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Highlights 

 We consider approaches to experimentally quantifying the Hutchings and Lillford’s 

conceptual food breakdown path  

 New definitions of ‘Structure’; and ‘Lubrication’ are proposed to obtain hypothetical 

‘breakdown’ curves for a brittle snack food and an emulsion 

 Strategies to incorporate the multiple influences of saliva on the underlying physics 

of oral processing are proposed  

 

 

Abstract 

  We discuss food oral processing research over the last two decades and 

consider strategies for quantifying the food breakdown model, originally 

conceptualised by Hutchings and Lillford .  The key innovation in their seminal 1988 

paper was shifting the focus from intact food properties, measured in the lab, towards 

strategies to capture the dynamic nature of eating. This has stimulated great progress 

in the field, but a key aspect missing in oral processing research is the conversion of the 

Hutchings and Lillford breakdown path conceptual model into quantifiable parameters 

considered in the context of physiological factors such as saliva and oral movements.  

To address these short comings, we propose the following analysis: Hutchings’s and 

Lillford’s definitions of “Structure” and “Lubrication” are incomplete and they comprise 

many and varied physicochemical properties. We offer, here, a deeper analysis of each 

parameter, and propose strategies for researchers to consider in their quantification as 

an update of the Hutchings and Lillford Breakdown path.  

 

Practical Applications 

The role of saliva in oral processing: reconsidering the Breakdown Path paradigm  
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 The concept of a Breakdown Path for foods has been foundational to 

contemporary food oral processing research. However, the original idea described by 

Hutchings and Lillford was qualitative and therefore not easily applied to the analytical 

and sensory measurements commonly used. This manuscript presents a recrafting of 

the Hutchings and Lillford Breakdown Path in the context of analytical measurements. 

By being framed in terms of quantifiable properties, particularly time-dependent 

properties, our updated breakdown path can be considered alongside temporal-based 

sensory testing techniques.  

  

Introduction 

Several decades of research into food physical properties has led to good integration 

of texture measurements and sensory testing, integration that continues to provide insights 

about oral processing. For example, techniques like time-intensity and temporal dominance 

of sensations are moving our focus from measuring static properties—which texture 

measurements historically probed—to capturing dynamic behaviour. But texture is our 

brain’s description of interactions between food and our physiology, as Hutchings and 

Lillford (1988) argued in their statement that texture exists in the brain. As such, using 

correlations of instrumental measurements performed in vitro with sensory data collected 

in vivo will not help us fully explicate the causality tying sensory percepts to physical 

properties. To complete the link, we hypothesise, requires in vitro experiments aimed at 

elucidating the physics underlying the processes occurring in-mouth. Liu et al. (2015), for 

example, present a highly integrated study into the structure and breakdown of emulsion-

filled gels by using in vitro and in vivo techniques. Eating comprises mechanical & chemical 

actions, interactions between food and receptors, signal transfer to the brain, cognition and 

feedback. This complex system places rheology (i.e., flow), physiology and psychology as 

foundational disciplines in oral processing research. These disciplines therefore provide a 

framework for elucidating the following relationships: (1) the interplay between 

deformations (e.g., bending and puncture (Castro-Prada et al., 2012) or dilution (Chen and 

Lolivret, 2011)), and food physical properties (e.g., shear viscosity, fracture behaviour, 
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acoustic response), (2) how those properties are ‘detected’ by receptors in the oral cavity 

(e.g., mechanoreceptors and nociceptors) to create a sensory input (Engelen, 2012), (3) 

how the input is processed by our brain, including the input’s cortical representation 

(Guest et al., 2007; Eldeghaidy et al., 2011) and (4) the sensory input’s transformation into 

a perception (Rolls, 2011). Stieger and van de Velde (2013) highlight the presence of a 

feedback system linking perception and oral movements. We direct the reader elsewhere 

for a deeper review of the different receptors (Engelen, 2012) and brain activity (Rolls, 

2011).  Here, we will focus on the underlying physical processes linking deformations to 

changes in food physical properties (i.e., purely in vitro approaches). We will also highlight 

the role of saliva and the growing importance of and focus on capturing the transient 

behaviour of food.  

