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Abstract: We show that any distribution function on Rd with nonnegative, nonzero and integrable marginal
distributions can be characterized by a norm onRd+1, called F-norm.We characterize the set of F-norms and
prove that pointwise convergence of a sequence of F-norms to an F-norm is equivalent to convergence of the
pertaining distribution functions in the Wasserstein metric. On the statistical side, an F-norm can easily be
estimated by an empirical F-norm, whose consistency and weak convergence we establish.

The concept of F-norms can be extended to arbitrary random vectors under suitable integrability conditions
ful�lled by, for instance, normal distributions. The set of F-norms is endowed with a semigroup operation
which, in this context, corresponds to ordinary convolution of the underlying distributions. Limiting results
such as the central limit theorem can then be formulated in terms of pointwise convergence of products of
F-norms.

We conclude by showing how, using the geometry of F-norms, we may characterize nonnegative integrable
distributions in Rd by simple compact sets in Rd+1. We then relate convergence of those distributions in the
Wasserstein metric to convergence of these characteristic sets with respect to Hausdor� distances.
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1 Introduction
It was observed only recently that a particular kind of norms on Rd, called D-norms, are the skeleton of mul-
tivariate extreme value theory. An up-to-date account of D-norms is [4]. D-norms are de�ned via a random
vector (rv), called generator. The distribution function (df) of this rv, however, is not uniquely determined,
and there exists an in�nite number of generators of the same D-norm. It was shown by [6] that the D-norm
characterizes the distribution of a generator if the constant function one is added to the generator as a fur-
ther component. This led to the de�nition of the max-characteristic function, which can be used to identify
the distribution of any multivariate distribution with nonnegative and integrable components.

In this paper we build on these observations and construct a norm on Rd+1, called F-norm, which con-
tains the notion of max-characteristic function. In Section 2.1, we present the concept of F-norms, and show
that the df of each rv X = (X1, . . . , Xd) on Rd with nonnegative, nonzero and integrable components can
be characterized by the pertaining F-norm. We then list examples and derive basic properties as well as an
inversion formula to retrieve a distribution from its associated F-norm. We also fully characterize the set of
F-norms and obtain a simple classi�cation in two dimensions.
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In Section 3 we analyse the convergence of sequences of F-norms. We start by proving that pointwise
convergence of a sequence of F-norms to an F-norm is equivalent with convergence of the pertaining dfs with
respect to theWassersteinmetric.We thenadd some statistical viewson F-norms to this section. The (random)
F-norm ‖·‖F̂n of the empirical df F̂n of a sample of n independent and identically distributed (iid) rvs is an
estimator of ‖·‖F with the structure of a samplemean. Local uniform consistency and asymptotic normality of
‖·‖F̂n as an estimator of ‖·‖F are then consequences of the law of large numbers and the multivariate central
limit theorem. More strongly, we establish the√n-functional weak convergence of ‖·‖F̂n − ‖·‖F to a Gaussian
process which is essentially a functional of a Brownian bridge.

Section 3 suggests that F-norms interact nicely with well-known modes of convergence and theorems of
statistical analysis. In order to be able to use these norms in practice for asymptotic analyses, it is important
to understand how they behave with respect to simple algebraic operations. It turns out that two F-norms
can be multiplied by constructing the F-norm generated by the componentwise product of pairs of indepen-
dent rvs giving rise to the individual F-norms. We also provide an integral formula making it possible, given
two F-norms, to compute this product in a straightforward way. Equipped with this commutative multiplica-
tion, the set of F-norms is a semigroup with an identity element, and we can fully identify the invertible and
idempotent elements for this operation. This algebraic aspect is investigated in Section 4.

The concept of F-norms aswe introduce it originally focuses onmultivariate rvs with nonnegative and in-
tegrable components, and thus excludes common distributions such as themultivariate normal distribution.
In Section 5 we show that we can also de�ne, by an exponential transformation, a concept of F-norms for a
rv attaining negative values, under an integrability condition. This indeed allows us to include multivariate
normal distributions, as well as other interesting examples. The multiplication of F-norms in Section 4 then
represents the convolution of two rvs, and central limit theorems for iid rvs nowmean pointwise convergence
of the sequence of corresponding products of F-norms.

A multivariate distribution can then, under an integrability assumption, be characterized by its associ-
ated F-norm. The norm structuremakes it possible to reduce the knowledge of the df F to even simpler objects
than the full F-norm. Because each norm is a homogeneous function, the knowledge of an F-norm (and thus
of the underlying df F) is equivalent to its knowledge on the unit simplex. Besides, and since a norm is charac-
terized by its unit sphere, multivariate distributions on Rd can be characterized, under suitable integrability
conditions on the components, by the part of the unit sphere for their F-norm contained in the positive or-
thant of Rd+1, which is a compact set. Interestingly, the convergence of F-norms, and therefore convergence
of d-dimensional distributions in theWassersteinmetric, can be shown to be equivalent to the convergence of
these unit spheres with respect to any Hausdor� metric induced by a norm in Rd+1. These geometric aspects
are investigated in Section 6. Section 7 concludes.

2 The concept of F-norms

2.1 De�nition, examples, and basic properties

Let d ≥ 1 and X = (X1, . . . , Xd) be a rv satisfying the fundamental assumption

(H) Each Xi is almost surely (a.s.) nonnegative with 0 < E(Xi) < ∞.

Denote by F the df of X. For x = (x0, x1, . . . , xd) ∈ Rd+1, de�ne a mapping ‖·‖F by

‖x‖F := E (max (|x0| , |x1| X1, . . . , |xd| Xd))
= E

(∥∥(x0, x1X1, . . . , xdXd)∥∥∞) . (1)

As shown in Theorem 2.2 below, the distribution of X is characterized by the mapping ‖·‖F . This is not true
in general if we replace the sup-norm ‖·‖∞ in the above de�nition (1) by an arbitrary norm. Indeed, consider
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for instance the L1-norm and de�ne

‖x‖*F := E
(
|x0| +

d∑
i=1
|xi| Xi

)
= |x0| +

d∑
i=1
|xi| E(Xi).

An arbitrary rv X ≥ 0 ∈ Rd with E(Xi) = 1, 1 ≤ i ≤ d, then provides the same value ‖x‖*F as the constant rv
X = (1, . . . , 1) ∈ Rd. The use of the sup-norm ‖·‖∞ in de�nition (1) is, therefore, crucial.

This paper is based on the following fundamental observations, presented in the two subsequent results.
The proof of the �rst result is elementary.

Lemma 2.1. If X satis�es (H) then ‖·‖F is a norm on Rd+1.

Moreover, the norm ‖·‖F characterizes the df of X, which can be seen as follows. The function φX, de�ned for
any x = (x1, . . . , xd) ≥ 0 ∈ Rd by

φX(x) := E
(
max(1, x1X1, . . . , xdXd)

)
, (2)

is themax-characteristic function (max-CF) pertaining toX (any operation on vectors such as +, ≥, . . . ismeant
componentwise throughout). It characterizes the distribution of X, see [6, Lemma 1.1] or [4, Lemma 5.1.1].
Our �rst main result is, therefore an immediate consequence. By the equality of two norms we mean their
pointwise equality.

Theorem 2.2. Let X and Y be rvs on Rd, satisfying condition (H), with dfs F and G. Then F = G if and only if
‖·‖F = ‖·‖G .

