to the present investigation. Saheb-Djahromi provides both denotational
and operational semantics for PLCF. Denotational semantics, defined in terms of
probabilistic domains, is an extension of Milner’s and Plotkin’s one. Operational
semantics is given as a Markov chain, and an equivalence result between the latter
and a denotational model is stated and proved as an extension of Plotkin’s results.



PROBABILISTIC OPERATIONAL SEMANTICS FOR THE LAMBDA CALCULUS 415

In recent years, some λ-calculi with probabilistic features have been introduced,
strongly oriented to applications (e.g. robotics). The most developed approach is
definitely the monadic one [17, 18], based on the idea that probability distribu-
tions form a monad [12, 15]. In [24], Ramsey and Pfeffer introduce the stochastic
λ-calculus, in which the denotation of expressions are distributions and in which
the probability monad is shown to be useful in the evaluation of queries about the
defined probabilistic model. A measure theory and a simple measure language are
introduced and the stochastic λ-calculus is compiled into the measure language.
Moreover, a denotational semantics based upon the monad of probability mea-
sures is defined. In [19], Park defines the typed calculus λγ , an extension of the
typed λ-calculus with an integral abstraction and a sampling construct, which bind
probability and sampling variables respectively. A system of simple types for λγ

is also introduced. The author briefly discusses about the expressive power of λγ :
the calculus has been shown to be able to express the most relevant probability
distributions. λγ does not make use of monads, which are however present in [20],
in which the idea of a calculus based on the mathematical notion of a sampling
function is further developed through the introduction of λ◦. λ◦ is based on the
monad of sampling functions and is able to specify probability distributions over
infinite discrete domains and continuous domains. The authors also develop a new
operational semantics, called horizontal operational semantics. The calculus λ◦ is
further studied and developed in [21].

Nondeterminism and probability, however, can find their place in the λ-calculus
by completely different means. In [7], de’Liguoro and Piperno propose a non
deterministic λ-calculus, called Λ⊕. Λ⊕ is nothing more than the usual, un-
typed, λ-calculus with an additional binary operator ⊕ which represents binary,
nondeterministic choice: M⊕N rewrites to either M or N . The authors give a stan-
dardization theorem and an algebraic semantics for Λ⊕. The classical definition
of a Böhm tree is extended to the non-deterministic case by means of inductively
defined “approximating operators”. Several relevant properties such as discrim-
inability are studied and, moreover, some suitable models for non-deterministic
λ-calculus are proposed and discussed. In [8], Di Pierro et al. propose an un-
typed λ-calculus with probabilistic choice. Its syntax is itself an extension of pure
λ-calculus with n-ary probabilistic choice in the form

⊕n
i=1 pi : Mi. The main

objective, however, is showing how probabilistic abstract interpretation can be ex-
ploited in the context of static analysis of probabilistic programs even in presence
of higher-order functions. This is reflected by its operational semantics, which is
more directed to program analysis (when two terms can be considered equivalent)
than to computation (what is the value obtained by evaluating a program? how
can we compute it?). Our choice here consists in endowing Λ⊕ with a probabilistic
operational semantics. This has the advantage of simplicity, since the language
is a minimal extension of the well-known pure λ-calculus. This does not mean,
however, that the expressive power of Λ⊕ is low. As showed in Section 8, all com-
putable probabilistic distributions can be represented in our language, which is
expressive at least as systems designed for more practical issue (such as [19]).



416 U. DAL LAGO AND M. ZORZI

1.2. Outline

After some motivating observations about the interplay between rewriting and
nondeterministic choice (Sect. 2), the calculus Λ⊕ and its call-by-value proba-
bilistic operational semantics are introduced (Sects. 4 and 5, respectively). Both
small-step and big-step semantics are defined and their equivalence is proved in
detail. Remarkably, the result holds even when operational semantics is formulated
coinductively. The same results hold for call-by-name evaluation and are briefly
described in Section 6. Call-by-value and call-by-name can be shown to be able to
simulate each other by slight modifications of the well-known CPS translations [22],
described in Section 7. The paper ends with a result about the expressive power of
Λ⊕, namely the equivalence between representable and computable distributions.

2. Some motivating observations

λ-calculus can be seen both as an equational theory on λ-terms and as an
abstract model of computation. In the first case, it is natural (and customary) to
allow to apply equations (e.g. β or η equivalences) at any position in the term.
The obtained calculus enjoys confluence, in the form of the so-called Church-Rosser
theorem: equality of terms remains transitive even if equations becomes rewriting
rules, i.e. if they are given with an orientation. More computationally, on the other
hand, the meaning of any λ-term is the value it evaluates to in some strategy
or machine. In this setting, abstractions are often considered as values, meaning
that reduction cannot take place in the scope of a λ-abstraction. What’s obtained
this way is a calculus with weak reduction which is not confluent in the Church-
Rosser sense. As an example, take the term (λx.λy.x)((λz.z)(λz.z)). In call-by-
value, it reduces to λy.(λz.z). In call-by-name, it reduces to λy.(λz.z)(λz.z). A
beautiful operational theory has developed since Plotkin’s pioneering work [22].
Call-by-value and call-by-name have been shown to be dual to each other [2], and
continuation-based translations allowing to simulate one style with the other have
been designed and analyzed very carefully [4, 5].

Now, suppose to endow the λ-calculus with nondeterministic sums. Suppose, in
other words, to introduce a binary infix term operator ⊕ such that M ⊕ N can
act either as M or N in a nondeterministic flavor. What we obtain is the so-called
nondeterministic lambda-calculus, which has been introduced and studied in [7].
We cannot hope to get any confluence results in this setting (at least if we stick
to reduction as a binary relation on terms): a term like M = M� ⊕ M⊥. (where
M� = λx.λy.x and M⊥ = λx.λy.y are the usual representation of truth values
in the λ-calculus) reduces to two distinct values (which are different in a very
strong sense) in any strategy. The meaning of any λ-term, here, is a set of values
accounting for all the possible outcomes. The meaning of M , as an example, is the
set {M�, M⊥}. Nontermination, mixed with nondeterministic choice, implies that
the meaning of terms can even be an infinite set of values. As an example, take



PROBABILISTIC OPERATIONAL SEMANTICS FOR THE LAMBDA CALCULUS 417

the λ-term
(Y (λx.λy.(y ⊕ x(Msuccy))))V0

where Y is a fixed-point combinator, Vn represents the natural number n ∈ N and
Msucc computes the successor. Evaluating it (e.g. in call-by-value) produces the
infinite set

{V0, V1, V2, . . .}.
It’s clear that ordinary ways to give an operational semantics to the λ-calculus
(e.g. a finitary, inductively defined, formal system) do not suffice here, since they
intrinsically attribute a finitary meaning to terms. So, how can we define small-step
and big-step semantics in a nondeterministic setting?

Another problematic point is confluence. The situation is even worse than in
ordinary, deterministic, λ-calculus. Take the following term [26,28]:

M = (λx.Mxorxx)(M� ⊕ M⊥)

where Mxor = λx.λy.(x(λz.zM⊥M�)(λz.zM�M⊥))y is a term computing a par-
ity function of the two bits in input. When reducing it call-by-value, we obtain
the outcome {M⊥}, while reducing it call-by-name, we obtain {M�, M⊥}. This
phenomenon is due to the interaction between nondeterministic choice and copy-
ing: in call-by-value we choose before copying, and the final result can only be of a
certain form. In call-by-name, we copy before choosing, getting distinct outcomes.
What happens to CPS translations in this setting? Is it still possible to define
them?

The aim of this paper is precisely to give answers to the questions above. Or,
better, to give answers to their natural, quantitative generalizations obtained by
considering ⊕ as an operator producing any of two possible outcomes with identical
probability.

3. A brief introduction to coinduction

The coinduction principle is a definitional principle dual to induction, which
supports a proof principle. It is a very useful instrument for reasoning about di-
verging computations and unbounded structures. Coinductive techniques are not
yet as popular as inductive techniques; for this reason, in this section we give a
short introduction to coinduction, following [13, 16]. A nice introduction to coin-
duction can be found, e.g., in [27].

Inductive and coinductive definitions are given here by interpretating sets of
rules. Let U be a set of judgements.

Definition 3.1 (inference system). An inference rule is a pair (A, c), where c ∈ U
is the conclusion of the rule and A ⊆ U is the set of its premises or antecedents.
An inference system Φ over U is a set of inference rules over U .



418 U. DAL LAGO AND M. ZORZI

The usual way to give meaning to an inference system Φ is to consider fixed points
of the associated inference operator:

Definition 3.2 (operator induced by an inference system Φ). If Φ is an inference
system over U , we define the operator FΦ : ℘(U) → ℘(U) as

FΦ(A) = {c ∈ U | ∃B ⊆ A such that (B, c) ∈ Φ}.

In other words, FΦ(A) is the set of judgments that can be inferred in one step
from the judgments in A by using the inference rules. The following definitions are
the main ingredients for the inductive and coinductive proof principles:

Definition 3.3 (closed and consistent sets). If Φ is a set of inference rules over
U , then:
• A set A ⊆ U is said to be (FΦ-)closed if FΦ(A) ⊆ A.
• A set A ⊆ U is said to be (FΦ-)consistent if A ⊆ FΦ(A).

Intuitively, a closed set A is a set such that no new judgments can be inferred from
A and a consistent set A is a set such that all judgments that cannot be inferred
from A are not in A.

It is quite easy to prove that the inference operator is monotone, i.e. if A ⊆ B,
then FΦ(A) ⊆ FΦ(B). By Tarski’s fixed point theorem for complete lattices (taking
here the complete lattice (℘(U),⊆,

⋃
,
⋂

)), it follows that the inference operator
possesses both a least fixed point and a greatest fixed point, which are the smallest
closed set and the largest consistent set, respectively:

lfp(FΦ) =
⋂

{A | FΦ(A) ⊆ A};
gfp(FΦ) =

⋃
{A | A ⊆ FΦ(A)}.

The least fixed point lfp(FΦ) is the inductive interpretation of the inference system
Φ, and the greatest fixed point gfp(FΦ) is its coinductive interpretation. These
interpretations lead to the following two proof principles:
• Induction principle: to prove that all judgments in the inductive interpreta-

tion belong to a set A, show that A is FΦ-closed.
• Coinduction principle: to prove that all judgments in a set A belong to

the coinductive interpretation, show that A is FΦ-consistent. Indeed, if A is
FΦ-consistent, then

A ⊆ FΦ(A) =⇒ A ∈ {B | B ⊆ FΦ(B)}
=⇒ A ⊆

⋃
{B | B ⊆ FΦ(B)} = gfp(FΦ).

We conclude this section with two examples:

Example 3.4 (finite and infinite trees). Let us consider all those (finite and
infinite) trees whose nodes are labelled with a symbol from the alphabet {◦, •}.



