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Abstract River wetted width (RWW) is an important variable in the study of river hydrological and
biogeochemical processes. Presently, RWW is often measured from remotely sensed imagery, and the
accuracy of RWW estimation is typically low when coarse spatial resolution imagery is used because river
boundaries often run through pixels that represent a region that is a mixture of water and land. Thus,
when conventional hard classification methods are used in the estimation of RWW, the mixed pixel problem
can become a large source of error. To address this problem, this paper proposes a novel approach to
measure RWW at the subpixel scale. Spectral unmixing is first applied to the imagery to obtain a water
fraction image that indicates the proportional coverage of water in image pixels. A fine spatial resolution
river map from which RWW may be estimated is then produced from the water fraction image by
superresolution mapping (SRM). In the SRM analysis, a deep convolutional neural network is used to
eliminate the negative effects of water fraction errors and reconstruct the geographical distribution of water.
The proposed approach is assessed in two experiments, with the results demonstrating that the
convolutional neural network‐based SRM model can effectively estimate subpixel scale details of rivers and
that the accuracy of RWW estimation is substantially higher than that obtained from the use of a
conventional hard image classification. The improvement shows that the proposed method has great
potential to derive more accurate RWW values from remotely sensed imagery.

1. Introduction

Rivers and streams are key routes for water movement and play a major role in local‐ to global‐scale hydro-
logical and biogeochemical cycles (Allen & Pavelsky, 2018; Downing et al., 2012). River wetted width
(RWW) is a fundamental variable (Song et al., 2018) influencing, among other things, the water surface area
that controls the flux of gases in the global carbon cycle (Butman & Raymond, 2011; Raymond et al., 2013).
RWW is also an important input to scientific models for the estimation of properties such as river discharge
(Azzari & Lobell, 2017; Benstead & Leigh, 2012; Bjerklie et al., 2005; Gleason & Smith, 2014; Sichangi et al.,
2016; Song et al., 2018; Sun et al., 2018) as well as the simulation of river biogeochemical processes (Gomez‐
Velez & Harvey, 2014). Although RWW can be measured in the field, such activity is often time‐consuming
and can be challenging for some rivers. Recently, the estimation of RWW from remotely sensed imagery has
emerged as a viable approach (Stumpf et al., 2016), and compared with field‐based methods, remote sensing
offers an inexpensive means for RWW estimation that is efficient, especially for the study of geographically
large areas (Allen & Pavelsky, 2015; Isikdogan et al., 2017; Miller et al., 2014; Priestnall & Aplin, 2006; Zeng
et al., 2015).

Remote sensing‐based approaches to RWW estimation typically require the production of a map depicting
rivers by manual digitization or automatic image processing methods (Pavelsky & Smith, 2008). Once pro-
duced, numerous estimates of RWW can be obtained for the area mapped (Allen & Pavelsky, 2015; Miller
et al., 2014; O'Loughlin et al., 2013; Rawlins et al., 2014). A variety of remotely sensed data sets (images) is
available for river mapping (Priestnall & Aplin, 2006). These images have different temporal and spatial
resolutions and are suitable for a range of application requirements. For example, the MODerate‐
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resolution Imaging Spectroradiometer (MODIS) provides imagery with a finest spatial resolution of 250 m
and a daily repeat frequency, which may be attractive for the monitoring of large rivers routinely at regional
to global scales (Azzari & Lobell, 2017; Tarpanelli et al., 2013). Medium spatial resolution multispectral ima-
gery, such as those acquired from Landsat series satellites, has a spatial resolution of 30 m and is acquired
approximately every 16 days and is widely used in regional scale studies (Allen & Pavelsky, 2015;
O'Loughlin et al., 2013). Fine spatial resolution satellite images (Fisher et al., 2013) and aerial sensor imagery
(King et al., 2018; Rawlins et al., 2014) can be used to estimate RWW for narrow rivers.

Compared with other land cover classes, a crucial feature to be considered in measuring RWW from remo-
tely sensed imagery is that the area covered by river water bodies often fluctuates rapidly within a short time
period (Benstead & Leigh, 2012; Stumpf et al., 2016). The rapid change of RWW implies a certain amount of
difficulty for timely and accurately measuring RWW, due to the trade‐off between the spatial and temporal
resolution of satellite remotely sensed imagery (Ling et al., 2014; Muad & Foody, 2012). In principle, one of
themost crucial factors that influences the accuracy of RWWestimation is the spatial resolution of the remo-
tely sensed imagery used: RWW estimates are often most accurate when fine spatial resolution imagery is
used. In practice, however, fine spatial resolution remotely sensed images tend to have a relatively small area
of coverage, low temporal resolution, and high price, which greatly limits their utility for RWW estimation.
In contrast, coarser spatial resolution remotely sensed images often cover large areas with a high temporal
resolution and are inexpensive or freely available, and thus, such imagery is attractive for applications
focused on the rapid fluctuation of RWW over large areas. However, it is often difficult to estimate RWW
accurately with coarse spatial resolution images. The central reason for this is that the river's boundaries
typically run through image pixels rather than along their edges, and the river cannot be accurately repre-
sented in river maps produced using conventional (hard) image classifications (Foody et al., 2005).

Themagnitude of the aforementioned problem is a function of the river width relative to the pixel size, being
greatest for narrow rivers with coarse spatial resolution images. As an indication of themagnitude of the pro-
blem, in the North American River Width data set that is produced from Landsat sensor images, the root
mean square error (RMSE) is estimated to be 38 m, which is close to the minimum theoretical value obtain-
able from 30‐m resolution Landsat imagery (Allen & Pavelsky, 2015). Moreover, in their results, the smallest
RWWvalues are the same as the size of an image pixel (30 m), and the scatter of points around the regression
line is greater for rivers whose widths are less than 100 m, which is mainly caused by the problem of mixed
pixels along the river boundaries. This phenomenon poses a real problem for the study of narrower rivers,
which comprise a significant proportion of the total river network. Headwaters illustrate this well—they
are the finest branches of the river networks and have been estimated to comprise 70% of the global river
network in terms of length (Lowe & Likens, 2005) and 15% of the river surface area (Raymond et al.,
2013; Wallin et al., 2011). Moreover, processes such as CO2 evasion occur at a higher rate in narrower rivers
due to connectivity with carbon‐rich terrain (Benstead & Leigh, 2012) and increased hydrodynamic turbu-
lence (Aufdenkampe et al., 2011). It is thus imperative to address the uncertainty in measuring RWW from
rivers whose width is narrower than the spatial resolution of the remotely sensed imagery.

