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ABSTRACT 

 

 Ordinary chondrites contain an important record of events that took place during 

the earliest period of solar system evolution. These include primary processes, such as 

chondrule formation, and secondary processes, those that affected asteroids after 

accretion and modified primary components. Secondary processes include aqueous 

alteration, thermal metamorphism, and shock effects from impact events. Secondary 

minerals can provide insight into the chemical and physical conditions that affected their 

parent asteroids. Feldspar is known to be a secondary mineral that crystallized during 

thermal metamorphism. The goal of this work is to use the formation and evolution of 

feldspar to elucidate the conditions of secondary processing on the ordinary chondrite 

parent asteroids. I show the common occurrence of primary feldspar in chondrules and 

reveal ubiquitous evidence for widespread metasomatism recorded by feldspar, which has 

not been fully recognized previously. 

 Chapter 1 provides an overview of the effects of metamorphism in the L group of 

ordinary chondrites, as observed in feldspar as well as secondary phosphate minerals. I 

show that metamorphism of secondary minerals is similar in H, L, and LL groups of 
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ordinary chondrites. Chapter 2 presents a study of the minimally metamorphosed 

ordinary chondrite Semarkona. I show that primary igneous plagioclase, with a wide 

range of compositions, is present within chondrules. Chapter 3 then follows the formation 

and alteration of feldspar in chondrules through the metamorphic sequence. I observe 

abundant evidence for metasomatism in feldspar, particularly in altered calcic 

plagioclase, crystallized secondary albite, and exsolved of K-feldspar from primary and 

secondary albite. I present a three-stage model of metasomatism involving prograde 

hydrous alteration, dehydration near peak metamorphism, and late-stage infiltration of 

anhydrous fluids. In Chapter 4, I examine fine-scale exsolution lamellae of K-feldspar in 

albite to determine cooling rates. I find fast cooling rates at high temperatures and discuss 

implications for thermal histories of ordinary chondrite parent bodies. Chapter 5 explores 

the development of porosity in chondrules. I show that pores in chondrules are the result 

of dissolution of feldspar and mesostasis glass, and that their existence facilitated fluid 

flow and chemical transport between chondrules and surrounding matrix.   
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PREFACE 

 

 This dissertation is composed of five chapters and three appendices. Each chapter 

is written as a separate, independent manuscript with its own introduction, methods, 

results, discussion, and references. As such, a degree of repetition between the chapters is 

unavoidable. The chapters were also written over a period of time so some refer to 

conference abstracts that are now full manuscripts. Each chapter has at least one coauthor 

whose contributions will be discussed below. The vast majority of the analytical work 

was done myself and I will be the first author on the resulting publications. 

 Chapter 1 describes the mineralogy of phosphates and feldspar in L chondrites. It 

extends work on phosphates in H (Jones et al., 2016) and LL (Jones et al., 2014) 

chondrites and feldspar in H and LL chondrites (Kovach and Jones, 2010). Most of the 

phosphate data was obtained for my undergraduate senior thesis and presented at the 

2013 Lunar and Planetary Science Conference (Lewis and Jones, 2013). Some of the 

feldspar data was obtained by Jane Gallegos for her undergraduate senior thesis and 

presented at the 2011 Annual Meeting of the Meteoritical Society (Gallegos and Jones, 

2011). I acquired the remaining data, provided the synthesis and interpretation, and wrote 

the final manuscript. Rhian Jones contributed significantly to interpretation of the data 

and editing of the manuscript. This chapter is published in Meteoritics & Planetary 

Science as Lewis and Jones (2016). 

 Chapter 2 presents a detailed description of the feldspar mineralogy within 

chondrules of the LL3.00 chondrite Semarkona. All the data was acquired by myself, 

some of which was presented at the 2014 Annual Meeting of the Meteoritical Society 

(Lewis and Jones, 2014a) and the 2015 Lunar and Planetary Science Conference (Lewis 
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and Jones, 2015b). Rhian Jones contributed significantly to interpretation of the data and 

editing of the manuscript. This chapter has been submitted for publication to Meteoritics 

& Planetary Science and is cited as Lewis and Jones (in review). 

 Chapter 3 follows the alteration and equilibration of plagioclase in ordinary 

chondrites. It extends the work of Chapters 1 and 2 as well as Kovach and Jones (2010) 

and Jones and Brearley (2010). All data was acquired myself and presented, in various 

parts, at Lunar and Planetary Science Conferences in 2014, 2016, and 2018 (Lewis and 

Jones, 2014b, 2018; Lewis et al., 2016) and at Annual Meetings of the Meteoritical 

Society in 2014, 2015, and 2016 (Lewis and Jones, 2014a, 2015a, 2016a). Rhian Jones 

and Adrian Brearley contributed to interpretation of the data and Rhian Jones helped with 

the editing of the chapter. It will be submitted for publication to Geochimica et 

Cosmochimica Acta and is cited as Lewis et al. (in preparation). 

 Chapter 4 uses K-feldspar exsolution textures to estimate cooling rates in ordinary 

chondrites. It builds on the work developed in the first three chapters as well as Kovach 

and Jones (2010) and Jones and Brearley (2011). I acquired all the data, some of which 

was presented at the 2015 Annual Meeting of the Meteoritical Society (Lewis and Jones, 

2015a) and the 2016 Lunar and Planetary Science Conference (Lewis et al., 2016). Rhian 

Jones and Adrian Brearley contributed to interpretation of the data and Rhian Jones 

helped with the editing of the chapter. It will be submitted for publication to Geochimica 

et Cosmochimica Acta and is cited as Lewis et al. (in preparation). 

 Chapter 5 takes a close look at porosity in chondrules using X-ray tomography. I 

acquired the X-ray tomography data with help from the staff of the Manchester X-ray 

Imaging Facility at the University of Manchester. The rest of the data I acquired myself 
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using electron beam facilities at the Department of Earth and Planetary Sciences, 

University of New Mexico. Part of the data was presented at the 2017 Lunar and 

Planetary Science Conference (Lewis et al., 2017). Rhian Jones contributed significantly 

to interpretation of the data and editing of the manuscript. Serafina Garcea provided 

guidance concerning the processing and interpretation of the tomography data, and 

contributed to editing of the manuscript. This chapter was submitted for publication to 

Geochimica et Cosmochimica Acta and is cited (Lewis et al., in review).  

 Appendix 1 consists of the individual EPMA analyses for data acquired in 

Chapters 1-3. Appendix 2 illustrates the methodology used in Chapters 2 and 5 for 

calculating density-corrected bulk chemical compositions from quantitative EPMA maps. 

Appendix 3 is a compilation of standardized radiogenic of age data for chondrites using 

various radioisotope systems and was produced as the final project for the Radiogenic 

Isotope Geochemistry class in the spring of 2015. These data were used to create the 

probability density plots in Chapter 4 and provided general guidance concerning early 

solar system chronology for the entire dissertation. 
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Abstract 

In ordinary chondrites (OCs), phosphates and feldspar are secondary minerals 

known to be products of parent body metamorphism. Both minerals provide evidence that 

metasomatic fluids played a role during metamorphism. We studied the petrology and 

chemistry of phosphates and feldspar in petrologic type 4-6 L chondrites, to examine the 

role of metasomatic fluids, and to compare metamorphic conditions across all three OC 

groups. Apatite in L chondrites is Cl-rich, similar to H chondrites, whereas apatite in LL 

chondrites has lower Cl/F ratios. Merrillite has similar compositions among the three 

chondrite groups. Feldspar in L chondrites shows a similar equilibration trend to LL 

chondrites, from a wide range of plagioclase compositions in petrologic type 4 to a 

homogeneous albitic composition in type 6. This contrasts with H chondrites which have 

homogeneous albitic plagioclase in petrologic types 4-6. Alkali- and halogen-rich and 

likely hydrous metasomatic fluids acted during prograde metamorphism on OC parent 

bodies, resulting in albitization reactions and development of phosphate minerals. Fluid 

compositions transitioned to a more anhydrous, Cl-rich composition after the asteroid 
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began to cool. Differences in secondary minerals between H chondrites and L, LL 

chondrites can be explained by differences in fluid abundance, duration, or timing of 

fluid release. Phosphate minerals in the regolith breccia, Kendleton, show lithology-

dependent apatite compositions. Bulk Cl/F ratios for OCs inferred from apatite 

compositions are higher than measured bulk chondrite values, suggesting that bulk F 

abundances are overestimated and that bulk Cl/F ratios in OCs are similar to CI. 

1. Introduction 

Ordinary chondrites (OCs) show a sequence of equilibration of both textural and 

chemical characteristics. These changes are described by petrologic types 3-6 and are 

generally accepted to represent progressive degrees of metamorphism which occurred 

within 65 million years after accretion (Van Schmus and Wood 1967; Huss et al. 2006). 

Textural changes include recrystallization of the matrix, crystallization of chondrule 

mesostasis, blurring of the chondrule-matrix texture, and growth of secondary phases. 

Olivine and pyroxene show a wide range of compositions in type 3. Due to differences in 

the Mg-Fe interdiffusion rate for olivine and pyroxene, equilibration in olivine occurs by 

petrologic type 4 followed by pyroxene which is equilibrated by type 5. 

The metamorphic environment on OC parent bodies is only poorly constrained 

and peak temperatures are only roughly defined. Peak temperatures for petrologic type 3 

are not thought to exceed 500 ºC, types 4-5 range from 500-800 ºC, and type 6 from 800 

ºC to the onset of melting at ~1000 ºC (Scott and Krot 2014). Additionally, although the 

presence of fluids has been inferred from mineralogical observations, the importance of 

fluids and their role during metamorphism is still poorly understood. Low petrologic type 

chondrites show evidence for the action of fluids from the presence of phyllosilicates 
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(Alexander et al. 1989), carbide-magnetite assemblages (Krot et al. 1997), sulfide-

magnetite assemblages (Huss 1979), and bleached chondrules (Grossman et al. 2000). 

Increases in Fe oxidation (McSween and Labotka 1993) and possible mixing of O-isotope 

reservoirs (Bridges et al. 1999) are indication of fluid activity in the higher petrologic 

types.  

 Secondary minerals that occur as a result of thermal metamorphism can be used to 

understand the environment in which they form and evolve. Specifically, phosphate and 

feldspar minerals can preserve a record of any fluids present, and feldspar 

microstructures are a sensitive indicator of thermal history. Two phosphate minerals are 

present in petrologic type 4-6 ordinary chondrites: apatite (Ca5(PO4)3X, where X 

represents monovalent anions, typically Cl-, F- or OH-) and merrillite 

(Na2(Mg,Fe2+)2Ca18(PO4)14) (Brearley and Jones 1998). In the traditional view of 

metamorphism, phosphates are considered to form in a solid-state oxidation reaction, 

with P derived from its primary occurrence in Fe,Ni metal (Ahrens 1970; Jones et al. 

2014). Feldspar is typically albitic in composition and generally is considered to form 

from the crystallization of chondrule mesostasis by petrologic type 4, with progressive 

coarsening to type 6 (Van Schmus and Wood 1967). 

 Previous studies of LL and H chondrites reveal histories involving fluid 

interactions, for both phosphates (Jones and McCubbin 2012; Jones et al. 2014) and 

feldspar (Kovach and Jones 2010). Jones et al. (2014) showed that apatite in LL 

chondrites has high Cl/F ratios and H2O abundances less than 100 ppm. Due to the lack 

of apatite equilibration with increasing petrologic type they argue for the presence of a 

dry, Cl-rich fluid acting after peak metamorphism. Apatite in H chondrites was found to 
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be similar, although with slightly higher Cl/F ratios than LL chondrites (Jones and 

McCubbin 2012). Kovach and Jones (2010) showed that a wide range of plagioclase 

feldspar compositions is present in petrologic type 4 LL chondrites which equilibrate to 

an albitic composition (~An12) by petrologic type 6. LL chondrites also show evidence 

for alkali metasomatism where interaction with Na- and K-bearing fluids result in 

albitization reactions, and uptake of K in feldspar that later exsolves. In contrast, Kovach 

and Jones (2010) showed that H chondrites have homogeneous plagioclase compositions 

in types 4-6, indicating that equilibration occurred in petrologic type 3, i.e., at lower peak 

temperatures than in the LL chondrites. Currently, it is not clear how the L chondrites 

compare with the H and LL chondrites, and whether they show similarities to either of 

these groups. In this study, we extend these previous findings to examine the behavior of 

phosphates and feldspar in L chondrites, in order to compare the metamorphic and 

metasomatic histories of all three ordinary chondrite groups and to assess similarities and 

differences among the ordinary chondrite parent bodies. 

2. Samples and analytical methods 

 We studied both phosphates and feldspar in three equilibrated ordinary 

chondrites: Santa Barbara (L4), Elenovka (L5), and Bruderheim (L6) (Fig. 1.1a-c). We 

also analyzed phosphates in the regolith breccia Kendleton (L3-5) (Fig. 1.1d-f) and 

feldspar in Kramer Creek (L4) and Roy 1933 (L5) (Table 1.1). Kramer Creek and Roy 

1933 are finds with low degrees of terrestrial weathering, W3 and W2 respectively, 

which we determined using the method of Wlotzka (1993). The other four chondrites are 

falls and were chosen in order to minimize the effects of terrestrial weathering. Low to 

moderate shock stages have been reported for Kramer Creek (S2), Roy 1933 (S3),  
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Table 1.1. Sample list. 

 Thin section Petrologic type Shock stage Weathering 

Santa Barbara UNM 120 L4 S2 Fall 

Kramer Creek UNM 82 L4 S2 W3 

Elenovka UNM 246E L5 S3 Fall 

Roy 1933 UNM 31 L5 S3 W2 

Bruderheim UNM 53 L6 S4 Fall 

Kendleton, regolith breccia Fall 

L3 clast UNM 710A L3 S3  
L4 host UNM 713 L4 S3  
L5 clast UNM 714A L5 S2  

 

Elenovka (S3) and Bruderheim (S4) (Stöffler et al. 1991; Rubin 2004). Santa Barbara 

was also determined to have a low shock stage (S2) during the course of this study 

according to the method described by Stöffler et al. (1991). Kendleton is a regolith 

breccia with an L4 chondritic host, clasts of L3 and L5 material, areas of shock 

darkening, and shock melt veins (Ehlmann et al. 1988). Despite these shock features, the 

material we studied only has low to moderate reported shock stages of ~S3 for the L3 

clast and L4 host and ~S2 for the L5 clast (Ehlmann et al. 1988; Rubin 2004).  

Phosphate and feldspar grains were located in each thin section using optical 

microscopy, and scanning electron microscopy (SEM). We used a JEOL 5800LV SEM 

and a FEI Quanta 3D field emission gun SEM for backscattered electron (BSE) imaging 

and energy-dispersive spectroscopic (EDS) analysis. Quantitative wavelength-dispersive 

spectroscopic (WDS) analysis was conducted on a JEOL 8200 electron probe 

microanalyzer (EPMA) with a 15 kV accelerating voltage and 20 nA beam current. 

Phosphates were analyzed with a 5 μm spot using the following standards: Taylor apatite 

(Ca, P, F), Taylor olivine (Mg, Fe), sodalite (Cl, Na), Y-phosphate (Y), and Ce-phosphate 

(Ce). We also used a second apatite standard, FM020, for Ca and P (McCubbin et al. 
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2012). We used the live chart recorder to monitor F and Cl count rates during the 

analyses to ensure migration was not occurring, particularly in F (Stormer et al. 1993; 

McCubbin et al. 2010) and F was analyzed using the LDE crystal spectrometer. Feldspar 

grains were analyzed with a 2-10 μm beam diameter using the following Taylor 

standards: albite (Si, Al, Na), orthoclase (Al, K), diopside (Ca, Si), olivine (Fe, Mg), and 

chromite (Cr). 

 Phosphate abundances and distribution maps were generated from combined 

WDS/EDS element maps for each thin section using the electron microprobe (Fig. 1.1). 

Maps were obtained over a 10 mm x 10 mm area for Santa Barbara, Elenovka, and 

Bruderheim, a 5 mm x 15 mm area for the Kendleton L4 host, a 5 mm x 5 mm area for 

the L3 clast, and a 5 mm x 10 mm area for the L5 clast. The maps were generated with a 

step size of 10 μm/px with a 20 ms dwell time per pixel and a 10 μm wide electron beam. 

We determined modal abundances by pixel counting in Adobe Photoshop. The total 

phosphate abundance was calculated by counting pixels containing both P and Ca above 

a 25% threshold. Apatite abundance was then calculated by counting phosphate pixels 

with Cl above a 10% threshold and merrillite was determined by difference. Volume 

percentages were calculated as an area since no fabric was noted on any of the samples. 

Uncertainty in phosphate abundances are estimated to be ±0.1% by volume, absolute. 

This uncertainty is estimated by varying the thresholding parameters by ±10% and is 

consistent with the uncertainty estimated for phosphate abundances in LL chondrites by 

Jones et al. (2014) using a similar thresholding technique. 

 Phosphate distribution maps were also used to determine maximum and average 

grain sizes for apatite and merrillite using particle analysis in ImageJ. Individual grain 
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sizes were taken to be the maximum dimension (width or height) produced by the particle 

analysis. Maximum grain sizes measured in this manner are very close to sizes of the 

largest grains measured in BSE images. For example, the large merrillite grain in 

Kendleton’s L5 clast (Fig. 1.4e) is approximately 400 µm x 650 µm in size and the 

particle analysis yields a grain size of 620 µm. However, since the phosphate map 

resolution is 10 μm/px, average grain sizes are inevitably biased by grains greater than or 

equal to 10 μm. Maximum grain sizes are likely much more accurate than the averages. 

3. Results 

3.1. Phosphates 

3.1.1. Abundances and distribution 

 Phosphate abundances and grain sizes are summarized in Table 1.2 and illustrated 

in Figure 1.1. Apatite and merrillite appear to have a homogeneous and random 

distribution throughout the mapped areas of Elenovka and Bruderheim. Santa Barbara has 

an increase in phosphate abundance and average size from the lower left to the upper 

right of the thin section (Fig. 1.1a). This change in texture does not appear to correspond 

with any obvious differences in thin section texture. Total phosphate volume percentages 

are 0.4%, 0.7%, and 0.5% for Santa Barbara, Elenovka, and Bruderheim respectively. 

Merrillite is more common than apatite in Elenovka and Bruderheim, but in Santa 

Barbara phosphates are approximately equal in abundance (49% apatite to 51% 

merrillite). Average apatite grain sizes are larger than merrillite by nearly a factor of 2 

though size distributions for both phosphates are very broad and dominated by small 

grains. Average grain sizes in Santa Barbara, Elenovka, and Bruderheim are 58 µm, 62 

µm, and 55 µm for apatite and 30 µm, 35 µm, and 31 µm for merrillite respectively. 

 



 

 

 

8 

         

T
ab

le
 1

.2
. 

P
h

o
sp

h
at

e 
ab

u
n

d
an

ce
s 

an
d

 g
ra

in
 s

iz
es

. 

 
V

o
lu

m
e 

%
 

 
P

h
o
sp

h
at

e 
%

 
 

M
ax

 g
ra

in
 s

iz
e 

(μ
m

) 
 

M
ea

n
 g

ra
in

 s
iz

e 
(μ

m
) 

 
T

o
ta

l 
A

p
at

it
e 

M
er

ri
ll

it
e 

 
A

p
at

it
e 

M
er

ri
ll

it
e 

 
A

p
at

it
e 

M
er

ri
ll

it
e 

 
A

p
at

it
e 

1
σ
 

M
er

ri
ll

it
e 

1
σ
 

S
an

ta
 B

ar
b
ar

a 
(L

4
) 

0
.4

 
0

.2
 

0
.2

 
 

4
9

 
5
1

 
 

2
3
0

 
2

9
0
 

 
5

8
 

5
1
 

3
0
 

3
6
 

E
le

n
o
v
k
a 

(L
5

) 
0

.7
 

0
.2

 
0
.5

 
 

3
0

 
7
0

 
 

3
9
0

 
4

9
0
 

 
6

2
 

8
2
 

3
5
 

7
1
 

B
ru

d
er

h
ei

m
 (

L
6

) 
0

.5
 

0
.1

 
0
.4

 
 

2
6

 
7
4

 
 

4
0
0

 
3

9
0
 

 
5

5
 

7
0
 

3
1
 

5
3
 

K
en

d
le

to
n
, 
re

g
o
li

th
 b

re
cc

ia
 

 
 

 
 

 
 

 
 

 
 

 
 

 
L

3
 c

la
st

 
0

.2
 

0
.1

 
0
.1

 
 

4
6

 
5
4

 
 

1
6
0

 
8

0
 

 
3

9
 

4
3
 

2
0
 

1
6
 

L
4
 h

o
st

 
0

.3
 

0
.0

 
0
.3

 
 

3
 

9
7

 
 

6
0

 
2

8
0
 

 
2

8
 

1
5
 

4
0
 

3
1
 

L
5
 c

la
st

 
0

.7
 

0
.3

 
0
.4

 
 

3
7

 
6
3

 
 

2
9
0

 
6

2
0
 

 
4

2
 

5
0
 

4
5
 

9
4
 

  



 

9 

 

 
 

Figure 1.1. Thin sections of samples studied: images on the left are flat-bed optical scans of (a) 

Santa Barbara (L4), (b) Elenovka (L5), (c) Bruderheim (L6). Maps on the right show the 

distribution of merrillite (red) and apatite (blue) in selected regions of each thin section. 

Phosphate distributions were generated using WDS element maps, see text for details. 
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Figure 1.1. (Continued). Thin sections of samples studied: images on the left are flat-bed optical 

scans the L regolith breccia Kendleton’s (d) L3 clast, (e) L4 host, (f) L5 clast.  Maps on the right 

show the distribution of merrillite (red) and apatite (blue) in selected regions of each thin section. 

Phosphate distributions were generated using WDS element maps, see text for details. 
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The largest merrillite grains are 10-30% larger than the largest apatite grains. Maximum 

grain sizes for Santa Barbara, Elenovka, and Bruderheim are 230 µm, 390 µm, and 400 

µm for apatite and 290 µm, 490 µm, and 390 µm for merrillite respectively. 

In the regolith breccia Kendleton we focused on an L3 clast ~5 mm in diameter 

present within an impact melt vein (Fig. 1.1d), the L4 host (Fig. 1.1e) which comprises 

~80% of the material (Ehlmann et al. 1988), and an L5 clast ~20 mm in diameter (Fig. 

1.1f). Kendleton also has a largely homogeneous and random distribution of phosphates 

in the mapped areas. However, the L5 clast is dominated by a single large (approximately 

400 µm x 650 µm) apatite-bearing merrillite grain (Fig. 1.1f). This is the largest grain we 

observed in any sample and its presence skews the phosphate abundance and grain size 

distribution for this clast. The L3 clast and L4 host have comparatively low phosphate 

abundances of 0.2% and 0.3% respectively while the L5 clast has a much larger 

phosphate abundance of 0.7%. Apatite abundances in Kendleton's L3 and L5 clasts are 

similar to the other samples, 46% and 37% of the total phosphate respectively. However, 

the L4 host has an extremely low apatite abundance of 3% of the total phosphate. Apatite 

grain size is also small in the L4 host with an average size of 28 µm and the largest grain 

only 60 µm, whereas merrillite has a larger average and maximum grain size of 40 µm 

and 280 µm respectively. The L3 clast has larger average and maximum grain sizes for 

apatite (39 µm and 160 µm respectively) than merrillite (20 µm and 80 µm respectively) 

though the counting statistics are poor because of the small size of the clast. The L5 clast 

on the other hand has a larger average and maximum grain size for merrillite (45 µm and 

620 µm respectively) than apatite (42 µm and 290 µm respectively) due to the single 

large grain of merrillite. 
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 Although the low abundance of apatite in the Kendleton L4 host does somewhat 

reflect its sparse distribution (Fig. 1.1d), our abundance value may be exaggerated by a 

known bias in our method of calculating abundances. The defocused, 10 μm beam 

integrates signal over the full 10 μm area, causing smaller grains to get lost in the signal 

of larger or more numerous grains. The phosphate minerals in the L4 host are generally 

quite small so may be subject to this analytical effect. Additionally, Cl has a relatively 

weak signal compared to P and Ca. The Cl signal also has a large amount of noise due to 

small amounts of Cl present in the epoxy used to mount the thin section. As a result, 

small-scale intergrowths of apatite and merrillite, also common in the L4 host, may be 

recognized primarily as merrillite. As the phosphate grains grow in size and 

compositional distinction, as seen in Elenovka and Bruderheim, this bias is significantly 

reduced. 

3.1.2. Petrography 

Santa Barbara (L4) 

 Small grains of apatite are highly fractured (Fig. 1.2a,b) while larger grains are 

typically much smoother. In general, merrillite is less fractured than apatite (Fig. 1.3a,b). 

Neither phosphate mineral has a preferred silicate association and both occur adjacent to 

olivine, pyroxene, and feldspar (Fig. 1.2a,b, 1.3a,b). Both merrillite and apatite 

commonly contain silicate inclusions which are predominantly olivine and feldspar (e.g., 

Fig. 1.3a) and only rarely pyroxene. Both apatite and merrillite also occur commonly in 

association with large grains of Fe,Ni metal, sulfides, and chromite (e.g., Fig. 1.3b). The 

two phosphates do not occur together with the exception of a single 100 μm grain in 

which apatite and merrillite are intergrown (Fig. 1.2b). 
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Figure 1.2. BSE images of apatite in L chondrites. (a,b) Santa Barbara (L4) illustrating (a) fine-

grained apatite (Ap) and feldspar (Fsp) with olivine (Ol) and (b) an apatite and merrillite (Merr) 

intergrowth with olivine and low-Ca pyroxene (Px). (c,d) Elenovka (L5) illustrating apatite 

occurring adjacent to voids, in association with troilite (Tro), olivine, pyroxene, and feldspar. (e,f) 

Bruderheim (L6) illustrating (e) apatite adjacent to a void with an olivine inclusion and adjacent 

feldspar, pyroxene, and olivine and (f) large apatite grain occurring with feldspar, olivine, and 

pyroxene. 
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Figure 1.3. BSE images of merrillite in L chondrites. (a,b) Santa Barbara (L4) illustrating (a) 

large merrillite (Merr) grain with inclusions of olivine (Ol), feldspar (Fsp), chromite (Chr), and 

troilite (Tro), adjacent to olivine, pyroxene (Px), feldspar and a void and (b) merrillite and 

pyroxene enclosed by Fe,Ni metal (Fe,Ni), chromite and troilite. (c,d) Elenovka (L5) illustrating 

(c) merrillite adjacent to troilite, pyroxene, olivine, and feldspar and blown up portion (d) 

showing inclusions of feldspar and olivine. (e,f) Bruderheim (L6) illustrating (e) merrillite 

adjacent to Fe,Ni metal, olivine, pyroxene, and minor feldspar and (f) merrillite associated with 

chromite-plagioclase assemblage.  
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Elenovka (L5) 

 Fracturing is pervasive in apatite (Fig. 1.2c,d) but much less common in merrillite 

(Fig. 1.3c). Apatite is commonly found adjacent to or surrounding voids (Fig. 1.2c,d). It 

is not clear if these voids are original or the result of sample preparation in which grains 

of apatite (or grains adjacent to apatite, such as Fe,Ni metal) are preferentially lost during 

the polishing process. Merrillite occurs frequently adjacent to Fe,Ni metal and sulfides 

(Fig. 1.3c), though like Santa Barbara, there is no preferential association with a single 

silicate phase. Olivine, pyroxene, and small grains of feldspar occur adjacent to both 

apatite and merrillite. Inclusions in merrillite are almost exclusively olivine and feldspar. 

Figure 1.3d shows two such inclusions: a 10 μm olivine inclusion and a 2 μm feldspar 

inclusion. 

Bruderheim (L6) 

 Apatite is only lightly to moderately fractured (Fig. 1.2e,f). Fig. 1.2f illustrates 

possible crystallographic control to the fractures. Merrillite is generally smooth (Fig. 

1.3e). Apatite is commonly found near voids (Fig. 1.2e) and merrillite occurs in contact 

with Fe,Ni metal (Fig. 1.3e) and sulfides. Olivine, pyroxene, and feldspar are common 

minerals in association with the phosphates. Olivine and feldspar are other common 

inclusions in both merrillite and apatite (Fig. 1.2e, 1.3f). In the assemblage illustrated in 

Fig. 1.3f, feldspar surrounds merrillite and also contains abundant, fine-grained chromite. 

Chromite inclusions are also present within the merrillite.  

Kendleton (L3 clast) 

 Apatite and merrillite occur in association with recrystallized feldspathic 

mesostasis within chondrules (Fig. 1.4a) and outside chondrules in association with fine-
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grained matrix. Merrillite is also commonly associated with Fe,Ni metal (Table 1.2, Fig. 

1.4b). Figure 1.4b shows multiple merrillite inclusions within Fe,Ni metal where 

merrillite is surrounded by Ni-rich halos. Ni-enrichment may have occurred during 

merrillite grain growth during which Fe was removed from the metal and incorporated 

into the phosphate. This particular metal grain is located close to the impact melt vein and 

may have been influenced by the vein’s formation. 

Kendleton (L4 host) 

 Phosphates in Kendleton's L4 host differ substantially from Santa Barbara, 

Elenovka, and Bruderheim. Merrillite dominates the phosphates, accounting for 97% 

(Table 1.2). Unlike L4 Santa Barbara (Figs. 1.2a,b and 1.3a,b), merrillite and apatite in 

the Kendleton L4 material commonly occur together, with a texture suggesting apatite is 

replacing the merrillite (Fig. 1.4c). Both apatite and merrillite are only moderately 

fractured. Apatite also commonly occurs as small grains in the matrix or along cracks 

(Fig. 1.4d). Individual merrillite grains tend to be small and can occur in chains of small, 

interconnected grains or as inclusions within Fe,Ni metal, similar to the inclusions seen in 

the L3 clast (Fig. 1.4b).  

Kendleton (L5 clast) 

 The large phosphate assemblage in the L5 clast consists of a large merrillite grain 

with intergrown apatite. The merrillite has numerous feldspar and olivine inclusions but 

few pyroxene inclusions. Apatite and merrillite also occur together in other grains (e.g., 

Fig. 1.4f) with textures intermediate to the replacement texture seen in the L4 host (Fig. 