PROBABILISTIC OPERATIONAL SEMANTICS FOR THE LAMBDA CALCULUS 419

Examples of finite trees are

◦〈•, ◦〉
•〈◦〈◦, •〉, •〈◦, •〉, ◦〉

•

while an example of an infinite tree is the (unique) tree t such that t = ◦〈t, t, t〉.
Let U the set of judgments in the form t ⇓, where t is a possibly infinite tree as
above. Moreover, let Φ be the inference system composed by all the instances of
the four rules below:

• ⇓ ◦ ⇓
t1 ⇓, . . . , tn ⇓
•〈t1, . . . , tn〉 ⇓

t1 ⇓, . . . , tn ⇓
◦〈t1, . . . , tn〉 ⇓

·

Let us define FΦ : ℘(U) → (U) as

FΦ(A) = {• ⇓} ∪ {◦ ⇓} ∪ {•〈t1, . . . , tn〉 ⇓ | t1 ⇓ ∈ A, . . . , tn ⇓ ∈ A} ∪
{◦〈t1, . . . , tn〉 ⇓ | t1 ⇓ ∈ A, . . . , tn ⇓ ∈ A}.

for each A ∈ U . The inductive interpretation of Φ, lfp(FΦ), contains all judgements
t ⇓ where t is finite tree, while its coinductive interpretation, gfp(FΦ), contains
also all judgments t ⇓ where t is infinite.

Example 3.5 (binary streams). Another example of a coinductively defined set
is the set of all binary streams {0, 1}ω [11, 25]. Let Rω = {σ | σ : N → R} be the
set of all real streams. In this example, judgements are in the form σ ⇓, where σ is
a real stream. We give now an inference system whose coinductive interpretation
by means of the associated operator yields the set {0, 1}ω. First, let us define two
functions on Rω: hd : Rω → R defined as hd(σ) = σ(0), and tl : Rω → Rω defined
as tl(σ) = ρ where ρ(n) = σ(n + 1) for every n. Let Φ be the inference system
consisting of (all the instances of) the two rules below:

hd(σ) = 0 tl(σ) ⇓
σ ⇓

hd(σ) = 1 tl(σ) ⇓
σ ⇓

Φ induces the monotone operator FΦ : ℘(Rω) → ℘(Rω) defined as

FΦ(A) = {σ ⇓ | hd(σ) = 0 and tl(σ) ⇓ ∈ A} ∪
{σ ⇓ | hd(σ) = 1 and tl(σ) ⇓ ∈ A}

for each set A ∈ ℘(Rω). FΦ(A) is the set of judgments that can be inferred in one
step from the judgments in A by using the inference rules. The coinductive inter-
pretation of FΦ gives the set we are looking for, namely the set of all judgements
σ ⇓, where σ is an infinite sequence of 0 and 1.



420 U. DAL LAGO AND M. ZORZI

4. Syntax and preliminary definitions

In this section we introduce the syntax of Λ⊕, a language of λ-terms with
binary choice introduced by de’Liguoro and Piperno [7]. This is the language whose
probabilistic semantics is the main topic of this paper.

The most important syntactic category is certainly those of terms. Actually,
Λ⊕ is nothing more than the usual untyped and pure λ-calculus, endowed with a
binary choice operator ⊕ which is meant to represent nondeterministic choice.

Definition 4.1 (terms). Let X = {x, y, . . .} be a denumerable set of variables.
The set Λ⊕ of term expressions, or terms is the smallest set such that:
1. if x ∈ X then x ∈ Λ⊕;
2. if x ∈ X and M ∈ Λ⊕, then λx.M ∈ Λ⊕;
3. if M, N ∈ Λ⊕ then MN ∈ Λ⊕;
4. if M, N ∈ Λ⊕ then M ⊕ N ∈ Λ⊕.
Terms are ranged over by metavariables like M, N, L.

Terms, as usual, are considered modulo renaming of bound variables. The set of
free variables of a term M is indicated as FV(M) and is defined as usual. A term
M is closed if FV(M) = ∅. The (capture-avoiding) substitution of N for the free
occurrences of x in M is denoted M{x/N}. Unless otherwise stated, all results
in this paper hold only for programs, that is to say for closed terms. Values are
defined in a standard way:

Definition 4.2 (values). A term is a value if it is a variable or a λ-abstraction.
We will call Val the set of all values. Values are ranged over by metavariables like
V, W, X .

The reduction relation → considered in [7] is obtained by extending usual β-
reduction with two new reduction rules, namely M ⊕ N → M and M ⊕ N → N ,
which can be applied in every possible context. In this paper, following Plotkin [22],
we concentrate on weak reduction: computation can only take place in applicative
(or choice) contexts.

Notation 4.3. In the following, we sometimes need to work with finite sequences
of terms. A sequence M1, . . . , Mn is denoted as M . This notation can be used
to denote sequences obtained from other sequences and terms, e.g., M ⊕ N is
M ⊕ N1, . . . , M ⊕ Nn whenever N is N1, . . . , Nn.

4.1. Distributions

In the probabilistic semantics we will endow Λ⊕ with, a program reduces not to
a single value but rather to a distribution of possible observables, i.e. to a function
assigning a probability to any value. This way, all possible outputs of all binary
choices are taken into account, each with its own probability. Divergence is indeed
a possibility in the untyped setting and our definition reflects it.



PROBABILISTIC OPERATIONAL SEMANTICS FOR THE LAMBDA CALCULUS 421

Definition 4.4 (distributions).
1. A probability distribution is a function D :Val → R[0,1] such that∑

V ∈Val D(V ) ≤ 1. P denotes the set of all probability distributions.
2. A proper probability distribution is a probability distribution such that∑

V ∈Val

D(V ) = 1.

3. Given a probability distribution D , its support S(D) is the subset of Val whose
elements are values to which D attributes positive probability.

4. Given a probability distribution D , its sum
∑

D is simply
∑

V ∈Val D(V ).

The notion of a probability distribution as we gave it is general enough to capture
the semantics of those terms which have some nonnull probability of divergence. We
use the expression {V p1

1 , . . . , V pk

k } to denote the probability distribution D with
finite support defined as D(V ) =

∑
Vi=V pi. Please observe that

∑
D =

∑k
i=1 pi.

Sometimes we need to compare distinct distributions. The natural way to do that
is just by lifting the canonical order on R up to distributions, pointwise:

Definition 4.5. D ≤ E iff D(V ) ≤ E (V ) for every value V .

The structure (P ,≤) is a partial order, but not a lattice [6]: the join of two dis-
tributions D and E does not necessarily exist in P . However, (P ,≤) is a complete
meet-semilattice, since meets are always guaranteed to exist: for every A ⊆ P , the
greatest lower bound of distributions in A is itself a distribution. The least upper
bound of A ⊆ P , on the other hand, is indeed a distribution when A is a ω-chain.
This turns (P ,≤) into a ω-complete partial order, for which

∑
(·) (as a function

from distributions to [0, 1]) is continuous. Finally, please observe that all functions
from Val to R∞ actually form a complete lattice. And that

∑
(·) as a function

from those functions to R∞ is a complete lattice homomorphism.

5. Call-by-value

In this section, four ways to give a probabilistic semantics to Λ⊕ are introduced,
all of them following the so-called call-by-value discipline. All the relational sym-
bols introduced in this section are summarized for the reader’s convenience in
Table 1.

A (weak) call-by-value notion of reduction can be obtained from ordinary re-
duction by restricting it in such a way that only values are passed to functions.
Accordingly, choices are only made when both alternatives are themselves values:

Definition 5.1 (call-by-value reduction). Leftmost reduction �→v is the least
binary relation between Λ⊕ and Λ∗⊕ such that:

(λx.M)V �→v M{x/V }; V ⊕ W �→v V, W ;

MN �→v LN if M �→v L; M ⊕ N �→v L ⊕ N if M �→v L;

V M �→v V N if M �→v N ; V ⊕ M �→v V ⊕ N if M �→v N ;

where V, W ∈ Val.



422 U. DAL LAGO AND M. ZORZI

Table 1. Call-by-value probabilistic semantics: symbols.

Symbol Description

�→v Leftmost reduction
(Sect. 5, Def. 5.1)

⇒IV Inductive small-step semantics relation
(Sect. 5.1.1)

⇒CV Coinductive small-step semantics relation
(Sect. 5.1.3)

⇒∞ Coinductive small-step semantics relation for divergence
(Sect. 5.1.2)

⇓IV Inductive big-step semantics relation
(Sect. 5.2)

⇓CV Coinductive big-step semantics relation
(Sect. 5.2)

SIV(M) Inductive small-step semantics of M
(Sect. 5.1.1, Def. 5.3)

SCV(M) Coinductive small-step semantics of M
(Sect. 5.1.3)

DCV(M) Coinductive small-step semantics of divergence for M
(Sect. 5.1.2)

BIV(M) Inductive big-step semantics of M
(Sect. 5.2, Def. 5.7)

BCV(M) Coinductive big-step semantics of M
(Sect. 5.2)

Please, notice that reduction is not probabilistic. In fact, reduction is a relation
between terms and unlabeled sequences of terms without any reference to proba-
bility. Informally, if M �→v N1 . . . Nn means that M rewrites in one step to every
Ni with the same probability 1/n. Clearly, n ∈ {1, 2} whenever M �→v N1 . . . Nn.
Notice again how the evaluation of both branches of a binary choice is done before
performing the choice itself. One the one hand, this is very much in the style of
call-by-value evaluation. On the other, a more standard notion of choice, which is
performed before evaluating the branches can be easily encoded as follows:

M + N = ((λx.λy.x) ⊕ (λx.λy.y))(λz.M)(λz.N)(λw.w),

where z does not appear free in M nor in N .

5.1. CbV small-step semantics

Following the general methodology described in [16], we model separately
convergence and divergence. Finite computations are, as usual, inductively defined,



PROBABILISTIC OPERATIONAL SEMANTICS FOR THE LAMBDA CALCULUS 423

while divergence can be captured by interpreting a different set of rules coinduc-
tively. Both definitions give some quantitative information about the dynamics of
any term M : either a distribution of possible outcomes is associated to M , or the
probability of divergence of M is derived. Both induction and coinduction can be
used to characterize the distribution of values a term evaluates to. In an inductive
characterization, one is allowed to underapproximate the target distribution, but
then takes an upper bound of all the approximations. In a coinductive character-
ization, on the other hand, one can naturally overapproximate the distribution,
and take a lower bound.

5.1.1. Inductive CbV small-step semantics for convergence
A small-step semantics for convergence is captured here by way of a binary

relation ⇒IV between terms in Λ⊕ and distributions. The relation ⇒IV is defined
as the inductive interpretation of the inference system whose rules follow:

seIV
M ⇒IV ∅

svIV
V ⇒IV {V 1}

M �→v N Ni ⇒IV Di
smIV·

M ⇒IV

n∑
i=1

1
n

Di

As usual, N stands for the sequence N1, . . .Nn. Since the relation ⇒IV is induc-
tively defined, any proof of judgments involving ⇒IV is a finite object. If π is such
a proof for M ⇒IV D , we write π : M ⇒IV D . The proof π is said to be structurally
smaller or equal to another proof ρ if the number of rule instances in π is smaller
or equal to the number of rule instances in ρ. In this case, we write π � ρ.

First of all, observe that ⇒IV is not a function: many different distributions
can be put in correspondence with the same term M . Moreover, there is one
distribution D such that M ⇒IV D always holds, independently on M , namely ∅.
Actually, rule seIV allows you to “give up” while looking for a distribution for M
and conclude that M is in relation with ∅. In other words, ⇒IV is not meant to be
a way to attribute one distribution to every term, but rather to find all finitary
approximants of the (unique) distribution we are looking for (see Def. 5.3).

