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Abstract

Mathematical modelling can play a key role in understanding as well as

quantifying uncertainties surrounding the presence and fate of emerging pol-

lutants in wastewater treatment processes (WWTPs). This paper presents

for the first time a simplified emerging pollutant pathway in the WWTP

that incorporates two potential pathways to sequestration. It develops de-

terministic and stochastic ordinary differential equations to gain insight into

the fate and behaviour of a case study pharmaceutical, with particular focus

on sorption to the solid phase, as well as the nature of the experimentally

measured solid parent compound. Statistical estimation and inferential pro-

cedures are developed and via a proof-of-concept examination, the study

explores the transformation pathways of the bioactive chemicals (BACs) in
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the bioreactor, which is the heart of the WWTP. With a focus on the case

study pharmaceutical 17α−ethinlyestradiol (EE2), the simulation results

show good agreement with the EE2 data. In addition, the results suggest

that the experimentally measured solid EE2-parent concentration is very

similar to the model-based sequestered EE2-parent concentration.

Keywords: Differential equations, Pharmaceutical pollutants,

Sequestration, Transformation pathways, Wastewater treatment.

1. Introduction

Maintaining water quality is a major global challenge due to the increas-

ing use of pharmaceutical drugs and related bioactive chemicals (BACs).

Since all water is reused, the urban water cycle requires protection via treat-

ment to ensure that water is of appropriate quality. However, wastewater

treatment processes (WWTPs) were never designed to remove emerging pol-

lutants (such as the BACs) from wastewater (Margot et al., 2015; Salgado

et al., 2012). Therefore, in order to improve BAC removal it is important

to understand the transformation pathways of BACs in the WWTP.

The presence of BACs (e.g., pharmaceutical, steroids) observed in wastew-

ater and the aquatic environment even at low concentrations (ngL−1) can

cause adverse effects in aquatic organisms (Verlicchi et al., 2012). Hence,

increasingly stringent legislation such as the EU Water Framework Direc-

tive (WFD) 2015/495 requires those responsible for wastewater treatment

to monitor the presence of these pollutants with the future aim of improving

the quality of the wastewater effluent released to surface waters (Carvalho

et al., 2015; Barbosa et al., 2016). This has resulted in a significant number

of investigations into the removal of BACs in the WWTP. Recent stud-

ies include mathematical models that take into consideration the influence

of free (or parent) compounds as well as retransformable products such as

conjugated compounds (Xu et al., 2016), where conjugated compounds are

Phase II metabolites formed as a result of drug transformation processes

(Coleman, 2010).
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Sorption to activated sludge plays a role in the fate of BACs in WWTPs

and is dependent on the physiochemical properties of the BAC. Sorption can

be a precursor to biotransformation/biodegradation. Several experimental

sorption studies have found the occurrence of sequestration, where pollutants

associated with the solid phase (e.g. mixed liquor suspended solids (MLSS),

sludge or sediment) is not readily reversible (Yi and Harper, 2007; Barret

et al., 2011; Sittig et al., 2012). However, there is limited mathematical

modelling insight into this phenomenon and no studies to the best of the

authors knowledge show whether the BACs concentration on the solid phase

is on the surface of the activated sludge (adsorption), within (absorption) or

a combination of both (Gomes et al., 2009; Banihashemi and Droste, 2014).

Distinguishing between adsorption and absorption is vital since the absorbed

BACs are not readily available for microbial biodegradation (Banihashemi

and Droste, 2014). That is, the ratio of BACs adsorbed to absorbed has

implications in terms of the distribution from liquid phase to solid phase

and vice versa (Yi and Harper, 2007; Barret et al., 2011). This has not

been the focus of many investigations but as Barret et al. (2011) suggested,

the quantification of sorption of BACs with activated sludge will aid the

prediction of the fate of BACs and the associated risk to the environment.

The majority of mathematical modelling research carried out in the field

of WWTP (lab-, pilot- or full-scale) employs deterministic ODE modelling

based on the assumption that all the biological, chemical and physical laws

governing the system can be understood (Gernaey et al., 2004). For example,

mathematical models describing the fate of both traditional and emerging

pollutants in the WWTP have been placed under the general framework

of the activated sludge model for Xenobiotics (ASM-X) (Plósz et al., 2010;

Snip et al., 2014; Polesel et al., 2015). Nevertheless, modelling of WWTP

is adversely influenced by imperfect knowledge of biochemical processes,

operational parameters, environmental factors and input loadings. These

variabilities have both temporal and spatial effects in the removal of emerg-

ing pollutants from treated wastewater. Liu et al. (2015) pointed out that

while lab-scale batch experiments have a role, they do not often reflect full-

scale wastewater treatment or integrated wastewater treatment observations
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because wastewater is stochastic in nature. Stochastic models allow the es-

timation of model parameters and the understanding of the uncertainties in

pollutant concentrations.

EE2 is a pharmaceutical and synthetic estrogen used in birth control

pills (Laurenson et al., 2014). A review conducted by Ting and Praveena

(2017) reveals that the excretion rate for women who used such medication

is 35µgday−1 and that 80% of EE2 taken into the body is excreted as un-

metabolized conjugates with 30% from faeces and 22-50% from urine. Due

to the potential adverse endocrine disrupting effects associated with even

small (ngL−1) concentrations in the aquatic environment, it is reported in

the Watch List of the EU WFD 2015/495 (Carvalho et al., 2015; Barbosa

et al., 2016). Thus, EE2 is considered as the case study BAC in this pa-

per and the pathway of EE2 in WWTPs proposed by Joss et al. (2006),

which is widely applied to model the fate of most emerging pollutants, is

extended by introducing the concept of sequestration to investigate the re-

lationship and nature of BACs and the solid phase. The impetus for this

research is the fact that most work on sorption used an experimental (Yi

et al., 2011) rather than a mathematical modelling approach. It should be

noted that although Polesel et al. (2015) and Snip et al. (2014) considered

the formation of sequestered products in their full-scale wastewater treat-

ment modelling for other pharmaceuticals, they assumed that the ratio of

sequestered concentration to pre-clarified influent concentration of the free

parent compound is constant and as such, no kinetic rate parameter is ac-

counted for the sequestration mechanism.

