
Solving Parallel Equations with BALM-II

G. Castagnetti
M. Piccolo
T. Villa
N. Yevtushenko
A. Mishchenko
Robert K. Brayton

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-181

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-181.html

July 19, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Solving Parallel Equations with BALM-II

G. Castagnetti‡ M. Piccolo‡ T. Villa‡ N. Yevtushenko¶

A. Mishchenko† R. Brayton†

‡Dipartimento d’Informatica, University of Verona, Verona, Italy
giovanni.castagnetti,matteo.piccolo,tiziano.villa@univr.it

¶Tomsk State University, Tomsk, Russia
yevtushenko@elefot.tsu.ru

†Dept. of EECS, University of California, Berkeley, California, USA
alanmi,brayton@eecs.berkeley.edu

June 9, 2012

Abstract
In this report we describe how to solve parallel language equations over regular languages / au-

tomata and finite state machines (FSMs), using the software package BALM-II, which is an extended
version of BALM. The original BALM was able to solve equations only with respect to synchronous
composition; we extended it to solve also equations with respect to parallel composition, adding new
commands and procedures. This document serves as an user’s manual of BALM-II. Finally, as an
important application, we describe how to synthesize protocol converters with BALM-II.

1 Introduction

In [16, 21, 22, 23, 25, 18] we presented the theory of inequalities and equations over regular languages
/ automata (FA) and finite state machines (FSMs), and we gave closed-form solutions for them, with
respect to the synchronous composition and parallel composition operators. For instance, given the
inequality A •X ⊆ C, where • denotes the synchronous composition operator, its closed-form solution
can be found by computing the form X = A • C, where L is the complement of L.

Similarly, for the inequality A � X ⊆ C, where � denotes the so-called parallel or asynchronous
composition operator, we have the closed-form solution X = A � C. Specialized solutions for both
classes of equations, like progressiveness, were investigated in [19, 24, 3, 4].

The operations to solve synchronous inequalities and equations over automata and FSMs had been
implemented in the software package BALM, and they were applied to synthesis/resynthesis of sequen-
tial circuits, pushing as fas as possible the efficiency of computations for gate-level representations of
FSMs encoded by binary decision diagrams (BDD) [12]. However, the original version of BALM did
not handle inequalities and equations with respect to parallel composition. In this report we describe
an extension of BALM, called BALM-II, which closes this gap, and we present the new commands and
procedures added for this purpose. In particular we will discuss the subtleties involved in solving this
class of inequalities with respect to automata and FSMs, having to do with the semantics of parallel
composition and the way in which languages are associated to parallel FSMs.

Finally we will apply this computational framework to the problem of protocol converter synthesis,
which received recently a lot of attention in the literature(see [11, 8, 15, 14, 13, 20, 2, 1, 9]). We will
show how we can compute the largest solution to that problem when it is modeled by language equations,
and will compare our solution with what described in the literature.

1

BALM-II is able to work with different interconnection topologies. In Fig. 1(a) we show a general
topology with two components (we can call them, the plant and the unknown component, and their
composition should match a specification component) that interact through internal signals, and also
have external input and output signals. A simplified topology (called also rectification topology) is

(a) (b)

Figure 1: (a) General topology; (b) Simplified topology.

shown in Fig. 1(b), where the unknown component has no external input and output signals. For ease of
exposition in the first part of the report we will refer to the topology in Fig. 1(b), whereas later we will
refer to the general topology in Fig. 1(a).

2 How to Represent FSMs in BALM-II

BALM (Berkeley Automata and Language Manipulation) supports two file formats, the BLIF-MV (and
BLIF) format for describing FSMs as multi-level netlists of logic, and the AUT format for describing
automata. The AUT format is a restricted form of BLIF-MV. For a description of the formats supported
by BALM and of the available commands we refer to the manual [5]. Moreover, we refer to [18] for
an in-depth description of the theory behind BALM and of many applications in various domains, from
sequential synthesis to games [18].

The AUT format was designed to describe finite automata in a simple two-level form. It is essentially
a restricted subset of BLIF-MV, for which it was enough a simplified version of the BLIF-MV parser;
the restrictions are not an inherent part of the theory, and they could be relaxed if future applications
would require it. The unrestricted BLIF-MV is also used in BALM to represent the FSMs in the form
of multi-valued multi-level nondeterministic networks.

In BALM, the command read blif mv can also read an AUT file because AUT is a subset of
BLIF-MV. In such a case, the file is interpreted as a multi-valued network and not as an automaton
(the number of states in this case should not exceed 32). There is no separate command to read in an
automaton as an automaton, since the automata manipulation commands always read and write to AUT
files; the input automata file name(s) are on the command line followed by the file name where the
result will be written. Thus, there is no need for BALM to have separate commands to read and write
automata, say read aut and write aut, because there is no notion of the current automaton, and
instead each command that operates on automata reads and writes the automaton of interest in a specific
file with extension .aut.

BALM-II, as a superset of BALM, inherits all the representation formats and commands from
BALM, adding features to represent and manipulate automata that encode FSMs interpreted with the

2

semantics of parallel composition. In the sequel we will talk of synchronous or parallel machines, ac-
cording to whether they are interpreted with the semantics of synchronous or parallel composition.

All the commands implemented in BALM-II are designed for automata. When dealing with syn-
chronous composition, FSMs are translated into automata simply merging the input and output variables
of the FSM into the “inputs” of the automaton, as the Ex. 2.1 shows.

Example 2.1 Suppose that we want to describe a counter FSM with 32 states whose description in the
kiss format [17] is the following:

.i 1

.o 1

.s 32

.p 64
0 st0 st0 0
1 st0 st1 1
0 st1 st1 0
1 st1 st2 1
...
0 st31 st31 0
1 st31 st0 1
.end

Otherwise, we could describe it in the AUT format as follows (say in the file counter32.aut):

.model counter32.aut

.inputs i o

.outputs Acc

.mv CS, NS 32 st0 st1 ... st31

.latch NS CS

.reset CS
0
.table Acc #all states are accepting
1
.table i o CS ->NS
0 0 st0 st0
1 1 st0 st1
0 0 st1 st1
1 1 st1 st2
...
0 0 st31 st31
1 1 st31 st0
.end

Dealing with the semantics of parallel composition is more difficult, the main difference being that
synchronous machines and their transitions are defined over the cartesian product A1 ×A2 × . . .×An,
where A1, . . . , An are the FSM’s alphabets, while parallel FSMs and their transitions are defined over
A1 ∪A2 ∪ . . . ∪An.

Since in a parallel transition there may be undefined values, we need to introduce a way to “fill” these
blank spaces. So to describe a parallel FSM using the .aut format (modified BLIF-MV) we introduce a
new alphabet symbol ˆ (“silent” symbol) that is different from any other existing alphabet symbol, and
we add it as an additional value of every variable.

Given the parallel context FSM shown in Fig. 2(a) and the parallel specification FSM in Fig. 2(b) 1,
Ex. 2.2 reports their textual description in the syntax of BALM-II. These FSMs will be used as a running
example in the report.

