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Abstract 

Lateral root organogenesis plays an essential role in elaborating plant root system architecture. In 

Arabidopsis, the AP2-family transcription factor PUCHI controls cell proliferation in lateral root 

primordia. To identify potential targets of PUCHI, we analyzed a time course transcriptomic 

dataset of lateral root formation. We report that multiple genes coding for very long chain fatty 

acid (VLCFA) biosynthesis enzymes are induced during lateral root development in a PUCHI-

dependent manner. Significantly, several mutants perturbed in VLCFA biosynthesis show similar 

lateral root developmental defects as puchi-1. Moreover, puchi-1 roots display the same 

disorganized callus formation phenotype as VLCFA biosynthesis deficient mutants when grown 

on auxin-rich callus inducing medium. Lipidomic profiling of puchi-1 roots revealed reduced 

VLCFA content compared to WT. We conclude that PUCHI-regulated VLCFA biosynthesis is 

part of a pathway controlling cell proliferation during lateral root and callus formation. 
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Significance 

Lateral root organogenesis enables plant roots to branch and improve foraging for resources. 

Using a systems biology approach, we discovered expression of very long chain fatty acid 

(VLCFA) biosynthesis pathway genes are induced downstream of PUCHI, a transcription factor 

controlling cell division and morphogenesis during lateral root formation. Furthermore, we 

report that regulation of the VLCFA biosynthesis pathway by PUCHI is conserved for both 

lateral root development and callus formation, the first step in in vitro plant regeneration. 
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\body 

Introduction 

Plant root system architecture (RSA) is the three-dimensional configuration of a whole root 

system in its living environment (1). It is a major determinant of plant viability and crop yield, 

and a target for breeding to improve crop performance under various stresses (2, 3). Root 

branching is of particular importance because it largely determines the overall surface area of the 

root system and its spatial organization in the soil. The molecular mechanisms of root branching 

have been extensively studied in the model plant Arabidopsis thaliana. Lateral roots (LRs) 

originate from a small group of xylem-pole pericycle cells of the primary root that are primed by 

auxin to acquire founder cell identity (4). These founder cells undergo a succession of anticlinal 

and periclinal cell divisions that eventually result in the formation of a dome-shaped lateral root 

primordium (LRP; 5–8). The LRP emerges through overlaying root tissues to become a LR (9).  

Lateral root development is an excellent experimental system to study de novo meristem 

formation (10). Moreover, recent studies have shown that lateral root formation shares common 

mechanisms with organ regeneration in tissue culture, especially the first step of callus formation 

(11–14). While many genes involved in lateral root development have been identified, little is 

known about the mechanisms that progressively organize the LRP into a new root meristem (15). 

LRP organization is not dependent on a stereotypical cell division pattern and therefore on cell 

lineage (6, 7). It is a dynamic process dependent on complex gene regulatory networks and on 

cell-cell interactions including hormonal and biomechanical signals (6, 9, 16). Interestingly, 

inference of the gene regulatory network involved in LR formation suggested an early patterning 

mechanism defining the central region and flanks of the LRP and identified genes involved in 

this process (17). One such gene encodes the AP2/EREBP-family transcription factor PUCHI 

which was previously shown to control cell proliferation during LRP formation (18). The puchi-

1 mutant LRP exhibits additional anticlinal and periclinal cell divisions from early stages and 

produces abnormally enlarged flank cells (18). However, little is known about the pathways that 

are regulated by PUCHI. 

Very long chain fatty acids (VLCFAs) are fatty acids with 20 or more carbons synthesized in 

the endoplasmic reticulum from long chain-fatty acyl-CoA (16 or 18 carbons) by the fatty acid 
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elongase complex (SI Appendix, Fig. S1). This complex catalyzes rounds of 2-carbon elongation 

in a 4-step mechanism, involving a 3-ketoacyl-CoA synthase (KCS), a 3-ketoacyl-CoA reductase 

(KCR), a 3-hydroxyacyl-CoA dehydratase (HACD), and a trans-2,3-enoyl-CoA reductase 