In order to measure RWW from remotely sensed imagery, a binary river map always needs to be produced
first. Standard hard classification techniques treat each pixel as belonging solely to a single land cover class.
Recognizing that pixels that lie along the edge of the river are typically of mixed class composition in coarse‐
resolution imagery, river boundaries generally cannot be appropriately represented in the binary river map
produced by hard classification. Producing a fine‐resolution river map from coarse‐resolution imagery is
expected to increase the accuracy of RWW estimation. This can be achieved via a subpixel scale analysis,
including spectral unmixing and superresolution mapping (SRM). Spectral unmixing aims to decompose
the spectral signature of mixed pixels into a set of endmembers and their corresponding fraction images.
Endmembers are pure spectra corresponding to each of the land cover classes, and fraction images represent
the proportional areas of different land cover classes withinmixed pixels (Foody &Cox, 1994; Settle &Drake,
1993). SRM is the postprocessing stage of spectral unmixing, which aims to determine the spatial distribu-
tion of different land covers within coarse‐resolution pixels and generate a fine‐resolution land cover map,
using coarse‐resolution fraction images produced by spectral unmixing as the input (Ling et al., 2014). In
the past decades, a range of SRM algorithms have been proposed (Atkinson, 2009; Ling et al., 2010; Tatem
et al., 2001) and successfully applied in various situations, including water body mapping. For example,
Foody et al. (2005) applied SRM in shoreline mapping, with an RMSE of 2.25 m when using a 20‐m
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spatial resolution image as input. Muad and Foody (2012) fused multiple MODIS images to map lake bound-
aries. Some researchers incorporated fine‐resolution digital elevation model (DEM) data sets into SRM to
further increase accuracy (Huang et al., 2014; Li et al., 2013; Ling et al., 2008).

Although SRM has been found to be effective at increasing the accuracy with which water bodies can be
represented based on remotely sensed imagery, current popular SRMmethods might not be able to produce
accurate river maps. The objective of SRM is to transform the coarse‐resolution fraction images into a fine‐
resolution map, possibly with the aid of prior information on the land cover mosaic (Muad & Foody, 2012).
The resultant fine‐resolution map is thus dependent on the quality of the fraction images and, if used, the
information on the spatial pattern of land cover—that is, a detailed accurate representation of the geographi-
cal distribution of the land cover classes at a subpixel scale. In practice, however, the input fraction images
include errors that will degrade the SRM analysis and its output. Moreover, the spatial dependence model,
which aims to make the resultant fine‐resolution land cover map have the maximal spatial dependence in
the SRM analysis, may only be effective for relatively large water bodies and will tend to overaggregate land
cover patches, making it unsuitable for the description of the spatial pattern of land cover mosaics contain-
ing rivers, especially smaller streams (Ling et al., 2014). Given these two concerns, a more effective SRM
approach is required to produce fine‐resolution river maps which might be used for accurate RWW estima-
tion to support rapid and global measurement of RWW.

Recently, deep learning techniques have been successfully applied in a wide range of computer vision,
remote sensing image, and water resource analysis tasks (Shen, 2018; Zhang et al., 2016). Deep neural net-
works, such as convolutional neural network (CNN), have been proposed for image denoising (Zhang et al.,
2017), single image superresolution (Dong et al., 2016; Kim et al., 2016), and generating high‐resolution cli-
mate change projections (Vandal et al., 2017). Deep neural networks can produce results with much higher
accuracies than traditional approaches, contributing to their powerful abilities of end‐to‐end nonlinear map-
ping and automated feature extraction from images. Consequently, deep neural networks should provide the
opportunity for effective SRM analysis, by addressing two fundamental limitations encountered with con-
temporary SRM methods. First, errors in the fraction images arising from the initial spectral unmixing ana-
lysis can be considered to be noise that impacts negatively on the SRM analysis that is based on the fraction
images. The CNNmodel used for image denoising can reduce this problem. Second, image superresolution,
which aims to reconstruct a fine spatial resolution image from a coarse‐resolution image, is similar to the
SRM analysis, as the crucial problem for both of them is establishing the mapping relations between fine‐
and coarse‐resolution images. The CNN models have shown their powerful abilities in image superresolu-
tion (Dong et al., 2016; Kim et al., 2016) and should be introduced to the SRM analysis, in order to address
the limitation of existing models used to provide accurate representation of land cover distribution at a sub-
pixel scale. As such, deep neural networks should provide a means to address the main limitations of the
SRM analysis and aid accurate RWW estimation.

This study proposes an approach to increase the accuracy of RWW estimation from coarse spatial resolution
remotely sensed imagery. Specifically, this study aims to build a novel SRM algorithm based on the concept
of deep learning that addresses the two crucial problems for accurate pixel RWW estimation: generating an
accurate fine‐resolution river map robust to fraction errors.

2. Methods

The proposed approach comprises three main processing steps (Figure 1). First, a coarse‐resolution water
fraction image is estimated from the observed remotely sensed imagery by spectral unmixing. Second, a
fine‐resolution river map is produced from the coarse‐resolution water fraction image using a CNN‐based
SRM analysis. Third, RWW is estimated from the resultant fine‐resolution river map, and its accuracy
is assessed.

