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Abstract:  Carbon materials can offer various micro- and nano-structures, and bulk 

and surface functionalities, and hence remain most popular for manufacturing 

supercapacitors. This article reviews critically recent development in preparation of 

carbon materials from new precursors for supercapacitors. Typical examples are 

activated carbon (AC) and graphene which can be prepared from various conventional 

and new precursors, such as biomass, polymers, graphite oxide, CH4 and even CO2, via 

innovative processes to achieve low cost and/or high specific capacitance. Specifically 
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for making AC from natural biomasses or synthetic polymers, either new, spent or waste, 

the popular activation agents, such as KOH and ZnCl2, are often used to process the 

ACs derived from these new precursors, whilst the respective activation mechanisms 

always attract interests. The traditional two-step calcination process at high 

temperatures is widely employed to achieve high performance, with or without 

retaining the morphology of the precursors. The three-step calcination, including a post-

vacuum treatment, is also the choice in many cases, but it can increase the cost per 

capacity (kWh∙g−1). The more recently reported one-step molecular activation promises 

a better and more economical approach to the commercial application of AC, although 

further increase of the yield is necessary. In addition to activation, graphitization, N 

doping and template control can further improve ACs in terms of the charging and 

discharging rates, or pseudocapacitance, or both. Considerations are also given to 

material structure design, and carbon regeneration during activation. Metal-organic 

frameworks which were initially used as templates are found to be good direct carbon 

precursors. Various structures of graphene, including powders, films, aerogels, foams 

and fibers, can be produced from graphite oxide, CO2 and CH4. Similar to AC, graphene 

can possess micropores by activation. Self-propagating high temperature synthesis and 

molten salt processing are newly reported methods for fabrication of mesoporous 

graphene. Macroporous graphene hydrogels can be produced by hydrothermal 

treatment of graphite oxide suspension, which can also be transferred into films. 

Hierarchically porous structures can be achieved by H2O2 etching or ZnCl2 activation 

of the macroporous graphene precursor. Sponges as templates combining with KOH 
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activation are applied to create both micro- and macropores in graphene foams. 

Graphene can grow on fibers and textiles by electrodeposition, dip-coating or filtration, 

which can be woven into clothes with a large area or thick loading, illuminating the 

potential application in flexible and wearable supercapacitors. The key restrictions on 

production of AC and graphene are high cost, low yield, low packing density and low 

working potential range. Most of the new precursors derived carbon materials work 

very well with aqueous electrolytes, whilst charge storage occurs not only in the electric 

double layer (i.e. the “carbon | electrolyte” interface), but also via redox activity in 

association with the bulk and surface functionalities, and the resulting partial 

delocalization of valence electrons. The analysis of the capacitive electrode has shown 

a design defect that prevents the working voltage of a symmetrical supercapacitor from 

reaching the full potential window of the carbon material. This defect can be avoided 

in AC based supercapacitors with unequal electrode capacitances, leading to higher cell 

voltages and hence higher specific energy than that of their symmetrical counterparts. 

There are also emerging ways to raise the energy capacity of AC supercapacitors, such 

as the use of redox electrolytes to enable the Nernstian charge storage mechanism, and 

of the 3D printing method for a desirable electrode structure. All these progresses are 

promising carbon materials from various precursors of new and waste sources for a 

more affordable and sustainable supercapacitor technology.  

 

Key Words: New precursors; Activated carbon; Graphene; Aqueous supercapacitor; 

Unequal electrode capacitances.   
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摘要：碳材料具有不同的微米和纳米结构以及本体和表面的官能基团，因此成为

最普遍采用的超级电容器电极材料。典型的例子是活性炭和石墨烯。最近的研究

趋势是通过新方法，以传统和新碳源，例如生物质、聚合物、氧化石墨、碳氢以

及二氧化碳气体，来制备成本低、电容性能高的活性炭和石墨烯。特别是，大多

数新碳源衍生碳非常适用于水系电解液。电荷存储不仅发生在“碳|电解液”界面

上（形成双电层），也依靠本体和表面的官能化带来的氧化还原活性，包括有限

离域价电子转移反应。此外，进一步理解电荷存储机制有助于设计出比传统对称

电容器具有更高电压和比能量的非等电极电容水系超级电容器。本文综述了新碳

源衍生碳材料和器件的最新进展，为超级电容器技术的持续发展助力。 

关键词：新碳源；活性炭；石墨烯；水系电容器；非等电极电容 

中图分类号：O646 
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1  Introduction 

Electrochemical energy storage (EES) technologies are widely applied in personal 

electronics for many years. Nowadays, the fast increasing depletion of fossil resources 

and the concomitant environmental pollution further stimulate various research and 

commercial interests in EES. Fig. 1 shows the Ragone plots of various EES devices in 

comparison with that of internal combustion engine 1. Of all these, supercapacitors have 

unique advantages of higher power capability (comparable to that of internal 

combustion engines) and longer cycle life than, for example, rechargeable lithium ion 

batteries and redox flow batteries. However, it is desirable to obtain higher specific 

energy for the supercapacitors. According to the charge storage mechanisms, 

supercapacitors are divided into two categories: electrical double layer (EDL) 

capacitors and pseudocapacitors. The EDL capacitors based on carbon materials with 

high specific surface area (SSA) store electric energy by potential-dependent 

accumulation of electric charges from reversible adsorption of ions of the electrolyte 

onto the carbon/electrolyte interface to form the EDL within the porous carbon 

electrode. Taking a carbon negative electrode (negatrode) as an example, as revealed 

by Fig. 2, the EDL in fact has a multi-layer structure, including the inner compact layer, 

outer compact layer and diffuse layer which is next to the bulk electrolyte solution 1. 

Partially or fully desolvated ions exist in the compact layer. The specific capacitance of 

the EDL capacitor is roughly in proportion to the electrolyte ion accessible SSA of the 

carbon electrode. Pseudocapacitors rely on reversible faradaic (or redox) reactions in 

the active electrode materials, typically including transition metal oxides, metal 
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hydroxides and conducting polymers 2. The specific capacitances of pseudocapacitors 

are greater than those of EDL capacitors due to faradic reactions storing charges at the 

atomic or molecular levels. However, repeated expansion and contraction also occur in 

the electrode materials of pseudocapacitors during charge-discharge cycling. These are 

due to the ingression and egression of counter ions to maintain electric neutrality in the 

electrode materials, in response to the faradic reactions, leading to the well-known poor 

cycle lives of pseudocapacitors 3. Similarly, the faradaic reaction caused expansion and 

contraction cycles and the consequent detriments also occur when charging-discharging 

lithium ion batteries repeatedly. Considering the advantages of high power capability, 

good cycle life and low cost, activated carbons (ACs) are currently the most popular 

commercial electrode materials. 

 

  

Fig. 1  Ragone plots for various electrochemical energy storage devices in comparison with 

internal combustion engines 1. 
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Fig. 2  Schematic representations of the EDL structure of the interface between a porous carbon 

negatrode and an aqueous electrolyte 1. 

 

ACs are commonly derived by carbonization of carbon-rich precursors at high 

temperatures in an inert atmosphere and subsequent activation. In practices, KOH, 

H3PO4 and ZnCl2 are often used as the activating agents for chemical activation, while 

CO2 and water steam for physical activation. The chemical activation procedures leave 

behind the combination of the disordered microporous and mesoporous structures in 

ACs by etching the carbonized specimens with these activating agents at high 

temperature. Therefore, ACs can possess typically the Brunauer-Emmett-Teller (BET) 

measured SSA ranging from 500 to 3000 m2∙g−1 and have specific capacitances of 100 

to 300 F∙g−1 in organic or alkaline aqueous electrolytes, respectively 4-6. In terms of 

structure, ACs are usually considered to be non-crystalline, whilst at atomic scales they 
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are mainly composed of disorderly arranged graphene layers with various defects 7. 

Thus, the properties of ACs are intrinsically linked to those of graphene. 

Isolated and well-structured graphene layers were first reported in 2004, and 

considered to hold great promises for many applications. Such predictions are based on 

the fact that monolayer graphene has a very large theoretical SSA of 2630 m2∙g−1, high 

carrier mobility over 10,000 cm2∙V−1∙s−1 and extreme Young’s modulus of 1.0 TPa 8-10. 

In 2007, chemically converted graphene (called “graphene” for short in this review 

afterwards) was first prepared by reducing exfoliated graphite oxide (GO) with 

N2H4·H2O 11. Then, graphene has been exploited as the electrode material of 

supercapacitors 12. Subsequently, stable dispersions of graphene monolayers were 

obtained by adjusting pH during the reduction of GO with a suitable amount of 

N2H4·H2O 13. Although experimentally obtained graphenes have SSAs far below the 

theoretic value, they still show specific capacitances similar to those of ACs, which can 

be attributed, at least partly, to the partial delocalization of valence electrons in 

oxygenated graphene according to a recent Density Functional Theory modeling 

assisted study 14. In this study, it was found that electron transfer reactions, also known 

as Faradaic processes, can be undertaken by localized or partially delocalized valence 

electrons. The former follows the Nernst equation and is featured by peak-shaped cyclic 

voltammograms (CVs). However, the latter is responsible for the so called 

pseudocapacitance with the CVs having the same rectangular shape as that of a porous 

carbon electrode with high specific surface area and hence high EDL capacitance. This 

understanding explains well the differences between rechargeable battery electrodes 
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which often show peak-shaped CVs and supercapacitor electrodes which are well 

known for their rectangular CVs. 