1.4c) and the intergrowth seen in Santa Barbara (Fig. 1.2d). 
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Figure 1.4. BSE images of apatite and merrillite in the L regolith breccia Kendleton. (a,b) L3 clast 

illustrating (a) small apatite (Ap) grain in olivine (Ol) with minor feldspar (Fsp) and (b) merrillite 

(Merr) inclusions in Fe,Ni metal (Fe,Ni): merrillite is surrounded by Ni-rich halos. (c,d) L4 host 

material illustrating (c) apatite and merrillite intergrowth with adjacent pyroxene (Px), feldspar, 

and troilite (Tro) and (d) vein-filling apatite in and around olivine grain. (e,f) L5 clast illustrating 

(e) large apatite-merrillite intergrowth with inclusions of feldspar and (f) apatite-merrillite 

intergrowth with adjacent Fe,Ni metal, troilite, olivine, pyroxene, and feldspar.  
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3.1.3. Compositions 

 Average apatite compositions in each chondrite are summarized in Table 1.3 and 

individual analyses are presented in Appendix 1. The apatite formula was calculated with 

13 anions. OH values were calculated by difference assuming the X-site anions summed 

to unity, and were not added to the formula totals. Apatite is generally chlorine rich with 

average atomic Cl/F ratios of 6.6, 6.1, and 5.0 for Santa Barbara, Elenovka, and 

Bruderheim respectively. Kendleton's L3 and L5 clasts have similar atomic Cl/F ratios of 

5.5 and 4.7 respectively. However, apatite in Kendleton's L4 host has a much higher F 

content (1.1 wt%) than the other chondrites (0.4-0.6 wt%), and a significantly lower 

atomic Cl/F ratio of 1.9. Figure 1.5 illustrates the anion distribution in apatite. The third 

apex of the apatite ternary (after Cl and F) is typically reserved for OH. However, Jones 

et al. (2014) measured apatite H2O abundance in type 4-6 LL chondrites using SIMS  

 

Figure 1.5. Atomic Cl-F-Other anion ternaries from EPMA analysis of apatite in (a) non-

brecciated L chondrites and (b) the L regolith breccia Kendleton. Each point represents a single 

analysis. The ternaries are truncated at Cl = 0.4. The non-brecciated chondrites have similar Cl-

rich compositions. Kendleton has lithology-dependent apatite compositions where the L4 host 

shows significant F-enrichment over the L3 and L5 clasts which are similar to the non-brecciated 

L chondrites. 
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analysis and found the values to be extremely low, less than 100 ppm. The balance of the 

X anion site remains unidentified and so we label the third apex "other."  

 Apatite compositions in Santa Barbara, Elenovka, and Bruderheim show 

considerable overlap with a mean atomic Cl/F ratio of 5.9 for all the analyses in these 

three meteorites. Although there is a slight correlation between the mean Cl/F ratio and 

petrologic type, it is not clear that this is due to changes that occur during metamorphism. 

Applying a t-test to the three mean Cl/F ratios only reveals a significant difference 

between Santa Barbara and Bruderheim. Additionally, there is no evidence for 

progressive compositional equilibration with petrologic type.  

 Average compositions of merrillite in each chondrite are summarized in Table 1.4 

and Figure 1.6 and individual analyses are presented in Appendix 1: the merrillite 

formula is calculated assuming 56 oxygens. The resulting formulae are close to ideal with 

little deviation. Santa Barbara has an average Mg# (Mg/(Mg+Fe)x100) of 85 and a much 

larger spread in values than Elenovka or Bruderheim which both have an average Mg# of 

92. The average Mg# of the L3 clast is 93 and with little spread, although this could be 

due to the small number of analyses. Similar to Santa Barbara, Kendleton's L4 host has a 

significant spread and Mg# of 90. Like the other high petrologic types Elenovka and 

Bruderheim, the average Mg# of Kendleton's L5 clast is 92 with a small spread. Figure 

1.6 also shows merrillite distributions for H (Jones and McCubbin 2012) and LL (Jones 

et al. 2014) chondrites of petrologic types 4, 5 and 6 for comparison with the L data, 

discussed below.  
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Figure 1.6. Histograms of atomic Mg# (Mg/(Mg+Fe)x100) from individual EPMA analyses of 

merrillite in H, L, LL OCs and the L regolith breccia Kendleton. Mg# is binned into 1% bins and 

the diamond and thin line show the sample mean. 

 

3.2. Feldspar 

 In this study, we focused on feldspar within chondrules, which is largely formed 

from the devitrification of chondrule mesostasis and should share a similar history of 

development throughout the chondrite. We do not consider feldspar found within the 

chondrite matrix, because limiting our observations to chondrule-hosted feldspar allows 

for a direct comparison with the similar study conducted on H and LL chondrites by 

Kovach and Jones (2010). 

  



 

23 

 

3.2.1. Petrography 

Santa Barbara (L4) 

 Feldspar in Santa Barbara chondrules is typically present interstitial to the olivine 

and pyroxene phenocrysts. It has an irregular, space-filling morphology and appears to 

represent recrystallized mesostasis (Fig. 1.7a). Most feldspar grains are <20 µm in size 

although some range up to 100 µm. The majority of the feldspar grains have inclusions of 

micron-sized clinopyroxene and abundant micron and submicron inclusions of oxides 

(typically chromite) and sulfides (Fig. 1.7b). Micropores are also abundant. Anorthitic 

feldspar is commonly observed being replaced by albitic feldspar, particularly around 

grain boundaries (Fig. 1.7b). In these instances, the albite is smooth and largely inclusion 

free while the anorthite contains numerous oxides and micropores. In other chondrules, 

all feldspar is albitic. Regions of smooth albite occasionally contain fine-scale K-feldspar 

exsolution lamellae (Fig. 1.7d).  

Kramer Creek (L4) 

Like L4 Santa Barbara, feldspar in Kramer Creek is typically irregular in shape 

and intergrown with elongate grains of pyroxene and olivine. Micron-sized oxides are 

present in many feldspar grains but are not as abundant as in Santa Barbara. Porosity is 

common in both anorthitic and albitic feldspar. Anorthitic feldspar is commonly replaced 

by albite along grain boundaries (Fig. 1.7f) in a similar manner to, but less extensively 

than, Santa Barbara (Fig. 1.7b). Generally, feldspar grains are small (<30 μm), but they 

can range up to 100 μm. Terrestrial weathering does not appear to have affected the 

feldspar texture. 
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Elenovka (L5) 

In Elenovka, smooth, inclusion-free albitic feldspar is common. Grain sizes vary 

within chondrules but are generally larger than Santa Barbara and Kramer Creek, >30 μm 

with some >100 μm. Individual feldspar grains vary from subhedral to irregular and are 

space-filling in morphology (Fig. 1.7g). Unlike in Santa Barbara and Kramer Creek, we 

did not observe feldspar grains that are porous in texture nor did they contain many fine-

grained oxide inclusions. In a few chondrules, feldspar is included within irregular grains 

of pyroxene, where it is assumed to be recrystallized mesostasis. Some grains show 

minor exsolution of K-feldspar in albitic host grains (Fig. 1.7h). 

Roy 1933 (L5) 

Feldspar in Roy 1933 varies in size but is generally similar to Elenovka. 

Individual feldspar grain textures vary from anhedral to subhedral and many have 

irregular morphologies. A few feldspar grains are porous in texture, or contain fine-

grained oxide/sulfide inclusions. In many chondrules, feldspar is intergrown with 

elongate grains of olivine, and is assumed to be recrystallized mesostasis. Like L5 

Elenovka (Fig. 1.7h), rare exsolution of K-feldspar is present in host grains of albitic 

feldspar (Fig. 1.7j).  

Bruderheim (L6) 

Bruderheim contains very few well-defined relict chondrules, and 

chondrule/matrix boundaries are not very distinct. However, it was possible to identify 

individual feldspar grains in relict chondrules (Fig. 1.7k) with a range of sizes slightly 

greater than in the type 5 chondrites. Most are >30 μm and they can be larger than 150 

μm. Some grains contain a few fine-grained chromite and sulfide inclusions. 
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Figure 1.7. BSE images of occurrences of feldspar within relict chondrules in L chondrites. (a-d) 

Santa Barbara (L4) illustrating (a) POP chondrule with (b) anorthitic plagioclase (An) containing 

submicron oxides and micropores, surrounded by albitic (Ab) rims; (c) POP chondrule with (d) 

albitic plagioclase showing K-feldspar exsolution. (e,f) Kramer Creek (L4) illustrating (e) BO 

chondrule containing (f) anorthitic plagioclase with dissolution lamellae and minor albite along 

the rims. 
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Figure 1.7 (Continued). BSE images of occurrences of feldspar within relict chondrules in L 

chondrites. (g,h) Elenovka (L5) illustrating (g) relict BO chondrule containing (h) albitic 

plagioclase with minor K-feldspar exsolution that occurs both within the grain and around the rim 

of a void. (i,j) Roy 1933 (L5) illustrating (i) relict POP chondrule with (j) albitic plagioclase and 

K-feldspar exsolution. (k,l) Bruderheim (L6) illustrating (k) relict POP chondrule with (l) typical 

uniform albitic plagioclase. 
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Individual grain textures vary from anhedral to subhedral, and include many feldspar 

grains with irregular morphologies. Similar to type 5, feldspar grains are intergrown with 

elongate grains of pyroxene and irregular grains of olivine, but in Bruderheim, the grains 

in these areas are larger and more abundant (Fig. 1.7l). We observed no K-feldspar. 

3.2.2. Compositions 

Average feldspar compositions are summarized in Table 1.5 and individual point 

analyses are tabulated in Appendix 1 and illustrated on feldspar ternary diagrams in Fig. 

1.8 and tabulated in Appendix 1. The L4 chondrites Santa Barbara and Kramer Creek 

(Fig. 1.8a,b) show a wide range of plagioclase compositions, An82-An4 and An88-An2 

respectively. Each chondrule typically has a limited range of compositions, although 

those with albitization reactions (e.g., Santa Barbara chondrule 4, shown in Fig. 1.7b) 

show both An-rich and Ab-rich components. Kramer Creek has the widest range of 

plagioclase compositions and the lowest Or component which does not exceed Or3. Santa 

Barbara feldspar has a larger range of K contents, up to Or23. High K contents are 

measured in grains that show fine-scale K-feldspar exsolution, and represent analyses that 

overlap albitic and K-feldspar compositions within those grains.  

The L5 chondrites Elenovka and Roy 1933 show a much more restricted range in 

plagioclase compositions, An12-An8 and An17-An4 respectively, compared to the L4 

chondrites. Both have grains that show K-feldspar exsolution, although only the grains in 

Roy 1933 chondrule 7 (Fig. 1.7j) are large enough for individual microprobe analysis: 

these have Or content up to Or65. The highest Or content measured in Elenovka was only 

Or13 which represents the bulk composition of the grain, due to the fine-scale nature of 
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Figure 1.8. Feldspar compositions in L ordinary chondrites from EPMA analysis: (a) Santa 

Barbara (L4), (b) Kramer Creek (L4), Elenovka (L5), (d) Roy 1033 (L5), and (e) Bruderheim 

(L6). Each point represents a single analysis and each color represents a single chondrule. 
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the exsolution lamellae. Feldspar in the L6 Bruderheim is fully equilibrated with an 

average composition of An10Ab84Or6 and very little variation. 

4. Discussion 

Thermal metamorphism is one of the most important processes that affected the 

evolution of ordinary chondritic asteroids. Although there is some evidence for 

metasomatizing fluids on OC parent bodies, the extent of fluid interactions is poorly 

described. Because the presence of fluids can strongly affect the metamorphic 

environment, characterizing these fluids is essential for a complete understanding of 

chondrite metamorphism. In addition, characterizing volatile species present within 

chondritic asteroids provides important information about the volatile composition of the 

solar nebula from which the Earth and other terrestrial planets were formed. 

Phosphates and feldspar are secondary minerals that form in response to thermal 

metamorphism of ordinary chondrites. These minerals can be used as tools for 

understanding the composition of fluids that are present during their formation and 

evolution. Specifically, the X anion site in apatite records information about the relative 

abundance of the halogens Cl and F in addition to OH, an indicator of the presence of 

water. Feldspar contains information about the relative abundance of the alkali elements 

Na and K, which are readily transported in aqueous fluids, and can contain microtextures 

that indicate the presence of aqueous fluids. 

In the discussion below, we compare our study on phosphates and feldspar in L 

chondrites to previous studies on these minerals in H and LL chondrites (Kovach and 

Jones 2010; Jones and McCubbin 2012; Jones et al. 2014). We examine the similarities 

and differences in secondary mineralogy between the three ordinary chondrite groups to 
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further understand the metamorphic history of each group. We compare the phosphate 

mineralogy of brecciated and non-brecciated chondrites which gives insight into the 

mineralogical effects imparted by impact processing. We discuss the overall mechanisms 

and timing for the formation of secondary minerals and the evidence for the presence of 

fluids during metamorphism. Finally, we use apatite to estimate the bulk halogen 

abundances in ordinary chondrites and compare these to measured bulk values from the 

literature as a means to assess uncertainties on halogen abundances. 

4.1. Comparison of secondary phosphates and feldspar in H, L, and LL ordinary 

chondrites 

 Since phosphate and feldspar are both secondary phases, chemical and textural 

changes in these minerals through the metamorphic sequence inform us about the process 

and conditions of equilibration. A comparison of the different OC groups provides insight 

into the processes common to all three OC parent bodies as well as the individual 

characteristics of each parent body.  

4.1.1. Phosphates 

There are many similarities in phosphate mineralogy between the L chondrites 

described above and the H and LL chondrites described by Jones and McCubbin (2012) 

and Jones et al. (2014). We can make the following generalizations, although the 

observations have been made on a limited number of chondrites (3 LL chondrites, 3 L 

chondrites, 4 H chondrites). Phosphates in all three ordinary chondrite groups show a 

small increase in phosphate abundance with increasing petrologic type, particularly 

between type 4 (0.4% volume) and types 5, 6 (0.5% volume), when averaged across 

phosphate abundances of individual H, L and LL chondrites. Although this increase is 
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close to the error of 0.1% volume, it is consistent across all OC groups and appears to be 

meaningful. Maximum grain sizes range between 100 μm and 400 μm for both apatite 

and merrillite, and merrillite is typically larger than apatite. Maximum grain sizes in L 

and LL chondrites generally increase with increasing petrologic type, but H chondrite 

phosphates are more uniform in maximum grain size across all petrologic types. Overall, 

phosphate minerals in all three OC groups appear to have developed under similar 

conditions. 

Because P is originally hosted in metal in unequilibrated chondrites (e.g., Zanda 

et al. 1994), we might expect to observe an increase in abundance of phosphate minerals, 

consistent with increasing metal content from LL to L to H chondrites. However, 

phosphate abundance does not appear to show any correlation with metal content: our 

mean total phosphate abundances (% volume) in the different groups are 0.47 for H, 0.54 

for L, 0.46 for LL. In fact, this observation is consistent with bulk chondrite P 

abundances: while bulk chondrites show a 540% increase in metal content from LL to H 

chondrites (2.5 wt% to 16 wt%: Lodders and Fegley 1998), the corresponding bulk P 

contents show a much smaller increase of 32% (910 ppm to 1200 ppm: Lodders and 

Fegley 1998). This relatively small difference in bulk P abundances between the different 

OC groups means that in our studies it is likely that any systematic differences between 

the groups are below the precision of our abundance calculation method. The lack of 

correlation between phosphate (or bulk P) abundance and metal abundance is probably 

attributable to the fact that chondrule mesostasis is also an important source of P for 

formation of phosphates in ordinary chondrites (Jones et al. 2014). 
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The petrological occurrences of phosphate minerals are also similar among the 

three OC groups. Individual grains of apatite and merrillite occur throughout the 

chondrite matrix of all studied unbrecciated H and L (Fig. 1.1a-c) chondrites as well as 

types 5 and 6 LL chondrites. Individual grains of apatite are rare in the L/LL4 Bjurböle 

and absent from the LL3.9 Bo Xian, but apatite is commonly present in association with 

merrillite in both chondrites. Apatite/merrillite intergrowth and reaction textures were 

reported for LL3.9, L/LL4, LL6, H4, and H5 chondrites but we did not observe similar 

textures in the unbrecciated L chondrites, with the exception of a single intergrowth grain 

in the L4 Santa Barbara (Fig. 1.2b). Jones et al. (2014) argued that these textures are the 

result of incomplete coupled dissolution-reprecipitation reactions, which suggests that in 

low petrologic type L chondrites, any similar reactions that may have occurred have gone 

to completion. This would indicate that halogen-bearing fluids were more common in 

low petrologic type L chondrites than in H or LL. In general, apatite/merrillite reactions 

are less common in higher petrologic types. In an onion shell model, the higher petrologic 

type OCs are sourced deeper, and thus may have been exposed to a larger volume of 

halogen-bearing fluid, as well as being at a higher temperature, allowing for the 

replacement reaction to go to completion. 

In all three groups, apatite and merrillite typically have no preferred silicate 

association but they are commonly associated with Fe,Ni metals, sulfides, and chromite 

(Fig. 1.2c, 1.3a-c,e-f) and are found adjacent to voids (Fig. 1.2c-e, 1.3a,f). Both minerals 

occasionally contain silicate inclusions, typically olivine and feldspar but rarely pyroxene 

(Fig. 1.2e-f, 1.3a,c-d). In LL3.9 and L/LL4 chondrites, merrillite is observed as small, 

rounded inclusions in Fe,Ni metal grains but such inclusions were not observed in 
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unbrecciated type 4 L or H chondrites. Since these inclusions most likely migrate out of 

the metal during textural equilibration in higher petrologic types (5 and 6), our 

interpretation of their absence in type 4 L and H chondrites is that the type 4 chondrites 

we studied experienced higher temperatures than the LL3.9 and L/LL4 chondrites from 

Jones et al. (2014). 

In the L6 chondrite, Bruderheim we observed merrillite in association with some 

chromite-plagioclase assemblages (Fig. 1.3f). There is a similar association of apatite and 

merrillite with chromite-plagioclase assemblages in the LL6 Saint Séverin (Jones et al. 

2014). Chromite-plagioclase assemblages are thought to be indicators of shock (Rubin 

2003) and their presence is consistent with the moderately high shock stage assigned to 

Bruderheim (S4; Stöffler et al. 1991) and the complex shock history of Saint Séverin 

(Ashworth et al. 1977; Ashworth 1980; Leroux et al. 1996). Jones et al. (2014) proposed 

that since phosphates are readily incorporated into partial chondritic melts (Feldstein et 

al. 2001), impact-generated melts include a phosphate component which then crystallized 

back out of the melt as an igneous mineral. In the example in Bruderheim, there is no 

apparent compositional difference between merrillite associated with the chromite-

plagioclase assemblage and other merrillite in the rock: hence, equilibration of the whole 

rock likely occurred after formation of the chromite-plagioclase assemblage. However, if 

shock does play a role in phosphate formation, Pb-Pb ages based on apatite may not only 

record metamorphism, but also post-metamorphic shock events (Jones et al. 2014). The 

fracturing noted in the phosphates, particularly in apatite (Fig. 1.2a-d), may also be due to 

the effects of shock. Alternatively, fractures could be related to initial growth of the 

phosphate grains as fine-grained aggregates. The aggregates then experienced textural 
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equilibration during thermal metamorphism because there is a decrease in the abundance 

of fractures with increasing petrologic type. 

In all three OC groups, apatite compositions are similar in that they are all Cl-rich 

and all show a similar degree of compositional heterogeneity. However, each group has a 

distinct field on the apatite anion ternary. Figure 1.9 compares apatite anion compositions 

between the three ordinary chondrite groups: points represent single analyses and fields 

enclose all analyses reported for all samples within the group. In general, there is a trend 

of increasing “other” component (0.05, 0.09, and 0.17 mean atom % anion) from H to L 

to LL chondrites, although L chondrite apatites overlap considerably with both H and LL 

fields. Figure 1.10 shows relative halogen compositions plotted as Cl/(Cl+F)x100 

(hereafter Cl#) for each chondrite, with error bars representing 1σ and group averages 

signified by red vertical lines. Average apatite compositions for H and L chondrites are 

similar (Cl# = 84.9 and 84.7, atomic Cl/F = 6.5 and 5.9 respectively) although there is 

much more scatter for individual chondrites in the H group compared with the L 

chondrites. LL chondrites are more F rich with average Cl# = 76.1 and atomic Cl/F = 3.2. 

The single L/LL chondrite Bjurböle has an average apatite composition (Cl# = 83.9, 

atomic Cl/F = 5.6) closer to L and H chondrites than LL chondrites.  

Slight differences in Cl/F ratios among individual meteorites within each 

chondrite group appear to reflect differences in fluid chemistry. These differences are 

independent of petrologic type in H and LL chondrites but L chondrites do show a slight 

trend towards decreasing atomic Cl/F with increasing petrologic type. It is not apparent 

whether the L trend is process-related or purely coincidental. Given that F is more 

volatile than Cl, and if Cl/F ratios are controlled by temperature, we would expect a trend 
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toward more Cl-rich compositions with increasing degree of metamorphism and not the 

observed trend toward more F-rich compositions. In addition, because the L trend is not 

reproduced in the H or LL chondrites, it is more likely that differences in fluid chemistry 

between the petrologic types are due to the local environments rather than metamorphic 

history. Overall, the similarity in apatite compositions between the three groups implies 

the same process is forming apatite on all three parent bodies, but with minor differences 

in the fluid chemistry that controls apatite composition, as discussed in more detail 

below. 

 

Figure 1.9. Apatite atomic Cl-F-Other anion ternary diagram, for H (red), L (green), and LL 

(blue) OCs. Each point represents a single analysis and each field encloses all the analyses in that 

group. Bulk chondrite Cl/F ratios from Wasson and Kallemeyn (1988) for OCs and CI chondrites 

are illustrated as tie-lines from the Cl-F ternary join to the Other apex. 
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 Merrillite compositions are also similar among the three OC groups. Figure 1.6 

shows histograms of merrillite Mg# for H (Jones and McCubbin 2012), L (this work), 

and LL (Jones et al. 2014) chondrites as well as the brecciated chondrite, Kendleton. All 

merrillite is magnesian with mean Mg# between 86 and 94 for all groups and petrologic 

types. H chondrites have a slightly higher average Mg# (93) than L (90) and LL (91) 

chondrites which is consistent with the more reduced nature, and higher Mg# in olivine 

and pyroxene, for H chondrites. The average Mg# for merrillite is higher than the average 

Mg# for olivine and low-Ca pyroxene (olivine Mg#: ~82, 76, 71 for H, L, LL; low-Ca 

pyroxene Mg#: ~84, 80, 76 for H, L, LL; Brearley and Jones 1998).  

Within the L and LL chondrites, merrillite Mg# is lower in type 4 than in types 5 

and 6 (Fig. 1.6). In addition, the L chondrites show an increase in degree of 

compositional equilibration with increasing petrologic type (Fig. 1.6), a trend that is 

possibly present but not as clear in the data for LL chondrites. In contrast, H chondrite 

merrillite has approximately the same Mg# through the petrologic sequence and no trend 

of increasing compositional equilibration with petrologic type. The differences in 

merrillite equilibration between the H chondrites and L and LL chondrites are also 

reflected in the feldspar equilibration history, as discussed below. 

4.1.2. Feldspar 

 Feldspar within chondrules in L chondrites shows textural and compositional 

changes with increasing petrologic type that we interpret as progressive equilibration in 

response to metamorphism. Average grain size increases from types 4 to 6. Fine-grained 

oxide inclusions and micropores are common in anorthitic and albitic plagioclase in type 

4, rare in type 5, and absent in type 6. Albite replaces anorthite along grain boundaries in 
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petrologic type 4. Fine-scale K-feldspar exsolution from albitic plagioclase is present in 

types 4 and 5 but absent in type 6. There is a wide range of plagioclase compositions, 

An88-An2, in the L4 chondrites Santa Barbara and Kramer Creek and we measured K 

content up to Or23 in Santa Barbara. Plagioclase compositions are considerably more 

restricted in the L5 chondrites Elenovka and Roy 1933 with a maximum range of An17-

An4 but K contents range up to Or65 for coarse K-feldspar regions in Roy 1933. Type 6 

Bruderheim is fully equilibrated with a plagioclase composition of An10 and a K-feldspar 

content of Or6. 

 Characteristics of feldspar in types 4-6 L chondrites described above are very 

similar to feldspar within chondrules of type 4-6 LL chondrites reported by Kovach and 

Jones (2010). In the LLs, grain sizes increase from types 4 to 6 and albitic rims around 

anorthite cores are present in type 4 but absent in types 5 and 6. The fine-grained oxides 

(Fig. 1.7b) and micropores (Fig. 1.7b,d,f) we observe in L chondrite feldspar were not 

reported in the LL chondrites. However, the Kovach and Jones (2010) study focused on 

clear areas of plagioclase, and areas with complex microtextures were avoided.  K-

feldspar exsolution from albite was only reported for type 5 LL chondrites. Type 6 LL 

chondrites contain largely uniform regions of albitic plagioclase.  

 Feldspar compositions in L and LL chondrites are also similar: LL chondrites 

show compositional progressive equilibration with increasing petrologic type, from a 

wide range in L/LL4 Bjurböle (An85 to An5), to a much more restricted range in LL5 and 

LL6 (~An10) (Kovach and Jones 2010). The LL6 Saint Séverin has a slightly larger 

compositional variation in An and Or than the L6 Bruderheim. Kovach and Jones (2010) 

proposed that the relative heterogeneity of feldspar compositions in Saint Séverin 
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compared to other type 6 chondrites was due to elemental redistribution during pre- and 

sin-metamorphic shock (Ashworth et al. 1977; Ashworth 1980; Leroux et al. 1996) and 

incomplete annealing during metamorphism (Rubin 2004).  

In contrast to L and LL chondrites, feldspar in petrologic type 4-6 H chondrites 

has a single albitic plagioclase composition, ~An12Or6 (Kovach and Jones 2010) although 

Rubin (1992) showed that variable plagioclase compositions (up to An28) can occur in 

equilibrated H chondrites due to the effects of shock. Grain size does increase with 

increasing petrologic type in the H chondrites but anorthitic plagioclase was not observed 

by Kovach and Jones (2010). K-feldspar exsolution also was not observed by Kovach and 

Jones (2010), but we have since shown that it is present (Lewis et al. 2016). Since the 

difference between petrologic types 3 and 4 is based on the degree of olivine 

equilibration, we would assume that type 4 chondrites from the three groups reached 

similar peak temperatures for similar durations. Hence, there must be a factor other than 

peak temperature that controls the differences in feldspar properties between H 

chondrites and L, LL chondrites. Below we discuss the possibility that the differences are 

caused by a difference in timing of fluid activity, fluid composition, and/or fluid 

abundances during the early stages of metamorphism. 

4.2. Phosphates in regolith breccias 

 In contrast to unbrecciated chondrites of all ordinary chondrite groups, the 

regolith breccia Kendleton has a heterogeneous, lithology-dependent distribution of 

apatite compositions (Fig. 1.5b, 1.10, Table 1.3). The L3 and L5 clasts have apatite 

compositions similar to each other (Cl# = 83.9 and 82.0, atomic Cl/F = 4.7 and 4.5, 

respectively) and similar to those of the unbrecciated L chondrites (Cl# = 84.7, Cl/F = 
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5.9), but apatite in the L4 host material is significantly more F-rich (Cl# = 64.8, Cl/F = 

1.9, Fig. 1.10). In contrast, merrillite compositions in Kendleton are fairly homogeneous 

and show no significant differences among the three lithologies: they are similar to 

unbrecciated L chondrites (Fig. 1.6). 

Texturally, the Kendleton L3 clast contains small, round merrillite inclusions 

within Fe,Ni metal, similar to LL3.9 and L/LL4 chondrites (Jones et al. 2014). The L3 

clast has a lower phosphate abundance than the other L chondrites but this measurement 

may not be very accurate due to the small size of the clast (Fig. 1.1d, Table 1.2). The L4 

host material contains roughly the same phosphate abundance as the unbrecciated L4 

Santa Barbara, but it has a high proportion of merrillite (97%) compared to 

approximately equal amounts of apatite and merrillite in Santa Barbara (Fig. 1.1e, Table 

1.2). The L5 clast contains roughly equivalent abundances and proportions of phosphates 

to the unbrecciated L5 Elenovka (Table 1.2). Apatite-merrillite intergrowth textures are 

common in Kendleton’s L4 host (Fig. 1.4c) and L5 clast (Fig. 1.4e-f) but we did not 

observe these textures in unbrecciated type 4 and 5 L chondrites with the exception of the 

single grain in Santa Barbara (Fig. 1.2b). However, these intergrowth textures are present 

in LL3.9, L/LL4, LL6, H4, and H5 chondrites studied by Jones et al. (2014) and Jones 

and McCubbin (2012). 

A difference in apatite compositions between lithologies is also observed in the H 

regolith breccia, Zag (Jones et al. 2011). Apatite in the type 4 lithology and one type 6 

clast of Zag have Cl-rich compositions similar to unbrecciated H chondrites, but apatite 

in a second type 6 lithology is considerably more variable and extends from Cl-rich to F-

rich compositions. 
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Based on the observations from these two meteorites, it appears that relatively F-

rich apatite might be a common feature of surficial material on ordinary chondritic 

asteroids. There are several possible explanations for how this could occur. For 

Kendleton, we need a mechanism that results in lower abundance of apatite relative to 

merrillite in the L4 lithology, along with a more F-rich apatite composition. Since apatite 

in all the unbrecciated chondrites is Cl-rich, we assume that we need a process that results 

in F enrichment in the L4 lithology, rather than F depletion in the other material. Fluorine 

could have been introduced during impact processing on the asteroid surface. Impact melt 

veins are common in Kendleton (e.g., Fig. 1.1d) and the release of volatiles, including the 

particularly volatile F, through the regolith from impact melt veins and pools could have 

reacted with existing Cl-rich apatite in order to produce the more F-rich compositions we 

observe.  

It is also possible that F could have an exogenous origin, from a volatile-rich 

impactor. For Zag and the H5 breccia Monahans, evidence for an external volatile source 

comes from halite and sylvite that have been shown to be of non-OC origin (Yurimoto et 

al. 2010). The presence of carbonaceous chondrite material within Zag is also consistent 

with a volatile-rich impactor (Zolensky et al. 2003). However, the source of the F in such 

a volatile-rich impactor is difficult to ascertain. For a carbonaceous impactor, the host 

phase for F in carbonaceous chondrites is not known (Brearley and Jones 2018). It is 

possible that F could be contained within amorphous phases in the matrix that would 

easily be released into the surrounding material, even with mild impact-induced heating. 

The small phosphate grain sizes and low abundance of apatite in the Kendleton 

L4 lithology may also be related to impact processing. An impact could have disrupted 
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the L4 material during metamorphism, after merrillite formed but before fluids could 

alter a significant amount of the merrillite to apatite (e.g., Fig. 1.4c). The impact could 

have fragmented the phosphates into small grains (Fig. 1.1e) and imparted the F-bearing 

component recorded in the apatite, while possibly forming additional apatite in the vein-

filling morphology (Fig. 1.4d). 