(ECR). Multiple KCS enzymes with various expression patterns have been described and their 

substrate affinity is thought to be responsible for the final VLCFA chain length (19–21). In 

contrast, only a limited number of genes that encode functional enzymes catalyzing each of the 

subsequent steps of the elongation cycle has been identified in Arabidopsis. KETOACYL 

REDUCTASE 1 (KCR1) encodes an Arabidopsis KCR enzyme (22) while PASTICCINO 2 

(PAS2; 23) and PROTEIN TYROSINE PHOSPHATASE-like (PTPLA) encode two HACD 

enzymes (24), whilst the product of the ENOYL CO-A REDUCTASE/ECERIFERUM 10 

(ECR/CER10) gene has ECR activity (25). These enzymes are physically linked together by 

PASTICCINO 1 (PAS1; 27). VLCFAs are components of various classes of membrane, storage 

and extracellular lipids (27). VLCFA-containing sphingolipids and glycerolipids provide unique 

properties to membranes promoting inter-leaflet interactions and lipid rafts formation. As such, 

VLCFAs influence membrane dynamics during cell division (28, 29), the distribution of 

membrane proteins such as auxin transporters (26, 30), and are involved in non cell-autonomous 

processes of growth regulation (31–33). In addition, VLCFA-containing lipids, or their 

derivatives, are thought to act as second messengers in response to various stimuli (34, 35). 

Finally, VLCFAs are components of hydrophobic extracellular material such as skin barriers in 

mammal (36) or suberin and cuticular waxes in plants (27). 

In this study, we identified genes acting downstream of PUCHI using a time course LR 

transcriptomic dataset (37) combined with a gene regulatory network (GRN) inference algorithm 

(17). We found PUCHI-dependent expression of genes involved in the biosynthesis of VLCFAs 

during LR development. Consistently, VLCFA mutants display defects in LR development 

similar to puchi-1. VLCFAs were previously described to regulate the competence of pericycle 

cells to generate calli on an auxin-rich callus-inducing medium (CIM) (33). We show that 

PUCHI is also expressed in CIM-treated roots and regulates the expression of genes involved in 

VLCFA biosynthesis during CIM-induced callus formation. Accordingly, CIM-treated roots of 

the puchi-1 mutant show reduced level of VLCFAs as compared to wild type and exhibit 

comparable phenotype to VLCFA biosynthesis mutants. Our results indicate that PUCHI-
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regulated VLCFA biosynthesis is part of a pathway controlling cell proliferation during LR and 

callus formation. 

Results  

PUCHI regulates VLCFA biosynthesis genes during lateral root development 

To gain insight into the function(s) of PUCHI during LR development, we took advantage of 

the time-course transcriptomic dataset profiling every stage of LRP organogenesis (37) to 

identify candidate genes whose expression is regulated by this transcription factor. We employed 

the TDCor algorithm (17) to search the LR dataset for genes exhibiting an expression profile 

highly similar to that of PUCHI (Pearson’s correlation coefficient > 0.80) when shifted back in 

time by 3 hours. Our in silico analysis retrieved 217 potential target genes whose expression 

profiles are correlated with that of PUCHI (SI Appendix, Table S1). A Gene Ontology (GO) 

enrichment analysis using BiNGO (38) revealed that 71 GO biological processes were 

significantly overrepresented in this group of putative downstream genes (SI Appendix, Table 

S2). Among them, the “VLCFA biosynthesis” category stood out as one of the most strongly 

overrepresented biological processes (p-value = 0.006). In the LR dataset, PUCHI transcript 

abundance rapidly rises after LR induction and peaks at around 12 hours after gravistimulation, 

which corresponds to the time when the first round of anticlinal cell division is observed (Fig. 

1A, black line). PUCHI transcript levels then gradually decrease over time. Expression profiles 

of genes encoding key enzymes for each step of the VLCFA elongation cycle displayed 

comparable dynamics, albeit shifted in time. These included KCS1, KCS2, KCS9, KCS17 and 

KCS20 genes, all encoding members of the KCS enzyme family catalyzing the first step of 

VLCFA elongation, as well as KCR1, PAS2 and ECR/CER10, which encode enzymes catalyzing 

the second, third, and fourth steps of VLCFA elongation, respectively, and PAS1 (Fig. 1A and SI 

Appendix, Fig. S2). 

