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Abstract

The AM–FM (amplitude & frequency modulation) signal model finds numerous ap-

plications in image processing, communications, and speech processing. The tradi-

tional approaches towards demodulation of signals in this category are the analytic

signal approach, frequency tracking, or the energy operator approach. These ap-

proaches however, assume that the amplitude and frequency components are slowly

time-varying, e.g., narrowband and incur significant demodulation error in the wide-

band scenarios. In this thesis, we extend a two-stage approach towards wideband

AM–FM demodulation that combines multirate frequency transformations (MFT)

enacted through a combination of multirate systems with traditional demodulation

techniques, e.g., the Teager-Kasiser energy operator demodulation (ESA) approach

to large wideband to narrowband conversion factors.
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The MFT module comprises of multirate interpolation and heterodyning and con-

verts the wideband AM–FM signal into a narrowband signal, while the demodulation

module such as ESA demodulates the narrowband signal into constituent amplitude

and frequency components that are then transformed back to yield estimates for the

wideband signal.

This MFT-ESA approach is then applied to the various problems of: (a) wide-

band image demodulation and fingerprint demodulation, where multidimensional

energy separation is employed, (b) wideband first-formant demodulation in vowels,

and (c) wideband CPM demodulation with partial response signaling, to demonstrate

its validity in both monocomponent and multicomponent scenarios as an effective

multicomponent AM–FM signal demodulation and analysis technique for image pro-

cessing, speech processing, and communications based applications.
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Chapter 1

Introduction

1.1 Overview and Problem Statement

Amplitude-modulation frequency-modulation (AM–FM) is a modulation model of

heightened interest, with various applications in communications, speech and im-

ages. In communications, frequency modulation (FM) is employed in mobile radio

applications due to its resistance to fading and interference. Besides, AM-FM is well-

suited for modeling the nonlinear resonance of the vocal tract in speech production

and widely used in texture analysis for modeling images of certain categories such

as fingerprints.

As a result, estimation of frequency content in the signals becomes a frequently

encountered problem in signal processing. The parameter of interest in the case of

AM–FM signal is the the instantaneous frequency. Various demodulation techniques

based on Fourier spectrum analysis can be found in literature, which generate excel-

lent performance for stationary signals but require excessive samples of observations,

thereby reducing the resolution of the estimates. Other methods based on linear pre-

diction filtering, or more recently adaptive filtering improve the frequency resolution
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Chapter 1. Introduction

by continually adjusting the coefficients of the filter for better tracking. In addition,

energy operator and its variants are also proposed for instantaneous frequency track-

ing. However, these conventional approaches are limited to narrowband signals and

fail to track the variation of the instantaneous frequency in the wideband scenario.

1.2 AM–FM Signal Model

Monocomponent AM–FM signals are time-varying sinusoids of the form:

s (t) = a(t) cos

(∫ t

−∞
ωi (τ) dτ + θ

)
, (1.1)

where instantaneous amplitude (IA) is denoted by a(t) and the instantaneous fre-

quency (IF) is given by

ωi (t) = ωc + ωmqi(t). (1.2)

Note that wc is the carrier (or mean) frequency and qi(t) is the normalized baseband

modulated signal.

Specific for sinusoidal FM, where a(t) remains a constant A, and qi(t) becomes a

sinusoid, the IF can be further expressed as

ωi (t) = ωc + ωm cos(ωf t+ θ). (1.3)

Sinusoidal FM signals can be expressed via Bessel functions via

s (t) = A

+∞∑
n=−∞

Jn (β) cos (ωct+ nωmt) , (1.4)

where Jn is the nth order cylindrical Bessel function of the first kind. The modulation

index of the sinusoidal FM is defined as the ratio β = ωm/ωf and the associated

Carson’s bandwidth [1] is given by

B = 2(β + 1)ωf . (1.5)

2



Chapter 1. Introduction

If β � 1, then it corresponds to the wideband FM according to the literature of

FM communication systems. In addition, the carrier-to-information-bandwidth ratio

(CR/IB) and the carrier-to-frequency-deviation ratio (CR/FD) are defined respec-

tively as:

CR

IB
=
ωc
ωf
,

CR

FD
=

ωc
ωm

. (1.6)

1.3 Conventional Demodulation Approaches

In this section, we briefly review three conventional demodulation approaches. Note

that the adaptive linear predictive IF tracking are intended for pure FM signals,

whereas the analytic signal (AS) approach based on the Hilbert transform (HT) and

the energy separation algorithm (ESA) can be applied to AM–FM signals.

1.3.1 Adaptive Linear Predictive IF Tracking

For a pure FM signal, the IF demodulation employing adaptive filters is proposed in

prior work [2, 3]. According to the Wiener-Hopf equations [4], the optimal coeffcients

of a linear predictor are given by

wopt = R−1
xx rdx, (1.7)

where wopt denotes the optimal tap weight vector, Rxx denotes the input correlation

matrix and rdx denotes the cross-correlation between input vector and desired signal.

As summarized in [2], the prediction error filter is given by:

E (z) = 1−
L∑
l=1

goptl z−l, (1.8)

3



Chapter 1. Introduction

where
{
goptl

}L
l=1

are the coefficients of the corresponding optimal predictor. Condi-

tioned on the small prediction error assumption and the further assumption that the

message signal remains essentially invariant over the sampling range of the linear

prediction filter, we end up with the approximation in [5] through (1.8) given by

L∑
l=1

gl (k) exp {−jl [wc +m (k)]} ' 1, (1.9)

where gl(k) is the weight coefficient of tap l at time index k and m(k) is the sample

of the message signal at time index k. Then the IF of the signal of interest can

be estimated by executing the following steps: 1) Compute the coefficients of the

prediction error filter; 2) Obtain the roots of the coefficient polynomial; 3) Calculate

the phase argument of the complex conjugate pole location of the corresponding

roots.

In the prior work [2], adaptive algorithms such as AS-LMS and AF-RLS have

been incorporated into the structure of linear predictor and compared with each

other based on the demodulation error. However, for both algorithms, the step-size

or the forgetting factor need to be truncated to remain within certain range. Here

we choose the generalized normalized gradient descent (GNGD) [6] for coefficients

update of the linear predictor, which avoids truncation of the adaptively adjusted

step-size. The algorithm for this GNGD linear predictive filter is summrized via

e (k) = x (k + 1)−
L∑
l=1

gl (k)x (k − L+ 1) , (1.10)

β (k) = β(k − 1)− ραe(k)e(k − 1)xT (k)x(k − 1)

(‖x(k)‖2
2 + β(k))2

, (1.11)

η (k) =
α

‖x(k)‖2
2 + β(k)

, (1.12)

g(k + 1) = g(k) + η(k)e(k)x(k), (1.13)

where x(k) and g(k) denote the vectors of input and tap weights at time index k

respectively, α is the step-size parameter and ρ is the offset learning rate parameter.

4



Chapter 1. Introduction

The merit of the GNGD algorithm lies in that the adaptation of its learning rate

provides compensation for the assumptions in the derivation of NLMS. Due to its

robustness and stability, the GNGD is well-suited for narrowband nonstationary

signal environments.

1.3.2 Analytic Signal and Hilbert Transform

For a one-dimensional real-valued signal s(t) : R→ R, its Hilbert transform is defined

by the convolution of s(t) and the function h(t) = 1
πt

using Cauchy principal value

via

q(t) = H [s(t)] = s(t) ∗ 1

πt
=

1

π
p.v.

∫
R

s(t− ξ)
ξ

dξ. (1.14)

The analytic signal (AS) is defined as the complex-valued signal z(t) = s(t) + jq(t),

where the imaginary part q(t) is given by the Hilbert transform of s(t). Assume that

s(t) is a real-valued AM–FM signal given by

s(t) = a(t) cos (ωct+ φ(t)) , (1.15)

where a(t) is the IA, ωc is the carrier frequency and φ(t) is the phase for the IF φ′(t).

Note that the IF defined here does not involve the carrier frequency ωc. According

to the basic property of the Hilbert transform and Bedrosian’s theorem, q(t) is the

approximation to the product of the IA and the quadrature of the FM part given by

q(t) = H [s(t)] ≈ a(t) sin (ωct+ φ(t)) . (1.16)

However, this approximation is valid only if the following conditions hold: 1)

a(t) is a narrowband lowpass signal that varies slowly with time, 2) and the carrier

frequency ωc is sufficiently large such that

ωc � φ′(t). (1.17)

5



Chapter 1. Introduction

As a result, the corresponding analytic signal is of the form:

z(t) = s(t) + jq(t) ≈ a(t) exp [j (ωct+ φ (t))] . (1.18)

Hence the IA a(t) and the IF φ′(t) can be estimated respectively by

a(t) ≈ ‖z(t)‖, (1.19)

φ′(t) ≈ ∂

∂t

(
arctan

= (z(t))

< (z(t))

)
− ωc. (1.20)

1.3.3 Energy Separation Algorithm

The energy separation algorithm as summarized in [7, 8], based on the Teager-Kaiser

energy operator, is widely used for monocomponent AM–FM demodulation. For

continous-time signal x(t), the nonlinear Teager-Kaiser energy operator in the con-

tinuous case is given by

Ψc[x(t)] = ẋ2(t)− x(t)ẍ(t), (1.21)

where ẋ(t) and ẍ(t) denote the first and second derivatives of x(t) respectively.

It was first introduced by Kaiser and was applied to track the energy of harmonic

oscillation. For instance, the energy of the oscillatory signal x(t) = A cos(ωct + θ)

can be tracked by the operator Ψc via

Ψc[A cos(ωct+ θ)] = (Aωc)
2. (1.22)

The energy operator can be further used to analyze the oscillation of signals with

time-varying amplitude and frequency. By applying the energy operators Ψc on the

AM–FM signal, the IA a(t) and IF ωi(t) (excluding the carrier frequency ωc) satisfy

the following relation:

Ψc

[
a(t) cos

(
ωct+

∫ t

0

ωi(τ)dτ + θ

)]
≈ [a(t) (ωc + ωi(t))]

2. (1.23)

6



Chapter 1. Introduction

Therefore, the IA a(t) and the IF ωi(t) of an AM–FM signal x(t) can be estimated

via the continuous energy separation algorithm (CESA) summarized by

Ψ[x(t)]√
Ψ[ẋ(t)]

≈ |a(t)|. (1.24)

√
Ψ[ẋ(t)]

Ψ[x(t)]
− ωc ≈ ωi(t) (1.25)

assuming the IA a(t) and the IF ωi(t) do not vary too fast or too greatly in value

compared to the carrier frequency ωc.

1.4 Narrowband Constraint

In general, conventional demodulation techniques only perform well when the input

signal is under the narrowband constraint. The IA is required to be slowly-varying

and the IF cannot change too fast or too greatly in value compared to the carrier

frequency. To quantify the narrowband constraint, assume the IA a(t) and the

IF ωi(t) are both bandlimited with highest frequencies ωa and ωf respectively. We

further assume a nonnegative IA a(t) = 1+κb(t) without loss of generality. According

to the work by Maragos et al. [7], the narrowband constraint can be summarized via

ωa � ωc, (1.26)

κ� 1, (1.27)

ωf � ωc, (1.28)

λ =
ωm
ωc
� 1, (1.29)

where λ is the inverse of the CR/FD, which is also called the FM modulation depth.

Conventional demodulation approaches only perform properly under the narrowband

condition, in particular, when the two parameters CR/FD and CR/IB are sufficiently

7



Chapter 1. Introduction

large. However, in the case of wideband scenario, significant errors are incurred

due to the wideband nature of the signal, regardless of the choice of demodulation

approaches.

1.5 Claim of this Work

The objective of this thesis is to develop a general scheme called multirate frequency

transformations (MFT) that can be combined with conventional demodulation ap-

proaches to improve their performances in the wideband scenario. The proposed

framework incorporates the multirate operations and heterodyning to transform the

wideband signal into a narrowband waveform. The transformed narrowband signal

is then demodulated and the instantaneous frequency and amplitude estimates of the

original wideband signal are recovered via the corresponding inverse transformation.

The transformed AM–FM signal encounters significantly smaller demodulation errors

in comparison to the original wideband signal. An alternative framework that enables

large multirate conversion factors is further proposed and practically implemented by

employing the multirate identities.

The proposed MFT framework is then applied to the various problems to demon-

strate its validity in both monocomponent and multicomponent scenarios as an effec-

tive multicomponent AM–FM signal demodulation and analysis technique for image

processing, speech processing, and communications based applications:

• FM image can be locally categorized as wideband in terms of the modulation

indexes defined along the gradient directions of the phase, where the notion of

a synthetic modulation index has been introduced. The MFT is then extended

to two dimensions for wideband AM–FM image demodulation, e.g., fingerprint

images, where multidimensional higher order energy operator is also employed.

8



Chapter 1. Introduction

• The first-formant of many vowels is demonstrated to have significant amount

of frequency modulation. Henceforth, these large deviation first formants are

better tracked by employing the MFT framework and popular AM–FM demod-

ulation techniques such as ESA, than the widely used linear predictive coding

(LPC) approach that only assumes narrowband AM formants.

• The MFT is applied to wideband continuous phase modulation (CPM) de-

modulation with partial response signaling, which can be employed in satellite

communications. It is shown to have significantly less complexity than the

Viterbi solution that depends on the modulation index and phase states of the

CPM scheme.

1.6 Structure of this Work

The thesis is organized as the following: 1) In chapter 2, we derive the MFT frame-

work that aims at relaxing the narrowband constraints encountered by most AM–FM

demodulation techniques in the wideband scenario. The possibility to incorporate

large conversion factors is also investigated and the corresponsding alternative frame-

work has been proposed. 2) Chapter 3 extends the one-dimensional MFT framework

to two-dimensional images. The resultant bi-dimensional multirate frequency trans-

formations (BMFT) approach in combination with higher order energy operator is

proposed for wideband images demodulation. Simulation results with application to

fingerprint images have been illustrated to prove its efficacy. 3) In chapter 4, we apply

the MFT-ESA combination to demodulate the instantaneous frequency of the large

deviation first formant of human vowels extracted via empirical mode decomposition

(EMD). Then we demonstrate that the formant estimates based on the instantaneous

frequency are more precise than that of the widely used LPC approach. 4) Chapter

5 proposes a solution for wideband partial response CPM demodulation employed in

9



Chapter 1. Introduction

satellite communications based on the MFT-ESA approach and the decision feedback

equalization (DFE).
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Chapter 2

Multirate Frequency

Transformations

The multirate frequency transformations approach that involves multirate systems

as well as heterodyning has been proposed in prior work [3] as a mechanism for wide-

band FM demodulation that usually has a: 1) large frequency deviation; 2) large

information bandwidth. The alternative MFT framework that can accommodate

large multirate conversion factors with practical implementation has also been pro-

posed in recent work [9] by the authors. In a nutshell, the MFT can be combined

with existing demodulation methods, such as the analytic signal approach or energy

operators, serving as a general framework for demodulation of wideband FM signals

or AM–FM signals whose FM components are categorized as wideband.