2.1. Spectral Unmixing

Conventionally, many image analyses have assumed that a region is covered uniformly by a single class. In
practice, however, mixed pixels, which are composed of more than one class, are common, especially in
coarse‐resolution imagery (Foody, 1996). An estimate of the class composition of a mixed pixel may be
obtained by spectral unmixing (Foody & Cox, 1994; Settle & Drake, 1993). A popular spectral unmixing
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analysis is based on the linear mixture model, in which the spectrum of a coarse‐resolution pixel is modeled
as a linear sum of each endmember (class) spectrum weighted by its fractional cover (Settle & Drake, 1993),
and can be represented as

ρ0λ ¼ ∑
N

i¼1
f i*ρiλ þ ελ; (1)

where ρ'λ is the reflectance associated with a pixel at the spectral band λ,N is the number of endmembers, ρiλ
is the reflectance and fi is the fractional cover of the ith endmember, and ελ is the residual term. RMSE is used
to determine the model fit and indicate accuracy:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
B

k¼1
εiλð Þ2

B

vuuut
; (2)

where B is the number of bands.

The linear mixture model can often provide a good approximation of the physical process underlying the
observations, but a key limitation is that the spectral variability of land cover classes is not considered.
Consequently, the observed spectral response for a given pixel can be associated with a variety of class com-
positions. Multiple endmember spectral mixture analysis (MESMA) is an extension of the basic linear mix-
ture model and allows the endmembers in each coarse spatial resolution pixel to vary in type and number
(Dennison & Roberts, 2003; Roberts et al., 1998). MESMA typically comprises two main steps. First, a spec-
tral library that includes the optimal endmembers is constructed. Second, the coarse‐resolution pixels are
unmixed using the spectral library to produce fraction images.

Here the approaches in the Visualization and Image Processing for Environmental Research Tools software
package (Roberts et al., 2007) are used to build the spectral library. The minimum noise fraction transforma-
tion is first applied to the original multispectral image, and the purest pixels are found using the pixel purity

Figure 1. The flowchart of the proposed method. MESMA = multiple endmember spectral mixture analysis; CNN = convolutional neural network.
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index (Boardman, 1994). The spectra of different endmembers are then selected visually from these purest
pixels, and selected endmembers are further refined using the count‐based endmember selection index
(Dennison & Roberts, 2003). Once the appropriate endmembers have been identified, all possible endmem-
ber combinations are analyzed for each pixel, and the endmember combination with the lowest RMSE value
in the spectral unmixing analysis is identified.

2.2. SRM by Deep CNN

With the coarse‐resolution water fraction image produced by MESMA as input, the SRM analysis is applied
to produce a fine‐resolution land cover map that includes water and thereby depicts rivers. Suppose that the
original coarse‐resolution water fraction image has the spatial size ofM1 ×M2 pixels. Setting the zoom factor
to z, SRM aims to generate a fine‐resolution river map, which contains (z ×M1) × (z ×M2) pixels. Each fine‐
resolution pixel is considered to be pure (i.e., representing an area with a single class) and is assigned as river
or nonriver. Based on recent advances with deep learning approaches, a CNNmodel is used in the SRM ana-
lysis. The whole procedure is shown Figure 2 and comprises three parts: training samples generation, CNN
model training, and finally, application of the trained CNN model to superresolution river mapping.
2.2.1. Generating Training Samples
The CNN model used in the SRM analysis aims to model the nonlinear relationship between the coarse‐
resolution water fraction image and the fine‐resolution river map and needs to be trained with training sam-
ples before its application. Training samples, each of which consists of a coarse‐resolution water fraction
image and its corresponding fine‐resolution river map, are critical to the successful use of the CNN model,
and one of two methods can be used to form the training set. The first is based on the collection of real
coarse‐resolution remotely sensed imagery and the corresponding fine‐resolution river maps. This method
is intuitive but is often difficult to apply because there are many different satellite products with different
spectral and spatial properties, and training samples would have to be collected for each of them.
Moreover, it is often difficult to ensure that the coarse‐resolution images match in time with the fine‐
resolution river maps, a potentially major problem if the water surface area changes rapidly, and spatial
misregistration error is also common. The second approach to generate training samples involves using
fine‐resolution remote sensing images that can be degraded to a coarse resolution. With this method, the
problem of temporal consistency and geo‐registration is solved, but the number of bands provided by
fine‐resolution remotely sensed images is often low, which may limit spectral unmixing.

Given the limitations of these two approaches, the training samples in this study are simulated from col-
lected fine‐resolution river maps, which can be produced from existing fine‐resolution remotely sensed ima-
gery. An independent CNN model should be trained for a predefined zoom factor. During the simulation, a
fine‐resolution river map is initially used to generate its corresponding coarse‐resolution water fraction
image by spatial degradation. The area proportions of fine‐resolution river pixel within each coarse‐
resolution pixel are calculated and assigned as the water fraction values according to the zoom factor. The
resulting simulated water fraction values are error‐free, but this is unrealistic because fraction errors are
unavoidable during spectral unmixing. The CNN model should be trained not only to map the nonlinear
relationship between the coarse‐resolution fraction water image and fine‐resolution river map but also to
denoise the errors in the coarse‐resolution fraction water image. Therefore, random noise is added to simu-
late the fraction errors. As a result, a fine‐resolution river map and a simulated noise‐added coarse‐
resolution fraction image consist of one training sample. This method is flexible as only fine‐resolution river
maps are used, and one fine‐resolution river map can simulate different coarse‐resolution water fraction
images, since noise is randomly added. The training samples can then be easily expanded with different
amounts of noise to provide more useful information for the training of the CNN model.
2.2.2. Training the CNN Model
All simulated fine‐resolution river maps and the corresponding noise‐added coarse‐resolution water fraction
images are then used as samples to train the CNNmodel. In this research, a very deep CNN (Kim et al., 2016)
is used. The CNN used comprises 20 layers. The image input layer is followed by the first 2‐D convolutional
layer that contains 64 filters of size 3 × 3 and a rectified linear unit layer. The second to the penultimate
layers of the CNN are 18 alternating convolutional and rectified linear unit layers. Every convolutional layer
contains 64 filters of size 3 × 3 × 64. The last layer consists of a single filter of size 3 × 3 × 64. Zero padding is
used before convolutions to ensure the input and output images have the same size.
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According to the structure of the CNN model, the input is not the coarse‐resolution water fraction image in
training samples but the interpolated image matching the size of the fine‐resolution river map. A standard
method such as bi‐cubic interpolation with the appropriate zoom factor may be used to generate this input
data set. The output of the CNN model is not the fine‐resolution river map in training samples but the resi-
dual image, which represents the difference between the interpolated image and the fine‐resolution river
map. Therefore, the CNN model is not used to directly model the nonlinear relationship between the
coarse‐resolution water fraction image and the fine‐resolution river map but the relationship between the
interpolated image and the residual image, which has been shown to be an effective technique for image
superresolution (Kim et al., 2016).