We validated this inference approach with a classical transcriptomic analysis of the puchi-1 

mutant complemented with a dexamethasone (DEX) inducible PUCHI-GLUCOCORTICOID 

RECEPTOR (GR) protein fusion expressed under the control of the PUCHI promoter. Treatment 

of pPUCHI::PUCHI:GR/puchi-1 seedlings with DEX targets the recombinant transcription 

factor to the nucleus to regulate gene expression (39, 40) and restore the wild type (WT) LR 

phenotype (SI Appendix, Fig. S3). We used the auxin naphthaleneacetic acid (NAA) to induce 
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LR formation and therefore increase the number of cells in which the PUCHI promoter is 

activated. Forty-six genes were significantly regulated (fold change > 1.5 and p-value < 0.05) 

after 4h NAA + DEX treatment compared to NAA alone. Only 4 of these genes were common 

with the genes recovered from our in silico analysis including 1 gene involved in VLCFA 

biosynthesis (KCS8) thus supporting activation of VLCFA biosynthesis genes downstream of 

PUCHI. However, this activation was lost when cycloheximide was added (SI Appendix, Table 

S3). Hence, whilst expression of a set of genes encoding for the entire VLCFA elongation 

pathway was stimulated in a PUCHI-dependent manner during LR formation, these genes were 

not primary targets of PUCHI.  

To confirm the PUCHI-dependent activation of the VLCFA biosynthesis pathway during LR 

development, we compared expression levels of VLCFA biosynthesis genes in WT and puchi-1 

roots during LR formation by RT-qPCR. An auxin-dependent LR induction system (LRIS, 

modified from 41); SI Appendix, Fig. S4) was used to synchronously induce lateral root 

formation along the whole primary root. Transcript levels of KCS1, KCS2, KCS20, KCR1, PAS2 

and ECR/CER10 were elevated after LR induction by NAA treatment in WT, but this response 

was disrupted in the puchi-1 loss-of-function mutant background (Fig. 1B). Hence, genes 

encoding key components of the fatty acid elongase complex responsible for VLCFA 

biosynthesis are induced during LRP development, and this is dependent on the PUCHI 

transcription factor. 

PUCHI controls the spatial expression of VLCFA biosynthesis genes during LR 

development 

We next analyzed the spatial expression pattern of VLCFA biosynthesis genes during LR 

development using promoter-reporter gene fusions in WT and puchi-1 backgrounds. A functional 

pPUCHI::GFP:PUCHI reporter is expressed throughout LRP during early stages of 

development, then the expression is excluded from the tip and limited to the flanks (Fig. 2A; 18). 

The functional pKCS1::KCS1:GFP reporter was expressed in the outermost layer of cells in LRP 

(Fig. 2B). KCS6, KCR1, PAS2, and PAS1 GUS reporter transgenes were strongly expressed in 

developing and emerging LRP (Fig. 2C,E-G), whereas pKCS20::GUS was expressed in a few 

cells of LRP (Fig. 2D). Interestingly, these transgenes displayed distinct expression patterns in 

emerging LRP, with pKCS6::GFP:GUS, pKCS20::GUS and pPAS1::GUS showing stronger 
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activity at the base of emerging LRs (Fig. 2C,D,G) whereas expression of pKCS1::KCS1:GFP, 

pKCR1::GFP:GUS and pPAS2::GUS was stronger at their tips (Fig. 2B,E,F).  

When introgressed into the puchi-1 background, we observed a clear reduction in 

pKCS1::KCS1:GFP and pKCS6::GFP:GUS expression in developing LRP (Fig. 2H,I). In 

contrast, pKCS6::GFP:GUS and pKCS20::GUS expression was clearly enhanced in puchi-1 

emerging LRs, especially at their tips (Fig. 2J). Loss of function of PUCHI also caused a clear 

and consistent decrease in expression of pKCR1::GFP:GUS, pPAS2::GUS and pPAS1::GUS in 

developing LRP and emerging LRs (Fig. 2K-M). Interestingly, expression of these reporters 

became confined to several basal and flank cells in a majority of emerging LRs. These contrasted 

changes in reporter genes expression might not completely reflect the endogenous expression of 

the corresponding genes and suggest that feedbacks might occur. Nevertheless, our analyses 

confirmed that key VLCFA biosynthesis genes are expressed during LRP development and that 

their expression patterns in LRP are dependent on PUCHI. 

