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ABSTRACT

Sickle cell disease (SCD) is characterized by the presence of sickle hemoglobin,
which has the unique property of polymerizing when deoxygenated. The pathophysiology
of acute and chronic clinical manifestations of SCD have shown the central role of dense,
dehydrated red cells in acute and chronic clinical manifestations of this pathology. Recent
studies have indicated that SCD is characterized by a hypercoagulable state that contributes
to the vaso-occlusive events in microcirculation, leading to acute and chronic sickle cell–
related organ damage. This review discusses, in the context of SCD, (1) abnormalities in
the coagulation system, (2) perturbation of platelet activation and aggregation, (3) vascular
endothelial dysfunction, (4) the contribution of cell inflammatory responses, and (5) the
connection with nitric oxide metabolism. We also review the available studies on the
therapeutic approaches in clinical management of hypercoagulability in SCD.

KEYWORDS: Hypercoagulability, vascular endothelial dysfunction, inflammation,

neutrophils, dense red cells

Sickle cell disease (SCD; Online Mendelian
Inheritance in Man [OMIM] No. 603903) is an auto-
somal recessive genetic red cell disorder with a world-
wide distribution that results from a point mutation
(bS, 6V) in codon 6, with the insertion of valine in place
of glutamic acid, leading to the production of a defec-
tive form of hemoglobin (hemoglobin S [HbS]). In the
United States �75,000 people have SCD. In Europe,
immigration from developing countries has increased
the prevalence of SCD through the second half of the
20th century, and now almost 20,000 to 25,000 SCD
patients have been registered.1–4 Sickle hemoglobin
(HbS) shows peculiar biochemical properties, polymer-
izing when deoxygenated. Studies of the kinetics of
HbS polymerization following deoxygenation have
shown that the kinetics of polymer formation is a
high-order exponential function of hemoglobin con-
centration, thus demonstrating the crucial role of cel-

lular HbS concentration in the phenomenon of
sickling.5,6

HbS polymerization is associated with a reduction
in cell ion and water content (cell dehydration), increased
red cell density, and further acceleration of HbS polymer-
ization.5–7 Pathophysiological studies have shown that
the dense, dehydrated red cells play a central role in acute
and chronic clinical manifestations of SCD, in which
intravascular sickling in capillaries and small vessels leads
to vaso-occlusive and impaired blood flow.6,8 The persis-
tent membrane damage associated with HbS polymer-
ization also favors the generation of distorted rigid cells
and further contributes to vaso-occlusive events and cell
destruction in the peripheral circulation. These damaged
dense sickle red cells also show a loss of phospholipid
asymmetry with externalization of phosphatidylserine
(PS; Fig. 1), which is believed to play a significant role
in promoting macrophage recognition with removal of
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erythrocytes (erythrophagocytosis) and activation of co-
agulation. Setty et al have recently shown that increased
PS-exposing red cells are associated with thrombin gen-
eration as well as increased tissue factor (TF) expression,
more likely due to the increased circulating hemoglobin
than as a direct connection between PS-exposing red cells
and vascular endothelium.9–11

A complex perturbation of hemostasis has been
reported in SCD both under steady state and during
acute events. The vaso-occlusive events in the micro-
circulation result from a complex and still partially
known scenario involving the interactions among differ-
ent cell types, including dense, dehydrated sickle cells,
reticulocytes, abnormally activated endothelial cells, leu-
kocytes, platelets, and plasma factors such as coagulation
system, cytokines and oxidized proinflammatory lip-
ids.12–20 Clinical manifestations of the prothrombotic
state of sickle cell patients include venous thromboemb-
olism, in situ thrombosis, and stroke, associated with an
higher risk of thrombotic complications in patients
splenectomized or with functional hyposplenism.6,21–27

COAGULATION SYSTEM AND SICKLE
CELL DISEASE
Studies in SCD have shown increased prothrombin
fragment 1.2 (F1.2), thrombin-antithrombin complexes,

plasma fibrinogen products, D-dimer, and decreased
factor V, suggesting an enhanced thrombin generation
and supporting a chronic thrombophilic state in SCD
patients that is further amplified during acute events
(Table 1).13,17,28–38 Sickle cell patients also show abnor-
mal (decreased) levels of factor (F) VII and activated
FVII compared with normal subjects, most likely due to
increased TF activity that promotes accelerated FVII
turnover.37,39 Moreover, in sickle cell patients under
steady state conditions, decreased FXII and FIX have
been observed, possibly related to activation of the
intrinsic coagulation pathway40 (Table 1).