The set of the distributions a term evaluates to is a directed set:

Lemma 5.2. For every term M , if M ⇒IV D and M ⇒IV E , then there exists a
distribution F such that M ⇒IV F with D ≤ F and E ≤ F .

Proof. By induction on the structure of derivations for M ⇒IV D .
• If M ⇒IV ∅ then F = E ;
• If M ⇒IV {V 1} we have that E = ∅, or E = {V 1}, then F = D ;
• If M ⇒IV N1, . . . , Nk and Ni ⇒IV Di for i = 1, . . . , k, there are some cases:

• If E = ∅, then F = D ;
• If E > ∅, then E =

∑k
i=1

1
kEi, where Ni ⇒IV Ei for i = 1, . . . , k. Now, by

inductive hypothesis, there exist distributions Fi such that Ni ⇒IV Fi and
Di, Ei ≤ Fi for i = 1, . . . , k. We have F =

∑k
i=1

1
kFi, and by definition

D ≤ F and E ≤ F .
This concludes the proof. �



424 U. DAL LAGO AND M. ZORZI

We are now ready to define what the small-step semantics of any term is:

Definition 5.3. The (call-by-value) small-step semantics of a λ-term M ∈ Λ⊕ is
the distribution SIV(M) defined as supM⇒IVD D .

Please observe that SIV(M) is always guaranteed to exist, because distributions
form an ω-complete partial order and the set of those distributions such that
M ⇒IV D is a denumerable directed set, by Lemma 5.2.

Example 5.4. The term (λx.x)(λx.x) evaluates to F = ∅, by means of rules seIV,
and to E = {λx.x1}, by means of rules smIV and svIV. By definition, SIV(M) = E .

5.1.2. Coinductive CbV small-step semantics for divergence

Divergence is captured by another, coinductively defined binary relation ⇒∞

between Λ⊕ and R[0,1]. Rules defining the underlying inference systems are those
obtained from

===== dvv
V ⇒∞

0

M �→v N Ni ⇒∞
pi=============== dmv

M ⇒∞∑n
i=1

1
n pi

where N is N1, . . . Nn.
The relation ⇒∞ deals naturally with infinite computations, being defined coin-

ductively. This allows to derive the divergence probability p of a term in Λ⊕. Rules
dvv and dmv can be read as follows: values diverge with probability 0, while prob-
ability of divergence for a term M is equal to the normalized sum of its reducts’
probabilities of divergence. The following example stresses a crucial point:

Example 5.5. Let us consider the well-known diverging term Ω = ΔΔ, where
Δ = λx.xx. We would like to be able to prove that Ω ⇒∞

1 , namely that Ω
diverges with probability 1. Doing that formally requires proving that some sets
of judgments A including Ω ⇒∞

1 is consistent with respect to ⇒∞. Actually, we
can choose A as {Ω ⇒∞

1 }, since Ω ⇒∞
1 can be easily derived from itself by rule

dmv. The trouble is that in the same way we can derive Ω ⇒∞
p for every possible

0 ≤ p ≤ 1. So, in a sense, ⇒∞ is inconsistent.

Example 5.5 shows that not all probabilities attributed to terms via ⇒∞ are
accurate. Actually, a good definition consists in taking the divergence probability
of any term M , DCV(M) simply as supM⇒∞

p
p. As an example, DCV(Ω) = 1, since

M ⇒∞
1 and, clearly, one cannot go beyond 1.

5.1.3. Coinductive CbV small-step semantics for convergence

If one takes the inductive semantics from Section 5.1.1, drops seIV and interpret
everything coinductively, what came out is an alternative semantics for conver-
gence:

========== svCV
V ⇒CV {V 1}

M �→v N Ni ⇒CV Di
================== smCV·

M ⇒CV

n∑
i=1

1
n

Di



PROBABILISTIC OPERATIONAL SEMANTICS FOR THE LAMBDA CALCULUS 425

Interpreting everything coinductively has the effect of allowing infinite computa-
tions to be modeled. But this allows to “promise” to reach a certain distribution
without really being able to fulfil this:

Example 5.6. Consider again Ω. One would like to be able to prove that
Ω ⇒CV ∅. Unfortunately, the coinductive interpretation of the formal system above
contains Ω ⇒CV D for every distribution D , as can be easily verified.

The solution to the problem highlighted by the example above is just defining
the coinductive semantics of any term M just as SCV(M) = infM⇒CVD D . Clearly,
SCV(Ω) = ∅. Observe that SCV(M) is guaranteed to exist because (P ,≤) is a
meet-semilattice.

5.2. CbV big-step semantics

An alternative style to give semantics to programming languages is the so-called
big-step semantics. Big-step semantics is more compositional than small-step: the
meaning of a term can be obtained from the meanings of its sub-terms.

Probabilistic big step semantics for Λ⊕ can be given by a binary relation ⇓CV

between Λ⊕ and distributions. It is the coinductive interpretation of (all instances
of) the following rules:

M ⇓CV D N ⇓CV E {P{x/V } ⇓CV FP,V }λx.P∈S(D),V ∈S(E )
=============================================== bav

MN ⇓CV

∑
λx.P∈S(D),V ∈S(E )

D(λx.P ) · E (V ) · FP,V

========= bvv
V ⇓CV {V 1}

M ⇓CV D N ⇓CV E
=============================== bsv·
M ⊕ N ⇓CV

1
2
· D ·

∑
E +

1
2
· E ·

∑
D

The most interesting rule is definitely bav: to give semantics to an application
MN , we first give semantics to M and N , obtaining two distributions D and E ,
respectively. Then, for every λx.P in S(D) and for every V in S(E ), we evaluate
P{x/V }, obtaining some distributions FP,V . The meaning of MN is nothing more
that the sum of all such distributions FP,V , each weighted by the probability of
getting λx.P and V in D and E , respectively. This way of defining the big-step
semantics of applications can be made simpler, at the price of making the task
of deriving semantic assertions harder, by replacing the premise {P{x/V } ⇓CV

FP,V }λx.P∈S(D),V ∈S(E ) of rule bav with {P{x/V } ⇓CV FP,V }P∈Λ⊕,V ∈Val.

Another interesting rule is bsv. Please observe how the distributions D and E
must be normalized by

∑
E and

∑
D (respectively) when computing the result.



426 U. DAL LAGO AND M. ZORZI

This reflects call-by-value evaluation: if any of M and N diverges, their sum must
diverge, too.

Like ⇒IV and ⇒CV, the relation ⇓CV is not a function: many possible distri-
butions can be assigned to the same term M , in particular when M (possibly)
diverges. In particular, distributions which somehow overapproximate the “real
one” can always be attributed to M by the rules above. Thus, we define the big-
step semantics of each λ-term in the following way:

Definition 5.7. The (call-by-value) coinductive big-step semantics of a λ-term
M ∈ Λ⊕ is the distribution BCV(M) defined as infM⇓CVD D .

Example 5.8. Let us consider again Ω, from Example 5.5. As it can be verified,
Ω ⇓CV D for all possible distributions D . To formally prove that, we need to
find a consistent set A (with respect to ⇓CV) containing all judgments in the form
Ω ⇓CV D . A is actually the set

{Δ ⇓CV {Δ1}} ∪ {Ω ⇓CV D | D : Val → R[0,1]}.
Clearly, A is consistent, since any judgment in A can be obtained from other
judgments in A in one deduction step:
• Δ ⇓CV {Δ1} by rule bvv.
• From Δ ⇓CV {Δ1} and Ω ⇓CV D , one can easily derive Ω ⇓CV D by rule bav.

As a consequence, BCV(Ω) = infΩ⇓CVD D = ∅.
One may wonder whether an inductive big step semantics can be defined for

Λ⊕. The answer is positive: one only needs to add a rule attributing the empty
distribution to any terms, in the spirit of the small-step inductive semantics from
Section 5.1.1. In other words, we obtain the system

M ⇓CV D N ⇓IV E {P{x/V } ⇓IV FP,V }λx.P∈S(D),V ∈S(E )
baIV

MN ⇓IV

∑
λx.P∈S(D),V ∈S(E )

D(λx.P ) · E (V ) · FP,V

bvIV
M ⇓CV {∅} bvIV

V ⇓IV {V 1}
M ⇓IV D N ⇓IV E

bsIV.

M ⊕ N ⇓IV
1
2
· D ·

∑
E +

1
2
· E ·

∑
D

As can be expected, the inductive big step semantics BIV(M) of an term M is
simply supM⇓IVD . This is similar to the semantics considered by Jones [14].

In Table 1 we summarize the most important symbols introduced and defined
in the previous sections for the call-by-value probabilistic semantics.

5.3. Divergence and convergence in CbV small-step semantics

In the last two sections, various operational semantics for both convergence and
divergence have been introduced. Clearly, one would like them to be essentially
equivalent, i.e., one would like them to attribute the same meaning to programs.



PROBABILISTIC OPERATIONAL SEMANTICS FOR THE LAMBDA CALCULUS 427

In this section, divergence and convergence small-step semantics will be com-
pared and proved equivalent: the probability of divergence DCV(M) of M obtained
through ⇒∞ will be proved to be equal to 1 −∑SIV(M). In Section 5.4 small-
step and big-step semantics for convergence will be proved to produce identical
outcomes.

The first step consists in proving that 1−∑SIV(M) is a lower bound to diver-
gence probability of any term M .

Theorem 5.9. For every term M , M ⇒∞
1−∑ SIV(M).

Proof. We can prove that all judgments M ⇒∞
1−∑ SIV(M) belong to the coinductive

interpretation of the underlying formal system Φ. To do that, we need to prove
that the set A of all these judgements is consistent, i.e. that A ⊆ FΦ(A). This
amounts to show that if c ∈ A, then there is a derivation for c whose immediate
premises are themselves in A. Let’s distinguish two cases:
• If M is a value V , then M ⇒∞

0 and SIV(M) = {V 1}. The thesis easily follows.
• If M is not a value, then M �→v N , with N = N1, . . . , Nn. Now, consider the

judgements Ni ⇒∞
1−∑ SIV(Ni)

, with i ∈ [1, n]: they are all in the set A. Finally,
consider the judgement M ⇒∞∑n

i=1
1
n (1−∑ SIV(Ni))

: it is in FΦ(A) because of the
presence of rule dmv:

M �→v N Ni ⇒∞
pi=============== dmv

M ⇒∞∑
n
i=1

1
n pi

.

It remains to show that
∑SIV(M) =

∑n
i=1

1
n

∑SIV(Ni):

∑
SIV(M) =

∑
sup

M⇒IVD
D =

∑
sup

Ni⇒IVEi

(
n∑

i=1

1
n

Ei

)

=
∑(

n∑
i=1

1
n

sup
Ni⇒IVEi

Ei

)
=
∑(

n∑
i=1

1
n
SIV(Ni)

)

=
n∑

i=1

1
n

∑
SIV(Ni).

