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Abstract The presence of identical benchmark/constraint variables in both geographic and survey 
datasets is a principal requirement for static spatial microsimulation models, particularly in the field of 
medicine and health sciences. This is also a key limitation of static spatial models because geograph-
ical datasets rarely contain all variables required to realistically simulate an outcome. We believe this 
challenge can be overcome by a multilevel approach to spatial microsimulation using a case study of 
estimating the small area level prevalence of knee osteoarthritis in England.In the paper, we describe 
constraint selection and demonstrate a novel two–stage spatial microsimulation procedure using 
SimObesity, a static deterministic combinatorial spatial microsimulation model. We also present the 
validation parameters of our synthetic data, important areas for consideration and avenues for future 
research.Our findings demonstrate that important benchmark variables absent from the geograph-
ical dataset can be incorporated into spatial microsimulation models without compromising model 
robustness. JEL classification: I100
DOI: https://​doi.​org/​10.​34196/​ijm.​00201

1. Background
Spatial microsimulation methodologies represent a powerful tool used to create and analyse spatially 
disaggregated data without expending the vast resources required to obtain these data through 
primary data collection. Spatial microsimulation models could be static (looking at just one point in 
time), or dynamic (including projections overtime), and could be deterministic (does not incorpo-
rate random variability) or stochastic (incorporating random variability). There are several published 
reviews on the description, strengths and weakness of various spatial microsimulation methodologies 
(O’donoghue et al., 2014; Tanton, 2014; Birkin and Clarke, 2011; Rahman et al., 2010; Harland 
et al., 2012). This paper focuses on static deterministic spatial microsimulation models.

Static deterministic spatial models have the added advantage of the ability to conduct powerful 
counterfactual scenario modelling (Tanton, 2014). This is a modelling technique where the effect of 
input parameter manipulation can be assessed in the derived synthetic dataset. For example how 
would a 20% increase in the population of people in the lowest deprivation quintile affect the prev-
alence of obesity in a given geographical area? This can provide policy makers and researchers an 
insight into the potential effect of an intervention or policy across various geographical areas before 
the intervention/policy is implemented. This process could be described as mimicking the effect of a 
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randomised control trial, without the attendant time and resources required to conduct one in real-
time (Prakash et al., 2017). With such a powerful tool at our disposal and with the improvement in 
computational power making it easier to carry out complex calculations quickly and more effectively, 
it is no surprise that the number of published literature on applications of spatial microsimulation/
microsimulation have increased exponentially in the past few years. These models have found use in 
various disciplines ranging from transport, economics, fiscal policy and even healthcare and demog-
raphy (Smith et al., 2011; Ballas et al., 2006; van Leeuwen and Dekkers, 2013; Lovelace et al., 
2014; Lymer et al., 2008; Rephann and Holm, 2004).

That being said, penetration of spatial microsimulation modelling into core medical and epide-
miological research has been rather slow. We recognise that microsimulation methodologies have 
been used extensively in infectious disease epidemiology however these models typically dynamic 
and conducted at much coarser geographical levels and therefore lacking the small areal level spatial 
component (Habbema et al., 1996; Morris and Kretzschmar, 2000). Also, available published liter-
ature on spatial models used to simulate health conditions like smoking, obesity and osteoarthritis, 
these studies have found little use outside the microsimulation community (Edwards and Clarke, 
2009; Smith et al., 2011; Cataife, 2014). We believe that this may be due to an inherent weakness in 
static, deterministic spatial microsimulation methodologies – Data limitations (Tanton and Edwards, 
2012). This could either be differences in variable definitions in the geographical and population 
dataset or complete absence of certain predictor variables in the geographic and/or population 
dataset. The latter is of particular importance as it may affect the accuracy of the simulated dataset 
and constrain further analysis of the derived microdata (Cassells et al., 2013). This is explained as 
follows – in order to generate microdata at the required geographical scale typically two datasets 
are required, the population dataset (which contains the outcome of interest) and the geograph-
ical dataset (which contains the geographical identifier). Here, observations (in this case people) are 
assigned to geographical areas based on matched attributes shared between the two datasets for 
example the geographical dataset (usually the census) and the population dataset can be matched 
based on sex, age and ethnicity (Ballas et al., 2005). This means that these attributes selected should 
be associated with the outcome of interest and must be present in both datasets (Edwards and 
Clarke, 2009).