11



Chapter 2. Multirate Frequency Transformations

2.1 Basic MFT System

Using the scaling property of the Fourier transform, compression in frequency domain

is equivalent to expansion in the time domain expressed as

y(t) = x(at)⇐⇒ Y (ω) = X
(ω
a

)
, (2.1)

where a = 1/R < 1 is the factor of frequency compression. The IF of the compressed

signal becomes a scaled version of the input IF by a factor R expressed as

ω̃i(t) =
ωi(t)

R
=
ωc
R

+
ωm
R
qi

(
t

R

)
. (2.2)

Note that for compressed signal, the carrier frequency is also scaled by the same

factor R, which is undesirable since the ratios CR/FD and CR/IB that we wish to

increase still remains invariant. Hence the heterodying operator is cascaded right

after the frequency compression module in order to upshift the carrier frequency to a

higher level where we can attain larger CR/FD and CR/IB ratios. The compressed

signal after frequency translation and bandpass filtering in the heterodying module

is given by

yush(t) = [y (t) cos (ωdt)] ∗ hBPF (t) , (2.3)

where ∗ denotes the convolution, ωd refers to the amount of frequency translation,

and hBPF (t) represents the impulse response of the bandpass filter. Specific for the

case of sinusoidal FM, it can be further simplified as

yush(t) '
1

2
A cos

(
φ

(
t

R

))
, (2.4)

where φ(t) denotes the phase of the original FM signal. The resultant signal that

has a scaled information bandwidth with a higher CR/IB then passes through the

demodulation block for IF extraction. Eventually, the IF estimate of the original

signal is evaluated by the inverse MFT relation via

ωout
i (t) = R (ω̃i (Rt)− ωd) , (2.5)

12
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where ω̃i(t) is the IF of the compressed and frequency translated signal.

As for the discrete-time signal, compression and expansion can be substituted by

the corresponding multirate operations of interpolation and decimation respectively

[10] with their properties carried over to the discrete counterparts. The block diagram

of the basic MFT framework in prior work [3] is illustrated by Fig. 2.1.

Figure 2.1: Block diagram of the basic MFT framework. The wideband signal is
first sufficiently sampled above the Nyquist rate, interpolated by a factor R and
then heterodyned via multiplying cos(ωdn), followed by a discrete FIR bandpass
filter with a scaling module based on (2.4) to achieve MFT. Then it goes through
a demodulation block to obtain the IF estimation of the compressed heterodyned
signal. To estimate IF of the original signal, the compressed heterodyned IF is
then shifted back by subtracting ωd, decimated by R and scaled back approapriately
according to (2.2), followed by the DAC module.

Interpolating the input signal will result in the reduction of both the frequency

deviation and information bandwidth by a factor of R. Similar to increasing the

sampling rate, the IF of the interpolated signal becomes slow-varying and the as-

sumption that the message signal remains constant over the carrier period is more

likely to hold, which in turn boost the performances of conventional demodulation

13
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algorithms. Meanwhile, heterodying serves the purpose of increasing the ratios of

CR/FD and CR/IB by compensating for the scaled carrier frequency. By passing

through the heterodying process, the CR/FD and the CR/IB of yush(t) are given by[
CR

FD

]
out

=

[
CR

FD

]
in

+
Rωd
ωm

(2.6)[
CR

IB

]
out

=

[
CR

IB

]
in

+
Rωd
ωf

. (2.7)

2.2 Alternative MFT System for Large Conver-

sion Factors

As we look further into the MFT framework, an important question regarding the

selection of the conversion factor R arises. Larger factors over hundred or thousand

can be supported by current high-speed DSP with large memory, as in the case of

digital radio frequency memory (DRFM) system design [11]. It is intuitive to expect

a further reduction in the demodulation error since the gain brought by frequency

compression should be extendable through the use of a larger factor. However, for

sufficiently large factors R the passband of the lowpass filter in the multirate opera-

tion and that of the heterodyne-BPF operation will be scaled by R. For example, if

R = 1000, we require a lowpass filter with cut-off frequency at π/1000 and a band-

pass filter with a passband edge less than or equal to π/1000. However, filters with

such narrow passbands are unrealistic for direct implementation by any structure1.

Therefore, the design of the BPF within the basic MFT framework becomes the

bottleneck that limits the use of a very large factor.

In general, the MFT framework achieves better demodulation performance when

the conversion factor becomes larger, whereas large conversion factors require the

1Narrow passband implies clustered poles and zeros that result in sensitivity and sta-
bility issues of digital filters as described in [12].
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(a)

(b)

Figure 2.2: Block diagrams of the alternative MFT system for large conversion factors
and the Noble identities relation applied in the system. (a) Block diagram of the
proposed MFT framework for large wideband to narrowband conversion factors. The
interpolation module of the prior framework is separated into two with one in front of
the heterodyning module and the other one right after. The first interpolation module
has a relatively small upsampling rate of R1 which is appropriately chosen such that
the discrete BPF can be implemented within the range of half the sampling rate after
heterodyning the signal with a frequency translation of ωd. The relatively small R1

would result in a wider passband for the discrete bandpass filter, thus reducing its
design of complexity. (b) Multistage implementation for interpolation modules in
2.2(a) based on the Noble identities. Note that multistage implementation for the
corresponding decimation modules can be realized in a similar fashion.

heterodyning bandpass filter to have significantly narrow passband, which is hardly

achieved in practice. In order to reduce the burden placed on the practical imple-
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mentation of the bandpass filter, we first consider a different MFT framework where

the order of the interpolation operator and the heterodyning operator are exchanged.

Due to the switch of interpolation and heterodying, the CR/FD and CR/IB param-

eters under this MFT framework are given by[
CR

FD

]
out

=

[
CR

FD

]
in

+
ωd
ωm

(2.8)

[
CR

IB

]
out

=

[
CR

IB

]
in

+
ωd
ωf
. (2.9)

By comparing these ratios with (2.6) and (2.7), note that the upshift frequency ωd

in this case needs to be sufficiently large such that the ratios of CR/FD and CR/IB

still stay at high level. However, if ωd is too large such that the resultant carrier

frequency after heterodying exceeds one half of the sampling rate, then we need to

interpolate the signal first by an appropriate factor in order to perform discrete-

time bandpass filtering after heterodyning. Hence the practical implementation of

MFT framework for large conversion factors is not simply exchanging the order of

interpolation and heterodyning. In practice, an interpolation operation is required

prior to the heterodying with an appropriate factor that depends on the upshift

frequency ωd and the sampling frequency of the original wideband FM signal. This

implies that the overall interpolation factor can be split into two with the first one

prior to the frequency translation and the other one right after. Then upshifting by

a frequency ωd that is not too large would result in a relatively small factor for the

first interpolation, thereby reducing the burden of the heterodyne-BPF.

Based on the analysis above, an alternative MFT framework that is capable of in-

corporating large conversion factors and achieving practical design of the heterodyne-

BPF is proposed in this thesis, as illustrated in Fig. 2.2(a). The interpolation module

of the prior framework is separated into two with one in front of the heterodyning

module and the other one right after. The first interpolation module has a relatively

small upsampling rate of R1 which is appropriately chosen such that the discrete BPF
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can be implemented within the range of half the sampling rate after heterodyning

the signal with a frequency translation of ωd. The relatively small R1 would result

in a wider passband for the discrete bandpass filter, thus reducing complexity of the

design. In general, there is a sacrifice in terms of achievable CR/IB and CR/FD

ratios for the alternative MFT framework. However, the basic MFT system cannot

realize large conversion factors, due to the placement of impractical constraints on

BPF design.

In addition, a binomial smoothing module is incorporated into the alternative

framework to further reduce the effects of noise. Though the signal is wideband, the

IF waveform itself is not necessarily wideband. In many cases, the wideband FM is

primarily incured by a large modulation index while the IF waveform remains in the

narrowband range. Under this assumption, applying binomial smoothing efficiently

filters out the high frequency noise in the IF estimation. When the SNR is high, the

improvement becomes clearly evident as we demonstrate later. Usually we would

expect a gain between 5 dB and 10 dB in the scenario of relatively high SNR.

2.3 Demodulation Results via MFT Approaches

In this section, we present demodulation results using the basic and alternative MFT

frameworks respectively under both noise free and noisy environments. Here we

first apply the GNGD approach introduced in Subsection 1.3.1 as the demodulation

technique to test on wideband FM signals. Note that the demodulation performance

is judged by the normalized RMS IF demodulation error (NRMSE) throughout this

section.

We first look at the case of a wideband sinusoidal FM signal that has a large

modulation index h = 10 and the CR/IB of 20 dB. Under a noise free environment,

the performance of the basic MFT framework is illustrated by Fig. 2.3(a). Note
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Figure 2.3: Comparison between performances of both MFT frameworks under noise
free environments. (a) Performance of the basic MFT framework with R specifying
the multirate factor and L specifying the order of BPF. (b) Performance of the
alternative MFT framework with R specifying the multirate factor and L specifying
the order of BPF.

that the performance associated with R = 1, i.e, the origin of the performance curve

corresponds to direct demodulation by GNGD without MFT, while ωd is the nor-

malized upshift radian frequency translation in the range of [0, π]. By applying a

large conversion factor of R = 128, a reduction of around 40 dB in the demodula-

tion error over direct GNGD demodulation is attained. The result of Fig. 2.3(a)

confirms the claim that a large conversion factor strengthens the benefits achieved

by frequency compression thus leading to significant reduction in the demodulation

error. Moreover, it reflects the fact that the use of a larger factor requires a very

high order finite response (FIR) bandpass filter (BPF) with a satisfactory frequency

response. For example, R = 128, demands the order of FIR bandpass filter to be as

high as 4096, which results in unrealistic parameters for the narrow passband. This

constraint seriously limits the implementation in a practical system for large factors.

To relax the constraint, the alternative MFT framework is applied, the demod-

ulation performance of which is illustrated by 2.3(b). In comparison to Fig. 2.3(a),

it can be observed that the required order for the FIR bandpass filter is effectively
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Figure 2.4: Comparison between the basic and alternative MFT frameworks in terms
of the requirements on the heterodyne-BPF with a conversion factor R = 128. (a)
Frequency response of BPF in the previous MFT framework with order L = 4096.
(b) Frequency response of BPF in the previous MFT framework with order L = 512.
Note that the proposed framework succesfully reduced the complexity of the design
of heterodyne-BPF.

reduced at the cost of sacrificing a small amount of improvement in demodulation

error. For instance, when R = 128, the order for the FIR bandpass filter drops signif-

icantly from 4096 to 512 with just 4 dB loss in performance, suggesting no observable

difference in performance between both MFT frameworks except for the dramatic

reduction of the order for the heterodyne-BPF. Note that the frequency response of

the heterodyne-BPF in the alternative MFT framework for the case R = 128 is il-

lustrated by Fig. 2.4(b), which has much wider passband compared to the frequency

response of the BPF in the basic MFT framework shown in Fig. 2.4(a) and thus

practical for implementation.

For noisy environments, the performance of the basic MFT framework is illus-

trated by Fig. 2.5(a) for the same sinusoidal FM signal corrupted by additive white

Gaussian noise (AWGN). Based on this observation, improvement over GNGD de-

modulation alone varies according to the different SNRs. For example, when the
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Figure 2.5: Comparison between performances of both MFT frameworks in environ-
ments corrupted by AGWN. (a) Performance of the basic MFT framework with R
specifying the multirate conversion factor. (b) Performance of the alternative MFT
framework with R specifying the multirate conversion factor.

SNR is 20 dB, the improvement is only around 6 dB, and when the SNR increases to

40 dB, improvement increases to around 20 dB. In addition, Fig. 2.5(b) summarizes

the results of the alternative MFT framework in the presense of noise, indicating

better performance due to the binomial smoothing. For the case of 20 dB SNR, the

improvement increases to 15 dB compared with the basic MFT system. Note that

the NRMSE gradually becomes saturated as R increases, due to LTI filtering induced

harmonic distortion of the FM signals2. In contrast, the proposed MFT approach

results in a better performance, and offers a more relaxed constraint on the BPF

design.

We further investigate an extreme wideband scenario under the noise free envi-

ronment, where the modulation index β is as large as 50 and the frequency deviation

is equal to the carrier frequency with the IF varying over the entire carrier range.

For the signal of interest, the IF estimates of both the basic and alternative MFT

2Since they are only approximate eigenfunctions as described in [13].
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Figure 2.6: Demodulation performances of both MFT frameworks with conversion
factor R = 128 and normalized radian frequency shift wd = 0.1π under the extreme
senario with modulation index β = 50. (a) IF estimates (dashed line) of GNGD
under the basic MFT framework with the heterodyne-BPF order L = 4096, (dashed-
dotted line) the GNGD, and (solid line) actual IF. (b) IF estimates (dashed line) of
the GNGD under the alternative MFT framework with the heterodyne-BPF order
L = 512, (dashed-dotted line) the GNGD, and (solid line) actual IF. Note that the
GNGD alone fails under this large deviation FM signal with a modulation index
as large as 50, while the GNGD combined with both MFT frameworks maintain
tracking with similar performances.

frameworks are illustrated by Fig. 2.6(a) and Fig. 2.6(b) respectively. It can be ob-

served that the GNGD demodulation alone fails in this extreme wideband scenario,

while both MFT frameworks maintain tracking. This observation implies that both

MFT frameworks guarantee demodulation with acceptable performance even in the

worst case scenarios where conventional algorithms would fail.

To quantify the performance of the MFT approach, we explore another scenario

where the signal is a wideband linear chirp instead of sinusoidal FM. The short-time

spectrum of the chirp signal is illustrated by Fig. 2.7(a). To validate the performance

of the MFT approach , we can compare the variance of error with respect to the

chirp rate estimate with its Cramér Rao lower bound (CRLB). The chirp rate

can be obtained from the demodulated IF followed by a least square estimator. In
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Figure 2.7: Performance of the alternative MFT framework with a multirate con-
version factor of 128 in wideband linear chirp scenario. (a) Short-time spectrum of
the wideband linear chirp. (b) Comparison of the error variance with respect to the
estimate of chirp rate. Note that there is only a small gap less than 20 dB between
the error variance estimate of the alternative MFT framework and the corresponding
Cramér Rao lower bound (CRLB).

the presence of noise with different SNRs, the result is summarized in Fig. 2.7(b).