As revealed in Fig. 1, commercial EDL capacitors based on ACs could have 

specific energy of about 5 Wh∙kg−1 for the whole device. Comparing with rechargeable 

lithium ion batteries, the specific energy of AC based EDL capacitors is not high enough 

to meet the requirements of some power sources, especially in electric vehicles. The 

energy capacity (E) of a supercapacitor is defined by Equation 1, 

𝐸 =
1

2
𝑄𝑈 =

1

2
𝐶𝑈2                            (1) 

where Q is the charge, C is the total capacitance of the cell, and U is the cell voltage 

which is primarily related to the electrolyte used. The thermodynamic potential window 

of water is 1.23 V at room temperature, whilst organic electrolytes have higher 

decomposition voltages (above 2.50 V). Even if the specific capacitance in the organic 

electrolytes is a half of that in aqueous electrolytes, the energy of a cell in organic 

electrolytes is still higher because it is proportional to the square of the cell voltage. 

Nonetheless, organic electrolytes are usually highly flammable, making it more 

vulnerable when a high voltage is applied, which causes severe safety concerns. As for 

ionic liquids, their high viscosities at room temperature would induce even slower 

motion of the large organic ions, making it difficult and slow to access the internal 

surface of AC and hence very low specific capacitance. Therefore, the advantages of 

high conductivity and heat capacity, low cost and environmental impact of aqueous 

electrolytes have stimulated more research towards a breakthrough over the 

thermodynamic potential window of water. The extension of the cell voltage of an 
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aqueous supercapacitor can be fulfilled by using electrode materials with high over-

potentials for evolution of either or both hydrogen and oxygen gases. 

    In this review, attention is focused on the development in preparation of ACs from 

different precursors, and of graphenes in various forms in recent years. Then, the 

mechanism of extending the cell voltage and improving the performance of aqueous 

supercapacitors are introduced. Further, new trends of making better performing carbon 

materials for supercapacitors are introduced and discussed. 

 

2  Activated carbon 

As mentioned in Introduction, ACs are usually prepared by carbonization and 

subsequent activation steps. Natural materials, such as coconut shells and wood, are 

firstly selected as the carbon-rich precursors due to their low cost. Of course, synthetic 

materials can also be the carbon-rich precursors of ACs for specific purposes. A porous 

network in the body of carbon particles is produced after activation. The International 

Union of Pure and Applied Chemistry (IUPAC) categorizes pores into micropores (< 2 

nm), mesopores (2~50 nm) and macropores (>50 nm) according to their diameters 15. 

Generally, all of these can be created, but micropores dominate in carbon grains. If 

markedly more mesopores are produced during activation, besides micropores, type IV 

nitrogen adsorption desorption isotherms can be observed. Otherwise, dominated 

micropores lead to type I isotherms. The most commonly used activating agent is KOH, 

with which the activation mechanism is governed by the reaction Equation 2. 

6KOH + 2C ≜ 2K ↑ +3H2 ↑ +2K2CO3                 (2) 
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Note that Equation 2 is thermodynamically unfavorable at temperatures below 700 °C, 

but it can proceed if the gaseous products are continuously removed. Particularly, the 

melting and boiling points of K are 63.38 and 758.85 °C, whilst KOH melts and boils 

at 360 and 1327 °C, respectively. Thus, even when K is produced at a sufficiently high 

temperature but below the boiling point, the liquid metal can still reach a sufficiently 

high vapor pressure and escape from the reaction sites. Comparing with KOH, the 

activation mechanism of ZnCl2 is more complicated. In the early stage of pyrolysis, 

ZnCl2 works as a catalyst for the dehydrogenation and dehydration reactions of the 

precursor, inducing hydrogen evolution 16, charring and aromatization of the carbon, 

and restricting the formation of tar 17. We think that the restriction of ZnCl2 evaporation 

below 600 °C 18 and evolution of methane 16 correspond to the creation of pores in AC.  

2.1  Activated carbon from biomass 

Traditionally, the coconut shells as carbon-rich biomass wastes are the main 

precursor for the production of ACs. Nowadays, other biomass wastes, such as lignin 

19, bagasse 20, loofah sponge 21, willow catkin 22,23, hemp bast fiber 24 and bamboo 

industrial byproduct 25, can also be used as the carbon sources for making ACs. 

Some natural biomass wastes were utilized due to their special microscopic 

morphology being similar to those of carbon nanotubes or graphene. Researchers 

expected to maintain the specific morphology during the production of AC in order to 

utilize more micropores for supercapacitors. For example, loofah sponges could yield 

ACs which exhibited a three dimensional (3D) network consisting of cross-linked 

hollow microtubes with wall thickness of around 2 μm 21. Like carbon nanotubes, 
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willow catkins show a hollow microtubular structure with the diameter of 10 μm and 

the wall thickness of 1 μm. The conventional two-step method consisting of 

carbonization at 600 °C for 4 h and activation with KOH by 4 times of mass at 800 °C 

for 1 h could produce hierarchical porous carbon microtubes, which are helpful for the 

diffusion of electrolyte ions into the inner micropores. In comparison, a control sample 

prepared by one-step activation without the carbonization could only exhibit irregular 

granular aggregates, which is entirely different from the natural tubular morphology of 

willow catkins 22. Only the Type I N2 adsorption and desorption isotherms could be 

observed, suggesting that mesopores were absent in the control sample. The BET SSA 

and the pore volume of the hierarchical carbon microtubes were 1776 m2∙g−1 and 0.85 

cm3∙g−1, respectively. The hierarchical carbon microtubes in 6 mol∙L−1 KOH electrolyte 

had a specific capacitance value of 292 F∙g−1 at 1 A∙g−1 in a three-electrode cell. The 

morphology retention by the two-step method is likely because during carbonization at 

high temperatures, willow catkins should only undergo dehydration without any 

significant alterations in the carbon skeleton (structure), whilst the follow-on activation 

could only attack the remaining carbon structure, according to Equation 2. However, in 

the one step method, the KOH could attack both the willow catkins precursor and its 

carbonization products at different stages of the process, and hence destroy the original 

morphology. 

Another biomass waste is hemp bast fiber that can be converted to crumpled 

graphene-like carbon nanosheets 24. During the fabrication, the hydrothermal treatment 

of hemp bast fiber in a dilute acid solution at 180 °C for 12 h replaced the conventional 
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carbonization at high temperatures, which could potentially reduce the production cost. 

The bamboo-based industrial byproduct was also treated by the hydrothermal method 

in a liquid containing sulfuric acid at 200 °C for 12 h before activation. The final 

bamboo-derived carbon was subjected to post vacuum annealing at 800 °C for 1 h after 

activation 25. The BET SSA of 1472 m2∙g−1 and the specific capacitance of 301 F∙g−1 

(in 6 mol∙L−1 KOH in a three-electrode cell) were obtained for the three-step treated 

bamboo-derived carbon. If direct pyrolysis at 800 °C for 2 h was applied instead of the 

hydrothermal treatment, the control sample possessed 96% micropore volume, giving 

a slightly lower SSA of 1106 m2∙g−1. Another control sample without post vacuum 

annealing also showed a lower specific capacitance, indicative of the importance of the 

hydrothermal treatment and the post vacuum annealing. 

Obviously, not all biomasses have the desired morphology and structure. Instead, 

new structures to enable specific functionalities are often needed to build from the 

precursors. For example, gelatin, a biological extractive from animal syndesm, could 

turn to a honeycomb-like porous structure with glutaraldehyde via cryodesiccation, 

which gave AC with a maximum BET SSA of 3692 m2∙g−1 up to date. The specific 

capacitance of 305 F∙g−1 for a single electrode was obtained in a symmetrical two-

electrode cell 26. Also, opportunities are always sought after to further lower the energy 

input for AC production. In this line, a new method was developed to achieve molecular 

level one-step activation to prepare AC with agar as a precursor which is the extractive 

from seaweed 27. The dehydration (or deoxygenation) of agar was achieved by 

dissolving agar in a hot KOH aqueous solution below 100 °C. It was observed that the 
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color of the aqueous solution turned dark black. The increased C/O molar ratio of such 

treated agar samples was attributed to the removal of hydrogen bonded hydroxyl groups 

and cyclic ether linkage of six member rings in agar by a dehydration reaction with 

KOH in the hot solution, as revealed by infrared (IR) spectra (Fig. 3a). Surprisingly, the 

one-step activation of agar in the subsequent calcination produced an interconnected 

3D network with macrovoids of several micrometers with a wall thickness of several 

hundred nanometers. The control sample processed by the conventional two-step 

method presented bulk characteristic with fractured large macrovoids, suggesting that 

the molecular level activation occurred in the one-step calcination (Fig. 3c and d). 