Demographic variables such as age, sex, ethnicity and social class may be sufficient to simulate 
certain outcomes however simulation of medical conditions generally require more information and 
this information that may not be collected in one single survey. For example, it may not be accurate to 
simulate the spatial prevalence of lung cancer based on age and sex alone, without collecting smoking 
history because smoking is a well-documented risk factor for lung cancer (Doll and Hill, 1950; Doll 
and Hill, 1956; Lee et al., 2012). However, smoking data may not be available in the geographical 
dataset as only a few countries collect small area level smoking data. This means that it may not 
be possible to conduct an accurate spatial microsimulation model of lung cancer or convince policy 
makers about the validity of the resulting dataset.

Several methods have been employed to overcome this challenge ranging from imputation 
(Cassells et al., 2013) in the case of missing benchmark variables in the survey dataset, to merging 
geographically disaggregated data from another source with census data (where important predictor 
variables are missing from the census data) (Edwards and Clarke, 2009). Although these methods 
were appropriate in the situations in which they were used, and simulated outputs were found to be 
robust, these methods may not be applicable in all scenarios for example in the case of lung cancer 
mentioned above where smoking history data is unavailable in the census dataset and not accessible 
from other sources.

1.1. Study aim/objectives
The aim of this paper is to introduce a 2-stage approach to spatial microsimulation for situations 
where a key predictor variable is absent from the geographical dataset, using a case study of knee 
osteoarthritis (OA) prevalence in England. The objectives are to select constraints, generate and vali-
date small area level knee OA prevalence data for England using this two-stage spatial microsimula-
tion procedure.

The rest of the document includes a brief introduction to the medical condition (knee OA), an 
account of the methods used to generate and validate the synthetic data, and finally discussions 
around the strengths and limitations of this technique and areas of further research.
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2. Case study
2.1. Introduction
Osteoarthritis is a debilitating joint condition affecting over 8 million people aged 45 years and over 
in the United Kingdom. It presents with symptoms such as pain, soreness, stiffness, and joint swelling. 
It commonly affects the knee and hip but can occur in any joint. The aetiology is thought to be multi-
factorial including both genetic and environmental factors. Disease prevention through risk reduction 
is a key management strategy (Buckwalter et al., 2004; Allen and Golightly, 2015). Data on the 
prevalence of knee OA are not available at a small area level in England hence the need for synthetic 
microdata.

2.2. Data sources
Typically, two data sources are required to build static spatial microsimulation models. The first is a 
representative sample survey, usually called the population dataset. This provides detailed informa-
tion on the outcome of interest but lacks geographic information at the small area level. The second, 
called the geographic dataset, may contain limited data items but is disaggregated at the required 
spatial level (Cassells et al., 2013). In our project, the English Longitudinal Survey of Aging (ELSA) and 
Health Survey for England (HSE) were our population datasets, and the 2011 census, the geographical 
dataset.

ELSA has been extensively described elsewhere but in brief, is a multidisciplinary cohort study of 
a representative sample of the English population aged 50 years and above. ELSA participants are 
followed up every two years (waves). Each wave involves questionnaires, anthropometric measure-
ments and tissue samples (in every other wave) and consists of about 11,000 participants (Mindell 
et  al., 2012). This study utilised ELSA wave 6, collected in 2012 and 2013. Wave 6 was chosen 
because of its proximity to the 2011 census and because it also included weight and height measure-
ments which are only collected in every second wave. Our study population consisted of core sample 
members of the ELSA dataset. Individuals less than 50 years and non-core sample members of the 
ELSA (regardless of age) were excluded from the analysis.

Health Survey for England (HSE) is a series of annual cross sectional surveys about the health of 
people living in England. The survey started in 1991 and is an authoritative source of health statistics 
used to plan the nation’s health policy. Each year consists of about 10,000 participants of all ages.
(Mindell et al., 2012) Our study amalgamated HSE survey data from 2012 to 2014 to obtain a larger 
sample population. This was done to obtain HSE closest to the 2011 national census data and also 
proximity to ELSA wave 6. Only individuals aged 50 years and above were included in our analysis.

The 2011 United Kingdom (UK) census which is the most recent was used as our geographical 
dataset. These data were obtained from the office of National Statistics (Longhurst et al., 2007). 
The geographical units of measurement used in this study were Lower Super Output Area (LSOA) [1] 
and 2011 electoral ward. LSOAs were chosen because relative homogeneity of the population and 
for ease of geo-referencing, ward microdata was used for sensitivity analysis. According to the 2011 
census, there are 32,844 LSOAs and 7,689 electoral wards in England (Nomis).