1In all colour figures: orange states are non-accepting, green states are accepting.

3

(a) (b)

Figure 2: (a) Description of the context FSM; (b) Description of the specification FSM.

Example 2.2 The context (or fixed) FSM, fixed_para.aut, is described as follows:

.model fixed_para

.inputs i v u o

.outputs Acc

.mv i 3 i1 i2 ˆ

.mv v 3 v1 v2 ˆ

.mv u 3 u1 u2 ˆ

.mv o 3 o1 o2 ˆ

.mv CS, NS 2 a b

.latch NS CS

.reset CS
a

.table CS -> Acc

.default 1

.table i v u o CS -> NS
i2 ˆ ˆ o1 a a
ˆ v1 ˆ o1 a a
ˆ v2 ˆ o1 a a
i2 ˆ u1 ˆ a b
ˆ v1 u1 ˆ a b
ˆ v2 u1 ˆ a b
ˆ v1 u2 ˆ b b
ˆ v2 ˆ o2 b a
.end

The specification FSM, spec_para.aut, is described as follows:

.model spec_para

.inputs i o

.outputs Acc

.mv i 3 i1 i2 ˆ

.mv o 3 o1 o2 ˆ

.mv NS, CS 1 a

.latch NS CS

.reset CS
a

4

.table CS ->Acc

.default 1

.table i o CS -> NS
i2 o1 a a
.end

3 Converting Parallel FSMs to Automata

Since BALM computes with automata, when equations defined over FSMs are given, they must be
converted into the automata that recognize their languages. We already mentioned that this process is
straightforward for synchronous FSMs, and is more complex for parallel FSMs. We remind first the
definition of the language and related automaton associated to an FSM by the parallel semantics.

Definition 3.1 Given an FSM M = 〈S, I,O, T, r〉, consider the finite automaton F (M) = 〈S ∪ (S ×
I), I∪O,∆, r, S〉, where (i, s, (s, i)) ∈ ∆∧(o, (s, i), s′) ∈ ∆ iff (i, s, s′, o) ∈ T . The language accepted
by F (M) is denoted L∪

r (M), and by definition is the ∪-language of M at state r. Similarly L∪
s (M)

denotes the language accepted by F (M) when started at state s, and by definition is the ∪-language of
M at state s. By construction, L∪

s (M) ⊆ (IO)?, where IO denotes the set {io | i ∈ I, o ∈ O}.

We describe now the procedure to generate the automaton of a parallel FSM and its representation format
in BALM-II. Notice that in the resulting automaton only a single channel at a time carries symbols other
than the silent symbol.

The first step is to introduce a new multivalued variable (called E in the .aut files) such that each
value of E denotes a channel that is active, whereas the other channels are inactive. A channel may
contain one or more variables that have to be specified simultaneously.

Then we create as many new states as transitions (the symbolic name of a state is derived by con-
catenating the source and sink state names followed by the transition number numbered starting from 0)
and add them to the state list of the automaton. These states are not accepting.

The next step is to split every transition into two new transitions as follows: we replace each tran-

sition (s
i/o→ s′) by the transitions (s i→ s′′) and (s′′ o→ s), where s′′ is a new intermediate state 2. We

also annotate every transition with the information about what channel is active using the E variable,
and we substitute every silent symbol ˆ with the don’t care symbol −. The information about the active
channel, specified in every transition, is needed when we have to represent an active variable that may
assume all of its possible values using a don’t care symbol (i.e., - - - - E2). In summary, the don’t
care symbol − means no information on any channel not selected by the E variable, whereas it means
traditional don’t care (i.e., all values are possible) on a channel selected by the E variable.

The final step is to remove the silent symbol from the list of values of every variable because it is
not needed anymore.

Ex. 3.1 shows the automata obtained, respectively, from the fixed FSM and from the specification
FSM from Ex. 2.2. In BALM-II, the transformation from a parallel FSM to its automaton is obtained by
the new command read para fsm.

Example 3.1 The automaton fixed.aut obtained from the context FSM, fixed_para.aut (from
Ex. 2.2), is described as follows:

.model fixed_para

.inputs i v u o E

.outputs Acc

2As an efficiency improvement, one can reduce the number of intermediate states and transitions by reuse of existing ones.

5

.mv i 2 i1 i2

.mv v 2 v1 v2

.mv u 2 u1 u2

.mv o 2 o1 o2

.mv E 4 E0 E1 E2 E3

.mv CS, NS 8 a b a_a_0 a_a_1 a_b_0 a_b_1 b_b_0 b_a_0

.latch NS CS

.reset CS
a

.table CS -> Acc

.default 0
(a,b) 1

.table i v u o E CS -> NS
- (v1,v2) - - E1 a a_a_0
- - - o1 E3 a_a_0 a
i2 - - - E0 a a_a_1
- - - o1 E3 a_a_1 a
- (v1,v2) - - E1 a a_b_0
- - u1 - E2 a_b_0 b
i2 - - - E0 a a_b_1
- - u1 - E2 a_b_1 b
- v1 - - E1 b b_b_0
- - u2 - E2 b_b_0 b
- v2 - - E1 b b_a_0
- - - o2 E3 b_a_0 a

.end

The automaton spec.aut obtained from the specification FSM, spec_para.aut (from Ex. 2.2),
is described as follows:

.model spec_para

.inputs i o E

.outputs Acc

.mv i 2 i1 i2

.mv o 2 o1 o2

.mv E 2 E0 E1

.mv CS, NS 2 a a_a_0

.latch NS CS

.reset CS
a

.table CS -> Acc

.default 0
a 1

.table i o E CS -> NS
i2 - E0 a a_a_0
- o1 E1 a_a_0 a

6

.end

The automata fixed.aut and spec.aut shown respectively in Fig. 3.1(a) and in Fig. 3.1(b) were
obtained by running the following commands:

read_para_fsm i|v|u|o fixed_para.aut fixed.aut
read_para_fsm i|o spec_para.aut spec.aut

4 New Operators on Automata

In this section we describe new commands on automata, introduced in BALM-II to solve parallel equa-
tions. One of them, chan synch, renames according to a unique and same order the channels of two
different automata. The syntax of chan synch is:

chan_sync [-e] <topology1> <topology2> <input1> <input2> <out1> <out2>

where <topology1> and <topology2> are the descriptions of I/O channels of the two automata
(comma-separated, no spaces, vertical bars separate channels, input channels come first).

Two more commands, expansion and restriction, implement the operations of expansion
and restriction needed to expand and restrict the range of the channels over which an automaton is
defined. The two commands share the same syntax:

expansion <channels> input.aut output.aut
restriction <channels> input.aut output.aut

where <channels> is a comma-separated list of channels.
All these operations are required to compose automata and compute the solution of inequalities and

equalities.

4.1 Synchronization of Channels

When one must operate on two (or more) automata, the E variable must be synchronized, i.e., each
value of E must represent the same active channel in both automata. To that purpose we introduced a
new command, chan_sync, that takes as inputs the topology of the channels and the description of the
two files, and produces as outputs two new files with the correct mapping of E.