Therefore, the one-step derived AC possessed a larger SSA of 1672 m2∙g−1 and total 

pore volume of 0.81 cm3∙g−1 which compare favorably with 1048 m2∙g−1 and 0.47 

cm3∙g−1 for the two-step derived AC, respectively. The specific capacitance of the one-

step derived AC was 226 F∙g−1 in a three-electrode cell, 38% higher than that of the 

two-step derived AC (Fig. 3b). The symmetrical two-electrode cell with an electrolyte 

of 6 mol∙L−1 KOH also exhibited a maximum specific capacitance of 57 F∙g−1 at 0.25 

A∙g−1, corresponding to 228 F∙g−1 for a single electrode. The improved charge storage 

performance should be attributed to the unique 3D morphology and pore characteristics 

whilst the low temperature and high efficiency production is indicative of the 

commercial potential of the molecular level one-step activation. 

Comparing with the conventional two-step method, an extra vacuum post-

treatment could increase the capacitive behavior of AC, however, the cost per kWh∙g−1 

is still high. Therefore, molecular one-step activation has a better promise in 
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commercial preparation of AC. The bottleneck to commercial development of the one-

step process is the relatively low yield of AC. 

 

 

Fig. 3  Molecular level one-step activation of agar. (a) IR spectra of agar and deoxygenated agar 

(D-agar) resulting from a hot KOH solution. (b) Charge-discharge curves of AC by one-step (AC-

1) and conventional two-step (AC-2) method. SEM images of (c) AC-1 and (d) AC-2 27.  

 

2.2  Activated carbon from polymers 

Apart from natural biomass, synthetic materials were also used to prepare ACs, 

aiming at controllable morphology, porosity or component. Phenolic resin is one of the 

most conventional synthetic materials as the carbon precursor due to its high carbon 

yield and structure stability. Although other synthetic materials are inferior to phenolic 

resin in terms of cost and production scale, they also have potential applications in AC 
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industry particularly when they are spent or out of period of validity. A dye intermediate, 

(2-benzimidazolyl) acetonitrile (C9H7N3), could form AC with a high SSA of 2980 

m2∙g−1 during the pyrolysis with KOH. However, most of the N element in the precursor 

was not retained at such a high temperature. The C9H7N3-derived AC showed 286 and 

221 F∙g−1 in capacitance at 0.5 A∙g−1 in 2 mol∙L−1 KOH and 1 mol∙L−1 Na2SO4 

electrolyte in the two-electrode cells, respectively 28. Conductive polymers, for instance 

polyaniline 29, binders, such as polyvinylidene fluoride (PVDF) 30, 

polytetrafluoroethylene 31, and dispersants, including polyvinylpyrrolidone 32, were all 

attempted as carbon precursors. Among these facile synthetic precursors, polyaniline-

derived AC showed a high specific capacitance of 455 F∙g−1 in a three-electrode cell 

containing 6 mol∙L−1 KOH, while PVDF-derived AC exhibited a large SSA of 3000 

m2∙g−1. Considering that polyaniline could be designed to vertically grow on GO, AC 

with structure combination of 1 D and 2 D was produced after carbonization and 

activation, giving a specific surface area of 2416 m2∙g−1 with a total pore volume of 

1.88 cm3∙g−1, which is higher than those of polyaniline-derived AC 33. 

Additionally, polymers with peculiar molecular structure, such as poly[(pyrrole-

2,5-diyl)-co-(benzylidene)] 34 and triazine-based covalent organic polymer 35, were 

expected to lead to regular-structured ACs as well as hetero-atom doping. However, the 

nitrogen content in these ACs from complicated N containing co-polymers as 

precursors were not beyond 5% atomic fraction when they were subjected to higher-

temperature activation. Fortunately, morphology could be often retained after 

carbonization and activation at high temperatures. Interestingly, poly-N-
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phenylethanolamine (PPEA) yielded AC with peculiar morphology. N-

phenylethanolamine (PEA) surrounded with hexadecyltrimethylammonium bromide 

were polymerized by ammonium peroxydisulfate (APS). The shell of the polymer 

which was produced at the initial reaction prevented further reaction between APS and 

the interior PEA, perhaps leaving oligomers of PEA within the shell. Therefore, the 

PPEA-derived AC showed a peanut-shell-like morphology after one-step activation 

(Fig. 4) 36. As a result, a BET SSA of 3103 m2∙g−1 was obtained by activation at 800 °C, 

corresponding to 356 F∙g−1 at 1 A∙g−1 in a three-electrode cell with 1 mol∙L−1 H2SO4. 

  

Fig. 4  (a) SEM and (b) TEM images of PPEA-derived AC 36. 

 

Although the cost of synthetic polymers may be high, their spent or waste forms, 

can be precursors of ACs for special applications. The benefits from using synthetic 

polymers as the precursor for ACs are the designation of special morphology, structure 

and even component, which may result in higher performance. 

2.3  Graphitic activated carbon 

Although hemp bast fiber could be converted to crumpled graphene-like carbon 

nanosheets, the very much desired graphitization in relevance to, for instance, 
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conductivity and structural stability was not observed in the products. In order to give 

rise to graphitic ACs, a graphitic catalyst precursor of FeCl3 and another activating 

agent of ZnCl2 were introduced simultaneously into the skeleton of the coconut shell. 

One-step calcination completed the graphitization with activation only at 900 °C in N2. 

The transmission electron microscopy (TEM) images in Fig. 5a and b indicate 11 

graphene layers in the graphitic AC nanosheets. The graphitization was associated with 

the transformation from Fe3+ ions to carburized phase to Fe at a high temperature, as 

revealed by the XRD pattern (Fig. 5c). The Fe components could form a carburized 

phase during the heating process, and decomposition of the carburized phase could lead 

to the graphitization to form graphene-like nanosheets 37. The Raman spectrum (Fig. 

5d) showed an evident 2D band at 2743 cm−1 and a high intensity ratio of the G to D 

bands, suggesting that the graphitic AC nanosheets were composed of few layers of 

graphene according to the Raman theory 38. The BET surface area and total pore volume 

of the graphitic AC nanosheets were 1874 m2∙g−1 and 1.21 cm3∙g−1. Although the BET 

SSA of the control sample, non-graphitic AC, reached a higher value of 2007 m2∙g−1, 

its specific capacitance of 210 F∙g−1 was lower than 268 F∙g−1 for the graphitic AC 

nanosheets as measured in a three-electrode cell. The symmetric two-electrode 

supercapacitor with the 6 mol∙L−1 KOH electrolyte had a specific capacitance of 69 

F∙g−1 at 1 A∙g−1, corresponding to 276 F∙g−1 for a single electrode, similar to that in the 

three-electrode cell. These differences were attributed to the high electronic 

conductivity facilitating the efficient ionic and electronic transport. However, it may 

also be attributed to the pseudocapacitance resulting from partial delocalization in the 
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more graphitic sample 14. 

Another crumpled graphitic carbon nanosheets were prepared by the same method 

plus a post vacuum annealing with inner shaddock skins as a precursor 39. Although the 

macroscopic shape of inner shaddock skins was similar to graphene, the 2D band on 

the Raman spectrum was not very sharp. It suggests that the graphitization induced 

formation of graphene was perhaps much more associated with the component than 

macroscopic shape. However, the sp2/sp3 ratio doubled comparing with crumpled 

carbon nanosheets prepared without using FeCl3 as the catalyst. 

  

Fig. 5  Graphitization of AC from coconut shell using FeCl3 catalyst. TEM images of the graphitic 

AC in (a) low and (b) high magnifications. (c) XRD patterns of the graphitic AC before (FGNS-3-

900) and after (PGNS-3-900) acid washing. (d) Raman spectrum of the graphitic AC 37. 

 

2.4  N doping 
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It is known that doping with hetero-atoms, for instance N, is an effective strategy 

to increase the specific capacitance of carbon materials, probably due to the resulting 

pseudo-capacitance and wettability to electrolytes. NH3 is a commonly used nitrogen 

source and can be flown into the heat treatment reactor to prepare N-doped ACs. When 

the corncobs were employed as the precursor, which was mixed with KOH and 

subjected to the NH3 flow, the nitrogen mass fraction of the N-doped AC increased from 

2.97% at 400 °C to 3.98% at 600 °C 40. However, much increased oxidized pyridinic N 

was found in the N-doped AC heated at 600 °C, which was considered to have resulted 

in the capacity drop in the organic LiPF6 electrolyte compared with that at 400 °C. 