With this article, we introduce an in vitro analytical-based research approach 

considered within the context of, but different to, the Hutchings and Lillford breakdown 

path (H&L BP). Our approach retains the “Structure” and “Lubrication” parameters and 

suggests quantifiable versions of both. The new model places the two parameters on 

separate two-dimensional graphs instead of the single three-dimensional graph proposed 

by Hutchings and Lillford.  

 

Breakdown during oral processing 

Hutchings and Lillford (1988) proposed that eating is dynamic and that food 

breaks down to a safe-for-swallow bolus following a unique path. Lillford (2011) 

followed up on the breakdown path conceptual model (H&L BP)by considering the 

experience of and the potential physical changes occurring during eating, using a few 

very different food systems as examples. The H&L BP, as a qualitative concept, has 

impacted the field of oral processing research. However, loose and abstract definitions 

of “structure” and “lubrication” restricted the adoption of the H&L BP as a tool for 

quantifying texture attributes in terms of physical measures. These two terms 

encompassed a range of size scales and processes thereby rendering them a bridge 

from texture to physical properties, not absolute quantities. Whilst Hutchings and 
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Lillford focused on presenting a conceptual model of “in-mouth perceived texture” by 

framing the psychophysics in terms of intuitive food physical properties, it also 

encouraged exploration of quantifiable relationships between the physics of food 

breakdown and perceived texture and highlighted the need to consider in more detail 

the influence of saliva. 

 

The H&L BP in brief. The Hutchings and Lillford  breakdown path conceptual model 

sought to combine in-mouth perceived properties as bulk mechanical/rheology 

properties (e.g., toughness, thickness), particulate properties (e.g., meat fibres, lumps in 

custard) and transport properties (e.g., flavour, juiciness, sensation of fat)  into three 

axes: “degree of structure”, “degree of lubrication” and time. Structure was considered 

in terms of mechanics, of both the bulk product and individual particles within the 

sample or formed during comminution (chewing). Lubrication was considered in terms 

of the presence of liquids, e.g., moisture level or amount of fat, and incorporates the 

effect of saliva to hydrate, lubricate and assist in breaking down the food.   Time was 

considered according to the number of chews or temperature. 

Additionally, Hutchings and Lillford provided the following insightful 

statements: (1) texture exists in the brain, and (2) eating is a dynamic process thus no 

single physical/physiological/neural property measurement can capture the entirety of 

eating. The second statement underlies recent advances, including: time-intensity (TI), 

temporal dominance of sensations (TDS) (Lenfant et al., 2009; Foster et al., 2011; Koç et 

al., 2013; Young et al., 2013). Additionally, methods such as acoustic signal capture 

(Saeleaw and Schleining, 2011) and jaw activity measurements (Koc et al., 2014) nicely 

supplement mechanical testing and sensory trials. There have also been advancements 

to in vitro approaches that capture the transient behaviour of some important physical 

properties, e.g., bulk elastic modulus (Boehm et al., 2013; Boehm et al., 2014) and 

friction (Selway and Stokes, 2013). Recently, Mohammed et al. (2014) used Scanning 

Electron Microscopy, X-ray Micro Tomography and Finite Element modelling to probe 

microstructural changes during compression while simultaneously collecting stress-
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strain responses; this approach combines several techniques to investigate potential 

changes occurring during first bite and comminution. 

 

Developments on the H&L BP and the role of saliva in oral processing. A key aspect in the 

H&L BP that is challenging to incorporate is the multiple facets and complexity arising from 

the influence of saliva on the modification of structure and lubrication parameters with 

time.  Rosenthal and Share (2014) propose a shift in the way we think about the H&L BP: 

taking peanut paste as an example, the authors suggest that upon addition of small 

amounts of saliva the paste “structure” actually increases, then decreases with increased 

saliva incorporation. Contrary to the historical idea of a pure “breakdown path”, Rosenthal 

and Share suggest a more complicated physical pathway, at least for the structure 

component. The behaviour seen by Rosenthal and Share was most likely due to small 

amounts of saliva, i.e., a water-rich proteinaceous secretion, binding particles and resulting 

in an increase in the phase volume due to aggregation; this process is called granulation 

(Stokes et al., 2013). Other researchers (Lucas et al., 2002; Rodrigues et al., 2014) have also 

made steps towards integrating granulation into oral processing. 