If F-rich apatite is related to an impact process, we need to consider why this only 

affected certain lithologies. One possibility is that the affected lithologies were 

substantially more permeable during F infiltration (e.g., unconsolidated regolith) and thus 

preferentially altered over the less permeable lithologies. However, this model does not 

seem likely because there is no evidence for more F-rich apatite at the clast edges as we 

would expect for a single impact event releasing F through the material. A more plausible 

model is that the F-rich lithology was close to the source of F, e.g., at the surface of the 

asteroid, and that the unaltered lithologies were incorporated later during excavation by 

subsequent impact events. This would be consistent with a rubble-pile model for the 

parent asteroid. The mixed shock stages of the three lithologies may be further evidence 

of multiple impact events. Mixed shock stages within a regolith breccia are not 

uncommon (Rubin 2004) though it is possible that the lower shock stage reported for the 

Kendleton L5 could be attributed to post-shock annealing. It is also possible that some of 

the apatite crystallized from an F-rich impact melt. However, apatite textures in the L4 

host (Fig. 1.4c,d) are more consistent with alteration by fluids, i.e., they show 

replacement and vein-filling textures. Clearly regolith breccias have experienced complex 

chemical processing in addition to mechanical processing. 
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4.3. Formation and evolution of secondary minerals: Mechanisms, timing, and the 

role of fluids 

Metamorphism in ordinary chondrites has long been considered to be a solid-state 

process whereby progressive textural and compositional equilibration occur in a closed 

system as a response to increasing temperature (Huss et al. 2006). There is general 

agreement that the source of heating was the decay of short-lived radioisotopes during the 

first few million years of the solar system, shortly after the asteroids accreted (McSween 

et al. 2002). Heating may also have resulted from impacts (Rubin 2004). However, as 

previously discussed, there are only rough constraints on the overall metamorphic 

environment: peak temperatures are poorly constrained and the role of metasomatic 

fluids, which may represent an open system, is not understood. We can address some of 

these unknowns by considering the metamorphic environments from which secondary 

minerals form in the three ordinary chondrite groups.  

The general model for formation of phosphate minerals and feldspar is that 

merrillite forms by the reaction of metal-derived P with olivine, pyroxene, chondrule 

mesostasis, and matrix material (Ahrens 1970; Jones et al. 2014), apatite forms from 

reactions and further equilibration within this mineral assemblage, and fine-grained 

albitic plagioclase crystallizes out of chondrule mesostasis (Van Schmus and Wood 

1967). All mineral grains coarsen and experience progressive chemical and textural 

equilibration with increasing extent of thermal processing. We compare our observations 

of phosphate and feldspar development through the petrologic sequence to the general 

model of thermal metamorphism, in order to interpret the mechanisms and relative timing 
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of their formation, and discuss the evidence from each of these minerals for the presence, 

composition, and timing of fluids during the metamorphic process. 

Jones et al. (2014) trace the chemical origin of phosphate minerals in LL 

chondrites in detail and propose both solid-state and fluid-based formation mechanisms. 

They suggest that in lower petrologic types (≤ type 4), merrillite forms via a solid-state 

reaction with oxidized P (from Fe,Ni metal), and fine-grained apatite-merrillite 

assemblages form via fluid reactions with merrillite and/or silicate minerals. Rubin and 

Grossman (1985) reported chlorapatite rims around several Fe,Ni metal grains in the 

LL3.2 Krymka, which indicates the phosphate formation process occurs early in the 

metamorphic process. In higher petrologic types (types 5 and 6), apatite can form either 

via an interface-coupled dissolution-reprecipitation reaction between existent merrillite 

and a halogen-bearing fluid, or by direct precipitation from a fluid. Thermal 

metamorphism also accounts for the general increase in grain size with increasing 

petrologic type.  

The lack of compositional equilibration in apatite that would be expected for a 

metamorphic origin is explained by Jones et al. (2014) as overprinting by a late-stage 

reaction with dry, Cl-rich fluids. Each chondrite has its own individual mean apatite 

composition so that fluid compositions appear to be fairly localized within a single parent 

body. Similarly, the heterogeneity within each chondrite group indicates a low fluid-rock 

ratio. Since phosphate minerals share similar properties in the H, L, and LL groups, as 

discussed above, we consider the processes governing phosphate formation to be similar 

between the three ordinary chondrite groups so that the mechanisms described above for 

LL chondrites are also valid for H and L chondrites. 
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At first glance, the initial formation of feldspar from chondrule mesostasis is a 

more straightforward process. Chondrule mesostasis is typically feldspathic in 

composition (Scott and Krot 2014), so thermal metamorphism should lead to the 

crystallization of mesostasis as feldspar. This view is supported by the fact that there is a 

wide range of plagioclase compositions (~An85-An5) in the chondrules of type 4 L (this 

study) and LL (Kovach and Jones 2010) chondrites and each chondrule has an average 

plagioclase composition that is distinct and likely related to the original composition of 

the mesostasis. The diversity in plagioclase compositions shows that crystallization of 

mesostasis must have occurred before diffusional equilibration across the chondrite could 

have taken place. In addition, primary igneous plagioclase present within the chondrule 

mesostasis, such as that identified in the LL3.0 Semarkona (Lewis and Jones 2015), may 

aid the nucleation of secondary plagioclase during the crystallization process. 

Metamorphic equilibration of plagioclase to albitic compositions with increasing 

petrologic type in L and LL chondrites is not only a solid state process. We propose that 

chemical equilibration of feldspar is a metasomatic process involving a hydrous, alkali-

bearing fluid. In types 4 and 5, anorthitic plagioclase shows a range of alteration features 

indicative of the action of water, including the replacement by albite (albitization) along 

grain boundaries and the presence of micropores. Albitization is an interface-coupled 

dissolution-reprecipitation reaction that is common in terrestrial water-rock interactions 

with alkali-bearing fluids (Putnis 2009). Development of porosity indicates the 

dissolution of anorthitic plagioclase by an aqueous fluid and is commonly associated with 

the albitization reaction (Engvik et al. 2008; Hövelmann et al. 2010).  
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Hövelmann et al. (2010) conducted albitization experiments on crystals of 

labradorite (An60) and oligoclase (An23) and showed that the reaction is very rapid. They 

were able to produce albitic rims on the plagioclase grain up to 50 μm across in less than 

two weeks in a sodium silicate solution at 600 °C and 2 kbars. At the experimental 

conditions the fluid had a pH of 9 and enough was added to theoretically convert all the 

plagioclase to albite. Grains of anorthitic plagioclase in type 4 L and LL chondrites are 

typically much smaller than 50 μm but have rims only ~1-3 μm in width (e.g., Fig. 1.7b) 

indicating that the albitization reaction did not go to completion. However, the 

predominantly albitic composition of petrologic types 5-6 L and LL and types 4-6 H 

chondrites show that the reaction has gone to completion under these metamorphic 

conditions. There could be a number of reasons for the differences in the extent of these 

reactions, including variability in temperature, pressure, composition, duration, and/or the 

availability of the metasomatizing fluids (i.e., water-rock ratio).  

The most obvious difference between the petrologic types is temperature. The 

peak temperature range attributed to type 4-5 chondrites (500-800 °C) encompasses the 

temperature at which the experiments of  Hövelmann et al. (2010) were conducted, 600 

°C. Because there is not a well-defined division between peak temperatures in types 4 

and 5, it is impractical to ascribe specific temperature dependent effects to these two 

types. However, even if type 4 L and LL chondrites only saw the lower end of that 

temperature range during metasomatism, we would expect more extensive albitization if 

all other conditions were equivalent to the above experimental setup (high pressure, pH, 

and water-rock ratio). Types 6 OCs have seen temperatures above 800 °C, which would 

presumably cause the reaction to proceed faster and thus to completion. 
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Unlike temperature, pressure seems unlikely to have a significant effect in 

determining differences between petrologic types and OC groups. In the onion shell 

model, type 6 material should experience slightly higher pressures than type 4 material 

though the differences are not likely to be significant. The interior pressure of chondritic 

asteroids is much lower (10s-100s of bars) than the experimental pressure (2 kbars) used 

by Hövelmann et al. (2010). However, pressure could have an important effect on fluid 

composition relative to the experimental study. Converting anorthite to albite depends on 

the availability of Na and Si in solution. While Na is highly soluble, limits in Si solubility 

may restrict the rate at which the reaction will proceed. Silicon solubility increases with 

increasing temperature, pressure, and pH (Alexander et al. 1954; Morey et al. 1964; 

Fournier and Rowe 1977). At high temperature and pH, silica solubility is very sensitive 

to pressure, so the low pressure asteroidal environment may cause the rate of the 

albitization reaction to be limited by the amount of Si available in solution (Fournier and 

Rowe 1977). Similarly, silica solubility may be controlled by pH and/or temperature 

effects. Overall, the differences in silica solubility between the asteroidal environment 

and experimental conditions may significantly reduce the rate at which chondritic 

albitization occurred. 

Fluid availability and the duration of fluid-bearing episodes also control the 

degree of albitization. Lower amounts of fluid (i.e., low water-rock ratio) in type 4 and 5 

L and LL chondrites could cause lower degrees of albitization whereas higher amount of 

fluid in H chondrites and type 6 L and LL chondrites would allow the reaction to proceed 

to completion. Alternatively, a similar effect could be produced by a limited duration of 

fluid activity coupled with a low reaction rate due to low silica solubility. If one assumes 
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the same amount of fluid was present in ordinary chondrites of all petrologic types (e.g., 

derived locally from ices incorporated into the matrix), an onion-shell asteroid would 

experience longer durations of metasomatism (and at higher temperatures) with 

increasing petrologic type. Given a slow rate of albitization, only the longest duration of 

metasomatism (type 6) would result in a complete replacement of anorthitic plagioclase. 

However, this does not address the difference between type 4 H chondrites and L, LL 

chondrites for which another factor, such as fluid composition, must be invoked. 

In addition to Na, increased K content within albitized regions in type 4 and 5 

chondrites implies the metasomatizing fluid is also K-bearing. Potassium was clearly 

incorporated into the feldspar during the metamorphic processes and exsolved as K-

feldspar during cooling (e.g., Figs. 1.7d,h,j). Both Na and K are incorporated into the 

feldspar structure at a high temperature where the solvus covers a small compositional 

range. As the temperature decreases, the solvus widens and the two feldspars unmix to 

produce cryptoantiperthite (Jones and Brearley 2011; Lewis et al. 2016). Replacement 

reactions such as this are common in alkali feldspars in hydrothermal systems on Earth 

(Parsons and Lee 2009). The presence of K-feldspar exsolution near voids (Fig. 1.7h) 

shows that fluids flowed through the chondrules using inherent porosity. However, the 

amount of K present within the fluid appears to be limited because K content in the 

plagioclase (as seen by K-feldspar exsolution) is not typically uniform from chondrule to 

chondrule or even within a single chondrule (Fig. 1.7h,j). We did not observe K-feldspar 

exsolution in type 6 L and H chondrites: this could be the result of lower K abundances in 

the fluid, although Or contents of albitic feldspar in type 6 chondrites are comparable to 

those in type 5. Orville (1963) showed that the Na/K ratio of a fluid in equilibrium with 
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alkali feldspar decreases with increasing temperature independent of feldspar 

composition. The higher temperature of type 6 OCs could increase K solubility in the 

fluid and decrease the amount of K incorporated into feldspar. The absence of exsolution 

could also indicate a more rapid cooling rate for the type 6 material, which would be 

inconsistent with an onion-shell model.  

The above arguments assume that metasomatizing fluids were acting during peak 

metamorphism within each of the petrologic types. However, thermal modeling of an 

onion shell asteroid (e.g., Harrison and Grimm 2010) shows that peak temperatures for 

each petrologic type are not coincident: there is a time interval of millions of years 

between the peak temperature of type 4 (earlier) and type 6 (later). An alternative model 

for feldspar formation is that the fluid causing the albitization reactions was derived from 

a deep source (not the local environment) and was delivered relatively late in the thermal 

evolution of the parent body, e.g., near peak metamorphism of type 6. In this case, the 

lower petrologic types would have cooled down during retrograde metamorphism and the 

albitization reaction would proceed slower at these lower temperatures. Such a model 

could also explain the difference in equilibration between type 4 H (more albitized) and 

L, LL (less albitized) chondrites. An earlier release of metasomatizing fluids (e.g., near 

peak metamorphism of type 4 material) would allow the reaction to occur at a higher 

temperature, and proceed to completion, in types 4-6. 

In order to fully understand the metasomatic/metamorphic environment, we must 

reconcile observations on phosphate and feldspar minerals. Our generalized model is as 

follows. First, plagioclase crystallizes from chondrule mesostasis during the onset of 

metamorphism at roughly the same time that merrillite forms from the oxidation of 
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metal-derived phosphorus. These are thought to be solid-state processes although fluid 

assistance is not necessarily ruled out. Also, there may be some primary feldspar in 

chondrules. Alteration of Ca-bearing feldspar to albite, and alteration of merrillite to 

apatite, requires a hydrous brine to facilitate the interface-coupled dissolution-

reprecipitation reactions. However, the increasing degree of albitization with increasing 

petrologic type is not reflected in a change in the apatite/merrillite ratio which actually 

decreases slightly with increasing petrologic type, owing largely to an increase in 

merrillite abundance. It appears that the conditions that allowed for the conversion of 

merrillite to apatite were limited in duration and predominantly occurred within lower 

petrologic types. In higher petrologic types, merrillite abundances continued to increase, 

consistent with the presence of an alkali-bearing fluid. During retrograde metamorphism, 

K-feldspar exsolved from the albite and a dry, Cl-rich fluid overprinted the apatite 

compositions but did not affect plagioclase compositions. 

The composition of the fluid that alters anorthite to alkali feldspar and merrillite 

to apatite has been characterized above as a hydrous brine containing the alkali elements 

Na and K and the halogens Cl and F. The fluid also contains Si inferred by the alteration 

of anorthite to albite. We can show the feldspar alteration by the following simplified 

equation where anorthite and low-Ca pyroxene react with a siliceous brine to form alkali 

feldspar, Ca-rich pyroxene, oxides (spinel in this case), with release of CaCl2 back into 

the fluid: 

2CaAl2Si2O8 + Mg2Si2O6 + 2SiO2(aq) + 2NaCl(aq) → 

2NaAlSi3O8 + CaMgSi2O6 + MgAl2O4 + CaCl2(aq). 

While we do not see direct evidence for the consumption of low-Ca pyroxene, we do see 

areas of albitized anorthite with accessory oxides and Ca-rich pyroxene. However, it is 
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likely that chondrule mesostasis, and not low-Ca pyroxene, provides the important 

cations for the replacement reaction to proceed. Potassium can follow Na into the alkali 

feldspar. The resultant CaCl2(aq) can react with merrillite to form apatite according to the 

following simplified equation: 

3Ca9NaMg(PO4)7 + 8CaCl2(aq) → 

7Ca5(PO4)3Cl + 3NaCl(aq) + 3MgCl2(aq). 

In this case, the resultant NaCl can feed back into the anorthite alteration reaction. 

Fluorine can follow Cl into apatite. However, the apatite reaction represented here does 

not take into account the late-stage, dry, Cl-rich fluid that may have overprinted the 

apatite composition. Apatite forming from a hydrous reaction should have a significant 

OH component in addition to the Cl/F ratio of the fluid from which it formed. 

Overall, evidence is mounting that fluids were present during thermal 

metamorphism and that a simple picture of solid-state recrystallization alone is not 

sufficient. The presence of fluids in equilibrated ordinary chondrites has been inferred 

previously from studies of modal mineralogy (McSween and Labotka 1993; Dunn et al. 

2010a,b) and oxygen isotopes (Bridges et al. 1999; Li et al. 2000; Rubin 2005). McSween 

and Labotka (1993) suggested that the observed increase in FeO and decrease in Fe metal 

with progressive metamorphism could be caused by small amounts of water vapor. 

Similar observations were made by Dunn et al. (2010b) using modal mineralogy 

determined by XRD. Rubin (2005) proposed that water could be derived from 

dehydration of phyllosilicates during metamorphism and could be responsible for the 

trend of decreasing δ17O and δ18O with increasing petrologic type observed by Clayton et 

al. (1991). Li et al. (2000) showed that plagioclase and glass separates from the LL3.9 

chondrite Bo Xian had higher δ17O and δ18O than olivine and pyroxene and suggested 
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this was due to interaction with 16O-poor hydrous fluid. Our studies of phosphates and 

feldspar show that interface-coupled dissolution-reprecipitation reactions in a hydrous 

halogen- and alkali-bearing fluid were at least partially responsible for changes in 

mineralogy, and the equilibration of plagioclase appears to be driven almost entirely by 

fluid processes. Late-stage anhydrous, Cl-rich fluids were proposed by Jones et al. (2014) 

to have overprinted apatite compositions during retrograde metamorphism. 

4.4. Cl and F abundances in ordinary chondrites 

 It is important to know bulk halogen abundances in chondrites because they are 

used to estimate the halogen compositions of the Earth and other terrestrial planets 

(McDonough and Sun 1995). However, these values are not well constrained in 

chondrites (Brearley and Jones 2018) and elemental abundance compilations such as 

those of Wasson and Kallemeyn (1988) and Lodders and Fegley (1998) provide widely 

varying values based on limited data. L chondrites have particularly large uncertainties 

with Wasson and Kallemeyn (1988) reporting 76 ppm and 41 ppm for bulk Cl and F 

respectively (atomic Cl/F = 1.0) in contrast to 270 ppm and 100 ppm for Cl and F (atomic 

Cl/F = 1.4) from Lodders and Fegley (1998). Brearley and Jones (2016) provide a review 

of the studies from which these compiled values were obtained and conclude that the 

halogen abundances of Wasson and Kallemeyn (1988) are likely more representative of 

the limited data but should still be treated with caution.  

A number of halogen-bearing phases occur in unequilibrated ordinary chondrites, 

including sodalite, scapolite, and smectite, in addition to apatite (Brearley and Jones 

2018). Most of these phases are not stable at high temperatures and only apatite is present 

in chondrites that have undergone significant degrees of thermal metamorphism. Because 
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of this, apatite is likely the major host of Cl and F in equilibrated (petrologic type 4-6) 

ordinary chondrites and we can use the abundances of Cl and F measured in apatite to 

understand the bulk halogen characteristics of ordinary chondrites. In Figure 1.9, we 

compare bulk Cl/F ratios for H, L, LL, and CI chondrites from Wasson and Kallemeyn 

(1988) with apatite compositions of the three ordinary chondrite groups. Apatite Cl/F 

ratios in ordinary chondrites are significantly higher than the bulk chondrite values of 

Wasson and Kallemeyn (1988). In fact, ordinary chondrite apatite actually shows CI-like 

Cl/F ratios, with quite a lot of scatter, and the Cl/F ratio in L chondrite apatite (atomic 

Cl/F = 5.9) is very close to the CI ratio (atomic Cl/F = 5.7). Figure 1.10 further illustrates 

this point by showing bulk Cl/F ratios (expressed as Cl#) for ordinary and CI chondrites. 

The figure also illustrates the differences between the compilations of Wasson and 

Kallemeyn (1988) and Lodders and Fegley (1998). There are two possible explanations 

for the differences between apatite and bulk chondrite Cl/F ratios: either there are other 

F-bearing phases in equilibrated ordinary chondrites that have not been recognized, or the 

available bulk chondrite values are incorrect, with underestimated Cl and/or 

overestimated F abundances, as discussed by Jones et al. (2014).  

 We can obtain an independent estimate of bulk chondrite Cl and F abundances 

from our measurements of apatite abundances and compositions. For the L chondrites, 

apatite has average Cl and F abundances of 5.2 wt% and 0.5 wt%, respectively (Table 

1.3). Using the calculated average volume abundance of 0.17% for apatite (Table 1.2), 

the bulk Cl and F abundances due to the presence of apatite are roughly 91 ppm and 9 

ppm, respectively (not taking into account densities). These bulk values drop to 86 ppm 

and 8 ppm for Cl and F, respectively, if the calculation includes the mineral density for  
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chlorapatite (Bideaux et al. 2000) and the bulk density of L chondrites (Consolmagno et 

al. 2008). In comparison, the bulk L chondrite Cl abundance given by Wasson and 

Kallemeyn (1988) is very similar, 76 ppm.  This is consistent with apatite being the major 

host for Cl. However, the bulk value for F given by Wasson and Kallemeyn (1988) is 41 

ppm, about 5 times greater than the F abundance accounted for by apatite alone. A 

similar discrepancy was shown for the LL chondrites (Jones et al. 2014) in that apatite is 

clearly the major carrier of Cl, but F in apatite only accounts for ~10% of the reported 

bulk value. Other workers have also reported discrepancies between apatite abundance 

and bulk F content (e.g., Reed 1964; Van Schmus and Ribbe 1969). 

 While bulk chlorine contents of the different chondrite groups are well 

established, reported bulk fluorine contents have large uncertainties (Brearley and Jones 

2018). Although it is possible that F is present in other phases, as suggested by Reed 

(1964), it is unlikely that silicates would be able to retain significant F at the low 

pressures of OC parent bodies. We consider it more likely that the reported halogen 

abundances of bulk ordinary chondrites have overestimated F abundances, and that the 

CI-like Cl/F ratio recorded in apatite is more representative of bulk OC values. If OCs 

have a CI-like Cl/F ratio then perhaps all chondrites formed with a solar Cl/F ratio that 

indicates a roughly uniform distribution of Cl/F in early planetesimals. 

5. Summary and conclusions 

 We conducted a detailed study of phosphate and feldspar in equilibrated L 

ordinary chondrites in order to understand the metamorphic and metasomatic 

environment on the L parent body and compare it to previous studies of H and LL 

chondrites. Apatite abundances and compositions in L chondrites are Cl-rich and similar 
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on average to H chondrites; both are similar to LL chondrites, but apatite in LL 

chondrites has a lower Cl/F ratio. Merrillite abundances and compositions are similar 

among the three chondrite groups and show a trend of compositional equilibration with 

metamorphism. Feldspar in L chondrites shows an equilibration trend from a wide range 

of plagioclase compositions in petrologic type 4 to a homogeneous albitic composition in 

type 6. This is very similar to the feldspar equilibration trend in LL chondrites, and 

different from H chondrites, in which plagioclase is homogeneous and albitic in 

petrologic types 4-6. Metasomatic fluids acted during metamorphic heating on the OC 

parent bodies. The fluids were alkali- and halogen-rich and likely hydrous during 

prograde metamorphism, transitioning to a more anhydrous, Cl-rich composition after the 

asteroid began to cool. The differences in secondary minerals (largely plagioclase 

equilibration) between H and L, LL chondrites can be explained by differences in fluid 

abundance/duration or the timing of deep-sourced fluid release. Regolith breccias have 

lithology-dependent apatite compositions, some with more F-rich apatite compositions 

than unbrecciated chondrites, possibly due to F-rich degassing from impact melts or an F-

rich impactor. Bulk Cl/F ratios for ordinary chondrites inferred from apatite compositions 

are inconsistent with measured bulk chondrite halogen values. We suggest that this is 

because F abundances in bulk ordinary chondrites are overestimated, and that bulk Cl/F 

ratios of ordinary chondrites are actually close to CI chondrite, i.e., that they are 

unfractionated from solar values. 
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Abstract 

Feldspar in ordinary chondrites (OCs) is often associated with thermal 

metamorphism, as a secondary mineral that forms from the crystallization of matrix and 

chondrule mesostasis. However, studies of feldspar in equilibrated OCs show that there is 

a range of plagioclase compositions within chondrules, some of which may be primary 

products of chondrule crystallization. It is important to recognize primary feldspar within 

chondrules because it can be used to help understand the secondary effects of thermal 

metamorphism and aqueous alteration. The presence of primary feldspar also provides 

important petrologic constraints on chondrule formation. We undertook a careful study of 

Semarkona (LL3.00) and observed feldspar in 18% of chondrules. The feldspar is 

plagioclase covering a wide range of compositions (An2-An99) with little K-feldspar 

component (<Or3). We show that plagioclase is a primary igneous phase, based on grain 

morphology and compositions consistent with growth from a melt having the bulk 

compositions of the host chondrules. Based on experimental studies, the presence of 

plagioclase suggests chondrules cooled slowly, on the order 1 ºC/hour at temperatures 

close to the solidus. We also observed several secondary features consistent with the 

aqueous alteration. These features include zoning of Na and Ca in plagioclase, 
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heterogeneity in plagioclase compositions in altered chondrules, development of porosity 

from the dissolution of chondrule glass, and alteration of glass to phyllosilicates. 

Alteration of major Al-bearing phases, like plagioclase and glass, has important 

implications for interpretations of ages derived from Al-Mg dating of chondrules, if they 

have been affected by secondary processes. 

1. Introduction 

 Feldspar in ordinary chondrites (OCs) is commonly considered to be a secondary 

phase that forms during thermal metamorphism (e.g., Huss et al. 2006). As chondrule 

mesostasis glass, often feldspathic in composition, and chondrite matrix recrystallize, 

plagioclase and other phases develop in what has historically been treated as a solid-state, 

temperature-dependent process (Huss et al. 2006). The classification scheme of Van 

Schmus and Wood (1967), used to differentiate degrees of thermal metamorphism, 

describes the crystallization of chondrule mesostasis into albite as an important feature of 

the effect of thermal metamorphism. According to this classification scheme, fine-grained 

albite crystallizes by petrologic type 4 and then undergoes textural equilibration through 

types 5 and 6, ultimately resulting in grains of albite >50 µm in size (Huss et al. 2006; 

Van Schmus and Wood 1967). 

 However, recent studies of feldspar in equilibrated OCs (Kovach and Jones 2010; 

Lewis and Jones 2016) show that the general model of Van Schmus and Wood (1967) 

does not fully describe the feldspar equilibration process or the range in compositions and 

textures found in OC feldspar. Plagioclase is not solely albitic in composition and a wide 

range of plagioclase compositions (An2-An88) is present in relict chondrules in type 4 L 

and LL chondrites (Kovach and Jones 2010; Lewis and Jones 2016). Only in type 6 
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chondrites is feldspar equilibrated chemically, in addition to texturally, to an albitic 

composition of ~An11.  

The wide range of feldspar compositions within chondrules in type 4 L and LL 

chondrites is plausibly derived from variable initial mesostasis compositions. However, 

chondrules may also contain primary igneous plagioclase, with a range of compositions 

that could reflect the compositions of plagioclase observed in type 4 OCs. Primary, 

igneous anorthitic feldspar has been described in Type I chondrules in OCs but it is not 

well characterized, unlike similar occurrences in carbonaceous chondrites (CCs) 

(Brearley and Jones 1998; Wick and Jones 2012). Aluminum-rich chondrules in OCs also 

contain primary anorthite that is useful for age dating using Al-Mg systematics (e.g., 

Huss et al. 2001). Although Type II chondrules in OCs are rich in Na and K, albitic 

plagioclase or alkali feldspar is not generally observed (Jones 1990). Grossman and 

Brearley (2005) noted that crystalline albite is present within Semarkona, but did not 

indicate whether it is primary or secondary in origin. 

To understand how secondary plagioclase develops during metamorphism, it is 

essential to know the abundance and composition of primary plagioclase. The 

mineralogical and chemical changes that affect chondrule mesostasis during thermal 

metamorphism depend on the composition and initial crystallinity of the mesostasis, in 

addition to temperature and available fluids. The presence of primary feldspar can 

influence the subsequent crystallization of the mesostasis glass by providing surfaces on 

which secondary plagioclase can nucleate. Plagioclase is also affected by alkali 

metasomatism, so secondary effects recorded in primary plagioclase can provide an 

indicator of the presence of fluids in type 3 chondrites. Plagioclase alteration can affect 
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Al-Mg systematics resulting in low precision isochrons or ages that are difficult to 

interpret. In addition to its importance in terms of interpreting metamorphism, 

understanding the origin and development of primary feldspar can help constrain 

chondrule cooling rates, an important parameter in chondrule formation models 

(Connolly and Jones 2016). 

We have investigated the presence and characteristics of primary igneous 

plagioclase within chondrules of the LL3.00 chondrite Semarkona. Semarkona is the least 

thermally metamorphosed OC fall with a maximum metamorphic temperature estimated 

to be less than 260 °C (Alexander et al. 1989). It is the ideal sample in which to 

investigate primary chondrule minerals because chondrule mesostasis glass has not 

undergone crystallization (Huss et al. 2006). The mineralogy and petrology of Semarkona 

chondrules were studied extensively by Jones and Scott (1989) and Jones (1990, 1994, 

1996), but primary igneous plagioclase was not recognized in those studies. Marked 

improvements in SEM technology has enabled higher resolution investigations into 

chondrule mineralogy and allowed for studies on phases too small to be fully 

characterized in earlier studies. We show that primary igneous plagioclase is abundant in 

Semarkona chondrules and that careful observations of plagioclase are important for 

interpreting the effects of metamorphism, alteration, and the results of Al-Mg isotope 

systematics. 

2. Samples and analytical methods 

 For this study, we examined a single thin section of Semarkona from the Institute 

of Meteoritics Collection at the University of New Mexico, UNM 549. Feldspar was 

identified using backscattered electron (BSE) imaging and energy-dispersive 
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spectroscopic (EDS) analysis on an FEI Quanta 3D Field Emission Gun Scanning 

Electron Microscope (FEG-SEM) at the University of New Mexico. High contrast BSE 

images were captured at 10 kV and 16 nA. Cathodoluminescence (CL) images were 

acquired at the Williamson Research Centre, University of Manchester using a CITL 

Cold Cathode CL 8200 MK3 with optical stage operated at 15-20 kV and 300-400 μA. 

Quantitative wavelength-dispersive spectroscopic (WDS) analysis was performed 

on a JEOL 8200 Electron Probe Microanalyzer (EPMA) at the University of New Mexico 

operated at 10-15 kV and 10 nA with a focused beam. The low accelerating voltage was 

used to minimize the interaction volume when analyzing small feldspar grains. We used 

the following standards: Taylor olivine (Mg, Fe), Taylor albite (Na, K), Taylor orthoclase 

(K, Al, Si), and a doped diopside (Ca, Cr, Mn). We used time dependent intensity 

corrections on Na using the Probe for EPMA software to compensate for the effects of 

Na migration in Na-bearing plagioclase during focused-beam analysis. 

We determined bulk silicate compositions for four chondrules, based on 

quantitative WDS maps obtained using EPMA. 300x300 pixel maps were acquired in two 

passes using an 80 ms/px dwell time and a 1-3 μm spot size. This provided coverage 

between 300x300 μm and 900x900 μm, depending on the size of the chondrule. The 

resulting intensity maps were processed using mean atomic number (MAN) background 

corrections to produce quantitative oxide maps. MAN curves were generated using the 

following Taylor standards: olivine, albite, orthoclase, chromite, spessartine, MgO, 

hematite, and nickel and additional standards: doped diopside, labradorite, and sodalite. 

Chondrules were masked in Adobe Photoshop and the bulk silicate compositions of the 

chondrules were calculated. We used a custom MATLAB script to identify the chondrule 
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pixels in which analytical sums lie between 90% and 110%. In addition, pixels with SiO2 

content less than 20% were omitted to eliminate Fe-Ni metal and sulfides. Densities were 

determined for each pixel based on assigned mineral phase and the bulk silicate 

composition of each chondrule was calculated as the mean density-weighted composition 

of accepted pixels. A detailed description of this process is presented in Appendix 2. 

A section from Ch 28 was prepared using a focused ion beam (FIB) on the FEI 

Quanta 3D Dual-beam FEG-SEM/FIB with a final polish conducted at 5 kV to reduce 

surface amorphization. The section was imaged at the University of New Mexico using a 

JEOL 2010F Scanning Transmission Electron Microscope (STEM) operated at 200 kV in 

scanning mode using a high-angle annular dark-field (HAADF) detector. An EDS map 

was obtained over a 2.4 μm x 1.8 μm region using an Oxford Instruments AZtec EDS 

system equipped with an Oxford X-MaxN 80T SDD EDS detector.  