In our running example, applying chan synch to fixed.aut and spec.aut, we obtain a new
synchronized version of both automata: the first one is fixed_sync.aut and the second one is
spec_sync.aut. The new automaton spec_sync.aut is shown in Ex. 4.1, whereas fixed_sync.aut

is the same as fixed.aut, because all the multi-valued variables of spec.aut are also in fixed.aut.

Example 4.1
.model spec_para_sync
.inputs i o E
.outputs Acc

.mv i 2 i1 i2

.mv o 2 o1 o2

.mv E 4 E0 E1 E2 E3

.mv CS, NS 2 a a_a_0

.latch NS CS

.reset CS
a

7

.table CS -> Acc

.default 0
a 1

.table i o E CS -> NS
i2 - E0 a a_a_0
- o1 E3 a_a_0 a

.end

The command used in the synchronization of the running example is:

chan_sync i|v|u|o|E i|o|E fixed.aut spec.aut fixed_sync.aut spec_sync.aut

4.2 Expansion

The expansion operation is used to extend the alphabet of the automaton to a set of specified channels.

Definition 4.1 Given a language L over alphabet X and an alphabet V , consider the mapping e : X →
2(X∪V)?

defined as
e(x) = {αxβ | α, β ∈ (V \X)?},

then the language
L⇑V = {e(α) | α ∈ L}

over alphabet X ∪ V is the expansion of language L to alphabet V , or V -expansion of L, i.e., words
in L⇑V are obtained from those in L by inserting anywhere in them words from (V \ X)?. Notice that
e(ε) = {α | α ∈ (V \X)?}.

Given an FA F that accepts language L over X , the FA F ′ that accepts language L⇑V over X ∪ V
(X ∩ V = ∅) is obtained from F by adding to every state a “don’t care” self-loop labeled with the
specified channels.

4.3 Restriction

The restriction operation is used to restrict the alphabet of the automaton to a set of specified channels.

Definition 4.2 Given a language L over alphabet X∪V , consider the homomorphism r : X∪V → V ?

defined as

r(y) =
{

y if y ∈ V
ε if y ∈ X \ V

,

then the language
L⇓V = {r(α) | α ∈ L}

over alphabet V is the restriction of language L to alphabet V , or V -restriction of L, i.e., words in L⇓V

are obtained from those in L by deleting all the symbols in X that are not in V . Notice that r(ε) = ε.

Given an FA F that accepts language L over X ∪ V , the FA F ′ that accepts language L⇓V over
V is obtained from F by replacing each edge labeled with symbols not in V by an edge labeled by
the ε symbol. Then one applies the ε-closure construction to obtain an equivalent deterministic finite
automaton without ε-moves.

The flow of our restriction procedure is divided in three steps:

8

• In the first step we replace all the unwanted transitions by ε-transitions and perform an ε-closure
for each state of the automaton. For efficiency, in practice the replacement by ε-transitions is made
only implicitly by performing a specialized visit from each state of the automaton; the visit works
as a depth-first search that moves only through the unwanted transitions. In this way, for each
state, the visit stores the collection of all the states reached during the visit from that state.

• In the second step we create a new automaton with as many states as the original one, but now
each state represents the ε-closure of the corresponding state in the original automaton. Moreover,
we add transitions as follows: for every transition of the original automaton that goes from a state
s1 to a state s2 under an action a, one or many transitions are created in the new automaton, such
that every state containing the original state s1 has a transition to the state that is the ε-closure of
the original state s2.

• In the last step we perform a reachability test to detect and delete all the unreachable states. When
the automaton obtained by this procedure is non-deterministic (as in most cases), we perform a
final determinization step.

Example 4.2 Fig. 3 (b) shows the result after step 2 of the restriction procedure applied to the automa-
ton in Fig. 3 (a). The original automaton is defined over channels E0,E1, and the restricted automaton
is defined over channel E0. Fig. 4 shows the result of the final determinization of the automaton in Fig. 3
(b).

Figure 3: Example of restriction. (a) Original automaton; (b) Automaton after step 2 of restriction.

9

Figure 4: Determinization of the automaton in Fig.3 (b).

5 Solution of Inequalities and Equations over Automata and FSMs

Consider the general topology in Fig. 1(a). Given the parallel FSM equation

MA �I1∪I2∪O1∪O2 MXI2∪U∪V ∪O2
⊆ MC ,

one derives the corresponding parallel automata A and C and solves the equation

A �I1∪I2∪O1∪O2 XI2∪U∪V ∪O2 ⊆ C,

equivalent to

((AI1∪V ∪U∪O1)⇑I2∪O2 ∩ (XI2∪U∪V ∪O2)⇑I1∪O1))⇓I1∪I2∪O1∪O2 ⊆ CI1∪I2∪O1∪O2 .

The largest automaton solution of the latter equation is given by

X = A �I2∪U∪V ∪O2 C,

equivalent to

XI2∪U∪V ∪O2 = ((AI1∪V ∪U∪O1)⇑I2∪O2 ∩ (CI1∪I2∪O1∪O2)⇑U∪V)⇓I2∪U∪V ∪O2 .

The largest FSM solution requires enforcing the hypothesis that an input must be followed by an
output before another input can be produced, and it is given by (setting I = I1 ∪ I2 and O = O1 ∪O2)

X = A �I2∪U∪V ∪O2 (C ∩ IO?) ∩ (UV)?,

equivalent to

XI2∪U∪V ∪O2 = ((AI1∪V ∪U∪O1)⇑I2∪O2 ∩ (CI1∪I2∪O1∪O2 ∩ (IO)?)⇑U∪V)⇓I2∪U∪V ∪O2 ∩ ((UV)?)⇑I2∪O2 ,

or

XI2∪U∪V ∪O2 = ((AI1∪V ∪U∪O1)⇑I2∪O2 ∩ (CI1∪I2∪O1∪O2 ∩ ((I1 ∪ I2)(O1 ∪O2))?)⇑U∪V)⇓I2∪U∪V ∪O2

∩ ((UV)?)⇑I2∪O2 .

The formulas for the topology in Fig. 1(b), or other topologies can be derived similarly introducing the
appropriate supports of variables.

10

5.1 Script for Computing the Largest FSM Solution

We report the script to solve the FSM inequality

MA �I1∪O1 MXU∪V
⊆ MC ,

where MA and MC are, respectively, the context FSM and the specification FSM shown in Fig. 2(a) and
(b), and described in Ex. 2.2. This example refers to the topology in Fig. 1(b).

The largest FSM solution is given by

XU∪V = (AI1∪V ∪U∪O1 ∩ (CI1∪O1 ∩ (I1O1)?)⇑U∪V)⇓U∪V ∩ (UV)?.

The script that implements the computation follows:

complement spec_sync.aut spec_sync_comp.aut
product spec_sync_comp.aut ioStar.aut spec_sync_io.aut
expansion E1,E2 spec_sync_io.aut spec_sync_io_exp.aut
product fixed_sync.aut spec_sync_io_exp.aut product.aut
restriction E1,E2 product.aut product_res.aut
support u,v,E(4) product_res.aut product_supp.aut
complement product_supp.aut product_comp_supp.aut
product product_comp_supp.aut uvStar.aut product_uv.aut
force_fsm product_uv.aut x.aut
write_para_fsm u|v|E E2|E1 x.aut x_para.aut

Because we are dealing with FSMs we need to execute the command force_fsm in order to delete
those states that do not respect the alternation accepting/non-accepting that is required for the automaton
to represent an FSM.