 

Research into the astringency of polyphenol-rich foods, e.g., tea and certain fruits and 

vegetables, as well as wine, led to a shift in how we evaluate saliva’s role in mediating oral 

processing (de Freitas and Mateus, 2001; Jobstl et al., 2004; Bajec and Pickering, 2008; 

Rossetti et al., 2008; Rossetti et al., 2009).  Astringency was thought to be a tactile percept 

driven by aggregation of astringent compounds with salivary-proteins, which caused a loss 

of the lubricating salivary film from the oral surfaces (Green et al., 1993), but it is now clear 

that this is a contributing factor rather than a defining one (Gibbins and Carpenter, 2013; 

Ma et al., 2014).  Rossetti et al (2009) certainly found that highly astringent compound 

aggregated with salivary proteins and caused their depletion from substrates (pre-

adsorbed, in vitro) and led to an increase in friction;  however, in some formulations, 

astringency was still observed without this occurring, whilst in others, there was a 

significant loss of saliva-lubrication yet astringency was only weakly perceived if at all.  
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Another influencing factor is that some astringent compounds are found to directly interact 

with oral tissues and epithelial cells (Gibbins and Carpenter, 2013).  In addition, recent 

work identified a trigeminal G protein–coupled receptor pathway for astringent 

compounds, which suggests direct involvement of specific astringent molecules (e.g. 

galloylated polyphenols) in the stimulation of trigeminal nerve fibres (Vogt-Eisele et al., 

2014).   

Also influential is the realisation of how a saliva deficiency affects swallowing 

(Engelen et al., 2005; Chen, 2009) and contributes to the mechanisms implicated in 

dysphagia (Cichero and Halley, 2006). Another important factor was an attempt to 

understand the underlying physical mechanisms of “creaminess” perception, which is a 

highly complex and culturally subjective consumer attribute that is nonetheless widely 

used in consumer need-driven industrial product design (Janssen et al., 2007; Dresselhuis 

et al., 2008; Vingerhoeds et al., 2009; van Aken et al., 2011).  

First, saliva is a key factor in mastication of solid foods as they undergo 

comminution  into sub-millimetre particles that reform into a cohesive bolus for 

swallowing.  Within this process, saliva plays multiple roles that depends on the food 

material and can include actions such as wetting, hydration, emulsification and flocculation 

(see review by Witt & Stokes 2015), and it lubricates to enable swallowing and prevent 

friction from the rubbing of hard particles at oral surfaces (Bongaerts et al., 2007b).  

Hydration can soften and swell solid-food particles, and for starch-containing foods, this is 

a rate-limiting step for the enzymatic digestion of starch (Boehm et al., 2013). Saliva can 

thus modulate the food chemically via the action of such enzymes as salivary -amylase 

(Janssen et al., 2007; Janssen et al., 2009).  Saliva modulates particle/bolus adhesion to oral 

surfaces as well as cohesion between particles, and can thus determine the progression of 

oral processing and swallowing (Prinz and Lucas, 1995).   In addition, the thin salivary film 

that coats oral surfaces, a so-called salivary pellicle (Gibbins et al., 2014a; Yakubov, 2014), 

impacts such perceptions as astringency and stickiness, and may mediate such after-feel 

attributes as drying or roughness (Prinz and Lucas, 2000; Lucas et al., 2002). All these 

factors are important to texture, mouthfeel and taste perception (Dresselhuis et al., 2008; 
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Vingerhoeds et al., 2009l; van Aken et al., 2011). With regards to the taste perception, it is 

mediated by the ability of tastant molecules to transfer (either via diffusion or through 

other mass transfer mechanisms such as mechanical and osmotic mixing and convection) 

through the salivary film to the underlying taste receptors (Salles et al., 2011). This can be 

evidenced in patients with xerostomia (dry mouth syndrome) who have been found to 

have a diminished sense of taste (Christensen et al., 1981). 