Improvement over the GNGD alone is more apparent with respect to lower SNR,

indicating satisfactory performance of the MFT approach in noisy conditions. Also

note that gap between the error variance estimate of the MFT approach and the

corresponding CRLB is nearly a constant, which can be explained directly via the

loss of spectrum incurred due to filtering of the FM signal.

2.4 MFT Compatibility with HT and ESA Ap-

proaches

In general, the MFT framework can be combined with most demodulation approaches

to enhance their performances in the wideband scenario. However, for a given de-
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modulation scheme, the gain in error reduction achievable via the MFT approach

mainly depends on its inherent sensitivity to parameters such as CR/IB, CR/FD, and

the modulation index. Here we refer to the comparison results of the HT approaches

and ESA approaches in 1D [14].

The HT demodulation approaches are usually not very sensitive to the CR/IB of

the signal. In general, the demodulation performance of the HT is invariant to the

CR/IB of the signal. As shown in prior work [14] by Potamianos and Maragos, the

error versus CR/IB response of the Hilbert transform is almost flat, suggesting that

by increasing the CR/IB via the MFT, the gain achievable through error reduction

is limited. On the other hand, the performance of the ESA is shown to be very

sensitive to the CR/IB of the signal, where the error decreases sharply as the CR/IB

of the signal increases. Hence the gain attained by increasing the CR/IB via the

MFT with demodulation schemes based on ESA is expected to be more significant

than demodulation schemes using the HT approaches.

As for the CR/FD, both the HT and ESA demodulation methods suffer from the

condition where frequency deviation of the IF is large compared to the carrier fre-

quency. Hence the MFT framework produces a benefit to both methods by increasing

the CR/FD of the input signal.

Since the modulation index is jointly determined by both the CR/IB and CR/FD,

its influence on the demodulation performance is not straightforward. However, the

modulation index of the FM signal cannot be too large such that the spectrum of the

sidelobes near the origin are significant and begin to incur significant demodulation

error as in the case of sinusoidal FM. The theoretical analysis for this phenomenon

is provided in the Appendix, where we analyze the demodulation error associated

with the Hilbert transform for demonstration. As a result, the error incurred by a

large modulation index is unavoidable for any demodulation algorithm and imposes

a lower bound on the demodulation error. Even the MFT approach cannot reduce
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the error significantly in this extreme wideband scenario.

In conclusion, the proposed MFT approach is more compatible to be combined

with the ESA demodulation schemes. It also relaxes the estimation range constraint

of the ESA. By compressing and shifting the original input in the frequency domain,

we can always choose proper conversion factors and translation frequencies to trans-

form its frequency components into the range between 0 and π
2
, which is required for

the ESA to work properly.

In addition, the MFT framework can be extended in a straightforward separable

way into multi-dimensional space when combined with the multi-dimensional higher

order differential operators [15, 16] recently proposed by Salzenstein et al.. Therefore

the conclusion also applies to the two-dimensional images as discussed in the next

chapter.

2.5 Conclusion

The basic MFT system that combines multirate processing and heterodyning to

achieve wideband AM–FM demodulation was proposed. Prior work combining these

systems was shown to produce impractical designs for large factors, needing bandpass

filters of very high orders and very narrow passbands. An alternative MFT framework

that interchanges the order of the heterodyne and multirate modules and employs

the Noble identities was proposed and demonstrated to reduce the computational

burden placed on the bandpass filter for large conversion factors. The MFT serve

as the cornerstone for various wideband applications including image demodulation,

speech formant estimation, satellite communiations and multicomponent AM-FM

demodulation as discussed in subsequent chapters.

24



Chapter 3

Applications to Wideband Image

Demodulation

The AM-FM representation model has found various applications with images re-

cently including image analysis, texture processing [17] and fingerprint classification

[18]. According to earlier work [19, 20] by Havlicek, Bovik et al., nonstationary

images can be modeled as superpositions of multiple AM-FM components,

I(x, y) =
n∑
i=1

ai(x, y) cos (φi (x, y)) . (3.1)

The multicomponent AM-FM image is first decomposed by employing a set of band-

pass filters such as Garbor filterbanks or via the use of the bi-dimensional empirical

mode decomposition [21]. Each resulting monocomponent AM-FM image is further

demodulated into corresponding IA a(x, y) and IF,

∇φ(x, y) =

[
∂φ(x, y)

∂x
,
∂φ(x, y)

∂y

]T
. (3.2)

In particular, the IA depicts the contrast present in the image, while the IF re-

veals the locally emergent frequency variation. Conventional image demodulation

approaches involve 2D extension of the analytic signal [22] and multidimensional

25



Chapter 3. Applications to Wideband Image Demodulation

energy separation algorithm [23] with additional processing techniques such as dom-

inant component analysis (DCA) [24, 25]. Recently, the monogenic image approach

using the Riesz-Laplace wavelet [26, 27, 28] was also proposed.

However, in most of these approaches, narrowband assumptions were imposed

on each AM-FM component of the image. For example, most literature inexplicitly

assumes the AM-FM image to be globally wideband yet each of its components to

be locally narrowband. In general, both the IA, a(x, y) and the IF, ∇φ(x, y) of a

single component are assumed to be slowly varying, otherwise the approximations

inherent in most demodulation approaches are no longer valid and incur significant

error especially under the wideband scenario.

In this chapter, we propose a 2D extension of the MFT approach called the

bi-dimensional multirate frequency transformations [29] that can be combined with

a variety of demodulation techniques to enhance their demodulation performances,

traditionally limited by the narrowband constraint on the frequency modulation part

of the monocomponent AM-FM image.

3.1 Wideband Frequency Modulated Image

Since images are nonseparable in general, we cannot directly extend the related

definitions of 1D wideband signal to 2D. For instance, we are not able to define the

corresponding modulation index along any specific direction for 2D images in a global

sense. However, as proposed by Pattichis and Bovik [30], the complex FM image can

be locally approximated by the product of two 1D FM signals. The corresponding

1D signals are defined along the directions of the eigenvectors of the instantaneous

frequency gradient tensor (IFGT), which is simply the Hessian of the phase. Let

~z = [z1, z2] denote the representation under the eigenvector coordinate system, φ̃(~z)

denote the phase of the FM image and ~̃F denote the IFGT. According to [30], around
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a given point ~z0 = [a1, a2] of the image, the local phase is approximated using a Taylor

series expansion by

φ̃(~z) ≈ φ̃(a1, a2) + φ̃1(z1) + φ̃2(z2), (3.3)

where:

φ̃i(zi) =
∂φ̃

∂zi
(a1, a2)(zi − ai) +

λi(a1, a2)

2
(zi − ai)2, i = 1, 2. (3.4)

Note that λ1 and λ2 are the eigenvalues of ~̃F . The complex FM image is then locally

approximated by the product of two 1D FM functions defined with respect to the

eigenvector coordinate directions:

exp [jφ̃(z1, z2)] ≈ exp [jφ1(z1)] exp [jφ2(z2)]. (3.5)

As a result, FM images can be viewed as locally separable, and we can define the

wideband FM image locally by deriving the corresponding parameters along the

eigenvector coordinate directions. For example, if the modulation index along the

directions of the IFGT eigenvectors are sufficiently large around the reference point,

the image can be expected to exhibit similar wideband pattern locally, analogous to

the 1D case. Assume the modulation index along both directions of the eigenvectors

are denoted by βz1 and βz2 respectively. To locally indicate whether an FM image is

wideband or not in the sense similar to the literature in FM communication systems,

we can define a local modulation index βl via

βl =
(
β2
z1

+ β2
z2

)1/2
. (3.6)

If βl is sufficiently large, then the corresponding FM image exhibits a wideband

pattern locally. This definition of the local modulation index βl is especially effective

for the sinusoidal FM images with IF components specified along the horizontal and

vertical directions. In this case, the modulation index for each eigenvector direction

can be well defined according to the original formulation in the 1D context.
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3.2 Partial Hilbert Transform Demodulation

The partial or directional Hilbert transform based on analytic image as summarized

in [31] by Havlicek et al.is widely used for monocomponent AM-FM image demodu-

lation.

It can be derived simply from the 1D Hilbert transfrom. Let f(~x) : Rn → R and

~ei denote the unit vector in the xi direction. The partial Hilbert transform along the

direction of ~ei is then defined by

Hxi [f(~x)] =

∫
R

f(~x− ξ~ei)
πξ

dξ. (3.7)

Note that the partial Hilbert transform defined here is specified along the hor-

izontal and vertical directions. Thus it is particularly suitable for demodulating

images with frequency modulation patterns emerging along the same directions. As-

sume that I(x, y) is a monocomponent AM-FM image with frequency modulation

patterns emerging along both the horizontal and vertical directions given by

I(x, y) = A(x, y) cos (Ωxx+ Ωyy + ϕ(x, y)) , (3.8)

where Ωx and Ωy denote the carrier (mean) frequencies along the x and y directions

respectively. Under this assumption, according to (1.16), we are able to approximate

the partial Hilbert transform along the x axis by fixing variable y via

Hx [I(x, y)] ≈ A(x, y) sin (Ωxx+ (Ωyy + ϕ(x, y))) . (3.9)

This approximation holds only under certain conditions similar to the 1D case. First

of all, the A(x, y) should be slow-varying and narrowband. Analogous to (1.17), Ωx

is required to be sufficiently large such that

Ωx �
∂ϕ(x, y)

∂x
. (3.10)
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A similar condition applies to the y axis as well. As a result, we can easily obtain the

approximations for the IA and the IF components with respect to both directions

according to the 2D extensions of (1.19) and (1.20).

Synthetic examples are provided to illustrate the efficacy of the proposed ap-

proach. Since the synthetic images we present are predefined with its frequency mod-

ulation patterns along horizontal and vertical directions, the partial Hilbert transform

is prefered over the monogenic image approach to serve as the comparison technique

to the proposed approach due to the following reasons: 1) the demodulation perfor-

mance of the partial Hilbert transform is as competitive as the Riesz transform when

the image display frequency modulation patterns along the same specified directions,

2) the partial Hilbert transform can be implemented easily via the one-dimensional

Hilbert transform.

3.3 Higher Order Energy Operator

A variety of methods based on the multidimensional energy operator [23] proposed by

Maragos and Bovik are also widely used for AM-FM image demodulation. An image

demodulation algorithm based on higher order Teager-Kaiser operators is proposed

in the recent work [32, 33, 34] by Salzenstein, Diop and Boudraa. They have been

reported to provide better performance for narrowband AM-FM images than the

classical 2D-ESA [35].

The k-order differential energy operator (DEO) [35] in 1D for any given signal

s(t) is defined by

Ψk[s(t)] =
∂s(t)

∂t

∂k−1s(t)

∂tk−1
− s(t)∂

ks(t)

∂tk
, (3.11)

where Ψ2 refers to the commonly used Teager-Kaiser energy operator.

29



Chapter 3. Applications to Wideband Image Demodulation

In the case of discrete-time, for a given image I(k, l), the higher order demodu-

lation algorithm (DHODA) [32, 33, 34] can be summarized via:

I1(k, l) =
1

2
[I(k + 1, l)− I(k − 1, l)], (3.12)

I2(k, l) =
1

2
[I(k, l + 1)− I(k, l − 1)], (3.13)

I12(k, l) =
1

2
[I2(k + 1, l)− I2(k − 1, l)], (3.14)

Ψ2[I(k, l)] ={2[I(k, l)]2 − I(k − 1, l)I(k + 1, l)− I(k, l − 1)I(k, l + 1)}

+ 2[I1(k, l)I2(k, l)− I(k, l)I12(k, l)], (3.15)

I1
12(k, l) =

1

2
[I12(k + 1, l)− I12(k − 1, l)], (3.16)

I2
12(k, l) =

1

2
[I12(k, l + 1)− I12(k, l − 1)], (3.17)

|â(k, l)| =
(

Ψ2[I1(k, l)]Ψ2[I2(k, l)]

Ψ2[I1
12(k, l) + I2

12(k, l)]

)1/2

, (3.18)

|Ω̂1(k, l)| = arcsin

((
Ψ2[I12(k, l)]

Ψ2[I2(k, l)]

)1/2
)
, (3.19)

|Ω̂2(k, l)| = arcsin

((
Ψ2[I12(k, l)]

Ψ2[I1(k, l)]

)1/2
)
, (3.20)

where â(k, l) is the IA estimation while Ω̂1(k, l) and Ω̂2(k, l) are the IF estimations

along the spatial axies of the image. Note that the IF estimations are obtained

through the inverse sine function, indicating that the demodulation approaches based

on the ESA can only estimate IF components that range between 0 and π
2
, or in other

words, up to one fourth of the sampling frequency. Moreover, the demodulation

approaches based on the ESA also suffer from the narrowband constraint as the

Hilbert transform. Both the IA and the IF waveforms may not vary too fast or too

greatly in value.

30



Chapter 3. Applications to Wideband Image Demodulation

3.4 Bi-dimensional Multirate Frequency Transfor-

mations

The MFT that performs wideband-to-narrowband conversion was proposed in the

previous section. It primarily increases the CR/IB and CR/FD ratios of the original

signal to improve the demodulation performance of the conventional demodulation

approaches. The bi-dimensional multirate frequency transformations (BMFT) is de-

rived by generalizing the underlying idea to 2D. For simplicity, assume that the input

is a monocomponent wideband FM image of the form

J(x, y) = A cos (φ(x, y)) . (3.21)

It is first compressed in frequency domain by appropriate factors ~R = diag[Rx, Ry],

which corresponds to spatial expansion given by

J1(x, y) = A cos

(
φ

(
x

Rx

,
y

Ry

))
. (3.22)

Then we heterodyne the resultant image by a frequency translation vector ~Ω =

[Ωx,Ωy] via

J2(x, y) =J1(x, y) cos(Ωxx) cos(Ωyy)

=
A

2
cos

(
Ωxx+ φ

(
x

Rx

,
y

Ry

))
cos(Ωyy)

+
A

2
cos

(
Ωxx− φ

(
x

Rx

,
y

Ry

))
cos(Ωyy)

=
A

4
cos

(
Ωxx+ Ωyy + φ

(
x

Rx

,
y

Ry

))
+
A

4
cos

(
Ωxx− Ωyy + φ

(
x

Rx

,
y

Ry

))
+
A

4
cos

(
Ωxx+ Ωyy − φ

(
x

Rx

,
y

Ry

))
+
A

4
cos

(
Ωxx− Ωyy − φ

(
x

Rx

,
y

Ry

))
.