This concludes the proof. �

We need something more, however, namely that summing some divergence prob-
ability and the convergence probability obtained through convergence semantics,
we cannot go beyond 1:

Proposition 5.10. If M ⇒∞
p and M ⇒IV D , then p +

∑
D ≤ 1.



428 U. DAL LAGO AND M. ZORZI

Proof. The proof goes by induction on the structure of the derivation for M ⇒IV

D :
• If the only rule in the derivation is

M ⇒IV ∅
then D = ∅ and

∑
D = 0. As a consequence, p +

∑
D = p ≤ 1 by definition

of the divergence relation.
• If the only rule in the derivation is

V ⇒IV {V 1}

then
∑

D = 1 and M ⇒∞
0 . As a consequence p +

∑
D ≤ 1.

• If the derivation has the form

M �→v N Ni ⇒IV Di

M ⇒IV

n∑
i=1

1
n

Di

then we apply the induction hypothesis on each Ni ⇒IV Di for i ∈ [1, n]. For
each i ∈ [1, n],

∑
Di ≤ 1 − pi, where pi is such that Ni ⇒∞

p1
. Then we have:

∑
D =

∑ n∑
i=1

1
n

Di =
n∑

i=1

1
n

∑
Di

i.h.≤
n∑

i=1

1
n

(1 − pi)

= 1 −
n∑

i=1

1
n

pi = 1 − p.

This concludes the proof. �

Everything can be now glued together as follows, exploiting the density of real
numbers:

Corollary 5.11. For every M , DCV(M) +
∑SIV(M) = 1.

Proof. DCV(M) +
∑SIV(M) ≥ 1 by Theorem 5.9. Suppose, by way of contradic-

tion, that DCV(M)+
∑SIV(M) > 1. This implies M ⇒∞

p where p+
∑SIV(M) > 1.

This, in turn, implies that p+
∑

D > 1 for some M ⇒IV D . And this is not possible
by Proposition 5.10. �

5.4. Relating the various definitions for convergence

Our goal in this section consists in proving that the four distinct definitions for
the semantics of a term in Λ⊕ (inductive and coinductive, big-step and small-step



PROBABILISTIC OPERATIONAL SEMANTICS FOR THE LAMBDA CALCULUS 429

semantics) attribute identical meanings to any term. One possibility could be to
proceed by “proving” three edges of the following diagram:

SIV SCV

BIV BCV

The vertical edges relate two formulations given with identical “inductive flavors”
but differing as to whether they are big-step or small-step. Conversely, horizontal
edges put in correspondence two formulations which are both big-step or small
step, but which differ as to which kind of interpretation is taken over (essentially)
the same set of rules. Horizontal edges are definitely interesting, but vertical ones
are also important. In order to avoid tedious and long (but not necessarily infor-
mative) proofs, we only prove the diagonal edge shown below in this paper:

SIV

��
��

��
��

��
SCV

BIV BCV

This proof shows the difficulties of both “vertical” and “horizontal” edges.
Before embarking in the proof of this result, a brief explanation of the architec-

ture of the proof is useful. Consider any term M , and define two sets of distributions
MS

IV and MB
CV as, respectively, the sets of probability distributions which can be

attributed to M in small-step semantics and big-step semantics:

MS
IV = {D | M ⇒IV D};

MB
CV = {D | M ⇓CV D}.

We proceed in two steps:
• First of all, we prove that big-step semantics dominates small-step semantics,

namely that D ≥ E whenever D ∈ MB
CV and E ∈ MS

IV. This way, we are sure
that BCV(M) ≥ SIV(M). Details are in Section 5.4.1 below.

• Then, we prove that small step semantics can itself be derived using big-step
semantics, namely that SIV(M) ∈ MB

CV. This way, we immediately obtain that
BCV(M) ≤ SIV(M), since BCV(M) is a minorizer of distributions in MB

CV. Details
are in Section 5.4.2.

As a consequence, SIV(M) = BCV(M). Figure 1 illustrates the architecture of the
proof.

5.4.1. Big-step dominates small-step

The fact any distribution obtained through big-step semantics is bigger than
any distribution obtained through small-step semantics can be proved by induction
on the structure of (finite!) derivations for the latter. For that purpose, given any



430 U. DAL LAGO AND M. ZORZI

MS
IV

MB
CV

SIV(M)

Figure 1. The overall picture.

derivation π of a statement in the form M ⇒IV D , its complexity is defined as
follows, by induction on the structure of π:
• If the only rule used to build π is either seIV or svIV, then the complexity of π

is 0;
• If the last rule in π is smIV and the immediate subderivations of π are ρ1, . . . , ρn,

then the complexity of π is defined as 1 + max{c1, . . . , cn}, where ci is the
complexity of ρi for every i ∈ {1, . . . , n}.

Given two derivations π and ρ, we write π � ρ when the complexity of π is smaller
or equal to the complexity of ρ.

Before proceeding, however, it is necessary to prove that whenever M ⇒IV D
and M is, say, a sum N ⊕L, then appropriate judgments N ⇒IV E and L ⇒IV F
can be derived. Similarly for applications. The following lemma formalizes these
ideas and it is a technical tool for Proposition 5.14.

Lemma 5.12. If M ⇒IV D , then at least one of the following hold:
1. D = ∅;
2. M is a value V and D = {V 1};
3. M is an application NL and there are (finite) distributions E and F and for

every λx.P ∈ S(E ) and V ∈ S(F ) a distribution GP,V such that:
1. ρ : N ⇒IV E , ξ : L ⇒IV F and μP,V : P{x/V } ⇒IV GP,V ;
2. ρ, ξ, μP,V ≺ π;
3. D ≤∑λx.P∈S(E ),V ∈S(F) E (λx.P ) · F (V ) · GP,V .

4. M is a sum N ⊕L and there are (finite) distributions E and F where:
1. ρ : N ⇒IV E and ξ : L ⇒IV F ;
2. ρ, ξ ≺ π;
3. D ≤ 1

2 · E · (∑F ) + 1
2 · F · (∑ E ).

Proof. First of all, let us prove the following auxiliary lemma:

Lemma 5.13. If I is finite and nonempty, and πi : M ⇒IV Di for every i ∈ I,
then there is ρ : M ⇒IV supi∈I Di. Moreover ρ � πi for some i ∈ I.

The proof of Lemma 5.13 goes by induction on the structure of the proofs in the
family {πi}i∈I (which can actually be done, since I is finite). Let’s now go back to
Lemma 5.12. This is an induction on derivations for M ⇒IV D . The cases where



PROBABILISTIC OPERATIONAL SEMANTICS FOR THE LAMBDA CALCULUS 431

π is obtained by the rules without premises are trivial. So, we can assume that π
has the form

M �→v Q πi : Qi ⇒IV Di
smIV

M ⇒IV

n∑
i=1

1
n

Di

where Q is Q1, . . . , Qn. Let’s distinguish some cases depending on how the premise
M �→v Q is derived:

• Suppose M = NL and that N �→v R. Then Q = RL. From the induction
hypothesis applied to the derivations πi : RiL ⇒IV Di, we obtain that
• Either all of the Di is ∅. In this case D is itself ∅, and a derivation for

M ⇒IV ∅ can be defined.
• Or there is at least one among the derivation πi to which case 3 applies.

Suppose that k1, . . . , km are the indices in [1, n] to which case 3 can be
applied. This means that for every in i in {1, . . . , m}, there is a distribution
Ei, Fi and for every λx.P ∈ S(Ei) and V ∈ S(Fi) a distribution H i

P i,V i

such that:

ρi : Rki ⇒IV Ei;
ξi : L ⇒IV Fi;

φi
P,V : P{V/x} ⇒IV H i

P,V .

Moreover, ρi, ξi, φ
i
g,h ≺ πt, and

Dki ≤
∑

λx.P ∈S(Ei),V ∈S(Fi)

Ei(P ) · Fi(V ) · H i
P,V .

Now, define E as the distribution

m∑
i=1

1
n

Ei·

Note that S(E ) =
⋃m

i=1 S(Ei). Clearly, a derivation ρ for N ⇒IV E can be
defined such that ρ ≺ π: simply construct it from the derivations ρi and
some derivations for Rj ⇒IV ∅. Moreover, a derivation ξ of L ⇒IV F where
F = supm

i=1 Fi can be defined such that ξ ≺ π: use Lemma 5.13. Observe
that S(F ) =

⋃m
i=1 S(Fi). Similarly, derivations μP,V can be defined for

every λx.P ∈ S(E ) and for every V ∈ S(F ) in such a way that μP,V ≺ π,



432 U. DAL LAGO AND M. ZORZI

μP,V : P{V/x} ⇒IV GP,V and GP,V = supm
i=1 H i

P,V . Now:

D =
n∑

i=1

1
n

Di ≤
m∑

i=1

1
n

Dki

≤
m∑

i=1

1
n

⎛
⎝ ∑

λx.P∈S(Ei),V ∈S(Fi)

Ei(λx.P ) · Fi(V ) · H i
P,V

⎞
⎠

≤
m∑

i=1

1
n

⎛
⎝ ∑

λx.P∈S(E ),V ∈S(F)

Ei(λx.P ) · F (V ) · H i
P,V

⎞
⎠

=
∑

λx.P∈S(E ),V ∈S(F)

m∑
i=1

1
n

(
Ei(λx.P ) · F (V ) · H i

P,V

)

≤
∑

λx.P∈S(Ei),V ∈S(F)

m∑
i=1

1
n

(Ei(λx.P ) · F (V ) · GP,V )

=
∑

λx.P∈S(E ),V ∈S(F)

E (λx.P ) · F (V ) · GP,V .

• Suppose M = NL and that L �→v R. Then Q = NR. This case is very similar
to the previous one. Note that since we reduce in a call by value setting, then
N ∈ Val and by means of small-step semantics rules, N ⇒IV {N1}.

• Suppose M = NL and that we are in presence of a redex, i.e. N is in the form
λx.R and L is a value and L ⇒IV {L1}. Then Q is the unary sequence R{L/x}.
The thesis easily follows by induction, taking π : R{L/x} ⇒IV D as premise,
where D = supR{L/x}⇒IVDk

Dk.
• Suppose M = N ⊕L and that N �→v R. Then Q = R⊕L. From the induction

hypothesis applied to the derivations πi : Ri ⊕ L ⇒IV Di, we have that:
• Either all of the distributions Di is ∅, then D is ∅ itself and a derivation for

M ⇒IV ∅ can be defined.
• Or there is at least one derivation among π to which case 4 applies. Suppose

that k1, . . . , km are the indices in [1, n] to which case 3 can be applied. For
every in i in {1, . . . , m}, there are two distributions Ei and Fi. Moreover,
again by induction hypothesis, we have

ρi : Rki ⇒IV Ei

ξi : L ⇒IV Fi.