The last command write para fsm is used to extract the final FSM from the automaton that
represents the largest FSM solution. The syntax of the command is:

write_para_fsm [-a] <topology> <channels_list> <file_in> <file_out>

where <topology> is the description of the I/O channels of the automaton (comma-separated, no
spaces, vertical bars separate channels, input channels come first) and <channels_list> is the list
of all the I/O pairs (comma-separated, no spaces, vertical bars separate I/O) that will be considered in
the FSM extraction process. The resulting FSM x para.aut can be manipulated again by running the
command read_para_fsm on it to extract the automaton representing it (which can be given as an
input to any BALM II command that manipulates automata).

The three final steps of the FSM solution are shown in Fig. 5; more precisely, Fig. 5(a) shows
product uv.aut after forcing the u, v alternation by product, Fig. 5(b) shows x.aut after forcing
the accepting/non-accepting alternation by force_fsm, and Fig. 5(c) shows x para.aut obtained
by write_para_fsm.

For convenience of the reader, as a summary we show in Fig. 6 the state transition graphs of the
context, specification and solution FSMs of our running example.

5.2 Script for Computing the Largest Automaton Solution

We report the script to solve the automaton inequality

A �I1∪O1 XU∪V ⊆ C,

where A and C are, respectively, the context and specification automata derived in Ex. 3.1 from the
FSMs MA and MC , to which we referred already in Sec. 5.1 (originally described in Ex. 2.2).

11

Figure 5: Largest FSM solution from script in Sec. 5.1. (a) product uv.aut (after
u, v alternation); (b) x.aut (after accepting/non-accepting alternation); (c) x para.aut (after
write para fsm.aut).

The largest automaton solution is given by

XU∪V = (AI1∪V ∪U∪O1 ∩ (CI1∪O1)⇑U∪V)⇓U∪V .

When we solve a problem on automata we do not need to ensure the alternation between inputs and
outputs, so we can delete from the script in Sec. 5.1 the commands that perform the intersections with
(IO)∗ and (UV)∗; moreover, we skip the command force_fsm.

The simplified script that implements the computation follows:

complement spec_sync.aut spec_sync_comp.aut
expansion E1,E2 spec_sync_comp.aut spec_sync_exp.aut
product fixed_sync.aut spec_sync_exp.aut product.aut
restriction E1,E2 product.aut product_res.aut
support u,v,E product_res.aut product_supp.aut
complement product_supp.aut x.aut

The resulting automaton solution x.aut is shown in Fig. 7.

5.3 Verification of the Solution

Once the unknown X has been computed for the general topology of Fig. 1(a), as a sanity check one
may verify whether the computed value of X satisfies the inequality

A �I1∪I2∪O1∪O2 XI2∪U∪V ∪O2 ⊆ C,

equivalent to

((AI1∪U∪V ∪O1)⇑I2∪O2 ∩ (XI2∪U∪V ∪O2)⇑I1∪O1)⇓I1∪I2∪O1∪O2 ⊆ CI1∪I2∪O1∪O2 ,

12

Figure 6: State transition graphs of FSMs from script in Sec. 5.1. (a) Context FSM; (b) Specification
FSM; (c) Solution FSM.

Figure 7: Largest automaton solution x.aut from script in Sec. 5.2.

For the simplified topology of Fig. 1(b) the computation reduces to:

(AI1∪U∪V ∪O1 ∩ (XU∪V)⇑I1∪O1)⇓I1∪O1 ⊆ CI1∪O1 .

The script that implements the latter computation follows:

expansion E0,E3 x.aut x_exp.aut
product x_exp.aut fixed_sync.aut proof.aut
support i,v,u,o,E(4) proof.aut proof_supp.aut
restriction E0,E3 proof_supp.aut proof_supp_res.aut
force_fsm proof_supp_res.aut proof_alt.aut
contain proof_alt.aut spec_sync.aut

After the product of the context and expanded solution, we perform a support operation to sort the
variables as in the original order. The expected result of contain will be (if the code is correct !):
either

13

Automata are sequentially equivalent.

or

The behavior of automaton 2 contains the behavior of automaton 1.

The command force_fsm is needed only if we are working with FSMs.

6 A Case Study from El-Fakih et al.

In this section we will apply our approach to an example presented in a paper by El-Fakih et al. [4]; it
refers to the general topology in Fig. 1(a) (where signals I1, I2, O1, O2 are renamed, respectively, I , X ,
O, Y).

6.1 Complete Version of the Case Study from El-Fakih et al.

In Sec. 6.1, we discuss the full-fledged version of the example obtained from the descriptions found
in [4]. For convenience of the reader, we show in Fig. 8 the state transition graphs of the context and
specification FSMs.

6.1.1 Descriptions of Plant and Specification of the Complete Version

Figure 8: State transition graphs of FSMs for case study from El-Fakih et al.. (a) Context FSM for the
complete version; (b) Specification FSM for the complete and simplified versions; (c) Context FSM for
the simplified version.

The context automaton tcs-context.aut (shown in Fig. 9) is:

14

.model context

.inputs i v u o E

.outputs Acc

.mv i 2 i1 i2

.mv v 3 v1 v2 v3

.mv u 2 u1 u2

.mv o 2 o1 o2

.mv E 6 E0 E1 E2 E3 E4 E5

.mv CS, NS 10 a b c d k f s m n p

.latch NS CS

.reset CS
a

.table CS -> Acc

.default 0
(a,c,n,k) 1

.table i v u o E CS -> NS
i1 - - - E2 a b
- - - - E4 b c
- v1 - - E3 c d
- - - o1 E5 d a
- v2 - - E3 c s
- - u2 - E4 s c
i2 - - - E2 a m
- - - o2 E5 m a
- - u2 - E4 m n
- v3 - - E3 n m
- v2 - - E3 n p
- - - o2 E5 p a
- v1 - - E3 n f
- - u1 - E4 f k
- (v1,v2) - - E3 k f
- v3 - - E3 k d
.end

The specification automaton tcs-spec.aut (shown in Fig. 10) is:

.model spec

.inputs x y i o E

.outputs Acc

.mv i 2 i1 i2

.mv o 2 o1 o2

.mv x 2 x1 x2

.mv y 2 y1 y2

.mv E 6 E0 E1 E2 E3 E4 E5

.mv CS, NS 4 1 2 3 4

.latch NS CS

.reset CS
1

.table CS -> Acc

15

Figure 9: Context for the complete version of the case study from El-Fakih et al.

.default 0
1 1

.table x y i o E CS -> NS
- - i1 - E2 1 2
- - - o1 E5 2 1
- - i2 - E2 1 3
- - - o2 E5 3 1
x1 - - - E0 1 4
- y1 - - E1 4 1
.end

Figure 10: Specification for the complete version of the case study from El-Fakih et al.