The key colloidal factors that influence saliva’s ability to break down foods, 

modulate bolus rheology, lubricate and mediate post-swallowing oral friction are the 

presence of salts and a cocktail of proteins, including a set of highly specialised enzymes 

(Yakubov et al.; Gibbins et al., 2014a) that contribute to saliva’s capacity to transform food 

via enzymatic reactions. This multicomponent system has four key unique physical 

properties, listed below: 

 (A) saliva is a highly viscoelastic fluid—as illustrated by its stringiness upon 

extension—with a surprisingly water-like shear viscosity (Stokes and Davies, 2007; Davies 

et al., 2009).  

(B) saliva has the unique ability to absorb onto substrates of different chemical 

nature, including air-liquid interfaces, and form multi-component protein-rich films that 

facilitate lubrication, wetting, changes in the surface tension and surface elasticity (Rossetti 

et al., 2008; Macakova et al., 2010, 2011; Harvey et al., 2012; Gibbins et al., 2014b; Yakubov 

et al., 2015).   

(C) salivary -amylase contributes to the starch hydrolysis and associated 

transformation of starch-rich foods. Carbonic anhydrase IV catalyses the hydration of 

carbon dioxide and is crucial to the buffering capacity of saliva and the balance of salivary 

bicarbonate (Ash et al., 2013; Ash et al., 2016).  

(D) The oral microflora, which comprises more than 1000 identified species (Marsh 

et al., 2016), has a diverse impact on such aspects as flavour perception (e.g., though the 

formation of cysteine-conjugates (Starkenmann and Niclass, 2011)). 

The key physiological factor contributing to saliva’s role in oral processing is that 

saliva is primarily produced by three types of paired glands: parotid, sub-mandibular and 
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sub-lingual. As a note, soft tissues of the oral mucosa host small (1–2 mm) secretory 

apparatuses, called minor salivary glands. These are distributed throughout the oral cavity, 

with some notable locations in the tissues of the buccal, labial and lingual mucosa. Although 

minor salivary glands contribute only about 10% to the total volume of human saliva, they 

produce mucin- and immunoglobulin-rich saliva. In addition, the von Ebner’s glands (also 

called gustatory glands), which are located proximally to the circumvallate and foliate 

papillae in the tongue, produce secretions that contain several enzymes such as lingual 

lipase.  

The salivary glands are stimulated by neural reflexes, and at rest, the salivary flow 

rate is relatively low, on the order of 0.1-0.5 ml/min; the resting saliva along with the oral 

microbiome are important factors in generating a “neutral” oral perception baseline. Upon 

stimulation, such as mechanical chewing action or presence of acids (Stokes and Davies, 

2007; Davies et al., 2009), the salivary flow rate increases to 1-5 ml/min. The type of 

stimulation dictates variations in salivary composition (Stokes and Davies, 2007). Chewing 

actions stimulate parotid glands that produce watery secretions. Acid stimulates sub-

lingual and sub-mandibular (SLSM) gland secretions, which are rich in mucins, a 

specialised class of high molecular weight glycoproteins that confer SLSM saliva its highly 

elastic rheological properties and ability to lubricate above that of parotid secretions. The 

salivary flow rate from all glands vary between individuals and time-of-day within 

individuals, which is anticipated to alter how products behave and are perceived during 

oral processing.  A key challenge in oral processing research is accounting for inter and 

intra-individual differences in oral physiological parameter that includes saliva flow rate 

and composition.  

 

Next-generation H&L 

 In considering the H&L BP, we propose a two-fold means in which to take it from 

a qualitative framework for oral processing research to a quantitative model capable of 

representing the dynamics of in vitro changes in physical properties and guiding 

measurements of in vivo physical properties. First, for ease of presentation and 
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interpretation, we recommend that the original three-dimensional graph of the H&L BP 

is replaced by two two-dimensional graphs: one displaying the structure parameter 

versus time, the other displaying the lubrication parameter versus time. Second, we 

suggest the structure and lubrication parameters be defined with relevant measurable 

parameters:  we use a dimensionless particle area for the structural parameter and a 

dimensionless friction parameter for the lubrication parameter.  This interpretation 

aims to provide a numerical frame of reference for structure and lubrication.  