3. Results 

Fig. 2.1 shows a BSE map of thin section UNM 549 in which feldspar-bearing 

chondrules are outlined in white. Chondrules referred to in the text, figures, and tables are 

labeled in Fig. 2.1 by chondrule number. Eighteen percent of chondrules were found to 

contain primary igneous feldspar that exhibit a range of sizes and textures described 

below.  

3.1. Petrography 

Examples of chondrules that contain near-endmember albite and anorthite (Ch3 

and Ch36, respectively) are illustrated in Fig. 2.2. Ch3 (Fig. 2.2a) is a Type II (FeO-rich) 

porphyritic olivine pyroxene (POP) chondrule. It is dominated by a single large (450 μm) 

olivine grain in addition to smaller grains of olivine (up to 150 μm) and low-Ca pyroxene 
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(up to 75 μm). The olivine grains show normal igneous zoning and the low-Ca pyroxene 

grains have oscillatory zoning (Fig. 2.2b). Calcium-rich pyroxene is present around the 

perimeters of the low-Ca pyroxene grains. The albite has a composition of An2 and is 

present predominantly along the chondrule perimeter in bunches of thin, 1-8 μm wide, 

laths (Fig. 2.2b) up to 60 μm in length within the chondrule glass. Some of these laths are 

curved and have convex terminations indicating rapid growth. Albite luminesces bright 

blue in the CL image (Fig. 2.2b, inset), but the glass does not luminesce significantly 

making albite easy to recognize via CL in this, and other, albite-bearing chondrules. 

Along the chondrule edge, in contact with the matrix, mesostasis glass is partially altered 

to phyllosilicates and the albite laths are zoned subparallel to the regions of alteration 

(Fig. 2.2c).  

 

Figure 2.1. BSE mosaic of Semarkona thin section UNM 549. Plagioclase-bearing chondrules are 

circled in white. Numbered chondrules are referenced in the text, figures, and tables. 
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Figure 2.2. Examples of albite- and anorthite-bearing chondrules with end-member plagioclase 

compositions. (a,b) BSE images of Ch3, a Type I POP chondrule with laths of albite (ab, An2) in 

mesostasis glass (gl) between grains of olivine (ol), low-Ca pyroxene (px), and Ca-rich pyroxene 

(cpx). Inset in (b) shows CL image of same region illustrating the bright blue luminescence of 

albite laths. (c) Region of Ch3 along the rim in which the albite laths are zoned and some of the 

glass is replaced by phyllosilicates (phy). (Caption continues on the following page). 
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Figure 2.2. (Caption continued from the previous page). (d,e) BSE images of Ch36, an FeO-poor 

BO chondrule with light grey mesostasis (ms) and laths of anorthite (an, An99) between the 

olivine bars. Ca-rich pyroxene and glass occur interstitial to the anorthite. (f) CL image of the 

entire chondrule in which the anorthite luminesces light blue and the glass luminesces pale yellow 

in the center and bright yellow along the rim. 
 

 

Ch36 (Fig. 2.2d) is an FeO-poor barred olivine (BO) chondrule that has 10-30 μm 

wide bars of forsteritic olivine. The chondrule has extensive fracturing, particularly in the 

central region, and appears to have been crushed. Between the olivine bars are abundant 

1-6 μm wide laths of anorthite (An99, Fig. 2.2e). Interstitial to the anorthite laths are small 

(~1 μm) clinopyroxene quench crystallites and minor remnant glass. The glass is largely 

intact but is replaced by voids in a few places throughout the chondrule. A CL image of 

Ch36 (Fig. 2.2f) shows the plagioclase luminescing light blue. Olivine bars luminesce red 

and are zoned, with the brightest parts toward the exterior of the grains. The mesostasis 

glass luminesces bright yellow along the chondrule rim and pale yellow toward the 

interior. 

Representative BSE images of chondrules that contain plagioclase with 

intermediate compositions are shown in Fig. 3. Ch28 (Fig. 2.3a) is a Type II POP 

chondrule with olivine grains up to 150 µm long and low-Ca pyroxene grains up to 250 

µm long. Like in Ch3, the olivine and low-Ca pyroxene grains in Ch28 are zoned and Ca-

rich pyroxene is found along the perimeter of the olivine and low-Ca pyroxene grains. 

Several large voids (up to 370 µm in diameter) are present in the chondrule interior. 

Albitic plagioclase (Fig. 3b) is present as 1-6 µm wide laths interstitial to the olivine and 

pyroxene grains throughout the chondrule and is zoned with a range of compositions 

from An3 to An19. Pores and porous phyllosilicates are present within, and between, the 

plagioclase laths. 
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Figure 2.3. Examples of chondrules with plagioclase of intermediate composition. Ch28 (a,b) is a 

Type II POP chondrule with large voids. Plagioclase (plg, An10) in this chondrule is present as 

laths interstitial to grains olivine (ol), Ca-rich pyroxene (cpx), and minor sulfides (sul). The 

plagioclase is zoned and pores and phyllosilicates are present between the plagioclase laths. The 

white line shows the region from which a FIB section was made (see Fig. 2.4). Ch23 (c,d) is a 

Type I POP chondrule with plagioclase (An37) interstitial to olivine, low-Ca pyroxene (px), and 

Ca-rich pyroxene. The mesostasis glass has been completely leached out and is replaced with 

voids. (Caption continues on the following page).   
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Figure 2.3. (Caption continued from the previous page). Ch20 (e,f) is a Type I POP chondrule 

with plagioclase (An66) interstitial to low-Ca pyroxene and some Ca-rich pyroxene. Smaller 

grains of Ca-rich pyroxene and glass are present in between the plagioclase laths as well as some 

areas of leached mesostasis glass that are replaced with void space. 
 

 

A FIB section (Fig. 2.4a) was extracted from Ch28 (white line in Fig. 2.3b) to 

further investigate the plagioclase zoning seen in the BSE image (Fig. 2.3b). Plagioclase 

laths in the HAADF STEM image (Fig. 2.4b) show zoning parallel to the grain 

boundaries. This zoning is visible in the Ca EDS map (Fig. 2.4c) that shows that Ca is 

moderately enriched in the core but heterogeneously distributed from core to rim within 

individual laths. The outer ~100 nm of the laths are Ca-poor and a narrow region of Ca-

enrichment is present between the core and Ca-poor rim. Between the plagioclase laths, 

adjacent to the Ca-poor zones, are porous phyllosilicates. Vertical lineations in Fig. 2.4a, 

also seen in Fig. 2.4b inclined to the right, are a curtaining artefact produced during 

sample preparation. 

Ch23 (Fig. 2.3c) is a Type I (FeO-poor) POP chondrule containing large low-Ca 

pyroxene grains up to 250 μm long and smaller (up to 150 μm long), zoned olivine 

grains. Interstitial to the major grains are 1-2 μm wide laths of intermediate plagioclase 

(An37, Fig. 2.3d), up to 30 μm long. The plagioclase laths are zoned like those in Ch28 

and much of the mesostasis interstitial to the plagioclase laths appears to have been 

dissolved away as it is now void space. Ca-rich pyroxene is found along the perimeter of 

the low-Ca pyroxene grains with plagioclase largely interstitial to it. However, the 

terminations of the plagioclase laths slightly embay into the Ca-rich pyroxene. 

Ch20 (Fig. 2.3e) is also a Type I POP chondrule with 30-70 μm olivine grains 

clustered near the interior and pyroxene grains up to 120 μm long near the chondrule 

exterior. Plagioclase is located at the center of the chondrule and occurs as 1-3 μm wide 



 

73 

 

laths, up to 60 μm long, with a composition of An66 (Fig. 2.3f). Ca-rich pyroxene is 

present both interstitial to the plagioclase laths and along the low-Ca pyroxene 

perimeters. Like Ch23, some of the mesostasis glass appears to have been dissolved 

away, leaving voids interstitial to the plagioclase and Ca-rich pyroxene grains.  

 

 
 

Figure 2.4. FIB section from Ch28 (see Fig. 2.3b). (a) HAADF image showing plagioclase (plg), 

Ca-rich pyroxene (cpx), and porous phyllosilicates (phy) interstitial to the plagioclase laths. 

Vertical banding is curtaining, a sample preparation artefact. (b) Close-up of selected area in (a) 

illustrating zoning in the plagioclase laths and the relationship of zoning to grain boundaries, 

pores, and phyllosilicates. (c) Ca Kα EDS image of the same region as (b) which illustrates the 

loss, and heterogeneous zoning, of Ca in the altered plagioclase. 
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3.2. Feldspar compositions 

EPMA data for feldspar measured in 14 chondrules are presented in Fig. 2.5, 

average compositions for individual chondrules are given in Table 2.1, and individual 

analyses are tabulated in Appendix 1. Feldspar compositions span the full range along the 

Ab-An plagioclase join, from An2 to An100. The K2O contents are minor but increases 

slightly with decreasing An content to a maximum of Or2 in Ch3 (An2). No K-feldspar 

was observed in any of the chondrules. The compositional range of plagioclase within 

each chondrule varies considerably from chondrule to chondrule. In the truncated ternary 

diagram in Fig. 2.5, each spot represents an individual analysis. On the scale to the left, 

we illustrate the range in anorthite content by plotting the average plagioclase 

composition for each chondrule with error bars representing one standard deviation of the 

mean.  

Greater compositional ranges are correlated with secondary features such as 

dissolved mesostasis glass and the presence of phyllosilicates (e.g., Ch28: Figs. 2.3b and 

2.4 and Ch23: Fig. 2.3d). Ch3 also has phyllosilicates and dissolved mesostasis glass 

(Fig. 2.2c) but a low standard deviation in its An content because only a few of the 

plagioclase grains in contact with the matrix have undergone alteration. Ch10 has the 

greatest standard deviation because only 3 points are included in the calculation and there 

is a 15 mol % spread between the highest and lowest values (An21-An36). The lowest An 

value measured in Ch10 is associated with the region of greatest alteration. 

Cr2O3 and MnO contents of plagioclase in all chondrules are low, typically less 

than 0.1 wt.% each, and there is no correlation with anorthite content. The FeO and MgO 

contents of the plagioclase vary greatly from chondrule to chondrule as well as within 
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each chondrule but can be of significant abundance (up to 4.5 wt.% total in individual 

analyses). It is not clear whether these elements are incorporated into plagioclase or not, 

and if they are incorporated, how they are substituting into the crystal structure. The high 

abundances of these elements do not correlate significantly with An content as would be 

expected if they were directly substituting for Ca, and the system is too reducing for Fe to 

be trivalent and substitute for Al. However, the Mg# (Mg/(Mg+Fe)) of the plagioclase 

does correlate with An content, for example atomic Mg# = 24 and 95 for An2 and An99, 

respectively, suggesting that the compositions were determined during crystallization. 

FeO and MgO (up to 3 and 1.2 wt.%, respectively) are commonly reported in meteoritic 

plagioclase over a range of compositions, summarized by Smith and Brown (1988), so 

the presence of these cations in our measurements is not unusual. The crystallization 

conditions may be such that the incorporation of FeO and MgO into plagioclase 

represents a disequilibrium feature of rapid plagioclase growth.  

However, Smith and Brown (1988) caution the over interpretation of feldspar 

EPMA data without careful consideration of the analytical conditions. Secondary 

fluorescence can be a major issue, particularly in Fe-rich samples. It is also possible that 

some of the FeO and MgO content comes from analytical overlap of adjacent phases such 

as Ca-rich pyroxene, metals, and sulfides. Despite using low accelerating voltages (10-15 

kV) during EPMA analysis to reduce the analytical interaction volume, the small size of 

the plagioclase laths (~1-5 µm wide) means some overlap with other mesostasis phases is 

difficult to avoid. Hence, we cannot be sure that the analyses are not influenced by 

analytical artefacts. However, TEM EDS estimated up to 0.5 wt.% FeO and 0.2 wt.% 

MgO in Ch28 zoned plagioclase (Fig. 2.4), values in the range of those measured by 
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EPMA for Ch28. This suggests that at least some of the FeO and MgO measured by 

EMPA resides in plagioclase. 

 

 
 

Figure 2.5. Compositions of plagioclase measured by EPMA. The range of measured plagioclase 

compositions in Semarkona chondrules is illustrated on the left. Each point represents the mean 

plagioclase composition in each chondrule. Error bars represent 1 standard deviation of the mean 

and the points are offset horizontally for ease of viewing. Individual analyses are plotted on a 

feldspar ternary on the right. The ternary is truncated at Or10 and the colors in the ternary 

correspond to those for the chondrule means on the left-hand side of the diagram. 
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3.3. Bulk chondrule composition and modal mineralogy 

 Bulk silicate compositions of selected chondrules measured using quantitative 

EPMA maps are tabulated in Table 2.2. The oxide maps used to determine the bulk 

compositions are illustrated in Fig. 2.6. The data show a clear trend of increasing An 

content in plagioclase with increasing bulk Mg#. With increasing An contents in the 

plagioclase, the bulk chondrule Na/Al ratio decreases (1.1-0.1) but the Ca/Al ratio 

remains constant across the four chondrules (1.4-1.5). K2O is enriched in the type II 

chondrule Ch3 (0.13 wt.%) relative to the other three chondrules which have relatively 

constant, and low, K2O abundances (0.07-0.08 wt.%). Bulk Cr2O3 is depleted in the BO 

chondrule Ch36 (0.25 wt.%) relative to the other three chondrules that are similar in 

Cr2O3 content (0.63-0.71 wt.%). 

The modal silicate mineralogy of the chondrules (Table 2.2) was estimated from 

the EPMA maps which and are illustrated as mineral maps in Fig. 2.6. Ch3 is a POP 

chondrule dominated by olivine (63%) and containing approximately equal amounts of 

low-Ca pyroxene and Ca-rich pyroxene (13% and 14%, respectively), and 10% 

mesostasis. The measured mesostasis abundance includes plagioclase, glass, and small 

amounts of Ca-rich pyroxene. Ch23 and Ch20 are similar with 27% and 19% olivine, 

57% and 66% low-Ca pyroxene, similar amounts of Ca-rich pyroxene (7%), and 9% and 

8% mesostasis, respectively. The BO chondrule Ch36 consists of 66% olivine and 32% 

mesostasis. The 2% that was measured as Ca-rich pyroxene represents large grains while 

most of the Ca-rich pyroxene is ~1 µm in size (Fig. 2.2e) and is included in the reported 

mesostasis abundance. 
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Table 2.2. Bulk silicate compositions of selected chondrules. 

  Ch3 Ch23 Ch20 Ch36 

  Type II Type I Type I BO 

SiO2 45.4 52.1 53.9 43.4 

Al2O3 2.08 2.44 2.50 6.93 

Cr2O3 0.63 0.78 0.71 0.25 

FeO 16.3 5.31 3.43 1.76 

MgO 32.7 36.7 37.1 41.7 

CaO 1.58 1.99 1.91 5.65 

Na2O 1.21 0.59 0.40 0.28 

K2O 0.13 0.08 0.07 0.07 

Total 100.0 100.0 100.0 100.0 

          

Mg#1 66.8 87.4 91.5 95.9 

Mg#2 78.2 92.5 95.1 97.7 

Na/Al3 1.1 0.5 0.3 0.1 

Ca/Al3 1.4 1.5 1.4 1.5 

An4 1.9 36.7 65.8 98.9 

Liquidus5 1672 °C 1688 °C 1685 °C 1744 °C 

     

 Modal mineral abundances6 

Olivine 63% 27% 19% 66% 

Low-Ca pyx 13% 57% 66% 0% 

Ca-pyx 14% 7% 7% 2% 

Mesostasis7 10% 9% 8% 32% 
1 Mg# = Mg/(Mg+Fe)x100, wt. % oxide 
2 Mg# = Mg/(Mg+Fe)x100, atomic 
3 atomic 

4 average plagioclase composition, from Table 2.1 
5 estimated using Rhyolite-MELTS 
6 estimated from EPMA maps (see Fig. 2.6) 
7 includes glass, plagioclase, and minor Ca-rich pyroxene 
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Figure 2.6. (On previous page). Data from EPMA maps of Ch3, Ch23, Ch20, and Ch36, used to 

determine bulk chondrule compositions. The anorthite content of primary plagioclase in these 

chondrules increases from left (An2) to right (An99). The first row shows BSE images for each 

chondrule. The second row shows phase maps highlighting the dominant phases of olivine (blue), 

low-Ca pyroxene (green), Ca-rich pyroxene (red), and mesostasis (white). Here, mesostasis 

consists of glass, plagioclase, and minor Ca-rich pyroxene. The third row shows atomic Mg# 

maps illustrating the increase in Mg# from left to right. Rows 4, 5, and 6 show quantitative wt. % 

oxide maps of Al2O3, CaO, and Na2O, respectively. 

 

 

4. Discussion 

 Primary chondrule minerals contain important information about physical and 

chemical conditions present in the solar nebula during chondrule formation. They can 

provide information about the timing of the chondrule forming event through relative 

radiogenic chronometers (e.g., Al-Mg dating), and about cooling rates through petrologic 

studies. Characterizing primary minerals is also important for revealing the effects of 

secondary processes. Because these processes alter the chemistry and mineralogy of 

chondrules, well characterized primary minerals are important for interpreting the effects 

of thermal metamorphism and metasomatism. 

While the presence of primary plagioclase has been noted in OC chondrules 

before (e.g., Grossman and Brearley 2005; Huss et al. 2001; Russell et al. 2000), its 

petrography and relation to bulk chondrule composition have not been studied in detail. 

In the discussion that follows, we will show that primary plagioclase nucleated and grew 

as a primary igneous phase during chondrule cooling, discuss the conditions under which 

it formed, and consider the implications for chondrule formation including cooling rates 

and nebular environment. We will also show how secondary features in plagioclase 

indicate parent body alteration and discuss why an accurate chondrule chronology 

depends on detailed investigations of chondrule mineralogy. 
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4.1. Primary igneous plagioclase 

 Although plagioclase is not thought of as a common primary mineral in OC 

chondrules, we show that it is relatively abundant. Brearley and Jones (1998) did not 

mention plagioclase in their review of chondrules in type 3 OC. However, anorthite has 

been noted in Al-rich OC chondrules (Huss et al. 2001; Russell et al. 2000), used largely 

for Al-Mg chronology, and crystalline albite was seen in a Semarkona chondrule 

(Grossman and Brearley 2005). It is important first to show that the plagioclase within 

these chondrules is a primary igneous phase, so that we can use it to understand 

chondrule formation and the nebular environment in which chondrules were formed. 

4.1.1. Feldspar as an igneous phase 

Mineral textures can be used to illustrate the igneous nature of plagioclase in 

Semarkona chondrules. The plagioclase grains we observe are smooth laths, regardless of 

their composition (Figs. 2.2b,c,e, 2.3b,d,f), consistent with an igneous origin. In contrast, 

plagioclase that crystallizes from devitrified mesostasis glass is extremely fine grained in 

the lower petrologic types and does not display a lath-like morphology (Huss et al. 2006). 

The morphology of plagioclase in Ch3 (Fig. 2.2b) is similar to fan spherulites, indicating 

rapid growth with high degrees of undercooling (Corrigan 1982; Lofgren 1974). Albitic 

laths such as these are common in the outer portions of albite-bearing chondrules. An 

external nucleation agent such as nebular dust impinging on the outside of the chondrule 

could have helped the plagioclase to nucleate and, combined with undercooling, grow 

rapidly as the textures indicate. In a similar manner, Connolly and Hewins (1995) were 

able to experimentally reproduce a variety of chondrule textures by puffing dust onto the 

surface of molten chondrule droplets to induce nucleation. Although these experiments 
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did not produce plagioclase, it is a reasonable mechanism for producing the albite 

textures we observe here.   

 Another way to assess whether the plagioclase in Semarkona chondrules is a 

primary phase is to look at the bulk compositions of the chondrules in which it is found. 

A relationship between plagioclase composition and bulk chondrule composition is 

expected for growth of plagioclase from the melt. As discussed above, the anorthite 

content in chondrule plagioclase is directly related to the bulk composition of the 

chondrule: increasing atomic Mg# from 78 to 98 in the bulk chondrule corresponds to 

average plagioclase compositions varying from An2 to An99, an increase in bulk 

chondrule abundances of refractory elements Al and Ca, and a decrease in the volatile 

element Na (Table 2.2). Because the Ca/Al ratio is constant across the four measured 

chondrules, the composition of the plagioclase seems tied to the bulk Na abundance and 

Na/Al ratio, which in turn is inversely correlated with Mg#, as has been shown previously 

Grossman and Wasson (1983). 

We can use bulk chondrule and plagioclase compositions to provide upper limits 

on the temperatures at which the plagioclase formed. However, as we discuss further 

below, plagioclase and mesostasis glass in some of these chondrules have been affected 

by aqueous alteration, although the major phases (olivine and pyroxene) appear 

unaffected. Because plagioclase and mesostasis glass are rich in Na, Ca, Al, and Si, these 

elements are likely to differ slightly in the bulk silicate composition we measured when 

compared to the fresh, unaltered chondrule. For this discussion, we assume that the 

measured bulk silicate compositions are the original igneous compositions. 



 

85 

 

We used the thermodynamic model rhyolite-MELTS (Ghiorso and Gualda 2015; 

Gualda et al. 2012) to model the equilibrium crystallization of the bulk compositions 

listed in Table 2.2. We used rhyolite-MELTS instead of the classic MELTS package 

because of the increased computational stability added to rhyolite-MELTS. The 

calibration for low-SiO2 compositions, relevant to the bulk composition of Semarkona 

chondrules, is the same for the two programs. Chondrule compositions were cooled from 

the calculated liquidus temperature (Table 2.2), in 1 °C increments, at a constant 1 bar 

pressure, and kept at a constant fO2 along the IW buffer.  

 

 
 

Figure 2.7. Results of equilibrium crystallization of chondrule bulk compositions in rhyolite-

MELTS. Lines illustrate equilibrium plagioclase compositions with decreasing temperature 

(increasing crystallization). The average plagioclase composition measured in each chondrule is 

marked with a cross at the corresponding temperature. The plagioclase composition for Ch36 

(An99) is not on the plagioclase crystallization line, so the crystallization temperature of anorthite 

in the Fo-Di-An system (1317 °C) is plotted instead. Circles mark the temperatures at which Ca-

rich pyroxene becomes stable. See text for details. 
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The results are illustrated in Fig. 2.7. Lines show the equilibrium plagioclase 

composition predicted to crystallize for each bulk chondrule composition. Crosses 

indicate measured plagioclase composition and corresponding equilibrium crystallization 

temperature. For Ch36, the cross is not on the line because the measured anorthite 

composition (An99) was not produced during the modeled plagioclase crystallization: this 

will be discussed below. Circles indicate the point at which clinopyroxene becomes 

stable. For each chondrule, the range of plagioclase compositions predicted to crystallize 

from the bulk composition is close to the measured plagioclase composition from those 

chondrules: more anorthitic chondrules (Ch36 and Ch20) have plagioclase compositions 

closer to the first composition to crystallize whereas the more albitic chondrules (Ch23 

and Ch3) are closer to the final compositions to crystallize.  

Rhyolite-MELTS simulates batch crystallization under equilibrium conditions but 

the rapid cooling experienced by chondrules means that equilibrium conditions were 

unlikely during crystallization. In fact, due to the extremely slow rate of Si-Al 

interdiffusion, it is unlikely that any feldspar truly grows under equilibrium conditions 

(Brown and Parsons 1994). However, using rhyolite-MELTS to look at the equilibrium 

plagioclase compositions is instructive to understand the expected plagioclase 

compositions and to provide upper limits for formation temperatures. These temperatures 

are 1197, 1098, and 792 °C for Ch20, Ch23, and Ch3 respectively. 

The measured plagioclase composition in Ch36 has a greater anorthite content 

(An99) than the most anorthitic composition from the rhyolite-MELTS model (An93). This 

puts a lower limit on the plagioclase crystallization temperature for this composition of 

>1260 °C, the temperature at which rhyolite-MELTS predicts that plagioclase would start 



 

87 

 

to form. We can also consider this chondrule within the ternary Fo-Di-An system in order 

to provide a better constraint on the upper limit of the plagioclase crystallization 

temperature. Forsterite, diopside, and anorthite are the three major phases present within 

this chondrule and their compositions are close to the Mg-free and Na-free endmembers 

of the system. We projected the bulk composition measured for Ch36 onto the Fo-Di-An 

ternary resulting in a relative composition of 70, 8, and 22 wt.% Fo, Di, and An, 

respectively, and close to the measured modal mineral abundances (Table 2.2). Under 

equilibrium crystallization conditions, the melt composition, which begins in the Fo 

primary field, intersects the Fo-An join around 1317 °C (Osborn and Tait 1952), 

consistent with the rhyolite-MELTS estimate of >1260 °C. The temperature of 1317 °C is 

used to indicate the plagioclase crystallization temperature for Ch36 on Fig. 2.7. 

Figure 2.7 also shows the expected relative timing of plagioclase and Ca-rich 

pyroxene during equilibrium crystallization. Textures showing the relative timing of 

plagioclase and Ca-rich pyroxene crystallization are a further indicator that plagioclase is 

primary. Calcium-rich pyroxene is often one of the last silicate phases to crystallize in 

chondrules and it nucleates off the existing phenocrysts of olivine and low-Ca pyroxene 

(e.g., red in the phase maps in Fig. 2.6). The temperature at which Ca-rich pyroxene 

becomes stable is relatively insensitive to bulk composition (1055-1225 °C, Fig. 2.7). 

Because the crystallization temperature of plagioclase is strongly dependent on its 

composition, we would expect albitic plagioclase to crystallize after Ca-rich pyroxene 

and anorthitic plagioclase to crystallize before Ca-rich pyroxene but after low-Ca 

pyroxene. Ch3, Ch28, and Ch23 have albitic plagioclase compositions and the 

plagioclase is interstitial to the Ca-rich pyroxene growth (Figs. 2.2b,c, 2.3b,d). Ch20, 
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with an intermediate plagioclase composition (An66), has plagioclase intergrown with Ca-

rich pyroxene (Fig. 2.3f): Ca-rich pyroxene appears to have nucleated first but continued 

to grow during plagioclase crystallization. Ch36 has an anorthitic plagioclase 

composition (An99) and Ca-rich pyroxene is present between plagioclase laths (Fig. 2.2e). 

Hence, despite the undercooling discussed above, our observations are broadly consistent 

with the equilibrium model. 

Overall, the plagioclase textures, the dependence of plagioclase composition on 

bulk chondrule composition, the similarity of measured and modeled plagioclase 

compositions, and the relative crystallization of plagioclase and Ca-rich pyroxene provide 

evidence that the plagioclase in these chondrules is a primary igneous phase. Rhyolite-

MELTS predicts a wide range in the equilibrium crystallization temperatures, 792-1317 

°C. These are considered upper limits because of the effects of undercooling. The 

presence of primary plagioclase in chondrules has implications for chondrule formation 

that will be explored in the following section. 

4.1.2. Implications for chondrule formation and chondrule forming conditions in the 

solar nebula 

 Chondrules are the most abundant constituent of the most common type of 

meteorite in our collections. Understanding chondrule formation is vital for 

understanding what appears to be a ubiquitous process (or set of processes) in the solar 

nebula (Connolly and Jones 2016). However, the myriad of petrologic and experimental 

constraints provided by chondrule chemistry and mineralogy have not yet stemmed the 

proliferation of chondrule formation models (Connolly and Desch 2004; Connolly and 

Jones 2016). Because plagioclase crystallizes at a lower temperature than the dominant 
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minerals found in chondrules, olivine and low-Ca pyroxene, and because most constraints 

are based on observations of those minerals, plagioclase can help put further constraints 

on the physical conditions and nebular environment in which chondrules formed. 

 We observe a wide range of plagioclase compositions (An37-An100) in FeO-poor 

chondrules. Plagioclase has not previously been recognized in Type I porphyritic 

chondrules in OCs (Brearley and Jones 1998) but it has been noted as a common phase in 

Al-rich OC chondrules (Huss et al. 2001; Russell et al. 2000). Plagioclase in Al-rich 

chondrules has a range of compositions (An70-An100) and is commonly ≥An90 (Huss et al. 

2001). Aluminum-rich chondrules have a close affinity to calcium-aluminum-rich 

inclusions that are anorthite-bearing. Anorthite has also been described in Type I 

chondrules in various CCs (Brearley and Jones 1998). Approximately 10% of Type I 

chondrules in CO chondrites contain anorthite (Jones 1997; Wick and Jones 2012). Type 

I chondrules are the dominant chondrule type in CO chondrites consisting of ~85% of all 

chondrules compared to only ~20% of OC chondrules (Jones 2012). The implications of 

anorthite-bearing Type I chondrules in CO chondrites were explored experimentally by 

Wick and Jones (2012). They melted a Type I chondrule-like composition at 1500-1600 

°C and cooled the chondrules in stages at rates between 1 °C and 25 °C per hour. They 

found that only the slowest cooling rate (1 °C/hour in the final cooling stage from 1000-

800 °C) could nucleate anorthitic plagioclase. All experiments with faster cooling rates 

produced glass instead of crystalline plagioclase. 

We observed Na-rich plagioclase (An2-An32) in FeO-rich chondrules in 

Semarkona, which has not been widely recognize before (Brearley and Jones 1998; Jones 

1990). This is not surprising due to the fine scale of the plagioclase laths observed in the 
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chondrules of this study (e.g., Fig. 2.2b). Grossman and Brearley (2005) identified 

crystalline albite in Semarkona chondrules through TEM analysis. The recent availability 

of high resolution field emission SEMs has allowed for more detailed petrologic studies 

of chondrules revealing mineral phases and textures overlooked in previous studies.  

The presence of plagioclase in Type II chondrules can also provide constraints on 

chondrule cooling rates. Rocha and Jones (2012) used the inferred absence of plagioclase 

in Type IIA OC chondrules to experimentally constrain cooling rates in these chondrules. 

Using a relatively rapid constant cooling rate, 30 °C/hour, they reproduced plagioclase-

free Type IIA textures. However, by reducing the final cooling rate to 1 °C/hour (950-900 

°C) they crystallized plagioclase, but only in a Type IIAB-like texture. This plagioclase 

had a composition of An97, closer to the composition expected in the Type I chondrules, 

which is the result of Na loss during the experiment. Because of the low Na content, these 

experiments are not perfectly analogous to the albite-bearing Type II chondrules we 

observe in Semarkona. Nucleation of alkali feldspar in anhydrous crystallization 

experiments is extremely difficult (Smith and Brown 1988). However, the presence of 

albite growing from the chondrule exterior suggests that it might have been nucleated by 

dust impinging on the chondrule exterior after the melt was cooled below the equilibrium 

crystallization temperature.  

The presence of volatile elements, such as Na and K, in chondrules is a 

conundrum for chondrule forming scenarios. These elements should have rapidly 

diffused out of molten chondrules at the high temperatures and low ambient nebular 

pressure thought to be present during their formation (Yu and Hewins 1998) and then 

they could have recondensed back onto the chondrule during cooling (Grossman et al. 
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2002; Lewis et al. 1993). However, measurements of Na zoning in olivine are consistent 

with growth from a melt with constant Na (Alexander et al. 2008) suggesting Na 

retention even during the relatively slow cooling rates necessary to nucleate plagioclase. 