As mentioned above, phenolic resin is one of the most conventional synthetic 

materials and can be used as the carbon precursor, particularly when it is spent. The 

change of components, such as N doping, can be readily fulfilled during the reaction 

for the synthetic materials. Melamine with a high N content was added to the 

formaldehyde and resorcinol solution 41. The slow thermal oxidation at 250 °C in air 

stabilized the thermoplastic structure and increased the N content. After carbonization 

and activation, a high N mass fraction of 12.5% and an SSA of 2234 m2∙g−1 were 

detected in the synthetic N-doped AC. The symmetrical two-electrode cell in 3 mol∙L−1 

H2SO4 showed a specific capacitance that is equivalent to 309 F∙g−1 for a single 

electrode. Similarly, 3,3’-diaminobenzidine could react with p-benzoquinone to 

produce a polymer (PDB) with high N and O contents. Luckily, after pyrolysis with 

KOH, 11.0% of N and 10.4% of O mass fraction remained in the resulted AC, which 

showed an SSA of 2660 m2∙g−1 42. A specific capacitance of 72.5 F∙g−1 (290 F∙g−1 for a 
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single electrode) at 0.2 A∙g−1 was obtained in a two-electrode cell in 6 mol∙L−1 KOH, 

corresponding to a volumetric capacitance of 29.7 F∙cm−3. 

Fresh egg white is a natural nitrogen-rich source. The precipitated protein by 

ethanol was pyrolyzed at 650 °C for 2 h and further activated at 550 °C for 2 h under 

an Ar atmosphere 43. Carbonization and activation at relatively low temperatures in Ar 

retained 6.5% of N mass fraction. An increased O mass fraction of 16.5% was detected 

in the sample after activation. High specific capacitances of 556 and 525 F∙g−1 were 

measured in three-electrode cells containing 1 mol∙L−1 H2SO4 and 1 mol∙L−1 KOH, 

respectively. The egg white derived AC as the negatrode was constructed an 

asymmetrical device with a NiCo2O4-graphene composite as the positrode, giving 1.55 

V in cell voltage and 48 Wh∙kg−1 in specific energy. 

Incorporation of melamine during the preparation of the precursors gave rise to 

the highest N content among the three examples mentioned above, showing the 

advantage of making N-doped ACs from precursors with a high N content. Natural 

nitrogen-rich sources are advantageous in their lower costs and sufficiently high N 

contents that can be transferred into the produced ACs. Obviously, NH3 annealing is 

more facile than incorporation of melamine, but the produced AC contained the lowest 

N content. 

2.5  Activated carbon with templates 

As ZnO presents various morphologies by different synthetic routes and can be 

readily removed by acid, it is an ideal non-porous template for building hollow structure. 

For example, ZnO nanorods grown on the Ni foil were utilized as a template to gain 
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hollow Ni arrays by electrodeposition. Subsequent hydrothermal treatment and 

calcination of glucose and removal of ZnO nanorods induced carbon spheres on hollow 

Ni arrays 44. Similarly, flower-like ZnO was fabricated by the reaction between zinc 

nitrate hexahydrate and trisodium citrate in the NaOH solution. Pitch was coated on the 

flower-like ZnO and then carbonized and activated. After elimination of the template, 

the flower-like morphology was maintained for the resulting hierarchical AC which had 

an SSA of 761.5 m2∙g−1 and a pore volume of 0.49 cm3∙g−1, higher than 375.8 m2∙g−1 

and 0.45 cm3∙g−1 respecitively for the control sample, i.e. the flower-like carbon without 

activation 45. The symmetric two-electrode supercapacitors in 1 mol∙L−1 Na2SO4 had a 

stable voltage of 1.8 V, delivering a maximum specific energy of 15.9 Wh∙kg−1. 

The MgO powder can also be used as a non-porous template to produce carbon 

nanolayers by pyrolysis of glucose as the precursor. After KOH activation, the SSA 

increased from 936 m2∙g−1 for the carbon nanolayers to 2798 m2∙g−1 for the AC 

nanolayers calculated by the BET theory, arising from hierarchical microporosity and 

mesoporosity by the chemical activation 46. Chitosan was used as the precursor in 

another similar work 47. 

Recently, porous MgO was exploited as a template, prepared by calcination of 

Mg(OH)2 layers formed by boiling MgO powders 48. Carbonization of coal tar pitch in 

tetrahydrofuran impregnated into the porous MgO generated pillared-porous carbon on 

the upper and lower surfaces as well as on the pore walls of the templates 49. The 

distance between the two carbon layers was 10~20 nm and the thickness of the 

individual carbon layer was 2 nm. The mesopores of 6~8 nm were perpendicularly 
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aligned to the surface of the carbon layer. 

2.6  Activated carbon from metal-organic frameworks 

Metal-organic frameworks (MOFs) have well defined nano cavities and open 

channels, and are ideal templates for making porous carbon materials. Based on this 

idea, MOF-5 (Zn4O(OOCC6H4COO)3) was initially selected as a microporous template, 

in which furfuryl alcohol vapor was filled and polymerized. The carbonization of the 

composite was performed at 1000 °C for 8 h under an Ar flow 50. ZnO was formed by 

the decomposition of MOF-5 between 425 and 525 °C and then reduced to Zn metal 

above 800 °C, which vaporized away at temperatures beyond its boiling point, 908 °C. 

Carbon species finally was left alone with a BET SSA of 2872 m2∙g−1 and a pore volume 

of 2.06 cm3∙g−1, showing a specific capacitance of 258 F∙g−1 at 0.25 A∙g−1 in a three-

electrode cell containing 1 mol∙L−1 H2SO4. 

When a commercially available MOF sample containing no oxygen, Zeolitic 

Imidazolate Framework-8 (ZIF-8) was employed as a template to replace MOF-5 51, it 

was found that the control sample, ZIF-8 as the only precursor without polymerized 

furfuryl alcohol, could also yield porous carbon with a SSA of 3148 m2∙g−1. Since then, 

MOFs as the only precursor and self-template were widely researched. The ZIF-8 

directly derived carbon retained a typical crystal morphology which was similar to that 

of the parent ZIF-8, as shown in Fig. 6. The sample prepared at 900 °C gave a BET 

SSA of 1075 m2∙g−1 and a specific capacitance of 128 F∙g−1 in a three-electrode cell 

using 0.5 mol∙L−1 H2SO4 as the electrolyte 52. It was found that ultrasonication during 

the synthesis of ZIF-8 could yield an extra small amount of mesopores and macropores. 
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The sonicated ZIF-8 derived carbon had a BET SSA of 1955 m2∙g−1 and a pore volume 

of 1.21 cm3∙g−1. After activation with KOH, the SSA of the sonicated ZIF-8 derived AC 

increased to 2972 m2 ∙g−1 and the pore volume to 2.56 cm3∙g−1. The specific capacitance 

of the sonicated ZIF-8 derived AC was 211 F∙g−1 at 10 mV∙s−1 for a single electrode, 

which was higher than 170 F∙g−1 for the ZIF-8 derived AC without sonication and 158 

F∙g−1 for the sonicated ZIF-8 derived carbon without activation in a two-electrode cell 

containing 1 mol∙L−1 H2SO4 
53. The increased performance was attributed to extra 

hierarchical pores produced in ZIF-8 via ultrasonication. However, when MnO2 was 

redox deposited on sonicated ZIF-8 derived porous carbon materials which were 

reacted with KMnO4 at room temperature, the specific capacitance of MnO2-inactivated 

carbon was higher than that of MnO2-AC, which was considered to be due to the 

hierarchical porous structure in MnO2-inactivated carbon 54. Additionally, ZIF-8 

particles with uniform sizes were synthesized as the precursors by cooling the reactants 

of Zn2+ and 2-methylimidazole before reaction 55. 

  

Fig. 6  Scheme of direct carbonization of ZIF-8 to produce the Z-900 carbon sample and its SEM 

images 52. 
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Further, the perfect copy on the morphology from MOF precursors to ACs had 

been demonstrated by strong evidence when MOF-74 rods were used as the precursor. 

MOF-74 can be made into rod shapes in the presence of salicylic acid as a modulator. 

The pyrolysis of the rod shaped MOF-74 could form carbon nanorods, proving the 

maintenance of the morphology. Surprisingly, upon ultrasonication and activation with 

KOH, the carbon nanorods were transferred to six-layered graphene nanoribbons. The 

N2 sorption analysis for the graphene nanoribbons showed a typical type II isotherm 

with an SSA of 1492 m2∙g−1. The specific capacitance of the graphene nanoribbons was 

168 F∙g−1 at 1 A∙g−1 for a single electrode as derived from the measurement in a two-

electrode cell containing 1 mol∙L−1 H2SO4 
56. It was found that the formation 

mechanism of graphene nanoribbons from carbon nanorods was similar to that from 

oxygenation of carbon nanotubes 57, which also thanked to maintenance of the rod 

shape from the MOF precursors. 