Ataga et al recently reported high levels of throm-
bin-antithrombin complex, prothrombin fragment
F1þ 2, and D-dimer, associated with an activation profile
of vascular endothelium (i.e., soluble vascular endothelial
cell adhesion molecule) in sickle cell subjects with pulmo-
nary hypertension compared with normal controls.41 It is
interesting to note that these authors also observed a
correlation between the rate of hemolysis and the hyper-
coagulability state in SCD patients with pulmonary
hypertension.41 However, in another cohort of SCD
patients with mild pulmonary hypertension, van Beers
et al reported no association of the hypercoagulative state
of SCD with the early phase of pulmonary hyperten-
sion,42 suggesting that more complex events are involved
in the pathogenesis of pulmonary hypertension in SCD.

Table 1 Platelets and Coagulation System in Sickle Cell Disease

Platelet Parameters and

Coagulation System

Alterations References

Platelet activation (CD62, CD63, GPIIb/IIIa) Increased Tomer et al,29,36 Foulon et al,64 Browne et al,65

Wun et al,69 Famodu and Oduwa,70 Lee et al71

Platelet aggregation Increased Kenny et al,66 Westwick et al,67 Winichagoon et al68

Phosphatidyl serine–rich platelets Increased Tomer et al29,36

Thrombin-antithrombin complex Increased Peters et al,28 Rickles and O’Leary,31

Stuart and Setty,32 Green and Scott,33

Richardson et al,35 Tomer et al,36 Kurantsin-Mills et al,37

Ataga et al,41 van Beers et al42

Prothrombin fragment F1þ 2 Increased Peters et al,28 Tomer et al,36 Ataga et al,41 van Beers et al42

Plasmin-antiplasmin complex Increased Tomer et al29,36

FV Decreased Leslie et al30

FVII and FVIIa Accelerated

turnover

Kurantsin-Mills et al,37 Hagger et al39

FXII and FIX Decreased Branch and Rodgers40

Fibrinogen and fibrin-fibrinogen complex Increased Adam et al,17 Leslie et al30

Fibrinopeptide A Increased Green and Scott,33 Kurantsin-Mills et al,37

Westerman et al38

D-dimer Increased Adam et al,17 Ataga et al,41 van Beers et al,42

Francis and Haywood120

Protein C and S Decreased Green and Scott,33 Westerman et al,38 Tam,45

el-Hazmii et al46 Karayalcin and Lanzkowsky,46

Kuypers et al,48 Lane et al,49 Francis and Haywood120

Plasminogen activator inhibitor Increased Tomer et al,36 Westerman et al,38 Nsiri et al50,51

GP, glycoprotein.
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A possible role in activating the clotting system
with thrombin generation in sickle cell patients is also
played by the circulating TF-positive microparticles
(MP) derived from red cells, platelets, endothelial cells,
and monocytes (Fig. 1). Shet et al reported increased
TF-positive MPs in sickle cell patients in both steady
state and during acute events compared with normal
controls, thereby suggesting a possible contribution of
TF-positive MPs to the sickle cell prothrombotic state.43

In a 2009 study, van Beers et al observed higher levels of
circulating MPs from erythrocytes and platelets in SCD
patients under steady state compared with normal con-
trols, further increasing during acute vaso-occlusive
events.44 These authors did not find TF-MPs as pre-
viously reported by Shet et al,43 but they observed that
the levels of circulating MPs strongly correlate with
hemolysis, von Willebrand factor (VWF), D-dimer,
and F1þ 2 levels, supporting a role of MPs in the
prothrombotic state of sickle cell patients.44

Studies on natural anticoagulant in patients with
SCD showed low levels of protein C and S, suggesting a
possible perturbation in either their synthesis related to
liver disease or a consumption by increased TF and
thrombin production. The relative deficiency of protein
C and S was reported to have a clinical impact on the risk
of developing stroke in children with SCD.33,34,38,45–47