In view of the above result we call every norm on Rd+1 which has the representation (1) an F-norm.
Let us point out that Theorem 2.2 is still valid when X is not assumed to have nonzero components, but

the mapping ‖·‖F is then actually only a seminorm on Rd+1. Extending the de�nition of the max-CF of X by
considering the mapping ‖·‖F thus generally leads to a seminorm rather than a norm. Observe though that
unless X is the degenerate rv 0 ∈ Rd, the mapping ‖·‖F induces an F-norm on Rd

′+1, where d′ is the number
of nonzero components of X. There is therefore no loss of generality in considering F-norms rather than F-
seminorms, and we do so in the remainder of this paper.

An F-norm is usually conveniently calculated by using the following fundamental formula.

Lemma 2.3. Let F be the df of a rv X satisfying condition (H). Then, for any x = (x0, x1, . . . , xd) ∈ Rd+1, we
have

‖x‖F = |x0| +
∞∫

|x0|

[1 − F(t/|x1|, . . . , t/|xd|)] dt

with the convention 1/0 =∞.

Proof. This is a straightforward consequence of the well-known formula

E(|Z|) =
∞∫
0

P(|Z| > t) dt

applied to the nonnegative rv Z = max (|x0| , |x1| X1, . . . , |xd| Xd).

Example 2.1 (Degenerate F-norm). The degenerate distribution concentrated at a d-dimensional vector c =
(c1, . . . , cd) > 0 is characterized by the F-norm

‖x‖F = max(|x0|, c1|x1|, . . . , cd|xd|).

In particular, the standard sup-norm ‖x‖∞ := max0≤i≤d |xi| on Rd+1 is an F-norm which characterizes the
constant rv (1, . . . , 1) ∈ Rd.
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Example 2.2 (Bernoulli F-norm). The Bernoulli distribution with parameter p ∈ (0, 1) is characterized by
the bivariate F-norm ∥∥(x0, x1)∥∥F = (1 − p)|x0| + pmax(|x0|, |x1|).

Example 2.3 (Uniform F-norm). The uniform distribution on (0, 1) is characterized by the bivariate F-norm

∥∥(x0, x1)∥∥F =

|x0|, if |x1| ≤ |x0|,

|x0| +
|x1|∫

|x0|

(
1 − t
|x1|

)
dt = x

2
0 + x21
2|x1|

, if |x1| > |x0|.

Example 2.4 (Exponential F-norm). The exponential distribution with mean 1/λ, λ > 0 is characterized by
the bivariate F-norm

∥∥(x0, x1)∥∥F = |x0| +
∞∫

|x0|

exp
(
−λ t
|x1|

)
dt = |x0| +

|x1|
λ exp

(
−λ |x0||x1|

)

when x1 ≠ 0, and |x0| otherwise.

We now explore some simple properties of F-norms. Each F-norm induces, as a norm, a continuous function
on Rd+1. It takes the value 1 at (1, 0, . . . , 0). It also de�nes a radially symmetric function, i.e.

∀x ∈ Rd+1, ‖x‖F = ‖|x|‖F , with |x| = (|x0|, |x1|, . . . , |xd|).

The norm ‖·‖F is, therefore, determined by its values on [0,∞)d+1. Additionally, any F-norm de�nes a mono-
tone norm on Rd+1 in the sense that

0 ≤ x ≤ y ⇒ ‖x‖F ≤ ‖y‖F .

These properties make it possible, in some cases, to show that certain norms are not F-norms:
• the norm ‖·‖ := 2 ‖·‖∞ is not an F-norm because

∥∥(1, 0, . . . , 0)∥∥ = 2,
• for any δ ∈ (0, 1), the matrix

M =
(

1 −δ
−δ 1

)
is symmetric and positive de�nite, and therefore induces the norm∥∥(x0, x1)∥∥δ := [(x0, x1)M(x0, x1)>

]1/2
=
√
x21 − 2δx1x2 + x22.

This norm is not radially symmetric, as∥∥(1, −1)∥∥δ = √2√1 + δ ≠ √2√1 − δ = ∥∥(1, 1)∥∥δ .
It is actually not monotone either, since

(1, 0) ≤ (1, δ) but
∥∥(1, 0)∥∥δ = 1 >

√
1 − δ2 =

∥∥(1, δ)∥∥δ .
The norm ‖·‖δ therefore cannot be an F-norm.

The proof of the following result, which provides bounds for a general F-norm, is elementary.

Proposition 2.4. Let X = (X1, . . . , Xd) be a rv satisfying (H) and ‖·‖F be the corresponding F-norm. For any
x ∈ Rd+1, we have the bounds

max(|x0| , |x1| E(X1), . . . , |xd| E(Xd)) ≤ ‖x‖F ≤ |x0| +
d∑
i=1
|xi| E(Xi).

The upper bound is always strict if both x0 and at least one of the xi (1 ≤ i ≤ d) are nonzero.
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While the upper bound in Proposition 2.4 is not an F-norm, the weighted sup-norm in the lower bound is, see
Example 2.1. In the case E(X1) = · · · = E(Xd) = 1, this is just the standard sup-norm on Rd+1.

We close this section by providing results to identify those norms which are F-norms. Let us highlight
�rst that for any norm ‖·‖ on Rd+1 and any x ∈ Rd, the function t 7→

∥∥(t, x)∥∥ is convex on [0,∞) (and right-
continuous at 0), and therefore automatically absolutely continuous on this interval [see e.g. 12]. With this in
mind, we have the following preliminary result.

Lemma 2.5. A norm ‖·‖ on Rd+1 is an F-norm if and only if the following two conditions hold:
(i) it is radially symmetric,
(ii) there exists a rv X = (X1, . . . , Xd) which satis�es (H) such that for any x1, . . . , xd > 0, the Lebesgue

derivative of t 7→
∥∥(t, 1/x1, . . . , 1/xd)∥∥ is equal to P(X1 ≤ tx1, . . . , Xd ≤ txd) almost everywhere, and∥∥∥∥(0, 1

x1
, . . . , 1

xd

)∥∥∥∥ = E(max
(
X1
x1

, . . . , Xdxd

))
.

In that case then ‖·‖ = ‖·‖F with F being the df of X.

Proof. That any F-norm satis�es (i) is obvious, while (ii) is a clear consequence of Lemma 2.3, reformulated
as ∥∥(t, 1/x1, . . . , 1/xd)∥∥F = t +

∞∫
t

[1 − P (X1 ≤ ux1, . . . , Xd ≤ uxd)] du

when X has df F.
Conversely, let ‖·‖ satisfy (i) and (ii). Since ‖·‖and ‖·‖F are continuous, aswell as radially symmetric by (i),

we only need to show that ‖x‖ = ‖x‖F for all x > 0. Pick such an x and write it as x = (t, 1/x1, . . . , 1/xd), for
t, x1, . . . , xd > 0. Write then, by absolute continuity,∥∥(t, 1/x1, . . . , 1/xd)∥∥ − ∥∥(0, 1/x1, . . . , 1/xd)∥∥

= t −
t∫

0

[1 − P(X1 ≤ ux1, . . . , Xd ≤ uxd)] du

= t +
∞∫
t

[1 − P(X1 ≤ ux1, . . . , Xd ≤ uxd)] du − E
(
max

(
X1
x1

, . . . , Xdxd

))
.

Applying Lemma 2.3 and noting that by (ii),∥∥∥∥(0, 1
x1

, . . . , 1
xd

)∥∥∥∥ = E(max
(
X1
x1

, . . . , Xdxd

))
,

concludes the proof.