2.3. Definition of outcomes
Knee OA - from ELSA was defined as a combination of self-reported doctor-diagnosed knee OA, knee 
pain, as well as knee replacement due to Arthritis. This was coded as a binary variable.

Body Mass Index (BMI) – was defined as weight (in kilograms) ÷ height (in meters) 2, and this was 
obtained from the HSE using the variable name “BMI valid”. This variable was categorised as follows 
in kg/m2 – <19(underweight), 19–25 (normal weight), 25–30 (overweight), >30(obese).

2.4. Constraint selection
The following selection describes data management and constraint selection.

It is very important that constraints are highly correlated with the outcome of interest (Edwards 
and Clarke, 2009). This was a major consideration in our study therefore we conducted an extensive 
literature search to identify risk factors associated with knee OA. Sociodemographic variables present 
in all above mentioned data sets were also identified as potential constraint variables. Following 
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identification, these variables were re-categorised to ensure consistent definitions across datasets 
(Cassells et al., 2013). The unit of analysis was the individual and as such household level variables 
and variables that could not be consistently defined/re-categorised were excluded at this stage. Cate-
gorization of potential constraint variables are presented in Table 1 below.

3. ELSA analysis
Univariate and Multivariate logistic regression were used to identify associations between knee osteo-
arthritis and other covariates. All significant predictors of knee OA identified during the univariate 
analysis (adjusted Wald’s test, p ≤0.05) were included in a multivariate backward elimination regres-
sion analysis. Only predictors (except age and sex, which were considered as priori predictors and 
retained in the model regardless of statistical significance) with a p value of ≤0.05 were left in the final 
model. We reinserted excluded predictors to the final model one at a time to further check whether 
they became statistically significant.

An optimal number of constraint variables is necessary to obtain accurate synthetic data however 
more constraint variables are not necessarily associated with accurate simulations (Tanton and Vidy-
attama, 2010). As an additional step, calibration was done by testing different combinations of 
variables in the final model using the Archer-Lemeshow goodness of fit test (Archer et al., 2007; 
Williams, 2015). Variables in the model with the highest p value were selected as constraint variables.

4. HSE analysis
HSE 2012–2014 were combined to increase the size of the survey population, potentially increasing 
the pool of individuals to choose from during spatial microsimulation modelling. Multinomial logistic 
regression, with BMI as the outcome variable was used to identify covariates associated with BMI. 
Variables found to be significantly associated with BMI using multivariate multinomial regression were 
retained. We were unable to statistically compare nested models to obtain the most parsimonious 
model because maximum likelihood assumptions that underpin these tests are violated by complex 
sampling designs used in HSE (Hahs-Vaughn et al., 2011; Williams, 2015). Therefore, we employed 
the following approach to final constraint selection. All retained covariates were chosen as constraints 
and used to simulate BMI data in different combinations, dropping and adding each variables in turn 
except age and sex which were included in all simulations. The resultant synthetic datasets were inter-
nally validated against predetermined criteria (described below), discarding configurations that did 

Table 1. Names and categories of covariates used in our analyses

Variable Categories

Age 50–59 years, 60–69 years, 70–79 years, 80–89 years, ≥90 years

Sex Male, Female

*Ethnicity White, Non-White

Health Good, Fair, Poor

BMI Underweight, Overweight & Obese

*NSSEC Higher managerial & professional, Lower-professional, Intermediate 
Occupations, Lower supervisory & technical, Semi routine, routine & other.

Marital Status Single, Married, Separated, Divorced, Widowed

Level of Education NVQ4&5, Higher Education below Degree, NVQ3, NVQ2, NVQ1

Smoking history Never smoker, Ex-smoker, Current smoker

Alcohol Never, once or twice a year, Every couple of Months, Once or twice a month, 
Once or twice a week, Every other day, Everyday

Fruit & Vegetable 
Consumption/week

Less than 5 portions, Greater than 5 portions

*Categorised to match ELSA.

https://doi.org/10.34196/ijm.00200
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not meet our criteria. Covariates in the dataset with the best validation scores was selected as final 
constraint variables (Smith et al., 2007).

5. Missing data and collinearity
A single stochastic imputation using a chained equation approach based on candidates with complete 
data (age and sex) was used to replace missing data (Cassells et al., 2013). Data was assumed to be 
missing at random (Sterne et al., 2009; Marston et al., 2010). Variance Inflation Factor (VIF) test was 
used to detect multiple collinearity among variables in the regression models. We did not find any 
value above 10.

