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In the last few years, two events have happened that could 
profoundly influence our understanding of Alzheimer’s disease (AD) 
that scourge of elderly brains that begins in young brains where it 
spreads stealthily along characteristic pathways until years later when 
it clinically surfaces with a shrinking hippocampus and a frighteningly 
failing memory. The first is the discovery that the hippocampal dentate 
gyrus (DGy) granule cells (GCs), which initiate the encoding of novel 
memories, are continuously generated throughout life; and the second 
discovery is that this ‘adult neurogenesis’ and memory formation 
is driven by signals from the DGy precursor GCs’ tiny non-motile 
primary cilia [1]. It follows from this that silencing the dentate GCs’ 
cilia signaling would stop new memory formation. And if this should 
happen in the AD brain, then AD would at least partly be a “ciliopathy”, 
a name recently coined for several diseases caused by impaired cilial 
functions.

Two important AD targets are the hubs of the memory-encoding 
machinery, the entorhinal cortex (EC) and the DGy. The latter is the 
gateway to the memory-encoding hippocampus proper. Data from 
various sensory regions are collected by the pyramidal neurons of the 
EC and sent via the perforant pathway from the EC to the DGy, which 
is a very unusual part of the brain [2]. DGy generates GCs throughout 
life in its subgranular zone (SGZ), which is one of the two neurogenic 
sites (the olfactorily directed subventricular zone [SVZ] is the other) in 
adult rodent and human brains [3-5]. This adult neurogenesis provides 
newborn “blank-state” (i.e., at first spineless) GCs that can form new 
sets of distal spines and establish new synapses with EC axons [6]. 
These new neurons have low-threshold long-term potentiation (LTP) 
responsiveness and, because they lack the Ca2+-binding calbindin, 
they have an enhanced Ca2+- driven release of vesicular glutamate at 
their synapses with CA3 pyramidal cells [9]. Thus, younger GCs are 
the principal receivers and processors of new data carried by EC axons 
that  otherwise could not easily access the longer-matured GCs with 
their heavy synaptic load. These young GCs then send streams of the 
novel “orthogonalized” data along their mossy axons to be folded into 
coherent memories by the recurrent collaterals of the CA3 pyramidal 
neurons, which then send the encoded “memories” on to the pyramidal 
neurons of CA1 region for postprocessing [2]. But a GC’s youthful 
excitability and taste for novelty soon fade as it acquires calbindin to 
restrain the Ca2+-driven glutamate release and a committed synaptic 
matrix loaded with ”neural cement”. So now equipped to receive and 
more slowly transmit old data, it retires from the youth corps and 
is replaced by a newly formed GC not yet loaded with committed 
spines and synapses [1,4,5,8]. Thus, the adult brain is kept ready with 
newborn GCs to register novelty without interfering with the past, 
and the DGy has armed itself with a remarkable device, the primary 
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cilium, to help do this. Each GC, at least in roden  brains, has a non-
motile primary cilium consisting of a spine (axoneme) of microtubule 
doublets wrapped in a plasma membrane loaded with p75NTR 
(p75 neurotrophin receptor) and SSTR3 (somatostatin receptor 3) 
connected to signaling machineries packed into the tight confines 
of the GCs’ primary cilia along with the Sonic Hedgehog machinery 
[9-15]. Signals from these cilia drive neurogenesis, maturation, and 
memory encoding [11,13]. Neurotrophin (e.g., BDNF)-induced 
p75NTR signaling from the primary cilia drives the proliferation of GC 
precursors, as preventing this signaling severely reduces neurogenesis 
[16,17]. SST (somatostatin)-induced signaling from the cilial SSTR3 
receptors acts later in the DGy GC cell life cycle to drive the newborn 
GCs’ participation in memory formation [15,18].

But how might the DGy GCs’ primary cilia be involved in the 
cognitive decline in the AD brain? A model of possibilities is presented 
in Figure 1. It appears that the accumulating  toxic Aβ1-42 oligomers 
in AD brains at first stimulate the proliferation of GC progenitors until 
the oligomers are locked away in fibrillar plaques, but the newly formed 
neuroblasts cannot mature or ultimately survive [5,19,20]. The increased 
progenitor GC proliferation could be caused by the accumulating Aβ1-
42 oligomers’ neurotrophin-like stimulation of cilial p75NTR [21-25] 
(Figure 1). But the failure of the newborn neurons to mature and the 
resulting GC layer shrinkage and memory failure is likely, at least partly, 
due to the characteristic decline of SST in AD and with it of the cilial 
SSTR3 signaling needed for memory encoding [11,26] (Figure 1). A 
suggestion of cilial involvement in AD memory loss is the striking 
shortening of DGy GC primary cilia that accompanies the severely 
reduced DGy neurogenesis in AD-transgenic mice accumulating both 
Aβ1-42 and tau (as in human AD brains), but not in mice accumulating 
only Aβ1-42 [27,28]. And similar hippocampal dysgenesis and cognitive 
deficit in humans and model AD mice are also parts of the Bardet-Biedl 
syndrome (BBS), a known ciliopathy that is due to cilial failure resulting 
from the inability to load key structural parts and signallers such as the 
SSTR3 into the cilia by mutant BBS protein complexes [29-32].

The possibility of primary cilium damage being responsible of the 
crippling decline of memory formation in AD demands that we must 
find out whether human DGy GCs cells are ciliated like their rodent 
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counterparts, and whether these cilia are indeed damaged in AD. If so, 
then we will know that in a major part of the cases AD is a ciliopathy. 
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Figure 1: A schematic of the role of cilial p75NTR and SSTR3 receptors in 
dentate gyrus (DGy) neurogenesis. Both these receptors and their activat-
ing  ligands drive the proliferation and maturation of murine DGy granule cells 
(GCs). In fact, BDNF, NGF, and Aβ1-42 can all activate p75NTR, the signals from 
which in progenitor GCs trigger the generation of transit amplifying (TA) pre-
cursor GCs. Stimulation of immature postmitotic GCs by signals from non cilial 
BDNF-TrkB co-receptor complexes [33] and SSTR3s direct the maturation, mi-
gration, and incorporation of these cells into the functional GC layer. While the 
available evidence suggests that Aβ1-42 alone would stimulate precursor GCs 
to proliferate via p75NTR signaling [5,19,20], in Alzheimer’s disease (AD) the 
accumulating Aβ1-42 oligomers-hyperphosphorylated tau combination would 
disorganize and/or disassemble the microtubule structures (MS) [27,28] and 
prevent the MS and normal holo-BBS complexes from transporting essential 
components, such as the SSTR3 receptors, into the primary cilia, thereby in-
hibiting adult neurogenesis and memory formation [9,11,34-36]. Color codes: 
pink, GC; light yellow, primary cilium; blue arrows, sequential stages of GC 
functional maturation; black arrows, receptors signaling effects; red arrow, 
combination of Aβ1-42 and tau in AD.
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