However, variable levels of protein S and C were
observed in sickle cell patients during acute events
compared with steady state, suggesting a more complex
biological scenario.33,34,38,45–47 In addition, the in-
creased percentage of circulating sickle red cells exposing
PS might bind protein S, most likely contributing to
protein S reduction.48,49

The prothrombotic state of SCD is also associ-
ated with abnormalities in the fibrinolytic system, mainly
characterized by increased plasma levels of plasminogen
activator inhibitor (PAI)-1 in both steady state and
during sickle acute events compared with the normal
population.36,38,50,51 Because the synthesis of PAI-1 is
increased in activated or damaged endothelial cells and
also secreted by activated platelets,52 the increased PAI-
1 levels in sickle cell patients suppressing the normal
fibrinolytic system might participate in the pathogenesis
of vaso-occlusive events in SCD. Although studies have
been performed on coagulation system activation during
acute events in SCD, inconclusive data have been
reported thus far.34,36,38,53,54

Studies on thrombophilic deoxyribonucleic acid
mutations have been performed in patients with SCD to
assess their possible impact on sickle cell thrombotic
events. Factor V Leiden and the prothrombin variant
(FII G20210A) have been evaluated in sickle cell pa-
tients of African descent. Because the frequency of these
two alleles is low in the African descendent population,
the contribution of these two thrombophilic mutations
on thrombotic clinical manifestation of SCD seems to be

limited.55–58 However, in sickle cell patients from east-
ern Saudi Arabia and Lebanon, a nonsignificantly higher
frequency of FII G20210A was observed compared with
normal controls.59 Moreover, an association between
factor V Leiden and venous thrombotic events was
shown in Iranian patients with SCD, supporting a
different impact of this thrombophilic mutation within
sickle cell patients from different ethnic groups.60,61

Studies on methylene tetrahydrofolate reductase
(MTHFR) polymorphisms were performed in patients
with SCD, but no association between any MTHFR
mutation and thrombotic events was high-
lighted.55,57,62,63

PLATELETS AND SICKLE CELL DISEASE
Studies on the role of platelets in clinical manifestations
of SCD on both steady state and acute events have been
partially characterized, and much still remains to be
investigated (Table 1). Increased production of throm-
boxane-A2 and prostaglandin metabolites associated
with decreased platelet trombospondin-1 levels, suggest-
ing a chronic activation of platelets, was shown in urine
from SCD patients.64,65 Other studies also showed
increased platelet aggregation in SCD.66–68 Increased
platelet activation markers such as P-selectin (CD62),
CD63. and activated glycoprotein (GP)IIb/IIIa as well
as increased plasma soluble factors as platelet factor
(PF)-3, -4 and b-thromboglobulin and platelet-derived
soluble CD40 ligand (sCD40L) were reported in SCD
patients using a cytofluorimetric approach.36,69–71 Vil-
lagra et al suggested that the relative reduction in nitric
oxide (NO) bioavailability might participate in trigger-
ing platelet activation as well as increasing platelet
adhesive properties in patients with SCD.72 PS-rich
platelets have also been described in SCD patients; these
show an increased binding to annexin V that might
participate in activation of the coagulation system.36

Recently, Proença-Ferreira et al reported an increased
ability of platelets from subjects with SCD to adhere to
fibrinogen through modulation of platelet’s cyclic ad-
enosine monophosphate content via phosphodiesterase-
3A activity associated with increased aIIbb3-integrin
activation.73 It is interesting to note that in clinical
management of SCD patients during acute pain events,
the platelet count first decreases, followed by a para-
doxical increase associated with higher plasma levels of
the platelet products PF4 and b-thromboglobulin
(bTG). This suggests a further amplification of platelet
activation during acute events.33,74–76 The reduction in
platelet content and then the rebound during resolution
of acute events have been related to functional asplenia of
patients with SCD.13,15,65

Studies on polymorphisms of human platelet
alloantigen (HPA), a complex of platelet glycoproteins
with other cell-bound factors, showed a possible pro-
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thrombotic role in different thrombotic disorders and in
sickle cell patients with cerebrovascular events.77–80

HPA polymorphisms result in platelet structural changes
and/or levels of adhesion proteins. In a case-control
study, Al-Subaie et al reported that the HPA-3 variant,
which has an isoleucine-to-serine substitution close to
the C-terminus of the GPIIb heavy chain, seems to be an
independent risk factor for acute vaso-occlusive events in
SCD (Table 2).81

However, no conclusive evidence is actually avail-
able on the real impact of thrombotic mutations in SCD
mainly due to the limited number of studies and the
differences in the genetic background of the sickle cell
population studied.