5.1. Spatial microsimulation
Our project used SimObesity, a static spatial microsimulation model developed within the School 
of Geography, University of Leeds. It utilizes a deterministic combinatorial optimisation procedure. 
Models like SimObesity have been used extensively in healthcare modelling and have been shown 
to produce robust estimates (Burden and Steel, 2016; Kosar and Tomintz, 2014). In addition, these 
models are simple and relatively quick to execute. A detailed description of the exact algorithm 
and applications of SimObesity can be found elsewhere (Edwards and Clarke, 2009; Timmins and 
Edwards, 2016). Briefly, SimObesity works in two steps. The first step determines the combination of 
individuals in a geographical area using the reweighing algorithm. The second step involves interger-
isation so only ‘whole’ individuals and not fractions of people are assigned to each geographical area 
(Ballas et al., 2005). SimObesity algorithm is displayed in the equation below.

For Pi j

	﻿‍ xij = wij × cij/sij‍� (1)

	﻿‍ yij = xij ×
∑

cj
/∑

xj‍� (2)

Where,
Pij represents each person in the population dataset.
xi j is the reweight value for person i in area j.
wi j is the person’s original weight in the population table for the first constraint variable and is the 
resulting weight (yi j) from the previous constraint for all subsequent constraint variables.
ci j is element ij of the corresponding constraint table.
sI j is element ij of the corresponding summary table.
∑cj is the sum of the relevant area column for the constraint variable.
∑xj is the sum of the relevant area column for the reweight value calculated in the previous step.

Figure 1. 2-stage Spatial Microsimulation

https://doi.org/10.34196/ijm.00200
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In our study, spatial microsimulation was conducted in a two-step sequence. First, constraints 
selected from the HSE analysis (described above) were combined with the 2011 Census (geographical 
dataset) using SimObesity to create a dataset that we called the hybrid dataset. This hybrid dataset 
contained information on both sociodemographic variables and BMI. Step 2 of the sequence involved 
combining the hybrid dataset with ELSA, also using SimObesity (based on constraint variables identi-
fied during the ELSA regression analysis) to obtain the final dataset. This dataset contained both knee 
OA data as well as BMI data. This processes illustrated in Figure 1 below. Initial (default) weights were 
set at ‘1’ for all simulations (Smith et al., 2009).

6. Model validation/calibration
This is an integral part of spatial microsimulation and there are broadly two approaches - internal and 
external. Internal validation examines how well the simulated data represents source data (constraint 
variables), while external validation tries to establish how closely the simulated estimates represent 
the actual spatial distribution of the outcome of interest. This is very challenging (hence the need for 
spatial microsimulation in the first place) (Edwards and Tanton, 2012).

Although several statistical techniques exist to internally validate spatial models, there is no 
consensus on which method is most appropriate. A review of the pros and cons of common internal 
validation techniques can be found in published literature (Timmins and Edwards, 2016; Rahman 
et al., 2013). In general, multiple techniques are used for internal validation. Our approach to vali-
dation was based on the simplicity of interpretation, preferring methods with an objective statistical 
measure over methods with a subjective interpretation.

Our simulated datasets were validated against the original census data ie, the hybrid and final 
dataset were each validated against the census data. This way we could access how close or removed 
our final dataset was from the census data. This was done with the following measures: R2, Standard 
Absolute Error (SAE), and Standard Error about Identity (SEI) (Tanton and Vidyattama, 2010). Scat-
terplots were also used to visualize the relationship between simulated and census data. R2 and SEI 
values ≥0.98, and SAE ≤0.05 were considered to be a good fit to generate the hybrid data, and R2 and 
SEI values ≥0.94 and SAE values ≤0.10 to generate final knee OA dataset (Smith et al., 2009). R2 and 
SEI cut off points were chosen pragmatically to account for a slight decay in the values at the second 
stage of simulation which may be caused by the intergerisation phase of SimObesity.

Prior to the validation methods mentioned above, we broadly compared constraint variables across 
all datasets i.e., we compared proportions of subgroups within all constraint variables in the hybrid 
dataset with those of the census and final datasets respectively. In addition, we aggregated the esti-
mated data to a higher spatial scale, Government Office Region (GOR) and compared the proportion 
of people with knee osteoarthritis in ELSA (our final population dataset) with that of our synthetic 
dataset.

Data cleaning, constraint selection and model validation were conducted using STATA 14 SE 
(Statacorp, 2015) and Spatial microsimulation was done using SimObesity. Ethical approval was 
obtained from the University of Nottingham Ethics Committee SDA23062015.