Table 1 summarized the fabrication of ACs using different precursors and their 

performance for aqueous supercapacitors in this section.
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Table 1  Fabrications and performances of ACs for aqueous supercapacitors. 

Precursors Ref. Activation 

Reagents 

Step 

Number a 

Surface area  

(m2∙g−1) 

Electrolyte Current load 

(A∙g−1) 

Capacitance 

(F∙g−1) 

Coconut shell 37 ZnCl2+FeCl3 1 1874 6 mol∙L−1 KOH 1 276 b 

Agar 27 KOH 1 1672 6 mol∙L−1 KOH 0.25 228 b 

C9H7N3 28 KOH 1 2980 1 mol∙L−1 Na2SO4 0.5 221 b 

PDB 42 KOH 1 2660 6 mol∙L−1 KOH 0.2 290 b 

Gelatin 26 KOH 2 3692 6 mol∙L−1 KOH 0.5 305 b 

Sonicated ZIF-8 53 KOH 2 2972 1 mol∙L−1 H2SO4 10 mV∙s−1 211 b 

MOF-74 56 KOH 2 1492 1 mol∙L−1 H2SO4 1 168b 

Resin+Melamine 41 KOH 3 2234 3 mol∙L−1 H2SO4 0.1 309b 

ZIF-8 52 — 1 1075 0.5 mol∙L−1 H2SO4 50 mV∙s−1 128 

PPEA 36 KOH 1 3103 1 mol∙L−1 H2SO4 1 356 
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Willow catkin 22 KOH 2 1776 6 mol∙L−1 KOH 1 292 

Pitch 45 KOH 2 762 6 mol∙L−1 KOH 2 mV∙s−1 294 

Egg white 43 KOH 2 1217 1 mol∙L−1 KOH 0.25 525 

Bamboo 25 KOH 3 1472 6 mol∙L−1 KOH 0.1 301 

a Number of Step carried out above 110 °C. b Corresponding specific capacitance for a single electrode in the two-electrode cell, without b in the 

three-electrode cell. 
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3  Graphene 

Stable dispersions of graphene monolayers were revealed by AFM, signifying a 

breakthrough in fabrication of graphene from the exfoliated GO. The stable dispersions 

of graphene could form graphene films by vacuum filtration13. The graphene film can 

be a supercapacitor electrode directly without any binders and conductive additives. In 

order to facilitate the electrolyte permeation within the tight structure of the film, the 

electrolyte was pre-incorporated into the electrode before the desiccation of the film 58. 

Besides the 2D film form in macrograph, two categories of 3D graphene networks with 

macropores were prepared. One of these is the graphene hydrogel prepared by the 

hydrothermal treatment of GO in a static state 59 and the other is the graphene foam by 

chemical vapor deposition (CVD) on the Ni foam as a template 60. Additionally, 

graphene fibers were also fabricated by an injection 61 or casting-like 62 method. 

3.1  Powders 

Large scale production of graphene powders with few layers would be possible by the 

reduction of GO in aqueous colloids or in furnaces. For liquid reduction, different 

reducing agents were attempted to reduce GO, such as N2H4 H2O 11, NaBH4 
63, NaOH 

64, hydroquinone 65, p-phenylene diamine 66, vitamin C 67, HBr 68 and HI 69. The most 

popular method to produce the stable graphene dispersions consisting of monolayers is 

reduction of GO colloids with N2H4 H2O as the reducing agent in an ammonia-adjusted 

pH environment 13. Rapid annealing in an inert atmosphere could also reduce solid GO 

powders to few-layer graphene with a lower level of residual oxygen 70. In order to 

prevent the restack of graphene after annealing, Mg(OH)2 powders were used to be 



31 
 

templates to obtain the graphene sheets with distinctly crumpled morphology (Fig. 7) 

71. The furnace technology could make microporous graphene with a high SSA upon 

KOH activation 72, following the same mechanism as that for activation of ACs 73. 

Mesoporous graphene powders were prepared with SnO2 deposited on GO. The SnO2 

acted as catalysts for carbon gasification, yielding perforations 5~10 nm in size on the 

mesoporous graphene nanosheets (Fig. 8) 74. 

 

  

Fig. 7  (a) TEM image of Mg(OH)2 on GO, (b) SEM image of crumpled graphene after removing 

Mg(OH)2 template 71. 

 

 

Fig. 8  TEM images of (a) SnO2 on GO, (b) the medium after SnO2 on GO being subjected to 

controlled air oxidation (c) final mesoporous graphene nanosheets after removing SnO2. Scale bars, 

10 nm 74. 
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Recently, a self-propagating high temperature synthesis (SHS) technology was 

designed to fabricate scalable mesoporous graphene 75 based on the magnesiothermic 

reaction, which could be expressed as Equation 3 76,77. 

Mg + CO2 ≜ MgO + C                          (3) 

A current of 3 A passing through the tungsten coil embedded in the mixture of Mg and 

MgO for only 5 s created a combustion wave. The excited energy ignited Mg powders 

in a sealed CO2 atmosphere to trigger the SHS course, during which MgO acted as 

spacers to prevent the restack of graphene 75. The SHS-made graphene had an SSA of 

709 m2∙g−1 with unimodal pore distribution at 4 nm which was consistent with the size 

of the MgO template. 98% of sp2 hybridization occupied the SHS-made graphene, 

resulting in high electrical conductivity of 13000 S∙m−1, which should be beneficial to 

achieving high power supercapacitors. As SHS is a furnace technology with low cost 

due to the very short heat impulse, it promises a high potential for commercialization 

of graphene once the layer numbers could be further decreased during the SHS. 

Besides CO2, carbon nanodot could be another new precursor to prepare 

macroporous graphene. A 40 W CO2 laser was also applied to irradiate thermolyzed 

carbon nanodots at low temperature using a laser engraver. Laser irradiation induced a 

decarboxylation of the upper lying carbon nanodots and released gases, enabling the 

formation of graphene with spongy micron porous structure 78. 

Building pores on graphene basal planes by activation or catalytic oxidation could 

increase specific capacitance of graphene materials, however, it also brought about 
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materials with low density, which direct resulted in low volumetric capacitance of 

graphene and consumed superfluous electrolyte. Further, extra electrolyte would 

increase the weight of the supercapacitor, leading to a low specific energy for the whole 

device. Molten salt methodology, a metallurgical electrochemistry technology, was 

developed to fabricate electrode materials in electrochemical energy storage. Treatment 

of graphene in NaNH2 molten salt simultaneously achieved densification and 

perforation effects, producing a high packing density of 1.2 g∙cm−3 for the electrode and 

3~5 nm pores on graphene basal planes 79. The molten salt treated graphene delivered 

a specific capacitance of 435 F∙g−1 and a volumetric capacitance of 522 F∙cm−3 at 1 

A∙g−1 in 6 mol∙L−1 KOH electrolyte in a three-electrode cell. It is worth noting that the 

volumetric capacitance of the molten salt treated graphene is 5.4 times as that of 

untreated graphene, which unveiled the application potential of molten salt 

methodology for supercapacitors. 

3.2  Films and aerogels 

Graphene films could be prepared via vacuum filtration of stable dispersions, having 

an outstanding tensile modulus. They can be directly used as electrode without binder 

and conductive additive. Some graphene composite films were also made via vacuum 

filtration of the dispersion of graphene composites. A slightly different example was a 

graphene film that was intercalated with MnO2 on carbon sphere. MnO2 was produced 

on etched carbon sphere between the interlayer of graphene films using KMnO4 as an 

oxidant, giving 66.3% of the MnO2 in the composite films 80. The specific capacitance 

was 319 F∙g−1 at 1 A∙g−1 as measured in a three-electrode cell in 1 mol∙L−1 Na2SO4. 
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After 5000 cycles at 5 A∙g−1, 94% of the initial capacitance retained. These results 

indicate a synergistic effect from both the pseudocapacitive and EDL capacitive storage 

mechanisms in the same material. 

A graphene aerogel with an interconnected 3D macroporous network was 

discovered in the course of the hydrothermal processing and subsequent 

cryodesiccation 59. In order to establish mesopores in the graphene aerogel, H2O2 was 

employed during the hydrothermal course to partially oxidize and etch the carbon atoms 

on the more active defect sites of GO. Compressing the holey graphene hydrogel before 

cryodesiccation produced the holey graphene film 81, which had an SSA of 810 m2∙g−1, 

which was much higher than 260 m2∙g−1 for the aerogel without oxidation by H2O2. The 

electrolytes were integrated before compression of the holey graphene hydrogel. The 

holey graphene film with pre-integrated 6 mol∙L−1 KOH electrolyte had a specific 

capacitance of 310 F∙g−1 as derived from measurements in a two-electrode cell. 