(3.23)
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After the heterodyning, a 2D bandpass filter is employed to extract the desired high-

frequency term through

J̃(x, y) = J2(x, y) ∗ hBP (x, y)

≈ A

4
cos

(
Ωxx+ Ωyy + φ

(
x

Rx

,
y

Ry

))
=
A

4
cos
(
φ̃(x, y)

)
.

(3.24)

Let us assume that the support of the original image spectrum J(ω1, ω2) is within the

range ωi ∈ [−Ωi,Ωi], i = 1, 2. The 2D bandpass filter should be carefully designed

with its passband range given by

|ω1| ∈ [Ωx,Ωx +
Ω1

Rx

], |ω2| ∈ [Ωy,Ωy +
Ω2

Ry

]. (3.25)

On one hand, the carrier (or mean) frequencies of the modulation in both dimensions

are increased via the frequency translation vector ~Ω = [Ωx,Ωy]. On the other hand,

the bandwidth of the modulating image is reduced by the appropriate conversion

factors ~R = diag[Rx, Ry]. These two benefits derived via the BMFT are crucial

to improving the IF demodulation due to the following reasons: 1) a majority of

demodulation approaches require the input to have high CR/IB in both dimensions,

2) the CR/FD of the input must be sufficiently large in both dimensions such that the

deviations of the IF components can be tolerated in accordance with the narrowband

assumption of the input.

Then we can recover the IF of the input image from the IF estimation of the

transformed image J̃(x, y) via the inverse BMFT. Assume that the IF components

of J(x, y) and J̃(x, y) are given by

Ω1(x, y) =
∂φ(x, y)

∂x
, Ω2(x, y) =

∂φ(x, y)

∂y
, (3.26)

Ω̃1(x, y) =
∂φ̃(x, y)

∂x
, Ω̃2(x, y) =

∂φ̃(x, y)

∂y
. (3.27)
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Figure 3.1: Block diagram of the Bi-dimensional Multirate Frequency Transforma-
tions.

The IF estimation for input image is recovered through the inverse BMFT relation

(see Fig. 3.1) via

Ω1(x, y) = Rx

(
Ω̃1(Rxx,Ryy)− Ωx

)
, (3.28)

Ω2(x, y) = Ry

(
Ω̃2(Rxx,Ryy)− Ωy

)
, (3.29)

where Ω̃1(Rxx,Ryy) and Ω̃2(Rxx,Ryy) represent spatial compression (or frequency

expansion) of the IF estimation for the transformed image J̃(x, y).

In order to implement the BMFT in discrete time, we replace compression and

expansion in frequency domain by their discrete equivalences. Note that the compres-

sion in the frequency domain corresponds to interpolation while the expansion cor-

responds to decimation. As a result, the block diagram of the BMFT demodulation

approach is depicted in Fig 3.1. The BMFT is implemented through discrete-time

operations of interpolation, heterodyning, and bandpass filtering. The transformed

FM image is then demodulated via a monocomponent demodulation approach and
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the original IF components are recovered from the IF estimation of the transformed

image via the inverse BMFT. However, discrete-time operations in 2D may not be

extended in a straightforward way from their 1D counterpart. It primarily depends

on whether the input image is separable or not. If the image is separable, each op-

eration of the BMFT can be implemented by simply cascading its 1D equivalence

with action along each dimension. If this is not the case, we need to pay attention to

a few issues associated with the non-separable nature of the image, which are often

intractable. Therefore, deriving 2D operations directly from their 1D realizations is

favored in terms of its simplicity for practical implementation.

In particular, the frequency upshift in heterodyning is not uniquely defined in

2D. This can be realized either through the product of two separable cosine terms

cos (Ω1m) cos (Ω2n) in each dimension as in Fig. 3.1 or via just one cosine term

cos (Ω1m+ Ω2n) in the diagonal direction. These two different realizations will lead

to different designs of the 2D bandpass filters. For the first case, we only need

to bandpass the outermost quarter of the frequency spectrum in each quadrant to

extract the desired high frequency term expressed in (3.24). This is simply achieved

using a separable 2D bandpass filter, by cascading two 1D bandpass filters with action

in each dimension. For the latter case, where the frequency upshift is diagonal, it

is much more complicated to achieve the same objective with a realizable design of

the 2D bandpass filter. The issue is that the 2D frequency upshift in the diagonal

direction results in only two copies of the original spectrum in the first and third

quadrant respectively. However, the design of a 2D bandpass filter whose passband

is only present in two quadrants and also capable of extracting the desired term in

(3.24) is computationally complex.

In addition, the BMFT framework can be directly applied on a monocomponent

AM-FM image provided that the IA of the given image is slowly varying, which is

inherently assumed by most image demodulation algorithms. Under this constraint,
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the IA can be approximated via the inverse BMFT relation by

A(x, y) = Ã (Rxx,Ryy) , (3.30)

where Ã (x, y) denotes the demodulated IA of the transformed image J̃(x, y). Nu-

merical results are given later in this chapter to support this claim.

3.5 Example of Wideband Image Demodulation

In this section, we present numerical results for the proposed BMFT-energy ap-

proach. We begin with an example of a synthetic sinusoidal AM-FM image as illus-

trated in Fig. 3.5. The expression of this synthetic image and its corresponding IF

components are given by

f(m,n) =
[
1 + 0.5 cos

( π
50
m+

π

30
n
)]

cos(
π

5
m+

π

3
n+ 6 sin

( π
50
m+

π

2

)
+

5 sin
( π

30
n
)

),
(3.31)

Ω1(m,n) =
∂φ(m,n)

∂m
=
π

5
+

3π

25
cos
( π

50
m+

π

2

)
, (3.32)

Ω2(m,n) =
∂φ(m,n)

∂n
=
π

3
+
π

6
cos
( π

30
n
)
. (3.33)

Note that the frequency modulation index is 6 along the horizontal direction

and 5 along the vertical direction, both of which are sufficiently large. We can also

easily check that the CR/IB and the CR/FD are small along both directions for this

wideband sinusoidal example.

The demodulation results via the DHODA combined with the proposed BMFT

framework using conversion factors of ~R = diag[8, 8] are given by Fig. 3.3. It is

compared with the demodulation via the DHODA alone. Note that the demodulated

IF with respect to either the horizontal or the vertical direction exhibits a sinusoidal
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Figure 3.2: Synthetic sinusoidal AM-FM image with wideband FM components of
the form:
f(m,n) =

[
1 + 0.5 cos( π

50
m+ π

30
n)
]

cos
(
π
5
m+ π

3
n+ 6 sin( π

50
m+ π

2
) + 5 sin( π

30
n)
)
.

pattern along that direction, which can be inferred from (3.31). We can easily observe

that both the IA and the IF obtained via the BMFT-DHODA are smoother than

that via the DHODA alone. The MSE for the IA is reduced from 0.8910 to 0.0649

and the root mean square error (RMSE) for the IF is reduced significantly from

1.83% to 0.25% through the BMFT framework. Here we define the RMSE as the l2

norm of the difference between the true IF, ∇φ(x, y) and the estimated IF, ∇φ̂(x, y)

against the l2 norm of the true IF itself via

RMSE =
‖∇φ(x, y)−∇φ̂(x, y)‖l2

‖∇φ(x, y)‖l2
× 100%. (3.34)

In fact, the demodulation error can be further reduced if larger multirate con-

version factors are applied, similar to the 1D case of MFT. As shown in Table 3.5,

the demodulation errors of the proposed BMFT framework using DHODA with con-

version factors of ~R = diag[8, 8] (BMFT-DHODA-8) and with conversion factors

of ~R = diag[16, 16] (BMFT-DHODA-16) are compared with the DHODA alone.

The RMSE can be further reduced to 0.18% via the BMFT with conversion fac-

tors ~R = diag[16.16], achieving an error reduction of 10 times compared with the
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Figure 3.3: Perspective plot of the demodulation results for the wideband sinusoidal
example via the DHODA and via the BMFT-DHODA with conversion factors ~R =
diag[8, 8], (a) estimation of the IA via the DHODA, (b) estimation of the IA via the
BMFT-DHODA, (c) estimation of the IF component along the horizontal direction
via the DHODA, (d) estimation of the IF component along the vertical direction via
the DHODA, (e) estimation of the IF component along the horizontal direction via
the BMFT-DHODA, (f) estimation of the IF component along the vertical direction
via the BMFT-DHODA.
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var(a−â
a

) MSE(a, â) var(Ω1−Ω̂1

Ω1
) var(Ω2−Ω̂2

Ω2
)

DHODA 4.7876 0.8910 2.6688 8.0073%
BMFT-DHODA-8 0.2934 0.0649 0.3554 0.1281%
BMFT-DHODA-16 0.1677 0.0412 0.5608 0.0813%
HTDA 0.5125 0.0942 0.3715 0.0683%
BMFT-HTDA-8 0.2930 0.0646 0.1228 0.0796%

MSE(Ω1, Ω̂1) MSE(Ω2, Ω̂2) RMSE
DHODA 0.6948 12.9626 1.83%
BMFT-DHODA-8 0.0427 0.1310 0.25%
BMFT-DHODA-16 0.0419 0.0701 0.18%
HTDA 0.1276 0.0430 0.23%
BMFT-HTDA-8 0.0235 0.0716 0.20%

Table 3.1: Comparison of the demodulation errors

DHODA alone. The use of larger factors results in a much narrower passband for

digital filters that are difficult to realize in practice due to a sharper transition band.

To implement such FIR filters, a very large filter order is required, which may not

be acceptable in terms of the desired system complexity. Therefore the choice of

multirate conversion factors should be weighted between the tolerance for demod-

ulation error and that of the system complexity. Considering the alternative MFT

framework that enables large conversion factors as proposed in chapter 2, we may

further reduce the demodulation error by exploring even larger factors.

The demodulation results via the partial Hilbert transform alone (HTDA) and

the BMFT and the partial Hilbert transform combination with conversion factors

~R = diag[8, 8] (BMFT-HTDA-8) are also illustrated in Table 3.5. We can observe

that the error reduction via the BMFT framework for the HT demodulation is not as

obvious as for the ESA demodulation, which justifies our discussion in the previous

section.

In the second experiment, we test the BMFT and the DHODA combination on

a wideband sinusoidal FM image whose IF components are out of the range [0, π
2
],
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which is the estimation range constraint for demodulation approaches based on the

ESA. As shown in Fig. 3.5, the synthetic image for this example and its corresponding

IF components are given by:

f(m,n) =0.5 cos(
2π

3
m+

2π

3
n+ 6 sin

( π
50
m+

π

2

)
+ 5 sin

( π
30
n
)

), (3.35)

Ω1(m,n) =
∂φ(m,n)

∂m
=

2π

3
+

3π

25
cos
( π

50
m+

π

2

)
, (3.36)

Ω2(m,n) =
∂φ(m,n)

∂n
=

2π

3
+
π

6
cos
( π

30
n
)
. (3.37)
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Figure 3.4: Wideband sinusoidal FM image with IF components outside the range
of ESA constraint [0 π

2
] in the form:

f(m,n) = 0.5 cos
(

2π
3
m+ 2π

3
n+ 6 sin

(
π
50
m+ π

2

)
+ 5 sin

(
π
30
n
))

.

Note that the carrier frequency along each direction is 2π
3

. Hence the IF com-

ponents of the image are out of the range [0, π
2
]. The demodulation results for the

DHODA and the BMFT-DHODA are illustrated in Fig. 3.5. As we can observe, the

demodulated IF components via the DHODA are seriously distorted in both ampli-

tudes and phases, whereas the demodulated IF components via the BMFT-DHODA

are smooth and valid. The RMSE for the DHODA is as large as 56.74% while the

RMSE for the BMFT-DHODA is merely 0.9113%. Hence our claim that the BMFT

39



Chapter 3. Applications to Wideband Image Demodulation

0

50

100

150

200

0

50

100

150

200

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

xy

(a)

0

50

100

150

200

0

50

100

150

200
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

xy

(b)

0

50

100

150

200

0

50

100

150

200
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

xy

(c)

0

50

100

150

200

0

50

100

150

200
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

xy

(d)

Figure 3.5: Perspective plot of the IF estimation for the wideband sinusoidal example
where IF components are out of the range [0, π

2
] via the DHODA and via the BMFT-

DHODA with conversion factors ~R = diag[8, 8], (a) estimation of the IF component
along the horizontal direction via the DHODA, (b) estimation of the IF component
along the vertical direction via the DHODA, (c) estimation of the IF component along
the horizontal direction via the BMFT-DHODA, (d) estimation of the IF component
along the vertical direction via the BMFT-DHODA. Note that the IF estimation via
the DHODA is seriously distorted in both its amplitude and phase.

helps overcome the range constraint of demodulation algorithms based on ESA is

justified.

In the third experiment, we justify the efficacy of the proposed BMFT approach

on real images. The real image of an oakring (photo by H.D. Grissino-Mayer) is shown

by Fig. 3.6(a). The demodulation results associated with this real oakring image

are compared in Fig. 3.6. The estimated IF components via the DHODA, as shown

in Fig. 3.6(b) and Fig. 3.6(c), have singular points with significantly large values.
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The estimated IF components via the BMFT-DHODA, as shown in Fig. 3.6(d) and

Fig. 3.6(e), are much smoother and do not have any singular point with significantly

large value. As a result, the estimated IF needle plot of the DHODA (Fig. 3.6(f)) is

seriously distorted by those singular points, whereas the estimated IF needle plot of

the BMFT-DHODA (Fig. 3.6(g)) reveals the ring pattern corresponding to the real

oakring image. Note that the IA estimated via the DHODA (Fig. 3.6(h)) suffers from

the same issue whereas the IA estimated via the BMFT-DHODA (Fig. 3.6(i)) does

not. Based on this observation, we see that ESA demodulation such as that employed

by the DHODA prohibits its direct application to wideband real images due to the

narrowband and estimation range constraints, while the proposed BMFT framework

overcomes such constraints and allows for direct application of ESA demodulation

to wideband real images.

3.6 Wideband Fingerprint Demodulation

The joint approach has been further applied to wideband fingerprint images demodu-

lation [36] to demonstrate its efficacy. Since fingerprint is the pattern of furrows and

rigdes on the surface of a fingertip, the AM-FM models are well-suited for modeling

the fingerprint pattern where the AM component describes the ridge intensity and

the FM component accounts for the ridge variation.

Prior to demodulation, the dominant component analysis (DCA) is applied to

the fingerprint image to obtain its fundamental AM-FM component. The goal of

DCA is to estimate the modulating functions at each pixel that dominates the fre-

quency spectrum. It captures the local oscillations of the AM-FM image by pointwise

choosing the output with maximum response among the channels based on certain

criterion. The procedure of the DCA implementation [37] illustrated in Fig. 3.7 is

summarized via
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• Filter the fingerprint image t(x) via a set of Gabor channel filters with response

gi, we obtain different channel output images ti = t∗gi. The Garbor filterbank

is radially arranged in frequency domain with different scales.