PUCHI inhibits LR initiation but is necessary for later organ development 

To better understand the role of PUCHI during LRP development, we carefully characterized the 

impact of the puchi-1 mutation on LR formation. Emerged LR and non-emerged LRP were 

counted along the primary root of 9 day-old seedlings (Fig. 3A). LRP located in the LR 

formation zone, i.e. rootwards of the most recently emerged LR, were scored as “developing 

LRP” (Fig. 3A, 42). Although the density of emerged LR was not significantly different between 

puchi-1 and WT, the density of developing LRP in the LR formation zone was almost three 

times higher in the mutant compared to WT (Fig. 3B). Consistent with this observation, the 

distances between two consecutive LRP were much shorter intervals in puchi-1 than in WT with 

clusters of developing LRP either along a longitudinal (i.e. along a protoxylem pole) or radial 

(i.e. along opposite protoxylem poles) axis (Fig. 3C-D, 43). Thus, our data reveals that PUCHI 

represses LRP initiation in the pericycle and controls the spacing between LRP. This is 

consistent with recent results linking PUCHI to lateral inhibition of LR development by a peptide 

hormone-receptor signaling pathway (44). 

In the root branching zone, i.e. shootward of the most recently emerged LRs (Fig. 3A, 42), a 

strikingly high number of non-emerged LRP were present in the mutant, consistent with the 

observation of higher LRP initiation rate in the LRP formation zone (Fig. 3B). To test if they 
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correspond to arrested or delayed LRP, we marked and counted the number of emerged LRP in 

the root branching zone first 9 days after germination and then again after 4 extra days of growth. 

In both WT and puchi-1, we observed that none or very few new LRs had emerged during these 

additional days, consistent with the hypothesis that these non-emerged LRP have stopped 

developing (SI Appendix, Table S4). Thus, our data suggest that in addition to LRP initiation 

density, loss of PUCHI function also impacts LRP development. To confirm this, we used a 

gravistimulation-based LR induction system (45, 46) to analyze the kinetics of LRP development 

in puchi-1 compared to WT and scored the developmental stages reached by LRP (5) 18 and 48 

hours after induction (Fig. 3E). Gravistimulation induced the initiation of LRP development in 

almost 100% of the puchi-1 and WT seedlings. However, a delay in puchi-1 LRP development 

was already observed 18 hours post gravistimulation compared to WT. At 48 hours, a majority of 

WT LRP had emerged while most puchi-1 LRP only reached developmental stages IV, V or VI 

(Fig. 3E). 6 days after gravistimulation, 100% (53/53) of induced LRP had emerged in the WT 

background whereas only 70% (35/50) did so in the puchi-1 background. Hence, PUCHI is 

required for normal developmental progression of LRP and LR emergence.  

VLCFA mutants display similar defects in lateral root development as puchi-1  

We performed the same lateral root phenotyping assay for VLCFA mutants. We focused on 

mutants in KCS genes expressed downstream of PUCHI during lateral root development (kcs1-5, 

kcs9, kcs2 kcs20), and ECR/CER10 genes because (i) mutants in KCR1, PAS1 and PAS2 display 

severe and pleiotropic developmental phenotypes (22, 23), (ii) loss-of-function phenotype for 

those KCS, and ECR genes have been described (21, 25, 26, 33, 47), and (iii) functional 

redundancy and substrate specificity of KCS enzymes have been studied (21, 48). We did not 

observe any significant differences in LRP formation and development between kcs9 single 

mutants nor kcs2 kcs20 double mutant and WT seedlings. However, kcs1-5 mutant, a null allele 

for the KCS1 gene (33), displayed a root branching phenotype similar to puchi-1, albeit milder 

(Fig. 3B-E). An ECR mutant (cer10-2) produced similar but weaker phenotype (SI Appendix, 

Fig. S5). Moreover, double kcs1-5 kcs20 and kcs1-5 cer10-2 mutants resulted in more 

pronounced LRP development defects compared to the corresponding single mutants (SI 

Appendix, Fig. S6). Hence, VLCFA biosynthesis loss-of-function mutants exhibited similar 

defects in LRP development as puchi-1. These defects were weaker than those observed in 



 9 

puchi-1, possibly due to the fact that PUCHI may simultaneously regulate multiple VLCFA 

genes and possibly other pathways, and that VLCFA enzymes may act redundantly as indicated 

by our double mutant analysis. 