VASCULAR ENDOTHELIUM
DYSFUNCTION IN SICKLE CELL DISEASE
SCD patients have shown abnormally activated circulat-
ing endothelial cells that increase during acute vaso-
occlusive crisis, which is compatible with the presence of
chronic vascular endothelial damage further worsening
during acute events.8,54,82–85 Recent studies on the sickle
cell-endothelium adhesive mechanism identified differ-
ent interactions that may have particular relevance in the
generation of acute vaso-occlusive events: (1) the integ-
rin a a4bb1 receptor of fibronectin and VCAM-1, E-
selectin, and P-selectin; (2) the thrombospondin (TSP)

and/or collagen and receptor CD36, present on the
surface of endothelial cells, platelets, and reticulocyte-
rich subpopulations of normal and sickle erythrocytes;
(3) the sulfate glycolipids, which bind TSP, VWF
multimer, and laminin;6,86,87 (4) the Lutheran blood
group proteins (BCAM/LU), whose expression is in-
creased in red cells from SCD patients as is their binding
to the a5 subunit of laminin, a component of extrac-
ellular subendothelial matrix;88,89 (5) the ICAM-4
(Landsteiner-Weiner blood group glycoprotein), which
binds aVb3 integrin receptors on endothelial cells;90–93

and (6) the exposure of PS, detectable in a subpopulation
of sickle red cells, which participates in sickle cell
adhesion to activated endothelium9,94–97 (Fig. 1).

In SCD patients, increased levels of VWF and, in
particular, large VWF multimers were observed and
associated with acute vaso-occlusive events.98–101 The
increased levels of circulating VWF multimers are related
to the activity of the metalloprotease ADAMTS 13 (a
disintegrin and metalloproteinase with thrombospondin
domain 13) that cleaves the hyperadhesive ultra-large
VWF under conditions of high fluid shear stress,102–104

playing an important role in maintaining the endothelial
cell surface free from hyperadhesive ultra-large VWF.105

Studt et al showed that free hemoglobin can inhibit
ADAMTS 13 activity, affecting the VWF cleavage in
patients with thrombocytopenic purpura.106 Schnog
et al98 reported a decreased ADAMTS 13 activity in

Table 2 Genetic Modifiers of Platelet Activation and Endothelial Function with Effects in Sickle Cell Disease Acute
Vaso-Occlusive Events

Genetic Modifier Target Effects References

Human platelets alloantigen (HPA)

polymorphism: HPA-3 variant

C-terminus of GPIIb heavy

chain on platelets

Independent risk factor for

acute vaso-occlusive events

Al-Subaie et al81

G1238C VCAM-1 single nucleotide

polymorphism

Modulation of vascular

endothelial adhesion molecule

Protective effects from stroke

in SCD children

Taylor et al108

TNF-a and IL-4 polymorphism Proinflammatory cytokines Linked to risk of stroke in

SCD children

Hoppe et al109

Endothelin-1 (ET-1) polymorphism:

ET-1 T8002C

Vascular active molecule Increased susceptibility to acute

chest syndrome

Chaar et al110

Endothelium nitric oxide

synthase (eNOS)