[figure 1 here] 

Structure. We consider this in the context of solid foods, whereby Witt & Stokes (2015) 

provide a schematic of the oral processing that shows breakdown with time due to 

comminution (chewing), but then comminuted particles agglomerate, hydrate and form a 

suspension upon incorporation of saliva.   As an example of this process, we consider the 

structure parameter as applied to brittle snack foods, e.g., potato chips. We illustrate in 

figure 1 the hypothetical response of a potato chip to the different stages of oral processing 

and highlight the important physical properties underlying the different physical processes 

that occur.  

During the stages of first bite and comminution, breakdown will depend on 

properties like size, shape and modulus and/or hardness of the chip.  Research has found 

that the critical stress intensity factor to be a useful tool when comparing different foods 

(Vincent et al., 2002), whilst fracture strain is also useful when examining the breakdown 

of gels (Rodrigues et al., 2014; Mosca et al., 2015). In general, the fracture behaviour of a 

food is critical, but our ability to determine, a priori, the resulting particle size distribution 

is still under investigation. One approach involves developing mechanical mouth models to 

controllably investigate breakdown (Sun et al., 2014). As the food is broken down into 

particles, oil or associated water can be released from as well as saliva incorporated into 

the particles; this liquid, i.e., binder, can drive aggregation of the particles. This process of 

binder-mediated aggregation is called granulation, which is dependent upon particle 

kinetic energy and binder viscosity. Mosca et al. (2015) investigated sweetness perception 

as a function of gel mechanical properties: using agar and gelatin, they independently 
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adjusted the fracture stress and fracture strain of their gel samples; these gels were layered 

to create a bulk sample with a heterogeneous distribution of sucrose. Sucrose release was 

measured in vitro and sweetness intensity was measured in vivo. Images were taken of 

expectorated boluses at different chew points, which show, for this soft-solid food, that 

comminution and granulation likely proceed in tandem. For these high water-content 

samples, one might expect water release throughout oral processing thereby leading to a 

cohesive, capillary force-driven bridging between newly created particles. 

 As bolus formation proceeds, the particles hydrate and soften, aggregate and form 

the soft mass that is eventually swallowed. We have focused extensively on the rheological 

properties of that soft mass in relation to potato chips (Boehm et al., 2013; Boehm et al., 

2014), and we have analyzed the transient and pseudo-steady state behaviour of the bolus. 

We found that the bolus elasticity, G’, can be modelled in terms of a square-root-of-time 

dependence and a power law dependence on solids concentration (figure 1). 

[figure 2 here] 

Given the evolution of the food into a bolus, in the H&L approach we propose 

that the structure parameter be a function of some dimensionless area: at any time, the 

average area of a ‘particle’ (ap) (or some characteristic particle area) is compared to the 

initial, i.e., intact, food area (ainitial). The so-called ‘particle’ is initially the particles 

generated from comminution but is then the agglomerated mass as the bolus forms.  

For instance, figure 2a shows a hypothetical breakdown curve for potato chips where 

the structure parameter, S =  ap/ainitial. From literature (Prinz and Lucas, 2001), we 

know that first bite results in large pieces, and comminution further breaks those large 

pieces; granulation and bolus formation, however, involve aggregation and thus a build-

up in the characteristic bolus ‘particle’ area.  The scenario presented assumes that the 

large comminuted particles are perceived in the initial stages of consumption, but the 

bolus size is dominant at the later stages.  While this scenario may capture the 

evolution of some characteristic structural parameter as solid food is transformed to a 

swallowable bolus, it does not incorporate the bulk or particulate mechanical 

properties nor changes in the physical properties of the bolus; we suggest this is the 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



12 
 

role of the lubrication parameter.   

For soft foods and fluids, it is less clear as to the defining structural parameter, 

and we suggest that the largest structural element within the system is most relevant.  

Figure 2b considers this approach for a food emulsion, where the initial area is the 

average area of oil droplets before first bite.  In this case, past research (Dresselhuis et 

al., 2008; Vingerhoeds et al., 2009; van Aken et al., 2011) has shown that initially 

stabilized oil droplets may aggregate in-mouth, which would lead to a build-up in the 

area of the oil (as well as coating of oral surfaces). Another novel aspect of our proposed 

approach is to also attempt to incorporate the structure parameter after swallow: 

coating of oral surfaces by oil or tooth packing by solids are known to impact the 

sensory experience, yet these attributes have not been captured in past models.   