Although the above result and in particular its part (ii) seem to be a tautology in view of the de�nition of an
F-norm in (1), it turns out to be quite a powerful tool of its own as illustrated by Corollaries 2.6 and 2.7 below.
We start by the following simple corollary in two dimensions.

Corollary 2.6. A norm ‖·‖ on R2 is an F-norm if and only if the following two conditions hold:
(i) it is radially symmetric,
(ii) the Lebesgue derivative of t 7→

∥∥(t, 1)∥∥ is almost everywhere equal to a univariate df F on [0,∞) with a
�nite �rst moment equal to

∥∥(0, 1)∥∥.
In that case then ‖·‖ = ‖·‖F .

Example 2.5 (On the L1-norm). The L1-norm
∥∥(x0, x1)∥∥ = |x0|+ |x1| onR2 is not an F-norm. Indeed, we have

d
dt (
∥∥(t, 1)∥∥) = 1, t > 0,
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which does not de�ne a df on [0,∞) having a (strictly) positive �rst moment.

Example 2.6 (On the Lp-norm). Each Lp-norm
∥∥(x0, x1)∥∥p = (|x0|p + |x1|p)1/p on R2, with 1 < p < ∞, is an

F-norm. Indeed, it is clearly radially symmetric and

d
dt
(∥∥(t, 1)∥∥p) = d

dt
(
(tp + 1)1/p

)
= (1 + t−p)1/p−1, t > 0,

which de�nes the df of a Burr type III distribution in the sense of [1, Table 2.1]. This distribution, for p > 1,
has a �nite �rst moment.

Even though providing a simple characterization of F-norms in arbitrary dimensions appears to be a di�cult
problem due to the high-level condition (ii) in Lemma 2.5, there is a simple inversion formula inspired by this
result that makes it possible to go from an F-norm to its pertaining df. This is the focus of the following result,
which can also be used to check that a norm is not an F-norm. Its proof is a straightforward consequence of
Lemma 2.3 and right-continuity of the df F. The fact that the df F is determined by ‖·‖F is another obvious
consequence.

Corollary 2.7. Let ‖·‖F be an F-norm. Then, for any x1, . . . , xd > 0, the right-derivative of the function t 7→∥∥(t, 1/x1, . . . , 1/xd)∥∥F at t = 1 exists and is F(x1, . . . , xd).

Example 2.7 (On the L1-norm again). The L1-norm

∥∥(x0, x1, . . . , xd)∥∥ = d∑
i=0
|xi|

on Rd+1 is not an F-norm. Indeed, we have, for any x1, . . . , xd > 0,

d
dt (
∥∥(t, 1/x1, . . . , 1/xd)∥∥) = 1, t > 0,

which de�nes the df of the degenerate vector (0, . . . , 0). This distribution does not have strictly positive
marginal moments and thus, by Corollary 2.7, ‖·‖ cannot be an F-norm.

3 Limiting behavior and estimation of F-norms
While the pointwise limit of a convergent sequence of D-norms is again a D-norm [see 4, Corollary 1.8.5], this
is not true for F-norms: for instance, if (pn) is a sequence of real numbers with pn > 1 and pn ↓ 1, then
‖·‖pn → ‖·‖1, and ‖·‖pn is for each n an F-norm, but the limit ‖·‖1 is not.

However, if we ask that the limit is an F-norm, thenwe can relate the convergence of F-normswith conver-
gence of distributions in the Wasserstein metric. Recall that the Wasserstein metric between two probability
distributions P, Q on Rd with �nite �rst moments in each component is

dW (P, Q)
:= inf{E(‖X − Y‖1) : X has distribution P, Y has distribution Q}.

Convergence of probability measures Pn to P on Rd with respect to the Wasserstein metric is equivalent to
weak convergence together with convergence of the moments∫

Rd

‖x‖1 Pn(dx)→
∫
Rd

‖x‖1 P(dx);

see e.g. [16, De�nition 6.8 and Theorem 6.9]. With this de�nition in mind, we can show the following result.
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Theorem 3.1. Pointwise convergence of a sequence of F-norms ‖·‖Fn to an F-norm ‖·‖F is equivalent to conver-
gence of the sequence of distributions Fn to F in the Wasserstein metric.

Proof. Pointwise convergence of ‖·‖Fn to ‖·‖F implies pointwise convergence of the sequence of max-CFs of
Fn (as de�ned in (2)) to the max-CF of F, which entails the desired convergence in the Wasserstein metric
by Theorem 2.1 in [6].

Conversely, if Fn → F in the Wasserstein metric, let X(n) and X have dfs Fn and F. For any x =
(x0, x1, . . . , xd) ≥ 0,

max(x0, x1X(n)1 , . . . , xdX(n)d )
= max(x0, x1[X1 + (X(n)1 − X1)], . . . , xd[Xd + (X(n)d − Xd)])
≤ max(x0, x1X1, . . . , xdXd) + max

1≤i≤d
xi|X(n)i − Xi|.

An analogue inequality holds if we switch X(n) and X. We can then integrate to �nd

| ‖x‖Fn − ‖x‖F | ≤ ‖x‖∞ E
(∥∥∥X(n) − X

∥∥∥
1

)
.

Since X(n) and X were arbitrary rvs having dfs Fn and F, this yields

| ‖x‖Fn − ‖x‖F | ≤ ‖x‖∞ dW (Fn , F)→ 0 (3)

which concludes the proof.

The nice behavior of F-norms with respect to sequences of distributions naturally raises the question of what
happens when Fn is chosen to be the empirical df based on iid copies X(1), . . . , X(n) of a rv X satisfying (H),
i.e.

F̂n(t) := 1
n

n∑
i=1

1l{X(i)≤t}, t ∈ Rd .

The (random) F-norm generated by F̂n is nothing but

‖x‖F̂n =
1
n

n∑
i=1

max
(
|x0| , |x1| X(i)1 , . . . , |xd| X(i)d

)
.

The law of large numbers then implies, for each x ∈ Rd+1, that a.s.

‖x‖F̂n → E (max (|x0| , |x1| X1, . . . , |xd| Xd)) = ‖x‖F as n →∞.

This convergence suggests that the estimation of an F-norm is completely straightforward; by contrast, esti-
mating the related concept of a D-norm in the context of multivariate extreme value analysis requires quite
sophisticated techniques.

We now provide further insight into the convergence of ‖·‖F̂n to ‖·‖F . Noting that for any x in a box K =∏d
i=0[ai , bi] ⊂ [0,∞)d+1 we have, by monotonicity of F-norms,

‖x‖F̂n − ‖x‖F ≤
(
‖b‖F̂n − ‖b‖F

)
+
(
‖b‖F − ‖a‖F

)
and ‖x‖F − ‖x‖F̂n ≤

(
‖a‖F − ‖a‖F̂n

)
+
(
‖b‖F − ‖a‖F

)
,

the following locally uniform re�nement of the pointwise almost sure convergence of ‖·‖F̂n to ‖·‖F is a direct
consequence of the continuity of ‖·‖F .