Mathematical modelling saves time and the cost of repeatedly designing

new experiments by offering the opportunity to alternatively deepen knowl-

edge of complex mechanisms via computer simulation evaluations. For this

reason, a mathematical modelling approach using experimental batch data

taken from an activated system (Gomes et al., 2009) is used with the aim

of extracting the maximum information on the mechanisms involved in EE2

treatment by fitting a range of advanced mathematical models, including

both deterministic, stochastic and combined approaches, to a dataset. This

study is concerned with four forms of EE2, which are: the parent chemical
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in the liquid phase (free); adsorbed onto activated sludge (sorbed), absorbed

into activated sludge (sequestered) and those retransformable forms of the

parent chemical (e.g., excreted Phase I and II metabolites) as summarised

in Table 1 of Section 3. An experimental dataset from Gomes et al. (2009) is

selected for the study since it captures the changes in the concentrations of

EE2 states over time. Data of such a nature are limited in the literature as

more usually data involve monitoring influent and effluent only (Ting and

Praveena, 2017; Yu et al., 2019).

2. Experimental data

The data are obtained from batch scale fate studies using activated

sludge from a pilot plant following a Husmann design (Gomes et al., 2009).

A detailed description of the Husmann pilot plant used by Gomes et al.

(2009) follows the OECD guidelines for testing chemicals in an activated

sludge process (OECD, 2001). The dataset contains measurements of con-

centrations at eight different time points for three EE2 forms: the first form

is the aqueous parent EE2, the second is the aqueous conjugated steroid

ethinylestradiol 3 - glucuronide (EE2 – 3G) and the third one is the solid

parent EE2. The measurements are recorded in hours (h) at 0, 0.0167, 0.5,

1, 2, 4, 8 and 24 hours in triplicate. The mixed liquor suspended solid

concentration (CMLSS) reported is 4 gL−1 (Gomes et al., 2009). For a de-

tailed description of the experimental setup see Gomes et al. (2009). For the

purpose of mathematical modelling, Y is used to denote the measured EE2

concentrations, where Y1 is the liquid form of parent EE2, Y2 is the EE2-3G

and Y3 is the solid form of parent EE2.

3. Dynamical model

3.1. Model description

A computational model was developed to describe the fate of BAC(s)

in the unit treatment technology utilising lab-scale data. In experimental

studies, the activated sludge is usually spiked with the BAC(s) of interest,
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which are classified by four state variables, namely, the liquid form of parent

compound, Cfree, liquid form of retransformable compounds, Ccon, sorbed

parent compounds, Csor, and sequestered parent compounds, Cseq (Polesel

et al., 2015). The activated sludge bioreactor is assumed to contain a con-

stant biomass (MLSS) denoted by CMLSS = 4 gL−1 (Gomes et al., 2009) since

the BAC concentrations are in the range of mgL−1 to ngL−1, the biomass

growth is negligible during the consumption of the BACs and any effects of

the BAC on the actual biomass activity are assumed to be negligible (Snip

et al., 2014). The following additional assumptions are made:

1. the reactor, of volume V , is well-mixed and operates on a continuously

stirred tank reactor (CSTR),

2. the dissolved oxygen concentration in the reactor is constant,

3. the retransformable compounds (Ccon) are not further biotransformed,

but may be deconjugated back to the liquid form of parent compounds

(Cfree) (Joss et al., 2006; Gomes et al., 2009; Kumar et al., 2012; Snip

et al., 2014),

4. the dissolved forms of parent compounds (Cfree) in liquid are in a re-

versible reaction with the solid (sorbed) fraction (Csor) and are further

biodegraded via microbial activities as well as irreversibly absorbed,

i.e., sequestered to Cseq.

5. CMLSS is assumed constant.

Figure 1 shows the simplified pathways diagram, which is modelled using

first-order and pseudo-first order kinetics. Table 1 gives a summary of the

notation, description of the model parameters and their corresponding units.
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Fig. 1. Diagram of the simplified pathways for emerging pollutants in the bioreactor of
the wastewater treatment processes. See Table 1 for an explanation of parameters and
concentration variables.
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Table 1
Model parameters, state variables and other model notations

Variable Description Measured data Unit

Ccon EE2-conjugated: Liquid retransformable
compound concentration

Y1 ngL−1

Cfree EE2-free: Liquid parent compound con-
centration

Y2 ngL−1

Csor EE2-sorbed: Adsorbed solid parent com-
pound concentration

ngL−1

Y3
Cseq EE2-sequestered: Absorbed solid parent

compound concentration
ngL−1

Parameter(θ) Description Unit

CMLSS Mixed liquor suspended solid concentra-
tion (assumed fixed)

gL−1

kdc Deconjugation rate coefficient for Ccon h−1

ksor Sorption rate coefficient for Csor Lg−1h−1

kde De-sorption rate coefficient for Csor h−1

kbio Biotransformation rate coefficient for
Cfree

Lg−1h−1

kab,free Absorption rate coefficient for Cfree h−1

kab,sor Absorption rate coefficient for Csor h−1

fsor Fraction of sorbed concentration Csor −
Notation Description Unit

k Number of state variables −
k′ Number of experimental measured state

variables
−

p Number of model parameters −
Q Number of repeated experiments −
N Number of experimental time points −

Note that EE2-sorbed/EE2-sequestered is EE2-parent concentration in the solid phase

(EE2-solid) and EE2-free is liquid EE2-parent.