[figure 3 here] 

Lubrication. Oral lubrication is essentially the degree by which there is a smooth process of 

operation between interacting oral surfaces.   The main contribution to lubrication is the 

rheology (viscosity) of the fluid confined between oral surfaces in relative motion, but 

lubrication (i.e., tribology) is a systems property that depends on many factors (figure 3). 

To adequately describe the properties of a rubbing contact we should consider the 

following points: (1) properties of the rubbing surfaces, including their surface roughness 

and viscoelasticity (Bongaerts et al., 2007a; Selway et al., 2017); (2) confined fluid films 

that can be characterised by viscosity and, for multi-phase fluids, the properties of 

constituent phases such as particle modulus; (3), the fluid-solid interfaces, which include 

properties such as wetting characteristics and polymer/surfactant adsorption.  These 

nuances have been deeply explored using model lubrication studies involving soft 

substrates such as elastomeric balls and plates, i.e., soft-tribology (Bongaerts et al., 2007a). 

With the work of Stokes (Stokes, 2012c, d; Stokes et al., 2013; Witt and Stokes, 2015), van 

Aken (Dresselhuis et al., 2008; van Aken, 2013), Prinz (de Hoog et al., 2006; De Wijk and 

Prinz, 2006; Prinz et al., 2007), Norton (Gabriele et al., 2010) and many others, soft-contact 

tribology has, over the past decade, become a pivotal tool for gaining insights into the 
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lubricating properties of liquids and macromolecules relevant to oral processing (the 

reader is guided elsewhere (Stokes, 2012b) for background on soft-contact tribology).  

[figure 4 here] 

For our purposes, we state that the commonly measured parameter is a friction 

coefficient, which is essentially the inverse of how we define lubrication.  We highlight, 

in figure 4, the importance of identifying the underlying physical processes contributing 

to the measured friction. Due to the shape of the Stribeck curve, similar friction 

coefficients are attainable in the approach to the boundary regime and the 

hydrodynamic regime. In considering just the influence of viscosity on lubrication and 

friction, both a low viscosity and high viscosity fluid can exhibit a low degree of 

lubrication (high friction); a high viscosity may prevent surface contact but causes high 

resistance to motion, while a low viscosity has little resistance to motion but is unable 

to prevent contact between surfaces.  Another key factor is that foods are typically 

heterogeneous, whereby the lubrication is dependent on the presence and properties of 

large particles or droplets in the mouth in addition to the properties of the fluid present 

in the mouth.   

In considering quantification of the lubrication parameter, we suggest here that 

the best reference state is the friction coefficient for unstimulated, resting saliva 

expectorated and adsorbed on soft substrates.  This is chosen as an in vitro equivalent 

to the in vivo condition of saliva-coated oral surfaces.   We emphasize the importance of 

using appropriate and controlled protocols for saliva collection, with recommended 

methodologies detailed in Stokes et al. (2012a, b) that seek to limit saliva variability by 

having a consistent source of saliva for any given set of work.  

We show hypothetical curves for the lubrication during oral processing of 

hypothetical brittle snack food (e.g., oily potato chips), in figure 5a, and an emulsion, in 

figure 5b. In the case of oily potato chips, the friction would be initially high because the 

chip particles are hard and un-hydrated. During further comminution, oil can be 

released that may coat the particles and/or surface to enhance lubrication.  As oral 

processing proceeds, the particles may also hydrate and become softer as the bolus is 
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formed.  The rheology or viscosity of the bolus may then dominate the lubrication and 

this may lead to a drop in the friction.  Oil from the potato chip is likely to coat oral 

surfaces, and thus after swallowing, an oily residue may exist and thereby impact 

mouthfeel.  

[figure 5 here] 

For an emulsion, the salivary film coating may dominate the initial stage of oral 

processing, but the salivary proteins can wear from the surfaces due to associations 

with components in the food, or due to favourable wetting of the underlying surface by 

oil, both of which will likely increase the friction coefficient. This is a nuanced topic, 

however. Some surfactants do provide a friction coefficient lower than saliva, and 

whether or not the system is in the boundary or mixed regime influences, e.g., oil’s 

impact on the friction coefficient.  