Models show that Na can be retained within the chondrules if the chondrule forming 

region had a dust to gas ratio much greater than solar (Ebel and Grossman 2000) resulting 

in a high partial pressure of Na (Hewins et al. 2005). The presence of albite in chondrules 

supports the model of a Na-enriched atmosphere in the chondrule forming region 

allowing for Na to be retained within the chondrules. 

4.2. Secondary alteration of chondrule glass and feldspar 

 Semarkona has undergone a moderate degree of aqueous alteration. Evidence for 

this includes the presence of phyllosilicates in the matrix (Alexander et al. 1989; 

Hutchison et al. 1987), carbonates (Alexander et al. 2015), carbide-magnetite 

assemblages (Krot et al. 1997), sulfide-magnetite assemblages (Huss 1979), bleached 

chondrules (Grossman et al. 2000), and zoned chondrules (Grossman et al. 2002). Our 

observations of the dissolution of mesostasis glass, and the presence of phyllosilicates in 

chondrules, are similar to what has been described before (Grossman et al. 2000; 

Alexander et al. 1989; Hutchison et al. 1987), but we have extended the previous 

observations to a larger variety of chondrules. Furthermore, our observations of the 

alteration of primary igneous feldspar add to the arguments for fluid activity. 

Understanding whether feldspar grains are pristine or altered has important implications 

for early solar system chronology as determined by Al-Mg systematics. 
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4.2.1. Evidence for the presence of fluids in chondrule glass 

 Nearly all the plagioclase-bearing chondrules we examined show at least some 

porosity between plagioclase laths that we interpret as the dissolution of chondrule 

mesostasis glass by an aqueous fluid. The chondrules in Fig. 2.3 (Ch28, Ch23, and Ch20) 

show extensive dissolution of glass while Ch3 and Ch36 in Fig. 2.2 have smaller patches 

of dissolved glass, typically along the chondrule perimeter (e.g., Fig. 2.2e). Large pores 

(>50 µm in diameter) are also present in several chondrules (e.g., Ch28) and are easily 

visible as black spots within chondrules on the thin section BSE map (Fig. 2.1). Ch28 has 

very large pores (up to 370 µm in diameter, Fig. 2.3a) although it is not clear if the large 

pores are inherent to the sample or a product of the sample preparation process (i.e., 

plucked metal grains). The FIB section of the zoned albite in Ch28 (Fig. 2.4a) shows 

pores between plagioclase laths as small as 20 nm.  

 Grossman et al. (2000) conducted a detailed study of bleached chondrules in 

Semarkona: these are fine-grained, cryptocrystalline and radiating pyroxene chondrules 

that have zones of dissolved mesostasis along their outer edges. They showed that these 

chondrules were affected by a parent body alteration process that preferentially dissolved 

the mesostasis without affecting the adjacent pyroxene. They noted that the mesostasis in 

porphyritic chondrules did not appear to be affected by the alteration process in the same 

way as the fine-grained chondrules and attributed this to either differences in mesostasis 

compositions or grain sizes between the various chondrule types. 

The glass in cryptocrystalline and radiating pyroxene chondrules contains a high 

percentage of normative albite, whereas the glass in Type I chondrules is anorthitic and in 

Type II chondrules is rich in normative quartz (Grossman et al. 2000). However, we have 
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shown that all the porphyritic chondrules we studied have varying amounts of dissolved 

mesostasis glass, some quite extensive (e.g., Ch23, Fig. 2.3d). This implies that 

mesostasis composition cannot be the sole determining factor for glass dissolution. 

Grossman et al. (2000) also pointed out that uniformly fine-grained chondrules contain 

more grain boundaries than the relatively coarse-grained porphyritic chondrules and thus 

more avenues for fluid to flow into and out of the chondrules from the matrix. In 

porphyritic chondrules, radial bleaching zones, like those seen in uniformly fine-grained 

chondrules, are less likely to occur due to considerations of surface area from 

heterogeneous distributions of grain sizes in regions of mesostasis.  

 Phyllosilicates have been identified in Semarkona matrix and, like the bleached 

chondrules, imply alteration of primary phases by an aqueous fluid (Alexander et al. 

1989; Hutchison et al. 1987). Grossman et al. (2000) showed that bleached chondrules 

contain phyllosilicates that are compositionally distinct from those found in the matrix, 

and argued that they formed by the alteration of chondrule glass in the same event that 

dissolved some of the mesostasis glass. We observe phyllosilicates in place of mesostasis 

glass in Ch28 (Figs. 2.3b, 2.4a) and Ch26 and in very minor amounts in Ch3 (Fig. 2.2c) 

that likely formed in a similar way. In these chondrules, the mesostasis glass between 

feldspar laths has both been dissolved, resulting in pores, and replaced by phyllosilicates 

(Fig. 2.4a).  

 Dobrică and Brearley (2016) investigated a fine-grained matrix inclusion in a 

Semarkona POP chondrule. They showed porosity associated with glass altered to 

phyllosilicates, like what we describe above. Clearly this mode of fluid alteration was 

widespread in Semarkona and resulted in the alteration of a range of chondrule types (and 
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matrix), not just fine-grained, bleached chondrules. Grossman et al. (2000) noted that 

bleached chondrules are present in nearly all petrologic types and suggested that all OCs 

underwent fluid alteration of this sort before the onset of thermal metamorphism. It 

would be reasonable to extend this model to porphyritic chondrules as well. 

4.2.2. Secondary alteration of primary plagioclase 

 Feldspar is nearly homogeneous in chondrules that either do not show the 

mesostasis alteration described above, or are minimally altered e.g., Ch3 and Ch36, Table 

2.1, Fig. 2.5. However, chondrules with extensively dissolved mesostasis glass or 

presence of phyllosilicates show much more variation in their feldspar compositions. This 

variation in chondrule-wide plagioclase compositions is illustrated in Fig. 2.5. The 

vertical error bars represent one standard deviation about the mean An content measured 

for each chondrule and can be over 5 mol. % An. Variation is also seen within individual 

plagioclase laths that are present adjacent to regions of alteration. Plagioclase in Ch28 

(Fig. 2.3b,4) and Ch23 (Fig. 2.3d) is irregularly zoned subparallel to the regions of 

dissolved chondrule mesostasis glass and, in the case of Ch28, glass alteration to 

phyllosilicates.  

A FIB section (Fig. 2.4a) was prepared of a zoned plagioclase region in Ch28 

(white line in Fig. 2.3b) to explore the zoning in more detail. A HAADF image of a 

representative area is shown in Fig. 2.4b and the corresponding EDS Ca Kα map is 

shown in Fig. 2.5c. Zoning is observed in Al, Na, and Ca but Ca shows the most 

heterogeneity and is likely responsible for the zoned appearance of the plagioclase grains 

in the BSE image (Fig. 2.3b). Calcium is variably zoned and predominantly absent from 
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the outer 100-150 nm of the ~650 nm wide laths. There also appear to be enrichments of 

Ca on the border of the low-Ca outer zone as well as in the phyllosilicates themselves. 

A similar zoning profile (Ca-rich core, Na-rich rim) is expected from normal 

igneous zoning, but several features are inconsistent with an igneous origin for the zoning 

in these grains. First, the Ca zoning shows considerable variation along the long axis of 

the grain and is not symmetric about the core (Fig. 2.5b). Second, the degree of Ca 

zoning appears to reflect proximity to areas of dissolved mesostasis glass or phyllosilicate 

growth. Third, plagioclase in chondrules from which the glass has not been dissolved 

does not show similar compositional zoning or widespread heterogeneity. Fourth, Ch3 

has dominantly homogeneous albite (Fig. 2.2b), but zoned albite is only seen in regions 

of alteration (Fig. 2.2c). Clearly, plagioclase zoning in these chondrules is due to 

secondary processes and is not attributable to primary igneous growth. 

Closely related to our observations of Ca-zoning in altered primary plagioclase, 

calcic plagioclase is replaced by more sodic compositions as the result of Na-

metasomatism during metamorphism in higher petrologic type chondrites. In petrologic 

types 4 and 5, anorthitic plagioclase is affected by albitization, creating rims of nearly 

pure albite (Kovach and Jones 2010; Jones and Brearley 2010; Lewis and Jones 2016). 

Progressive metamorphism equilibrates plagioclase compositions to a uniform ~An11 by 

petrologic type 6 (Kovach and Jones 2010; Van Schmus and Wood 1967). The presence 

of alteration in Semarkona plagioclase grains possibly represents the first step in the 

feldspar equilibration process that was experienced in varying amounts by all ordinary 

chondrites. 
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4.2.3. Characteristics of the fluid environment 

The alteration of mesostasis glass and primary plagioclase in Semarkona 

chondrules strongly argues for open system behavior between chondrules and the matrix 

and the transport of material into and out of chondrules by an aqueous fluid. The 

characteristics of this process are described at length by Grossman et al. (2000, 2002) in 

their studies of bleached and zoned chondrules and our observations generally agree with 

their conclusions. The bleaching process, removal of chondrule glass, results in 

depletions of Na, K, Sr, Si, and Al from the outer regions of the affected chondrules. The 

hydration and alteration of the remaining glass to phyllosilicates is associated with the 

introduction of Fe, Ni, halogens, and water (Grossman et al. 2000). This process has also 

been documented in the H/L3.6 Tieschitz (e.g., Hutchison et al. 1998). 

Complementary to the bleached chondrules, chondrule mesostases in many low-

FeO chondrules display concentric chemical zoning with enrichments in Na, K, other 

moderately volatile elements, and water and depletions in Ca, Cr, and Ti (Grossman et al. 

2002). We observe a similar pattern in the homogeneous anorthite-bearing BO chondrule 

Ch36 in which the CL image shows zoning of mesostasis glass from pale yellow in the 

center to bright yellow along the rim (Fig. 2.2f), a signature of Na enrichment in the rim 

noted by Grossman et al. (2002). The transfer of these elements by an aqueous fluid did 

not result in the devitrification of the chondrule glass nor the extensive leaching seen in 

bleached chondrules (Grossman et al. 2002). 

Water in chondrites is commonly assumed to be derived from ices present during 

accretion. The ices melt and water flows though the permeable matrix and along grain 

boundaries in order to redistribute a variety of water soluble elements. However, the 
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conditions of glass and plagioclase alteration were not severe enough to affect olivine or 

pyroxene. Grossman et al. (2000) argued that the alteration temperature may have been 

less than 100 °C based on similarities to CC alteration assemblages. This is less than the 

maximum temperature of 260 °C estimated by Alexander et al. (1989) based on the 

stability of the phyllosilicates found in the matrix. The dissolution of Si from the 

mesostasis glass implies a high pH (Alexander et al. 1954) and is consistent with the 

presence of calcite in Semarkona (Alexander et al. 2015). Incomplete and inconsistent 

alteration between chondrules, even of similar chemical compositions, implies a low 

water-rock ratio, the effects of which may be exaggerated by limited chondrule 

permeability. 

Overall, the degree of aqueous alteration observed in Semarkona chondrules is not 

consistent between chondrules, from grain to grain within a chondrule, or within 

individual mineral grains. Limited fluid availability, variation in fluid permeability of the 

matrix and chondrules, and the wide variety of chondrule mesostasis compositions, some 

of which were more easily altered than others, likely gave rise to the complex pattern of 

alteration we now see. 

4.2.4. Implication for Al-Mg dating of Semarkona chondrules and solar system 

chronology 

High resolution chronology using short-lived radioactive isotopes is a powerful 

tool for understanding the relative order of events during a very important time in the 

history of the early solar system. The Al-Mg system is used for dating chondrules 

because they contain significant amounts of Al. Bulk chondrule compositions typically 

contain 1-5 wt.% Al2O3 but can be >10 wt.% Al2O3 in Al-rich chondrules (Brearley and 
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Jones 1998). Mesostasis glass and plagioclase are major hosts of Al in chondrules 

although minor amounts are also present in clinopyroxene and spinel. As shown above, 

chondrule mesostasis glass in a significant number of Semarkona chondrules shows 

evidence of being dissolved and/or altered to phyllosilicates. Plagioclase also shows 

evidence for alteration through Na-Ca and Al-Si. Therefore, it is important to evaluate 

what effects alteration may have had on measured Al-Mg ages. 

 Chondrules within Semarkona have been dated using Al-Mg systematics by a 

number of workers (Hutcheon and Hutchison 1989; Kita et al. 2000; Mishra and 

Goswami 2014; Mishra et al. 2010; Mostefaoui et al. 2002; Rudraswami et al. 2008; 

Russell et al. 1997; Villeneuve et al. 2009). These studies report ages that range between 

0.76 Ma and 3.07 Ma after CAI formation, a span of 2.3 million years. The wide range of 

ages has been explained as the period during which chondrules were formed. However, 

the reported errors in many of the Semarkona measurements are broad (0.5-1 Ma) 

implying that the isochrons were defined through considerable scatter.  

Since we observe ubiquitous aqueous alteration of Al-bearing phases in 

Semarkona it is conceivable that the Al-Mg systematics have been inconsistently 

disturbed by secondary processes on Semarkona’s parent asteroid. This disturbance 

would generate large errors in the measured isochrons or may have reset the Al-Mg 

system in some chondrules altogether, yielding younger ages. Thus, the reported 

chondrule formation ages in Semarkona may record a combination of secondary aqueous 

alteration and primary chondrule formation. In support of this argument, aqueous 

alteration in carbonaceous chondrites, measured by Mn-Cr dating of carbonates (Fujiya et 

al. 2012, 2013; Hoppe et al. 2007; Jilly et al. 2014; Lee et al. 2012; de Leuw et al. 2009; 
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Petitat et al. 2011), overlaps the formation period for Semarkona chondrules (between 0.4 

Ma and 6.2 Ma after CAIs). However, it is important to note that the history of low 

temperature secondary processes on the ordinary and carbonaceous chondrite parent 

bodies are not necessarily identical.  

 These conclusions reinforce the need for high-resolution petrographic studies of 

chondritic materials prior to utilizing high precision analytical techniques on what is only 

assumed to be unaltered nebular material. Careful consideration needs to be made of the 

state of the major, and possibly minor, phases relevant to the technique. For Al-Mg, 

dissolution of chondrule mesostasis glass, alteration of primary plagioclase, formation of 

secondary minerals, like phyllosilicates, and zoning of volatile elements like Na within 

the chondrule glass would be reason to suspect a compromised system. For example, 

Mostefaoui et al. (2002) found a correlation between younger Al-Mg age and increasing 

bulk Na, Mn, and Cr abundances relative to Mg. These are elements shown by Grossman 

et al. (2002) to be zoned in Semarkona chondrules, the result of aqueous alteration.  

5. Summary and conclusions 

We conducted a detailed study of plagioclase in Semarkona chondrules to 

characterize this mineral as a primary igneous phase and to understand how it might be 

affected by secondary processes such as aqueous alteration and thermal metamorphism. 

We found plagioclase with a wide range of compositions (An2-An99) was present within 

18% of the chondrules in the thin section we studied. The plagioclase grains have lath-

like morphologies consistent with growth from a melt. Plagioclase compositions are also 

directly related to the bulk composition of the chondrule: plagioclase in FeO-poor 

chondrules is more Ca-rich, and plagioclase in FeO-rich chondrules is more Na-rich. 
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Experimental investigations into plagioclase growth in chondrules indicate plagioclase-

bearing chondrules cooled extremely slowly as they approach the solidus (1 ºC/hour for 

anorthitic plagioclase), so these slow cooling rates apparently apply to a high proportion 

of OC chondrules. 

 The aqueous alteration that is known to affect Semarkona mineralogy has also 

altered the texture and composition of primary plagioclase in many chondrules. This has 

led to zoning of Na and Ca in plagioclase grains and a general spread in the plagioclase 

compositions within altered chondrules. These effects are seen in association with the 

development of porosity from the dissolution of chondrule mesostasis glass and the 

alteration of glass to phyllosilicates. These features have been observed previously in 

bleached and zoned chondrules in Semarkona and imply a low temperature, high pH fluid 

at a low water-rock ratio (Alexander et al. 1954; Grossman et al. 2000, 2002). The 

pervasive nature of alteration calls into question the reliability of Al-Mg systematics for 

understanding the chronology of chondrule formation, in cases where chondrules have 

undergone alteration of mesostasis glass and plagioclase. 
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Abstract 

Feldspar in ordinary chondrites (OCs) is present in chondrules as a primary, 

igneous phase, and as a secondary phase that results from crystallization of chondrule 

mesostasis glass during thermal metamorphism. Studies of plagioclase feldspar 

equilibration, in petrologic types 4-6, have revealed textural features that indicate 

metasomatism during thermal metamorphism, such as albitization. However, because 

plagioclase development and alteration in type 3 OCs remains poorly characterized, the 

role of fluids in the development of secondary minerals, particularly during the early 

stages of metamorphism remains ambiguous. In order to further understand the chemical 

and physical conditions present during thermal metamorphism in OCs, we conducted a 

study of feldspar microtextures focusing on alteration and equilibration, within 

chondrules, from OCs representing the full metamorphic sequence (types 3-6). 

We found that primary calcic plagioclase alters to sodalite, scapolite, and 

nepheline in petrologic types 3.2-3.9, and to albite in types 3.6-5. Plagioclase also 

develops alteration features such as zoning, micropores, and alteration lamellae in types 

3-4. Albitic plagioclase is present in minor amounts as a primary phase, forms from the 

crystallization of chondrule mesostasis glass (types 3.2-3.9), and forms through the 
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albitization reaction in calcic plagioclase (types 3.6-5). K-feldspar occurs in albite in 

types 3.6-6 as fine-scale exsolution lamellae and as larger patches. Plagioclase has a 

maximum An content of An99 in type 3.2, and An84-87 in types 3.4-3.9. Maximum An 

content in the type 4 OCs we measured range from An85 to An50. We argue that alteration 

and equilibration of feldspar is a metasomatic process facilitated by hydrous fluids at 

high pH and low water/rock ratios during thermal metamorphism. At low temperatures, 

calcic plagioclase alters to sodalite/scapolite in fluids with a low Na/Cl ratio, and 

nepheline in fluids with high Na/Cl. Albitization occurs at higher temperatures due to the 

increased solubility of Si. The Or content of the plagioclase also increases with 

temperature. 

We combine these observations into an overall three-stage model of 

metasomatism during thermal metamorphism in OCs. Stage 1 involves hydrous alteration 

during prograde metamorphism resulting in the majority of the alteration and 

equilibration features we observe in plagioclase. During stage 2, dehydration occurs close 

to peak metamorphism. Stage 3 then involves infiltration of anhydrous, alkali- and 

halogen-bearing fluids during retrograde metamorphism in short duration, high 

temperature bursts. Overall, we show that metasomatism is present throughout the 

metamorphic sequence in OCs with important consequences for short-lived radioisotope 

chronometers, such as Al-Mg and I-Xe, that rely on the integrity of sensitive phases such 

as plagioclase and feldspathic mesostasis glass. 

1. Introduction 

Secondary processes, those that take place on the planetesimals after they 

accreted, result in a myriad of chemical and physical changes to the primary material. 
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These processes include low-temperature aqueous alteration from the action of water, 

thermal metamorphism resulting from the decay of radioactive species such as 26Al, and a 

variety of shock effects from impact events. Ordinary chondrites (OCs) have long been 

known to have experienced varying degrees of thermal metamorphism resulting in 

progressive chemical and textural equilibration (Sorby, 1877). The classification scheme 

developed by Van Schmus and Wood (1967) describes thermal metamorphism in terms 

of petrologic types ranging from types 3 to 6. Chondrites assigned type 3 show little or no 

evidence for the effects of thermal metamorphism whereas chondrites assigned type 6 are 

fully equilibrated, both texturally and compositionally. 

The petrologic classification scheme for type 3 chondrites was extended by Sears 

et al. (1980) to include the subdivisions 3.0-3.9 where type 3.0 is the least 

metamorphosed. These subdivisions were created in recognition of the fact that 

petrologic type 3 chondrites represent a wide range of thermal metamorphic temperatures 

that were not fully described by the original classification scheme. Grossman and 

Brearley (2005) further subdivided the least thermally metamorphosed OCs to include 

3.00-3.15 because of the importance of deciphering primary nebular components and 

processes from the effects of parent body thermal metamorphism. 

 Although the classification scheme for thermal metamorphism is based on 

petrographic indicators, attempts have been made at assigning metamorphic temperatures 

to the various stages in the petrologic sequence. The maximum temperature for type 3.00-

3.15 is estimated to be <260 °C based on the presence of phyllosilicates (Alexander et al., 

1989) in Semarkona (LL3.00) and Bishunpur (LL3.15), but the peak temperature could 

be much lower. Type 3 material has a range of peak temperatures up to a maximum 
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estimated to be between 600ºC and 700ºC (Huss et al., 2006). Metamorphic temperatures 

for Types 4-6 OCs are poorly constrained but generally estimated to be between 500ºC 

and 800ºC for types 4 and 5 and between 800ºC and 1000ºC for type 6 (Scott and Krot, 

2014). Melting of chondritic compositions is estimated to begin between 950ºC and 

1000ºC (Huss et al., 2006). 

 Thermal metamorphism was historically considered to be separate from aqueous 

alteration, a parent body processes found predominantly in carbonaceous chondrites. 

Aqueous alteration is now known to have affected low petrologic type OCs resulting in a 

variety of features. These features include the presence of phyllosilicates (Hutchison et 

al., 1987; Alexander et al., 1989; Dobrică and Brearley, 2014), carbonates (Alexander et 

al., 2015), magnetite-sulfide assemblages (Huss, 1979), carbide-magnetite assemblages 

(Krot et al., 1997), bleached chondrules (Grossman et al., 2000), and chondrules zoned in 

alkalis (Grossman et al., 2002). The presence of fluids has also been inferred by increased 

oxidation of Fe through the petrologic sequence, up to petrologic type 6 (McSween and 

Labotka, 1993; Dunn et al., 2010). 

 A useful way of understanding the effects of thermal metamorphism, and the 

presence of fluids during heating, is through the study of the secondary minerals that are 

produced during these processes. Plagioclase feldspar is a common secondary mineral in 

OCs that forms from the crystallization of chondrule mesostasis glass and fine-grained 

matrix. Feldspar has been used to characterize the textural equilibration that occurs 

during metamorphism. The typical textural equilibration sequence states that fine-grained 

albite (<2 μm in size) forms by petrologic type 4 and coarsens through type 5 (2-10 μm) 

until type 6 in which plagioclase grains reach 50 μm in size and are easily seen using 
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optical microscopy (Van Schmus and Wood, 1967; Van Schmus and Ribbe, 1968; Huss 

et al., 2006). 

 However, in detail, the development of plagioclase during OC metamorphism is 

much more complex. We have shown that primary igneous plagioclase with a range of 

compositions from An2-An99 is present in OC chondrules in the least metamorphosed OC 

Semarkona (LL3.00) (Lewis and Jones, in review). In type 4 L and LL chondrites, 

anorthitic plagioclase is still present, up to An88 in composition (Kovach and Jones, 2010; 

Lewis and Jones, 2016). By petrologic type 6, plagioclase has equilibrated to an albitic 

composition of An10-12, confirming early measurements (Van Schmus and Wood, 1967; 

Van Schmus and Ribbe, 1968). However, the plagioclase measured by Kovach and Jones 

(2010) in types 4-6 H chondrites all had equilibrated compositions of ~An12. 

 In addition to compositional equilibration in plagioclase, the studies of Kovach 

and Jones (2010), Jones and Brearley (2010, 2011), and Lewis and Jones (2016) describe 

textural features that indicate plagioclase equilibration was not simply a solid state 

diffusional process, but was mediated by the presence of an alkali-rich fluid. These 

features were found predominantly in anorthitic plagioclase and include albitization along 

grain boundaries, alteration lamellae, K-feldspar exsolution from albite, and the presence 

of micropores and oxides in the cores of equilibrated plagioclase grains. These studies 

suggested that the differences in plagioclase alteration between the H chondrites and L 

and LL chondrites can be attributed to differences in fluid duration, timing, and/or 

availability. Fluid alteration of secondary minerals in equilibrated OCs has also been 

inferred by the characteristics of chlorapatite, particularly in replacement reactions with 

merrillite (Jones et al., 2014; Jones et al., 2016; Lewis and Jones, 2016). 
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 Lewis and Jones (in review) show that some primary igneous plagioclase in 

chondrules in the unequilibrated LL3.00 chondrite Semarkona was also affected by 

aqueous alteration. This alteration is in the form of Ca-Na zoning in plagioclase laths and 

is found in regions where the mesostasis glass was either dissolved or replaced by 

phyllosilicates. Compositional zoning in the primary plagioclase laths is different from 

the albitization reaction seen in the equilibrated OC feldspar, indicating differences in the 

fluid environment that are likely driven by temperature. Plagioclase is compositionally 

and texturally homogeneous in Semarkona chondrules where the mesostasis glass appears 

unaltered. 

 The evolution and alteration of plagioclase in the type 3 metamorphic sequence 

has not previously been studied in detail. Anorthitic plagioclase has been described in Al-

rich chondrules in a range of type 3 chondrites in studies concerned with Al-Mg 

chronology and 26Al/27Al distribution (Huss et al., 2001). Plagioclase alteration via 

replacement by nepheline has been noted in Sharps (H3.4) and Chainpur (LL3.4) by 

Russell et al. (2000). The presence of nepheline, sodalite, and scapolite was also observed 

in Chainpur and Parnallee (LL3.6) by Bridges et al. (1997) but was interpreted as igneous 

phases that had crystallized from a melt. However, feldspathoids have not been identified 

in Semarkona chondrules. Because Semarkona has undergone lower temperature thermal 

metamorphism than Chainpur or Parnallee, these phases are expected to be present if they 

were a primary chondrule phase. Thus, it is likely that feldspathoids are secondary phases 

that formed from the alteration of plagioclase as suggested by Alexander et al. (1987) and 

Russell et al. (2000). 
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Understanding the sequence of feldspar equilibration and alteration in ordinary 

chondrites is important for characterizing the chemical and physical environment that 

OCs experienced during thermal metamorphism. The changing fluid and thermal 

environment can be tracked by understanding how plagioclase changes through the type 3 

sequence from unaltered, and minimally altered, primary igneous plagioclase in type 3.0, 

through the alteration of primary plagioclase and formation of fine-grained secondary 

plagioclase in type 4, to full textural and chemical equilibration to albite in type 6. From 

feldspar, we can gain insight into which chemical species are mobile, where they are 

sourced, and the fluid conditions necessary to form the secondary minerals we observe. 

Alteration of feldspar and feldspathic mesostasis glass also has important implications for 

the integrity of the short-lived radioisotope systems that rely on these phases, such as Al-

Mg and I-Xe. 

We have conducted a detailed study of feldspar textures and compositions 

through the petrologic sequence (types 3-6) in H, L and LL OCs, to further constrain the 

conditions and the fluid processes acting during thermal metamorphism. We chose a suite 

of OCs (Table 3.1) to help answer several questions posed by the current work. We 

selected LL chondrites from petrologic types 3.1-6 to follow feldspar development from 

the primary igneous plagioclase observed in chondrules from LL3.00 (Lewis and Jones, 

in review) through to the homogeneous secondary albite observed in LL6 (Kovach and 

Jones, 2010). In particular, we aim to understand the evolution of plagioclase 

compositions through the type 3 sequence and to place the observations of alteration to 

nepheline, sodalite, and scapolite described above into context with albitization observed 

in type 4 and 5 (Kovach and Jones, 2010; Lewis and Jones, 2016). This is possible in LL 
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chondrites because they are well represented throughout the petrologic sequence, 

especially in subtypes 3.0-3.9. 

We also characterized type 4 L and H chondrites (Table 3.1) to further explore the 

microtextural complexity of feldspar in type 4 OCs. Of specific interest were 

microtextural features that might inform the observed compositional difference between 

the type 4 H chondrites and the type 4 L and LL chondrites (Kovach and Jones, 2010; 

Lewis and Jones, 2016). In addition, we included the H3.8 Dhajala to further understand 

whether there are fundamental differences between the feldspar evolution in the H 

chondrites and other OC groups. In all cases, we only studied feldspar within chondrules 

because chondrule mineralogy is simpler and relatively coarse-grained when compared to 

chondrite matrix, particularly in type 3 OCs. This is in keeping with previous studies of 

OC plagioclase (Lewis and Jones, in review; Kovach and Jones, 2010; Lewis and Jones, 

2016) and allows us to track changes to primary igneous feldspar as well as the 

development of secondary feldspar from the crystallization of chondrule mesostasis glass. 

Because this study focuses on plagioclase alteration and evolution, observations of K-

feldspar will be noted, within the context of plagioclase alteration and equilibration, but a 

more extensive discussion of K-feldspar exsolution is presented in Lewis et al. (In 

preparation). 

2. Methods 

For this study we examined 11 OC thin sections from the Institute of Meteoritics 

Meteorite Collection at the University of New Mexico (Table 3.1): Bishunpur (LL3.15, 

UNM 1038), Chainpur (LL3.4, UNM 1041), Parnallee (LL3.6, UNM 1018), Dhajala 

(H3.8, UNM 301), Bo Xian (LL3.9, UNM 265), Bjurböle (L/LL4, UNM 117), Saratov 
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(L4, UNM 1145), Santa Barbara (L4, TUNM 120), Avanhandava (H4, UNM 88), 

Tuxtuac (LL5, UNM 627), and Sulagiri (LL6, UNM 1160). To avoid terrestrial alteration 

of chondrite mineralogy, we only selected meteorite falls. We also chose samples that 

were unshocked or weakly shocked. Feldspar is known to be highly susceptible to the 

effects of shock metamorphism. In the shock classification scheme of Stöffler et al. 

(1991), plagioclase becomes partially isotropic in shock stage S4 and is converted to 

maskelynite in S5. The samples we chose were assigned shock stages S1-S3 by various 

studies as summarized in Table 3.1. 

 

Table 3.1. Samples studied. 

 Thin section Petrologic type Shock stage 

LL chondrites    

Bishunpur UNM 1038 LL3.15 S2R99,G05 

Chainpur UNM 1041 LL3.4 S1S91,R99,G05 

Parnallee UNM 1018 LL3.6 S3G05 

Bo Xian UNM 265 LL3.9 S2L00, S3R94 

Bjurböle UNM 117 L/LL4 S1S91,R94,R04,G05 

Tuxtuac UNM 627 LL5 S2R94,R04,G05 

Sulagiri UNM 1160 LL6 S2W09 

L4 chondrites    

Saratov UNM 1145 L4 S2R94,R04,G05, S3F04 

Santa Barbara UNM 120 L4 S2LJ16 

H3.8-4 chondrites    

Dhajala UNM 301 H3.8 S1S91,S14 

Avanhandava UNM 88 H4 S1S14, S2S91,R94,R04 
S91 (Stöffler et al., 1991), R94 (Rubin, 1994), R99 (Rubin, 1999), 
L00 (Li et al., 2000), R04 (Rubin, 2004), F04 (Friedrich et al., 2004), 
G05 (Gattacceca et al., 2005), W09 (Weisberg et al., 2009), 
S14 (Scott et al., 2014), LJ16 (Lewis and Jones, 2016) 

 

Feldspar, feldspathoids, and other phases were identified using backscattered 

electron (BSE) imaging and energy-dispersive spectroscopic (EDS) X-ray analysis on an 

FEI Quanta 3D scanning electron microscope equipped with a field emission gun (FEG-

SEM) at the University of New Mexico. High contrast BSE images with high spatial 

resolution were needed to successfully image fine-scale feldspar textures. To accomplish 
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this, we typically used SEM beam conditions of 10 kV and 16 nA. Quantitative 

wavelength-dispersive spectroscopic (WDS) X-ray analysis of feldspar in type 3 and 4 

OCs was performed on a JEOL 8200 Electron Probe Microanalyzer (EPMA) at the 

University of New Mexico operated at 10-15 kV and 10 nA with a focused beam. The 

low accelerating voltage was used to minimize the interaction volume when analyzing 

small feldspar grains. We used the following standards: Taylor olivine (Mg, Fe), Taylor 

albite (Na, K), Taylor orthoclase (K, Al, Si), and a doped diopside (Ca, Cr, Mn). We used 

time dependent intensity corrections on Na using the Probe for EPMA software to 

compensate for the effects of Na migration in Na-bearing plagioclase during focused-

beam analysis. Despite the care taken during EPMA analysis, fragile mineralogy, small 

grain sizes, and abundant inclusions necessitated relaxed restrictions on oxide and cation 

totals.  