16

The context and specification automata can be seen as derived from the FSMs shown, respectively, in
Fig. 8(a) and (b).

6.1.2 Computing the FSM Largest Solution of the Complete Version

The script that computes the largest FSM solution follows:

complement spec_sync.aut spec_sync_comp.aut
product spec_sync_comp.aut ioStar.aut spec_sync_io.aut
expansion E3,E4 spec_sync_io.aut spec_sync_io_exp.aut
expansion E0,E1 context_sync.aut context_sync_exp.aut
product context_sync_exp.aut spec_sync_io_exp.aut product.aut
support x,y,i,v(3),u,o,E(6) product.aut product_supp.aut
restriction E0,E1,E3,E4 product_supp.aut product_res.aut
support x,y,v(3),u,E(6) product_res.aut product_res_supp.aut
complement product_res_supp.aut product_comp.aut
support x,y,u,v(3),E(6) product_comp.aut product_comp_supp.aut
product product_comp_supp.aut uvStar.aut product_uv.aut
force_fsm product_uv.aut x.aut
support x,u,y,v(3),E(6) x.aut x_supp.aut
write_para_fsm x|u|y|v|E E0|E1,E4|E3 x_supp.aut x_supp_fsm.aut

Notice that the expansion operation on the context is needed because the input and output alphabets
of the specification are not a proper subset of those of the context.

Fig. 11 shows the graph of the minimized largest FSM solution x.aut of the complete version of the
example from El-Fakih et al.. Notice that the transition label - ˆ - ˆ translates to x/y in the standard
FSM notation with respect to the original signals; similarly, ˆ- ˆ - translates to u1,u2/v1,v2,v3.

Finally, we verify whether the composition of the solution x.aut together with the context is
contained in the specification. The script that implements the verification check follows:

expansion E2,E5 x.aut x_exp.aut
product x_exp.aut context_sync_exp.aut proof.aut
support x,y,i,u,v(3),o,E(6) proof.aut proof_supp.aut
restriction E0,E1,E2,E5 proof_supp.aut proof_res.aut
force_fsm proof_res.aut proof_alt.aut
contain proof_alt.aut spec_sync.aut
> Warning: Automaton 1 is completed before checking.
> Warning: Automaton 2 is completed before checking.
> Automata are sequentially equivalent

6.1.3 Computing the Automaton Largest Solution of the Complete Version

The script that computes the largest automaton solution follows:

complement spec_sync.aut spec_sync_comp.aut
expansion E3,E4 spec_sync_comp.aut spec_sync_io_exp.aut
expansion E0,E1 context_sync.aut context_sync_exp.aut
product context_sync_exp.aut spec_sync_io_exp.aut product.aut
support x,y,i,v(3),u,o,E(6) product.aut product_supp.aut
restriction E0,E1,E3,E4 product_supp.aut product_res.aut
support x,y,v(3),u,E(4) product_res.aut product_res_supp.aut
complement product_res_supp.aut product_comp.aut
support x,y,u,v(3),E(4) product_comp.aut x.aut

17

Figure 11: Minimized FSM largest solution for the complete version of the case study from El-Fakih et
al.

Figure 12 shows the graph of the minimized largest automaton solution x.aut of the complete
version of the example from El-Fakih et al.. Notice that the transition label - ˆ - ˆ translates to x/y

in the standard automaton notation with respect to the original signals; similarly, ˆ- ˆ - translates to
u1,u2/v1,v2,v3.

Finally, we verify whether the composition of the solution x.aut together with the context is
contained in the specification. The script that implements the verification check follows:

expansion E2,E5 x.aut x_exp.aut
product x_exp.aut context_sync_exp.aut proof.aut
support x,y,i,u,v(3),o,E(6) proof.aut proof_supp.aut
restriction E0,E1,E2,E5 proof_supp.aut proof_res.aut
contain proof_res.aut spec_sync.aut
> Warning: Automaton 2 is completed before checking.
> The behavior of automaton 2 contains the behavior of automaton 1.

6.2 Simplified Version of the Case Study from El-Fakih et al.

In Sec. 6.2, we discuss a simplified version of the example obtained by modifying the descriptions found
in [4]. We introduce this simpler version in order to analyze carefully on a small example the relation
between the FSM and automaton solutions.

18

Figure 12: Minimized automaton largest solution for the complete version of the case study from El-
Fakih et al.

6.2.1 Descriptions of Plant and Specification of the Simplified Version

The context automaton tcs short-context.aut (shown in Fig. 13) is:

.model context

.inputs i v u o E

.outputs Acc

.mv i 2 i1 i2

.mv v 2 v1 v2

.mv u 2 u1 u2

.mv o 2 o1 o2

.mv E 6 E0 E1 E2 E3 E4 E5

.mv CS, NS 7 a b c d m n p

.latch NS CS

.reset CS
a

19

.table CS -> Acc

.default 0
(a,c,n) 1

.table i v u o E CS -> NS
i1 - - - E2 a b
- - u1 - E4 b c
- v1 - - E3 c d
- - - o1 E5 d a
i2 - - - E2 a m
- - - o2 E5 m a
- - u2 - E4 m n
- v1 - - E3 n d
- v2 - - E3 n p
- - - o2 E5 p a
.end

Figure 13: Context for the simplified version of the case study from El-Fakih et al.

The specification automaton is the same as the one for the complete version tcs-spec.aut.
The context and specification automata can be seen as derived from the FSMs shown, respectively, in
Fig. 8(c) and (b).

6.2.2 Computing the FSM Largest Solution of the Simplified Version

The script that computes the largest FSM solution follows:

complement spec_sync.aut spec_sync_comp.aut
product spec_sync_comp.aut ioStar.aut spec_sync_io.aut
expansion E3,E4 spec_sync_io.aut spec_sync_io_exp.aut
expansion E0,E1 context_sync.aut context_sync_exp.aut
product context_sync_exp.aut spec_sync_io_exp.aut product.aut
support x,y,i,v,u,o,E(6) product.aut product_supp.aut
restriction E0,E1,E3,E4 product_supp.aut product_res.aut
support x,y,v,u,E(6) product_res.aut product_res_supp.aut

20

complement product_res_supp.aut product_comp.aut
support x,y,u,v,E(6) product_comp.aut product_comp_supp.aut
product product_comp_supp.aut uvStar.aut product_uv.aut
force_fsm product_uv.aut x.aut
support x,u,y,v,E(6) x.aut x_supp.aut
write_para_fsm x|u|y|v|E E0|E1,E4|E3 x_supp.aut x_supp_fsm.aut

Fig. 14 shows the graph of the minimized largest FSM solution x.aut of the simplified version of
the example from El-Fakih et al.. Notice that the transition label - ˆ - ˆ translates to x/y in the stan-
dard FSM notation with respect to the original signals; similarly, ˆ- ˆ - translates to u1,u2/v1,v2.

Figure 14: Minimized FSM largest solution for the simplified version of the case study from El-Fakih et
al.