7. Results
There were a total of 9,169 core ELSA sample members, 12,521 observations from a combination of 
HSE 2012–2014, and about 18 million individuals in the 2011 census aged 50 years and above.

Table 2 below shows that the distribution of variables in all the 3 datasets is broadly similar with 
only slight differences in the frequency distribution of ‘separated’ individuals in ELSA compared with 
the Census and HSE. The frequency distribution of Education qualification also differs slightly between 
census, and HSE and ELSA datasets. However overall, HSE and ELSA are broadly representative of the 
census data making them ideal for spatial microsimulation.

Tables 3 and 4 below display the output of ELSA univariate and multivariate logistic regression 
analysis and GOF test respectively. Age, Sex, NSSEC, Health status and BMI were found to be signifi-
cantly associated with Knee OA in the Univariate analysis.

Although Age was not significantly associated with Knee OA in multivariate analysis, it was consid-
ered to be an important predictor and thus included in the final model. Table 3 shows the results of 
the archer-Lemenshow Goodnesss of Fit (GOF) statistic. Comparing different combinations of vari-
ables in the final model – Age, Sex, NSSEC and BMI were shown to be the best predictors of knee OA, 
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Table 2. Frequency distribution of variables in geographical (census) and survey (HSE and ELSA) datasets

Variables/categories ELSA, n (%) HSE, n (%) Census LSOA, n (%)

Age

50–59 years 2,062 (22.49) 4,901 (32.67) 6,397,087 (35.09)

60–69 years 3,451 (37.64) 4,018 (32.09) 5,680,431 (31.16)

70–79 years 2,444 (26.66) 2,837(22.66) 3,713,474 (20.37)

80–89 years 1,005 (10.96) 1,383 (11.05) 2,032,084 (11.16)

≥90 years 207 (2.26) 192 (1.53) 403,817 (2.22)

Sex

Female 5,096 (55.58) 6,756 (53.96) 9,658,440 (52.98)

Male 4,073 (44.42) 5,765 (46.04) 8,571,453 (47.02)

*Marital

Single, Cohabitees 603 (6.58) 1,425 (11.39) 1,464,682 (8.03)

Married, Civil partnerships 5,872 (64.06) 7,726 (61.73) 11,167,413 (61.26)

Separated 25 (0.27) 271 (2.17) 420,140 (2.31)

Divorced 1,070 (11.67) 1,268 (10.13) 2,306,990 (12.65)

Widowed 1,597 (17.42) 1,826 (14.59) 2,870,668 (15.75)

*Ethnicity

White 8,845 (96.49) 11,792 (94.54) 17,027,207 (93.40)

Non-white 322 (3.51) 681 (5.46) 1,202,686 (6.60)

*NSSEC

Higher Managerial & 
Professional 3,167 (34.74) 3,982 (32.36) 5,475,646 (30.04)

Lower Managerial 1,249 (13.70) 1,922 (15.57) 2,624,312 (14.40)

Intermediate Occupations 1,059 (11.62) 1,298 (10.52) 2,080,200 (11.41)

Lower supervisory & Technical 846 (9.28) 937 (7.59) 1,457,493(7.99)

Semi routine, routine & others 2,794 (30.65) 4,204 (34.06) 6,592,242(36.16)

*Education

NVQ 4 & 5 1,551 (17.06) 2,191 (17.50) 6,965,766 (38.21)

Higher Education, below Degree 1,268 (13.94) 1,459 (11.65) 1,773,428 (9.73)

NVQ3 752 (8.27) 1,173 (9.37) 1,930,079 (10.59)

NVQ2 1,703 (18.73) 2,336 (18.66) 991,560 (5.44)

NVQ1 366 (4.03) 514 (4.11) 1,254,681 (6.88)

Foreign/Other 1,043 (11.47) 353 (2.82) 4,180,862 (22.93)

No Qualification 2,410 (26.50) 4,444 (35.49) 1,133,517 (6.22)

Health

Excellent, good 6,330 (72.10) 8,010 (63.97) 11,213,005 (61.51)

Fair 1,729 (19.69) 3,079 (24.59) 4,856,203 (26.64)

Poor 720 (8.20) 1,425 (11.38) 2,160,685 (11.85)

*Smoke

Never smoker 3,275 (36.73) 5,777 (46.14) –

Ex-smoker 4,790 (52.25) 4,910 (39.21) –

Current Smoker 1,102 (12.02) 1,802 (14.39) –

*BMI

Underweight 69 (0.93) 85 (0.82) –

Normal 1,958 (26.52) 2,761 (26.58) –

Overweight 3,029 (41.03) 4,380 (42.16) –

Obese 2,327 (31.52) 3,163 (30.45) –

Knee Osteoarthritis Yes 1,728 (18.85) – –

No 7,441 (81.15) – –

TOTAL 9,169 (100) 12,521 (100) 18,229,893 (100)

*Variables with missing data in HSE & ELSA.
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with the highest GOF p value of 0.9742. This is 
consistent with current available literature on the 
predictors of knee OA (Hart et al., 1999; Reyes 
et  al., 2015; Blagojevic et  al., 2010) therefore 
these variables were selected as constraint vari-
ables for knee OA spatial simulation modelling.