With this technique, however, the residual image cannot be calculated directly because the fine‐resolution
river map has discrete category labels. To solve this problem, a relaxation procedure may be applied to alter
the labels of the river map to generate the water indicator image. If a fine‐resolution pixel in the river map is

Figure 2. The flowchart of the CNN model used for the superresolution mapping analysis. CNN = convolutional neural network.
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labeled as river, it is absolutely covered by water, and the value of 1 is then assigned to it in the water indi-
cator image; otherwise, it is covered by land, and the value of 0 is assigned to it. Therefore, pixels in the water
indicator image take on numerical values on the range [0, 1] reflecting the proportional coverage of water in
the area represented by a pixel. The residual image can then be calculated by subtracting the interpolated
image from the water indicator image.

Using interpolated images and corresponding residual images produced from all fine‐resolution river map
training samples, the CNN model can then be trained. Given that the residual image not only includes
the errors caused by the interpolation process but also includes those caused by simulated fraction errors,
the trained CNNmodel is intended to simultaneously recover the missing fine‐resolution information about
the spatial pattern of rivers and also remove noise due to fraction errors.
2.2.3. Superresolution River Mapping
Once the CNN model has been trained, it can be used for superresolution river mapping. Given the trained
CNN model has learned the nonlinear relationship between the coarse fraction image and the fine‐
resolution river map from those training samples, it is expected that the unknown fine‐resolution river
map can be reconstructed from the real coarse‐resolution water fraction image produced by spectral unmix-
ing, using the information included in the CNN model.

During this procedure, the coarse‐resolution water fraction image produced by spectral unmixing is first
interpolated to form the fine‐resolution image. Then, a residual image is produced from the interpolated
image using the CNN model. By adding the interpolated image and the residual image, a fine‐resolution
water indicator image is produced. Finally, the threshold method is applied to generate the output resultant
fine‐resolution river map from the fine‐resolution indicator image. Here the threshold value is set to be 0.5,
meaning that if the value of a fine‐resolution pixel in the fine‐resolution indicator image exceeds 0.5, it is
classified as a river pixel.

2.3. RWW Estimation and Accuracy Assessment

RWW values are estimated automatically from the fine‐resolution river map using RivWidth software
(Pavelsky & Smith, 2008). To assess the accuracy of RWW, sample points are randomly selected from the
RWW map and compared with those in the fine‐resolution reference river map. In order to reduce the
impact of mismatching between river center lines exacted by RivWidth from different river maps, the aver-
age RWW value in the area covering by 5 × 5 pixels in the original coarse‐resolution remotely sensed images
is used for each sample point. The accuracy of the RWW estimates is assessed using the RMSE, the average
error (AE), and the percentage error (PE), defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

k¼1
w
ˆ
k−wref

k

���� ����2
s

; (3)

AE ¼ 1
N

∑
N

k¼1
w
ˆ
k−w

ref
k

� �
; (4)

PE ¼ 1
N

∑
N

k¼1

w
ˆ
k−wref

k

wref
k

0@ 1A; (5)

where bwk is the RWW value estimated with the proposed method of the kth sample andwref
k is the reference

RWW value; and N is the number of samples.

To provide benchmarks to aid the evaluation of the proposed approach, the pixel‐based hard classification
and three other popular SRM algorithms, pixel swapping (PS; Atkinson, 2005), Hopfield Neutral Network
(HNN; Tatem et al., 2001), and the algorithm based on A+ (Timofte et al., 2014), are also applied for com-
parison. Details description of these three SRM algorithms is provided in Supporting Information S1.

3. Experiments and Results

The potential of the proposed method was explored in two experiments. The first experiment used a MODIS
data set, and the second experiment used a Landsat data set.
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3.1. MODIS Experiment
3.1.1. Data Set
In this experiment, the study area was the Bay of Bengal, which contains rivers of varying widths ranging
from several meters to tens of thousands of meters. A MOD09GA image (MODIS tile: h26v06) acquired
on 23 December 2016 was obtained from the NASA's Earth Observing System Data and Information
System (https://earthdata.nasa.gov/) and was used to estimate RWW at the subpixel scale. The MODIS
image had seven bands, and the pixel size was approximately 463 m. A subset of the image consisting of
200 × 200 pixels (Figure 3a) was used in this experiment. A Landsat OLI (path 138 and row 045) image
(Figure 3b) acquired on 22 December 2016 was obtained via the United States Geological Survey (USGS)
Earth Explorer (http://earthexplorer.usgs.gov), and the reference fine‐resolution river map with a spatial
resolution of 30 m was produced from the Landsat OLI image with a threshold approach based on the
Modified Normalized Difference Water Index (Xu, 2006; Figure 3c).
3.1.2. Model Implementation
Using the MODIS image as input, MESMAwas performed to produce a water fraction image. Here four land
cover classes were used: vegetation, soil, urban, and water. Endmembers for these four land cover classes
were selected with the Visualization and Image Processing for Environmental Research software (Roberts
et al., 2007), and the simplex projection algorithm coded in Matlab (Heylen et al., 2011) was used for spectral
unmixing. Once the water fraction image was estimated, the SRM analysis was performed to produce a fine‐
resolution river map.