Theorem 3.2. LetX(1), . . . , X(n) be iid copies of a rvX satisfying (H), with df F. Let ‖·‖F̂n be the random F-norm
generated by the empirical df F̂n of this sample. We then have, for any x0 ≥ 0,

sup
0≤x≤x0

∣∣∣‖x‖F̂n − ‖x‖F∣∣∣→ 0 a.s.
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To analyse the rate of (uniform) convergence of ‖·‖F̂n to ‖·‖F, we de�ne the empirical F-norm process

Sn = (Sn(x))x≥0 :=
√
n
(
‖x‖F̂n − ‖x‖F

)
x≥0

on [0,∞)d+1. This stochastic process has continuous sample paths and satis�es Sn(0) = 0. Suppose then that
E(X2i ) < ∞ for any i ∈ {1, . . . , d}. Based on the standard central limit theorem, which gives the pointwise
asymptotic normality of Sn, we may ask the question of the limiting behavior of the process Sn. For ease of
exposition, we state a result in the case d = 1.

Theorem 3.3. Let X(1), . . . , X(n) be iid copies of a univariate rv X with df F. Assume that X is nonnegative, with
nonzero expectation and �nite variance. Let ‖·‖F̂n be the random F-norm generated by the empirical df F̂n of
this sample. For any x0, y0 > 0, we have

Sn(x, y) :=
√
n
(∥∥(x, y)∥∥F̂n − ∥∥(x, y)∥∥F)→ S(x, y)

weakly in the space C([0, x0] × [0, y0]) of continuous functions over [0, x0] × [0, y0], where the limiting process
S, which should be read as 0 when y = 0, is a bivariate Gaussian process with covariance structure

Cov(S(x1, y1), S(x2, y2))

= x1x2
∫∫

[1,∞)2

[
F
(
min

{
x1
y1
u, x2y2

v
})

− F
(
x1
y1
u
)
F
(
x2
y2
v
)]

du dv.

Under the further assumption that
∫∞
0
√
F(u)[1 − F(u)] du < ∞ [which is equivalent to E(X2) < ∞ when F is

regularly varying at in�nity, according to e.g. 13, p.276] we have the representation

S(x, y) d= y
∞∫

x/y

W ◦ F(u) du

as processes in C([0, x0] × [0, y0]), whereW is a Brownian bridge on [0, 1]. Indeed, since for any t ∈ [0, 1] the
rvW(t) is Gaussian centered with variance t(1 − t), we have E|W(t)| =

√
t(1 − t)

√
2/π, and thus

E

∣∣∣∣∣∣∣
∞∫

x/y

W ◦ F(u) du

∣∣∣∣∣∣∣ ≤
∞∫
0

E|W ◦ F(u)| du

=
√

2
π

∞∫
0

√
F(u)[1 − F(u)] du < ∞

so that y
∫∞
x/yW ◦F(u) du is well-de�ned and �nite with probability 1. It is then straightforward to show, using

the covariance properties ofW, that the covariance structure of this Gaussian process coincides with that of
S.

Proof. The random functions Sn and S are elements of the functional space C([0, x0]× [0, y0]). By Theorem 7.5
in [2], it su�ces to show the convergence of �nite-dimensionalmargins of Sn to those of S alongwith tightness
of (Sn), in the sense of tightness of its sequence of distributions.

We start by convergence of �nite-dimensional margins. The multivariate central limit theorem implies,
for nonnegative pairs (x1, y1), . . . , (xk , yk), that the rv (Sn(x1, y1), . . . , Sn(xk , yk)) converges weakly to a cen-
tered Gaussian distribution. By Hoe�ding’s identity [see 4, Lemma 2.5.2], the limiting covariance matrix is
described by

Cov(max(xi , yiX),max(xj , yjX))

=
∫∫
R2

[P(max(xi , yiX) ≤ x,max(xj , yjX) ≤ y)
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− P(max(xi , yiX) ≤ x)P(max(xj , yjX) ≤ y)] dx dy

=
∞∫
xi

∞∫
xj

[P(yiX ≤ x, yjX ≤ y) − P(yiX ≤ x)P(yjX ≤ y)] dx dy.

This is clearly equal to 0when either yi or yj is 0, and otherwise, using the change of variables x = xiu, y = xjv,
we �nd

Cov(max(xi , yiX),max(xj , yjX))

= xixj
∫∫

[1,∞)2

[
F
(
min

{
xi
yi
u, xjyj

v
})

− F
(
xi
yi
u
)
F
( xj
yj
v
)]

du dv

which is exactly the covariance structure of the Gaussian process S.
We now show tightness, that is, for any ε > 0,

lim
δ→0

lim sup
n→∞

P

 sup
(x1 ,y1),(x2 ,y2)∈[0,x0]×[0,y0]

max(|x1−x2|,|y1−y2|)≤δ

|Sn(x1, y1) − Sn(x2, y2)| > ε

 = 0,

or, in other words, that Sn is stochastically equicontinuous on [0, x0] × [0, y0]. The key to the proof is three-
fold. Firstly, we apply Theorem 1 p.93 of [15] to construct, on a common probability space, a triangular array
(U(n,1), . . . , U(n,n))n≥1 of rowwise independent, standard uniform rvs, and a Brownian bridge W̃ such that

sup
0≤t≤1

|Wn(t) − W̃(t)| → 0 a.s. with Wn(t) := 1√n

n∑
i=1

[
1l{U(n,i)≤t} − t

]
.

Secondly, if we denote by q the quantile function of X (i.e. the left-continuous inverse of F) and by X̃(n,i) :=
q(U(n,i)), we have, for any n ≥ 1,

Sn(x, y) d= S̃n(x, y) := 1√n

n∑
i=1

[
max

(
x, y X̃(n,i)

)
− E(max(x, yX))

]
,

as processes in C([0, x0]× [0, y0]). Wemay and will therefore prove our result using S̃n rather than Sn. Thirdly
and �nally, if (x, y) ∈ [0, x0] × [0, y0], we have

min
(
x, yX̃(n,i)

)
= y

x/y∫
0

[
1 − 1l{X̃(n,i)≤u}

]
du.

Since X̃(n,i) ≤ u ⇔ U(n,i) ≤ F(u), this yields

1√n

n∑
i=1

[
min

(
x, yX̃(n,i)

)
− E(min (x, yX))

]
= −y

x/y∫
0

Wn ◦ F(u) du.

Using the identitymax(a, b) = a + b −min(a, b), valid for any a, b ≥ 0, it follows that:

S̃n(x1, y1) − S̃n(x2, y2) = (y1 − y2) ×
1√n

n∑
i=1

[X̃(n,i) − E(X)]

+ Tn(x1, y1) − Tn(x2, y2)

with Tn(x, y) := y
x/y∫
0

Wn ◦ F(u) du.
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The �rst term on the right-hand side above is stochastically equicontinuous, because the random term is a
OP(1) (by the Chebyshev inequality). We conclude the proof by focusing on Tn(x, y), and for this we �rst
remark that

sup
0≤x≤x0
0≤y≤y0

∣∣∣∣∣∣∣y
x/y∫
0

[
Wn ◦ F(u) − W̃ ◦ F(u)

]
du

∣∣∣∣∣∣∣ ≤ x0 sup0≤t≤1
|Wn(t) − W̃(t)| → 0

almost surely. A consequence of this convergence is that, to show the stochastic equicontinuity of Tn, it is
enough to prove that the random function T de�ned by

T(x, y) :=


y
x/y∫
0

W̃ ◦ F(u) du if y > 0,

0 if y = 0,

satis�es

lim
δ→0

P

 sup
(x1 ,y1),(x2 ,y2)∈[0,x0]×[0,y0]

max(|x1−x2|,|y1−y2|)≤δ

|T(x1, y1) − T(x2, y2)| > ε

 = 0.