3.2. Bioreactor model

3.2.1. Deterministic ODE model

Figure 1 depicts the interaction between Cfree, Ccon, Csor and Cseq, it

can be seen that microbial biodegradation and sorption activities are the two

main mechanisms through which the EE2-parent can be removed. Evolution

of the four concentration forms of EE2 within the bioreactor can be described
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by four coupled nonlinear systems of ODEs given as

dCfree

dt
= kdc

(
Mfree

Mcon

)
Ccon + kdeCsor − ksorCfreeCMLSS

− (kab,free + kbioCMLSS)Cfree,

(3.1)

dCcon

dt
= − kdc

(
Mfree

Mcon

)
Ccon, (3.2)

dCsor

dt
= ksorCfreeCMLSS − kdeCsor − kab,sorCsor, (3.3)

dCseq

dt
= kab,freeCfree + kab,sorCsor. (3.4)

With respect to the lab-scale batch experimental set-up, one state variable

has non-zero initial concentration, Ccon(0) = Ccon 0 = 2125 ngL−1 (Gomes

et al., 2009) and the remaining state variable concentrations are all zero

(Cfree(0) = 0, Csor(0) = 0 and Cseq(0) = 0). Note that Mfree (g mol−1) and

Mcon (g mol−1) are respectively the molecular masses of Cfree and Ccon and

the fraction Mfree/Mcon corrects for the change from one compound form

to another.

The novelty of the proposed model given by Equations (3.1) - (3.4) lies

in the modelling of the sequestration dynamics (as stated in assumption 4

of Section 3.1) at the lab-scale bioreactor. As mentioned earlier, previous

studies at the full-scale WWTP by Snip et al. (2014) assumed a constant

ratio of the influent liquid parent compound concentration (Cfree) and solid

(sequestered) parent compound concentration (Cseq). However, in the pro-

posed model, the kinetic rate parameters kab,free and kab,sor account for the

absorption of both Cfree and Csor respectively. The ratio of BACs adsorbed

to absorbed have implications for the actual fate and the availability to

and from the liquid and solid phases (Yi and Harper, 2007). As a result, the

quantification of sequestered BACs will offer a useful insight and help reduce

the variability surrounding the fate of BACs in wastewater treatment.

To take into consideration the fact that experimental data are likely

to have no sequestration or variation in sequestration pathways since ex-

perimental data rarely distinguishes between adsorbed and absorbed BACs.
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Therefore, modifications to the proposed pathways (Figure 1) are made lead-

ing toM0,M1 andM2 as depicted in Figure 2. The pathways (1), (2), (3)

and (4) are well established pathways used in modelling the fate of BACs in

wastewater treatment (Joss et al., 2006; Plósz et al., 2012b; Polesel et al.,

2015; Plósz et al., 2012a) and so is included in all three models. Thus, the

three different sets of pathways this study wish to compare are defined as

follows:

• M0, where all pathways are included,

• M1, where sequestration via sorbed parent BACs is neglected,

• M2, where sequestration via liquid parent BACs is neglected.

Fig. 2. Proposed pathways of EE2 interactions in wastewater treatments systems. Se-
questration formation via pathways (5) and (6) (M0) (left), sequestration formation via
pathway (5) (M1) (middle) and sequestration formation via pathway (6) (M2) (right).

The ODE bioreactor model of BACs as given by equations (3.1) - (3.4) and

modifications can be written in the general framework given by the following

four-dimensional system of ODEs for the underlying state variable, Xt, as

dXt

dt
= f(Xt,ut, t,θ1), (3.5)

with X0 = [0, Ccon,0, 0, 0]T as initial state concentrations. Note that, t

denote time;

Xt = [Cfree, Ccon, Csor, Cseq]
T
t , (3.6)

are the concentrations at time t; T superscript denote matrix transposition;

θ1 = [kdc, kd, kde, kbio, kab,free, kab,sor], (3.7)
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is the rate parameter vector; and f(Xt,ut, t,θ1) is a nonlinear function

with f(·) describing the nonlinear relationship between the underlying state

variable, Xt and other input parameters, i.e., ut = CMLSS as the input

parameter. For simplicity, in the method below the notation Xt and θ1 are

rather used than that of Table 1.

3.2.2. Stochastic ODE model

The state of the biological treatment phase of the WWTP is affected by a

number of factors (temperature, pH, product formation, mixing, etc.), which

cannot be precisely accounted for by the ODE model (3.5) (Sathyamoorthy

et al., 2014). As a result, processes such as conjugation, deconjugation, bio-

transformation, sorption, desorption, are affected by stochastic fluctuations

in the concentrations due to (i) imprecise knowledge of rate coefficients, θ

in (3.5) (e.g., dependency on temperature, pH, etc.) (ii) structural misspec-

ification, f(·) in (3.5) due imperfect knowledge of the biological, chemical

and physical processes (e.g., some compounds/products acting as inhibitors

to other reactions) and (iii) fluctuations in variable concentrations due to,

for example, imperfect mixing as well as varying load entering the treatment

process.