Table 5 above shows the results of multivariate 
multinomial regression analysis of HSE data. Age, 

Sex, NSSEC, Health, Marital status, Ethnicity, Highest Qualification, and Smoking status were identi-
fied as constraint variables. The census does not collect smoking status data, so smoking was not used 
as a constraint variable.

8. Validation - HSE Vs Census
Age, Sex, NSSEC, Health, Marital Status, Ethnicity, and Education were used in different combinations 
as constraint variables to predict BMI. The Age, Sex and NSSEC simulation model provided the best 
fitted dataset based on our validation criteria and is the only result presented here. See following 
tables.

From Table 6 above, we can see that both the 
hybrid and final datasets have similar proportions 
of variables as the original census and HSE, and 
ELSA datasets (for BMI and Knee OA respectively)

Table  7 above displays internal validation 
measures at both simulation stages. It can be seen 
that in general, there was a slight reduction in SEI 
and R2 values, and an increase in SAE values from 
the hybrid (BMI simulations) to the final dataset 
(OA simulations). All BMI simulations met our vali-
dation criteria of an SAE of ≤0.05 and R2 value of 
≥0.98, however age-group ≥90 years and males 
just failed to meet our set SEI criteria of ≥0.98. 
In the final simulations, age group ≥90 years also 
failed to meet our SAE and SEI criteria; and all 
sex sub-categories did not meet our set criteria 
as well. However, it can be observed that most 

Table 3. ELSA Univariate and Multivariate 
Logistic Regression Analysis – F test and P 
values

Variables

Univariate Final model

F - test P value F -test P value

*Age 3.01 0.0172 0.43 0.9038

Sex 22.74 <0.0001 20.67 <0.0001

NSSEC 19.54 <0.0001 6.15 0.0001

Health 174.26 <0.0001 54.06 <0.0001

BMI 47.93 <0.0001 24.81 <0.0001

†Illness 234 <0.0001 76.7 <0.0001

Marital 1.98 0.0953

Ethnicity 1.85 0.1741

Education 5,847 <0.001

Smoke 5.85 0.0029

Alcohol 14.14 <0.0001

Fruit & 
Vegetable 
consumption

3.94 0.0196

*Not significant but included in the final model.
†Found to be defined differently in the census and was 
subsequently dropped from analysis.

Table 4. ELSA Goodness of fit test

Model parameters
Archer-Lemenshow 
GOF values

Age,Sex, NSSEC, Illness, 
Health, BMI

0.3374

Age, Sex, NSSEC, Health, BMI 0.4861

Age, Sex, Health, BMI 0.1147

Age, Sex, BMI 0.6283

Age, Sex, NSSEC 0.6708

Age, Sex,Health 0.7564

Age, NSSEC 0.3453

Age, Sex, NSSEC, BMI 0.9742

Age,Sex 0.5680

Table 5. HSE Univariate and Multivariate 
Multinomial Regression Analysis – F test and P 
values

Variables

Univariate Final model

F - test P value F -test P value

Age 2.88 <0.0001 8.87 <0.0001

Sex 41.49 <0.0001 35.73 <0.0001

NSSEC 7.22 <0.0001 1.98 0.0139

Health 35.24 <0.0001 28.75 <0.0001

Marital 13.87 <0.0001 28.89 <0.0001

Ethnicity 3046.85 <0.0001 1236.81 <0.0001

Education 5.7 <0.0001 2.29 0.0016

Smoke 12.54 <0.0001 14.63 <0.0001

Fruit & 
Vegetable 
consumption

1.06 0.3843
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sub categories of constraint variables met our validation criteria at both stages of the microsimulation 
sequence.