Recall that W̃ has almost surely continuous sample paths on [0, 1], and thus T is almost surely continuous
on [0, x0] × (0, y0]. Because, for any y > 0,

T(x, y) =
x∫

0

W̃ ◦ F(u/y) du

and T(x, 0) = 0, it follows by the dominated convergence theorem that almost sure continuity of T also holds
on the compact set [0, x0] × [0, y0]. Then T must also be almost surely uniformly continuous on this set, and
therefore

lim
δ→0

sup
(x1 ,y1),(x2 ,y2)∈[0,x0]×[0,y0]

max(|x1−x2|,|y1−y2|)≤δ

|T(x1, y1) − T(x2, y2)| = 0 a.s.

This completes the proof.

In the case d > 1, andunder regularity conditions [e.g. those of 10], a similar proof using a special construction
of the multivariate empirical process can be written to show an analogue of Theorem 3.3, which gives the
convergence of the process Sn, in a space of continuous functions over compact subsets of [0,∞)d+1, to a
(d + 1)−dimensional Gaussian process S with covariance structure

Cov(S(x1, x1), S(x2, x2))

= x1x2
∫∫

[1,∞)2d

[
F
(
min

{
x1
x1
u, x2x2

v
})

− F
(
x1
x1
u
)
F
(
x2
x2
v
)]

du dv.

Our objective is now to dwell upon the nice sequential behavior of F-norms and show an example of how
this could be used to prove powerful theorems on the convergence of certain sequences of rvs. To this end
we �rst need to understand better how to manipulate F-norms, which leads us to exploring their algebraic
properties.

4 Algebra of the set of F-norms
One canmultiply F-norms ‖·‖F and ‖·‖G by constructing the F-normgeneratedby the componentwiseproduct
of any pair of independent rvs having dfs F and G; independence is used to ensure that the distribution of this
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componentwise product is well-de�ned, and thus so is the product F-norm. We denote this operation by
‖·‖F * ‖·‖G. It coincides with taking products of D-norms if ‖·‖F and ‖·‖G have components with expectation
1, see [4, Section 1.9]. In general, the product F-norm can be calculated using the following Tonelli formula.

Proposition 4.1. Let F and G be the dfs of two rvs satisfying condition (H). Then, for any x = (x0, x1, . . . , xd) ∈
Rd+1,

(‖·‖F * ‖·‖G)(x) =
∫

[0,∞)d

∥∥(x0, x1t1, . . . , xd td)∥∥F dG(t1, . . . , td)
=

∫
[0,∞)d

∥∥(x0, x1t1, . . . , xd td)∥∥G dF(t1, . . . , td).
Proof. Let X = (X1, . . . , Xd) and Y = (Y1, . . . , Yd) be independent and have dfs F and G. We have

(‖·‖F * ‖·‖G)(x) = E (max (|x0| , |x1| X1Y1, . . . , |xd| XdYd)) .

By nonnegativity of max (|x0| , |x1| X1Y1, . . . , |xd| XdYd) and independence of X and Y, we �nd, using the
Tonelli theorem, that

(‖·‖F * ‖·‖G)(x)

=
∫

[0,∞)d

E (max (|x0| , |x1| t1X1, . . . , |xd| tdXd)) dG(t1, . . . , td)

which is exactly the �rst formula. The second expression follows by swapping integration with respect to dG
for integration with respect to dF.

Example 4.1 (Product of uniform F-norms). Following Example 2.3, the product of the standard uniform F-
norm by itself has the expression

(‖·‖F * ‖·‖F)(x0, x1) =
1∫

0

(
|x0|1l{t|x1|≤|x0|} +

x20 + t2x21
2t|x1|

1l{t|x1|>|x0|}
)
dt

=


|x0| if |x1| ≤ |x0|,

5
4 |x1| +

x20
2|x1|

[
log
(
|x1|
|x0|

)
− 1
2

]
if |x1| > |x0|.

Let usnowexplore inmoredetail the structure of the set of F-norms equippedwith itsmultiplication. It is clear
that the sup-norm ‖·‖∞ on Rd+1, with generator (1, . . . , 1) ∈ Rd, is an identity element for this operation.
It is also straightforward to see that it is the unique such element: if ‖·‖F is an identity element for * then
‖·‖F = ‖·‖F * ‖·‖∞ = ‖·‖∞ . We summarize this short discussion by the following result.

Proposition 4.2. The set of F-norms is a commutative monoid for the F-norm multiplication *, with identity
element ‖·‖∞. The only invertible elements are the F-norms generated by nonrandom vectors.

The only point we need to show in Proposition 4.2 is the assertion about invertible elements. The key is to
note the following lemmas.

Lemma 4.3. Let Z be a real-valued rv such that |E(eitZ)| = 1 for any t ∈ R. Then Z is almost surely constant.

Proof of Lemma 4.3. We use the Cauchy-Schwarz inequality for the inner product (X, Y) 7→ E(XY) on the
space of complex-valued square-integrable rvs, to obtain:

∀t ∈ R, |E(eitZ)|2 = |E(eitZ · 1)|2 ≤ 1.
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By assumption, we actually have equality here. This means that for any t, the rvs eitZ and 1 are almost surely
proportional, i.e. eitZ = λ(t), with λ(t) ∈ C. De�ne now the event Et := {eitZ = λ(t)}, and let (tn), (t′n) be two
sequences converging to 0. De�ne E = (⋂n Etn ) ∩ (

⋂
n Et′n ). Then P(E) = 1 and on E,

λ(tn) − λ(0)
tn

= e
itnZ − 1
tn

→ iZ and λ(t′n) − λ(0)
t′n

= e
it′nZ − 1
t′n

→ iZ.

It follows that the limit
lim
n→∞

λ(tn) − λ(0)
tn

exists and does not depend on the choice of tn → 0: the function λ is di�erentiable at 0. Conclude, by using
(tn) again, that on the event (⋂n Etn ), λ′(0) = iZ and thus Z is almost surely the constant −iλ′(0).

Lemma 4.4. Let X and Y be two independent nonnegative rvs such that XY = 1 almost surely. Then X and Y
are almost surely positive constants.

Proof of Lemma 4.4. Necessarily P(X = 0) = P(Y = 0) = 0. Then by assumption log X + log Y is a.s. zero.
Denote by φX(t) := E(eit log X) and φY (t) := E(eit log Y ) the characteristic functions of log X and log Y. This
entails φX(t) · φY (t) = 1 for any t ∈ R, by independence. Since any characteristic function has a modulus at
most 1, we �nd |φX(t)| = |φY (t)| = 1. Conclude by applying Lemma 4.3.

Proof of Proposition 4.2. Let ‖·‖F and ‖·‖G satisfy ‖·‖F * ‖·‖G = ‖·‖∞. Equivalently, there are independent rvs
(X1, . . . , Xd) with df F and (Y1, . . . , Yd) with df G such that for any x = (x0, x1, . . . , xd) ∈ Rd+1,

E(max(|x0| , |x1| X1Y1, . . . , |xd| XdYd)) = E(max(|x0| , |x1| · 1, . . . , |xd| · 1)).

By Theorem 2.2, we �nd that each XiYi is a.s. constant equal to 1. Conclude by applying Lemma 4.4.

The same kind of argument can be used to identify the set of idempotent elements for the multiplication of
F-norms.

Proposition 4.5. The only idempotent element for multiplication of F-norms is the sup-norm ‖·‖∞.

The proof is again based on an auxiliary result for real-valued rvs.