polymorphism: T-786C variant

Endothelial NO metabolism Reduced susceptibility to develop

acute chest syndrome in SCD

children Increased susceptibility

to develop acute chest syndrome

in female patients with SCD

Chaar et al110

Sharan et al111

Klotho (KL) gene polymorphism b-Galactosidase like proteins

involved in endothelial

NO homeostasis

Linked to stroke, osteonecrosis,

leg ulcers, and priapism

Baldwin et al,112

Sebastiani et al,113

Nolan et al114

Receptor tyrosine kinase

Tie polymorphism

Kinase involved in signaling

pathways for chemotaxis

and NO metabolism

Linked to leg ulcers Nolan et al115

Polymorphism of proteins from bone

morphogenic protein pathway

Proteins involved in signaling

pathway to protect vascular

endothelial surface

Linked to risk factor for stroke,

priapism, leg ulcers

Baldwin et al,112

Sebastiani et al,113

Elliott,116

SCD, sickle cell disease; GP, glycoprotein; VCAM, vascular cell adhesion molecule; TNF, tumor necrosis factor; IL, interleukin; NO, nitric oxide.
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sickle cell patients compared with normal controls as well
as an associated reduced ADAMTS 13-to-VWF antigen
ratio.99,107 The same authors further demonstrated an
inverse relationship between ADAMTS 13 activity and
extracellular hemoglobin levels, suggesting that hemoglo-
bin might compete with VWF for ADAMTS 13. This
would cause a relative deficiency of ADAMTS 13, which
in turn would block the proteolysis of VWF and lead to
the accumulation of hyperadhesive ultra-large VWF on
the vascular endothelium surface.98,99,107 This mechanism
might represent a new element contributing to the com-
plex scenario of microvascular thrombosis in SCD.

Genetic modifiers with functional effects on vas-
cular endothelium homeostasis were evaluated in few
studies in patients with SCD (Table 2). Taylor et al
showed a protective effect from stroke of G1238C
VCAM1 single nucleotide polymorphism in sickle cell
patients.108 Polymorphisms of cytokines involved in
proinflammatory responses, such as tumor necrosis fac-
tor (TNF)a and interleukin (IL)4, were correlated with
the risk of stroke in children with SCD.109 Polymor-
phisms of either endothelin-1 (ET-1) and endothelial-
NO synthase (eNOS) were linked to the susceptibility of
sickle cell patients to acute vaso-occlusive events.110,111

Gene polymorphisms in Klotho (KL), encoding for a b-
glucosidase-like protein involved in endothelial NO
homeostasis, were linked to stroke and osteonecrosis in
SCD as well as to leg ulcers.112–115 A polymorphism of
the receptor tyrosine kinase Tie, a factor involved in NO
metabolism and leukocyte chemotaxis, was identified as
a possible additional genetic modifier associated with leg
ulcers in SCD patients.112–115 Finally, polymorphisms of
genes from bone morphogenic protein signaling pathway
involved in protection of the vascular endothelial surface
were associated with the risk for different acute vaso-
occlusive events including stroke, priapism, or leg ul-
cers.112,113,116 Although these studies show the possible
role of genetic modifiers of endothelial homeostasis
affecting acute vaso-occlusive events in SCD, further
investigations should be performed to verify the real
impact of these gene polymorphisms on larger SCD
patient populations.

INFLAMMATION AND LEUKOCYTES
PARTICIPATE IN SICKLE CELL VASO-
OCCLUSIVE EVENTS
A chronic inflammatory state has been described in SCD
patients characterized by increased plasma levels of acute
phase proteins and soluble cytokines such as IL1b, IL6,
TNF-a, and endothelin-1 (ET-1) that are further ele-
vated during acute vaso-occlusive events. These factors
participate in leukocyte chemotaxis, modulate vascular
tone, and contribute to sickle cell–related tissue dam-
age.18,20,85,117–122 Recently, Enenstein et al reported an
altered ratio of proinflammatory factor RelA to anti-

inflammatory factor KLF2 in sickle cell children with
high risk of stroke, thus suggesting a complex prothrom-
botic network involving abnormal activated vascular
endothelium and inflammation.123

Inflammatory cells such as neutrophils were
shown to participate in sickle cell–related vaso-occlusive
events; these cells were able more efficiently to adhere to
fibronectin and vascular endothelial cells than neutro-
phils from normal subjects. This phenomenon seems to
be related to the higher surface expression of adhesion
molecules used for transendothelial migration.124,125 In
fact, b2 integrin Mac 1 (aMb2 or CD11b/CD18) was
reported to be increased in neutrophils from SCD
patients, suggesting a higher ability of SCD neutrophils
to firmly adhere to vascular endothelium surface than
normal controls with local reduction of blood flow,
which is crucial in the development of acute vaso-
occlusive events.126,127 Hidalgo et al reported an inter-
esting connection between neutrophils, red blood cells,
and activated endothelial surface in developing vascular
occlusion and hypoxic cell damage in microcirculation of
lung from a mouse model of SCD.128 These authors
hypothesized that the interaction between these blood
cell types and the activated endothelium might be
coordinated by the interactions of endothelial E-selectin,
neutrophil E-selectin ligand (ESL)-1, and the leukocyte
integrin Mac1 (aMb2 CD11b/CD18). The heterotypic
aggregates are generated by the binding of ESL-1 on
neutrophils to E-selecting on the vascular endothelium,
which signals the activation of Mac 1 on neutrophils and
in turn mediates the heterotypic association of neutro-
phils with sickle red blood cells.128 This interesting
pathway, E-selectin-ESL-Mac1, should be further
studied in human subjects with SCD and might be
explored as a possible target to design new pharmaco-
logical strategies in treatment sickle cell–related vaso-
occlusive events.