• Based on the filter selection criterion:

Ψi(x) =
ti(x)

maxΩ|Gi(Ω)|
, (3.38)

where Gi(Ω) is the frequency response of the ith channel filter. According to

Havlicek, Ψi(x) can be approximated by the crude estimate of the amplitude

modulation function of the component that dominates the channel response of

the ith channel at the corresponding pixel. Since the instantaneous amplitude

ai(x1, x2) for the corresponding channel can be estimated using conventional

demodulation techinques such as ESA, we select the channel with the maximum

amplitude estimate as the output pixelwise, which is indexed by k via

k = argmax
i

ai(x1, x2). (3.39)

• Smooth the resultant fundamental AM-FM component using 2D smoothing

filters to reduce the noise.

The BMFT approach proposed in this chapter is then applied to demodulate the

fundamental AM-FM component extracted from the fingerprint image via the DCA.

A separable FIR bandpass filter with 1025 taps in each direction are employed in the

BMFT heterodyne module. Separable heterodyning along with separable bandpass

filters are chosen to reduce the complexity of the BMFT system. A multichannel

Gabor fllterbank with eight rays or orientations and nine radial frequencies per ray

are used to isolate the fundamental FM component. A 3 by 3 Gaussian filter is

used to smooth the DCA image prior to demodulation. Residual low frequencies

appear as a background in the DCA image. Figure 3.8(a) describes a fingerprint

image and Fig. 3.8(b) describes the fundamental AM–FM component extracted
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using the Gabor filterbank. Figure 3(b,c) depicts the IF needle plot associated with

the application of the directional Hilbert transform to the original image and the

fundamental FM component. The needle plot of the IF of the dominant AM-FM

component shows that the fundamental AMFM component has better defined ridges

in comparison to direct demodulation of the original image. Figure 4 (a,b) depict the

application of the BMFT approach with directional Hilbert transform demodulation

of the dominant component for conversion factors of 8 and 16 respectively. The

IF needle plots further depict a significant improvement in the IF needle plots in

comparison to the results without the BMFT.

3.7 Conclusion

In this chapter, we have formally defined the notion of locally wideband FM im-

ages and the corresponding local modulation index. We extended the 1D approach

combining multirate frequency transformations and energy demodulation to 2D and

images by using their separable counterparts. The proposed algorithm was applied

to both synthetic and real images and shown to produce significant reduction in the

demodulation errors. In particular, it was demonstrated to be effective in cases where

the DHODA is limited in terms of estimation range. Further we apply the BMFT-

DHODA combination to wideband fingerprint images by utilizing the fundamental

AM-FM component extracted via the DCA to prove its efficacy.
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Figure 3.6: Demodulation of the oakring image (photo by H.D. Grissino-Mayer). (a)
Real image of the oakring, (b) estimation of the IF component along the horizontal
direction via the DHODA, (c) estimation of the IF component along the vertical
direction via the DHODA, (d) estimation of the IF component along the horizontal
direction via the BMFT-DHODA, (e) estimation of the IF component along the
vertical direction via the BMFT-DHODA, (f) estimation of the IF needle plot via the
DHODA. (g) estimation of the IF needle plot via the BMFT-DHODA. (h) estimation
of the IA via the DHODA. (i) estimation of the IA via the BMFT-DHODA. Note

that the conversion factors of the BMFT-DHODA here are ~R = diag[16, 16].
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Figure 3.7: Block diagram of DCA.
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Figure 3.8: Fundamental AM-FM component. (a) Original fingerprint image. (b)
Fundamental AM-FM component extracted via DCA.
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Figure 3.9: (a) Original zoomed in fingerprint image. (b) IF needle plot of the original
fingerprint via directional Hilbert transorm. (c) IF needle plot of the estimated
fundamental AM-FM component via directional Hilbert transform.
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Figure 3.10: (a) IF needle plot of the estimated fundamental AM-FM component
via the BMFT with factors [8, 8] and the DHODA. (b) IF needle plot of the esti-
mated fundamental AM-FM component via the BMFT with factors [16, 16] and the
DHODA.
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Chapter 4

Applications to Large Deviation

First Formant Estimation

Formants are natural resonances of the vocal tract that are closely related to the vo-

cal tract geometry as a function of the velum, the lips, the jaw and the tongue. They

are visually observed as the resonance peaks in the spectrum of the voiced speech.

The center-frequency and bandwidth of the formant associated with different vowels

differ in a number of ways. Since formant location is an important cue for speech

recognition, the estimation of its center-frequency and bandwidth has significant im-

plications in various speech applications. Existing formant estimation approaches

are generally based on the LPC assuming that each formant is merely a narrowband

AM component. In this regard, LPC is a parametric approach that does not model

the spectral valleys properly, hence incapable of handling formants with considerable

amount of frequency modulation. For example, the center-frequency of the first for-

mant of many vowels is only around 500 Hz. Such formants are expected to have a

large bandwidth-to-center-frequency ratio (BW/CF) due to its inherent small CR/IB

and CR/FD as introduced in chapter 1, resulting in significant amount of frequency

modulation that can be categorized as large deviation formants. Other approaches
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using AM-FM representation of speech signals estimate the center-frequency and

bandwidth of the formants from their demodulated IF and IA. Hence it is straight-

forward to improve the demodulation performance for these large deviation formants

by employing the proposed MFT framework.

In this chapter, we first apply the empirical mode decomposition (EMD) to extract

the large deviation first formant, and then perform the demodulation to obtain the

IA and IF via the MFT-ESA combination. Finally we conclude that the estimates

of the first formant based on the proposed method are more precise than the LPC

estimates that only assume narrowband AM for these large deviation formants.

4.1 Formant Estimation via LPC

Formant estimation based on linear predictive coding [38] is widely used in acoustics

and speech processing. The LPC has been the dominant approach for parameter

estimation of the discrete-time speech model such as pitch, short-time spectra and

formant. Based on the source-filter theory, the basic discrete-time model for speech

production is an all-pole filter representing the composite spectrum effects of the

vocal tract

H(z) =
1

1−
∑p

k=1 akz
−k , (4.1)

the speech sample ŝn can be predicted via an autoregressive (AR) predictor given by

ŝn =

p∑
k=1

aksn−k, (4.2)

where p is the order of the predictor and ak denote the coefficients. The prediction

error is defined as

en = sn − ŝn = sn −
p∑

k=1

aksn−k. (4.3)
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The goal of the LPC is hence simplified as to find the predictor coefficients that

minimize the mean-squared prediction error over a short segment of the speech. By

windowing the speech signal over a finite interval given by

sn =

speech sample, 0 ≤ n ≤ N − 1

0, otherwise
. (4.4)

The MSE to be minimized can be expressed by

E =
∞∑

n=−∞

(
p∑

k=0

aksn−k

)2

, (4.5)

where a0 = 1. By By setting the partial derivative of E with respect to ai to zero,

we obtain a set of equations

∂E

∂ai
= 2

p∑
k=0

ak

∞∑
n=−∞

sn−ksn−i = 2

p∑
k=0

akrk,i = 0, (4.6)

where rk,i is defined by

rk,i =
∞∑

n=−∞

sn−ksn−i =
∞∑

n=−∞

snsn−(k−i). (4.7)

Since the term rk,i only depends on the difference of the index k−i, we have rk,i = rk−i

as the autocorrelation function of the speech signal sn, which is also symmetric by

its definition. By taking account of the windowed speech samples, the summation

limit for calculating the autocorrelation is between 0 and N + p− 1. Hence Eq. 4.6

can be written as

p∑
k=1

akrk−i = −ri. (4.8)

Given the computed autocorrelation function, the coefficients ak of the LPC poly-

nomial can be obtained by solving the set of linear equations via the matrix form
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Ra = r, where the matrix R is defined as

R =


r0 r1 r2 . . . rp−1

r1 r2 r3 . . . rp−2

...
...

...
. . .

...

rp−1 rp−2 rp−3 . . . r0

 (4.9)

Solving for the LPC coefficients requires the inversion of the matrix R, which is

in general computationally complex. As for the autocorrelation matrix, since it is

symmetric and Toeplitz, the inversion can be simplified using the Levinson-Durbin

Recursion method that is more efficient.

Assume that p is an even integer, the z -transform of the vocal tract transfer

function can be represented by

H(z) =
b0

1−
∑p

k=1 akz
−k =

b0∏p/2
k=1 (1− pkz−1) (1− p∗kz−1)

, (4.10)

where b0 is a constant gain factor, pk = rke
jωk and p∗k are the corresponding roots

of the denominator or poles of the transfer function that are a pair of complex

conjugates.

With a sufficiently large sampling frequency Fs, each formant is considered to be

a discrete-time sinusoid modulated by a decaying exponential as given by

Fk(n) = e−δkn cos(ωkn), (4.11)

where k denotes the kth formant, ωk and δk can be computed from the roots of the

LPC polynomials corresponding to the kth formant. The formant frequency and the

associated bandwidth are then determined by the computed ωk and δk via

fk =
Fs · ωk

2π
, (4.12)

Bk =
Fs · δk
π

. (4.13)
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The formant location can also be determined via other methods using the LPC

coefficients such as peak-picking on the frequency response of the transfer function.

The limitations of LPC analysis for formant estimation are twofold. First of all,

the LPC model assumes merely narrowband AM for each formant that does not take

frequency modulation into account. As a result, it is only suitable for estimation

of formants with small bandwidth-to-center-frequency ratio (BW/CF), such as the

formants that lie in the high frequency range. Besides, crude estimation of the LPC

coefficients is prone to incur significant error, leading to inaccurate poles location of

the spectrum.

4.2 Formant Estimation via AM-FM Demodula-

tion

As opposed to LPC analysis, AM-FM representation of speech retains the nonlinear

nature of the resonance, which is evident for the first formant with a large deviation

IF compared to its formant frequency. According to Potamianos [39, 40, 41], the

short-time estimates of the formant frequency and the bandwidth associated with the

corresponding formant can be obtained from the IA and IF using squared amplitude

as weight given by

f1 =

∫ t+T
t0

q(t)[a(t)]2dt∫ t+T
t0

[a(t)]2dt
, (4.14)

B1 =

∫ t+T
t0
{(a(t)/2π)2 + (q(t)− f1)2[a(t)]2}dt∫ t+T

t0
[a(t)]2dt

. (4.15)

A variety of demodulation techniques such as the Hilbert transform and the ESA can

be applied to compute the IA and IF of the first formant. However, most conventional

demodulation techniques rely on the narrowband assumption of the signal and only

work properly under the narrowband constraint.
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Due to the significant amount of frequency modulation inherent in the first for-

mant, incorporating the MFT framework is expected to achieve a better formant

demodulation result. Therefore we can generate more precise center-frequency and

bandwidth estimates for the large deviation first formant than the commonly used

LPC estimates that are based on the narrowband AM assumption.

4.3 First Formant Extraction via EMD

Prior to demodulating the first formant to obtain the IA and IF estimates, we first

need to extract it from the original speech signal by separating out the different

formants. This separation of formants is usually achieved by multiband filtering,

for example the Garbor filterbanks as proposed by Potamianos [39]. But filtering

the wideband first formant may require particularly accurate center-frequency and

bandwidth. Instead of multiband filtering, in this paper we propose the use of

the empirical mode decomposition (EMD) to extract the first formant, due to the

following reasons: 1) EMD does not require precise center-frequency and bandwidth

information, which are hardly accessible. 2) EMD allows for more sidelobes of the

large deviation first formant since it does not have a fixed passband that will directly

cut off the spectral components which locate outside the passband.

Initially proposed in [42], the EMD is an intuitive method that peforms the de-

composition process adaptively with an aposteriori defined basis derived from the

data itself. It generally involves two constituent procedures, namely the sifting pro-

cess and decomposition. A function is called an intrinsic mode function (IMF) if

the following conditions are satisfied: 1) The number of extremas and the number of

zero-crossings equals or differs at most by one; 2) the average of the upper envelope

defined by local maximas and the lower envelope defined by local minimas at any

point is zero. The IMF reflects the oscillation mode inherent in the signal and can
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be modeled as AM-FM.

The sifting process is a systematic way to extract the IMF from the input data

x(t) and can be sumarized via

• Initialize d0(t) = x(t)

• Identify the local extremas of dn(t).

• Interpolate the local maximas and local minimas to form the the upper envelope

un(t) and lower envelope vn(t) respetively.

• Determine the local mean of the upper and lower envelopes via mn(t) =

[un(t) + vn(t)] /2.

• Extract the detail: dn+1(t) = dn(t)−mn(t).

• Repeat from step 2 to step 5 until dn+1(t) is an IMF (zero mean or stopping

criterion met).

Assume that the speech signal S(t) is composed of oscillatory modes that can

be modeled as IMFs. Decomposition is a procedure that keeps repeating the sifting

process to decompose the original signal as the sum of IMFs plus the residue, as

given by

S(t) =
n∑
k=1

ck(t) + rn(t), (4.16)

where ck(t) denotes the corresponding IMF and rn(t) denotes the final residue. The

decompsition procedure is summarized via

• Initialize r0(t) = S(t).

• Apply the sifting process on rn(t) to obtain the corresponding IMF cn+1(t) and

the residue rn+1(t) = rn(t)− cn+1(t).
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• Repeat the previous step until the residue rn+1(t) has no more extremas or

meets the stopping criterion.

Note that the number of extremas associated with the extracted IMF is gradually

reduced iterating from one residue to the next in the decomposition procedure, the

EMD thus functions as a filterbank with the subbands changing from high frequency

range to low frequency range. However, it is different from any predetermined sub-

band filtering, since the frequency range and resolution associated with each subband

is adaptively time-varying. It offers more flexibility than the conventional multiband

filtering approach in capturing features that are nonstationary.

To extract the large deviation first formant, we choose a number m, ignore the

first m consecutive IMFs that oscillate at high-frequency range and sum up the rest

of the IMFs and the residue as given by

F1(t) =
n∑

k=m+1

ck(t) + rn(t). (4.17)

By adjusting the parameters associated with the stopping criterion and observing

the oscillation mode of IMFs, we can determine an appropriate number m to obtain

the first formant. In this paper, we adopt the EMD algorithm as proposed in [43] to

extract the large deviation first formant of the vowels.