Finally, we verify whether the composition of the solution x.aut together with the context is
contained in the specification. The script that implements the verification check follows:

expansion E2,E5 x.aut x_exp.aut
product x_exp.aut context_sync_exp.aut proof.aut
support x,y,i,v(3),u,o,E(6) proof.aut proof_supp.aut
restriction E0,E1,E2,E5 proof_supp.aut proof_res.aut
force_fsm proof_res.aut proof_alt.aut
contain proof_alt.aut spec_sync.aut
> Warning: Automaton 1 is completed before checking.
> Warning: Automaton 2 is completed before checking.
> Automata are sequentially equivalent

6.2.3 Computing the Automaton Largest Solution of the Simplified Version

The script that computes the largest automaton solution follows:

complement spec_sync.aut spec_sync_comp.aut
expansion E3,E4 spec_sync_comp.aut spec_sync_exp.aut
expansion E0,E1 context_sync.aut context_sync_exp.aut
product context_sync_exp.aut spec_sync_exp.aut product.aut

21

support x,y,i,v,u,o,E(6) product.aut product_supp.aut
restriction E0,E1,E3,E4 product_supp.aut product_res.aut
support x,y,v,u,E(6) product_res.aut product_res_supp.aut
complement product_res_supp.aut product_comp.aut
support x,y,u,v,E(6) product_comp.aut x.aut

The previous script differs from the one for FSMs because we deleted the lines that perform the inter-
sections with (IO)∗ and (UV)∗, and the force_fsm command.

Finally, we verify whether the composition of the solution x.aut together with the context is
contained in the specification. The script that implements the verification check follows:

expansion E2,E5 x.aut x_exp.aut
product x_exp.aut context_sync_exp.aut proof.aut
support x,y,i,u,v,o,E(6) proof.aut proof_supp.aut
restriction E0,E1,E2,E5 proof_supp.aut proof_res.aut
contain proof_res.aut spec_sync_all.aut
> Warning: Automaton 1 is completed before checking.
> Warning: Automaton 2 is completed before checking.
> The behavior of automaton 2 contains the behavior of automaton 1.

6.2.4 Comparing the FSM and Automaton Largest Solutions of the Simplified Version

Comparing the two solutions using the command contain we obtain the following result:

contain xFSM.aut xAUT.aut
There is no behavior containment between the automata.

The contain command performs a containment check in both directions. The fact that FSM solu-
tions are not a superset of automaton solutions, i.e., FSM 6⊇ AUT , is not surprising because an FSM
solution is obtained by forcing on automata the correct alternation between inputs and outputs, whereas
an automaton solution does not have this constraint.

On the other hand, the result that automata solutions are not a superset of FSM solutions, i.e, AUT 6⊇
FSM , may be surprising.

To motivate this result, we look in detail to a counterexample to the containment AUT ⊇ FSM .
Consider a context C and a specification S, shown respectively in Figs. 15(a) and (b); the context

is defined on the external input I and the external output O, the specification is defined on the external
inputs I and X and on the external outputs O and Y , whereas there are no internal signals. An FSM
solution B on the external input X and on the external output Y is shown in Fig. 15(c). It is a solution,
because in the composition between the context and the solution in Fig. 16, state b1 is deleted (by
force fsm) since it does not satisfy the input/output alternation. The resulting composition automaton
is equal exactly to the specification.

On the other hand, B in Fig. 15(c) is not an automaton solution because its composition with the
context (that coincides with the automaton in Fig. 16) is not contained in the specification. So AUT 6⊇
FSM .

7 Synthesis of Protocol Converters

An application of solving parallel equations is the synthesis of protocol converters. We illustrate the
problem and its solution by means of BALM-II by discussing two examples from the literature.

22

(a) (b) (c)

Figure 15: A counterexample to AUT ⊇ FSM . (a) Context C; (b) Specification S; (c) Solution B.

Figure 16: Composition between the context C in Fig. 15(a) and the solution B in Fig. 15(c).

7.1 The Protocol Mismatch Problem

We define and solve an equation over finite automata to solve a problem of converter synthesis, i.e., the
design of an automaton to translate between two different protocols.

A communication system has a sending part and a receiving part that exchange data through a spe-
cific protocol. A mismatch occurs when two systems with different protocols try to communicate. The
mismatch problem is solved by designing a converter that translates between the receiver and the sender,
while respecting the overall service specification of the behavior of the composed communication sys-
tem relative to the environment. We formulate the problem as a parallel language equation: given the
service specification C of a communication system, a component sender and a component receiver, find
a converter X whose composition with the context A (obtained in turn by the composition of the sender
and of the receiver) meets the system specification after hiding the internal signals: A �X ⊆ C.

As an example we consider the problem of designing a protocol converter to interface: an alternating-
bit (AB) sender and a non-sequenced (NS) receiver. This problem is adapted from [9] and [7]. A com-
munication system based on an alternating bit protocol is composed of two processes, a sender and a
receiver, which communicate over a half duplex channel that can transfer data in either direction, but not
simultaneously. Each process uses a control bit called the alternating bit, whose value is updated by each
message sent over the channel in either direction. The acknowledgment is also based on the alternating
bit: each message received by either process in the system corresponds to an acknowledgment message

23

that depends on the bit value. If the acknowledgment received by a process does not correspond to the
message sent originally, the message is resent until the correct acknowledgment is received. On the other
hand, a communication system is non-sequenced when no distinction is made among the consecutive
messages received or their corresponding acknowledgments. This means that neither messages nor their
acknowledgments are distinguished by any flags such as with the alternating bit.

Figure 17: Communication system described in Sec. 7.1.

Fig. 17 shows the block diagram of the composed system. Each component is represented by a
rectangle with incoming and outgoing labeled arrows to indicate the inputs and outputs, respectively.
The sender consists of an AB protocol sender (PS) and of an AB protocol channel (PC). Meanwhile,
the receiving part includes an NS protocol receiver (PR). The converter X must interface the two
mismatched protocols and guarantee that its composition with PS, PC and PR refines the service
specification (SS) of the composed system. The events Acc (Accept) and Del (Deliver) represent the
interfaces of the communication system with the environment (the users). The converter X translates the
messages delivered by the sender PS (using the alternating bit protocol) into a format that the receiver PR
understands (using the non-sequenced protocol). For example, acknowledgment messages A delivered
to the converter by the receiver are transformed into acknowledgments of the alternating bit protocol
(a0xc to acknowledge a 0 bit and a1xc to acknowledge a 1 bit) and passed to the sender by the channel
(a0cs to acknowledge a 0 bit and a1cs to acknowledge a 1 bit); data messages are passed from the sender
to the channel (d0sc for a message controlled by a 0 bit and d1sc for a message controlled by a 1 bit) and
then from the channel to the converter (d0cx for a message controlled by a 0 bit and d1cx for a message
controlled by a 1 bit) to be transformed by the converter into a data message D for the receiver.

We model the components as I/O automata [10], which recognize prefix-closed regular languages,
and we solve their language equations. Fig. 18 shows the automata of the components of the communi-
cation system. Missing transitions go to a trap (non-accepting) state, that loops to itself under any event.