To illustrate the impact of the zoom factor, five levels were used in the SRM analyses: 2, 4, 6, 8, and 10. For
each zoom factor, an independent CNN model was trained. The training samples of the CNN model were
generated from the Global River Width from Landsat data set (Allen & Pavelsky, 2018). These river maps
were selected from seven places globally (Figure S1) and were divided into small image subsets, each of
which had the size of 400 × 400 pixels. A total of 500 small image subsets was randomly selected to form
the training data set (Figure S2). During the training process, we used the same parameters as Kim et al.
(2016): The mini‐batch size is 64, the number of training epochs is 80, and the initial learning rate is 0.1
and is reduced by a factor of 10 every 20 epochs.
3.1.3. Results
Figure 4 shows river maps produced by different methods from the MODIS image. The main river networks
produced from the MODIS image with hard classification and all four SRMmodels were similar with that in
the reference map (Figure 3c), especially for those rivers with widths larger than several kilometers.
However, in the river map produced by hard classification, many narrow rivers became disconnected and
the resultant river boundaries unrealistically jagged, as only pixel scale information was considered. In

Figure 3. Imagery of the Bay of Bengal test site. (a) The MODerate‐resolution Imaging Spectroradiometer image, (b) the Landsat OLI image, and (c) the river map
extracted from the Landsat OLI image.
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contrast, the output of the CNN model yielded maps that were visually more realistic, although this was
dependent on the zoom factor used. When z = 2, more rivers were mapped in the study area, and their
connectivity was maintained better than with the hard classification, but the river boundaries did not
appear smooth; the jagged edge phenomenon was still apparent. With an increase of the zoom factor, this
jagged edge phenomenon was reduced. With a large zoom factor, such as z = 8 (Figure 4e) and z = 10
(Figure 4f), the resultant river map was very similar to the reference (Figure 3c). Many narrow rivers were
correctly mapped, river connectivity was well‐maintained, and the river boundaries were smooth. These
results indicate the advantage of the CNN model for mapping rivers by considering subpixel information.

Of the four SRMmethods, the results produced by PS (Figure 4g), HNN (Figure 4h), and A+ (Figure 4i) were
visually worse than those produced by the proposed CNN model at z = 10 (Figure 4f). In the river map pro-
duced by PS, there were many incorrectly mapped small rounded water bodies and many disconnected

Figure 4. River maps generated from the MODerate‐resolution Imaging Spectroradiometer image by different methods. CNN = convolutional neural network; PS
= pixel swapping; HNN = Hopfield Neutral Network.
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narrow rivers; the errors arose because of fraction errors in the unmixing.
The results from HNN and A+ were better than those from the PS, but
most narrow rivers were not mapped and river boundaries were not as
smooth as those from the CNN. The reason was that although the HNN
can eliminate fraction errors to some extent, many pixels associated with
narrow rivers were considered as fraction errors and were wrongly elimi-
nated at the same time. Moreover, HNN uses the maximal spatial depen-
dence model and thus cannot always represent the geographical
distribution of the water class and hence rivers. A+ is based on the train-
ing technology; however, fraction errors were not included in the training
samples. In contrast, the proposed CNN model not only can effectively

eliminate errors in the input water fraction image but also can realistically reconstruct the spatial pattern
of rivers.

The overall accuracies of different methods are shown in Table 1. The overall accuracies of CNNwere higher
than those obtained from hard classification and the other SRMmethods at all zoom factors. In general, the
resultant river map of CNN had a higher overall accuracy with a larger zoom factor. However, the overall
accuracies of CNNwith z= 8 and z= 10 were very close, indicating that the rate of increase in accuracy with
increasing zoom factor diminished.

The RWW values measured with different methods were further assessed quantitatively. Given the river
maps produced by PS, HNN, and A+ were worse than that produced by CNN, only the results of hard clas-
sification and the proposed CNN model were compared to assess the RWW accuracy measured at the pixel
and subpixel scales. Figure 5 shows the scatter plots of reference RWW values against those estimated from
the MODIS image. For the plot with the hard classification (Figure 5a), the R2 is 0.7979, while higher coeffi-
cients were observed for all SRM outputs, with a maximum of 0.9599 (Figure 5f). Moreover, it was evident
that the scatter of points declined with an increase in zoom factor (z), which is inversely related to pixel size.

Table 1
Overall Accuracies (%) of River Maps Produced by Different Methods

Methods z = 2 z = 4 z = 6 z = 8 z = 10

SRM PS 93.60 93.06 92.77 92.28 91.68
HNN 94.91 95.74 95.85 95.84 95.87
A+ 95.05 95.72 95.79 95.75 95.72
CNN 95.30 96.02 96.29 96.41 96.42

Hard classification 94.22

Note. SRM = superresolution mapping; PS = pixel swapping; HNN =
Hopfield Neutral Network; CNN = convolutional neural network.

Figure 5. Scatter plots of the river wetted width values estimated from the reference map and those estimated from the river maps generated by (a) hard classifica-
tion and (b–f) superresolutionmapping with different zoom factors from the MODerate‐resolution Imaging Spectroradiometer image. CNN= convolutional neural
network.
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In the scatter plot based on the output of the hard classification
(Figure 5a), the RWW values estimated fromMODIS were all constrained
to be at least 463m, the size of aMODIS pixel. Through the use of the SRM
analysis, RWW could be estimated at the subpixel scale, and hence,
widths below 463 m were possible.

Table 2 reports a summary of the accuracy assessments for hard classifica-
tion and the CNN‐based SRM analysis. These quantitative comparisons
show that the SRM analysis predicted RWW values more accurately than
hard classification, with lower RMSE, AE, and PE values. For all accuracy
measures, it was evident that accuracy was positively related the zoom fac-

tor, although at a diminishing rate. Most of the improvement occurred from z = 2 to z = 4. There was not
much difference between the accuracy values from z = 6 to z = 10. For z = 10, the RMSE decreased from
397.15 to 176.85 m, AE decreased from 92.03 to 4.31 m, and PE decreased from 11.33% to −0.37%, compared
with the result of analyses based on the hard classification. The overestimation of RWW in the results of hard
classification and CNNwith small zoom factors was expected, because they do not include underestimates of
rivers narrower than their spatial resolutions. The overestimation of RWWwas alleviated in the CNN results
at large zoom factors, and there were even some light underestimations of PE. Overall, the improvement of
all three accuracy statistics values showed the effectiveness of the SRM analysis for RWW measurement.