To account for the uncertainties and simplifications in the previous model

given by equations (3.1) - (3.4), an extension to the SDEs is considered by

incorporating multiplicative system noise into the system by equations (3.1)

- (3.4) via

dCfree =

(
kdc

(
Mfree

Mcon

)
Ccon + kdeCsor − ksorCfreeCMLSS−

(kab,free + kbioCMLSS)Cfree

)
dt+ σfreeCfreedW1t,

(3.8)

dCcon =

(
− kdc

(
Mfree

Mcon

)
Ccon

)
dt+ σconCcondW2t, (3.9)

dCsor =

(
ksorCfreeCMLSS − kdeCsor − kab,sorCsor

)
dt+ σsorCsordW3t, (3.10)

dCseq =

(
kab,freeCfree + kab,sorCsor

)
dt+ σseqCseqdW4t, (3.11)
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where Wt = [W1,W2, · · · ,Wd]Tt denotes a standard Wiener process, also

known as Brownian motion (Øksendal, 2003). The system given by equa-

tions (3.8) - (3.11) can be written in a general framework by the following

four-dimensional system of SDEs for the underlying state variable, X, as

dXt = f(Xt,ut, t,θ1)dt + σ(Xt,ut, t,θ1)dWt, (3.12)

where f(Xt,ut, t,θ1)dt denotes the drift term with f(·); representing the

deterministic part; σ(Xt,ut, t,θ1)dWt denotes the stochastic part of the

system with

σ(·) = diag(σfreeCfree, σconCcon, σsorCsor, σseqCseq), (3.13)

and θ1 = [kdc, kd, kde, kbio, kab,free, kab,sor, σfree, σcon, σsor, σseq] denotes the

vector of model parameters in the dynamic model (3.12). All other nota-

tion remains the same as previously defined in Section 3.2.1. It is worth

mentioning that the ODE model (3.1-3.4) is the SDE model (3.8-3.11) with

σfree = 0, σcon = 0, σsor = 0, σseq = 0.

3.2.3. Model for the observations

It is often the case that in wastewater treatment not all components

of the system can be observed. Hence, the observational model is vital to

statistically assess the disparity between the observed data and the model

prediction. The observational model relates the dataset of external observa-

tions, Y , to the internal state variables, X. As described in section 2, three

forms of EE2 measurements are available for this study. However, for the

measurement with respect to EE2-parent concentration in solid phase, Y3 it

cannot be differentiated as to whether Y3 represents:

H1. the sorbed concentration, Csor,

H2. the sequestered concentration, Cseq,

H3. the sum of a fraction of the sorbed parent compound together with

the sequestered parent compound, fsorCsor + Cseq with 0 ≤ fsor ≤ 1.
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The aim is to elucidate which of these three hypotheses (H1, H2 and

H3) is most appropriate by fitting the data Y to the model (3.5) or (3.12).

However, consideration shall only be given to model (3.12), since it is a more

general model as discussed earlier in 3.2.2. The observational model can be

written in the general framework as:

Yn,q = h(Xn,u, tn,θ1,θ2) + en,q, (3.14)

where tn with n = 1, 2, · · · , N are the discrete time points; (q = 1, 2, 3 = Q)

is the number of repeated set; Yn,q = [Y1, Y2, Y3]
T
n,q are the experimentally

measured concentrations at time point tn for the qth experiment; θ2 is the

observational model parameter which will be defined in subsequent text and

h(·) denotes the observational function which we define here by equation

(3.15) (see Text S1 in the supporting information for further details). Note,

h(·) =


h1(·) = [Cfree, Ccon, Csor]

T
n for H1

h2(·) = [Cfree, Ccon, Cseq]
T
n for H2

h3(·) = [Cfree, Ccon, fsorCsor + Cseq]
T
n for H3

(3.15)

The unknown independent measurement errors at time point tn for the qth

experiment, en,q are assumed to belong to a multivariate normal distribution

with mean zero and covariance matrix given by either

• a common measurement variance

Σc
n = diag(σ20, σ

2
0, σ

2
0) (3.16)

• or different measurement variances,

Σs
n = diag(σ21, σ

2
2, σ

2
3) (3.17)

The covariance structure of the measurement noise given by equation (3.16)

or (3.17) is called additive noise and it is the most fundamental noise struc-

ture considered for this study due to the nature of the experimental data

(i.e. the observations at different times are assumed to have a common vari-
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ance). Furthermore, the experimentally observed EE2 concentrations Y1, Y2

and Y3 are assumed to be uncorrelated in all triplicate experimental data

because of the experimental design used.

It is worth noting that hypothesis 3 (H3) is identical to hypothesis 2

(H2) when fsor = 0. Hence, θ2 = [fsor, σ
2
0] or θ2 = [fsor, σ

2
1, σ

2
2, σ

2
3] is the

additional parameter with respect to the observational model and so, the

overall model parameter is θ = θ1 ∪ θ2. Therefore, the observation model

given by equation (3.14) becomes

Yn,q = hϕ(Xn,un, tn,θ) + en,q, en,q ∼ N (0,Σn), (3.18)

where hϕ with ϕ = {1, 2, 3} is the observational function with respect to the

three hypotheses H1, H2 and H3.

4. Inference for dynamical models

4.1. Estimation model parameters

The aim is to fit θ = [kdc, kd, kde, kbio, kab,free, kab,sor, fsor, σfree, σcon, σsor,

σseq, σ
2
0, σ

2
1, σ

2
2, σ

2
3] in the more general model which is the stochastic ODE

as described in Sections 3.2.2 and 3.2.3. In this paper the method of param-

eter estimation of SDE proposed by Picchini et al. (2006) is applied to the

problem under study, that is, equations (3.12) and (3.18). This is a method

used to carry out statistical inference in discretely observed diffusion process

with partially observed state variables. From (3.18), the simulated maxi-

mum likelihood function approximation of the conditional density function

for each hypothesis, ϕ = {1, 2, 3} is

LR(θ|Y ) =

3∏
q=1

{
1

R

R∑
r=1

N−1∏
n=1

φn,q(Yn,q|hϕ(X(r)
n ),θ)

}
, (4.1)

where, R denotes the number of Monte Carlo simulations, X
(r)
n denotes

the rth simulated solution, Xn of the equation (3.12) using the Euler-

Maruyama numerical scheme (Kloeden and Platen, 1992) at tn for a given

θ and X0 at t0 with the interval [tn−1, tn] divided into M (large) subin-

tervals of length g = (tn − tn−1)/M . The multivariate normal density
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function, φn,q(Yn,q|hϕ(X
(r)
n ),θ) with expectation hϕ(X