Lemma 4.6. Let X and Y be two independent nonnegative rvs having the same distribution and satisfying
XY d= X. Then X = Y = 1 almost surely.

Proof of Lemma 4.6. The assumption is P(XY ≤ t) = P(X ≤ t) for any t. Note that

P(X = 0) = P(XY = 0) = P(X = 0) + P(Y = 0) − P(X = Y = 0)
= P(X = 0)[2 − P(X = 0)]

so that P(X = 0) ∈ {0, 1}, and necessarily P(X = 0) = 0 since E(X) > 0. Then by assumption log X + log Y d=
log X. If φ(t) := E(eit log X) denotes the characteristic function of log X, this entails [φ(t)]2 = φ(t) for any t ∈ R,
by independence. Thus, for any t ∈ R, φ(t) ∈ {0, 1}. Noting that φ(0) = 1 and φ is continuous entails that
necessarily φ ≡ 1, since φ(R)must be a path-connected subset of {0, 1}. As a consequence, log X = 0 almost
surely, completing the proof.

Proof of Proposition 4.5. Let ‖·‖F be an idempotent element for themultiplication of F-norms, with generator
(X1, . . . , Xd). Let (Y1, . . . , Yd) be an independent copy of this rv. Since ‖·‖F is idempotent, we have, for any
x = (x0, x1, . . . , xd) ∈ Rd+1,

E(max(|x0| , |x1| X1Y1, . . . , |xd| XdYd)) = E(max(|x0| , |x1| X1, . . . , |xd| Xd)).

By Theorem 2.2, we �nd that XiYi
d= Xi, for each i ∈ {1, . . . , d}. Conclude by applying Lemma 4.6.
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5 F-norms of general random vectors
The concept of F-norms focuses on the distribution of an arbitrary multivariate rv with nonnegative and in-
tegrable components. Our purpose here is to show how we can also de�ne, in a sensible way, a concept of
F-norms for a rv whose components can attain negative values, under an integrability condition.

Let X = (X1, . . . , Xd) be an arbitrary rv satisfying E(exp(Xi)) < ∞, 1 ≤ i ≤ d. Then Y := exp(X) =
(exp(X1), . . . , exp(Xd)) generates an F-norm ‖·‖expF . As the function x 7→ exp(x) is a bijection from the real
line onto the interval (0,∞), the distribution of X is characterized by the F-norm ‖·‖expF , which we call a log
F-norm.

Example 5.1 (Normal distribution). Put Z := exp(X − σ2/2), where X follows the univariate normal distri-
bution N(0, σ2). The rv Z is log-normal distributed with E(Z) = 1. The log F-norm of X − σ2/2 is then just a
D-norm and equals, for x, y > 0,

∥∥(x, y)∥∥expF = E
(
max(x, yZ)

)
= xΦ

(
σ
2 + log(x/y)

σ

)
+ yΦ

(
σ
2 + log(y/x)

σ

)
,

which is the so-called Hüsler-Reiss D-norm with parameter σ2 > 0 [see 4]; by Φ we denote the df of the
standard normal distribution on R. As a consequence, the normal distribution N(−σ2/2, σ2) of X − σ2/2 is
characterized by the preceding norm ‖·‖expF .

More generally, the log F-norm of the normal distribution N(µ, σ2)with arbitrary µ ∈ R and σ2 > 0 is, for
x, y > 0,

∥∥(x, y)∥∥expF = E
(
max

(
x, y exp

(
µ + σ

2

2

)
Z
))

= xΦ
(
log(x/y) − µ

σ

)
+ y exp

(
µ + σ

2

2

)
Φ
(
σ + log(y/x) + µ

σ

)
.

By Corollary 2.6, we should �nd back the log-normal df from this F-norm by di�erentiating
∥∥(t, 1)∥∥expF on

(0,∞). Clearly

d
dt (
∥∥(t, 1)∥∥expF ) = Φ

(
log(t) − µ

σ

)
+ 1
σΦ

′
(
log(t) − µ

σ

)
− 1
tσ exp

(
µ + σ

2

2

)
Φ′
(
σ − log(t) − µ

σ

)
.

Note also that

Φ′
(
σ − log(t) − µ

σ

)
= 1√

2π
exp

(
−12

[
σ − log(t) − µ

σ

]2)

= t exp
(
−µ − σ

2

2

)
× Φ′

(
log(t) − µ

σ

)
to �nd, as expected:

d
dt (
∥∥(t, 1)∥∥expF ) = Φ

(
log(t) − µ

σ

)
.

Combining the discussion we have developed in the previous example with Theorem 3.1 leads, without any
further calculation, to the following immediate result. This serves as a further example of how the asymptotic
results in Section 3 may be used to establish asymptotic theory.

Corollary 5.1. Let (µn), (σn) be real-valued sequences such that µn → µ and σn → σ > 0. Then:
• The sequence of log-normal distributions with parameters µn and σ2n converges to the log-normal distribu-

tion with parameters µ and σ2 in the Wasserstein metric.
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• The sequence Gn of normal distributions with parameters µn and σ2n converges in distribution to the normal
distribution G with parameters µ and σ2, and the moments of Gn converge to those of G.

More generally, if X follows a multivariate normal distribution N(µ, Σ) with mean vector µ ∈ Rd and co-
variance matrix Σ = (σij)1≤i,j≤d, then each component Yi = exp(Xi) is log-normal distributed with mean
E(Yi) = exp(µi + σii/2). In analogy to the D-norm generated by the normalized rv Z = Y/E(Y) and called
a Hüsler-Reiss D-norm [see 4], we call the F-norm corresponding to Y a Hüsler-Reiss F-norm. It characterizes
the normal distribution N(µ, Σ).

The concept of log F-norms for rvs with an arbitrary sign is not adapted solely to Gaussian distributions,
as we show in the following examples.

Example 5.2 (Gumbel distribution). Let X have the standard negative Gumbel distribution, i.e.

P(X ≤ t) = 1 − e−e
t
, t ∈ R.

Then exp(X) has a unit exponential distribution, and therefore the log F-norm characterizing the standard
negative Gumbel distribution is ∥∥(x0, x1)∥∥expF = |x0| + |x1| exp

(
− |x0||x1|

)
when x1 ≠ 0, and |x0| otherwise (see Example 2.4).

Example 5.3 (On the central limit theorem). Let X(1), X(2), . . . be iid copies of a centered rv X = (X1, . . . , Xd)
having covariance matrix Σ, and a �nite moment generating function in a neighborhood of the origin, i.e.
there exists ε > 0 with φj(t) := E(exp(tXj)) < ∞ for any |t| < ε and 1 ≤ j ≤ d. The multivariate central limit
theorem and continuous mapping theorem imply

exp
(

1√n

n∑
i=1
X(i)
)

d−→ exp(ξ ), (4)

where ξ = (ξ1, . . . , ξd) follows a multivariate normal distribution with mean vector zero and covariance ma-
trix Σ. Besides, we have

E
[
exp

(
2√n

n∑
i=1
X(i)
j

)]
= E

[ n∏
i=1

exp
(

2√nX
(i)
j

)]
=
[
φj(2/

√
n)
]n .

Since Xj is centered with variance Σjj, we have by a Taylor expansion

E
[
exp

(
2√n

n∑
i=1
X(i)
j

)]
=
[
1 + 2

n Σjj + o
(
1
n

)]n
→ e2Σjj .