3. Results 

3.1. Petrography 

 In each thin section, we identified chondrules that exhibited alteration features in 

primary and/or secondary plagioclase. While not all chondrules appeared to be altered, 

our focus on alteration is aimed at providing an overall picture of the metasomatic 

conditions present during thermal metamorphism. Because the nature and extent of 

alteration is strongly correlated with petrologic type, the samples will be discussed in 

order of increasing petrologic type and subtype. BSE images of plagioclase alteration, 

and their host chondrules, are presented in Figs. 3.1-3.11. EPMA analysis of select 

chondrules are tabulated in Table 3.2 and discussed in more detail in section 3.2. 

Individual EPMA analyses are tabulated in Appendix 1. 
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Bishunpur (LL3.15) 

Plagioclase alteration is not common in Bishunpur chondrules but leached 

mesostasis glass is more pervasive. Fig. 3.1 illustrates two chondrules, one in which 

anorthite is being altered to sodalite (Fig. 3.1a-c) and one in which mesostasis glass, 

interstitial to plagioclase laths, is being leached (Fig. 3.1d-e). Chondrule 7 (Fig. 3.1a) is a 

porphyritic olivine and pyroxene (POP) chondrule fragment that has 10-20 μm wide 

regions of anorthitic plagioclase (An97-100) and 5-10 μm grains of Ca-rich pyroxene 

interstitial to the major phenocrysts (Fig. 3.1b). Small (~1 μm), rounded silica grains 

occur as inclusions in the plagioclase. These are likely primary igneous features and do 

not appear to be associated with alteration (Fig. 3.1c). Most of the material interstitial to 

plagioclase and pyroxene is sodalite with irregular, but sharp, alteration boundaries. 

Sodalite has numerous cracks and irregularly-shaped pores (Fig. 3.1c). Armalcolite, 

(Mg,Fe)Ti2O5, identified using EDS, is present along the plagioclase-scapolite alteration 

interface as grains ~1 μm in size. 

Chondrule 1 (Fig. 3.1d), is also a POP chondrule and has 0.5-2.5 μm wide laths of 

plagioclase (An48-51) interstitial to olivine phenocrysts and intergrown with Ca-rich 

pyroxene (Fig. 3.1e). The plagioclase appears to be unaltered but the mesostasis glass, 

interstitial to the plagioclase laths and Ca-rich pyroxene grains, has been leached out in 

some areas and is now void space. The development of porosity is an important feature 

that facilitates fluid flow during and alteration, particularly in higher petrologic types 

(Lewis et al., in review). 
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Figure 3.1. BSE images showing alteration in two feldspar-bearing chondrules in Bishunpur 

(LL3.15). (a-c) Chondrule 7 (a), a 1.5 mm diameter porphyritic olivine and pyroxene (POP) 

chondrule fragment on the thin section edge. (b) Close-up of Ca-rich pyroxene (cpx) and 

anorthite (plg, An97-100) that has undergone alteration to sodalite (so), interstitial to olivine (ol) 

phenocrysts. (Caption continues on the following page). 
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Figure 3.1. (Caption continued from the previous page). (c) Close-up of anorthite alteration to 

sodalite showing irregular alteration front and ~1 μm grains of armalcolite (ar) at the alteration 

interface. Sodalite contains numerous, irregularly-shaped pores and elongate cracks. Anorthite 

contains small (~1 μm), rounded grains of silica (sil). (d-e) Chondrule 1 (d), a 0.26 mm diameter 

POP chondrule. (e) Close-up of Ca-rich pyroxene grains and 0.5-2.5 μm wide laths of plagioclase 

(An48-51) interstitial to olivine phenocrysts. Mesostasis glass (gl) is interstitial to the plagioclase 

laths in some regions and appears to have been leached out in other regions, producing pores. 

 

 

Chainpur (LL3.4) 

 Plagioclase in Chainpur has two modes of alteration: replacement and zoning. 

Alteration affects calcic plagioclase whereas zoning affects porous chondrules with sodic 

and intermediate plagioclase. These modes are illustrated with two chondrules in Fig. 3.2. 

Chondrule 16 (Fig. 3.2a) is a porphyritic olivine (PO) chondrule in which plagioclase 

(An83-86) is present between the olivine phenocrysts along with Ca-rich pyroxene. 

Plagioclase is altered to porous scapolite near boundaries Ca-rich pyroxene grains (Fig. 

3.2b), like chondrule 7 in Bishunpur (Fig. 3.1c), but also contains pseudomorphic 

alteration to nepheline through the plagioclase cores (Fig. 3.2c). Nepheline alteration 

appears to be roughly crystallographically controlled with some regions containing 

parallel lamellae. The altered region is close to the chondrule edge and more nepheline 

replacement is observed closer to the border with the matrix. Plagioclase is not present in 

the chondrule interior but mesostasis glass has experienced extensive leaching. Silica 

grains, like those in Bishunpur (Fig. 3.1c), are observed in calcic plagioclase in some 

Chainpur chondrules. However, in areas of alteration, these silica grains have rims of Fe-

bearing Ca-rich pyroxene. 

Chondrule 18 (Fig. 3.2d) is a POP chondrule with 50-100 μm diameter pores 

throughout the chondrule interior and a ~50 μm thick, porous, fine-grained igneous rim 

composed largely of FeO-rich olivine. Plagioclase laths (An36-41), 1-2.5 μm wide, are  
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Figure 3.2. BSE images showing alteration in two feldspar-bearing chondrules in Chainpur 

(LL3.4). (a-c) Chondrule 16 (a), a 1 mm diameter porphyritic olivine (PO) chondrule. (b) Close-

up of region near the chondrule edge, interstitial to olivine (ol) phenocrysts, showing Ca-rich 

pyroxene (cpx) and plagioclase (plg, An83-86) alteration to scapolite (sc) and nepheline (ne). 

(Caption continues on the following page).  
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Figure 3.2. (Caption continued from the previous page). (c) Close-up of plagioclase alteration, 

illustrating porous scapolite bounding regions of plagioclase altered to nepheline. Nepheline 

replacement is lamellar in a few places indicating a minor degree of crystallographic control. (d-f) 

Chondrule 18 (d), a 0.5 mm diameter, porphyritic olivine and pyroxene (POP) chondrule with 

large (50-100 μm) pores in the chondrule interior and a porous, fine-grained rim 40-60 μm thick. 

(e) Close-up of region interstitial to olivine and low-Ca pyroxene (pyx) phenocrysts with 1-2.5 

μm wide laths of plagioclase (An36-41) and grains of Ca-rich pyroxene. (f) Close-up of plagioclase 

laths illustrating roughly concentric zoning and a porous intergranular region. 

 

 

present between the large olivine and pyroxene grains (Fig. 3.2e). Interstitial to the 

plagioclase laths are μm-sized grains of Ca-rich pyroxene and pores where the mesostasis 

glass has been leached (Fig. 3.2f). Zoning in the plagioclase laths is roughly concentric 

and occurs uniformly throughout chondrule 18. This is similar to the plagioclase zoning 

in some Semarkona chondrules where the mesostasis glass was leached out or replaced 

by phyllosilicates (Lewis and Jones, in review). 

Parnallee (LL3.6) 

 Plagioclase alteration textures are more pervasive in Parnallee and can be 

observed in many chondrules. The style of alteration varies, depending on the plagioclase 

composition. Three representative chondrules are shown in Fig. 3.3. Chondrule 3 (Fig. 

3.3a) is a POP chondrule in which a 40 μm wide region of plagioclase (An74-85) is altered 

to sodalite and nepheline (Fig. 3.3b) and resembles the texture observed in Chainpur 

chondrule 16 (Fig. 3.2c). Nepheline lamellae protruding into the plagioclase are more 

abundant in in Parnallee than in Chainpur. In some chondrules in Parnallee, plagioclase 

has been completely replaced by nepheline with minor sodalite/scapolite. In chondrule 3, 

μm-sized, rounded silica grains are present in the nepheline, like those seen in anorthite 

in Bishunpur chondrule 7 (Fig. 3.1c), but they have rims of Fe-bearing Ca-rich pyroxene 

like those noted in Chainpur. 
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Figure 3.3. BSE images showing alteration in three feldspar-bearing chondrules in Parnallee 

(LL3.6), outlined with white dashed lines. (a-b) Chondrule 3 (a), a 1.6 mm diameter porphyritic 

olivine and pyroxene (POP) chondrule. (b) Close-up of region interstitial to pyroxene (pyx) 

phenocrysts in which plagioclase (plg, An74-85) is being altered to nepheline (ne) and sodalite (so). 

Alteration to nepheline is largely expressed through lamellae in the plagioclase. Regions of 

alteration to sodalite are porous and are concentrated along the pyroxene boundaries and some 

cracks. Ca-rich pyroxene (cpx) is present as are small (~1 μm diameter) silica (sil) grains with Fe-

bearing Ca-rich pyroxene rims. (Caption continues on the following page). 
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Figure 3.3. (Caption continued from the previous page). (c-d) Chondrule 8 (c), a 0.9 mm POP 

chondrule, with large (20-100 μm) pores. (d) Close-up of region interstitial to olivine (ol) and 

pyroxene phenocrysts in which plagioclase (An76-80) contains numerous, 0.1-0.2 μm, 

crystallographically-controlled, alteration lamellae. (e-f) Chondrule 9 (e), an irregularly shaped, 

0.5 mm diameter POP chondrule. (f) Close-up of region with Na-rich plagioclase (An1-14) and 

grains of Ca-rich pyroxene. Plagioclase is moderately porous and has 0.1-0.3 μm exsolution 

lamellae of K-feldspar (K-fsp). 

 

 

Chondrule 8 (Fig. 3.3c) is also a POP chondrule and has abundant, large (20-100 

μm) pores throughout the chondrule. Plagioclase laths (An76-80) are 5-20 μm wide and 

contain numerous, 0.1-0.2 μm wide, crystallographically-controlled, alteration lamellae 

(Fig. 3.3d). The lamellae are roughly perpendicular to the long axis of the laths and are 

irregularly spaced. Similar lamellae observed by Jones and Brearley (2010) in Bjurböle 

(L/LL4) and Bo Xian (LL3.9) were composed of silica, faceted voids, and euhedral 

chromite. 

Chondrule 9 (Fig. 3.3e) is a POP chondrule in which albitic plagioclase (An1-14) is 

present with grains of Ca-rich pyroxene between the major phenocrysts (Fig. 3.3f). 

Plagioclase has μm-sized pores and 0.1-0.3 μm wide exsolution lamellae of K-feldspar. 

K-feldspar lamellae are not evenly spaced, evenly distributed, nor consistently sized. We 

did not observe K-feldspar exsolution in the lower petrologic type LL chondrites we 

studied: Semarkona (LL3.00: Lewis and Jones, in review), Bishunpur (LL3.15), and 

Chainpur (LL3.4). 

Dhajala (H3.8) 

 Plagioclase in Dhajala chondrules has numerous alteration features including 

alteration lamellae, albitization, zoning, and K-feldspar exsolution. This is illustrated by 

three chondrules in Fig. 3.4. Chondrule 2 (Fig. 3.4a) is a PO chondrule with plagioclase 

(An76-80), interstitial to the olivine and pyroxene phenocrysts. Plagioclase has alteration  
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Figure 3.4. BSE images showing alteration in three feldspar-bearing chondrules in Dhajala 

(H3.8). (a-b) Chondrule 2 (a), a 0.5 mm diameter porphyritic olivine (PO) chondrule. (b) Close-

up of region interstitial to pyroxene (pyx) and olivine (ol) phenocrysts in which plagioclase (plg, 

An76-80) is being altered to albite along alteration lamellae. Alteration is accompanied by μm and 

sub-μm pores. (c-d) Chondrule 11 (c), a 0.5 mm diameter porphyritic pyroxene (PP) chondrule 

with a large (120 μm) pore in the center. (Caption continues on the following page). 
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Figure 3.4. (Caption continued from the previous page). (d) Close-up of region interstitial to 

pyroxene phenocrysts with Ca-rich pyroxene (cpx) grains and 3-7 μm wide plagioclase (An30-52) 

laths are present in fine-grained, crystallized mesostasis glass (mes). Plagioclase is zoned with 

Ca-rich cores and Na-rich rims. (e-f) Chondrule 6 (e), a 0.8 mm diameter porphyritic olivine and 

pyroxene (POP) chondrule. (f) Close-up of region near chondrule edge, interstitial to pyroxene 

phenocrysts in which 1-4 μm wide albite (ab) laths, Ca-rich pyroxene grains, and Fe-Ni metal are 

present in fine-grained, porous, crystallized mesostasis glass. Some plagioclase laths have sub-μm 

K-feldspar (K-fsp) exsolution lamellae and some are compositionally zoned. 

 

 

lamellae like those observed in Parnallee but in this case, plagioclase is being altered to 

albite along some of the lamellae (Fig. 3.4b). Albitization also occurs along μm-sized 

pores and adjacent to the grain boundary with pyroxene. The altered region has numerous 

μm and sub-μm pores but the albitization is largely pseudomorphic, like that of the 

nepheline replacement in Chainpur (Fig. 3.2c) and Parnallee (Fig. 3.3b). 

Chondrule 11 (Fig. 3.4c) is a porphyritic pyroxene (PP) chondrule with a large 

(120 μm) pore in the center. Plagioclase (An30-52) laths, 3-7 μm wide, are present in fine-

grained, crystallized mesostasis glass (Fig. 3.4d). The plagioclase laths are zoned with 

Ca-rich cores and narrow, Na-rich rims. The zoning of these laths is different from the 

zoning in Chainpur (Fig. 3.2f) in two ways. First, zoning is strongly controlled by the lath 

morphology and does not have a complex profile like the laths in Chainpur. Second, the 

zoning in Chainpur is associated with dissolution of mesostasis glass whereas the zoning 

in Dhajala appears to be the result of alkali exchange with the crystallizing mesostasis 

glass, during metamorphism, which is still present in chondrule 11. The orientation of 

plagioclase laths with respect to the thin section surface may also result in different 

apparent zoning profiles. 

Chondrule 6 (Fig. 3.4e) is a POP chondrule with 1-4 μm wide albite laths, Ca-rich 

pyroxene grains, and Fe-Ni metal in fine-grained, porous, crystallized mesostasis glass 

along the chondrule edge (Fig. 3.4f). The crystallized mesostasis glass is largely albite  
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Figure 3.5. BSE images showing alteration in two feldspar-bearing chondrules in Bo Xian 

(LL3.9). (a-c) Chondrule 1 (a), a 0.4 mm diameter porphyritic olivine (PO) chondrule. (b) Close-

up of region interstitial to olivine (ol) and pyroxene (pyx) phenocrysts in which plagioclase (plg, 

An75-80) is being altered to albite (ab) along grain boundaries. Alteration is accompanied by 

alteration lamellae and μm to sub-μm pores. (Caption continues on the following page). 
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Figure 3.5. (Caption continued from the previous page). (c) Close-up of a large (200 μm long) 

region of plagioclase near chondrule edge with a high concentration of sub-μm alteration 

lamellae. Albitization is present along the chondrule edge with an irregular, porous border with 

the plagioclase. (d-f) Chondrule 4 (d), a 0.4 mm PO chondrule. (e) Close-up of region interstitial 

to olivine phenocrysts in which plagioclase (An73-84) is being altered to albite near porous region. 

Plagioclase also contains alteration lamellae and sub-μm pores. (f) Close-up of altered region 

illustrating alteration lamellae and porosity associated with the lamellae. Very small pores are 

also found throughout the plagioclase. 

 

 

and consistent through the whole chondrule. These laths are similar to those described as 

primary igneous albite in Semarkona chondrules (Lewis and Jones, in review) and like 

those observed in Semarkona, only present on the chondrule edge. Some laths have sub-

μm K-feldspar (K-fsp) exsolution lamellae perpendicular to the long axis of the grain. 

Complex zoning, subparallel to the grain morphology, is also present in some albite laths 

and is closer in appearance to the complex zoning in the Chainpur grains (Fig. 3.2f) than 

the zoning in Dhajala chondrule 11. 

Bo Xian (LL3.9) 

 Alteration of calcic plagioclase in Bo Xian is similar to the albitization observed 

in Dhajala chondrule 2 (Fig. 3.4b) and is shown in two chondrules in Fig. 3.5. Chondrule 

1 (Fig. 3.5a) is a PO chondrule in which plagioclase (An75-80) is being altered to albite 

along grain boundaries (Fig. 3.5b). Alteration is accompanied by crystallographically 

oriented alteration lamellae in the interior of the grain, and μm to sub-μm pores. Like 

Dhajala, alteration lamellae may be albite, related to the albitization reaction at the edge 

of the grain. Toward the edge of the chondrule (Fig. 3.5c), plagioclase contains a high 

concentration of sub-μm, crystallographically-oriented alteration lamellae. Albite is also 

present on the chondrule edge where it has an irregular, porous border with the calcic 

plagioclase. 
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Figure 3.6. BSE images showing alteration in three relict feldspar-bearing chondrules in Bjurböle 

(L/LL4). (a-b) Chondrule 14 (a), a 0.6 mm diameter porphyritic olivine and pyroxene (POP) 

chondrule. (b) Close-up of region interstitial to olivine (ol) and pyroxene (pyx) phenocrysts in 

which plagioclase (plg, An66-81) laths are being altered to albite (ab, An5-7) along grain boundaries. 

Pores are concentrated along the alteration boundaries. Small (μm-sized) sulfides (sul), Cr-spinel 

(Cr-sp), and armalcolite (ar) are present as well as abundant sub-μm oxides and sulfides 

throughout the altered region. (c-d) Chondrule 6 (c), a 1 mm diameter porphyritic pyroxene (PP) 

chondrule. (Caption continues on the following page). 
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Figure 3.6. (Caption continued from the previous page). (d) Close-up of region interstitial to 

pyroxene phenocrysts in which plagioclase (plg) laths, between Ca-rich pyroxene (cpx) grains, 

are being altered to albite along grain boundaries. Plagioclase has developed extensive sub-μm 

porosity in the cores of the laths. (e-f) Chondrule 8 (e), a 0.8 mm diameter porphyritic olivine 

(PO) chondrule. (f) Close-up of region interstitial to olivine phenocrysts in which 4-6 μm wide 

albite (An2-5) laths, with sub-μm K-feldspar (K-fsp) exsolution lamellae, are present in 

crystallized mesostasis glass (mes), between larger Ca-rich pyroxene grains. The crystallized 

mesostasis glass is fine-grained, porous, and the albite component also contains fine-scale K-

feldspar exsolution lamellae. 

 

 

Chondrule 4 (Fig. 3.5d) is a PO chondrule with plagioclase (An73-84) that is being 

altered to albite near porous regions (Fig. 3.5e). Plagioclase also contains 

crystallographically oriented alteration lamellae and sub-μm pores. A close-up image of 

the plagioclase in this region reveals ~0.5 μm size pores along the alteration lamellae and 

much smaller pores throughout the calcic plagioclase, resulting in a spongy texture (Fig. 

3.5f). These features, particularly the alteration lamellae, were also described in Bo Xian 

by Jones and Brearley (2010). They also noted the presence of fine-scale nepheline 

lamellae in calcic plagioclase. 

Bjurböle (L/LL4) 

 Plagioclase in type 4 OCs has the most complex alteration features out of all the 

petrologic types in the chondrites we studied. These features are pervasive throughout the 

chondrules. They are effectively more developed versions of the alteration features 

observed in the type 3.8-3.9 chondrites. Jones and Brearley (2010) noted alteration 

lamellae and albitization in Bjurböle, in addition to the alteration features we will 

describe. 

Relict chondrules in Bjurböle are illustrated in Fig. 3.6. Chondrule 14 (Fig. 3.6a) 

is a POP chondrule with plagioclase (An66-81) laths altered to albite (An5-7) along grain 

boundaries, with sub-μm pores concentrated along the alteration boundaries (Fig. 3.6b).  
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Figure 3.7. BSE images showing alteration in three relict feldspar-bearing chondrules in Saratov 

(L4). (a-b) Chondrule 5 (a), a 1 mm diameter porphyritic olivine and pyroxene (POP) chondrule 

on the edge of the thin section. (b) Close-up of region interstitial to pyroxene (pyx) and olivine 

(ol) phenocrysts showing plagioclase (plg, An73-84) laths with alteration lamellae and sub-μm 

pores. Plagioclase laths are being altered to albite (ab) along grain boundaries and fine-scale K-

feldspar (K-fsp) exsolution is present within the albite. (c-d) Chondrule 16 (c), a 0.7 mm diameter 

POP chondrule. (Caption continues on the following page). 

  



 

130 

 

Figure 3.7. (Caption continued from the previous page). (d) Close-up of highly porous region 

interstitial to olivine and pyroxene phenocrysts showing calcic plagioclase with extensive 

albitization along the pore boundaries. Plagioclase has some alteration lamellae and sub-μm 

pores. Albite has some fine-scale K-feldspar exsolution. (e-f) Chondrule 15 (e), a 0.8 mm 

diameter POP chondrule. (f) Close-up of region near chondrule edge, interstitial to olivine and 

pyroxene phenocrysts showing 1-4 μm wide albite (An1-11) laths, μm-sized Ca-rich pyroxene 

(cpx), and crystallized mesostasis glass (mes). Albite has fine-scale K-feldspar exsolution which 

coarsens near the larger pores. 

 

 

Small (μm-sized) grains of Cr-spinel and armalcolite are present in the alteration 

regions, as well as abundant sub-μm oxides and sulfides. Chondrule 6 (Fig. 3.6c), a PP 

chondrule, also has plagioclase laths with albite along grain boundaries but the 

plagioclase has developed extensive sub-μm porosity in the cores of more calcic laths, 

parallel to the long axis (Fig. 3.6d). Plagioclase is zoned in Na and Ca in ~1 μm-wide 

regions from the albite to the edge of the porous calcic plagioclase cores. 

Chondrule 8 (Fig. 3.6e), a PO chondrule, that contains two generations of 

plagioclase. Primary albite (An2-5) occurs as 4-6 μm wide laths, with sub-μm K-feldspar 

exsolution lamellae that are more abundant than the exsolution texture described in 

Dhajala (Fig. 3.4f). The albite laths occur within crystallized mesostasis glass that 

consists mostly of fine-grained secondary albite in addition to Ca-rich pyroxene and sub-

μm pores. The crystallized glass in Bjurböle is coarser-grained than the crystallized glass 

observed in Dhajala (Figs. 3.4f). The albite component of the crystallized glass also 

contains fine-scale K-feldspar exsolution lamellae. 

Saratov (L4) 

 Plagioclase alteration in Saratov (Fig. 3.7) is pervasive and like the alteration in 

Bjurböle. Chondrule 5 (Fig. 3.7a) is a relict POP chondrule on the edge of the thin 

section. Plagioclase (An73-84) laths have sub-μm, crystallographically controlled alteration 

lamellae, some of which contain pores (Fig. 3.7b). Albite is present along grain  
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Figure 3.8. BSE images showing alteration in three relict feldspar-bearing chondrules in Santa 

Barbara (L4). (a-b) Chondrule 4 (a), a 1.6 mm diameter porphyritic olivine and pyroxene (POP) 

chondrule, outlined with a white dashed line. (b) Close-up of region interstitial to pyroxene (pyx) 

and olivine (ol) phenocrysts showing calcic plagioclase (plg) altered to albite (ab) along the 

phenocryst grain boundaries. Cr-spinel (Cr-sp) is present within the albitized regions and faceted 

pores are abundant. (c-d) Chondrule 10 (c), a 0.35 mm diameter porphyritic olivine (PO) 

chondrule, outlined with a white dashed line. Olivine phenocrysts are abundant only in one half 

of the chondrule and plagioclase dominates the other half. (Caption continues on the following 

page).  
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Figure 3.8. (Caption continued from the previous page). (d) Close-up of plagioclase-dominated 

region with Ca-rich pyroxene (cpx) grains within areas of smooth albite. 2-3 μm sized grains of 

armalcolite (ar) are also present in the albite. Porous plagioclase is more calcic than the albitized 

regions and contains abundant, euhedral oxides. (e-f) Chondrule 2 (e), a 0.7 mm diameter barred 

olivine (BO) chondrule. (f) Close-up of region interstitial to olivine bars which contains 

crystallized mesostasis glass (mes) and smooth regions of albite with 0.5-1 μm wide K-feldspar 

exsolution lamellae near cracks and pores. Albite is accompanied by a large sulfide (sul) grain 

and Cr-spinel grains. 

 

 

boundaries with the olivine and pyroxene phenocrysts. Fine-scale K-feldspar exsolution 

is observed within the albite. Chondrule 16 (Fig. 3.7c), is also a relict POP chondrule but 

plagioclase has fewer alteration lamellae than chondrule 5 (Fig. 3.7d). Albitization is 

extensive in a highly porous region, adjacent to the pores, and along grain boundaries 

with the olivine phenocrysts. Sub-μm pores are also present along the albitization 

boundaries and the albite has some fine-scale K-feldspar exsolution lamellae. 

A region near the edge of chondrule 15 (Fig. 3.7e), a relict POP chondrule, 

contains albite (An1-11) laths, μm-sized Ca-rich pyroxene grains, and porous, crystallized 

mesostasis glass (Fig. 3.7f). The albite laths here are similar in appearance to the primary 

albite in Dhajala chondrule 6 (Fig. 3.4f) and, to a lesser extent, Bjurböle chondrule 8 (Fig. 

3.6f). The laths contain abundant, fine-scale K-feldspar exsolution lamellae. The lamellae 

are perpendicular to the long axis of the albite laths, and parallel/sub-parallel to the small 

Ca-rich pyroxene grains. The lamellae are also coarser near large pores and the pores 

along albite grain boundaries. 

Santa Barbara (L4) 

 Plagioclase alteration in Santa Barbara is different from that in Saratov and 

Bjurböle as illustrated in three relict chondrules in Fig. 3.8. Feldspar composition for 

these chondrules are reported in Lewis and Jones (2016). Chondrule 4 (Fig. 3.8a) is a 

POP chondrule in which calcic plagioclase (An73-82) is being altered to albite (An7-9)  
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Figure 3.9. BSE images showing alteration in three relict feldspar-bearing chondrules in 

Avanhandava (H4). (a-b) Chondrule 5 (a), a 0.8 mm diameter porphyritic olivine and pyroxene 

(POP) chondrule with many 50 μm diameter pores. (b) Close-up of region interstitial to pyroxene 

(pyx) phenocrysts with Ca-rich pyroxene (cpx) and plagioclase (plg, An11-50) laths altered to albite 

(ab) along grain boundaries. Plagioclase lath interiors are highly porous with abundant, euhedral 

oxides. (c-d) Chondrule 16 (c), a 0.3 mm diameter barred olivine (BO) chondrule with large (30 

μm diameter) pores between the olivine bars. (Caption continues on the following page).  
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Figure 3.9. (Caption continued from the previous page). (d) Close-up of region interstitial to 

olivine (ol) bars with albitic plagioclase alternating regions of smooth and porous textures. 

Smooth regions have μm-sized grains of Ca-rich pyroxene. Porous regions are reminiscent of 

plagioclase laths. Few oxides are present. (e-f) Chondrule 7 (e), a 0.7 mm diameter POP 

chondrule. (f) Close-up of porous region, interstitial to olivine phenocrysts, with smooth albitic 

plagioclase (An6-12) and a large patch K-feldspar (K-fsp, Or84). Plagioclase outside the smooth 

region is porous and contains μm-sized grains of Ca-rich pyroxene. 

 

 

along grain boundaries with the olivine and pyroxene phenocrysts (Fig. 3.8b). While this 

is somewhat like previously described albitization reactions, alteration in this chondrule 

differs in that it is accompanied by abundant faceted pores and euhedral Cr-spinel. 

Chondrule 10 (Fig. 3.8c), a PO chondrule, is similar but the alteration reaction appears to 

have gone further to completion (Fig. 3.8d). Albite rims are wider in chondrule 10, and 

their formation is possibly crystallographically controlled as some have a square 

morphology. Porosity and euhedral oxides are more abundant, and the calcic plagioclase 

(a maximum of An27-30) is almost completely removed. The albite also contains μm-sized 

grains of armalcolite. 

Chondrule 2 (Fig. 3.8e) is a barred olivine (BO) chondrule. Interstitial to olivine 

bars there are separate regions of porous, crystallized mesostasis glass and smooth albite 

(An5-9) with sulfides and Cr-spinel. Albite contains 0.5-1 μm wide K-feldspar exsolution 

lamellae near cracks and pores. The albite here differs from Saratov chondrule 15 (Fig. 

3.7f), Bjurböle chondrule 8 (Fig. 3.6f), and Dhajala chondrule 6 (Fig. 3.4f) in that it does 

not have lath-like morphology. Smooth albite only exists in this one region of the 

chondrule: the rest of the area between the olivine bars consists of porous albite 

consistent with crystallized mesostasis glass. 
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Figure 3.10. BSE images showing alteration in two relict feldspar-bearing chondrules in Tuxtuac 

(LL5). (a-b) Chondrule 2 (a), a 0.8 mm diameter porphyritic olivine and pyroxene (POP) 

chondrule. (b) Close-up of region interstitial to olivine (ol) and pyroxene (pyx) phenocrysts in 

which calcic plagioclase (plg) is altered to albite (ab) along grain boundaries. The plagioclase 

interior contains abundant, euhedral oxides and the border between the interior and albitized rims 

is highly porous. (Caption continues on the following page).  
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Figure 3.10. (Caption continued from the previous page). (c-f) Chondrule 3 (c), a 0.8 mm 

diameter POP chondrule. (d-f) Close-up images of plagioclase-bearing regions interstitial to 

olivine and pyroxene phenocrysts. (d) Plagioclase laths altered to albite along grain boundaries 

with porous, oxide-bearing cores. Numerous larger (3-5 μm diameter) pores are present, many in 

close association with albitized rims. (e) Plagioclase laths altered to albite, like (d). Sub-μm, 

euhedral Cr-spinel (Cr-sp) and pores are abundant in the plagioclase cores. Lighter-colored 

plagioclase in porous regions is higher in calcium. (f) Porous region in which smooth albite 

shows fine and coarse K-feldspar (K-fsp) exsolution lamellae. 