A pristine GO hydrogel could be obtained by adding a small amount of HCl to the 

GO dispersion until the pH value reached 0.65 82. The GO hydrogel was paved on a 

glass substrate by blade-casting. The graphene film was obtained by reducing the spread 

GO hydrogel in a mixed solution of HI and CH3COOH 83. The GO hydrogel derived 

graphene film with a thickness of 388 μm exhibited a high tensile strength of 1 MPa, 

affording 400 g weights. The areal capacitance of the film was 71 mF∙cm−2 at 1 

mA∙cm−2 as measured in a two-electrode cell with 1 mol∙L−1 H2SO4. 

ZnCl2 was found to be an activating agent to tune microporous structure in the 

graphene aerogel without pulverization. The graphene hydrogel was soaked in the 
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ZnCl2 solution. After being subjected to vacuum drying and annealing for 1 h under Ar, 

the microporous graphene aerogel still retained the columnar morphology (Fig. 9) 84. 

The activation temperature of 600 °C induced the formation of micropores and 

simultaneously maintained the bulk density with the highest efficiency. The remaining 

columnar structure with higher bulk density suggested that ZnCl2 could be a relatively 

mild activating agent, compared with KOH, which could help balance between the 

maintenance of structure and production of micropores. The increase of the bulk density 

of graphene aerogels may also be translated to the energy density of graphene 

supercapacitors for practical applications. 

 

Fig. 9  Porosity tuning of graphene aerogel with ZnCl2. (a) Schematic representation of the 

preparation process of the microporous graphene aerogel using ZnCl2 as a pore-forming agent. (b) 

TEM image of the microporous graphene aerogel. (c) increased surface area and decreased density 

and (d) N2 adsorption-desorption isotherms of the microporous graphene aerogel after different high 

temperature treatment 84. 



36 
 

 

3.3  Foams 

Ni foams with 3D interconnected macropores are often used as current collectors to 

enhance electrolyte accessible surface of active materials. It was found that the stable 

functional graphene colloids prepared from p-phenylene diamine were positively 

charged in organic solutions66. Graphene nanosheets were loaded on the Ni foams by 

electrophoretic deposition and subsequent annealing in Ar (Fig. 10) 85. The specific 

capacitance of the graphene on the nickel foams was 139 F∙g−1 at 3 A∙g−1 in a three-

electrode cell with 6 mol∙L−1 KOH. 

 

Fig. 10  SEM images of graphene nanosheets on Ni foams by electrophoretic deposition in (a) 

low and (b) high magnification85. 

 

Free-standing graphene foams were prepared using Ni foams as sacrificial 

templates and catalysts in a CVD process, in which the Ni foams were exposed to CH4 

in Ar/H2 for 5 min at 1000 ºC, followed by rapid cooling 60. The graphene foams could 

be immersed in the fresh mixture of the polyaniline precursors, producing graphene-

polyaniline composites for supercapacitors 86. 
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Polyurethane (PU) sponges had a similar structure to that of the Ni foam and were 

used as the template to clone graphene foams. The specific capacitance of the sponge-

templated graphene was 57 F∙g−1 at 10 mV∙s−1 in the 0.5 mol∙L−1 NaCl electrolyte 87. In 

order to obtain graphene foams with high specific capacitances, an activation approach 

was applied, in which the mixture of 1 mg∙mL−1 GO and 10 mg∙mL−1 KOH dissolved 

in a homogeneous suspension was sucked into a PU sponge and annealed at 900 °C for 

2 h in an Ar flow 88. No products were left when pure sponges were annealed in Ar, 

indicative of complete pyrolysis. Therefore, the only product was activated graphene 

which possessed micropores and mesopores besides the copied macroporous structure 

from the sponges. The activated sponge-templated graphene had an SSA of 2582 m2∙g−1, 

which was twice of that of the activated graphene formed without using the sponge 

template. The increased SSA could indicate that the sponge templates prevented the 

aggregation of GO. A specific capacitance of 188 F∙g−1 was obtained at 1 A∙g−1 for the 

activated sponge-templated graphene in 6 mol∙L−1 KOH as measured using the two-

electrode cell. The sponge-templated method to prepare graphene was more facile than 

the Ni foam templated CVD process, which could result in higher bulk density. The 

activation step in the sponge-templated method prevented aggregation without 

compromising the desired high bulk density, promising future graphene supercapacitors 

of high performance. 

3.4  Fibers 

Macroscopic GO fibers were assembled by injecting GO dispersion into a coagulation 

bath using a syringe and rolled onto a drum. HI was used to reduce the GO fiber into 
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graphene fiber 61. Another work proposed a technology that a graphite tip as a positrode 

could withdraw graphene fibers from reduced GO nanoribbon colloids at a constant 

voltage 89.  

The most facile method to prepare graphene fibers might be baking the GO 

suspension at 230 °C for 2 h, which was injected into the glass pipeline with a 0.4 mm 

inner diameter by a syringe. During the course of baking, graphene sheets aligned 

directionally to the fiber’s main axis and became densely stacked, resulting in the fiber 

diameter reduced to 35 μm 62. The as-prepared graphene fibers were very flexible and 

could be woven to various shapes and structures and embedded into the 

polydimethylsiloxane matrix. When inserting a stainless steel needle into a branched 

glass tube with a capillary tip, a hollow GO fiber could be spun in a coagulation bath 

(Fig. 11) 90. An electrodeposition method was applied to grow the 3D graphene sheath 

on the solid graphene fiber core in the electrolyte comprising of GO aqueous suspension 

and LiClO4. A flexible all solid state fiber supercapacitor was fabricated by intertwining 

the two graphene fiber core-sheath electrodes pre-coated with the H2SO4-PVA gel 91. 

Its specific capacitance reached 25~40 F∙g−1, while the areal capacitance and linear 

capacitance were 1.2~1.7 mF∙cm−2 and 20 μF∙cm−1 for a single electrode. A 

compressible and stretchable spring-like supercapacitor was fabricated by wrapping the 

wet fiber supercapacitor, whose areal and linear capacitances were close to those of the 

fiber core-sheath supercapacitor. Based on this method, a hollow graphene-conducting 

polymer fiber was fabricated by injecting a mixed solution containing GO, poly(3,4-

ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT:PSS) and the reducing 
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agent of vitamin C into a glass pipeline 92. The hollow structure was configured by 

released gases during the reduction reaction of GO. 

The naissance of the fiber structure enriched the macroscopic structure of graphene. 

Since then, 3D graphene aerogels and foams, 2D graphene films and 1D graphene fibers 

could have been applied in various flexible forms of supercapacitors. 

 

 

Fig. 11  SEM images of the (a) cross-section and (b, c) surface of hollow GO fiber with rapidly 

freeze-dried treatment 90. 

 

The textiles, such as cotton yarns, could also be employed as the core to grow GO 

fibers. An electroless deposition process was exerted to produce Ni-coated cotton yarns. 

GO grew on the Ni-coated cotton yarns as a working electrode by electrolysis of GO in 

LiClO4 at a constant potential in a three-electrode cell. After reduction by the hydrazine 

vapour, the graphene on Ni coated cotton fiber was obtained 93. The volumetric 

capacitance of the composite fiber was 292.3 F∙cm−3 for a single electrode at a current 

density of 87.9 mA∙cm−3 in 1 mol∙L−1 Na2SO4 as measured using a two-electrode cell. 

Its linear capacitance was 0.11 F∙cm−1 in the PVA/LiCl gel electrolyte. Because the 

graphene on Ni coated cotton fiber possessed a fairly high tensile strength due to the 
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metallic coating, it could be made into embroidery or woven into a fabric. Another 

example to realize the graphene fabric with giant area into clothes was to deposit 

graphene-polyaniline onto the polyester textile by dip-coating. The silver paste was 

screen printed onto one side of the textile electrode as the current collector grid, which 

could increase the electrical conductivity of the whole textile electrode 94. For a 16 cm2 

supercapacitor textile, the areal capacitance reached 781 mF∙cm−2 at 0.5 mA∙cm−2, 

corresponding to a specific capacitance of 152 F∙g−1 based on the total mass of graphene 

and polyaniline. In the absence of the current collector grid made by the silver paste, a 

very low areal capacitance of 0.08 mF∙cm−2 was obtained at the same current density, 

indicative of the important role of the current collector grid in a textile electrode with a 

large area. However, the electrodeposition or immersion coating could not achieve a 

thick electrode on textile, let alone maintaining the porosity throughout the entire 

electrode thickness. To address the challenges, an alternating vacuum filtration of the 

dispersion of carbon nanotubes (CNTs) and graphenes through Ni-coated cotton fabric 

on the top of PVDF was applied 95. A remarkable mass loading of 23.7 mg∙cm−2 was 

achieved for the CNT-graphene on textile electrode. More importantly, the alternating 

filtration maintained nanoporous structures, resulting in the one-bilayer and ten-bilayer 

electrodes with similar BET values of ca. 160 m2∙g−1. The ultrahigh areal capacitance 

of 6.2 F∙cm−2 was achieved for a single electrode at a fairly high current density of 20 

mA∙cm−2 in the 5 mol∙L−1 LiCl aqueous electrolyte, possibly being one of the best 

EDLC electrodes to date. The specific capacitance of the CNT-graphene on textile 

electrode reached a constant value of 250 F∙g−1 regardless of the thickness. All solid 
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state symmetrical supercapacitor textiles in the PVA/LiCl gel electrolyte were sealed 

with hydrophobic polyester fabrics and treated by a water repellent spraying. The 

volumetric capacitance of the electrode was 107 F∙cm−3 at 20 mA∙cm−2. The feasibility 

to increase the area and thickness of the electrodes with proportionally enhanced 

performance opens an avenue toward wearable applications with high areal capacitance. 