The results of the scatter plots above show a good correlation between the original census dataset 
and the final knee OA simulated dataset howbeit with a lower R2 value for all constraint variable than 
obtained when the census was compared with the hybrid dataset (Figures 2 and 3). This effect is more 
pronounced in the sex category and in the age group 90 years and above. However the scatter plots 

Table 6. Frequency distribution of variables in Original and synthetic datasets

Variables/Categories Census (%)
Hybrid, n 
(%)

Final, n 
(%)

ELSA, n 
(%)

HSE, n 
(%)

Age

50–59 years 35.09 35.02 34.59 22.49 32.67

60–69 years 31.16 31.16 31.19 37.64 32.09

70–79 years 20.37 20.48 20.75 26.66 22.66

80–89 years 11.16 11.15 11.24 10.96 11.05

≥90 years 2.22 2.19 2.21 2.26 1.53

Sex

Female 52.98 52.84 54.07 55.58 53.96

Male 47.02 47.16 45.92 44.42 46.04

NSSEC

Higher Managerial & Professional 30.04 30.16 31.39 34.74 32.36

Lower Managerial 14.4 14.29 13.84 13.70 15.57

Intermediate Occupations 11.41 11.49 11.39 11.62 10.52

Lower supervisory & Technical 7.99 8.08 8.17 9.28 7.59

Semi routine, routine & others 36.16 35.98 35.20 30.65 34.06

BMI

<18.5 (Underweight) – 0.98 0.98 0.93 0.82

18.5–<25 (Normal) – 26.20 26.39 26.52 26.58

≥24–<30 (Overweight) – 42.20 41.51 41.03 42.16

≥30 (Obese) – 30.62 31.10 31.52 30.45

Knee 
Osteoarthritis

Yes – – 18.69 18.85 –

No – – 81.31 81.15 –

Table 7. Validation parameters (SAE, R2 and SEI) for BMI and OA spatial microsimulations

Variables/Categories

BMI simulation OA Simulation

SAE R2 SEI SAE R2 SEI

Age 50–59 years 0.0186 0.9933 0.9918 0.0433 0.9681 0.9569

60–69 years 0.0132 0.9983 0.9980 0.0200 0.9959 0.9951

70–79 years 0.0295 0.9933 0.9931 0.0560 0.9768 0.9753

80–89 years 0.0304 0.9949 0.9949 0.0617 0.9807 0.9800

≥90 years 0.0916 0.9801 0.9797 0.1741 0.9416 0.9289

Sex Male 0.0344 0.9847 0.9792 0.0680 0.9370 0.9327

Female 0.0304 0.9851 0.9847 0.0777 0.9367 0.9064

NSSEC Higher Managerial & Professional 0.0199 0.9978 0.9977 0.0583 0.9908 0.9800

Lower Managerial 0.0374 0.9888 0.9872 0.0818 0.9550 0.9450

Intermediate Occupations 0.0300 0.9956 0.9954 0.0542 0.9867 0.9850

Lower supervisory & Technical 0.0271 0.9940 0.9929 0.0556 0.9788 0.9710

Semi routine, routine & others 0.0124 0.9987 0.9984 0.0353 0.9938 0.9881
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show similar patterns across the different variables in both datasets which shows that the census data 
is correlated with the final OA simulation data.

Figure 4 above compares the proportion of individuals with knee osteoarthritis from ELSA with 
that generated through spatial microsimulation. The error bars represent 95% confidence intervals. 
It can be seen here that synthetic data point estimates of the prevalence of knee osteoarthritis are 

Figure 2. Scatter plots for age, sex and NSSEC categories, simulated counts from the hybrid dataset versus census 
totals

Figure 3.  Scatter plots for age, sex and NSSEC categories, simulated counts from the final dataset versus census
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within 95% confidence limits across all GORs. The 
highest difference of 2.7% points was seen in 
the North-East of England, with almost a perfect 
match in the East of England. ELSA proportions 
also appear to show more variability that the 
simulated data.

9. Discussion
The case study described above provided a 
detailed account of constraint selection and 
internal validation of a novel approach to spatial 
microsimulation. It demonstrated our approach to 
overcoming a key challenge encountered when 
generating small area level microdata. To this 
end, BMI, a variable found to be strongly associ-
ated with knee OA (from a literature search and 
our regression analyses) (Blagojevic et al., 2010) 
but not collected by our geographical dataset 
was successfully incorporated into the simula-
tion by conducting simulations in 2 stages. This 
served a dual purpose because combining data 
from two survey datasets inadvertently increased 
the pool of individuals to choose from, as well as 
providing data on hitherto unavailable informa-
tion. Although there seemed to be some ‘decay’ 
in validation scores in the final output, as shown 

by the slight increase in SAE and reduction in the R2 values in the final dataset, the association between 
constraint variables in the census and final datasets is still very strong.