Increased iNKT cells, nonphagocytic inflamma-
tory cells producing proinflammatory cytokines were
observed in SCD patients, and it was proposed that
iNKT cells might contribute to SCD vasculopathy,
representing a possible additional risk factor for stroke
in sickle cell patients.23,129

THE NITRIC OXIDE CONNECTION
SCD is characterized by a relative reduction in NO
bioavailability that contributes to abnormal endothelial
activation and SCD organ damage.14,16,85,122,130–132 NO
is a potent vasodilator and inhibitor of vascular remodel-
ing, and it also affects the multistep cascade of events
involved in leukocyte, platelet, and endothelial activation.
NO is generated from L-Arginine by endothelial cells via
constitutive and inflammatory inducible nitric oxide
synthases. Moreover, chronic hemolysis leading to in-
crease the plasma levels of hemoglobin (i.e., an efficient
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NO buffer) contributes to reduce the levels of NO in
SCD. Thus the NO-reduced bioavailability might con-
tribute to the hypercoagulable state observed in patients
with SCD.

ANTIPLATELET AND ANTICOAGULANT
AGENTS IN SICKLE CELL DISEASE
Information regarding the use of antiplatelet agents or
anticoagulants in the treatment of either acute or chronic
clinical manifestation of SCD is still limited due to the
small and relative low-quality design of the stud-
ies.17,133–138 The impact of antiplatelet agents such as
aspirin or ticlopidine on either the frequency and/or
duration of acute vaso-occlusive crisis were evaluated in a
few studies.17,133–138 The results were not conclusive
because either no differences or limited ameliorations in
the frequency and duration of acute vaso-occlusive
events in SCD patients were observed.17,133–138 Tomer
et al recently reported a reduction of pain episodes and in
plasma levels of F1þ 2, D-dimer, and the plasmin-
antiplasmin complex in a small cohort of sickle cell
patients supplemented with n-3 fatty acid, suggesting a
possible correlation between a reduced prothrombotic
state and the rate of acute sickle cell–related events.29

Anticoagulant treatment with heparin has been
considered as an additional therapeutic approach to
block sickle cell adhesion to endothelial cells through
the P-selectin pathway132,139–141 or binding to TSP that
can mediate the interactions between sickle erythrocytes
and the vascular endothelial surface. A double-blind
randomized trial with tinzaparin in SCD patients during
acute vaso-occlusive events documented a reduction of
their severity and duration.9,142 Studies with a low dose
of warfarin or acenocoumarol were reported to slightly
reduce the frequency of acute pain events with decreased
thrombin generation and fibrinolysis, however without
reaching a significant clinical amelioration. This therapy
was also associated with frequent bleeding complica-
tions.98,133,143,144

Thrombolytic agents in the treatment of stroke in
SCD are generally precluded due to the high risk of
possible hemorrhage as a complication of thrombolytic
therapy in patients presenting with moya-moya disease or
pseudoxanthoma elasticum tissue abnormalities.23,145,146

CONCLUSION
The prothrombotic state in SCD contributes to acute
and chronic clinical manifestations. Studies have shown
abnormalities in the coagulation system, perturbation of
platelet activation and aggregation, increased adherence
of neutrophils, increased nonphagocytic iNKT cells, and
abnormal red cells that more easily adhere on an abnor-
mally activated vascular endothelial surface in SCD.
Although progress has been made in characterizing the

hypercoagulable state in this challenging disorder, more
remains to be investigated, both related to the patho-
genesis of vaso-occlusive events and the use of antipla-
telet and anticoagulant treatments for a more effective
clinical management of SCD patients.
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