3.2. Landsat TM Image Experiment
3.2.1. Data Set
An experiment with Landsat TM imagery was undertaken to further assess the proposed method. The study
region was the Columbia River basin in northwestern Oregon in the United States of America, covering an
area about 5,000 km2 (90 km × 54 km) and included part of the Willamette River basin and the whole
Santiam River basin (Figure 6). The Willamette River is a tributary of the Columbia River, while the
Santiam River is a tributary of the Willamette River. The Santiam River has two principal tributaries, the
North Santiam River and the South Santiam River, with drainage areas of about 2,000 and 2700
km2, respectively.

A Landsat TM image acquired on 14 August 2005 was used to estimate RWW in the study area (Figure 6a).
Fine spatial resolution images were collected fromGoogle Earth and used as the reference. The Google Earth
images were acquired only a day after the Landsat TM image on 15 August 2005. The Google Earth images
had a spatial resolution of 1 m, and water boundaries were extracted by manual digitization. In the
Willamette River, RWW values were mostly larger than 90 m. For the two tributaries of the Santiam
River, including the main stems of the north Santiam River and the south Santiam River, RWWs mainly
lay in the range between 30 and 90 m. For other lower‐order tributaries, RWW values were mostly less than
30 m. Since the very narrow rivers were almost invisible in the Landsat image, only the rivers with a RWW
>5 m (Figure 6b) were used in this study.

Table 2
Accuracy Statistics of Different Methods

Hard
classification

CNN

z = 2 z = 4 z = 6 z = 8 z = 10

RMSE (m) 397.15 315.29 198.07 186.71 180.44 176.85
AE (m) 92.03 66.76 19.09 14.49 5.24 4.31
PE (%) 11.33 4.08 −1.80 0.39 −0.43 −0.37

Note. RMSE = root mean square error; AE = average error; PE = percen-
tage error; CNN = convolutional neural network.

Figure 6. Imagery of the test site in the Columbia River basin. (a) The Landsat TM image and (b) river networks.
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3.2.2. Model Implementation
The analysis was performed with similar methods as used in the MODIS experiment. Four classes—vegeta-
tion, bare land, urban, and water—were used for MESMA. The fine‐resolution river maps used for training
the CNN model were produced from Google Earth images located outside the basin and comprised 500
images with a size of 400 × 400 pixels. According to the MODIS experiments, the result produced with z
= 8 canmake the river boundaries smooth enough while can obtain a similar accuracy to that estimated with
a larger zoom factor. Therefore, the zoom factor z = 8 was used in this experiment, meaning that the result
river map produced by the SRM analysis had a spatial resolution of 3.75 m.
3.2.3. Results
Compared with the reference river widthmap produced from the fine spatial resolution Google Earth image,
the river width maps produced from the Landsat TM image by the CNN‐based SRM analysis and hard clas-
sification for theWillamette River and the main stem of the Santiam River were very similar to the reference
map (Figure 7). For the narrower north Santiam River and two tributaries of the south Santiam River labeled
as 1 and 2 in Figure 7, the river widths in the reference and the SRM result were similar, but river widths
measured by hard classification differ from the reference, notably as the latter was constrained by the pixel
size to have a minimum value of 30 m.

Figure 8 shows enlarged images and river maps for subareas A and B shown in Figure 7. The water fraction
images estimated from the Landsat TM images in both subareas are shown in Figures 8b and 8k. Large water
fraction errors occurred, especially in areas with tree shadows that were misidentified as water during the
spectral unmixing analysis. When a hard classification was applied to extract the river maps, the resultant
river boundaries did not appear smooth, and the jagged edge phenomenon was obvious, similar to the
MODIS experiment. The river maps produced by PS, HNN, and A+ were also different from the reference
map. There were many bulges along the river boundaries caused by fraction errors. Both PS and HNN could
not deal with this limitation effectively, making the resultant rivers much wider than the reference, espe-
cially for narrower rivers as shown in subarea B. In the river map produced by A+, there were many incor-
rectly mapped patches, and river boundaries were not smooth. In contrast, the CNN model was superior to
hard classification and the other three SRM techniques. The river maps produced by CNN were similar to
the reference in both subareas. The impact of fraction errors was vastly reduced, and the geographical dis-
tribution of water and hence rivers were more accurately depicted, showing the effectiveness of the
proposed method.

Figure 9 shows scatter plots between the reference RWW values and the results produced by the hard clas-
sification and the CNNmodel, for 5,000 randomly selected sites. For the hard classification, a horizontal line
representing the river width of 30 m is evident as the minimum estimated RWW, a constraint arising from
the pixel size of the original Landsat TM image. For the CNNmodel, river widths narrower than 30 m were,
however, also estimated, because the river map produced by the SRM analysis had a spatial resolution of 3.75
m. The distribution of points along the 1:1 line is more dispersed in the scatterplot based on the hard classi-
fication result than that in the CNN result, implying that the uncertainty of measured river widths was larger

Figure 7. River wetted width maps generated from the Landsat image. (a) Hard classification and (b) the superresolution mapping analysis with convolutional
neural network. Note the subareas A and B highlighted in Figure 7a.
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in the hard classification result than that in the SRM result. The R2 between the reference and estimated
RWW was 0.8842 for the CNN result which was higher than that of the hard classification result, which
was 0.6917. The RMSE also showed the effectiveness of the CNN model in RWW measurement,
compared with the hard classification approach. The AE values were both negative for CNN and hard
classification, showing an underestimated RWW value. For hard classification, most narrow rivers were
overestimated, while wide rivers were more likely to be underestimated, leading to an overall
underestimation of RWW. For CNN, although RWW was still underestimated, both narrow and wide
rivers were better estimated, and the AE value was also better than that of hard classification.