Table 2 listed the performance of graphene for aqueous supercapacitors in this 

section. 

 

Table 2  Performance of graphene (G) for aqueous supercapacitors 

Materials Ref. SSA (m2∙g−1) Electrolyte Capacitance (F∙g−1) 

Molten salt G 79 187 6 mol∙L–1 KOH 435 (522 F∙cm−3) 

Holey G film 81 810 6 mol∙L–1 KOH 310 a 

Sponge template G 88 2582 6 mol∙L–1 KOH 188 a 

G-CNT textile 95 160 

5 mol∙L–1 LiCl 

PVA/LiCl 

250 a 

107 F∙cm−3 a 

a Corresponding specific capacitance for a single electrode in the two-electrode cell, 

without a in the three-electrode cell. 

 

4  Unequalisation of electrode capacitances 

4.1  Mechanism 

The main disadvantage of the aqueous supercapacitors is that their specific energy is 

not as high as those in organic electrolytes, including ionic liquid, let alone lithium ion 
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batteries. This is understandable because, according to Equation (1), the cell voltage is 

more decisive than specific capacitance of the electrode materials for the specific energy. 

The theoretical voltage for water decomposition into hydrogen and oxygen gases is 1.23 

V, which would limit the specific energy of aqueous supercapacitors. Fortunately, the 

gas evolution reactions in the electrolyte are also affected by the interaction of the 

electrode materials with the electrolyte, which may be affected by pH. It was 

demonstrated that a neutral electrolyte, KCl, had a potential window of 2.00 V which 

is wider than those of acidic and alkaline electrolytes 96. Nevertheless, the cell voltage 

of the symmetrical AC supercapacitor in a neutral electrolyte of Li2SO4 could not be 

higher than 1.60 V to ensure a stable performance 97. 

Because the nascent hydrogen produced from water decomposition is immediately 

absorbed in the micropores of AC, an overpotential for H2 molecule formation and gas 

evolution is needed. The theoretical potential for H2 evolution on the AC electrode was 

calculated to be −0.38 V vs. the normal hydrogen electrode (NHE) at pH value of 6.4. 

For the MnO2 electrode, positive scanning of the polarization potential is expected to 

invoke either the reactions of Mn(IV) to Mn(VII) or O2 evolution from water 

decomposition. In a neutral or low pH electrolyte, O2 evolution may occur at a potential 

more positive than the thermodynamic equilibrium potential, largely because H+ could 

be generated on the MnO2 electrode under positive polarization, making it difficult for 

H2O oxidation to produce the O2 gas. The positive polarization potential achieved a 

maximum at pH of 6.4, resulting in an extension of the cell voltage to 2.00 V for an 

asymmetrical supercapacitor in a neutral electrolyte assembled from a MnO2 positrode 
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and an AC negatrode 98.  

The amount of charge, Q, stored in each of the positrode and negatrode must be the 

same, which is governed by Equation (4), 

      𝑄 = 𝐶𝑝𝑈𝑝 = 𝐶𝑛𝑈𝑛 = 𝐶𝑝𝑚𝑚𝑝𝑈𝑝 = 𝐶𝑛𝑚𝑚𝑛𝑈𝑛     (4) 

where Cp and Cn, Cpm and Cnm, and Up and Un are the capacitances, specific capacitances, 

and potential ranges of the positrode and negatrode, respectively. Conventionally, in the 

symmetrical supercapacitors, capacitance equalization of the two electrodes is a 

necessity to maximize specific energy because the positrode and negatrode have the 

same working potential range. Generally, the exploitable potential range of a positrode, 

Uo
p, is narrower than that of the negatrode, Uo

n, in many asymmetrical cells with an AC 

negatrode, e.g. (–) AC | neutral aqueous electrolyte | MnO2 (+). When the positrode and 

negatrode in an asymmetrical supercapacitor are equalized in capacitance like in the 

symmetrical one, the cell voltage will be limited by the positrode with a smaller 

exploitable potential range. Ideally, the cell voltage should cover the whole exploitable 

potential ranges of positrode and negatrode. As Cpm and Cnm are determined by the 

nature of the electrode materials, the mass ratio mp/mn is related to the potential ranges 

of the positrode and negatrode. Although Un and Up are next to each other, Uo
p and Uo

n 

may be often overlapping partially. It was found that the cell voltage and Un increased 

with increasing Cp/Cn in the asymmetrical supercapacitors assembled by 

electrodeposited polyaniline (–) and AC (+) in an acidic electrolyte (Fig. 12a) 99. More 

importantly, the equi-potential, or the potential of zero voltage, E0V, i.e. the potential at 

the fully discharged state, moved towards more negative values, which was deduced by 
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a small charging peak on the CVs of the asymmetrical cell corresponding to the constant 

potential of 0.78 V vs. Ag/AgCl for the polyaniline electrode as well as Equation (4). It 

meant that Up also slightly increased. The specific energy had the same increasing trend 

as the cell voltage. Hence, the mass ratio mp/mn is tightly associated with the potential 

of zero voltage 100. In fact, E0V in the experiments was not consistent with the estimation, 

for instance, the potential of Mn(IV) to Mn(II) reduction for the (−) AC | neutral 

aqueous electrolyte | MnO2 (+) asymmetrical supercapacitors. Increasing the mass ratio, 

i.e. Cp/Cn, was tried to extend the Un and the voltage of the (–) AC | neutral aqueous 

electrolyte | MnO2 (+) cell 101. Monitoring the cycle life is the more convincing and 

reliable way for validating a cell, rather than the coulombic efficiency in the initial 

charge-discharge cycles. 

Conventionally, asymmetrical supercapacitors were assembled by different 

materials with different exploitable potential ranges to gain a higher cell voltage than 

the symmetrical ones. However, the asymmetrical concept could extend to the same 

material with different masses if the material behaves differently in different exploitable 

potential ranges. A commercial Cabot Monarch® 1300 pigment black (CMPB) 

exhibited a very wide potential window in neutral electrolytes when measured in a 

three-electrode cell, reaching close to 2.20 V in K2SO4. However, E0V is closer to the 

positive potential limit of the CMPB electrode, so that the symmetrical supercapacitor 

had only a 1.60 V cell voltage. Unequalization of electrode capacitances was achieved 

by using the same CMPB material of different masses (hence different capacitances) to 

make the positrode and negatrode, hence the actually exploited potential ranges of the 
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two electrodes, Un and Up, were adjusted, leading to a sufficiently high maximum cell 

voltage of 1.90 V with a stable cyclic performance (Fig. 12b) 102. When the 

asymmetrical cell was charged to 1.9 V, the initial positive potential limit was as high 

as 1.05 V vs. Ag/AgCl, but dropped to and stabilized at about 0.86 V after 800 cycles 

until the end of cycling test (6000 cycles). In a separate test in the three electrode cell, 

the positive potential limit was found to be 0.90 V. Thus, this final stable potential of 

the positrode at 0.86 V in the cycling test is the evidence that anodic oxidation of the 

CMPB electrode should have been responsible for performance decay when the cycling 

test was carried out at cell voltages higher than 1.90 V. However, it was also noticed 

that the stable negatrode potential recorded in the cycling test was still about –1.00 V, 

far more positive than the negative potential limit of –1.4 V for the CMPB electrode. 

This is indication that there is still room to further increase the cell voltage, calling for 

more investigation. 

 

 

Fig. 12  (a) CVs of asymmetrical supercapacitors with CMPB negatrode and a PAN–CNT 

positrode at various Cp/Cn ratios with the charging current peak at the same scan rate 99. (b) A 

strategy to increase the operating voltage of supercapacitors with the same material for both the 
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positrode and negatrode via unequalisation of electrode capacitances 102. 

 

The specific energy, Esp, of a supercapacitor (cell) is calculated by Equation (5) 

below. 