Accroding to the structure of the EMD, the number of extrema associated with

the extracted IMF is gradually reduced iterating from one residue to the next in the

decomposition procedure. It corresponds to a filterbank structure with subbands

changing from high frequency range to low frequency range. However, it is different

from any predetermined subband filtering, since the frequency range and resolution

associated with each subband are adaptively time-varying. It offers more flexibil-

ity than the traditional multiband filtering approach in capturing features that are

nonstationary.
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There are a few variants of the basic EMD such as the ensemble empirical mode

decomposition (EEMD) [44]. The key idea of the EEMD relies on averaging the

modes obtained by applying EMD to different realizations of Gaussian white noise

added to the original signal. By introducing white Gaussian noise, the mode mix-

ing problem can be solved via populating the whole time-frequency space to take

advantage of the dyadic filter bank behavior of the EMD. In addition, a complete

ensemble empirical mode decomposition with adaptive noise based on the EEMD is

also proposed in [45].

In this thesis, we employ the CEEMD algorithm as proposed in [43] to obtain

the large deviation first formants of different vowels.

4.4 Simulation Results

The short-time fourier transform spectrum of a women’s vowel /i:/ 1 and the first

formant extracted via the EMD are illustrated in Fig. 4.1. As we can observe,

the first formant has a large BW/CF and non-negligible sidelobes induced by its

considerable amount of frequency modulation. The residue and the first three IMFs

of the vowel /i:/ after the EMD are also illustrated in Fig. 4.2. Note that the first

formant extracted by EMD retains these sidelobes that are usually ignored in the

LPC analysis.

The demodulated IF of the large deviation first formant of /i:/ via different

approaches are compared in Fig. 4.3(a). The estimated IF of the LPC approach

varies slowly like a straight line, since the LPC only picks up the pole and cuts off

the sidelobes induced by frequency modulation. The estimated IF by the ESA varies

too sharply in some range due to the large deviation nature of the first formant. The

1The experimental data is based on the source in the vowel database of Hillenbrand,
Getty, Clark & Wheeler (1995)

56



Chapter 4. Applications to Large Deviation First Formant Estimation

Table 4.1: Comparison of the formant estimates for different female first formants.
/i:/ /uw/

Formant BW BW/CF Formant BW BW/CF
LPC 433 Hz 71 Hz 16.4% 438 Hz 12 Hz 2.7%
ESA 523 Hz 412 Hz 78.8% 453 Hz 240 Hz 53.0%
MFT-ESA 387 Hz 157 Hz 40.6% 435 Hz 90 Hz 20.7%

/ei/ /ae/
Formant BW BW/CF Formant BW BW/CF

LPC 458 Hz 29 Hz 6.3% 627 Hz 75 Hz 12.0%
ESA 479 Hz 378 Hz 78.9% 682 Hz 433 Hz 63.5%
MFT-ESA 451 Hz 102 Hz 22.6% 588 Hz 167 Hz 28.4%

Table 4.2: Comparison of the formant estimates for different male first formants.
/i:/ /uw/

Formant BW BW/CF Formant BW BW/CF
LPC 290 Hz 33 Hz 11.4% 332 Hz 34 Hz 10.2%
ESA 516 Hz 1012 Hz 196.1% 464 Hz 338 Hz 72.8%
MFT-ESA 280 Hz 115 Hz 41.1% 338 Hz 139 Hz 41.1%

/ei/ /ae/
Formant BW BW/CF Formant BW BW/CF

LPC 396 Hz 31 Hz 7.8% 633 Hz 56 Hz 8.8%
ESA 455 Hz 482 Hz 105.9% 753 Hz 667 Hz 88.6%
MFT-ESA 393 Hz 151 Hz 38.4% 622 Hz 191 Hz 30.7%

IF estimated via the MFT-ESA combination varies smoothly within the frequency

range of the first formant, which is better than the prior estimates. The demodulated

IA estimates via the ESA and the MFT-ESA are also compared in Fig. 4.3(b). from

which we can see that the IA estimate by the MFT-ESA is varying slowly and

smoother than that of the ESA. From Eq. 4.11 we know that the envelope for the

formant modeled by the LPC approach is a decaying exponential function, which

is diffierent from the IA estimates of both the ESA and the MFT-ESA, thus not

compared in Fig. 4.3(b). According to Eq. 4.15, the square of the IA estimates serve

as the weight for computing the bandwidth for the first formant.
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The center-frequency and bandwidth estimates of the first formants extracted

via the EMD based on three approaches for different female and male vowels in

the database are compared in Table 4.1 and Table 4.2 respectively. The bandwidth

estimates of the MFT-ESA turn out to be greater than those of the LPC approach

assuming only amplitude modulation, matching the spectrum better as indicated in

Fig. 4.1. The estimated BW/CF of each first formant via the MFT-ESA lies in the

large-deviation regime while that of the LPC approach is too small to characterize

the frequency modulation inherent in the first formant. Without the MFT, the ESA,

however, incurs significant error in the large-deviation regime [39], the bandwidth

estimates are too large, leading to erroneous BW/CF estimates as well. Therefore

we conclude that the formant estimates by the MFT-ESA are more precise than the

LPC estimates for large deviation first formants.

4.5 Conclusion

In this chapter, we have presented an approach that applies IF demodulation via the

MFT-ESA combination to the first formant of vowels extracted by EMD and then

computed the formant frequency and bandwidth estimates based on the demodulated

IF and IA. By taking into account the wideband nature of the large deviation first

formant, which usually has a large BW/CF, the formant estimates via the proposed

approach are demonstrated to be more reasonable than the LPC estimates that are

based on the narrowband AM formant assumption and the traditional multiband

ESA that assumes narrowband AM–FM components.
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Figure 4.1: (a) Original speech segment. (b) First formant extracted via the EMD.

59



Chapter 4. Applications to Large Deviation First Formant Estimation

0 500 1000 1500 2000 2500 3000
−0.05

0

0.05

R
es

id
ue

0 500 1000 1500 2000 2500 3000
−5

0

5
x 10

−3

IM
F

1

0 500 1000 1500 2000 2500 3000
−0.01

0

0.01

IM
F

2

0 500 1000 1500 2000 2500 3000
−0.05

0

0.05

TIME SAMPLES

IM
F

3

Figure 4.2: IMFs of the vowel /i:/ after the EMD.
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Figure 4.3: (a) IF estimates via the LPC (red line), ESA (blue dashed line), MFT-
ESA (black dotted line). Note that the ESA-2 algorithm with second order binomial
smoothing, a large multirate factor R = 32 and a normalized heterdyning frequency
0.2 is applied in the MFT-ESA for this example. (b) IA estimates via both ESA
(blue dashed line) and MFT-ESA (black dotted line).
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Chapter 5

Applications to Wideband

Partial-response CPM

Demodulation

Continuous phase modulation [46, 47, 48] is a popular form of frequency modulation

employed in mobile communications [49] and has desirable spectral efficiency [50]

and constant modulus properties that facilitate use of class-C amplifiers. Gaussian

Minimum Shift Keying (GMSK), a specific form of CPM is the main ingredient in the

Global System for Mobile communications (GSM) [47, 48] used in GPS applications.

Pragmatic CPM modulation schemes have recently been studied as capacity attaining

low-complexity alternatives to serially concatenated CPM [51].

The conventional demodulation technique used for narrowband signals is phase

demodulation [52] followed by unwrapping and maximum likelihood sequence esti-

mation (MLSE) using the Viterbi algorithm (VA) [46, 47, 53]. This approach has

a complexity that grows exponentially with the number of phase states and restric-

tions on the modulation index that needs to be the ratio of incommensurate integers.

62



Chapter 5. Applications to Wideband Partial-response CPM Demodulation

Other frequency discrimination approaches [54] rely upon instantaneous frequency

(IF) estimation and are not subject to the restrictions required by the Viterbi but

have not been investigated for wideband CPM with memory.

In prior work [2, 3] it was shown that frequency discrimination for full response

CPM demodulation has the same performance as that of BPSK detection in AWGN.

Further in recent work [9], frequency tracking based wideband FM demodulation was

extended to large wideband to narrowband conversion factors using the MFT scheme

as proposed in chapter 2. Frequency estimation based approaches have the added

advantage that they are immune to phase distortions introduced by the channel

which would adversely affect the Viterbi approach. In addition, these approaches do

not require prior knowledge of the carrier frequency.

In this chapter, we investigate the approach that utilizes MFT-ESA for wide-

band CPM demodulation with decision feedback equalization (DFE) to effectively

eliminate the memory introduced by partial response signaling [55]. The wideband

partial response CPM signal is first converted into narrowband via the MFT and

then demodulated by the ESA to obtain the IF estimates. By averaing the IF es-

timates within each symbol period to form the partial response channel, the DFE

is eventually applied to equalize the channel in order to remove the CPM memory.

Simulation results are used to verify the efficacy of the combined approach for both

wideband binary-CPM and multilevel-CPM.

5.1 Continuous Phase Modulation

The standard CPM model depends on its pulse-shaping function p(t), with duration

length of symbol periods L and modulating symbols, i.e, binary PAM symbols a[k] ∈
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{−1, 1}. The IF signal takes the form [47]:

ωi(t) = ωc + 2πh
∞∑

k=−∞

a[k]p(t− kTb), (5.1)

where ωc is the carrier frequency and h is the modulation index of CPM. The carrier

phase is given by:

φdev(t; a) = 2πh
∞∑

k=−∞

a[k]q(t− kTb), (5.2)

where p(t) is the normalized pulse shaping function defined over the interval [0, LT ]

and q(t) =
∫ t

0
p(τ)dτ corresponds to the phase pulse shaping function. In general,

p(t) and q(t) are assumed to satisfy the following condition:

p(t) = p(LT − t), (5.3)

q(t) =

∫ t

0

p(τ)dτ =
1

2
, t ≥ L. (5.4)

If p(t) is a rectangular pulse then this form of CPM is referred to as (L-REC) CPM,

and if p(t) is a raised cosine pulse then it is referred to as (L-RAC) CPM. The CPM

signal is then obtained via frequency modulation:

s(t) = A cos

(∫ t

−∞
ωi(τ)dτ + θ

)
. (5.5)

Usually the modulation index of a wideband CPM signal is large such that the

frequency deviation of its IF is comparable to the carrier frequency.

Using a pulse shaping function of duration larger than a symbol period (L > 1),

i.e., partial response signaling introduces memory into the modulation scheme.

5.2 Optimum Demodulation of CPM

The MLSE implemented via the Viterbi algorithm has been proposed as an optimal

solution for CPM demodulation and detection. According to Eq. 5.2, the phase
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deviation of the CPM signal can be split into two parts:

φdev(t; a) = 2πh
∞∑

k=−∞

a[k]q(t− kTb)

= πh
n−L∑
k=−∞

a[k] + 2πh
n∑

k=n−L+1

a[k]q(t− kT )

= θn + θ (t, a) , nT ≤ t ≤ (n+ 1)T

(5.6)

where θn is the cumulative phase for prior symbols and θ(t, a) is the phase influenced

by the most recent L symbols up to the nth period. Hence we define the state of the

CPM at time index t = nT via

Sn = {θn, a[n− 1], a[n− 2], a[n− L+ 1]}. (5.7)

Then the state at next time index t = (n+ 1)T is represented by

Sn+1 = {θn+1, a[n], a[n− 1], a[n− L+ 2]}, (5.8)

where

θn+1 = θn + πha[n− L+ 1]. (5.9)

Now assume that the modulation index h is rational, which can be represented

by

h =
m

p
, (5.10)

where m and p are relatively prime positive integers. For memoriless CPM (L = 1),

the phase trellis of the CPM scheme has only p (when m is even) or 2p (when m is

odd) states assoicated with θn. When memory is introduced into the CPM (L > 1),

additional states are required by the information symbols {a[n−1], a[n−2], ..., a[n−

L + 1]} contained in the state of the CPM due to the partial response signaling.

Therefore, the number of states for partial response CPM is denoted by

Ns =

pM
L−1, m even

2pML−1, m odd
(5.11)
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where M is the size of the alphabet for the transmitted symbols. The equivalent

baseband received signal is expressed by

r(t) = A cos (ωct+ φdev(t, a)) + n(t). (5.12)

where n(t) is assumed to be AWGN. The MLSE aims at maximizing the the proba-

bility of the observation conditioned on the transmitted symbols that is proportional

to the cross-correlation metric given by

CMn (a) =

∫ (n+1)T

−∞
r(t) cos[ωct+ φdev (t, a)]dt

= CMn−1 (a) +

∫ (n+1)T

nT

r(t) cos[ωct+ θ (t, a) + θn]dt

= CMn−1 (a) + vn (θn, a)

(5.13)

where CMn−1(a) denotes the metrics for the surviving sequences up to time index

nT and vn (θn, a) denotes the additional increments of the metrics induced by the

signal in the interval [nT, (n + 1)T ]. When the VA is implemented, the number of

surviving sequences associated with each state is Ns. Hence the complexity of the

optimal MLSE via the VA is influenced by the chosen alphabet size M , rational

modulation index h and the duration length L of the CPM pulse shaping function.

As a result, the complexity of the VA grows exponentially as L increases, which

is especially significant when M is larger than 2. For such cases, the suboptimum

demodulation schemes have to be used.

5.3 CPM Demodulation via Equalization

The memory introduced by the partial response signaling linearly distort the trans-

mitted signal and results in the intersymbol interference (ISI) for the IF of the CPM

signal within each symbol period. If precise IF estimates of the CPM signal are
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accessible, the recovery of the original transmitted sequence is equivalent to equal-

ization of the ISI channel. The discrete-time model for the ISI channel is described

by

r[k] =
∞∑

l=−∞

h[l]a[k − l] + z[k]. (5.14)

where h[k] denotes the impulse response of the channel, a[k] denotes the original

transmit sequence and z[k] denotes the noise averaged from the IF estimation. Since

the noise term z[k] is not guaranteed to be AWGN by any demodulation approach,

the MLSE implemented via the VA directly applied to the demodulated IF of the

CPM is not the optimal solution in this case. For general equalization schemes, the

impulse response of the channel h[k] is assumed to be known, but practically h[k]

is hardly accessible and needs to be estimated, i.e., using training sequence of pilot

symbols.

5.3.1 Partial Response Channel

The partial response channel is a special case of the ISI channels that has a finite-

length impulse response, and is also causal and monic with h[0] = 1. The memory

introduced by partial response CPM depends on the type of the pulse shaping func-

tion and the corresponsding duration length L. For example, the discrete-time partial

response channel using L-REC CPM can be modeled as

yREC(t) =
L−1∑
k=0

a(t− k) + z(t), (5.15)

where t is the discrete-time index and a(t) is the original transmitted symbol se-

quence.

For wideband partial response CPM, the output of the partial response channel

can be obtained by demodulating the CPM signals using the MFT-ESA approach as
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previously proposed and matched filtering on the estimated IF within each symbol

period. Hence our goal of recovering the original transmitted sequence is equivalent

to the equalization of the partial response channel.