Moreover, ρi, ξi ≺ πi and Dki ≤ 1
2 · Ei · (

∑
Fi) + 1

2 · Fi · (
∑

Ei). Let
us define E as the distribution

∑m
i=1

1
nEi and observe that a derivation

ρ : N ⇒IV E such that ρ ≺ π can be defined from the derivation ρi.
Moreover, a derivation ξ : L ⇒IV F can be defined such that ξ ≺ π, taking



PROBABILISTIC OPERATIONAL SEMANTICS FOR THE LAMBDA CALCULUS 433

F = supm
i=1 Fi and applying Lemma 5.13. Finally we have:

D =
m∑

i=1

1
n

Dki

≤
m∑

i=1

1
n

(
1
2
· Ei ·

(∑
Fi

)
+

1
2
· Fi ·

(∑
Ei

))

=
m∑

i=1

1
n

(
1
2
· Ei ·

(∑
Fi

))
+

m∑
i=1

1
n

(
1
2
· Fi ·

(∑
Ei

))

≤
m∑

i=1

1
n

(
1
2
· Ei ·

(∑
F
))

+
m∑

i=1

1
n

(
1
2
· F ·

(∑
Ei

))

=
1
2
·

m∑
i=1

1
n

Ei ·
(∑

F
)

+
1
2
· F ·

(
m∑

i=1

1
n

(∑
Ei

))

=
1
2
·

m∑
i=1

1
n

Ei ·
(∑

F
)

+
1
2
· F ·

(∑(
m∑

i=1

1
n

Ei

))

=
1
2
· E ·

∑
F +

1
2
· F ·

∑
E

where for each i ∈ [1, m],
∑

Fi ≤ ∑
F holds because F is the least upper

bound of the Fi.
• Suppose M = Z ⊕L (Z ∈ Val) and that L �→v R. Then Q = Z ⊕R. Similar to

the previous case.
• Suppose M = V ⊕ W and that M �→v V, W . In this case the subderivations

which we are looking for are π : V ⇒IV D and ρ : W ⇒IV E .
This concludes the proof. �

Now, suppose that M ⇒IV D and M ⇓CV E . Lemma 5.12 provides all what
is needed to “unfold” the hypothesis M ⇒IV D and obtain judgments matching
exactly those coming from M ⇓CV E . We easily get:

Proposition 5.14. If M ⇒IV D and M ⇓CV E , then D ≤ E .

Proof. By induction on the structure of a proof for M ⇒IV D , applying
Lemma 5.12 and doing some case analysis based on its outcome:
• If D = ∅, then D ≤ E trivially.
• If M = V and D = {V 1}, then E = D , because the only rule for values in the

big step semantic is
========= bvv
V ⇓CV {V } .

• If M is an application NL and distributions F , G , HP,V and derivations
ρ, ξ, μP,V exist as in Lemma 5.12, we can observe, by induction hypothesis,
that there exist distributions I and J such that N ⇓CV I , L ⇓CV J
where I ≥ F and J ≥ G . Then we have that S(I ) ⊇ S(F ) and



434 U. DAL LAGO AND M. ZORZI

S(J ) ⊇ S(G ). Now, for every λx.P ∈ S(F ) and V ∈ S(G ), suppose KP,V

is such that P{V/x} ⇓CV KP,V . Again by induction hypothesis, we obtain that
KP,V ≥ HP,V . Finally:

D ≤
∑

λx.P∈S(F),V ∈S(G )

F (λx.P ) · G (V ) · HP,V

≤
∑

λx.P∈S(I ),V ∈S(J )

F (λx.P ) · G (V ) · HP,V

≤
∑

λx.P∈S(I ),V ∈S(J )

I (λx.P ) · J (V ) · KP,V

= E .

• If M is N⊕L, we can proceed exactly as in the previous case. In fact, there exist
distributions F , G and derivations ρ, ξ as in Lemma 5.12, and by induction
hypothesis we can observe that for any distributions I and J such that
N ⇓CV I and L ⇓CV J , I ≥ F and J ≥ G hold.
We can take I such that S(I ) ⊇ S(F ) and I (V ) ≥ F (V ) for each V ∈ S(F ),
and we can take J such that S(J ) ⊇ S(G ) and J (V ) ≥ G (V ) for each
V ∈ S(G ). Then we have:

D ≤ 1
2
· F ·

(∑
G
)

+
1
2
· G ·

(∑
F
)

≤ 1
2
· I ·

(∑
J
)

+
1
2
· J ·

(∑
I
)

= E .

This concludes the proof. �

5.4.2. Small-step is in big-step

Whenever M ⇒IV D and M is not a value, one can always “decompose” D and
find some judgments about the immediate subterms of M . This is Lemma 5.12.
If we want to prove that the small-step semantics SIV(M) of M can be itself
attributed to M in the big-step case, we should somehow prove the converse,
namely that judgments about the immediate subterms of M can be packaged into
an analogous judgment for M :

Lemma 5.15. Let M ∈ Λ⊕ be any term. Then:
1. If M is a value V and M ⇒IV D , then D ≤ {V 1}.
2. If M is an application NL, N ⇒IV E , L ⇒IV F and

{P{V/x} ⇒IV GP,V }λx.P∈S(E ),V ∈S(F),

then there exists a distribution D such that M ⇒IV D and

D ≥
∑

λx.P∈S(E ),V ∈S(F)

E (λx.P ) · F (V ) · GP,V .



PROBABILISTIC OPERATIONAL SEMANTICS FOR THE LAMBDA CALCULUS 435

3. If M is a sum N ⊕ L, N ⇒IV E , L ⇒IV F then there exist a distribution D
such that M ⇒IV D and D ≥ 1

2 · E ·∑F + 1
2 · F ·∑E .

Proof. Let us prove the three statements separately:
1. If M is a value V , then the only possible judgments involving M are M ⇒IV

{V 1} and M ⇒IV ∅. The thesis trivially holds.
2. If M is an application NL, then we prove statement 2 by induction on the

derivations N ⇒IV E and L ⇒IV F . Let’s distinguish some cases:
• If N ⇒IV ∅, then

∑
E (λx.P ) · F (V ) · GP,V = ∅. We derive M ⇒IV ∅ by

means of the rule seIV and the thesis holds.
• If N ⇒IV E �= ∅, suppose that the least rule applied in the derivation is

N �→v R Ri ⇒IV Ei ·
N ⇒IV

n∑
i=1

1
n

Ei

Note that E =
∑n

i=1
1
nEi. It is possible to apply the induction hypoth-

esis on every RiL: if Ri ⇒IV Ei, L ⇒IV F and P{V/x} ⇒IV GP,V

(for λx.P ∈ S(Ei) ⊆ S(E ), V ∈ S(F )) follows that RiL ⇒IV Hi with
Hi ≥ ∑

λx.P∈S(Ei),V ∈S(F) Ei(λx.P )F (V )GP,V . We are able to construct a
derivation D in the following way:

NL �→v RL RiL ⇒IV Hi ·
NL ⇒IV

n∑
i=1

1
n

Hi

And finally we have:

D =
n∑

i=1

1
n

Hi ≥
n∑

i=1

1
n

⎛
⎝ ∑

λx.P∈S(Ei),V ∈S(F)

Ei(λx.P )F (V )GP,V

⎞
⎠

=
n∑

i=1

1
n

⎛
⎝ ∑

λx.P∈S(E ),V ∈S(F)

Ei(λx.P )F (V )GP,V

⎞
⎠

=
∑

λx.P∈S(E ),V ∈S(Fi)

(
n∑

i=1

1
n

(Ei(λx.P )) Fi(V )GP,V

)

=
∑

λx.P∈S(E ),V ∈S(F)

E (λx.P )F (V )GP,V .

• Other cases follows can be handled similarly to the previous one.
3. M is a sum N⊕L. We prove the result by induction on the derivations N ⇒IV E

and L ⇒IV F .



436 U. DAL LAGO AND M. ZORZI

• If N ⇒IV ∅, then 1
2 · ∅ ·∑F + 1

2 · F ·∑ ∅ = ∅. We derive M ⇒IV ∅ by
means of the rule seIV and the thesis holds.

• If N is a value V , the only interesting case is the one in which L is not
a value and also L ⇒IV F with F �= ∅ (in fact if L ⇒IV ∅ we are in the
previous case and if L is a value the proof is trivial). Then M = V ⊕L. Let
us consider the derivation of the judgment L ⇒IV F : the last rule applied
in the derivation is

L �→v R Ri ⇒IV Fi

L ⇒IV

n∑
i=1

1
n

Fi

where F =
∑n

i=1
1
nFi. Observe that M �→v V ⊕ R. We can apply the

induction hypothesis to each L ⇒IV

∑n
i=1

1
nFi and to V ⇒IV {V 1}, and we

obtain

Di ≥ 1
2
· {V 1} ·

∑
Fi +

1
2
· Fi.

We are able to construct a derivation in the following way:

V ⊕ L �→v V ⊕ R V ⊕ Ri ⇒IV Di ·
M ⇒IV

n∑
i=1

1
n

Di

Finally we have:

n∑
i=1

1
n

Di ≥
n∑

i=1

1
n

(
1
2
· {V 1} ·

∑
Fi +

1
2
· Fi

)

=
n∑

i=1

1
n

(
1
2
· {V 1} ·

∑
Fi

)
+

n∑
i=1

1
n

(
1
2
· Fi

)

=
1
2
· {V 1} ·

(∑ n∑
i=1

1
n

Fi

)
+

1
2
·

n∑
i=1

1
n

Fi

=
1
2
· {V 1} ·

(∑
F
)

+
1
2
· F .

• If N ⇒IV E , suppose that the least rule applied in the derivation is

N �→v R Ri ⇒IV Ei ·
N ⇒IV

n∑
i=1

1
n

Ei

Note that E =
∑n

i=1
1
nEi. It is possible to apply the induction hypothesis on

the single Ri ⊕ L; then, if Ri ⇒IV Ei, L ⇒IV F we have that Ri⊕L ⇒IV Di



PROBABILISTIC OPERATIONAL SEMANTICS FOR THE LAMBDA CALCULUS 437

with Di ≥ 1
2 · Ei ·

∑
Fi + 1

2 · Fi ·
∑

Ei. We construct a derivation in the
following way:

N ⊕ L �→v R ⊕ L Ri ⊕ L ⇒IV Di ·
M ⇒IV

n∑
i=1

1
n

Di

Finally we have:

n∑
i=1

1
n

Di ≥
n∑

i=1

1
n

(
1
2
Ei ·

∑
Fi +

1
2
Fi ·

∑
Ei

)

=
n∑

i=1

1
n

(
1
2
Ei ·

∑
Fi

)
+

n∑
i=1

1
n

(
1
2
Fi ·

∑
Ei

)

=
1
2

n∑
i=1

1
n

(
Ei ·

∑
Fi

)
+

1
2

n∑
i=1

1
n

(
Fi ·

∑
Ei

)
=

1
2
E ·
∑

F +
1
2
· F ·

∑
E .

• Other cases are trivial.
This concludes the proof. �

Lemmas 5.12 and 5.15 together allow to prove that the SIV(·) commutes well
with the various constructs of Λ⊕.

Lemma 5.16. For each term M ∈ Λ⊕, then
1. If M is a value V , then SIV(M) = {V 1};
2. If M is an application NL, then

SIV(M) =
∑

λx.P∈S(SIV(N)),V ∈S(SIV(L))

SIV(N)(λx.P ) · SIV(L)(V ) · SIV(P{V/x});

3. If M is a sum N⊕L, then SIV(M) = 1
2 ·SIV(N)·∑SIV(L)+ 1

2 ·SIV(L)·∑SIV(N).