(r)
n ) and covariance

Σn(θ) given by equations (3.16 and 3.17) is

φn,q(Yn,q|hϕ(X(r)
n ),θ) = (2π)−3/2(det (Σn(θ)))−1/2 exp

(
− 1

2
εTn,q(θ)Σ−1n (θ)εn,q(θ)

)
,

(4.2)

where, εn,q = Yn,q − hϕ(X
(r)
n ) are the estimated errors at the time point

tn for the qth experiment. Therefore, the simulated log-likelihood function

based on equation (4.1) (`R(θ|Y ) = logLR(θ|Y )) is given by

`R(θ|Y ) =
3∑

q=1

{
log

(
1

R

R∑
r=1

[N−1∏
n=1

(
(2π)−3/2(det (Σn(θ)))−1/2 exp

(
− 1

2
εTn,q(θ)Σ−1n (θ)εn,q(θ)

))])}
.

(4.3)

The parameter estimates are obtained by maximising the simulated log-

likelihood function (4.3) with respect to θ.

As described in Section 3.2, the three transformation pathways types we

wish to compare for the drift term introduced in Section 3.2.2 within the

stochastic modelling set up are (M0({θ : kab,free 6= 0, kab,sor 6= 0}),M1({θ :

kab,free 6= 0, kab,sor = 0}) and M2({θ : kab,free = 0, kab,sor 6= 0})). For each

pathway type, four levels of stochasticity (system noise) are considered as

follows in order to capture any unknown variability that may exist:

• Full system noise, i.e., noise factor applied to all EE2 concentration

variables (S1({θ : σfree 6= 0, σcon 6= 0, σsor 6= 0, σseq 6= 0})),

• Noise factor applied to all EE2 concentration variables except the

sequestered EE2 concentration variable (S2({θ : σfree 6= 0, σcon 6=
0, σsor 6= 0, σseq = 0})),

• Noise factor applied to only conjugate EE2 concentration variable

(S3({θ : σfree = 0, σcon 6= 0, σsor = 0, σseq = 0})),

• No system noise, i.e., fully deterministic model (3.5) (S4({θ : σfree =

0, σcon = 0, σsor = 0, σseq = 0})).

Note that for S4, one does not need to simulate Xn using Monte Carlo

simulations but rather one solves the ODE, for example via a Matlab ode
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solver. To facilitate an efficient numerical search of the parameter space

across a wide range of θ, the transformed parameter vector log10θ is es-

timated. Such estimates are robust since they are less prone to sampling

error than when one directly works with untransformed parameters (Bland

and Altman, 1996). The uncertainty in the parameter estimates obtained

via approximate 95% confidence intervals are first computed on the log-

scale before inverting the logarithm. The mathematical software used here

is MATLAB, 2018a on an Intel(R) Core(TM) i5-8250U CPU @ 1.60Gh Hz

@ 1.80Gh Hz Dell laptop. The pseudocode for implementing the simulated

maximum likelihood parameter estimation is given in SDEMethod 1 in the

supporting information.

The approximated maximum likelihood estimator θ̂ converges to the

maximum likelihood estimator θ, where θ = θ1 ∪ θ2 defined before in Sec-

tion 3.2 as M → ∞ and R → ∞, with R1/2/M → 0 under certain mild

regularity conditions (Brandt and Santa-Clara, 2002). To ensure that the

value of the simulated maximum likelihood converges, we simulate equa-

tion (3.12) via the Euler-Maruyama scheme with an integration step-size of

0.0167 h respectively for R = 1000, 2000, 3000, 4000 and 5000 trajectories.

The reported parameter estimates of θ are based on R = 3000 since be-

yond this number of Monte-Carlo simulated trajectories, the value of the

simulated likelihood function does not significantly change.

4.2. Model comparison

The likelihood ratio test (LRT) will be employed to compare two nested

computational models in this paper (Madsen and Thyregod, 2010). De-

noting the log-likelihood of the full and the reduced models by `(θHa) and

`(θH0), the likelihood ratio test statistic is given by

LRT = 2(`(θHa)− `(θH0)). (4.4)

Under certain regularity conditions (Wilks, 1962), LRT has an asymptotic

(χ2) chi-square distribution with (df) degrees of freedom and df is the dif-

ference between the dimension of the vectors θHa and θH0 for large sample

sizes.
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Alternatively, for the non-nested models the Akaike Information Crite-

rion (AIC) and Bayesian Information Criterion (BIC) given by

AIC = 2(−`(θ) + p), (4.5)

BIC =− 2`(θ) + p · ln(w), (4.6)

are employed, where p is the number of model parameters, w = Q(N − 1)k′

denotes number of observations; k′ denotes number of measured states and

`(θ) is the model log-likelihood value. Often, the data available for use

in studies involving wastewater treatment and receiving environments (e.g.,

rivers) are limited in size, so inferential studies are carried out on small

sample sizes. For small sample sizes (w) such that w/p < 40, Burnham and

Anderson (2003) suggested the use of the corrected AIC (AICC) given by

AICC = AIC +
2p(p+ 1)

w − p− 1
. (4.7)

In fisheries studies, the AICC has been shown to be accurate (Shono,

2000; Katsanevakis, 2006). Other related studies have also shown that the

use of these information criteria is useful in comparing models (Shukor,

2014; Razzaghi et al., 2016; Mazerolle, 2006; Burnham et al., 2011). When

comparing models, the one with the lower AIC,AICC and BIC value is

preferred.