5.3.2 Carrier Frequency and Amplitude Estimation

The carrier frequency and the amplitude of the CPM can be estimated from the

MFT-ESA demodulation result, which turns out to be an advantage for the frequency

estimation based approaches. The IF estimate of the MFT-ESA in the specific case

of CPM takes the form of:

ω̂i(t) = ωc + 2πh
∞∑

k=−∞

a[k]hf (t− kTb) + εω(t), (5.16)

where hf (t) corresponds to the pulse shaping function and εw(t) corresponds to zero-

mean IF noise, which unlike the observation noise is not white. Assuming equiprob-

able symbols and taking expectations on both sides yields:

E{ω̂i(t)} = ωc. (5.17)

The carrier frequency and the amplitude of the AM–FM signal can then be esti-

mated from the IF and IA estimates from either algorithm by simple averaging:

ω̂c =
1

T

∫ T

0

ω̂i(t)dt

Â =
1

T

∫ T

0

âi(t)dt. (5.18)

This is a consequence of the fact that these approaches are bandpass estimation

approaches whereas traditional in-phase and quadrature demodulation, employed in

narrowband communication systems, is a baseband estimation approach requiring

prior knowledge of the carrier frequency.
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5.3.3 Partial Response Channel Estimation via Recursive

Prediction Error Method

Since the channel response is required by general equalization schemes in order to re-

move the memory of the partial response CPM, in this thesis we perform the channel

estimation via the recursive prediction error method [56]. The partial response chan-

nel, depicted for example in Eq. (5.15), is actually a monic moving-average (MA)

process. We are capable of estimating the channel response by fitting the output of

the partial response channel to a ARMAX model [56].

In general, the structure of the ARMAX model is described by
na∑
k=0

aky[t− k] =

nb∑
k=1

bku[t− k] +
nc∑
k=0

cke[t− k], (5.19)

where na, nb and nc are the number of coefficients for the auto-regressive (AR) part,

system input and moving-average (MA) part respectively. It can also be written as

A(q)y(t) = B(q)u(t) + C(q)e(t). (5.20)

where q is the backward shift operator. Specifically,

A(q) = 1 + a1q
−1 + . . .+ anaq

−na , (5.21)

B(q) = b1q
−1 + . . .+ bnb

q−nb . (5.22)

C(q) = 1 + c1q
−1 + . . .+ cnb

q−nc . (5.23)

By assuming A(q) = 1 and B(q) = 0, the ARMAX model can be simplified to the

MA model that exactly fits Eq. (5.15), as described by

y(t) = C(q)e(t) =
nc∑
k=0

ckq
−ke(t) =

nc∑
k=0

cke[t− k]. (5.24)

By satisfying certain conditions, C(q) is actually invertible, that is, e(t) can be

calculated via an inverse operator C̃(q) via

e(t) = C̃(q)y(t) =
∞∑
k=0

c̃ky(t− k). (5.25)
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The coefficient estimation for the ARMAX model can be achieved via an iterative

search algorithm that minimizes a more robust quadratic prediction error criterion.

The parameter vector ~θ can be formed by grouping the coefficients of the ARMAX

model as

~θ = [a1, ..., ana , b1, ..., bnb
, c1, ..., cnc ]. (5.26)

The predictor for the ARMAX model is given by

C(q)ŷ(t|~θ) = B(q)u(t) + [C(q)− A(q)]y(t). (5.27)

It can be rewritten as

ŷ(t|~θ) = B(q)u(t) + [1− A(q)]y(t) + [C(q)− 1]ε(t, ~θ), (5.28)

where ε(t, ~θ) is defined as the prediction error given by

ε(t, ~θ) = y(t)− ŷ(t|~θ). (5.29)

Therefore we can express the predictor in the form of pseudolinear regression via

ŷ(t|~θ) = ~ϕT (t, ~θ)~θ, (5.30)

where we define the data vector ~ϕ(t, ~θ) as

~ϕ(t, ~θ) =[−y(t− 1), ...,−y(t− na), u(t− 1), ...,

u(t− nb), ε(t− 1, ~θ), ..., ε(t− nc, ~θ)]. (5.31)

According to Eq. (5.28), the gradient of the predictor ~ψ(t, ~θ) w.r.t ~θ can be computed

via

C(q)~ψ(t, ~θ) = ~ϕ(t, ~θ). (5.32)

The gradient ~ψ(t, ~θ) can be obtained by filtering the data vector ~ϕ(t, ~θ) through an

inverse filter of C(q).
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The cost function for the recursive prediction error method is defined as

Vt(~θ, ~Y
t) = γ(t)

1

2

t∑
k=1

β(t, k)ε2(k, ~θ), (5.33)

where β(t, k) and γ(t) satisfy the following conditions

β(t, k) =
t∏

j=k+1

λ(j), β(t, t) = 1, (5.34)

t∑
k=1

γ(t)β(t, k) = 1, (5.35)

Note that λ(j) is the forgetting factor, which is often set to a constant less than 1.

The algorithm of the recursive prediction error method is then summarized via

ε(t) = y(t)− ŷ(t), (5.36)

~̂θ(t) = ~̂θ(t− 1) + γ(t)R−1(t)~ψ(t)ε(t), (5.37)

R(t) = R(t− 1) + γ(t)[~ψ(t)~ψT (t)−R(t− 1)], (5.38)

where ~ψ(t) and ŷ(t) are short for the resulting approximations of ~ψ(t, ~̂θ(t− 1)) and

ŷ(t|~θ(t− 1)) respectively.

5.3.4 Memory Removal via DFE

Decision feedback equalization [57] is proposed in this thesis to equalize the partial

response channel in order to recover the transmitted sequence. The block diagram of

the general DFE is illustrated in Fig. 5.1. The DFE structure involves two filters, the

feedforwrd filter whose input is the output sequence of the partial response channel

and the feedback filter that feeds the previously determined symbols Î[k − l], l ≥ 1

back to the loop. Note that the feedforward filter F (z) can be represented by

F (z) =
∞∑

k=−∞

f [k]z−k, (5.39)
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and the feedback filter B(z) are given by

B(z) =

LB−1∑
l=0

b[l]z−l, (5.40)

where B(z) is causal and monic with b[0] = 1. The feedforward filter is only in-

tended for suppresion of the pre-cursor ISI, leading to fewer constraints and noise

enhancement that is much smaller than the linear equalization. The post-cursors are

compensated by the feedback filter, resulting in no additional noise enhancement due

to the symbol by symbol detector (SBS). Note that the DFE analysis is based on the

assumption that previous decisions are correct, otherwise the error propagation due

to wrong decisions incurs performance degradation but is usually not catasrophic.

According to the choice of the feedforward filter F (z) and the feedback filter B(z), a

variety of decision feedback equalizers can be implemented, such as the zero-forcing

DFE that directly inverts the channel and the MMSE DFE that employs a minimum

mean square error criterion.

Figure 5.1: Block diagram of the general decision-feedback equalizer. The partial
response channel output in this case are the mixed symbols due to memory introduced
by partial response signaling. The mixed symbols can be obtained from the estimated
IF of the MFT-ESA demodulation block.
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ZF-DFE Solution

The ZF-DFE can be viewed as cascade of the linear ZF equalizer 1
H(z)

and the

prediction error filter Pe(z) = 1− z−1P (z) as

F (z) =
Pe(z)

H(z)
, (5.41)

where P (z) is the noise predictor that predicts the future noise sample using most

recent Lp noise samples

P (z) =

LP−1∑
m=0

p[m]z−m. (5.42)

The feedback filter is then given by

B(z) = 1− z−1P (z) = Pe(z). (5.43)

If the channel noise is assumed to be AWGN with variance N0, the power spectrum

of the error at d[k] is computed by

Φee(z) =
Pe(z)P ∗e (1/z∗)N0

H(z)H∗(1/z∗)
. (5.44)

The optimum noise prediction error filter is a whitening filter given by

Pe(z) =
Hmin(z)

hmin[0]
, (5.45)

where Hmin(z) is the minimum phase equivalent of H(z) that can be obtained via

spectral factorization.

For example, in the case of the 3-REC multilevel CPM, the expression for the

inverse filter is given by

Hinv(z) =
1

H(z)
=

1

1 + ĉ1z−1 + ĉ2z−2
. (5.46)

Note that the inverse filter Hinv(z) is an IIR All-pole filter, which can be implemented

via direct recursion of its difference equation. It requires the input, i.e., in our case,
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the partial response channel output sequence yREC(t), to be nearly perfect, otherwise

the error propagation due to inaccurate input sequence can be significant. This

in turn requires the MFT demodulation section to produce a sufficiently accurate

demodulation result. By incorporating the slicer, i.e., the SBS detection device into

the inverse filter recursion we can implement the decision feedback version of the

zero-forcing equalizer (ZF-DFE) to eliminate memory induced in the partial response

CPM signals.

MMSE-DFE Solution

Instead of focussing on just removal of the channel between the IF input and the

information symbols if we further incorporate a MMSE cost function that balances

the task of eliminating memory with the task of reducing symbol distortion we obtain

the linear MMSE equalizer that can provide further improvement in the symbol error

performance in low SNR environment. The corresponding decision feedback version

of the linear MMSE equalizer (MMSE-DFE) incorporates both pre-cursor and post-

cursor taps. The feedforward filter coefficients of the MMSE-DFE are obtained from

the Wiener solution and then used to solve for the feedback filter coefficients. Details

of the MMSE-DFE solution are described in [53, 58]. In this thesis, we implement

the MMSE-DFE using FIR filters. Assume that the length of the feedforward filter

and the feedback filter are denoted by LF and LB respectively, then the input to the

SBS is given by

d[k] =

LF−1∑
m=0

f [m]r[k −m]−
LB−1∑
m=0

b[m]I[k − k0 −m], (5.47)

where k0 ≥ 0 denotes the decision delay. The goal of the MMSE-DFE is to minimize

the variance of the error

e[k] = d[k]− I[k − k0]

= fHr[k]− bHI[k − k0 − 1]− I[k − k0],
(5.48)
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where

f = [f [0] f [1] ... f [LF − 1]]H

b = [b[0] b[1] ... b[LB − 1]]H

r[k] = [r[k] r[k − 1] ... r[k − (LF − 1)]]T

I[k − k0 − 1] = [I[k − k0 − 1] I[k − k0 − 2] ... I[k − k0 − (LB − 1)]]T .

(5.49)

By computing the error variance J and differentiating it with respect to f∗ and b∗

∂J

∂f∗
= (Φhh + σ2

nI)f + Hb− h, (5.50)

∂J

∂b∗
= b−HHf , (5.51)

where Φhh is the autocorrelation matrix of the channel response and

h = ε{r[k]I∗[k − k0]} = [h[k0] h[k0 − 1] ... h[k0 − (LF − 1)]]T

H = ε{r[k]I∗[k − k0 − 1]}.
(5.52)

By setting the two equations to zero, we can obtain the optimum coeffients for the

feedforward filter and feedback filter respectively given by

fopt =
(
(Φhh −HHH) + σ2

nI
)−1

h, (5.53)

bopt = HHf . (5.54)

5.4 Simulation Results

5.4.1 Performance of Carrier Frequency Estimation

In practice, since prior knowledge of distributions is not available, we replace the

expectation with a simple time-average as in Eq. 5.18. While in the discrete-time

case, we replace the integral with a time-average sum:

Ω̂c =
1

L

L−1∑
k=0

Ωi[k].
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Figure 5.2: Performance of carrier frequency estimation for the MFT-ESA approach.

Fig. 5.2 depicts the carrier frequency estimation error of the MFT-ESA for the case

where we have equiprobable symbols versus SNR. For larger SNR values the carrier-

frequency estimation error approaches zero indicating that the IF yields a reliable

carrier frequency estimate.

5.4.2 Performance of Wideband Partial Response Multilevel

CPM Demodulation

A wideband 3-REC multilevel CPM signal with original symbols taking values in the

alphabet {−3,−1, 1, 3} is used for performance test. The frequency deviation of the

IF is equal to the carrier frequency in this extreme wideband case with modulation

index h = 4. The symbol error probability for the proposed MFT-ESA approach is

76



Chapter 5. Applications to Wideband Partial-response CPM Demodulation

0 2 4 6 8 10 12 14
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
ym

bo
l E

rr
or

 P
ro

ba
bi

lit
y

 

 

HTDA
ESA
MFT−ESA

Figure 5.3: Symbol error probability associated with the mixed symbols for wideband
3-REC multilevel CPM. Note that the SEP will drop to zero around 16 dB for the
MFT-ESA approach, which is not shown due to limitations of the log scale.

depicted in Fig. 5.3. Since the 3-REC CPM signal has memory, the symbols here

refer to the mixed symbols due to the memory effect of partial response signaling as

described in Eq. 5.15. As the SNR increases, the MFT and ESA combination reduces

the error dramatically. The error eventually drops to zero when the SNR passes

certain threshold, while the error performances of the HTDA and the ESA gradually

saturate at certain levels due to carry-over effects from incomplete demodulation

induced by narrowband constraints.

Unlike the common AWGN channel, the noise imposed on the CPM signal is

not linearly added to the modulation signals (or symbols). Since the modulation

signals (or symbols) are conveyed in the IF of the CPM signal, the effect of the
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noise remains indirect. Therefore the symbol error performance for the CPM signal

is different from what is observed with modulation schemes that fit into the AWGN

channel analysis, such as the classic Q curve for BPSK modulation. The CPM format

provides robustness to noise when the SNR exceeds a certain threshold and if the

CPM signal is sufficiently sampled.

5.4.3 Performance of Partial Response Channel Estimation

via Recursive Error Method
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Figure 5.4: Partial response channel estimation for 3-REC multilevel CPM via re-
cursive error method. Note that the multilevel symbols take values in {−3,−1, 1, 3}.
The red line indicates the convergence of the estimated coefficient ĉ1 and the black
line indicates the convergence of the estimated coefficient ĉ2.

The experimental result of the partial response channel estimation via the recur-
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sive error method for wideband 3-REC multilevel CPM is illustrated by Fig. 5.4.

With a memory length L = 3, the partial response channel for the 3-REC multilevel

CPM can be expressed via

yREC(t) = s[t] + c1s(t− 1) + c2s(t− 2) + z(t), (5.55)

where c1 = c2 = 1. As we can observe from Fig.5.4, the estimated coefficients

converge close to the true value 1 in the case of REC-CPM. They serve as useful

estimates when other forms of pulse shaping such as in RAC-COM or SRAC-CPM

are employed.