Proof. We will use the following fact throughout the proof:

Fact 5.17. If M �→v N , then supM⇒IVD D = supNi⇒IVDi
(
∑n

i=1
1
nDi).

The inequalities above can be proved separately:
• If M is a value, the thesis follows by small step semantics rules.

Indeed, M ⇒IV ∅.
• For the other cases, the (≤) direction follows from Lemma 5.12 and Fact 5.17;
≥ direction follows from Lemma 5.15 and Fact 5.17.

This concludes the proof. �



438 U. DAL LAGO AND M. ZORZI

The fact SIV(M) can be assigned to M in the big-step semantics is an easy
consequence of Lemma 5.16:

Proposition 5.18. M ⇓CV SIV(M).

Proof. We will prove the thesis by coinduction: we can prove that all judgments
M ⇓CV SIV(M) belong to the coinductive interpretation of the underlying formal
system Φ (in this case, the formal system is Φ = {bvv, bav, bsv}). To do that,
we need to prove that the set A of all those judgments is consistent, i.e., that
A ⊆ FΦ(A). This amounts to show that if c ∈ A, then there is a derivation for c
whose immediate premises are themselves in A. Let’s distinguish some cases:
• If M = V then V ⇓CV {V 1} by bvv rule, and {V 1} = SIV(V ) because of

Lemma 5.16.
• If M is an application NL, take the judgment c = N ⇓CV SIV(N), d = L ⇓CV

SIV(L) and the family of judgments

{P{V/x} ⇓CV SIV(P{V/x})}λx.P∈S(SIV(N)),V ∈S(SIV(L));

we will prove that the judgment NL ⇓CV SIV(NL) can be derived in a single
step from c, d and those in the family above by means of bav rule. Simply
observe that:

N ⇓CV SIV(N) L ⇓CV SIV(L)
{{P{V/x}} ⇓CV SIV({P{V/x}})}λx.P∈S(SIV(N)),V ∈S(SIV(L))

bav
NL ⇓CV

∑
λx.P∈S(SIV(N)),V ∈S(SIV(L))

SIV(N)(λx.P ) · SIV(L)(V ) · SIV(P{V/x}) .

The thesis follows applying Lemma 5.16.
• If M is a sum N ⊕ L, take the judgment c = N ⇓CV SIV(N) and d = M ⇓CV

SIV(L): we will prove that the judgment N ⊕ L ⇓CV SIV(NL) can be inferred
in a single step from c and d by means of bsv rules. Clearly, c and d belong to
A. Moreover:

N ⇓CV SIV(N) L ⇓CV SIV(L)
bsv

N ⊕ L ⇓CV
1
2
· SIV(N) ·

∑
SIV(L) +

1
2
· SIV(L) ·

∑
SIV(N)

and by Lemma 5.16, case 3 we obtain the thesis.
This concludes the proof. �

The equality between big-step and small-step semantics is a corollary of Propo-
sitions 5.14 and 5.18.

Theorem 5.19. BCV(M) = SIV(M).



PROBABILISTIC OPERATIONAL SEMANTICS FOR THE LAMBDA CALCULUS 439

6. Call-by-name

In Section 5 we endowed Λ⊕ with a call-by-value probabilistic operational
semantics and showed that the distribution assigned to any term M is the same
in big-step and in small-step semantics, independently on whether they are de-
fined inductively or coinductively. Actually, the same holds in call-by-name: both
big-step and small-step semantics can be interpreted (co)inductively and proved
equivalent, following the same path used in call-by-value. In this section, we briefly
sketch how this can be done, by defining BCN(M) and SIN(M) and by proving they
are equivalent. We do not give technical lemmas or proofs, which retrace exactly
their call-by-value counterparts. The reader can find a more detailed explanation
(with proof and intermediate results) in [3].

Definition 6.1 (call-by-name reduction). Leftmost reduction �→n is the least bi-
nary relation between Λ⊕ and Λ∗

⊕ such that:

(λx.M)N �→n M{x/N}; MN �→n LN if M �→n L;

M ⊕ N �→n M, N.

Note that, contrarily to call-by-value, in call-by-name it is possible to perform a
choice between terms which are not values.

6.1. Small-step semantics

As for call-by-name, we model separately terminating and non-terminating com-
putations. The rule schema is the same, up to the different reduction relation �→n.
First of all, there is an inductively defined binary relation ⇒IN between Λ⊕ and
distributions. Rules are as follows:

sen
M ⇒IN ∅

svn
V ⇒IN {V 1}

M �→n N Ni ⇒IN Di
smn

M ⇒IN

n∑
i=1

1
n

Di

SIN(M) is the distribution supM⇒IND D . Moreover, there is also another, coin-
ductively interpreted binary relation between Λ⊕ and R[0,1] capturing divergence.
Rules are as follows:

===== dvn
V ⇒∞

0

M �→n N {Ni ⇒∞
pi
}i∈[1,n]

===================== dmn
M ⇒∞∑

n
i=1

1
n pi

DCN(M) is nothing more than supM⇒∞
p

p. Notice how the differences between
call-by-value and call-by-name small-step semantics all come from the reduction
relation, since the rules above are analogous to their call-by-value siblings.

As done in Section 5.1.3 for call-by-value, a conductive version of call-by-name
small step semantics can be easily defined.



440 U. DAL LAGO AND M. ZORZI

6.2. Big-step semantics

We define call-by-name big-step semantics of terms in Λ⊕ as the co-inductive
interpretation of a suitable set of rules. Again, this allow us to capture infinite
computations. A coinductively interpreted binary relation ⇓CN between Λ⊕ and
distributions is obtained by taking all instances of the following rules:

========= bvn
V ⇓CN {V }

M ⇓CN D {P{N/x} ⇓CN EP,N}λx.P∈S(D)
================================= ban

MN ⇓CN

∑
λx.P∈S(D)

D(λx.P ) · EP,N

M ⇓CN D N ⇓CN E
==================== bsn
M ⊕ N ⇓CN

1
2
· D +

1
2
· E

BCN(M) is simply the subdistribution infM⇓CND D . The way binary choices are
managed reflects the reduction rules, which allow to evaluate a binary choice to
one of its components even if the latter are not values. Indeed, while in call-by-value
normalization factors

∑
D and

∑
E were necessary, they are not here anymore.

Example 6.2. Consider the term M = Ω⊕(λx.x). Recall from Example 5.8, that
Ω ⇓CV D for every D . Moreover, λx.x ⇓CV {(λx.x)1}. This implies M ⇓CV ∅, and,
as a consequence, that BCV(M) = ∅. The same behavior cannot be mimicked in
call-by-name. Indeed, while Ω ⇓CN D (for every D) and λx.x ⇓CN {(λx.x)1}, the
smallest distribution which can be assigned to M is BCN(M) = {(λx.x)

1
2 }.

Inductive call-by-name big step semantics can be obtained adding the rule which
assigns the empty distribution to any term and taking the inductive interpretation
of the system.

6.3. Comparing the different notions

We mention here some results in the same style as those presented in Sections 5.3
and 5.4 for call-by-value semantics. For more details, please refer to [3].

On the one hand, the probability of convergence derived through the specific
relation M ⇒∞

p equals the one induced from SIN(M):

Theorem 6.3. For every M , DCN(M) +
∑SIN(M) = 1.

On the other, the four different ways to give semantics to terms are all equivalent.
For example:

Theorem 6.4. BCN(M) = SIN(M).

The strategies one follows when proving the results above are analogous to the
ones we adopted in the call-by-value case.



PROBABILISTIC OPERATIONAL SEMANTICS FOR THE LAMBDA CALCULUS 441

7. CPS translations and simulations

In this section we show that in Λ⊕ it is possible to simulate call-by-value by
call-by-name and vice versa. It is well known that in the weak untyped λ-calculus,
call-by-value and call-by-name are not equivalent notions of reduction. Moreover,
the presence of binary choice exacerbates the confluence problem, as shown in
Section 2. It is clear that duplications play a central role: in particular, the order
in which probabilistic choices and duplications are performed matters.

The binary choices opens a related question about the possibility of includ-
ing some “administrative rules” distributing sums over the other constructs. The
following example shows that it may be difficult to do so:

Example 7.1. Let us consider the following terms: M ≡ λx.x(M� ⊕ M⊥) and
N ≡ (λx.xM�) ⊕ (λx.xM⊥). Note that M can be obtained from N by means
of administrative rules like L(P ⊕ Q) = (LP ) ⊕ (LQ). Consider the term
Nxor ≡ (λz.Mxorzz). We have SIV(MNxor) = {M1

⊥} = D and SIN(MNxor) =

{M 1
2
⊥ , M

1
2
�} = E , whereas SIV(NNxor) = SIN(NNxor) = D and therefore M and

N have different call-by-name observational behaviors, thus M and N can not be
considered equivalent.

A study about the observational behavior of terms is a fascinating subject, but is
out of the scope of this paper. By the way, this is extensively investigated in the non
deterministic setting [7], in which an algebraic semantics of terms is defined by way
of a generalization of Böhm’s trees. A further generalization to the probabilistic
setting is left for future work.

What we are interested in here is to develop an operational study of Λ⊕. And
an interesting question is clearly whether call-by-value and call-by-name, although
being distinct notions of reduction, can be somehow made equivalent through a
suitable CPS translation, even in presence of binary choices (with a probabilistic
semantics). In this section, a simulation between call-by-value and call-by-name
in Λ⊕ is presented and proved correct. We begin with the simulation of call-by-
value by call-by-name (Sect. 7.1), then we proceed by hinting at the simulation of
call-by-name by call-by-value (Sect. 7.2).

It is mandatory to say that our simulation follows significantly Plotkin’s CPS
translation [22], extended here to accommodate probabilistic choice. The structure
of the proof is the same. A linguistic translation between the original languages
and a suitable extension of itself is defined. Given a call-by-value (respectively call-
by-name) computation in the original languages, each step of the computation
is simulated in the extended languages by means of a sequence of “structural”
reduction, followed by a proper call-by-name (respectively call-by-value) reduction.
However, in order to retrace the result in Λ⊕, some technical adjustments are
required. Even if the involved techniques are quite standard, the non deterministic
reduction relations and the probabilistic nature of the operational semantics make
the proofs non trivial.



442 U. DAL LAGO AND M. ZORZI

7.1. Simulating call-by-value with call-by-name

Suppose to extend Λ⊕ with a denumerable set of continuation variables C =
{α, β, ε . . .}, disjoint from the original set X of variables of the language. We will call
Λ+
⊕ the language of λ-terms extended this way. All definitions and constructions

on Λ⊕ (including its operational semantics) extend smoothly to Λ+
⊕.

Call-by-value reduction on Λ⊕ can be simulated by call-by-name reduction of
Λ+
⊕ by translating every term M in Λ⊕ to a term in Λ+

⊕, which will be proved to
be equivalent to M in a certain sense.

Definition 7.2 (call-by-value translation). The translation map � · � from Λ⊕
to Λ+

⊕ is recursively defined as follows:

�x� = λε.εx;
�MN� = λε.(�M�(λα.�N�(λβ.αβε)));

�λx.M� = λε.ελx.�M�;
�M ⊕ N� = λε.�M�(λα.�N�(λβ.((λγ.γα) ⊕ (λγ.γβ))ε)).