PUCHI and VLCFAs control pericycle cell proliferation on callus inducing medium 

VLCFAs were recently shown to control the ability of pericycle cells to form calli in Arabidopsis 

roots (33). This prompted us to investigate the role of PUCHI during callus formation. When 

seven-day old pPUCHI::GFP:PUCHI seedlings were incubated on CIM, reporter gene 

expression was observed in developing calli (Fig. 4A). Before being transferred to CIM, WT and 

puchi-1 roots displayed comparable anatomy (Fig. 4B, upper panels). After 4 days on CIM, both 

WT and puchi-1 roots responded to the hormonal treatment with pericycle cell proliferation (Fig. 

4B, lower panels). However, whereas WT roots produced dome-shaped calli, the puchi-1 mutant 

generated a continuous layer of dividing cells along its entire primary root. This phenotype was 

similar and stronger than the fused-calli phenotype displayed by the VLCFA biosynthesis 

deficient mutant kcs1-5 (Fig. 4B, SI Appendix, Fig. S7; 33). DEX treatment restored a WT callus 

formation phenotype in pPUCHI::PUCHI:GR/puchi-1 plants on CIM medium (Fig. 4C) thus 

confirming that the callus formation phenotype of puchi-1 roots on CIM is caused by loss of 

function of PUCHI. We next analyzed if PUCHI is required for the expression of VLCFA genes 

in the context of CIM-induced callus formation. pKCS1::KCS1:GFP, pKCS6::GFP:GUS and 

pKCR1::GFP:GUS expression were studied after CIM treatment in WT and puchi-1 

backgrounds. All three reporter genes were expressed in calli in WT plants and this expression 

was lost in puchi-1 (SI Appendix, Fig. S8). Hence, PUCHI and VLCFAs restrict pericycle cell 

proliferation during callus formation and PUCHI is necessary for expression of VLCFA 

biosynthesis genes in response to CIM treatment. 

puchi-1 displays altered VLCFA content 

To further demonstrate that the puchi-1 phenotypes were linked to changes in VLCFA content, 

we analyzed the fatty acid composition in WT, kcs1-5 and puchi-1 CIM-treated roots. CIM 

treatment was chosen because of the strong associated phenotypes and as it generated a large 

amount of material for lipidomics. The total amount of fatty acids was similar in all three lines 

but the amount and proportion of VLCFAs were significantly lower in kcs1-5 and puchi-1 

compared to WT (Fig. 4D; SI Appendix, Fig. S9). Interestingly, a detailed analysis showed that 
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C22 fatty alcohols (22:0-OH) and C24 sphingolipids (h24:0) were significantly reduced in puchi-

1 while precursors (C16, C18) were more abundant (SI Appendix, Fig. S10). VLCFAs are 

precursors of suberin and cutin biosynthesis. A suberin and cutin-like layer was recently 

described overlying developing LRP (49, 50). Suberin and root cutin are composed from 

dicarboxylic acid (DCA), ω-hydroxy acids (ωOH) and fatty alcohols (OH) (50, 51). The level of 

all C18-containing fatty acids typical of suberin/cutin (ωOH-18, 18-DCA and 18-OH) was 

similar between puchi and WT (SI Appendix, Fig. S10). However, we cannot exclude qualitative 

changes in composition of the suberin/cutin layer in front of LRP that would be regulated by 

PUCHI. 

Discussion 

We report that spatio-temporal expression of genes encoding VLCFA biosynthetic enzymes is 

coordinately regulated by PUCHI during LR formation. Interestingly, while expression of non-

redundant KCR1, PAS2 and PAS1 genes (52, 53) is induced by PUCHI throughout developing 

LRP in a similar manner, partially redundant KCS genes involved in the biosynthesis of VLCFAs 

of various chain lengths (21, 48, 53) displayed more diverse expression patterns and regulation. 