5.4.4 Performance of Partial Response CPM Memory Re-

moval via Decision Feedback Equalization

The MFT-ESA demodulation module is then combined with the decision-feedback

equalization for memory removal to obtain estimates of the original information

symbols. The channel response required by equalization has been estimated via the

recursive error method.

The symbol error probability performance of the proposed MFT-ESA demodula-

tion combined with ZF-DFE and MMSE-DFE for memory removal are compared in

Fig. 5.5 for both binary and multilevel 3-REC CPM scenarios. Note that the mod-

ulation indices of the wideband CPM signals in this example are deliberately chosen

such that the implementation of the VA is not practical due to the complexity of

its phase states. For binary case, the MMSE-DFE performs slightly better than the

zero-forcing DFE in the low SNR region, as shown in Fig. 5.5(a). For multilevel case,

the performances of both approaches are almost the same as in Fig. 5.5(b). Since the

multilevel signaling compress the decision region for symbol detection, the resolution

of the symbol by symbol detector (or the slicer) is reduced, resulting in degraded
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Figure 5.5: Memory removal via decision feedback equalization. (a) symbol error
probability of MFT-ESA approach for binary CPFSK with zero-forcing and MMSE
decision feedback equalization to remove memory induced due to partial response
signaling, and (b) symbol error probability for multilevel CPFSK with zero-forcing
and MMSE decision feedback equalization. In both cases 3-REC-CPM with param-
eters Tb = 1s, fs = 50Hz, fc = 12Hz and iterations number of 10 was employed.
The MFT conversion factor was R = 16 and the modulation indices for the binary
and multilevel cases were h = 97/21 and h = 19/15 respectively. For equalization
purposes, 50 pilot symbols were used. Note that the SEP of (a) and (b) will drop to
zero around 11 dB and 16 dB respectively, which are not shown due to limitations
of the log scale.

performances of both approaches at the same level in the extreme wideband case

where the IF deviation is close to the carrier frequency.

From our previous analysis, we know that the error associated with output of

the partial response channel extracted from the demodulated IF within each symbol

period for low SNR is significant due to the error propagation. The performance of

symbol detection for low SNR suffers serious degradation since the proposed memory

removal approach is very sensitive to its input. However as the SNR increases,

the output of the partial response channel obtained from MFT-ESA demodulation

module become more precise, thereby resulting in significant improvement in the

ability to recover the original symbols as evident in the symbol error probability.

Above a SNR threshold of around 10 dB for the binary case and 12 dB for the
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multilevel case, the symbol error probability becomes negligible attributable to the

fact that inverse filtering solution becomes nearly perfect after that threshold, which

has been verified but not shown in Fig. 5.5 due to limitations of the log scale.

5.5 Conclusion

In this chapter, we have presented an approach towards wideband CPM demod-

ulation by extending the MFT-ESA approach. The characteristic features of the

proposed approach are: 1) Unlike the Viterbi algorithm whose complexity increases

with the number of phase states induced by m and p as in Eq. 5.10, the com-

plexity of the proposed approach is independent of the modulation index; 2) The

proposed approach does not require prior knowledge of the carrier frequency and

this parameter can be computed from the IF estimates; 3) The proposed approach

accommodates large modulation indices and multilevel signaling making it conducive

to the large bandwidth requirements proposed in the M-ary FSK system for satellite

communications [59].

The proposed MFT-ESA approach was then applied to the demodulation of wide-

band CPM signals with partial response signaling, where memory is introduced into

the estimated IF. Subsequent to the MFT-ESA demodulation stage, a recursive pre-

diction approach based on MA signal modeling of the estimated IF, together with

decision feedback equalization, were presented to address the problem of removal

of memory introduced by partial response signaling. Both the zero-forcing solution

based on direct inversion of the memory channel, its corresponding decision feed-

back version and the MMSE-DFE solution to memory removal were investigated

and shown to produce significant reduction in the symbol error probability over no

equalization.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The objective of the dissertation is to present the MFT system that converts the

wideband AM-FM signals to narrowband. Chapter 2 introduces the MFT frame-

work that changes the CR/IB and CR/FD parameters of the signal via frequency

compression, heterodyning and bandpass filtering. The alternative MFT framework

that incorporates the use of large conversion factors has also been proposed with

practical implementation of the bandpass filters by splitting the conversion factors

and utilizing the multirate identity. The proposed MFT framework can be combined

with various monocomponent AM-FM demodulation methods to improve their per-

formances. Its compatibilities with two commonly used demodulation techniques,

the HT and the ESA, have been analyzed in details. Chapter 3 extends the basic

MFT to the BMFT in two dimensions and applies it to wideband images demod-

ulation in combination with higher order energy operator. The BMFT-DHODA

approach was further applied to wideband fingerprint images to demonstrate its effi-

cacy. Chapter 4 utilizes the MFT-ESA combination for large deviation first formant
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demodulation. The large deviation first formants are first extracted via the EMD

and then demodulated by the MFT-ESA approach. The formant estimates com-

puted from the demodulated IA and IF are demonstrated to be more reasonable

than the widely used LPC approach that only assumes narrowband AM formant.

Chapter 5 presented an approach towards the problem of wideband partial response

CPM demodulation by combining the MFT-ESA based IF demodulation and de-

cision feedback equalization. Unlike the VA whose complexity increases with the

number of phase states, the proposed approach is not affected by the modulation

index of the partial response CPM. The removal of the memory introduced by the

partial response signaling is then achieved by decision feedback equalization.

6.2 Future Work

6.2.1 Multicomponent AM-FM Demodulation

We aimed at applying the MFT framework presented in this dissertation to the

problem of wideband multicomponent AM-FM demodulation. In general, bandpass

filtering is required for isolation of each component present in the multicomponent

signal. The monocomponent demodulation scheme is then applied on each isolated

AM-FM component to obtain the IA and IF estimates. However, the bandpass fil-

tering may suffer from problems such as spectral overlapping. In prior work [60], the

energy demodulation of mixtures (EDM) algorithm was proposed for the demodula-

tion of two-component AM-FM signals. The EDM exploits the structural properties

of a mixture of two sinusoids in terms of the solution to a generating differential

or difference equation (GDE). The coeffcients of the GDE are then expressed via

generalizations of the higher order differential energy operator to achieve separation

and demodulation of the two-component signal. In this chapter, we propose the
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combination of the MFT framework and the EDM algorithm to solve the problem

of wideband multicomponent AM-FM demodulation.

6.2.2 EDM Algorithm

Assume that the two-component AM-FM signals with slowly time-varying IA and

IF is instantaneously modeled by

s(t) = a1 cos(ω1t+ θ1) + a2 cos(ω2t+ θ2), (6.1)

which satisfies the fourth-order GDE given by

s(4) + c1s
(2) + c2s = 0, (6.2)

where

s(n) =
∂ns

∂tn
, c1 = (ω2

1 + ω2
2), c2 = ω2

1ω
2
2. (6.3)

The differential energy operator of kth-order is defined by

Φk(s) = s(1)s(k−1) − ss(k). (6.4)

The Teager-Kaiser energy operator used in the ESA is the special case when k = 2.

By solving the resultant linear system of equations, the coefficients for the GDE can

be expressed as

c1 = −Φ5(s)

Φ3(s)
, c2 =

Φ3(s(2))

Φ3(s)
. (6.5)

Hence the frequencies ω1 and ω2 can be estimated via

ω1,2 =

√
c1 ±

√
c2

1 − 4c2

2
. (6.6)
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Using the EDM frequency estimates, the amplitude a1 and a2 can be estimated via

a1,2 =

√
ω4

2,1 (Φ(s(3))− ω2
1ω

2
2Φ(s(1)))

ω4
1ω

4
2(ω2

1 − ω2
2)2

−
ω6

2,1 (Φ(s(2))− ω2
1ω

2
2Φ(s))

ω4
1ω

4
2(ω2

1 − ω2
2)2

. (6.7)

The estimated frequencies and amplitudes become approximations for the IA and IF

estimates of each AM-FM component in the narrowband scenario. The discrete-time

EDM algorithm can be easily derived from its continuous-time counterpart. Post-

smoothing the output of the EDM yields the smoothed EDM (SEDM) algorithm that

further reduce the demodulation error by suppressing the noise presented in the IA

and IF estimates.

6.2.3 Performance of the MFT-SEDM

A wideband two-component example is presented here to demonstrate the efficacy of

the proposed MFT-SEDM approach. Consider a discrete-time mixture signal of two

sinusoidally modulated FM signals with a normalized sampling frequency fs = 1:

s[n] =
2∑
i=1

ai cos

(∫ n

0

Ωi[m]dm

)
, (6.8)

Ωi[n] = Ωci + Ωmi cos (Ωfin+ θi) , i = 1, 2. (6.9)

The parameters of the two sinusoidal FM signals are given by

Ωci =
8π

25
,

16π

25
, Ωmi = Ωfi = 0.04π, 0.0432π, θi = 0, 0. (6.10)

The CR/IB and CR/FD ratios for the discrete-time mixture signal is given by

CR/IBold,i = 8,
400

27
, CR/FDold,i = 8,

400

27
. (6.11)

In prior work [60], the normalized carrier separation (SEP) parameter that measures

the spectral separation between the two component is defined as:

SEP =
|Ωc2 − Ωc1|∑

i (Ωfi + Ωai + Ωmi)
, (6.12)

85



Chapter 6. Conclusions and Future Work

where we have SEP = 1.923 in this example. The power spectrum of the mixture

signal is illusrated in Fig. 6.1(a). By performing the MFT using a conversion factor

R = 16 and a translation frequency wd = 23π
100

, the mixture signal is transformed into

a narrowband signal with power spectrum illustrated in Fig. 6.1(b). The CR/IB

and CR/FD ratios for each transformed component is computed by

CR/IBnew,i = 100, 100, CR/FDnew,i = 100, 100. (6.13)

Since the MFT transforms each component in a uniform way, the SEP of the trans-

formed mixture signal remains the same.

Then we apply the SEDM algorithm to the transformed mixture signal and re-

cover the IF estimates for each component in the original mixture signal according

to the inverse MFT relation. The demodultion results have been shown in Fig.

6.1(c), justifying the validity of the MFT-SEDM approach for solving the wideband

multicomponent demodulation problem.
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Figure 6.1: Two-component AM-FM demodulation via MFT-SEDM approach. a)
Power spectrum of the original mixture signal. b) Power spectrum of the mixture
signal after MFT. c) IF estimates for each component of the mixture signal via the
MFT-SEDM approach. d) IA estimates for each component of the mixture signal
via the MFT-SEDM approach.

87



Appendices

A Error Analysis for Extremely Wideband FM Signal
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Appendix A

Error Analysis for Extremely

Wideband FM Signal

Here we present the error analysis for wideband sinusoidal FM demodulation in 1D 1.

According to the handbook of mathematic formula and basic trigonometric identities,

we have

cos(β sin θ) = J0(β) + 2
∞∑
k=1

J2k(β) cos(2kθ),

sin(β sin θ) = 2
∞∑
k=0

J2k+1 (β) sin((2k + 1)θ) ,

cos(u) cos(v) =
1

2
[cos(u− v) + cos(u+ v)],

sin(u) sin(v) =
1

2
[cos(u− v)− cos(u+ v)],

where Jn(β) denotes the Bessel function of the first kind.

1Since the partial Hilbert transform is a separable combination of the 1D Hilbert trans-
form, consequently this analysis is valid for the proposed 2D approach as well.
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Using above equations, the sinusoidal FM can be expanded as

cos(ωct+ β sin(ωmt)

= cos(ωct) cos (β sin(ωmt))− sin(ωct) sin (β sin(ωmt))

= cos(ωct)J0(β) + 2
∞∑
k=1

J2k(β) cos(2kωmt) cos(ωct)

− 2
∞∑
k=0

J2k+1 (β) sin((2k + 1)ωmt) sin(ωct)

= cos(ωct)J0(β) + 2
∞∑
k=1

J2k(β) cos ((ωc + 2kωm)t)

+ 2
∞∑
k=1

J2k(β) cos ((ωc − 2kωm)t)

+ 2
∞∑
k=0

J2k+1(β) cos ((ωct+ (2k + 1)ωm)t)

− 2
∞∑
k=0

J2k+1(β) cos ((ωc − (2k + 1)ωm) t)

Its quadrature part we desire for demodulation can also be expanded similarly given

by

sin (ωct+ β sin(ωmt))

= sin(ωct) cos (β sin(ωmt)) + cos(ωct) sin (β sin(ωmt))

= sin(ωct)J0(β) + 2
∞∑
k=1

J2k(β) cos(2kωmt) sin(ωct)

+ 2
∞∑
k=0

J2k+1 (β) sin((2k + 1)ωmt) cos(ωct)

= sin(ωct)J0(β) + 2
∞∑
k=1

J2k(β) sin ((ωc + 2kωm)t)

+ 2
∞∑
k=1

J2k(β) (sin(ωc − 2kωm)t) + 2
∞∑
k=0

J2k+1(β) sin ((ωct+ (2k + 1)ωm) t)

− 2
∞∑
k=0

J2k+1(β) sin ((ωc − (2k + 1)ωm) t)
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Note that the Hilbert transform of the corresponding sinusoidal FM can be easily

obtained by performing the Hilbert transform at each of its harmonics as

H[cos (ωct+ β sin (ωmt))]

= sin(ωct)J0(β) + 2
∞∑
k=1

J2k(β) sin (ωc + 2kωm)t)

+ 2
∞∑
k=1

J2k(β) sin (|ωc − 2kωm|t)

+ 2
∞∑
k=0

J2k+1(β) sin ((ωc + (2k + 1)ωm) t)

− 2
∞∑
k=0

J2k+1(β) sin (|ωc − (2k + 1)ωm|t)

By comparing the quadrature and the Hilbert transform of the corresponding sinu-

soidal FM, we observe that when ωc < nωm,

H[cos ((ωc − nωm)t)] = sin(nωm − ωc)t,

whereas the corresponding part in the quadrature part is of opposite sign sin(ωc −

nωm)t. For narrowband sinusoidal FM, the Bessel coefficients Jn(β) associated with

these corresponding sidelobes are very small, and the demodulation error incurred

by the Hilbert transform due to these opposite sign terms can be neglected. Hence

the HT, provides almost perfect reconstruction of the quadrature part we desire for

demodulation using the analytic signal, for sinusoidal FM, in the narrowband case.

For extremely wideband sinusoidal FM, however, due to its large modulation index β,

the Bessel coefficients associated with these sidelobes cannot be neglected anymore.

As a result, the error incurred by the HT is much more significant. In general, this

unavoidable error imposes a lower bound on the error performance for HT and energy

operator in the extremely wideband scenario.
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