It follows that the sequence

exp
(

1√n

n∑
i=1
X(i)
j

)
, n ≥ 1,

has a bounded second moment and thus is uniformly integrable [see e.g. 2] for each j = 1, . . . , d. This en-
tails convergence of the sequence of its �rst moments and, combined with (4) and Theorem 3.1, pointwise
convergence of the generated log F-norms, i.e.

E
(
max

(
x0, x1 exp

(
1√n

n∑
i=1
X(i)
1

)
, . . . , xd exp

(
1√n

n∑
i=1
X(i)
d

)))
→ E

(
max

(
x0, x1 exp(ξ1), . . . , xd exp(ξd)

))
as n →∞

for each x0, x1, . . . , xd ≥ 0. We thus have a convergence of F-norms akin to the central limit theorem.
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We could, of course, have used in place of the exponential function any one-to-one increasing transformation
from R to (0,∞) in order to de�ne an F-norm for general rvs. The exponential function, however, interacts
well with our notion of product of F-norms, in the sense that

‖·‖expX * ‖·‖expY = ‖·‖expX+Y

if X and Y are independent: a product of two log F-norms is the log F-norm corresponding to the convolution
of their individual distributions.

6 Geometry of F-norms
The original motivation for constructing F-norms was to combine the distributional properties of a max-CF
with the structure of a D-norm into a single mathematical object. We have so far concentrated on the infor-
mation that F-norms bring about multivariate distributions. We use here the geometry of the F-norms to �nd
yet other di�erent objects who summarize a multivariate distribution.

Since any norm ‖·‖ on Rd+1 is homogeneous, an immediate consequence is that each F-norm ‖·‖F is
uniquely determined by its values on the unit sphere for ‖·‖, namely S‖·‖ :=

{
u ∈ Rd+1 : ‖u‖ = 1

}
: to put it

di�erently, we have for x ∈ Rd+1, x = ̸ 0,

‖x‖F = ‖x‖
∥∥∥∥ x
‖x‖

∥∥∥∥
F
, (5)

with x/ ‖x‖ ∈ S‖·‖. By choosing ‖·‖ = ‖·‖1 and using the radial symmetry of the L1-norm and of F-norms,
we �nd that we need only consider the values of ‖·‖F on the part of the sphere S‖·‖ contained in [0,∞)d+1. In
other words, each df F of a rv X satisfying (H) is characterized by the function

A(t) :=
∥∥∥∥∥
(
1 −

d∑
i=1

ti , t1, . . . , td

)∥∥∥∥∥
F

, t = (t1, . . . , td),

de�ned on ∆1 :=
{
t ∈ [0, 1]d : ∑d

i=1 ti ≤ 1
}
. This construction is similar to that of the Pickands dependence

function in multivariate extreme value theory [see e.g. 8], and we therefore call the function A the Pickands
dependence function of the F-norm ‖·‖F . Let us brie�y mention here that, based on a sample of copies of X,
we can estimate this Pickands dependence function by an empirical version, just as we did in Section 3 for
the full F-norm: let X(1), . . . , X(n) be iid copies of a rv X satisfying (H). Put, for t ∈ ∆1, with t0 := 1 −∑d

i=1 ti,

Ân(t) := 1
n

n∑
i=1

max
(
t0, t1X(i)1 , . . . , tdX(i)d

)
,

which is that (random) Pickands dependence function which characterizes the empirical df F̂n. The asymp-
totic properties of Ân follow directly from our asymptotic results in Section 3: since ∆1 is compact, we get, by
Theorem 3.2,

sup
t∈∆1

∣∣∣Ân(t) − A(t)∣∣∣→ 0 a.s.,

and, by the multivariate extension of Theorem 3.3 mentioned at the end of Section 3, we have
√
n
(
Ân(t) − A(t)

)
→ S(t)

weakly in the space of the continuous functions on the unit simplex in Rd+1, where S is a Gaussian process.
We now explore how, instead of characterizing an F-norm by a function such as its Pickands dependence

function, we can identify it by a compact set which summarizes the geometry of an F-norm. Recall that an
F-norm is characterized by its values on any sphere S‖·‖, where ‖·‖ is an arbitrary norm onRd+1. By choosing
‖·‖ = ‖·‖F and using the radial symmetry of any F-norm, we obtain the following corollary.
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Corollary 6.1. Each F-norm ‖·‖F onRd+1 is characterized by the part of its unit sphere contained in the positive
orthant of Rd+1, that is:

S+‖·‖F := S‖·‖F ∩ [0,∞)d+1 =
{
x ≥ 0 ∈ Rd+1 : ‖x‖F = 1

}
.

This corollary provides a compact set characterizing anymultivariate distributionwith nonnegative, nonzero
and integrable components. For suchdistributions, it is therefore analternative to the lift zonoid studiedby [9]
and [11]. The next two examples show how this set can be computed in practice.

Example 6.1 (Unit sphere for the uniform F-norm). Let F be theuniformdistributionon (0, 1).Weknow from
Example 2.3 that this distribution is characterized by the bivariate F-norm given by

∀x0, x1 ≥ 0,
∥∥(x0, x1)∥∥F =

x0, if x1 ≤ x0,
x20 + x21
2x1

, if x1 > x0.

As a consequence, the set S+‖·‖F corresponding to this norm is the set

S+‖·‖F =
{
(1, x1) : x1 ∈ [0, 1]

}
∪
{(

x0, 1 +
√
1 − x20

)
: x0 ∈ [0, 1)

}
.

This set is represented in Figure 1.

Example 6.2 (Unit sphere for the Hüsler-Reiss norm). Let ‖·‖F be the bivariate Hüsler-Reiss norm with pa-
rameter σ2, that is

∀x, y > 0,
∥∥(x, y)∥∥F = xΦ(σ2 + log(x/y)

σ

)
+ yΦ

(
σ
2 + log(y/x)

σ

)
.

Clearly (1, 0) and (0, 1) belong to S+‖·‖F . If x, y > 0 are such that (x, y) ∈ S+‖·‖F then

Φ
(
σ
2 + log(x/y)

σ

)
+ yxΦ

(
σ
2 + log(y/x)

σ

)
= 1
x ,

which implies, if λ := y/x ∈ (0,∞), that

x = 1

Φ
(
σ
2 −

log(λ)
σ

)
+ λ Φ

(
σ
2 + log(λ)

σ

) ,
and y = λ

Φ
(
σ
2 −

log(λ)
σ

)
+ λ Φ

(
σ
2 + log(λ)

σ

) .
It is readily checked that conversely, any point of the form

1

Φ
(
σ
2 −

log(λ)
σ

)
+ λ Φ

(
σ
2 + log(λ)

σ

) (1, λ), for λ ∈ (0,∞)

belongs to S+‖·‖F , so that we have a parametrization of S+‖·‖F making it possible to represent this set. This is
done in Figure 2 for various values of σ. One can observe in this Figure that, as should be apparent from the
parametrization, the limit σ ↓ 0 produces the part of the sphere of the sup-norm onR2 contained in the upper
right quadrant, while the limit σ →∞ yields the segment {(x, 1− x), 0 ≤ x ≤ 1}, corresponding to the sphere
of the L1−norm.
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Figure 1: The set S+‖·‖F for the standard uniform distribution.
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Figure 2: The set S+‖·‖F for the bivariate Hüsler-Reiss F-norm. Dashed curve: σ = 0.1, solid curve: σ = 1, dotted curve: σ = 2,
dashed-dotted curve: σ = 3.
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Example 6.2 suggests that the convergence of F-norms, and thus convergence of the pertaining distributions
in the Wasserstein metric, is at least informally linked to the convergence of their unit spheres. To make this
intuition rigorous, we recall the de�nition of a Hausdor� metric. If ‖·‖ is an arbitrary norm on Rd+1 and A, B
are two subsets of Rd+1, we let their ‖·‖-Hausdor� distance to be

dH,‖·‖(A, B) = max
{
sup
y∈B

inf
x∈A
‖x − y‖, sup

x∈A
inf
y∈B
‖x − y‖

}
.