In the case of a food emulsion, the sample may be lubricating (low friction 

coefficient) initially due to the high-viscosity (although shear-thinning rheology) of the 

emulsion, which is anticipated to drive the lubrication into the elastohydrodynamic 

regime. However, as the food emulsion structure evolves with time due to shear and 

upon  interacting with saliva, the rheology will alter and there may be an increase in 

friction associated with oil flocculation by salivary proteins (Silletti et al., 2007; 

Vingerhoeds et al., 2009). This could potentially arise from the flocculates impairing 

lubrication due to an increase of effective roughness or due to depletion of proteins 

from the salivary pellicles that get adsorbed to the floc (and thus a loss of the 

lubricating salivary film coating).  In addition, one should consider oil emulsification by 

salivary proteins,  where oil added directly to the mouth has been shown to break up 

into droplets during in vivo oral processing (Adams et al., 2007). The exact mechanism 

will depend on the stability of the emulsion, and type/quantity of emulsifier (protein, 

surfactant, particle). Unstable emulsions with large oil droplet size may be perceived as 

lubricating, because oral de-stabilisation and droplet coalescence lead to an oily coating 

of the mouth.   
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One should consider the choice of the surfactant used to stabilise emulsions—

some surfactants can enhance lubrication (Bellamy et al., 2009) while others may 

compete with salivary proteins for the surface area, and, by replacing salivary proteins 

on oral surfaces, lead to an astringent sensation (e.g., SDS (Bongaerts et al., 2007b; 

Rossetti et al., 2008) 

 

Saliva and Lubrication. We highlight saliva’s role in the Lubrication parameter by 

dividing the friction coefficient at any given time by the friction coefficient of saliva at 

rest (see figure 5). This relates friction during oral processing to the inherent friction 

we experience when not eating, a so called neutral friction or resting friction.  Given the 

diversity of food structures and the frequency with which we experience saliva’s 

inherent frictional properties, we believe using a lubrication parameter normalized to 

saliva’s resting friction is the most relevant approach. That is, it is deviations from 

saliva’s “normal” lubricating function that is likely to be perceived, as can be expected 

upon interactions with foods and beverages.  We suggest that a relevant baseline, one 

tethered to a measurable physiological property (i.e., resting saliva friction), is needed 

in order to consider the frictional properties of disparate foods. 

 Recent research highlights ways in which saliva’s interactions—and 

importance—with foods can be measured and used to inform on in vivo oral processing. 

Stokes et al. (2013) discusses how soft tribology is being used to investigate the in vitro 

transient behaviour of liquid and soft-solid systems confined to narrow gaps between 

moving surfaces and to gain insights into in vivo percepts like mouthfeel and afterfeel. 

Recently, Selway and Stokes (2013) used smooth poly(dimethyl siloxane) (PDMS) 

surfaces (root mean squared roughness of approximately 10 nm) to capture the change 

in friction due to interactions between different soft-solid foods (i.e., yoghurt, thickened 

cream and custard) and a saliva layer adsorbed to the PDMS disk. Their data are 

represented in figure 6. They concluded that interactions between saliva and the food 

system lead to breakdown of the salivary film (or at least part of the absorbed salivary 

proteins); they also discussed the possibility of several other chemical and physical 
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causes underlying the increased friction. 

[figure 6 here] 

We highlight that lubrication prior to oral processing is dominated by adsorbed 

salivary proteins (anchored and weakly associated). Saliva is accepted to play a role in 

oral processing, and recent studies have focused on capturing the impacts on food 

physical properties when adding saliva. Joyner et al. (2014) used sensory and in vitro 

techniques to probe the impact saliva has on the frictional properties of various model 

milk-based gels. The authors added expectorated saliva and measured the frictional 

properties once the milks attained a pseudo steady state, i.e., they did not capture the 

transient response upon saliva addition; polypropylene balls and whey protein isolate 

gel disks were used for the tribological tests. We would like to stress that, in addition to 

pseudo steady state tests like those of Joyner et al. (2014), experiments need to capture 

transient behaviour as in Selway and Stokes (2013). 