In addition, the proportions of individuals in various categories (of both constraint and outcome 
variables) were very similar across both survey datasets, hybrid and final datasets. It is also interesting 
to note that categories with only few observations (e.g. individuals aged 90 years and above) showed 
a poorer fit than categories with a large number of observations (50–59 years) in both the hybrid 
and final simulations. This also attests to the strong correlation between the original census and final 
datasets. Furthermore, the prevalence of our outcome of interest derived from our synthetic data 
approximated that derived from ELSA, with the largest point estimate difference of less than three 
percentage points. Another strength of this approach is that the similarity of source datasets such that 
individuals in the HSE and ELSA are alike in terms of variable categorization and sampling framework 
probably making it easier to clone individuals based on selected attributes however HSE contained 
slightly higher absolute numbers of participants in each category.

Bearing this in mind, it is also important to highlight some important considerations – first, the 
case study described above was conducted using a static deterministic reweighing and combinato-
rial spatial microsimulation method. It may not be applicable to other reweighing spatial simulation 
methods e.g. methods utilizing iterative proportional fitting, and other dynamic spatial models.

Secondly, choice of constraint is a very important determinant of the simulated output. Any other 
selection of constraints would produce a different output however our choice of constraint variables 
were based on correlates of the outcome of interest using robust calibration techniques. Our final 
choice of simulation output was based on predetermined internal validation criteria. In addition, some 
variables such as presence of long term illness and smoking history which were significantly associated 
with BMI in our regression analysis were not used as constraint variables to obtain the hybrid dataset. 
This is because the UK census does not collect data on smoking prevalence and also a systematic 
review of published literature has shown an inconclusive relationship between smoking and Osteoar-
thritis, our main outcome of interest (Hui et al., 2011; Hart et al., 1999). The presence of long term 
illness was not defined consistently across datasets and therefore could not be used in the simulations. 
We are not certain of the effect of these exclusions on the final output.

Figure 4. Comparing regional aggregates of our 
simulated synthetic microdata data with ELSA data 
(grouped by regions)
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Another important consideration is the effect of the single imputation of missing BMI data in both 
survey datasets (HSE and ELSA) prior to simulation. This had the advantage of providing a larger pool 
of individuals for the simulations, but it is not quite clear what other biases this could have been intro-
duced into the model. However, simulation models we conducted using complete-case analysis did 
not have better validation scores.

It is arguable that this two stage simulation could be conducted using ELSA data only, given that 
ELSA and HSE contain similar variables, but interestingly our two-stage simulations using only ELSA 
did not yield consistent validation results (please see supplementary material). The slight decay in 
some validation criteria noticed with HSE/ELSA Knee Osteoarthritis simulations was amplified with 
ELSA/ELSA simulations. We believe this may be due to error augmentation, which is the additive 
effect of errors generated in the first stage and those generated during the second stage of simula-
tions. This concept was not explored further in this paper as the introduction of HSE provided consis-
tent validation results both at ward and LSOA levels.

Furthermore, we need to consider the effect of time on this two stage simulation approach. All 
input data were collected at slightly different timeframes with the census data collected in 2011, HSE 
2012–2014 and ELSA from 2012 to 2013. We expect that the final simulation results represent LSOA 
prevalence of knee OA in 2011 and considering Knee OA is a chronic condition and the UK popula-
tion growth rate is fairly stable therefore we do not expect the time overlap to introduce major biases 
to our estimates. Also the prevalence of sociodemographic variables was similar across all included 
datasets.

Similarly, though we have successfully incorporated a key variable into our simulation models using 
our two-staged approach, knee OA is affected by a host of other factors that are not present in all of 
our input datasets (e.g. joint injury) (Coggon et al., 2000). Inclusion of these variables may affect the 
simulation output. Further work needs to be done to explore other ways to include more variables 
into these spatial models however the trade-off between number of constraints and internal validity 
simulation outputs is worth considering.

Finally, this paper did not discuss the external validity of our simulation estimates. We recognise 
that external validation of this model would pose additional challenges due to the difficulty encoun-
tered in the definition of knee osteoarthritis.

10. Conclusion
To our knowledge, this is a first attempt using a two-staged approach to conduct static determin-
istic combinatorial spatial microsimulation. The overall objective was to incorporate BMI, which is an 
important determinant of knee osteoarthritis into the spatial model in order to produce more robust 
estimates. This was achieved successfully and consistently with good validation results.
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