 

 

Avanhandava (H4) 

 Plagioclase alteration in Avanhandava is more like Santa Barbara than Saratov or 

Bjurböle. Alteration has gone further to completion than the other type 4s, including 

Santa Barbara, and very little calcic plagioclase remains. This was also noted by Kovach 

and Jones (2010). We describe three relict chondrules in Fig. 3.9, all of which have 

considerable large-scale internal porosity. Chondrule 5 (Fig. 3.9a) is a POP chondrule 

with many 50 μm diameter pores in the outer third of the chondrule. Plagioclase laths 

(An11-50) are altered to albite along grain boundaries with lath interiors that are highly 

porous and contain abundant, euhedral oxides (Fig. 3.9b). This texture is similar to, but 

more advanced than, Bjurböle chondrule 6 (Fig. 3.6d).  

Chondrule 16 (Fig. 3.9c) is a BO chondrule with 30 μm diameter pores between 

the olivine bars. Albitic plagioclase is present in alternating regions of smooth and porous 

textures (Fig. 3.9d). Smooth regions have μm-sized grains of Ca-rich pyroxene. Porous 

regions indicate the presence of altered plagioclase laths. Few oxides are present. This 

BO chondrule appears to be an altered form of the anorthite-bearing BO chondrule in 

Semarkona described by Lewis and Jones (in review). 

Chondrule 7 (Fig. 3.9e) is a POP chondrule with a region of smooth albitic 

plagioclase (An6-12) and an extensive K-feldspar patch (~Or84) adjacent to a large porous 

region (Fig. 3.9f). Plagioclase outside the smooth feldspar region contains μm to sub-μm  
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Figure 3.11. BSE images three relict feldspar-bearing chondrules in Sulagiri (LL6). (a-c) 

Chondrule 4 (a), a 1 mm diameter porphyritic olivine (PO) chondrule. (b-c) Close-up images of 

regions interstitial to olivine (ol) phenocrysts in which plagioclase is completely equilibrated to 

albite (ab) and contains subhedral pores and oxides. (c) Sub-μm K-feldspar (K-fsp) exsolution 

lamellae in a region of smooth albite. (Caption continues on the following page).  
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Figure 3.11. (Caption continued from the previous page). (d-e) Chondrule 5 (d), a 0.4 mm di-

ameter barred olivine (BO) chondrule. (e) Close-up of region between the olivine bars that has 

equilibrated to albite. Pores and some euhedral oxides, mostly Cr-spinel (Cr-sp), highlight the 

cores of relict calcic plagioclase laths. (f) Close-up of region in chondrule 1 illustrating the typical 

appearance of equilibrated plagioclase in Sulagiri as smooth regions of albite >50 μm in size. 
 

 

pores and μm-sized grains of Ca-rich pyroxene. Potassium-rich feldspar is abundant in 

many chondrules in Avanhandava in a range of textures from scattered, individual K-

feldspar exsolution lamellae to coherent regions of crypto-antiperthite 100s of μm in size. 

A more detailed description of K-feldspar exsolution in Avanhandava is presented in 

Lewis et al. (In preparation). 

Tuxtuac (LL5) 

 Plagioclase in Tuxtuac is like Santa Barbara and Avanhandava. Chondrule 2 (Fig. 

3.10a) is a relict POP chondrule in which calcic plagioclase is altered to albite along grain 

boundaries (Fig. 3.10b). The plagioclase interior contains abundant, euhedral oxides and 

sub-μm pores, much like Santa Barbara chondrules 4 and 10 (Figs. 3.8b,d). Chondrule 3 

(Fig. 3.10c) is a extensively recrystallized POP chondrule where plagioclase laths are 

altered to albite along grain boundaries with porous, oxide-bearing cores (Fig. 3.10d), 

similar to Avanhandava chondrules 5 and 16 (Figs. 3.9b,d). Numerous larger (3-5 μm 

diameter) pores are present, many in close association with albitized rims. Sub-μm, 

euhedral Cr-spinel and faceted pores are abundant in the plagioclase cores (Fig. 3.10e). In 

another region of chondrule 3, smooth albite contains fine-scale K-feldspar exsolution 

lamellae and a 20 μm K-feldspar patch in association with extensive porosity (Fig. 3.10f). 

Sulagiri (LL6) 

 Plagioclase alteration in Sulagiri is like alteration in Tuxtuac and Avanhandava. 

Chondrule 4 (Fig. 3.11a), a relict PO chondrule, contains plagioclase that is completely 
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altered to albite but with some subhedral pores and oxides (Fig. 3.11b). Sub-μm K-

feldspar exsolution lamellae are present in a region of smooth albite (Fig. 3.11c). 

Chondrule 5 (Fig. 3.11d), a relict BO chondrule, contains plagioclase that is altered to 

albite (Fig. 3.11e), much like BO chondrule 16 in Avanhandava (Fig. 3.9d). Pores and 

some euhedral to subhedral oxides, mostly Cr-spinel, mark the cores of the relict calcic 

plagioclase laths. While we focused on alteration textures in this study, it is important to 

note that most plagioclase in Sulagiri is present in large (>50 μm), smooth regions, such 

as the ones illustrated in Fig. 3.11f, from chondrule 1. Textural equilibration to smooth 

plagioclase appears to be the product of thermal metamorphism whereas the albitization 

reaction described above is responsible for the majority of the chemical transition to 

albite. Compositional equilibration in large, smooth regions of plagioclase were the focus 

of the OC feldspar studies by Kovach and Jones (2010) and Lewis and Jones (2016). 

3.2. Feldspar compositions 

 Calcic feldspar was measured in type 3 OCs using EPMA to determine how An 

contents change from those measured previously in the unequilibrated Semarkona OC 

(Lewis and Jones, in review) through to the equilibrated OCs (Kovach and Jones, 2010; 

Lewis and Jones, 2016). EPMA data for type 3 OCs are tabulated in Table 3.2 and plotted 

in feldspar ternaries in Fig. 3.12. Plagioclase in some Bishunpur chondrules contains 

near-end-member anorthite (An99 in chondrule 7). However, Chainpur, Parnallee, 

Dhajala, and Bo Xian have a lower maximum An content in their plagioclase, between 

An84 and An87. Orthoclase content is generally low, less than Or1. Additional analyses of 

K-feldspar in Parnallee albite (chondrules 2 and 9), yielded higher Or contents, up to 

Or10, because the electron beam overlapped fine-scale K-feldspar exsolution lamellae  
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Figure 3.12. Feldspar compositions in type 3 OCs, obtained with EPMA. Each point is a single 

analysis, and each color is an individual chondrule. All feldspar ternary plots are truncated at 

Or10. Albitic plagioclase is present in all chondrites analyzed but quantitative compositional data 

were obtained for only the most Ca-rich plagioclase, to understand the equilibration process. The 

albitic analyses in Parnallee are from regions containing K-feldspar exsolution. While the 

plagioclase compositions within each chondrite, taken together, is large, the range of plagioclase 

compositions within each chondrule is limited. 

 

 

(e.g., Fig. 3.3f). Each chondrule within a chondrite has a limited range of plagioclase 

compositions, consistent with observations in previous studies (Lewis and Jones, in 

review; Kovach and Jones, 2010; Lewis and Jones, 2016). 

Feldspars of all compositions were measured in type 4 OC chondrules and are 

given in Table 3.2 and illustrated in Fig. 3.13. Plagioclase in Bjurböle and Saratov has a 

maximum An content of ~An85, consistent with the maximum An content of calcic 

plagioclase in subtypes 3.4-3.9, An84-87. Avanhandava has a much reduced maximum An   
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Figure 3.13. Feldspar compositions in type 4 OCs, obtained with EPMA. Each point is a single 

analysis, and each color is an individual chondrule. Feldspar ternary plots are truncated at Or20 for 

Bjurböle and Or10 for Saratov. Analyses with a significant Or component represent overlap 

between plagioclase and K-feldspar exsolution lamellae. In Bjurböle, K-feldspar exsolution in 

chondrule 8 were too fine-scale (Fig. 3.6f) to yield significant Or content in the analyses. 

Exsolution in Avanhandava is much coarser (e.g., Fig. 3.9f) and yields more Or-rich 

compositions. In Saratov, no K-feldspar was present in the analyses. Maximum An content is 

An85 in Saratov and Bjurböle and An50 in Avanhandava. Like the type 3 OCs (Fig. 3.12), the 

range of plagioclase compositions is limited within each chondrule, except for Bjurböle 

chondrule 14. In this chondrule, partial albitization (Fig. 3.6b) has produced a bimodal 

distribution. 

 

 

content of An50: this composition was measured in a remnant calcic plagioclase core in 

chondrule 5 (Figs. 3.9a,b). Some analyses for Bjurböle plagioclase overlap K-feldspar 

exsolution lamellae (chondrule 8, Fig. 3.6f). Avanhandava has extensive K-feldspar 

exsolution (e.g., Fig. 3.9f), shown by analyses that are albitic as well as those with high 
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Or content (Fig. 3.13, chondrules 2, 3, 7, and 6). While Saratov has some observed K-

feldspar exsolution (e.g., Figs. 3.7d,f), no EPMA analyses significantly overlapped these 

lamellae. Like the type 3 OCs, plagioclase compositions for type 4 OCs are limited 

within each chondrule, except for Bjurböle chondrule 14 in which albitization (Fig. 3.6b) 

has produced a bimodal distribution. 

4. Discussion 

 The overall goal of this study is to understand the metamorphic conditions, 

specifically the record of fluids, as indicated by feldspar. As we discussed in the 

introduction, alteration effects have previously been observed in OC feldspar but 

systematic studies have not been conducted. Previous studies invoke a variety of models 

to describe observations in ordinary and carbonaceous chondrites that are similar to the 

observations we present here. These models include the formation of nepheline, sodalite, 

and/or scapolite during chondrule crystallization (Bridges et al., 1997), formation or 

alteration in the solar nebula by infiltration of Na- and Cl-rich gasses (Bridges et al., 

1997; Kimura and Ikeda, 1998), or alteration on the parent asteroid by hydrous 

(Alexander et al., 1987; Krot et al., 1998a; Russell et al., 2000) or anhydrous fluids 

(Kimura and Ikeda, 1998). 

Overall, we consider these different models using the observations we present 

here and conclude that that plagioclase alteration and equilibration in OCs is a parent 

body, metasomatic process, facilitated by aqueous fluids during thermal metamorphism. 

Through our observations, we aim to establish an overall framework for understanding 

changes in feldspar textures and compositions through the petrologic sequence and to tie 
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this framework to an overall model of metasomatism during thermal metamorphism in 

ordinary chondrites. 

 In the discussion that follows, we will summarize our observations into a model 

of plagioclase alteration and discuss how well this model applies to H, L, and LL OCs. 

We will then compare our observations to other studies of ordinary and carbonaceous 

chondrites, discuss the evidence that indicates plagioclase alteration and equilibration is a 

fluid-driven, parent-body process, and place constraints on the physical and chemical 

environment through the changing modes of plagioclase alteration. We will frame the 

interpretations drawn from our observations into an overall, three-stage model of 

metasomatism during thermal metamorphism on OC parent bodies. Finally, we will 

discuss the implications for plagioclase alteration on the interpretation of chronology 

derived from short-lived radioisotope systematics, particularly Al-Mg and I-Xe. 

4.1. A model for alteration and equilibration of plagioclase 

A summary of our observations of plagioclase alteration and equilibration is 

presented in Fig. 3.14. Our previous observations of chondrules in Semarkona (Lewis and 

Jones, in review) showed the presence of primary igneous plagioclase with a wide range 

of compositions. Calcic plagioclase, which commonly occurs in MgO-rich chondrules, is 

lost as alteration proceeds, so its absence is an indicator of alteration. We observe 

primary anorthitic plagioclase in types 3 and 4 with features indicating various degrees of 

alteration. In types 5 and 6, highly altered calcic plagioclase is present only as relict 

cores. The green wedge in Fig. 3.14 shows this process. Note that the wedge increases 

slightly in width from 3.0 to 3.6 because some anorthite may be crystallizing from 

mesostasis glass.  
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Alteration of calcic plagioclase to sodalite/scapolite, nepheline, and albite are 

shown by the cyan, light blue, and dark blue bars in Fig. 3.14, respectively. 

Sodalite/scapolite alteration is seen in types 3.2-3.6, nepheline in types 3.4-3.9, and albite 

in types 3.6-5. In calcic plagioclase, micropores are observed in types 3.4-6 (orange bar) 

and alteration lamellae (yellow bar) are observed in types 3.6-5. Primary igneous 

plagioclase of a range of compositions shows zoning (light red bar) in areas of mesostasis 

dissolution (light green bar) in types 3.0-3.8. 

Primary sodic plagioclase is also present in Semarkona, typically in FeO-rich 

chondrules (Lewis and Jones, in review) and while primary laths of albite are observed 

through petrologic types 3 and 4, the majority of albite in chondrules is produced through 

the devitrification of chondrule mesostasis glass (dark green bar). From type 3.0 to 3.9, 

mesostasis glass crystallizes into a fine-grained assemblage of albitic plagioclase, Ca-rich 

pyroxene, and oxides. This process is illustrated in Fig. 3.14 by the blue wedge 

expanding at the expense of mesostasis glass (white) through the type 3 sequence. 

Additional albite forms from albitization of calcic plagioclase (dark blue bar) starting 

around petrologic subtype 3.6 and proceeding through type 5. In type 6, nearly all 

plagioclase is albitic. 

The evolution of plagioclase compositions to albite is also described in the 

schematic feldspar ternary diagrams at the bottom of Fig. 3.14. Plagioclase in chondrules 

has a wide range of compositions in type 3.0 (Lewis and Jones, in review), but the 

maximum An-content is reduced to ~An85 through the type 3 sequence. Between types 4 

and 6, the plagioclase composition further equilibrates to a single composition of ~An11 

(Kovach and Jones, 2010; Lewis and Jones, 2016) with the majority of the equilibration 
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occurring in the type 4s. Compositional equilibration of plagioclase is achieved largely 

through albitization, an interface-coupled dissolution-reprecipitation reaction in the 

presence of an alkali-bearing hydrothermal fluid. 

Fine-scale K-feldspar exsolution lamellae and patches, represented by the small 

red wedge and red bar, are present in types 3.6-6 but are most abundant in petrologic 

types 4 and 5. The lowest petrologic type observations of K-feldspar exsolution lamellae 

in albite (red bar) are the same as the earliest observations of the albitization reaction 

(blue bar). However, K-feldspar is not only present in albitized regions, but also occurs in 

laths of primary albite and in fine-grained, secondary albite. In addition, K-feldspar 

exsolution, and especially larger patches, are commonly observed adjacent to voids. 

Potassium-rich feldspar in OCs is discussed in more detail by Lewis et al. (In 

preparation). 

The model of plagioclase alteration and equilibration we describe here is drawn 

from observations in H, L, and LL OCs, and we propose that it is applicable to all three 

OC groups. However, Kovach and Jones (2010) argued that plagioclase equilibration in 

H chondrites differs from the LL chondrites. They came to this conclusion because their 

measurements of plagioclase compositions in H4-6 chondrites yielded a single 

equilibrated plagioclase composition of ~An12, whereas in the LL chondrites, they 

measured a range of plagioclase compositions in the type 4 sample that narrowed 

progressively through types 5 and 6. Lewis and Jones (2016) showed that plagioclase 

equilibration trend in equilibrated L chondrites closely matches the Kovach and Jones 

(2010) trend for the LL chondrites. 
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Our observations in this study show that the H4 chondrite Avanhandava, the same 

H4 chondrite used in the Kovach and Jones (2010) study, contains a wider range of 

plagioclase compositions (up to An50, Fig. 3.13) than previously reported. This is due, in 

part, to the focus of the Kovach and Jones (2010) study on large, smooth regions of 

plagioclase that are more equilibrated than the porous regions containing relict anorthitic 

plagioclase with higher Ca content (e.g., Fig. 3.9b). Telus et al. (2014) measured 

plagioclase compositions in four H4 chondrites and found plagioclase up to An80-90 in 

Ste. Marguerite and Forest Vale, but only up to An25-30 in Beaver Creek and Sena, 

suggesting varying degrees of equilibration within the type 4s. Along these lines, we can 

describe Avanhandava as a “high” type 4 that has seen more progressive equilibration 

than other type 4 OCs. This will be discussed in more detail in section 4.3. Furthermore, 

the H3.8 Dhajala has similar plagioclase composition and alteration features to LL 

chondrites of similar petrologic type and argues strongly against differences in 

plagioclase equilibration between the H chondrites and the L and LL chondrites. 

 Overall, we argue that the alteration and equilibration of plagioclase in OCs, 

summarized in Fig. 3.14, can be applied to all OC groups, and can provide important 

insights into the chemical and physical conditions experienced by their parent asteroids 

during thermal metamorphism. There is a clear progression of alteration modes from 

replacement of calcic plagioclase by sodalite/scapolite in subtypes 3.2-3.6, 

nephelinization in subtypes 3.4-3.9, to albitization in types 3.6-5. In the sections that 

follow, we will compare our model of alteration and equilibration to observations from 

other studies to help constrain the conditions experienced during secondary processing 
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and to further understand the role of fluids during thermal metamorphism on the OC 

parent bodies. 

4.2. Origin of sodalite, scapolite, and nepheline in ordinary and carbonaceous 

chondrites 

 We observe scapolite (Na4Al3Si9O24Cl) and the feldspathoids sodalite 

(Na8Al6Si6O24Cl2) and nepheline (NaAlSiO4) as the products of plagioclase alteration in 

type 3 OCs. Alteration to these phases has previously been observed in OCs and in the 

CV and CO groups of carbonaceous chondrites (CCs). Although CCs are not considered 

to have undergone the same secondary history as OCs, it is helpful to compare different 

occurrences of plagioclase alteration to understand what conditions the different 

chondrite groups had in common. In addition to the alteration of plagioclase in 

chondrules, the focus of this work, previous studies have shown evidence for alteration of 

related aluminosilicate phases, such as anorthite normative mesostasis glass and melilite, 

in a variety of chondrite components including igneous clasts, refractory inclusions, dark 

inclusions, and matrix. To explain the presence of the sodalite, scapolite, and nepheline 

observed in OC as well as CV and CO groups, a variety of nebular and parent body 

mechanisms has been invoked. These mechanisms include igneous crystallization during 

chondrule formation, anhydrous nebular alteration prior to accretion, and both hydrous 

and anhydrous parent body alteration. We now assess the origin of sodalite, scapolite, and 

nepheline in OC and CC chondrules, and other chondrite components, with respect to 

these different models and the observations we present above. 
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4.2.1. Ordinary chondrites 

We identified sodalite in Bishunpur (LL3.15, Fig. 3.1c) and Parnallee (LL3.6, Fig. 

3.3b) and scapolite in Chainpur (LL3.4, Fig. 3.2c) but it is evident from other studies 

(Alexander et al., 1987; Hutchison et al., 1994; Bridges et al., 1995, 1997) that both 

minerals are present in all three chondrites. Alexander et al. (1987) described scapolite in 

a granular clast in Bishunpur (LL3.15) and attributed its presence to Cl-metasomatism 

after accretion. They argued that because phosphates do not form until higher petrologic 

types (i.e., greater degrees of metamorphism), a Cl-rich fluid would preferentially alter 

plagioclase instead of going into the formation of apatite. This model fits well with our 

observations and will be discussed in more detail in section 4.2.3. 

Sodalite, scapolite, and nepheline were described in Chainpur (LL3.4) and 

Parnallee (LL3.6) by Bridges et al. (1995, 1997) and Hutchison et al. (1994). They found 

these phases in chondrule mesostasis glass and in the plagioclase of a barred olivine 

chondrule (Hutchison et al., 1994; Bridges et al., 1997). Hutchison et al. (1994) discussed 

the possibility that these phases could be the product of parent body metasomatism, but 

concluded that elevated REE abundances in nepheline indicated that it crystallized from 

residual melt. Bridges et al. (1997) invoked several mechanisms to explain their 

observations. For some Chainpur chondrules, they argued for prolonged, metastable 

crystallization of Ca-rich pyroxene producing silica-undersaturated residual melts that 

ultimately result in the crystallization of feldspathoids. In one Chainpur chondrule, where 

silica undersaturation is not expected because of the presence of large olivine 

phenocrysts, they argued that an influx of Na and Cl during crystallization is necessary to 

explain the intimate intergrowth of feldspathoids, plagioclase, and pyroxene. However, 
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for Parnallee chondrules, Bridges et al. (1997) suggest nepheline and sodalite/scapolite 

formed from minor amounts of residual melt after plagioclase crystallization. 

Bridges et al. (1995) also described a large (3 mm) igneous clast in Parnallee 

containing 88% plagioclase and 12% Cl-bearing nepheline. They argued that the clast 

had carbonaceous chondrite affinities, due to its O-isotope composition, and link it to the 

ureilite group of achondrites. To explain the presence of nepheline, they invoked an 

influx of Na and Cl during crystallization on the parent body. However, our observations 

of Parnallee suggest that nephelinization was pervasive and the process affected both 

chondrules and igneous clasts.  

A study conducted by Russell et al. (2000), looking at the oxygen isotope 

composition of Al-rich OC chondrules, described nepheline replacing calcic plagioclase 

in chondrules from Chainpur and Sharps (H3.4). They observed that nephelinization was 

pervasive in the Sharps chondrule, replacing most of the plagioclase laths, while 

Chainpur chondrules only contained nepheline as thin lamellae. Although they did not 

suggest a model for nepheline formation, nebular or parent body, they did refer to it as an 

alteration feature, suggesting that they did not believe it was an igneous feature. Russell 

et al. (2000) also measured the oxygen isotope composition of a nepheline-bearing region 

in the Sharps chondrule and found that it was indistinguishable from the spinel 

phenocrysts that comprise the majority of the chondrule. Russell et al. (2000) did not 

discuss the possibility of parent body alteration but we would expect mixing of the 

oxygen isotope composition of the anorthite and the interacting fluid if nepheline formed 

via this mechanism. Because we infer nepheline formation to be a parent-body process, 

the similar oxygen isotopic composition of nepheline to the phenocrysts implies either 
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that there was not significant isotopic exchange during alteration (e.g., low water/rock 

ratio) or that the altering fluid was 16O-rich like the chondrule phenocrysts. We suggest 

the former possibility is more likely because the oxygen isotopic composition of 

equilibrated OCs, which have undergone significant plagioclase alteration via 

albitization, is 16O-poor (Clayton, 2003). 

4.2.2. Carbonaceous chondrites 

The feldspathoids sodalite and nepheline have been described in a variety of CV 

and CO carbonaceous chondrites, in which they are widely considered to have formed via 

metasomatic reactions (Brearley and Krot, 2013). Feldspathoids are commonly observed 

in CV chondrites as alteration phases in a variety of components including refractory 

inclusions (Fagan et al., 2007), chondrules (Ikeda and Kimura, 1995; Kimura and Ikeda, 

1995, 1996, 1997, 1998; Krot et al., 1998a,b, 2000; Wasserburg et al., 2011), matrix 

(Ikeda and Kimura, 1995; Matsumoto et al., 2014), and dark inclusions (Ikeda and 

Kimura, 1995; Krot et al., 1998a,b, 2000). Sodalite and nepheline typically replace Ca-

rich phases such as melilite, Ca-plagioclase, and anorthite-normative chondrule 

mesostasis glass. 

Weisberg et al. (1997) and Krot et al. (1998a,b) showed that oxidized CV3 

chondrites can be split into two subgroups based on their alteration features that suggest 

parent-body alteration under differing conditions. The Allende-like group (CV3oxA) 

contains the feldspathoid alteration features whereas the Bali-like group (CV3oxB) 

contains phyllosilicates and not feldspathoids. Krot et al. (1998a,b) suggest that the 

difference between the two subgroups is related to temperature and that the CV3oxB group 

was exposed to lower temperature aqueous alteration (<300 °C) than the CV3oxA group. 
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There is also a range in alteration features in the reduced group of CV3 chondrites 

(CV3red). Some CV3red chondrites contain sodalite and nepheline (e.g., Efremovka and 

Vigarano: Kimura and Ikeda, 1996, 1997), but only rare nepheline lamellae are present in 

others (e.g., Leoville: Kimura and Ikeda, 1997). 

Some authors have argued that alteration to feldspathoids in CV chondrites is the 

product of anhydrous alteration from Na- and Cl-rich gases, either in the solar nebula or 

on the parent asteroid (Ikeda and Kimura, 1995, 1996; Kimura and Ikeda, 1995, 1997, 

1998). However, Krot et al. (1998a,b) proposed a hydrous, parent body origin citing 

several observations. First, the alteration of Ca-bearing phases in CV3oxA chondrules did 

not change the bulk abundance of Ca in this subgroup relative to the CV3oxB subgroup 

suggesting closed-system behavior of Ca. Second, the bulk Na content is similar between 

the two subgroups but the carrier phase of Na differs based on alteration conditions. In 

the CV3oxB, alteration is to Na-phlogopite and saponite whereas in the CV3oxA nepheline 

and sodalite are the alteration phases. Third, the CV3oxB subgroup clearly experienced 

aqueous alteration due to the presence of phyllosilicates illustrating that water was 

available on the CV parent body. 

Bonal et al. (2006) conducted a Raman study of the maturity of organic matter in 

the matrix of CV3 chondrites to determine their metamorphic history in comparison to 

unequilibrated OCs. They suggested that Allende experienced metamorphic temperatures 

equivalent to petrologic type 3.7 in OCs. The fact that they estimate the feldspathoid-

bearing Allende to have had a similar thermal history to Parnallee (LL3.6) is consistent 

with our observations. Bonal et al. (2006) also set petrologic types for the CV3red group 

chondrites Leoville, Efremovka, and Vigarano, in order of increasing metamorphism, to 
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between petrologic types 3.1 and 3.4 on the OC scale. Again, this is consistent with our 

observations of the presence of feldspathoids petrologic subtype from Bishunpur 

(LL3.15) to Chainpur (LL3.4). 

CO3 carbonaceous chondrites have been formally divided into petrologic 

subtypes, 3.0-3.7, based on similar metamorphic characteristics to OC chondrites of the 

same petrologic subtypes (Scott and Jones, 1990; Sears et al., 1991). Like CV3 

chondrites, CO3 chondrites contain nepheline, and minor sodalite, as alteration phases in 

CAIs (Tomeoka et al., 1992; Kojima et al., 1995; Russell et al., 1998; Wasson et al., 

2001; Itoh et al., 2004), chondrules (Jones, 1997; Tomeoka and Itoh, 2004; Wick and 

Jones, 2012), and dark inclusions (Itoh and Tomeoka, 2003). In particular, a study by 

Tomeoka and Itoh (2004) described nepheline, occurring in lamellae, as a plagioclase 

alteration phase in type I CO chondrules. Nepheline alteration occurs in petrologic 

subtypes 3.2-3.7 in increasing abundance with increasing subtype. This is very similar to 

the feldspathoid alteration we observe in type 3 OCs. However, the presence of sodalite, 

common in CV chondrites, was rare in the CO3 chondrites they studied. Further, 

scapolite is not observed in CV or CO chondrites and is currently an alteration feature 

observed solely in OCs. 

Tomeoka and Itoh (2004) suggested that nephelinization of plagioclase in CO 

chondrules, and likely CAIs and dark inclusions, is a parent body process in which Na-

rich fluids alter plagioclase to hydrated nepheline. Then, during further thermal 

metamorphism, the hydrated nepheline dehydrates to the nepheline that is now observed. 

In addition, Itoh et al. (2004) measured the oxygen isotopic composition of altered and 

unaltered regions from a CAI in Kainsaz (CO3.2). They found the altered regions to be 
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depleted in 16O compared to the unaltered regions, suggesting isotopic exchange with an 

altering 16O-poor fluid. 

4.2.3. Alteration to sodalite, scapolite, and nepheline 

 Overall, the presence of feldspathoids in CCs has been recognized as an indicator 

of aqueous alteration for some time, whereas for OCs, there is no common consensus on 

the mechanism for what appear to be similar mineral reactions. In reduced and Allende-

like oxidized CV3 chondrites (CV3red and CV3oxA), feldspathoids form through the 

alteration of Ca-bearing phases like melilite and Ca-plagioclase in petrologic subtypes 

equivalent to 3.1-3.7. In CO3 chondrites, nepheline is the dominant alteration phase, 

present as lamellae in Ca-plagioclase, and occurring in petrologic subtypes 3.2-3.7. We 

have shown that alteration to scapolite and feldspathoids in OCs follows a similar trend, 

occurring in types 3.1-3.9, initially as replacement by sodalite/scapolite but then 

transitioning to nepheline between 3.4 and 3.6. 

 The transition from sodalite/scapolite alteration to nepheline, in OCs, could either 

be the result of increasing temperature or changes in chemical environment. We suggest 

the latter process is dominant because a similar shift in alteration mode from sodalite to 

nepheline is not observed in the CV chondrites over the equivalent range in petrologic 

subtypes. As such, a rising Na/Cl ratio of the fluid with increasing petrologic subtype is a 

likely source of the shift in alteration modes. The OCs, unlike CV chondrites, contain 

another major Cl-bearing mineral, apatite, which forms either from reactions of the 

phosphate merrillite with Cl-rich fluids, or from direct precipitation from a fluid (Jones et 

al., 2014, 2016; Lewis and Jones, 2016). An increasing abundance of apatite throughout 

the petrologic type 3 sequence could provide a sink for Cl, raise the Na/Cl ratio of the 
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fluid, and shift the plagioclase alteration mode from sodalite/scapolite to nepheline. This 

process was also suggested by Alexander et al. (1987) to explain the presence of scapolite 

in Bishunpur (LL3.15). 

 The difference between scapolite and sodalite alteration is less clear as they both 

have the same molar Na/Cl ratio of 4, and both are observed in subtypes 3.2-3.6. Sodalite 

is a feldspathoid, like nepheline, that forms in silica undersaturated conditions. Sodalite 

and nepheline have Si/Al ratios of 1 whereas scapolite has a Si/Al ratio of 3, the same as 

albite. Because, as we will discuss in the next section, albitization requires higher 

temperatures with higher SiO2 solubility than nephelinization, we would not expect 

scapolite to form in the lower petrologic type 3 subtypes. One possibility is that scapolite 

forms in regions within chondrules that contain Si-rich mesostasis glass whereas sodalite 

forms from relatively Si-poor anorthitic plagioclase. Another possibility is that scapolite 

forms from the breakdown of Cl-bearing smectite during moderate degrees of thermal 

metamorphism. Chlorine-bearing smectite is identified as an alteration feature in 

Semarkona (LL3.00) and Bishunpur (LL3.15) by Alexander et al. (1989). However, in 

this model, the presence of both smectite and scapolite in Bishunpur is difficult to 

reconcile. 