Fig. 19 shows the largest prefix-closed solution S = PS � PC � PR � SS of the converter problem.
All missing transitions go to an accepting trap state dc (not shown), which loops to itself under any event;
e.g., the initial state has a transition to state dc under events A, a0xc, a1xc, d1cx. State dc can be termed
the don’t care state, because it is introduced during the determinization step to complete the automaton
PS � PC � PR � SS, before the final complementation. It is reached by transitions that cannot occur
due to impossible combinations of events in the composition of PS � PC � PR and S, and so it does
not matter how S behaves, once it is in state dc (thus the qualification don’t care state). This makes

24

Figure 18: Automata of communication system described in Sec. 7.1 (a) Automaton of PS; (b) Au-
tomaton of PC; (c) Automaton of PR; (d) Automaton of SS.

the largest solution S non-deterministic. The solution presented in [9] and [7] does not feature this
trap accepting state and so it is not complete (in [9] and [7] all missing transitions of the solution are
supposed to end up in a non-accepting trap state, a fail state); without the above dc state, one gets only a
subset of all solutions (in particular the complete solutions are missed) and this might lead to an inferior
implementation.

The protocol conversion problem was addressed in [9], as an instance of supervisory control of dis-
crete event systems, where the converter language is restricted to be a sublanguage of the context A,
and in [7] with the formalism of input-output automata. In [9] the problem is modeled by the equation
A � X = C over regular languages with the rectification topology. The solution is given as a sublan-
guage of A of the form A � C \ A � C (not the largest solution). An algorithm to obtain the largest
compositionally progressive solution is provided that first splits the states of the automaton of the unre-
stricted solution (refining procedure, exponential step due to the restriction operator), and then deletes
the states that violate the desired requirement of progressive composition (linear step). This algorithm
does not generalize as it is to topologies where the unknown component depends also on signals that do
not appear in the component A.

8 Example from Martin et al. [11]

We show how to synthesize the protocol converter for the example from Martin et al. [11].
The script that computes the largest protocol converter follows:

25

Figure 19: Largest prefix-closed solution S of the converter problem of Sec. 7.1.

complement spec.aut spec_comp.aut
product fixed.aut spec_comp.aut product.aut
support i(3),i1(3),E product.aut product_supp.aut
complement product_supp.aut x.aut
product x.aut fixed.aut proof.aut
contain proof.aut spec.aut

Figs. 20, 21, 22 show, respectively, the fixed component fixed aut, the specification spec aut and
solution x aut of the example from Martin et al. [11]. The example refers to the simplified topology of
Fig. 1(b).

9 Conclusions and Future Work

In this report we described an extension of the BALM (Berkeley Automata and Language Manipulation)
package to a new version called BALM-II, which upgrades the former to handle also parallel equations
over automata and FSMs of the form A �X ⊆ C.

We described the different formats needed to represent FSMs and automata, together with the oper-
ations required to automatically solve the equations, verify and optimize their solutions. We discussed
in detail some examples to clarify the mechanics of the solution process.

We analyzed case studies from protocol converter synthesis, since it is an application that recently

26

Figure 20: Fixed component fixed aut of example from Martin et al. [11].

Figure 21: Specification spec aut of example from Martin et al. [11].

received a lot of attention in the literature. Protocol and interface synthesis can be modeled and solved
by BALM-II, which is able to compute all solutions, a feature specific to our tool compared to previous
approaches reported in the literature.

In the appendix we will list the operations already available in BALM (for which we refer to their
user’s manual [5]), and the ones added to BALM-II.

Future work includes stressing the tool to assess its scalability, building a library of test cases for
protocol converter synthesis and for other applications, implementing operations to compute restricted
solutions of parallel equations.

10 Appendix: Commands in BALM/BALM-II and Links to Software

BALM-II is a strict superset of BALM, so that downloading BALM-II one gets the complete old and
new functionality.

A detailed description of all the commands is available through the online help built in the program.

27

Figure 22: Solution x aut of example from Martin et al. [11].

Please, type help for a full list of the available commands or <command_name> -h for a detailed
description of a given command including its usage.

BALM can be downloaded from the following site:
http://embedded.eecs.berkeley.edu/mvsis/balm.html, together with its user’s man-
ual [5].

BALM-II can be downloaded from the following site:
http://esd.scienze.univr.it/index.php/it/balm-ii.html, where one can find also
an updated version of the current technical report [6] (which serves as an integration to [5].

10.1 Commands in BALM

The following list contains a one-line summary of all the commands originally available in BALM.
Automata manipulation commands:

• complement: complement an automaton (a nondeterministic automaton will be automatically
determinized first)

• complete: complete an automaton by adding a don’t-care state

• contain: check language containment of two automata (checking is automatically aborted is at
least one automaton is nondeterministic)

28

• dcmin: minimize the number of states by collapsing states whose transitions into care states are
compatible

• determinize: determinize an automaton

• minimize: minimize the number of states of a deterministic automaton

• moore: trim an automaton to contain Moore states only

• prefix: leave only accepting states that are reachable from initial states

• product: build the product of two automata

• progressive: leave only accepting and complete states that are reachable from initial states

• support: change the input variables of an automaton 3

Automata viewing commands:

• plot aut: visualize an automaton using DOT and GSVIEW

• print lang size: compute the number of I/O strings accepted (within the string length set by
the argument -l) by the maximum prefix-closed sub-automaton of an automaton

• print nd states: print information about nondeterministic states of an automaton

• print stats aut: print statistics about an automaton

• print support: print the list of support variables of an automaton

I/O commands:

• read blif: read the current network from the BLIF file

• read blif mv: read the current network from the BLIF-MV file

• write blif: write the current network in the BLIF format

• write blif mv: write the current network in the BLIF-MV format

Miscellaneous commands:

• alias: provide an alias for a command

• echo: echo the arguments

• help: print the list of available commands by group

• history: a UNIX-like history mechanism inside the BALM shell

• ls: print the file names in the current directory

• quit: exit BALM
3Two caveats about using support:

1. One must declare explicitly the number of values of input variables with more than two values.

2. It cannot handle an automaton with only one state; a work-around is to define an automaton with two equivalent states.

29

• source: execute commands from a file

• time: provide a simple elapsed time value

• unalias: remove the definition of an alias

MV network commands:

• extract aut: extract the state-transition graph from the current network as an automaton

• latch expose: make latch outputs visible as POs of the current network

• latch split: split the current network into two networks by dividing latches and the related
combinational logic; generate synthesis and verification scripts assuming that one part is fixed and
another part is unknown

• solve fsm equ: solve language equation F • X ⊆ S using the method discussed in [12]. F
and S must be given in BLIF-MV format and must be deterministic.