𝐸𝑠𝑝 =
𝐶𝑐𝑒𝑙𝑙𝑈2

2(𝑚++ 𝑚−)
                          (5) 

where Ccell and U are the capacitance and maximum cell voltage of the supercapacitor, 

and m+ and m– are the masses of the positrode and negatrode, respectively. Interestingly, 

if Ccell, U and the sum of (m+ + m–) are all fixed constants, Equation (5) predicts a 

maximum Esp when m+ = m–. This is obviously not the case in the above discussion in 

relation with Equation (4) which allows changes in both Ccell and U. Further, what is 

not mentioned in both Equations (4) and (5) is the importance of the equi-potential of 

zero voltage, E0V, which is a key parameter to determine both Un and Up. It is worth 

noting that in conjunction with equi-mass principle of Equation (5), the equi-potential 

of graphitic materials, typically graphene, could be adjusted in an organic 1 mol∙L–1 

LiPF6 electrolyte. After electrochemical charge injection, the original E0V of 3.50 V of 

graphene was adjusted to 1.16 V vs. Li/Li+, resulting in a cell voltage increase from 

3.00 to 4.30 V 103. 

4.2  Asymmetrical supercapacitors 

    A classic example of asymmetrical supercapacitors is that assembled with a MnO2 

positrode and an AC negatrode in a neutral aqueous electrolyte. The (–) AC | KNO3 | 

MnO2 (+) supercapacitor was found to a maximum specific energy of 21 Wh∙kg−1 when 

the cell voltage reached an optimal 2.00 V when the pH was 6.84 for the electrolyte 98. 
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Instead of AC, graphene was used to make the negative electrode in the asymmetrical 

supercapacitor. The MnO2 nanowires were loaded on graphene as the positrode material 

in order to increase the electric conductivity. The (–) graphene | 1 mol∙L−1 Na2SO4 | 

MnO2-graphene (+) asymmetrical supercapacitor had a specific energy of 30 Wh∙kg−1 

at a small specific current (0.1 A∙g−1) 104. Then, a microwave treatment was applied to 

irradiate the KMnO4 in graphene suspension, leading to a high specific capacitance of 

310 F∙g−1 at 2 mV∙s−1 for the synthetic MnO2-graphene composite. Therefore, the (–) 

AC | Na2SO4 | MnO2-graphene (+) cell reached a specific energy of 51 Wh∙kg−1 at 2 

mV∙s−1 while the cell voltage was 1.80 V 105. Although Mn3O4 had lower specific 

capacitance than MnO2 
106, it seemed that the birnessite Na0.5MnO2 nanosheets prepared 

by electrochemical oxidation of Mn3O4 via cyclic voltammetry (CV) in the Na2SO4 

electrolyte were attractive because of an extended exploitable potential range 107. The 

specific capacitance was 311 F∙g−1 at 1 A∙g−1. When Na0.5MnO2 was combined with 

Fe3O4C 107 or AC 108, the cell voltages reached 2.60 and 2.70 V while the specific 

energies were 81 and 61 Wh∙kg−1, respectively. It was also found that the Ni0.25Mn0.75O 

arrays with AC could achieve a cell voltage of 2.40 V when a new phase transformation 

occurred to the poorly crystallized LiNi0.5Mn1.5O4 electrode after CV activation in the 

LiCl aqueous electrolyte 109. 

Some other commonly claimed asymmetrical supercapacitors include (–) AC | 

acidic aqueous electrolyte | conductive polymer (+) and (–) AC | alkaline aqueous 

electrolyte | NiCo oxide (+). The former is a good example of the combination of an 

EDL capacitive negatrode with a pseudocapacitive positrode. The latter, however, 
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comprises a positrode made from NiCo2O4 
110-112

 , Co(OH)2 
113, Ni(OH)2 

114, and NiCo 

layered double hydroxide 115. Whilst these electrochemical cells should be capable of 

charge storage, they are not truly supercapacitors because the Ni-Co oxides or 

hydroxides behave more like a battery electrode material. These hybrid electrochemical 

cells are now defined as supercapattery which is beyond the scope of this review. 

 

5  Conclusions and outlook 

In conclusion, activated carbons (ACs) are generally good materials for making either 

the positrode or negatrode or both in supercapacitors. They can be prepared by the 

conventional two-step method, including carbonization and activation at high 

temperatures. The precursors for making ACs, including those with special shapes 

similar to that of carbon nanotubes and graphene, have been shown to be crucial in 

affecting the properties of the produced ACs. Although the extra post vacuum annealing 

can improve the electrical and electrochemical properties, the molecular level one-step 

activation method can be a better choice for production of ACs from some biomass 

precursors of low structural orders with a low cost and high performance. 

Graphitization of AC can be fulfilled by FeCl3 catalysis during the activation, which 

increases the electrical conductivity. Hetero-atom doping is also an efficient means to 

add pseudocapacitance into the carbon materials. Template method can produce the 

hierarchical porous structures in carbon materials which facilitate the electrolyte 

transfer. Metal-organic frameworks used as a self-template and a new carbon precursor 

can give rise to tailored porous carbon or graphene, which have novel academic values. 
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Graphene can also be the excellent electrode materials for supercapacitors due to 

large theoretic specific surface area and the partial electron delocalisation by residual 

O atoms according to the recent developed theory. Various structures of graphene can 

be made as electrode materials for supercapacitors, including graphene powders, 

graphene films, graphene aerogels, graphene foams and graphene fibers. Activation can 

also produce micropores in graphene, which is like those in AC. Self-propagating high 

temperature synthesis can produce mesoporous graphene powders by the 

magnesiothermic reaction, while molten salt technology mesoporous graphene with a 

high packing density. Macroporous graphene hydrogel can be produced by 

hydrothermal treatment of graphite oxide suspension. The graphene hydrogel can also 

be transferred into the film structure. Hierarchical porosity can be yielded by H2O2 

etching or ZnCl2 activation of the macroporous graphene hydrogel. Activated graphene 

foams can be prepared by sucking the mixture of GO and KOH using sponges as 

templates, which can exert high performance in supercapacitors. Graphene fibers 

prepared by the cast-like method can be used a core to grow graphene by 

electrodeposition. Additionally, graphene based materials can grow on the textile by 

electrodeposition, dip-coating or filtration, which can be weaved into clothes with large 

area or thick loading. These graphene based fibers and textiles have a promise 

application in flexible and wearable supercapacitors. 

Besides the desirable specific capacitance arising from the optimal AC and 

graphene electrodes, the cell voltage is paramount to increase the specific energy for 

supercapacitors. Extension of cell voltage is rationally fulfilled by asymmetrical 
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supercapacitors, in which the balance of the charge in the positrode and negatrode must 

be complied with. Increase of Cp/Cn can thoroughly utilize the whole exploitable 

potential ranges of the positrode and negatrode in the aqueous asymmetrical 

supercapacitors. 

High energy consumption during calcination, low packing density and yield of 

carbon are the main bottleneck in fabrication of ACs for industrial application. Recently, 

carbon spheres were loaded within the macropores in rice straw-derived carbon 116. 

Therefore, filling nano-micro carbon into the macropores in bulk ACs is also a facile 

method to increase packing density of carbon. As we know, activation is a carbon 

removal process which produces CO2 gas and leave behind micropores in bulk carbon. 

When carboxymethylcellulose sodium, a binder with high O content, was used as a 

precursor, too little product is to be collected. It is reported that Mg powders could lead 

to a carbon regeneration process when reacting with released CO2 during activation of 

carboxymethylcellulose sodium 117. Although metal Mg is very expensive, the carbon 

regeneration process to balance the carbon removal process during activation is a new 

thought to improve carbon yield. 

Two new trends in the development of aqueous supercapacitors have emerged. 

Firstly, when the redox active hydroquinone was added into the electrolyte (which is 

then referred as a redox electrolyte) of a carbon based supercapacitor, a large increase 

to 900 F∙g−1 in specific capacitance was claimed 118. Similarly, addition of the redox 

active salt of K3Fe(CN)6 in the aqueous electrolyte could lead to confinement of the salt 

or its ions in a solid-like state within the electrode, and hence the counter ion effect to 
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increase the specific capacitance of the carbon electrode 119,120. Whilst recognizing the 

contribution to charge storage capacity, it has been pointed out that the increased charge 

storage capacity from the redox electrolyte is actually Nernstian (i.e. battery-like). 

Therefore, the device is no longer a supercapacitor, and hence its storage performance 

should not be analyzed in terms of capacitance 121. The term supercapattery is more 

appropriate for description of such hybrid devices in which charge storage is achieved 

in both the capacitive and Nernstian mechanisms 1, 122.  The other trend of 

development is the application of the 3D printing technology in fabrication of micro-

supercapacitors, which requires the ink of the electrode materials with appropriate 

viscosity as well as shear-thinning rheological properties 123. 

The innovation in the production of AC and graphene may bring out the prospect 

toward supercapacitors with high performance and low cost. The incorporation of the 

redox components and the 3D printing technology are two of the new trends to develop 

aqueous supercapacitors. With the unremitting efforts from multidiscipline, it is 

believed that the AC and graphene materials from new precursors and production 

methods can open up a significant vista for aqueous supercapacitors in the near future. 
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Recent innovations in production of activated carbon and graphene through thermal 

processing of various new precursors such as biomass, plastic waste and carbon dioxide 

promise more affordable and sustainable aqueous supercapacitors for a wide range of 

high power applications, such as electrical buses. 