As expected, call-by-value is simulated by way of so-called continuations. As a
consequence, (call-by-value) reduction on M is not simulated simply reducing
(in call-by-name) �M�, but by feeding it with the identity continuation λx.x.
Furthermore, we do not obtain this way the same value(s) as the one(s) we would
obtain by evaluating M , but something related to that by a function Ψ , which
sends values in Λ⊕ into values in Λ+

⊕ as follows:

Ψ(x) = x; Ψ(λx.M) = λx.�M�.

Clearly, Ψ can be naturally extended to a map on distributions (of values).
The rest of this section is devoted to showing the following theorem, which

retraces in Λ⊕ the classic result from [22]:

Theorem 7.3 (simulation). For every M , Ψ(SIV(M)) = SIN(�M�(λx.x)).

In the following, we will omit most proofs, which can be found in [3]. We define
now the suitable extension of the infix operator “:” introduced by Plotkin in [22]:

Definition 7.4 (infix operator “:” for �·�). The infix operator “:” for the map
�·� is defined as follows:

V : K = KΨ(V );
LP : K = L : (λα.�P�(λβ.αβK)) if L /∈ Val;

V L : K = L : ((λβ.Ψ(V )βK)) if L /∈ Val;
V W : K = Ψ(V )Ψ(W )K;

L ⊕ P : K = L : (λα.�P�(λβ.(((λγ.γα) ⊕ (λγ.γβ))K))) if L /∈ Val;
V ⊕ L : K = L : (λβ.(((λγ.γΨ(V )) ⊕ (λγ.γβ))K)) if L /∈ Val;

V ⊕ W : K = ((λγ.γΨ(V )) ⊕ (λγ.γΨ(W )))K.



PROBABILISTIC OPERATIONAL SEMANTICS FOR THE LAMBDA CALCULUS 443

The operator “:” can be naturally generalized to an operator on distributions. In
this case we will use the notation D : K. The following lemmas give a meaning
to the operator “:”, while providing intermediate results for proving Theorem 7.3.
Lemma 7.5 shows that M : K is the result of the computation from �M�K
involving all structural reduction:

Lemma 7.5. For all M ∈ Λ⊕, �M�K �→∗
n M : K.

Proof. By induction on M and on the definition of “:”. �

As a technical tool, we here need a generalization of the small step semantic
relation · ⇒IN ·, that we denote as · � ·. The new relation is defined inductively
as · ⇒IN ·, but the first two rules are replaced by the two rules

M � {M1} M � ∅.
This means, in particular, that the relation above maps terms to distribution over
terms, rather than distributions over values. Of course, relations · ⇒IN · and · � ·
are strongly related, as shown in the following lemma:

Lemma 7.6. If M � D , where S(D) ⊆ Val, then M ⇒IN D . Conversely, if
M ⇒IN D then M � D .

Proof. Simple inductions. �

Lemma 7.7 extends Plotkin’s lemma which states that whenever a term M reduces
in call-by-value to a term N , there exists a call-by-name computation from M : K
to N : K. In Λ⊕ we have to deal with the non deterministic nature of our relations
�→v and �→n (which map terms into a set of terms), and with the fact that the
evaluation of a term returns a probability distribution on values and not a single
value.

Lemma 7.7. If M ⇒IV D and K is a closed value, then M : K � D : K.

Proof. By induction on the complexity of a derivation for M ⇒IV D . �

Lemma 7.8 shows that the call-by-value evaluation of a term M dominates, in
term of distributions, the call-by-name evaluation of M : λx.x, up to Ψ :

Lemma 7.8. If M : λx.x ⇒IN D , then M ⇒IV E , where Ψ(E ) ≥ D .

Proof. The proof goes by induction on the complexity of a derivation π of M :
λx.x ⇒IN D . �

Lemmas 7.5–7.8 are the basic ingredients underlying the proof of Theorem 7.3.



444 U. DAL LAGO AND M. ZORZI

Proof of Theorem 7.3. To prove that Ψ(SIV(M)) = SIN(�M�λx.x), we proceed by
showing the following:
1. If M ⇒IV D , then �M�λx.x ⇒IN E and E ≥ Ψ(D);
2. If �M�λx.x ⇒IN D , then M ⇒IV E where Ψ(E ) ≥ D .
To prove point 1, we observe that if M ⇒IV D , then both �M�K �→∗

n M : K (by
Lem. 7.5) and M : K ⇒IV D : K (by Lems. 7.7 and 7.6). Now, notice that, for
every value V , V : (λx.x) = (λx.x)Ψ(V ) �→v Ψ(V ). As a consequence, it’s clear
that �M� : λx.x ⇒IN D . Point 2 is nothing more than Lemma 7.8. This concludes
the proof. �

7.2. Simulating call-by-name by call-by-value

In Section 7.1 we proved the “imperfect” simulation of call-by-value by call-by
name strategy. The inverse result can be proved very similarly. We omit all techni-
cal details: the proof follows as an expected modification of the one in Section 7.1.
See again [3] for all the details.

Let us define the extended language Λ+
⊕ as in Section 7.1.

Definition 7.9 (call-by-value translation). The translation map � · � from Λ⊕
to Λ+

⊕ is recursively defined as follows:

�x� = x;

�λx.M� = λε.ελx.�M�;
�MN� = λε.�M�(λα.α�N�ε);

�M ⊕ N� = λε.(((λα.�M�α) ⊕ (λα.�N�α))ε).

We define a function Φ, which sends values into terms as

Φ(x) = x(λy.y);
Φ(λx.M) = λx.�M�.

Observe that Φ sends closed values to closed values. As such, it can be naturally
extended to distributions of closed values. The dual of Theorem 7.3 follows:

Theorem 7.10 (simulation). For every M , Φ(SIN(M)) = SIV(�M�(λx.x)).

8. On the expressive power of Λ⊕

The λ-calculus Λ⊕ is endowed with a very restricted form of (probabilistic)
choice, which is binary and such that both possible outcomes have probability
1/2. It is thus natural to ask oneself whether this is an essential restriction or
not. In this section, we show that this is not essential, by proving that the set
of representable distributions on the natural numbers, namely those which can be
denoted by a term of Λ⊕ equals the set of computable distributions, defined in
terms of Turing machines. In this section, we assume to work with call-by-value



PROBABILISTIC OPERATIONAL SEMANTICS FOR THE LAMBDA CALCULUS 445

reduction, even if everything could be rephrased in call-by-name, in view of the
results in Section 7.1.

We first of all need to define what a computable distribution (on the natural
numbers) is. This is based on a notion of approximation for the function assigning
probabilities to natural numbers:

Definition 8.1 (approximating function). Given any function f : Q → R[0,1], the
approximating function for f , denoted Appr f is the function from Q×N to Q which
on input (a, n), returns a rational number Apprf (a, n) such that |Apprf (a, n) −
f(a)| < 1/n.

A distribution on the natural numbers is computable if its approximating function
is itself computable in the usual sense:

Definition 8.2 (computable distributions). A distribution D : N → R[0,1] is com-
putable iff the function ApprD : N × N → Q is computable in the sense of Turing
machines.

The next step consists in understanding which class of distributions on the natural
numbers can be captured by Λ⊕, i.e. is the semantics of a λ-term. In Λ⊕ we are able
to represent (up to approximation) probability functions from a suitable domain to
the real interval R[0,1]. For this reason, we assume to work with a fixed encoding of
the natural numbers into λ-terms, namely the one usually attributed to Scott [29].
More specifically, natural numbers and binary strings can be encoded as follows:

�0� = λxy.x;
�n + 1� = λxy.y�n�.

Moreover, we encode pairs of values as follows: 〈V, W 〉 = λx.xV W . In the rest of
the section we will use the following notation:

Notation 8.3. Given a proper distribution D : Val → R[0,1] that assigns nonzero
probability only to representation of natural numbers, the corresponding proba-
bility distribution over the natural numbers will be denoted as {D}.
Distributions on the natural numbers which can be captured, via approximation,
by Λ⊕ are said to be representable:

Definition 8.4 (representable distribution). A probability distribution D over
the natural numbers is said to be representable iff there is a λ-term MD such that
{SIV(MD)} = D.

Our main goal will be to prove that the class of representable distributions co-
incides with the class of computable distributions: on one hand each distribution
obtained by small step evaluation of a λ-term in Λ⊕ is proved to be computable
(Thm. 8.5); on the other hand, each computable distribution can be represented
by a term in Λ⊕ (Thm. 8.10).



446 U. DAL LAGO AND M. ZORZI

Whatever can be denoted by a λ-term is actually a computable distribution,
i.e. one which can be approximated up to any degree of precision by a Turing
machine:

Theorem 8.5 (soundness). Every representable distribution is computable.

Proof. Suppose D is a representable probability distribution. Then there is a term
M such that {SIV(M)} = D. This implies, in particular, that

∑SIV(M) = 1,
because

∑D = 1 itself. An algorithm computing ApprD can be easily designed
as an evaluator for M : on input (a, n), simply compute distributions D such that
M ⇒IV D , until you find one, call it E , such that

∑
E > 1 − 1/n. Such a dis-

tribution E can always be reached, provided the evaluation of M is performed in
a breadth-first order rather than in depth-first order (where the underlying tree,
called the evaluation tree is the one induced by probabilistic choice). Concretely,
one can proceed as follows: for increasing values of m, compute the 2m terms
N1, . . . , N2m which are the leaves of the evaluation tree capturing all reduction
sequences of length m starting from M (where we assume that every reduction
step produces a branching and that values themselves can be reduced to them-
selves). If enough of N1, . . . , N2m are values, we are done, then we increase m and
iterate. �

The completeness theorem requires other definitions and some auxiliary results.
We define the class of the so-called finite distribution terms:

Definition 8.6 (finite distribution terms). Finite distribution terms are λ-terms
generated inductively as follows:
• For every n, λxy.x�n� is a finite distribution term;
• If M and N are finite distribution terms, then λxy.yMN is a finite distribution

term.

Intuitively, any finite distribution term denotes a probability distribution on the
natural numbers. Formally, given a finite distribution term M , the underlying
probability distribution on the natural numbers {M} is defined as follows:

{λxy.x�n�} = {n1};
{λxy.yMN} =

1
2
{M} +

1
2
{N}.

Lemma 8.7 is an intermediate result towards Lemma 8.8.

Lemma 8.7 (Fixed-point combinator). There is a term H such that for every
value V , HV rewrites deterministically to V (λx.HV x).

Proof. The term H is simply WW where

W = λx.λy.y(λz.xxyz).



PROBABILISTIC OPERATIONAL SEMANTICS FOR THE LAMBDA CALCULUS 447

Indeed:

HV = WWV

�→v (λy.y(λz.WWyz))V
�→v V (λz.WWV z)
= V (λz.(HV )z).