5. Results and discussion

5.1. Experimental data

Figure 3 shows the triplicate experimental profiles of EE2-parent (Y1),

-conjugated (Y2) and -solid (Y3) and these profiles are similar. This gives an

indication of low variability between the triplicates in the experimental set-

up, and implies consistency in the experimental method since variations in

the concentrations of the observations will be due to field conditions rather

than experimental design.
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Fig. 3. Profiles of liquid EE2-parent, EE2-conjugated and solid EE2-parent, respectively
in triplicate experimental set-up: Experiment 1 (Expt1) (left), Experiment 2 (Expt2)
(middle) and Experiment 3 (Expt3) (right) plotted at times 0, 0.167, 0.5, 1, 2, 4, 8, 10
and 24 h. Experimental data points, denoted by red circle, black asterisk and blue plus,
respectively shows liquid EE2-parent (Y1), liquid retransformable EE2 (Y2) and solid EE2-
parent (Y3)(adapted from Gomes et al. (2009)).

As can be seen in Figure 3 (all panels), over the first 4 hours, there is

a rapid decrease in the EE2-conjugate concentration, after which the rate

of reduction slows considerably. The EE2-conjugate is converted to liquid

EE2-parent (free), which increases rapidly from 30 mins to 8 hours and

then slowly declines. The reason for zero concentrations being observed at

t = 10 mins and t = 30 mins is that the measured concentrations may be

below the analytical limit of detection, and so have been recorded as zero.

Whilst both of the above concentrations show transient behaviour, the EE2-

parent concentration in the solid phase (adsorbed or sequestered) does not,

exhibiting only a steady slow growth over the 24 hours study period. Whilst

the concentration in the solid phase was recorded as zero for times up to 2

hours, it may have been larger, but below the limit of detection.

The question this study aims to address is whether one can associate the

steady slow growth trend for solid EE2-parent to adsorption or to absorption

or to both. Since there is an adsorption - desorption process between liquid

EE2-parent and sorbed EE2-parent, one may expect the profile of solid EE2-

parent to be similar to that of liquid EE2-parent but that is not the case

here.
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5.2. Inference for dynamical model

5.2.1. Model parameter estimation

The simulated log-likelihood estimates computed from equation (4.3)

under hypotheses H1,H2 and H3 are presented in Table 2 for the cases of

common observational variance (3.16) and separate variances (3.17); various

diffusion terms (S1,S2,S3 and S4) and model structures (M0,M1 and

M2), see Sections Sections 3.2 and 4.1. The notion of common and separate

observational noise is tested for each hypothesis (H1, H2 and H3) with

respect to the three system noises as well as the three model structures

using the likelihood ratio test, AIC, AICC and BIC as given in Section 4.2.

In this study, the model parameters to be estimated can be grouped into

three parts, those associated with the drift term, f(·)dt in (3.12), diffusion

term, σ(·)dW in (3.12), and the observational noise, e in (3.18) as described

in Section 3.2.3. As a result, hypotheses H1 and H2 have from p = 6 pa-

rameters for modelM2 under S4 to p = 11 parameters for modelM0 under

S1 to be estimated, whilst under hypothesis H3 the number of parameters

ranges from p = 7 for model M2 under S4 to p = 12 parameters for model

M0 under S1, when a common observational noise (3.16) is considered.

When separate observational noise (3.17) is considered, the total number of

parameters ranges from p = 8 forM2 under S4 to p = 13 forM0 under S1

for hypotheses H1 and H2 whilst hypothesis H3 have parameters ranges

from p = 9 for M2 under S4 to p = 14 for M0 under S1. For this reason,

the number of degrees of freedom, df , between any two nested models ranges

from to 1 to 5. Thus, the critical values for at χ2
df with df degrees of freedom

at significance level of α = 0.05, χ2
df (0.05) are 3.8415, 5.9915, 7.8147, 9.4877

and 11.0704 respectively for df = 1, 2, 3, 4 and 5.

For each hypothesis, separate additive observational noise is tested against

common additive noise, and it is found that a significance difference exists

(i.e., separate additive observational noise is better than a common obser-

vational additive noise) across all models under hypotheses H1,H2 and H3.

This conclusion is based on the estimates LRT, AIC,AICC and BIC which

give similar results under hypotheses H1,H2 and H3. Altogether this gives

an indication that a separate additive noise better describes the experimen-
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tal data. This might imply that the assumption where the measurement

errors have a common variance (3.16) may not hold, as indicated by the

results for lab-scale data.

The analysis of the models is further extended to examine the hypothe-

ses H1,H2 and H3 with respect to separate additive observational noise.

Results from Table 2 clearly show that between hypotheses H1 and H2,

models under hypothesis H2 are significantly better based on the values of

`(θ), AIC,AICC and BIC. On the other hand, applying the likelihood ratio

test (LRT) in equation (4.4) to hypotheses H2 and H3 provides no evidence

against the simpler models of hypothesis H2. These results are supported

by the corresponding values of AIC,AICC and BIC given by equations (4.5)

- (4.6). Since Csor and Cseq are usually indistinguishable, one might expect

hypothesis H3 to hold, however results from the fit suggest that hypothesis

H2 best describes the data. This outcome confirms previous findings on se-

questration and in addition, quantified sequestered EE2 from the modelling

perspective (Barret et al., 2011; Banihashemi and Droste, 2014).