In Figure 10, the PE values were analyzed by considering the variation of river widths. The RWW values
were classified into three categories: ≤30, >30 and ≤90, and >90 m. In general, pure water pixels in the river
center could be mapped accurately with both CNN and hard classification approaches, and errors of esti-
mated river widths were mainly caused by the mixed pixels near the river boundaries. Therefore, the degree
of overestimation and underestimation decreased with the increase of RWW. For rivers whose widths were
larger than 90 m, the percentage of PE values between−20% and 20% were larger than 60% and 80% for hard
classification and CNN, respectively. In contrast, for rivers whose widths were less than 30 m, the percen-
tages of PE values between −20% and 20% were only about 10% and 30% for hard classification and CNN,

Figure 8. Enlarged images and rivermaps in subareas A and B shown in Figure 7. (a) and (j) are Landsat TM images; (b) and (k) are water fraction images estimated
from the Landsat TM images; (c) and (l) are fine resolution Google Earth images; (d) and (m) are reference fine resolution river maps extracted from the
Google Earth images; (e‐i) and (n‐r) are river maps produced from Landsat TM images by HC, PS, HNN, A+ and CNN, respectively. HC = hard classification;
PS = pixel swapping; HNN = Hopfield Neutral Network; CNN = convolutional neural network.
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respectively. Specially, for rivers whose widths were less than 30 m, PE values were all positive because the
minimal RWW value estimated by hard classification is 30 m, and the percentage of PE larger than 100%
reached 54.4%. In contrast, both positive and negative PE values existed for the SRM analysis, while the
percentage of PE larger than 100% was only 15.8%. These results showed that for rivers with widths that
were comparable to or less than the image pixel size, the proposed CNN model reduced the relative error
compared to the hard classification approach.

4. Discussion

Results from the two experiments described above showed that subpixel scale RWWmeasurement was more
accurate than that of conventional pixel‐based RWW measurement. The proposed CNN‐based SRM model

Figure 9. Scatter plots of river widths between the reference and river maps produced from the Landsat TM image by (a)
hard classification and (b) the superresolution mapping analysis. RMSE = root mean square error; AE = average error;
CNN = convolutional neural network.

Figure 10. Frequencies of different percentage error for RWWproduced by hard classification and the CNN‐based superresolutionmapping analysis, with different
river wetted width values. RWW = river wetted width; HC = hard classification; CNN = convolutional neural network.
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could effectively eliminate the impact of fraction errors and reconstruct the spatial pattern of rivers. In prac-
tice, however, some issues connected with the performance of the proposed method should be considered.

4.1. The Scale Issue

The scale issue is one of the most crucial factors that affect the analysis of remotely sensed data in general
and is particularly important for RWW measurement at both pixel and subpixel scales.

For the pixel‐based analysis, the scale issue mainly arises from the relationship between the size of the object
of interest (e.g., RWW) and the image pixel. A simple example is shown in Figure 11 to illustrate this scale
issue. The river is shown as a blue line with a width of 3.7 m, and four remote sensing images are available to
estimate its width. The images have spatial resolutions of 1, 2, 4, and 8 m. For simplicity, we assume that the
river boundary runs parallel with the pixel boundary. When the hard classification is applied, a pixel is clas-
sified as river once >50% of the pixel's area is covered by the river. As shown in Figure 11a, when the image
has a spatial resolution of 1 m, several pixels are fully covered by the river, and the pixels located at the
boundaries are only partially covered by the river. The river width should be measured as 3 m, for example,
when both 35% of the upper boundary pixel and the bottom pixels are covered by the river or 4 m when the
upper pixel includes 10% river area while the bottom pixel includes 60% river area. Similarly, the width could
be estimated to be 2 or 4 m when the pixel resolution is 2, 0, or 4 m when the pixel resolution is 4 m and 0 m
when the pixel resolution is 8 m. This example shows that the coarser the pixel resolution, the more uncer-
tainty is associated with the measured river width and the areal extent of rivers. When the pixel size is much
coarser than the river width, the river may not be detected at all. However, the river width is still not esti-
mated accurately even with the 1‐m resolution image, but we expect this uncertainty can be substantially
reduced if, for example, a 0.1‐m resolution river map can be generated by the subpixel analysis.

For the subpixel scale analysis, the scale issue is mainly related to the zoom factor used in the SRM analysis.
The larger the zoom factor, the finer the spatial resolution of the resultant river map. Unfortunately, how-
ever, the larger the zoom factor, the greater the uncertainty in the SRM analysis (Ling et al., 2014). As shown
in the experiment results, increasing the zoom factor beyond a certain value may not result in significant
further increases in accuracy. Moreover, although the SRM analysis increased the accuracy of RWW estima-
tion, the accuracy obtained for rivers whose widths were less than the size of several pixels was much lower
than that of rivers whose widths were larger than the size of several pixels. In practice, therefore, the spatial
resolution of the observed coarse remotely sensed image and the zoom factor used in the SRM analysis
should be selected carefully.

4.2. The CNN Model

The key to accurate estimation of RWW at the subpixel scale is the SRM analysis. In practice, to produce an
accurate fine‐resolution river map ready for use in the RivWidth software, two crucial problems should be
solved in the SRM analysis. The first is how to model the spatial pattern of river networks; the second is
how to eliminate negative effects caused by errors in the coarse‐resolution water fraction image. Both pro-
blems are hard to address with existing SRMmodels, such as HNN, PS, and A+. In contrast, the CNNmodel
proposed in the study can overcome the shortcomings of other SRMmodels and enhance the accuracy of the

Figure 11. An example showing the relationship between the river width and the pixel resolution. The width of the river
shown as a blue line is 3.7 m, and the images have different sizes of (a) 1 m, (b) 2 m, (c) 4 m, and (d) 8 m.
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SRM. This improvement is related to two key issues: learning the land cover spatial pattern and handling
unmixing fraction errors.