This concludes the proof. �

Finite distribution terms are values which do not represent natural numbers by
themselves, but rather distributions on the natural numbers. As a matter of fact,
any finite distribution term can be “executed”, obtaining the underlying distribu-
tion, and this can be done by a λ-term:

Lemma 8.8. There is a λ-term Mfdt such that for every finite distribution term
N , {SIV(MfdtN)} = {N}.
Proof. The term Mfdt is simply HV where V is

λxy.y(λz.z)(λzw.(xz) ⊕ (xw))

Indeed, by induction (X is λx.HV x):

Mfdt (λxy.x�n�) �→∗
v (λxy.x�n�)(λz.z)(λzw.(Xz) ⊕ (Xw))

�→∗
v (λz.z)�n� �→v �n�;

Mfdt(λxy.yMN) �→∗
v V X(λxy.yMN)

�→∗
v (λzw.Xz ⊕ Xw)MN

�→∗
v (XM) ⊕ (XN);

and (XM)⊕(XN), applying the i.h. on the subterms, evaluates with equiprobable
distribution to either {M}, {N}. This concludes the proof. �

The following proposition guarantees the existence of a sort of successive approx-
imations function, which computes the distribution of a given term in a finite
number of steps:

Proposition 8.9 (splitting). There is a λ-term Msplit such that for every term
N computing the distribution D (in the sense of Def. 8.2), MsplitN rewrites de-
terministically to 〈L, P 〉 where
• L is a finite distribution term such that {L} = E;
• P computes a distribution F (again in the sense of Def. 8.2);
• D = 1

2E + 1
2F .

Proof. First, observe that N computes a proper distribution, and as a consequence
there are a natural number n and a sequence of pairs of natural numbers

(m1, p1), . . . , (mn, pn)



448 U. DAL LAGO AND M. ZORZI

such that m1, . . . , mn are distinct and moreover

n∑
i=1

(
f(mi, pi) − 1

pi

)
>

1
2

where f is the function computed by N . The sequence below is guaranteed
to be reached by successively querying N in a dovetail order. This way, the
(sub)distribution E can always be determined, together with a finite distribu-
tion term L for it. P is nothing more that N where however we pay attention to
“subtract” the (finitely many) values given by E . �

By means of Lemma 8.8 and Proposition 8.9 it is possible to prove the following
completeness result:

Theorem 8.10 (completeness). Every computable probability distribution D over
the natural numbers is representable by a term MD.

Proof. Define a term M simply as HV where V is

λxy.(Msplity)(λzw.[λs.(Mfdtz) ⊕ λs.(xw)](λs.s))

We will prove the following statement: for any n ∈ N e for all N ∈ Λ⊕ which
computes a distribution E , there exists a distribution D such that MN ⇒IV D
with

∑
D ≥ (1 − 1

2n ) and {D} ≤ E . We will prove the thesis by induction on the
natural number n.
• If n = 0 then D = ∅ and MN ⇒IV ∅ trivially.
• If n > 0 observe that MN rewrites as follows:

MN = HV N �→∗ V (λt.(HV )t)N
�→∗ (MsplitN) (λzw.((((λs.Mfdt z) ⊕ (λs.(λt.HV t)w))(λs.s))))︸ ︷︷ ︸ .

R.

Observe that, by Proposition 8.9, MsplitN rewrites deterministically to the pair
〈L, P 〉, where L is a finite distribution term such that {L} = EL and P is a
finite distribution term such that {P} = EP and E = 1

2EL + 1
2EP . Then:

(λx.xLP )R �→ (λzw.((((λs.Mfdt z) ⊕ (λs.(λt.HV t)w))(λs.s))))LP

�→2 ((λs.MfdtL) ⊕ (λs.(λt.HV t)P ))(λs.s)
�→ (λs.MfdtL)(λs.s), (λs.(λt.HV t)P )(λs.s).

Now observe that, (λs.MfdtL)(λs.s) �→ MfdtL and by Lemma 8.8 this term
evaluates to {L} = EL. Moreover, (λs.(λt.HV t)P )(λs.s) �→2 (HV )P = MP
and we can apply to P the induction hypothesis, obtaining that MP ⇒IV DP



PROBABILISTIC OPERATIONAL SEMANTICS FOR THE LAMBDA CALCULUS 449

with
∑

DP ≥ (1 − 1
2n ) and {DP } ≤ EP . Let us take the distribution D as

D = 1
2EL + 1

2DP . Clearly, MN ⇒IV D . Moreover:

∑
D =

1
2

∑
EL +

1
2

∑
DP

i.h.≥ 1
2

+
1
2

(
1 − 1

2n

)
=

1
2

+
1
2
− 1

2n+1
= 1 − 1

2n+1
·

Finally, D ≤ E . The thesis follows easily. �

9. Conclusions and future work

In this paper we studied probabilistic operational semantics for Λ⊕, a nonde-
terministic extension of untyped λ-calculus. We prove strong equivalence results
between small-step and big-step semantics, both in call-by-value and in call-by-
name. We also extend Plotkin’s simulation to our probabilistic setting and we state
and prove some results about the expressive power of Λ⊕.

Starting from the present paper, several directions for future work are open.
On the one hand, some theoretical aspects of the calculus remain unexplored: for
example, an interesting topic consists in developing an observational theory for
Λ⊕ terms. On the other hand, it is possible to consider Λ⊕ as a paradigmatic
language for stochastic functional programming: it would be instructive to ana-
lyze carefully the relationship between Λ⊕ and other probabilistic languages (for
example, Park’s language λγ [19]). Our results should be revisited in a measure
theoretic setting. For example, the equivalence between inductive and coinductive
semantics is reminiscent of equality between outer measure and inner measure in
measure theory, and the definition of call-by-value small-step semantics is remi-
niscent of the notion of dominated convergence in Lebesgue’s integration theory,
similarly to what happens in [9, 10].

References

[1] P. Audebaud and C. Paulin-Mohring, Proofs of randomized algorithms in Coq, in Proc. of
Mathematics of Program Construction. Lect. Notes Comput. Sci. 4014 49–68 (2006).

[2] P.-L. Curien and H. Herbelin, The duality of computation, in Proc. of International Con-
ference on Functional Programming (2000) 233–243.

[3] U. Dal Lago and M. Zorzi, Probabilistic operational semantics for the lambda calculus. Long
Version. Available at http://arxiv.org/abs/1104.0195, 2012.

[4] O. Danvy and A. Filinski, Representing control: A study of the CPS transformation. Math.
Struct. Comput. Sci. 2 (1992) 361–391.

[5] O. Danvy and L.R. Nielsen, CPS transformation of beta-redexes. Inform. Process. Lett. 94
(2005) 217–224.

[6] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order. Cambridge University
Press (2002).

http://arxiv.org/abs/1104.0195


450 U. DAL LAGO AND M. ZORZI

[7] U. de’ Liguoro and A. Piperno, Nondeterministic extensions of untyped λ-calculus. Inform.
Comput. 122 (1995) 149–177.

[8] A. Di Pierro, C. Hankin and H. Wiklicky, Probabilistic λ-calculus and quantitative program
analysis. J. Logic Comput. 15 (2005) 159–179.

[9] A. Edalat, Domains for computation in mathematics, physics and exact real arithmetic.
Bull. Symbolic Logic 3 (1997) 401–452.

[10] A. Edalat and M.H. Escard, Integration in real PCF, in Proc. of IEEE Symposium on Logic
in Computer Science. Society Press (1996) 382–393.

[11] M. Gaboardi, Inductive and coinductive techniques in the operational analysis of functional
programs: an introduction. Master’s thesis, Universita’ di Milano, Bicocca (2004).

[12] M. Giry, A categorical approach to probability theory, in Categorical Aspects of Topology
and Analysis, edited by B. Banaschewski. Springer, Berlin, Heidelberg (1982) 68–85.

[13] B. Jacobs and J. Rutten, A tutorial on (co)algebras and (co)induction. Bull. EATCS 62
(1996) 222–259.

[14] C. Jones, Probabilistic non-determinism. Ph.D. thesis, University of Edinburgh, Edinburgh,
Scotland, UK (1989).

[15] C. Jones and G. Plotkin, A probabilistic powerdomain of evaluations, in Proc. of IEEE
Symposium on Logic in Computer Science. IEEE Press (1989) 186–195.

[16] X. Leroy and H. Grall, Coinductive big-step operational semantics. Inform. Comput. 207
(2009) 284–304.

[17] E. Moggi, Computational lambda-calculus and monads, in Proc. of IEEE Symposium on
Logic in Computer Science. IEEE Computer Society Press (1989) 14–23.

[18] E. Moggi, Notions of computation and monads. Inform. Comput. 93 (1989) 55–92.
[19] S. Park, A calculus for probabilistic languages, in Proc. of ACM SIGPLAN International

Workshop on Types in Languages Design and Implementation. ACM Press (2003) 38–49.
[20] S. Park, F. Pfenning and S. Thrun, A monadic probabilistic language. Manuscript. Available

at http://www.cs.cmu.edu/~fp/papers/prob03.pdf (2003).
[21] S. Park, F. Pfenning and S. Thrun, A probabilistic language based upon sampling functions,

in Proc. of ACM Symposium on Principles of Programming Languages 40 (2005) 171–182.
[22] G.D. Plotkin, Call-by-name, call-by-value and the λ-calculus. Theoret. Comput. Sci. 1 (1975)

125–159.
[23] G.D. Plotkin, LCF considered as a programming language. Theoret. Comput. Sci. 5 (1977)

223–255.
[24] N. Ramsey and A. Pfeffer, Stochastic lambda calculus and monads of probability distribu-

tions, in Proc. of ACM Symposium on Principles of Programming Languages. ACM Press
(2002) 154–165.

[25] J. Rutten, Elements of Stream Calculus (An Extensive Exercise In Coinduction). Electron.
Notes Theor. Comput. Sci 45 (2001) 358–423.

[26] N. Saheb-Djaromi, Probabilistic LCF, in Proc. of International Symposium on Mathematical
Foundations of Computer Science. Lect. Notes Comput. Sci. 64 (1978) 442–451.

[27] D. Sangiorgi, Introduction to Bisimulation and Coinduction. Cambridge University Press
(2012).

[28] P. Selinger and B. Valiron, A lambda calculus for quantum computation with classical
control. Math. Struct. Comput. Sci. 16 (2006) 527–552.

[29] C. Wadsworth, Some unusual λ-calculus numeral systems, in To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, edited by J.P. Seldin and J.R.
Hindley. Academic Press (1980).

Communicated by G. Longo.
Received August 23, 2011. Accepted April 18, 2012.

http://www.cs.cmu.edu/~fp/papers/prob03.pdf

	Introduction
	Related works
	Outline

	Some motivating observations
	A brief introduction to coinduction
	Syntax and preliminary definitions
	Distributions

	Call-by-value
	CbV small-step semantics
	Inductive CbV small-step semantics for convergence
	Coinductive CbV small-step semantics for divergence
	Coinductive CbV small-step semantics for convergence

	CbV big-step semantics
	Divergence and convergence in CbV small-step semantics
	Relating the various definitions for convergence
	Big-step dominates small-step
	Small-step is in big-step


	Call-by-name
	Small-step semantics
	Big-step semantics
	Comparing the different notions

	CPS translations and simulations
	Simulating call-by-value with call-by-name 
	Simulating call-by-name by call-by-value

	On the expressive power of 
	Conclusions and future work
	References