 

 

Conclusions 

 Oral processing research comprises sensory studies, [imitative] instrumental 

texture measurements and in vitro investigations of the underlying physics. 

Traditionally, a concomitance has existed between the two former approaches, whereas 

the latter approach has found great utility by those scientists engineering food physical 

properties based on a pre-oral processing context, e.g., shelf stability, manufacturing. 

The original conceptual breakdown path of Hutchings and Lillford seems to be an early 

attempt at bridging the three approaches.  To move forward, greater effort needs to aim 

to provide quantifiable attributes on the transformation of food during oral process 

that can be incorporated into the H&L approach.  This is a non-trivial exercise but with 

the integration of in vitro measurement techniques and approaches (e.g., tribology, 

rheology), and consideration on the influence of saliva, together with an understanding 

of the temporal sensations, it may be possible.   
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Figure 1. Cartoons depicting how the stages of oral processing of a brittle potato chip 

impact the Structure of the bolus and a list of the physical properties impacting those 

processes. For instance, the work to break and comminute chips depends on the diameter, 

d, length, l, and width, w, of the chip (which are geometrical properties of the chip) as well 

as the elastic modulus, E (which is a material property that will be altered by saliva). The 

viscous Stokes number, Stv, depends on particle properties like particle velocity, V, and 

particle mass, m, as well as the binder liquid viscosity,  (which is another property effected 

by saliva and is time dependent). As the soft bolus forms, the bolus elastic modulus, G’, will 

depend on parameters such as time of hydration, t, and solids concentration, c. See (Boehm 
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et al., 2013; Boehm et al., 2014) for more details about the rheological response of the 

bolus. 

 

 

Figure 2. Hypothetical curves for the structure parameter, S, graphed versus oral 

processing time for (a) an oily potato chip and (b) an oil-water emulsion. The 

parameter S=ap/ainitial is related to the characteristic area of a particle (ap) normalised 

over the initial area of the food piece (aintact). We note that the commonly used 
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parameter of total surface area (A) in our notation can be expressed as  ∑    
  
    , 

where Np is the number of particles. When broad distributions are considered, the 

advantage of using the parameter S is that the characteristic size ap may represent a 

subset of particles rather than their entire ensemble, e.g.,    
 
(   )⁄ ∑    

    
     

. 

The inset cartoons depict the potential physical changes occurring during each step of 

oral processing of (a) an oily potato chip and (b) oil-water emulsion. The six-step 

breakdown of oral processing is based on Stokes et al. (Stokes et al., 2013). 

 

 

 
Figure 3. Cartoons depicting how the stages of oral processing of (a) an oily potato chip 

and (b) an oil-water emulsion impact the Lubrication of and friction between oral 

surfaces and a list of the physical properties impacting those processes. The friction is 

dependent on parameters such as surface roughness, the presence of adsorbed 

polymers, the viscosity of any oil, oil, and the velocity of the moving surfaces, V. 
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Figure 4. ”U” shape in the friction-speed curve. We would like to stress that due to the 

nature of lubrication, one can measure two equal friction coefficients even though the 

system dynamics may be in either the mixed regime or the hydrodynamic regime. This 

occurs because increases in lubricant viscosity decrease the friction coefficient in the 

mixed regime but increase the friction coefficient in the hydrodynamic regime. The 

inset cartoons depict two different physical mechanisms leading to a similar friction 

coefficient. 

 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



27 
 

 
 
Figure 5. Hypothetical curves for the lubrication parameter, 1/L, graphed versus oral 

processing time for (a) an oily potato chip and (b) an oil-water emulsion. The inset 

cartoons depict the potential physical changes occurring during each step of oral 

processing. The four-step breakdown of oral processing is based on Stokes et al. (Stokes et al., 

2013). 
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Figure 6. Depiction of transient friction as measured with saliva pre-adsorbed to PDMS 

soft contacts and after in situ introduction of different foods (adapted from Selway and 

Stokes (Selway and Stokes, 2013)). Cartoons represent the wearing off of adsorbed 

macromolecules from oral surfaces.  
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