The results of the simulated maximum likelihood estimation of the se-

lected models of hypothesis H2 and S3 are shown in Table 3 and the dynam-

ical simulated results with these parameters are depicted in Figure 4. The

estimated value of the diffusion parameter or the system noise associated

with the conjugate EE2 state variable (Ccon), σcon is similar across all the

three model structures considered (M0,M1 and M2). Statistically testing

these mixed deterministic-stochastic models under S3 with purely determin-

istic models under S4, suggests that there are strong evidence for rejecting

the purely deterministic models since the p-values corresponding to these

tests are less than 10−7. Furthermore referring to Table 3, it can be ob-

served that the difference between their estimated values of AIC,AICC and

BIC are small, thereby indicating that all these models adequately describe

the experimental data. This is also evident in their simulated trajectories

illustrated in Figure 4. Interestingly the model fits of M0, M1 and M2

under hypothesis H2 appear similar from the graphical point of view (see

Figure 4).
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Table 3
Simulated maximum likelihood (SML) parameter estimate with 95% confidence inter-
vals in parenthesis for hypothesis H2 under separate observational noise with respect to
model structures (transformation pathways types) f(·) M0(kab,free 6= 0, kab,sor 6= 0),
M1(kab,free 6= 0, kab,sor = 0) and M0(kab,free = 0, kab,sor 6= 0)

System noise 3 (S3(σfree = 0, σcon 6= 0, σsor = 0, σseq = 0))
M0 M1 M2

Param. θ̂ (95%CI) θ̂R (95%CI) θ̂R (95%CI) Units

kdc 0.423 0.425 0.424 h−1

(0.380, 0.471) (0.384, 0.470) (0.383, 0.470)
ksor 11.242 11.460 11.430 LgX−1SS

(8.781, 14.392) (9.352, 14.043) (9.352, 13.970)
kde 74.828 73.963 74.038 h−1

(64.382, 86.968) (65.315, 83.756) (65.634, 83.517)
kbio 5.020 × 10−4 5.123 × 10−4 5.077 × 10−4 Lg−1h−1

(1.834× 10−6, 0.137) (1.161× 10−5, 0.023) (9.481× 10−6, 0.027)
kab,free 0.025 0.030 − h−1

(0.016, 0.040) (0.028, 0.033) −
kab,sor 0.007 − 0.048 h−1

(5.657× 10−4, 0.096) − (0.038, 0.062)
σcon 0.127 0.128 0.129 −

(0.098, 0.164) (0.101, 0.164) (0.101, 0.164)
σ1 126.430 127.350 128.290 ng

(93.091, 171.710) (93.671, 173.140) (93.676, 173.210)
σ2 96.845 96.977 97.056 ng

(70.967, 132.160) (71.175, 132.130) (71.207, 132.290)
σ3 14.294 14.169 14.28 ng

(10.520, 19.421) (10.464, 19.187) (10.519, 19.387)

`(θ̂) −342.940 −342.910 −342.890 −
AIC 705.880 703.820 703.770 −
AICC 710.110 707.220 707.170 −
BIC 727.310 723.110 723.060 −

Figure 4 shows the experimental observed data undertaken in triplicate

at each time point and the empirical mean ofR = 5000 simulated trajectories

of the model outputs, together with their associated empirical 95% pointwise

confidence limits. It includes all the three hypothesis with respect to the

models (transformation pathways types)M0, M1 andM2 under hypothe-

sis H2 and S3, where the experimental measured EE2-parent concentration

in the solid phase (Y3) is solely the sequestered EE2-parent (X3 = Cseq). In
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all the cases, the deconjugation of the EE2-conjugate is associated with an

increase in the liquid EE2-parent concentration over the first 8 hours, after

which the liquid EE2-parent concentration begins to decrease as a result of

the combination of adsorption, sequestration and biodegradation processes

while EE2-conjugate decreases to zero and would be expected (Johnson and

Williams, 2004). The liquid EE2-parent concentration sequestered is asso-

ciated with an increase in the EE2-parent concentration in the solid phase

observed in Figures 3 and 4.

The EE2 SDE models M0,M1 and M2 under hypothesis H2 with re-

spect to system noise type S3 capture the experimental data well over the

entire 24 hours and, in addition, the empirical 95% confidence limits contain

almost all the experimental data. From Figure 4, the uncertainty represented

by the 95% empirical confidence limits especially for EE2-conjugate shows

that the multiplicative noise in the SDE model accounts for influential fac-

tors that the deterministic ODE models cannot capture (not shown here).

This is evident in the parameter estimate of σcon given in Table 3. There-

fore, the SDE model could account for certain inherent influential factors

that are neglected by the ODE model (results under S4). However, it is

worth noting that only one of the SDE models is subject to noise (dCcon)

and the other models are deterministic in the chosen model.

Figure S1 in the supporting information depicts histograms of the stochas-

tic trajectories of R = 5000 realisations of the EE2 state variable concentra-

tions (liquid EE2-parent, EE2-conjugate, and solid EE2-parent) for model

M0 under hypothesis H2. The distribution of the EE2 state variable con-

centrations simulated at each time appears symmetrical, except for the EE2

state variable (conjugate) which is skewed at the last time point (row 7 of

Figure S1). The skewness of EE2-conjugated at the last time point is not

surprising because the measured EE2-conjugate concentration is zero at that

time point and so the frequency of zero predicted concentration estimate by

the SDE model is high. Overall, the histogram is approximately normal

and so the model is acceptable. Similar distributions of each of the state

variables in modelsM1 andM2 are respectively reported in Figures S2 and

S3 in the supporting information.