Our data suggest that VLCFAs of specific chain lengths may be synthesized and required in 

different cell types and/or at different stages of LRP development where they might contribute to 

LRP patterning. 

The puchi-1 loss-of-function mutant has been reported to exhibit LRP with abnormal cell 

division patterns and with higher cell proliferation rates compared to WT at the organ flanks 

(18). We report a delay in LRP development and emergence, as well as higher initiation density 

along the primary root, with frequent clustering of primordia under both normal and tissue 

culture (CIM) conditions. This is consistent with previous studies indicating that VLCFAs are 

important to restrict cell proliferation (31). It was recently shown that VLCFA biosynthesis was 

also necessary to organize cell proliferation into distinct calli in Arabidopsis roots grown on CIM 

(33). Importantly, callus formation shares common steps with the LRP formation pathway (12–

14). We showed here that the puchi-1 mutation causes roots to form a fused and continuous calli 

when treated with CIM, a phenotype reminiscent and even stronger than the one reported for 

kcs1-5 and other mutants (33). Interestingly, roots of puchi-1 and VLCFA mutants produced 

more LRP than WT roots and these LRP exhibit ectopic cell divisions, suggesting that PUCHI 
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regulates a pathway restricting pericycle cell proliferation that is conserved between LR 

development and in vitro callus formation. Given that defects in VLCFA biosynthesis lead to cell 

over-proliferation in different contexts such as shoot vasculature (31, 54), CIM-induced calli (33; 

this study), and in LRP (26), the regulation of VLCFA biosynthesis genes by PUCHI may 

explain part of the puchi-1 LRP and CIM phenotype. PUCHI-regulated VLCFA biosynthesis 

might also be critical for cell patterning in lateral root primordia as evidenced by puchi-1 

phenotype and specific expression profiles of individual VLCFA biosynthesis genes. Further 

experiments will be needed to test this interesting hypothesis. 

VLCFAs could regulate cell proliferation in several ways. VLCFAs can be incorporated into 

cell membranes and influence their structural and functional dynamics, especially endocytosis, 

vesicular trafficking, and exocytosis, impacting cell cytokinesis or the targeting to the membrane 

of important factors, such as auxin transporters (26, 28, 30). More generally, VLCFA content 

and composition may modulate hormonal signaling dynamics, especially cytokinins and auxins 

(31, 55). Last, VLCFA distribution could impact the mechanical properties of the tissues by 

modifying cell wall composition in the endodermis (22) or tissues that overlay LRP (49).  

In conclusion, using a systems biology approach we found that the expression of multiple 

important enzymes catalyzing each of the four steps of the VLCFA elongation cycle are 

upregulated during LRP development and this is dependent on the AP2/EREPB transcription 

factor PUCHI. In addition, the puchi-1 loss-of-function mutant shares similar LRP and callus 

phenotypes with mutants impaired in VLCFA biosynthesis. Hence, during root branching and 

root-derived callus formation the PUCHI transcription factor stimulates the expression of key 

VLCFA biosynthesis genes to regulate cell proliferation, organogenesis and organ spacing. 
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Materials and Methods 

Plant materials, transgenic plant generation, plant growth conditions, and methods for root 

phenotyping, microscopy and cytological analyses, transcriptome and gene expression level 

analyses, callus formation assay, and lipidomics profiling by GC-MS are described in SI 

Appendix, SI Materials and Methods. Primers used are listed in SI Appendix, Table S5. 

PUCHI::GR expression data were deposited in the Gene Expression Omnibus (GEO) of the 

National Center for Biotechnology Information (NCBI) under accession number GSE128721. 
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Figure Legends 

Figure 1. VLCFA biosynthesis genes are induced during LRP development in a PUCHI-

dependent manner. (A) Transcripts accumulation levels are expressed in arbitrary units (A.U.). 