The CNNmodel can automatically learn the complex nonlinear relationship of spatial textures between the
coarse‐resolution water fraction image and the fine‐resolution river map, thanks to the large number of
training samples and the large number of parameters included. In a SRM analysis, a spatial pattern model
is often applied to provide information about the land cover spatial pattern, for example, the maximal spatial
dependence model used in the HNN and PS algorithms. However, these prior models are not always effec-
tive in practice. For example, the maximal spatial dependencemodel should be suitable when rivers are wide
but not for rivers having widths close to the size of one or several pixels. Instead of using a manually defined
spatial pattern model, the CNN model learns the spatial pattern automatically from an existing data set,
leading to a more powerful modelling ability, as shown by the experimental results. Further improvements
are also possible, for example, using more powerful networks with different structures and/or using a larger
number of fine spatial resolution images with richer river features as training samples.

The second advantage of the proposed SRM analysis is that fraction errors can be dealt with effectively. In
practice, errors are always unavoidable in the fraction images produced by spectral unmixing. In this study,
random noise is added into the coarse‐resolution water fraction image to simulate fraction errors in the
training samples. Given the corresponding fine‐resolution river map is error free, the residual image used
to train the CNN model includes not only the missing high frequency information but also information
about fraction errors. Therefore, the CNN model should be trained not only to recover the details used for
spatial resolution transformation but also to denoise fraction errors. In practice, however, completely elim-
inating the negative effects caused by fraction errors is impossible; the smaller the fraction errors, the higher
the expected accuracy.

Computational cost is an important issue when the proposed method is applied to large geographical areas.
The CNNmodel includes two steps, that is, training and mapping. The training step is time‐consuming and
depends on the parameters used. In the MODIS experiment, the training time is about 20 hr on the Matlab
platform running with a NVIDIA X1080 GPU with 8 GB RAM. The zoom factor has less impact on the train-
ing time. In contrast, the mapping step is very fast, and only several seconds are needed in theMODIS experi-
ment with the zoom factor of 10. As a comparison, the PS and HNN models need hundreds or thousands of
iterations to converge, and several hours are necessary in the MODIS experiment with the zoom factor of 10.
In practice, the CNNmodel is expected to have a higher efficiency for a large area analysis, because the train-
ing needs to be undertaken only once and then any subsequent mapping is very fast. This is particularly
attractive for regional to global‐scale analyses of RWW.

4.3. Uncertainty and Applications

The main limitations of the proposed method are errors included in the water fraction image, which have a
negative impact on the SRM analysis that is based on the fraction images. First, the uncertainty of spectral
unmixing is unavoidable due to the spectral variations of land cover classes and the nonlinear mixture phe-
nomenon (Roberts et al., 2007). Second, the spectral reflectance values of water are similar to those of sha-
dow, which is often used as an implicit class in the MESMA analysis. Although the shadow class is not
included, this similarity will bring uncertainty to the resultant fraction image. Third, in practice, rivers are
often covered by bridges crossing them or trees located along river banks. In particular, trees could cover
most parts of water bodies in narrow rivers. In this situation, rivers are invisible in remotely sensed images,
and RWW cannot bemeasured directly from remotely sensed imagery, although some degree of remediation
is sometime possible via, for example, selection of imagery during leaf‐off conditions.

The proposed method can be further improved for future use. First, the proposed method was applied with
the MODIS image with the resolution of about 500 m and the Landsat TM image with the resolution of 30 m
in the experiments. For both of them, there are spectral bands with finer spatial resolutions, including the
first and second bands of MODIS that have a spatial resolution about 250 m and the panchromatic band
of Landsat with the spatial resolution of 15 m. Incorporating these finer‐resolution bands is expected to
increase the accuracy of a SRM analysis (Li et al., 2014; Nguyen et al., 2006; Vandal et al., 2018). Second,
the proposed method could be applied on other remotely sensed images, such as the newly launched
Sentinel‐2 imagery that has a finest spatial resolution of 10 m. For remotely sensed imagery with the
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spatial resolution of several meters or finer than 1 m, the proposed method can also be applied to further
improve the RWW estimated. With respect to measuring RWW, our method could now be applied to a
“menu” of remotely sensed imagery selected according to catchment type. This could be conducted both
at a local scale or globally building on studies such as Allen and Pavelsky (2018), with the knowledge that
those narrower rivers will be measured with higher accuracies and/or indeed larger rivers measured using
the appropriate imagery with respect to the temporal dimension (i.e., in situations of flooding and
low discharge).

5. Conclusions

RWW is a fundamental variable needed to analyze hydrological and biogeochemical processes in rivers and
has been estimated from remotely sensed images acquired by satellite sensors. Although fine spatial resolu-
tion remotely sensed images may be used to estimate RWW accurately, research is often constrained to use
relatively coarse‐resolution images for practical reasons, as well as reasons of timing (e.g., historical ana-
lyses, cloud cover avoidance, and water flow). There are many mixed pixels along the river boundaries in
coarse‐resolution imagery, and this greatly decreases the accuracy of RWW estimation when traditional
pixel‐based hard classification approaches are used, especially for narrow rivers. To address this problem,
this paper proposes an approach to estimate RWW from remote sensing images at the subpixel scale. The
approach first uses MESMA to extract water fraction images from the observed remotely sensed image. A
fine spatial resolution river map is then produced by a CNN model based SRM analysis and finally is used
for RWW estimation.

The proposed approach is assessed with two experiments, one focuses on estimation from a coarse spatial
resolution MODIS image and the other on estimation from a medium‐resolution Landsat TM image. The
results show that the proposed CNN‐based SRM analysis model can overcome two main shortcomings of
existing SRM models. The spatial pattern of rivers can be represented well by learning the nonlinear map-
ping between the coarse‐resolution water fraction image and the fine‐resolution river map with the CNN
model. The negative effects caused by errors of the coarse‐resolution water fraction image can also be over-
come with the CNN model by introducing noise into the training data samples to simulate fraction image
errors. The results also show that the proposed method can substantially increase the accuracy of RWW esti-
mation compared with the conventional hard classification approach and has advantages over other SRM‐

based methods. The proposed approach is valuable for measuring RWW from remotely sensed imagery,
especially for relatively narrow rivers and streams, and is applicable at regional to global scales. This is a fun-
damentally useful feature as such water bodies might play a fundamental yet possibly underestimated role in
the gas fluxes with the atmosphere and hence be an important part of the global carbon cycle.
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