23



(a) M0

(b) M1

(c) M2

Fig. 4. Dynamics of EE2 SDE model showing experimental data, empirical mean, em-
pirical 95% confidence limits with R = 5000 and a single trajectory under hypotheses H2
for the models M0 (top), M1 (middle) and M2 (bottom) with respect to S3. Each
panel has three sub panels of each state variable dynamics, namely: EE2- Parent (left),
EE2-Conjugate (middle) and EE2-Solid (right) plotted at times 0, 0.167, 0.5, 1, 2, 8 and
24 h.
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The similarities of the distributions of each of the state variables in the

models M0, M1 and M2 plotted at the time points under hypothesis H2

shows that there is no difference betweenM0,M1 andM2 as indicated by

the likelihood ratio test and information criteria, and so M0,M1 and M2

are taken as plausible pathways. This suggests that more data are needed

to distinguish these pathways. What can be said however is that, there

is evidence of sequestration (Barret et al., 2011) and that the measured

EE2-parent concentration in the solid phase, Y3 corresponds to the EE2-

sequestered, Cseq (which is hypothesis H2) for the experimental dataset

(Gomes et al., 2009) used in this study. This is surprising, considering that

in the lab and field, these two types of sorption to the solid phase (Csor

and Cseq) are rarely defined separately (Joss et al., 2006). However, from

the modelling point of view the solid (sorbed) parent compound (EE2),

Csor equilibrates with the liquid parent compound Cfree so fast that the

solid phase which is measured in the lab rather is the sequestered EE2

concentration in the solid phase (i.e., Y3 = Cseq) as illustrated in Figure 4.

Thus, Cseq is an important novel component in the model.

5.3. Perspective of ODE and SDE models

In general, the rich methodologies of both deterministic and stochastic

modelling frameworks have been utilised to gain useful insights into the

proposed models (Figure 2) and to compare both approaches. The stochastic

modelling results turn out to be significantly better (see Table 2) and further

allows the distinction between the model system noise which is captured by

the parameter σcon (accounting for inherent randomness of deconjugation of

metabolites) and observational randomness accounted for in this study by

separate additive noise.

Furthermore, the results of the parameter estimates obtained in this

study show that not accounting for certain dynamics may lead to over- or

under-estimation of model parameters which may contribute to variation in

observed concentrations of emerging pollutants, as pointed out by authors

(Liu et al., 2015; Barret et al., 2011). An example is the deconjugation

kinetic rate coefficient, kdc obtained by Gomes et al. (2009) which is 0.32
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h−1 and is less than the estimated value reported in Table 3 under hypothesis

H2 where we find kdc = 0.42 h−1. Differences in kinetic rate estimates in this

paper to others are not surprising since the model accounts for sequestration

dynamics, which to the best of the authors’ knowledge has to date been

neglected in the literature.

5.4. Significance

This present study investigates the mechanism of sorption of EE2 to the

solid phase in an activated sludge process. In addition, the study exam-

ines the nature of the measured EE2 concentration in the solid phase as

to whether it denotes the sorbed EE2 or sequestered EE2 or a combina-

tion of both from the modelling perspective. This study demonstrates and

confirms sequestration, a phenomena known in literature yet rarely consid-

ered or distinguished beyond a pollutant associated with the solid phase (be

that MLSS, sediment, sludge) (Barret et al., 2011; Yi et al., 2006; Yi and

Harper, 2007). Results from the modelling strongly suggests that the exper-

imentally measured EE2 concentration in the solid phase is the sequestered

EE2, which is explained by hypothesis H2. In particular, for any BACs hav-

ing high affinity for a solid phase like EE2 there may be similar behaviour

because of similarities in their physiochemical properties.

This study shows the usefulness of mathematical modelling in wastew-

ater treatment as the paper evaluates sequestration of EE2, and this will

inform future efforts to develop and as well as apply models better able

to fit and/or predict BAC behaviour and fate in the environment. The

challenge, however, is that most data available from the literature does not

capture the changes in the concentrations over time, where all of the three

BAC states (e.g., liquid EE2-parent, solid EE2-parent and EE2-conjugate)

are determined simultaneously. In the future, experiments of such nature

may be encouraged to enable modelling as a route to better understand

wastewater treatment process performance. Specifically, sequestered BAC

concentrations will need to be measured as recommended in the literature

(Barret et al., 2011).
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6. Conclusions

Mathematical modelling of emerging pollutants in wastewater treatment

offers a way of investigating phenomena and establishing which mechanisms

affect the fate and behaviour of BACs in WWTPs. This study, has per-

formed a proof-of-concept investigation of EE2 fate in an activated sludge

pilot plant. In addition, the study examined the nature of the measured EE2

concentration in the solid phase via deterministic and stochastic modelling

frameworks to gain insight into the fate and behaviour of emerging pollutants

such as bioactive compounds, with a specific case study of EE2. Proposed

models have been tested using the likelihood ratio test (LRT), Akaike Infor-

mation Criterion (AIC), corrected AIC (AICC) and Bayesian Information

Criterion (BIC) to examine the nature of the experimental measured EE2

concentration in the solid phase from a lab-scale batch experiment.

From the computational models developed in this paper, the proposed

pathway of EE2 in wastewater treatment describes the experimental dataset

well, thus confirming the existence of sequestration for the EE2 dataset. In

addition, the results suggest that the experimental measured EE2 concentra-

tion in the solid phase is more likely to be the sequestered parent compound

(Cseq, hypothesis H2) rather than either the sorbed parent compound (Csor,

hypothesis H1) or the sum of a fraction of the sorbed parent compound to-

gether with the sequestered parent compound (fsorCsor + Cseq, hypothesis

H3). Furthermore, the results based on information criteria in Section 4.2

show that purely deterministic models do not adequately fit the data and

stochastic models of the process are required. However, not all components

need to be treated stochastically, and this work indicates that the best fit

was obtained when just one of the four variables (Csor) was stochastic. This

work shows that making the distinction between adsorbed and absorbed (se-

questered) pollutants is beneficial. It can be hypothesized that fate studies

involving pollutants that prefer the solid phase should evaluate sequestration

phenomena in order to provide a more accurate description of the process.

The environmental consequence of this conclusion is that the uncertainty

in EE2 or other BACs removal efficiency will be reduced, since wastewa-
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ter treatment can be further optimized with this insight and this will aid

stakeholders in decision making.
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