The gray dotted line indicates the time point when PUCHI expression reaches a maximum after 

LR induction. (B) VLCFA biosynthetic gene expression by RT-qPCR in WT (blue) and puchi-1 

roots (orange). Lateral root formation is inhibited in control plants treated with NPA (darker 

shade), while on NAA (brighter shade) lateral root initiation is induced synchronously along the 

primary root in both WT and puchi-1. Roots were harvested after 24h treatment on 5 µM NPA or 

10 µM NAA. Normalization was achieved with the CYCLIN-DEPENDENT KINASE A;1 

(CDKA;1) gene. The calibrator cDNA is WT under NPA treatment. Data are represented as 

Mean ± SEM (standard error of the means) of three biological replicates. Significance was 

determined by Student’s t test (* P < 0.05, ** P < 0.01). 

 

Fig. 2: VLCFA genes are expressed in developing LRP and their expression patterns are 

dependent on PUCHI. (A) Expression of pPUCHI::GFP:PUCHI in puchi-1 background is 

observed in developing LRP and is gradually confined to their base and flanks. (B) to (M) 

Expression patterns of various translational and transcriptional reporter constructs of VLCFA 

biosynthesis genes in typical WT (B to G) and puchi-1 (H to M) LRP and newly emerged LR. 

Scale bars = 50µm. Numbers indicate the percentage of LRP or LR displaying the corresponding 

expression pattern. n = 30-40 seedlings for each GUS assay. 

 

Figure 3. LR initiation is enhanced but LRP development is delayed in puchi-1 mutant. (A) Root 

branching events were scored in three distinct developmental zones of Arabidopsis primary root 

regarding lateral root formation as suggested in (42). (B) Density of developing LRP, emerged 

LR, delayed LRP, and total LR initiations (LRP + LR) in 9-day old WT, puchi-1 and kcs1-5 

seedlings. Developing LRP are LRP scored in the LR formation zone. Delayed LRP are defined 

as those located in the branching zone of the primary root but have not crossed the epidermis. 

Data are represented as Mean ± SEM of three biological replicates; number of seedlings ≥ 20 in 

each repeat. Significance was determined by Student’s t test. (C) Frequency distribution of 

distances between two consecutive LRP in WT, kcs1-5 and puchi-1 roots. Each bin of the 

histogram represents a range of 300 µm. Number of LRP = 222, 208 and 228 for WT, kcs1-5 and 

puchi-1, respectively. The orange bar in each histogram indicates the mean LRP distance in each 

genotype. The stars in the histograms for kcs1-5 and puchi-1 indicate the significant difference 

between these mean distances compared to that of WT. (D) Examples of longitudinal and radial 

clusters of LRP in puchi-1 roots. Arrowheads indicate LRP. Scale bars = 50µm. (E) Distribution 

of developmental stages as described by Malamy and Benfey (5) achieved by gravistimulation-

induced LRP formation in WT, kcs1-5 and puchi-1 roots at 18 and 48 hours after the 

gravistimulation. Data are represented as Mean ± SEM of three biological replicates, with 
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number of seedlings ≥ 20 in each repeat. For all occasions, * P < 0.05, ** P < 0.01, *** P < 

0.001. 

 

Figure 4: Callus formation is enhanced in puchi-1 roots. (A) pPUCHI::GFP:PUCHI expression 

in calli induced by CIM, scale bars = 50 µm. (B) 7-day-old puchi-1, kcs1-5 and WT seedlings 

grown on ½ MS medium (top), and after 4 more days of growth on CIM (bottom). (C) 

pPUCHI::PUCHI:GR/puchi-1 plus dexamethasone (DEX) restores callus formation in puchi-1 

roots on CIM. n = 40 for WT, kcs1-5 and puchi-1. n = 20 for pPUCHI::PUCHI:GR/puchi-1, 

scale bars = 0.1mm. (D) Global fatty acids of WT, puchi-1 and kcs1-5 roots after 4 days on CIM. 

The results are the sum of carboxylic acids, α,ω-dicarboxylic acids, ω-hydroxy acids, fatty 

alcohols and 2-hydroxy fatty acids. Data are represented as Mean ± SEM of six, six and five 

biological replicates for WT, puchi-1 and kcs1-5, respectively. * P < 0.05, ** P < 0.01, *** P < 

0.001. 

 

  