Intuitively, two sets A and B are therefore close in the ‖·‖-Hausdor�metric if and only if each point in A (resp.
B) is close, in terms of ‖·‖, to at least one point in B (resp. A). Such a distancemay be in�nite under no further
assumptions on A and B, but is always �nite if A and B are bounded. With this de�nition in mind, we have
the following result.

Theorem 6.2. Pointwise convergence of a sequence of F-norms ‖·‖Fn to an F-norm ‖·‖F on Rd+1 is equivalent
to convergence of the sequence of sets S+‖·‖Fn to S

+
‖·‖F

in any Hausdor� metric dH,‖·‖ on Rd+1.

Our �nal result, relating convergence of distributions in theWassersteinmetric to convergence of unit spheres
of F-norms in the Hausdor� metric, is now an immediate corollary of Theorems 3.1, 6.2 and the radial sym-
metry of F-norms.

Corollary 6.3. If Fn, F are multivariate dfs on Rd with nonnegative, nonzero and integrable components, then
the convergence of Fn to F in the Wasserstein metric is equivalent to the convergence of the unit sphere of ‖·‖Fn
to the unit sphere of ‖·‖F in any Hausdor� metric dH,‖·‖ on Rd+1.

Proof. We start by noting that since all norms are equivalent onRd+1, it is su�cient to prove the theorem for
the Hausdor� metric dH,‖·‖ induced by the norm ‖·‖F .

Suppose that ‖·‖Fn → ‖·‖F pointwise. Then, by Theorem 3.1, we have Fn → F in the Wasserstein metric.
Let X(n), X have dfs Fn and F. This yields

∀j ∈ {1, . . . , d}, E
(
X(n)j

)
→ E

(
Xj
)

as n →∞,

and thus, since X(n), X satisfy (H), there is c > 0 such that E
(
Xj
)
≥ c and E(X(n)j ) ≥ c for any n. De�ne then a

weighted sup-norm ‖·‖∞,c on Rd+1 by∥∥(x0, x1, . . . , xd)∥∥∞,c := max(|x0|, c|x1|, . . . , c|xd|).

By Proposition 2.4, we obtain ‖·‖F ≥ ‖·‖∞,c and ‖·‖Fn ≥ ‖·‖∞,c for any n. Consequently, if B denotes the closed
unit ball for the norm ‖·‖∞,c andB := B∩[0,∞)d+1, thenB contains S+‖·‖F and the S+‖·‖Fn for any n. In addition,
by inequality (3) and sinceB is compact,

un := sup
x∈B

| ‖x‖Fn − ‖x‖F | ≤ supx∈B

‖x‖∞ · dW (Fn , F)→ 0.

Assume from now on that n is so large that un < 1. Pick x in S+‖·‖F . Then sinceB contains S+‖·‖F , we have

| ‖x‖Fn − 1| = | ‖x‖Fn − ‖x‖F | ≤ supx∈B

| ‖x‖Fn − ‖x‖F | = un .

This also entails ‖x‖Fn ≥ 1 − un. Note then that x/ ‖x‖Fn ∈ S
+
‖·‖Fn

and thus∥∥∥∥x − x
‖x‖Fn

∥∥∥∥
F
=
| ‖x‖Fn − 1|
‖x‖Fn

≤ un
1 − un

=: εn . (6)

If x in S+‖·‖Fn we have, sinceB contains S+‖·‖Fn ,

| ‖x‖F − 1| = | ‖x‖Fn − ‖x‖F | ≤ supx∈B

| ‖x‖Fn − ‖x‖F | = un .
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Write then x/ ‖x‖F ∈ S+‖·‖F , which yields∥∥∥∥x − x
‖x‖F

∥∥∥∥
F
= | ‖x‖F − 1| ≤ un ≤ εn . (7)

From (6) and (7) it follows that
dH,‖·‖F

(
S+‖·‖Fn , S

+
‖·‖F

)
≤ εn → 0,

showing the convergence of S+‖·‖Fn to S
+
‖·‖F

in the Hausdor� metric dH,‖·‖F .
Conversely, suppose that S+‖·‖Fn → S+‖·‖F in the Hausdor� metric dH,‖·‖F . By radial symmetry and homo-

geneity of F-norms it is enough to prove the desired pointwise convergence of ‖·‖Fn to ‖·‖F on S
+
‖·‖F

. Pick then
x ∈ S+‖·‖F . Note that x/ ‖x‖Fn ∈ S

+
‖·‖Fn

and thus, by assumption, there is a sequence (z(n)) ⊂ S+‖·‖F with∥∥∥∥z(n) − x
‖x‖Fn

∥∥∥∥
F
→ 0.

By the reverse triangle inequality, this entails∣∣∣∣1 − 1
‖x‖Fn

∣∣∣∣ = ∣∣∣∣∥∥∥z(n)∥∥∥F − ‖x‖F‖x‖Fn

∣∣∣∣ ≤ ∥∥∥∥z(n) − x
‖x‖Fn

∥∥∥∥
F
→ 0.

This shows that 1/ ‖x‖Fn → 1 and thus ‖x‖Fn → 1 = ‖x‖F as required.

7 Conclusion
D-norms are tailor-made formultivariate extreme value theory as they turn out to provide an easily accessible
common thread, in the sense that they do not require the knowledge of multivariate regular variation and of
the associated topology background. Our paper introduces F-norms, which are an o�spring of D-norms, to
address the general framework of multivariate distributions rather than the max-stable distributions that
are the focus of multivariate extreme value theory. While there is currently no competitor to the concept of
D-norms in multivariate extreme value theory, there are of course various competitors to the concept of F-
norms, such as the Fourier and Laplace transforms. As this paper shows, F-norms have their place in the
probabilistic toolbox; while the pointwise convergence of Fourier and Laplace transforms is linked to weak
convergence, the convergence of a pointwise sequence of F-norms translates intoWasserstein convergence of
the underlying sequence of distributions. In this sense, F-norms behave like the max-characteristic function
of [6], but their added norm structure o�ers an interesting geometric characterization of a distribution by a
compact set, in a di�erent way to existing alternatives such as the lift zonoid. As a corollary, the use of F-
norms provides a nice interpretation of convergence in the Wasserstein metric by the means of convergence
in Hausdor� metrics.

A promising aspect of F-norms is the good behavior of their random sample counterparts, as illustrated
in Section 3, and the associated consequences this may have for statistical methodology. For instance, it
is not di�cult to imagine a goodness-of-�t test based on Theorem 3.3. The generalization of the results of
Section 3 on the convergence of empirical F-norms to the case of stationary but dependent data is another
interesting problem. Theorem 3.2 rests on the strong law of large numbers, which is known to be true for
stationary and, say, mixing sequences under appropriate conditions, see for instance [14] in the context of
ρ−mixing. Generalizing Theorem 3.3 would require the use of empirical processes techniques for dependent
data, for which a good starting point is [3]. These lines of investigation are beyond the scope of the paper
and will be part of future research on the topic of F-norms.
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