Network viewing commands:

• print: print multi-valued sum-of-products representation of nodes

• print factor: print algebraic factored form of nodes

• print io: print fanins/fanouts of nodes

• print latch: print the list of latches of the current network

• print level: print nodes in the current network by level

• print nd: print the list of nondeterministic nodes in the current network

• print range: print the numbers of values of nodes

• print stats: print network statistics and report the percentage of nodes in each representation

10.2 New Commands Added to BALM to Upgrade it to BALM-II

The following list contains a description of all the commands added to BALM to upgrade it to BALM-II.
Automata manipulation commands:

• chan sync: rename according to a unique and same order the channels of two different automata

• check nb: test if an automaton is nonblocking (otherwise deadlocks and livelocks can occur)

• expansion: perform an expansion on a parallel automaton

• force fsm: force the alternation between accepting and non accepting states as in parallel FSMs

• prefix close: enforce prefix-closure, i.e., remove the non-accepting states and keep reachable
the accepting states

• read para fsm: read a parallel FSM and generate its parallel automaton

• remove dc: remove the don’t-care states of the automaton (they have only one self-looping
transition labeled by every input and output)

30

• restriction: perform a restriction on a parallel automaton

• sbssolve: run the script to solve a synchronous language equation F • X ⊆ S with F and S
represented as automata in .aut format

• set all accepting: set all states to accepting

• trim: trim an automaton, i.e., make it both reachable and co-reachable

• write para fsm: transform an automaton into a parallel FSM

References

[1] K. Avnit and A. Sowmya. A formal approach to design space exploration of protocol converters. In
The Proceedings of the Design, Automation and Test in Europe Conference, pages 129–134, April
2009.

[2] Purandar Bhaduri and S. Ramesh. Interface synthesis and protocol conversion. Formal Aspects of
Computing, 20:205–224, 2008. 10.1007/s00165-007-0045-4.

[3] S. Buffalov, K. El-Fakih, N. Yevtushenko, and G. v. Bochmann. Progressive solutions to a par-
allel automata equation. In Proceedings of the IFIP 23rd International Conference on Formal
Techniques for Networked and Distributed Systems (FORTE 2003), volume 2767 of LNCS, pages
367–382. Springer Verlag, September 2003.

[4] K. El-Fakih, S. Buffalov, N. Yevtushenko, and G. v. Bochmann. Progressive solutions to a parallel
automata equation. Theoretical Computer Science, 362:17–32, 2006.

[5] BALM Research Group. BALM. Website and User’s Manual at
http://embedded.eecs.berkeley.edu/Respep/Research/mvsis/balm.html.

[6] BALM Research Group. BALM-II. Website and User’s Manual at
http://esd.scienze.univr.it/index.php/it/balm-ii.html.

[7] H. Hallal, R. Negulescu, and A. Petrenko. Design of divergence-free protocol converters using
supervisory control techniques. In 7th IEEE International Conference on Electronics, Circuits and
Systems, ICECS 2000, volume 2, pages 705–708, December 2000.

[8] Y. Jiang and Y. Jin. Protocol converter sysnthesis: an application of control synthesis. EE219C
Class Project Report, December 1999.

[9] R. Kumar, S. Nelvagal, and S.I. Marcus. A discrete event systems approach for protocol conver-
sion. Discrete Event Dynamic Systems: Theory & Applications, 7(3):295–315, June 1997.

[10] N. Lynch and M. Tuttle. An introduction to input/output automata. CWI-Quarterly, 2(3):219–246,
September 1989.

[11] Grant Martin, Brian Bailey, and Andrew Piziali. ESL Design and Verification: A Prescription for
Electronic System Level Methodology. Morgan Kaufmann, USA, 2007. 488p.

[12] A. Mishchenko, R. Brayton, J.-H. Jiang, T. Villa, and N. Yevtushenko. Efficient solution of lan-
guage equations using partitioned representations. In The Proceedings of the Design, Automation
and Test in Europe Conference, volume 01, pages 418–423, March 2005.

31

[13] R. Passerone. Semantic Foundations for Heterogeneous Systems. PhD thesis, EECS Department,
University of California, Berkeley, 2004. Tech. Report No. UCB/ERL M98/30.

[14] Roberto Passerone, Luca de Alfaro, Thomas A. Henzinger, and Alberto L. Sangiovanni-
Vincentelli. Convertibility verification and converter synthesis: two faces of the same coin. In
ICCAD, pages 132–139, 2002.

[15] Roberto Passerone, James A. Rowson, and Alberto L. Sangiovanni-Vincentelli. Automatic synthe-
sis of interfaces between incompatible protocols. In DAC, pages 8–13, 1998.

[16] A. Petrenko and N. Yevtushenko. Solving asynchronous equations. In S. Budkowski, A. Cavalli,
and E. Najm, editors, Formal Description Techniques and Protocol Specification, Testing and Ver-
ification - FORTE XI/PSTV XVIII ’98, pages 231–247. Kluwer Academic Publishers, November
1998.

[17] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. Stephan,
R. Brayton, and A. Sangiovanni-Vincentelli. SIS: A system for sequential circuit synthesis. Tech-
nical report, Tech. Rep. No. UCB/ERL M92/41, Berkeley, CA, May 1992.

[18] T. Villa, N. Yevtushenko, R. Brayton, A. Mishchenko, A. Petrenko, and A. Sangiovanni-
Vincentelli. The unknown component problem: theory and applications. Springer Velag, 2012.

[19] T. Villa, N. Yevtushenko, and S. Zharikova. Characterization of progressive solutions of a syn-
chronous FSM equation. In Vestnik, 278, Series Physics, pages 129–133, September 2003. (In
Russian).

[20] S. Watanabe, K. Seto, Y. Ishikawa, S. Komatsu, and M. Fujita. Protocol transducer synthesis using
divide and conquer approach. In Design Automation Conference, 2007. ASP-DAC ’07. Asia and
South Pacific, pages 280 –285, jan. 2007.

[21] N. Yevtushenko, T. Villa, R. Brayton, A. Petrenko, and A. Sangiovanni-Vincentelli. Solution of
parallel language equations for logic synthesis. In The Proceedings of the International Conference
on Computer-Aided Design, pages 103–110, November 2001.

[22] N. Yevtushenko, T. Villa, R. Brayton, A. Petrenko, and A. Sangiovanni-Vincentelli. Solution of
synchronous language equations for logic synthesis. In The Biannual 4th Russian Conference with
Foreign Participation on Computer-Aided Technologies in Applied Mathematics, September 2002.

[23] N. Yevtushenko, T. Villa, R. Brayton, A. Petrenko, and A. Sangiovanni-Vincentelli. Sequential syn-
thesis by language equation solving. Technical report, Tech. Rep. No. UCB/ERL M03/9, Berkeley,
CA, April 2003.

[24] N. Yevtushenko, T. Villa, R. Brayton, A. Petrenko, and A. Sangiovanni-Vincentelli. Composi-
tionally progressive solutions of synchronous FSM equations. Discrete Event Dynamic Systems,
18(1):51–89, March 2008.

[25] N. Yevtushenko, T. Villa, and S. Zharikova. Solving language equations over synchronous and
parallel composition operators. In M. Kunc and A. Okhotin, editors, Proceedings of the 1st In-
ternational Workshop on Theory and Applications of Language Equations, TALE 2007, Turku
(Finland), 2 July 2007, pages 14–32. Turku Centre for Computer Science, 2007.

32