 Nephelinization of plagioclase and melilite was explored experimentally by 

Ichimura et al. (2017) to understand the alteration conditions of phases, including 

plagioclase, in CV and CO chondrites as well as in OCs. Following the procedure of 

Nomura and Miyamoto (1998), they produced nepheline through a two-part process: 

alteration of plagioclase to Na-zeolites followed by dehydration to nepheline. In detail, 

they heated powdered plagioclase (An48) to 200 °C in NaOH solutions of pH 12.8 and 
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13.9 for 168 hours (1 week). They used a water to rock ratio of 46.7. Under these 

conditions, plagioclase altered to the Na-zeolites analcime (Na2Al2Si4O12•2H2O) and 

fabriesite (Na3Al3Si3O12•2H2O) with little of the original plagioclase remaining. All 

characterization was determined by X-ray powder diffraction. 

 The dehydration portion of the study was executed on samples prepared 

separately from the alteration samples with the aim of understanding the rate and 

temperature regime under which the zeolites dehydrated to nepheline. Fabriesite was 

transformed to nepheline in two ways: isothermal heating at 600-650 °C for 24 hours or 

progressive heating at 5 °C/min to carnegieite at 692 °C before converting to nepheline at 

828 °C. Analcime only converted to nepheline when heated isothermally at 800 °C for 24 

hours. However, they argue that dehydration could take place at much lower temperatures 

over the much longer time scales experienced by asteroids undergoing thermal 

metamorphism. 

In SEM images, the analcime aggregates (which were expected to be the 

precursors of the dehydration reaction into nepheline) contain blocky cores of remnant 

plagioclase. This texture is significantly different from the smooth and lamellar textures 

of nepheline alteration that we observe (e.g., Fig. 3.3b) and that have been reported in 

other studies (Russell et al., 2000; Tomeoka and Itoh, 2004; Wick and Jones, 2012). The 

texture in chondrites is crystallographically controlled, arguing against a 

hydration/dehydration mechanism involving zeolites. Because of these textural 

differences, we consider that there is likely another mechanism of nepheline alteration in 

OCs and COs that involves direct replacement of plagioclase with nepheline. Although 

the general temperature regimes of Ichimura et al. (2017) fit the expected characteristics 
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of plagioclase alteration in types 3.1-3.9, the resulting textural differences present an 

important problem that needs to be resolved. One possibility, as suggested by Tomeoka 

and Itoh (2004), is alteration in a hydrous, Na-rich fluid produces hydrated nepheline that 

later dehydrates during thermal metamorphism. 

The model of nepheline and sodalite/scapolite crystallizing during chondrule 

formation, either by silica undersaturation or by Na and Cl infiltration (Bridges et al., 

1997), has several problems. First, plagioclase-bearing chondrules in the minimally 

metamorphosed OC Semarkona (LL3.00) do not contain nepheline, sodalite, or scapolite 

(Lewis and Jones, in review) as would be expected if these phases were formed, even if 

rarely, during chondrule crystallization. Second, the limited range of petrologic types in 

which nepheline is found in OCs, 3.4-3.6, indicates that formation of nepheline is related 

to thermal metamorphism, and not to nebular processes. Third, Gilmour et al. (2000) 

measured I-Xe ages for the nepheline-bearing chondrule and clast from Parnallee 

described by Bridges et al. (1995, 1997) and Hutchison et al. (1994) and showed that it is 

~7 Myr younger than the chondrules that did not contain observable nepheline. These 

ages are well within the realm of parent body processing and strongly argue against a 

nebular origin. 

4.3. Albitization, oxides, and exsolution 

We have shown that plagioclase undergoes reactions that result in albitization, the 

extent of which is related to the degree of metamorphism (Figs. 3.4-3.11, 3.14). 

Albitization of anorthitic plagioclase along grain boundaries has previously been 

described by Kovach and Jones (2010), Jones and Brearley (2010), and Lewis and Jones 

(2016) in type 4 OCs. Alteration lamellae in anorthitic plagioclase were described by 
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Jones and Brearley (2010) and Lewis and Jones (2016). TEM investigations showed that 

alteration lamellae in Bjurböle (L/LL4) consist of silica with sub-μm faceted voids and 

chromite (Jones and Brearley, 2010). In these studies, albitization, formation of alteration 

lamellae, and development of porosity have been attributed to secondary alteration by an 

aqueous fluid (metasomatism) during thermal metamorphism.  

Unlike the transition of plagioclase alteration reaction from sodalite/scapolite to 

nepheline, a process we suggest results from an increase in Na/Cl ratio of the fluid, the 

transition from nephelinization to albitization is likely dependent on temperature. The 

albitization reaction in OCs is discussed in some detail by Lewis and Jones (2016) using 

the experimental results of Hövelmann et al. (2010). In these experiments, plagioclase 

(An60 and An23) was reacted with a sodium silicate solution of pH 9 at 600 °C and 2 kbar. 

At these conditions, 50 μm rims of albite were produced on the plagioclase grains in less 

than 2 weeks. These length scales are comparable to the size of most plagioclase grains in 

type 6 OCs, and much larger than the albitized rims we show in types 3.9-4 (Figs. 3.5b,e, 

3.6a, 3.7b,d, 3.8b,d). Like the formation of zeolites in the Ichimura et al. (2017) 

experiments, this is very rapid considering the >106 year timescale (Huss et al., 2006) 

expected for OC metamorphism, demonstrating the reaction was restricted, particularly in 

types 3.8-4. 

 Lewis and Jones (2016) argue that the albitization reaction was limited by the 

solubility of Si in the altering fluid. Because Si solubility increases with increasing 

temperature, pressure, and pH, the most likely explanation is that changes of temperature 

cause both the shift from nephelinization to albitization and the progressive degree of 
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albitization observed in petrologic types 4-6. The alteration of anorthite to nepheline does 

not require mobilization of Si, only the introduction of Na and removal of Ca: 

CaAl2Si2O8 + Na2O(aq) → 2NaAlSiO4 + CaO(aq), 

while the alteration of anorthite to albite requires mobility of Si and Al in addition to Na 

and Ca: 

2CaAl2Si2O8 + 2SiO2(aq) + Na2O(aq) → 2NaAlSi3O8 + 2CaO(aq) + Al2O3(aq). 

In a more realistic example, the following reaction shows two minerals found in type I 

chondrules, anorthite and enstatite, reacting with an aqueous brine containing Si, Na, and 

Cl to produce an assemblage of albite, diopside, and spinel, common products of 

alteration: 

2CaAl2Si2O8 + Mg2Si2O6 + 2SiO2(aq) + 2NaCl(aq) 

→ 2NaAlSi3O8 + CaMgSi2O6 + MgAl2O4 + CaCl2(aq). 

In this case, the rate of reaction also depends on the availability of Si in solution and Al 

goes into forming spinel. Furthermore, the Cl in this reaction provides charge balance and 

the resulting CaCl2 can react with merrillite to form chlorapatite as discussed in Lewis 

and Jones (2016).  

The presence of spinel as a reaction product is important because we observe 

spinel, typically Cr-spinel, as well as other oxides, in regions of albitization. Albitization 

is an interface-coupled dissolution-reprecipitation reaction in which the surface of the 

anorthite is broken down and the new surface of albite is formed pseudomorphically (e.g., 

Putnis, 2009). In anorthitic plagioclase, particularly when formed at high temperature, Fe 

and Mg can substitute for Ca, and Cr and Ti can substitute for Al and Si, respectively. 

Because these metals are not compatible in low-temperature albite, the albitization 

process results in the formation of the μm to sub-μm, euhedral oxides we observe, 



 

164 

 

including Cr-spinel (Fig. 3.6b, 3.8b), armalcolite (Fig. 3.8d), and chromite (Jones and 

Brearley, 2010). In fact, μm and sub-μm oxides are extremely common in regions of 

pervasive albitization (Fig. 3.6b, 3.8b,d, 3.9b,d, 3.10b,d,e, 3.11e). This process is also 

observed in terrestrial examples of albitization in which hematite precipitates at the 

reaction boundary resulting in a distinctive red hue on the outcrop scale (Engvik et al., 

2008). 

Potassium-rich feldspar has previously been described in equilibrated OC 

chondrules (Kovach and Jones, 2010; Jones and Brearley, 2011; Lewis and Jones, 2016), 

in the LL5 chondrite Chelyabinsk (Taylor et al., 2014), and in samples returned from the 

asteroid Itokawa by the Hayabusa mission (Nakamura et al., 2011; Nakamura et al., 

2014). Itokawa is an S-type asteroid and the material returned is similar to LL chondrites 

with grains bearing metamorphic features indicating petrologic types 4-6 (Nakamura et 

al., 2011). In all cases, K-feldspar is present in albite as fine-scale exsolution lamellae 

(e.g., Fig. 3.8f) or as larger patches (e.g., Fig. 3.9f). Most K-feldspar is associated with 

pores (e.g., 3.7d,f, 3.8f, 3.9f) implying transport of K through the pore network and 

preferential incorporation into albite along pore boundaries. The heterogeneous 

distribution of K-feldspar in albite suggests incorporation of K postdates albitization. 

Jones and Brearley (2011) discuss that fine-scale exsolution lamellae indicate 

relatively rapid cooling, ~1 °C per 10 years, of the host material through the exsolution 

interval (600-500 °C). This contrasts with the slow, metallographic cooling rates, ~1 °C 

per 104-106 years, measured for many chondrites through the similar temperature range. 

Jones and Brearley (2011) were not able to explain the discrepancy in cooling rates. We 

discuss K-feldspar exsolution in more detail in Lewis et al. (In preparation). Here, we 
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focus on the mechanism of K incorporation into albite, and the temperatures that can be 

obtained from the Or content of plagioclase from the feldspar solvus. 

 The plagioclase composition can provide an estimate of the temperature at which 

it equilibrated due to the increased solubility of K within the plagioclase structure with 

increasing temperature (Nekvasil, 1994). While type 3 OCs do not have a significant Or 

component (Fig. 3.12), plagioclase in the type 4 OCs we measured does (Fig. 3.13). 

Although there is some scatter in the data due to analytical overlap of partially albitized 

plagioclase and fine-scale K-feldspar exsolution lamellae, there is a clear trend of 

increasing Or with increasing Ab along the plagioclase side of the feldspar ternary. The 

Or content differs between the type 4 OCs, indicating different temperatures of 

incorporation. For example, Saratov has a lower Or content for chondrules near the Ab 

apex than Avanhandava does (Fig. 3.13), implying that Avanhandava incorporated K at a 

higher temperature than Saratov.  

In Fig. 3.15, we show plagioclase compositions for type 4 to 6 OCs from this 

study (Fig. 3.13) and from Lewis and Jones (2016), in relation to plagioclase solvi for 

various temperatures at 1 bar, generated by SOLVCALC (Wen and Nekvasil, 1994). We 

used the ternary feldspar model of Elkins and Grove (1990) that is calibrated by hydrous 

experiments conducted at 1-3 kbar between 700 °C and 900 °C. The type 4 chondrites are 

ordered by increasing Or content in the plagioclase to show the progressive increase in 

equilibration temperature. The lowest temperature inferred from the plagioclase in the 

type 4 OCs we are considering is from Kramer Creek and Saratov, both of which plot 

along the 400 °C solvus. Bjurböle plots around 450 °C when considering the more Na-

rich compositions that are not affected by analytical overlap of K-feldspar exsolution.  
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Santa Barbara and Avanhandava plot close to 500 °C and 550 °C, respectively. Elenovka 

and Bruderheim, types 5 and 6, both plot near the 600 °C solvus. Equilibration at the 600 

°C solvus likely occurs because the Na/K ratio of the plagioclase reaches the Na/K ratio 

of the bulk chondrite (average atomic OC Na/K=14.5: Wasson and Kallemeyn, 1988). 

This is illustrated by the gray dashed line plotted over the Bruderheim data in Fig. 3.15. 

There is also some scatter in the data as analyses of albitic plagioclase include overlap 

from K-feldspar exsolution lamellae and remnant Ca-plagioclase. However, in general, 

the analyses follow the solvi remarkably well considering that they were measured in 

multiple chondrules that contain a wide range of alteration features. 

The temperatures inferred from the plagioclase compositions are at the low end of 

the range of peak metamorphic temperatures generally estimated for types 4 and 5, 500-

800 °C, and far below the peak metamorphic temperature range for type 6, 800-1000 °C 

(Scott and Krot, 2014). Because the plagioclase solvus model is calibrated between 700 

°C and 900 °C (Elkins and Grove, 1990), the resultant solvi are most accurate in this 

range and suffer from extrapolation errors at lower temperatures. However, we argue that 

the temperatures recorded in the plagioclase compositions of type 4 OCs are in fact 

metasomatic temperatures, the temperatures at which the plagioclase was altered. If the 

fluid altering plagioclase had a Na/K ratio similar to that of the bulk OCs (equivalent to 

Or6.5), then the temperature at which albitization occurred will dictate the Or content in 

the plagioclase until it reached a temperature where the plagioclase composition would 

have been in equilibrium with the fluid composition. In this case, equilibrium is at 600 

°C, and represents the highest temperature that can be recorded by plagioclase. The 

metasomatic temperatures we estimate for the types 4-5, 400-550 °C, are significantly 
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lower than the peak metamorphic temperatures, 500-800 °C, which implies plagioclase 

alteration ended before peak metamorphism, possibly due to dehydration. Dehydration 

prior to peak metamorphism is consistent with observations of partial albitization in the 

type 4 (Figs. 3.6b, 3.7d, 3.8b) and 5 (Fig. 3.10b) OCs. 

The metasomatic temperature of 600 °C, as a lower bound for type 6 OCs, is 

consistent with temperature estimates from plagioclase disorder (Nakamura and 

Motomura, 1999). Nakamura and Motomura (1999) used Si-Al disorder in plagioclase to 

measure metamorphic temperatures in type 6 OCs and found a temperature range of 725-

820 °C, based on maximum disorder measured in each sample. This temperature range is 

100-200 °C lower than those reported for pyroxene thermometry (865-945 °C: Slater-

Reynolds and McSween, 2005). Slater-Reynolds and McSween (2005) argue that the 

difference in plagioclase and two-pyroxene thermometry is because plagioclase was fully 

crystallized prior to peak metamorphism.  

The sequence of increasing metasomatic temperatures inferred for the type 4 OCs 

is also consistent with their range of alteration features. For example, Saratov plagioclase 

contains alteration lamellae (Fig. 3.7b) which are absent in Santa Barbara (Fig. 3.8) and 

Avanhandava (Fig. 3.9). This progression in metasomatic temperatures (i.e., Or 

component in albite) could potentially be used to create a metasomatic petrologic scale to 

subdivide type 4 OCs. In this scale, Kramer Creek and Saratov would be a “low” type 4s 

(<450 °C), Bjurböle would be a “medium” type 4 (450-500 °C), and Santa Barbara and 

Avanhandava would be “high” type 4s (500-550 °C). Although more work would need to 

be done to confirm and calibrate these subdivisions, there may be utility in such a scale. 
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For example, “low” type 4s may retain isotopic and mineralogical heterogeneities that are 

lost in the “high” type 4s. 

Similarly, the metasomatic temperatures also appear to provide a division 

between type 4 (<600 °C) and type 5 (~600 °C). Unlike the types 3-4 division which is 

marked by the compositional equilibration of olivine, the current division between the 

type 4 and 5 OCs is hazy. Huss et al. (2001) summarizes the 4-5 division as having the 

loss of recognizable matrix and matrix CL, minor to moderate chondrule textural 

equilibration, and increased grain sizes of secondary feldspar (2 μm to 2-10 μm) and Ca-

rich pyroxene (<1 μm to 2-5 μm). While more analyses are needed to confirm the type 4-

5 division we observe in plagioclase Or content, having a quantitative measure of 

equilibration, like that for olivine, would be useful for the classification of equilibrated 

OCs. 

4.4. Three-stage model of metasomatism during metamorphism in ordinary 

chondrites 

 Thermal metamorphism on chondrite parent bodies is generally accepted to have 

been the result of heating from the decay of short-lived radioisotopes, largely 26Al, during 

the first few million years after solar system formation (McSween et al., 2002). However, 

heating may have also been the result of impacts (Rubin, 2004), or a combination of the 

two sources. As we have shown above, feldspar undergoes a variety of chemical and 

textural changes during thermal metamorphism that are attributable to the presence of 

fluids. Fluid activity is also shown to be important for the formation and composition of 

apatite (Jones et al., 2014, 2016; Lewis and Jones, 2016). In order to account for the 

alteration and equilibration of feldspar, and the development and composition of apatite, 
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we have developed an overall model of chemical alteration, i.e., metasomatism, during 

thermal metamorphism in OCs. 

This model consists of three general stages: hydrous alteration during prograde 

metamorphism, dehydration close to peak metamorphic temperatures, and infiltration of 

anhydrous fluids during retrograde metamorphism. The three stages are indicated 

schematically in Fig. 3.16a on the time-temperature plot describing onion-shell thermal 

metamorphism of an H-chondrite-like asteroid from Harrison and Grimm (2010). 

Harrison and Grimm (2010) used peak metamorphic temperatures for petrologic types 3, 

4-5, and 6 of 675 °C, 865 °C, and 1000 °C, respectively, from studies that used two-

pyroxene and olivine-spinel thermometry (Slater-Reynolds and McSween, 2005; 

Wlotzka, 2005; Kessel et al., 2007). Thermal modeling predicts that accretion of the H 

chondrite parent body occurs ~2 Myr after CAI formation (McSween et al., 2002) and 

Harrison and Grimm (2010) use an accretion age of 2.2 Myr after CAIs (blue band in Fig. 

3.16a). While the onion-shell model is not a required basis for our chemical alteration 

model, and the onion-shell model is probably an over-simplification (Scott et al., 2014), 

its simplicity is useful for the discussion that follows. 

4.4.1. Stage 1: Aqueous alteration during prograde thermal metamorphism 

During prograde metamorphism, heating occurs relatively rapidly. In Fig. 3.16a, 

time on the x-axis is presented as a log scale illustrating that heating to peak temperatures 

only takes a few Myr, whereas cooling takes tens of Myr. We contend that most of the 

observed plagioclase alteration features occurred during this initial heating interval. Ices 

that accrete along with the matrix, metals, sulfides, and chondrules, melt and allow for 

short-range (cm-scale) transport of soluble cations and anions between chondrite 
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Figure 3.16. Diagrams illustrating thermal metamorphism and measured chondrule ages during 

first 100 Myr after CAI formation. (a) Three stages of metasomatism indicated on a time-

temperature diagram for OC thermal metamorphism model from Harrison and Grimm (2010). 

Petrologic type ranges are indicated in each color, peak metamorphic temperatures for petrologic 

types 3, 4-5, and 6 of 675, 865, and 1000 °C, respectively. Blue band illustrates estimated 

accretion time at ~2 Myr after CAIs (McSween et al., 2002). The thermal model of Harrison and 

Grimm (2010) is optimized to accretion at 2.2 Myr after CAIs. (b) Probability density plots for 

measured Al-Mg ages of chondrules in Semarkona, Bishunpur, type 3.0-3.4 OCs (including 

Semarkona and Bishunpur), CO chondrites, and CV chondrites. Blue band marks expected 

accretion time and gray band is our estimated timescale for stage 1 metasomatism. Plot data and 

corresponding references are in Appendix 3.  
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components. This initially resulted in the dissolution of chondrule mesostasis glass, 

which increases chondrule porosity allowing for further fluid infiltration and alteration of 

chondrule mineralogy (Lewis et al., in review). Because of the low matrix abundance in 

OCs (Scott and Krot, 2014), and the inner solar system origin of OC material, the amount 

of water derived from accreted ices is presumably significantly lower than for 

carbonaceous chondrites. This is consistent with the lower overall aqueous alteration of 

petrologic type 3 OCs compared with their carbonaceous counterparts (Brearley, 2006). 

The composition of the accreted ices could be water ice (H2O) or HCl clathrates 

(HCl•3H2O) or a mixture of the two. Zolotov and Mironenko (2007) suggested that the 

incorporation of clathrates could be a viable mechanism for Cl incorporation into 

chondrites. Williams et al. (2015) suggest that variability in Cl-isotope compositions 

among OCs could be due to variable degrees of incorporation of HCl clathrates during 

accretion. Melting of the clathrates would initially produce a low-pH fluid that could 

dissolve, in part, chondrule mesostasis glass and plagioclase. The pH of the fluid is 

expected to rise rapidly at low water to rock ratios due to the dissolution of plagioclase 

and feldspathic mesostasis glass (Blum and Stillings, 1995). Similarly, thermodynamic 

calculations for CI chondrites indicate that a high Na+ content in aqueous fluids 

corresponds to high pH at low water to rock ratios (Zolotov, 2012). 

The high pH fluid leads to the formation of phyllosilicates in subtypes 3.0-3.2 

(Alexander et al., 1989). At higher temperatures, calcic plagioclase and mesostasis glass 

are replaced by feldspathoids (subtypes 3.1-3.9). The type of feldspathoid is dictated by 

the Na/Cl ratio of the fluid which in turn is dictated by the development of phosphates 

(Alexander et al., 1987). Phosphorous from Fe,Ni metal starts oxidizing at low degrees of 
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thermal metamorphism to form merrillite. Apatite then forms in a reaction between 

merrillite and halogen-bearing fluids or by direct precipitation from the fluid (Jones et al., 

2014). Chlorapatite rims around metal grains are reported as early as type 3.2 (Rubin and 

Grossman, 1985). We suggest that the availability of merrillite to react with a Cl-fluid 

increases between types 3.2 and 3.6, causing the Na/Cl ratio to increase, and ultimately 

resulting in the observed shift in sodalite/scapolite alteration (types 3.1-3.6) to nepheline 

(types 3.4-3.9). Whether the alteration of plagioclase to nepheline occurs via alteration to 

zeolites (Ichimura et al., 2017), via hydrated nepheline (Tomeoka and Itoh, 2004), or 

some other process is still unknown. However, if either of the first two options are 

correct, the pre-nepheline phase requires later dehydration (Stage 2). 

Starting at about petrologic type 3.6, replacement of calcic plagioclase by albite 

becomes the major mode of replacement alteration. Albitization, an interface-coupled 

dissolution-reprecipitation reaction (Putnis, 2009) that also occurs in a basic (pH ~ 12), 

hydrous environment at temperatures higher than were inferred from the production of 

feldspathoids (Hövelmann et al., 2010; Ichimura et al., 2017). Fluids facilitate the 

introduction of Na and Si and removal of Ca and Al. During this process, Fe, Mg, Cr, and 

Ti that are present in trace amounts in the Ca-plagioclase structure, are removed and form 

oxides nearby, typically Cr-spinel, chromite, and armalcolite (Engvik et al., 2008). In 

lower petrologic types, albitization is limited to μm-size rims near grain boundaries and 

in regions of high porosity, but the degree of albitization increases with petrologic type, 

and it has gone to completion by type 6 (Kovach and Jones, 2010; Lewis and Jones, 

2016). Due to the low water-rock ratio expected for these reactions in OC material, 
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discussed above, we suggest that the degree of completion of the reaction is strongly 

correlated with the temperature and not an increase in water-rock ratio. 

4.4.2. Stage 2: Dehydration through peak metamorphism 

We suggest that due to limited fluid availability and increasing metamorphic 

temperatures, OC material undergoes dehydration through and after peak metamorphism. 

Only in the lowest petrologic types, 3.0-3.2, do hydrated minerals (phyllosilicates) 

survive peak metamorphism (Alexander et al., 1989). Any zeolite minerals or hydrated 

nepheline formed by alteration of calcic plagioclase would undergo dehydration to 

nepheline as temperatures increase. This process likely occurs at moderate temperatures 

(400-600 ºC) over the million-year time scale expected for this stage (Ichimura et al., 

2017). Textural equilibration of secondary albitic plagioclase, formed by albitization of 

plagioclase, or by crystallization of chondrule mesostasis glass, also occurs through peak 

metamorphism, especially in higher petrologic types where temperatures >800 ºC persist 

for several million years (Fig. 3.16a). 

4.4.3. Stage 3: Infiltration of anhydrous fluids during retrograde metamorphism 

The existence of late-stage fluids has been inferred from observations in feldspar 

and phosphates. Fine-scale, K-feldspar exsolution in albite is found preferentially 

adjacent to pores suggesting incorporation of K into albite via fluid flow through the pore 

network. If K was incorporated during the initial albitization reaction, then we would 

expect the K to homogenize due to the rapid nature of Na-K interdiffusion in alkali 

feldspars at metamorphic temperatures and timescales (Cherniak, 2010). The diffusion 

length over 1 Myr at 600 ºC is ~250 μm (Brady and Yund, 1983), longer than most 

feldspar patches in type 6 OCs (Kovach and Jones, 2010; Lewis and Jones, 2016). In 
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addition, the fine-scale nature of much of the exsolution textures implies cooling rates 

that are orders of magnitude faster than metallographic cooling rates (Lewis et al., In 

preparation; Jones and Brearley, 2011). If K was incorporated into plagioclase during 

initial crystallization, or alteration, the exsolution lamellae should develop over millions 

of years and be much coarser (Jones and Brearley, 2011).  

As discussed above, the phosphates apatite and merrillite also form during stage 1 

through interactions with a fluid. However, apatite compositions in OCs are anhydrous 

(<100 ppm H2O: Jones et al., 2014) with no trend of increasing homogeneity with 

increasing petrologic type, as would be expected if apatite compositions were set prior to 

peak metamorphism (Lewis and Jones, 2016). Furthermore, like K-feldspar, apatite is 

frequently observed adjacent to pores implying a relationship between apatite formation 

and fluid flow through the pore network (Lewis and Jones, 2016). 

To explain these observations, we suggest that OCs experienced high-

temperature, short duration bursts of fluid activity. A possible source for such fluids is 

degassing of partial melts in the asteroid core (Jones et al., 2014), in which case a burst 

might be possible if there was a buildup of overpressure that was released periodically. 

An alternative is that fluids were released following impacts. We suggest that either of 

these scenarios could have resulted in infiltration of an anhydrous, halogen- and alkali-

bearing fluid through the OC parent body, utilizing the pore networks developed in Stage 

1. During infiltration, K was incorporated into albite adjacent to the pores through which 

the fluid moved. The prevalence of K-feldspar exsolution near pores can be attributed to 

limited K diffusion into albite due to short burst durations. If the temperatures achieved 

are higher than the ambient temperature of the surrounding material, cooling would occur 



 

176 

 

relatively quickly, perhaps on timescales of days to years that are likely necessary to 

produce the fine-scale K-feldspar exsolution textures (Jones and Brearley, 2011). 

Similarly, Cl, and F, were incorporated into apatite during these high energy events.  

4.5. Implications for short-lived radioisotope chronometers 

Primary plagioclase, and chondrule mesostasis glass from which secondary 

plagioclase crystallizes, are important carrier phases for short-lived radioisotope systems 

that are used for producing a chronology of the early solar system. Aluminum, key to Al-

Mg chronology, is hosted primarily in plagioclase and mesostasis glass. Alteration of 

these phases can result in Mg loss and disturbance of the Al-Mg system. Kita et al. (2000) 

argued that chondrules in OCs greater than petrologic subtype 3.3 suffered from parent 

body processing because they had younger Al-Mg ages than less thermally-

metamorphosed OCs. Based on our observations, we concur strongly with that 

assessment, and further argue that ages obtained from OCs of subtypes <3.3 might also 

be compromised by alteration. 

This point is illustrated in Fig. 3.16b through a set of probability density plots 

generated from Al-Mg ages of chondrules from low petrologic type OCs as well as CO 

and CV chondrites, for comparison. The data from which these plots were generated, and 

their corresponding references, are in in appendix 3. The top two plots show the 

probability distribution for chondrule ages in Semarkona (LL3.00) and Bishunpur 

(LL3.15). These plots are aligned with the 2-2.2 Myr accretion blue band from Fig. 3.16a, 

and show that accretion is estimated to occur near the midpoint of the chondrule age 

distributions. The gray band represents the period we estimated for Stage 1 

metasomatism, during which most of the plagioclase alteration occurs. A significant 
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portion of the probability density occurs between 2 and 4 Myr after CAIs and may be due 

to resetting during parent body alteration. 

The middle plot in Fig. 3.16b is generated from 71 Al-Mg ages from 12 different 

OCs, including Semarkona and Bishunpur. The probability distribution is like Semarkona 

and Bishunpur with a peak at 2.1 Myr after CAIs and a significant distribution between 2 

and 4 Myr during expected Stage 1 metasomatism. The distribution of Al-Mg ages for 

CO chondrules is close to the distribution seen in OCs. However, the CO distribution is 

made entirely with data from chondrules in the CO3.05 Y-81020, so may not be 

representative of the whole CO group. The CV chondrite distribution is composed of 

Allende (CV3oxA) and Efremovka (CVred) chondrules and has a much broader range of 

Al-Mg ages. The oldest ages cluster around CAI formation (0 Myr) but there is 

significant distribution though 4 Myr after CAIs. As we discussed above, CO and CV 

chondrites have many of the same alteration feature as OCs in the Al-rich phases 

important for Al-Mg chronology.  

Another consideration for the quality of Al-Mg ages is that diffusion of Mg has 

been shown to be significantly faster in albite than anorthite (Van Orman et al., 2014). 

For example, a 20 μm diameter albite sphere at 600ºC will experience diffusive loss of 

50% of its 26Mg, representing one half-life, in 6 years. The same loss in an anorthite 

sphere will take 17 kyr. At 500ºC, 50% diffusive loss is 1 kyr and 3 Myr for albite and 

anorthite, respectively. Furthermore, the Al-Mg closure temperature of albite is 100-150 

ºC lower than anorthite (Van Orman et al., 2014). So, in addition to the disturbance 

expected for Al-Mg chondrule formation ages due to secondary alteration, albitized rims, 

or fine-grained albite could suffer significant diffusion of 26Mg out of the mineral 
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structure. Although porous regions are typically avoided during SIMS analysis, the fine-

scale nature of some of these features means that careful assessment of chondrule 

mineralogy and microtextures are vital for a reliable, and interpretable, chronology using 

easily disturbed, short-lived radioisotope systematics.  

Unlike Al, the host phase for I, key to I-Xe chronology, is not fully known. 

However, it is a highly incompatible element and thus is likely to have concentrated in 

the residual chondrule melt. Dissolution of chondrule mesostasis glass is associated with 

the alteration of primary plagioclase (Lewis and Jones, in review) and the formation of 

secondary plagioclase (Lewis et al., in review). Gilmour et al. (2000) used I-Xe 

systematics to date a range of OC chondrules and clasts, including one of the Parnallee 

chondrules from Bridges et al. (1997) and the feldspar-nepheline clast described by 

Bridges et al. (1995) that we referred to above (see Section 4.2.1). They found ages of 

7.50±0.98 Myr and 7.04±0.15 Myr after the Bjurböle standard, respectively. The two 

ages are within error of each other, and several million years younger than the other 

Parnallee clasts and chondrules measured, which were within error of the Bjurböle 

standard. 

While Gilmour et al. (2000) discussed the possibility that the late chondrule age 

could be due to plagioclase alteration, they did not discuss this possibility for the 

feldspar-nepheline clast, despite the similarity of their I-Xe ages, and the similarity in 

their apparent alteration histories. Our observations are entirely consistent with secondary 

nepheline formation, and the young ages measured for the nepheline-bearing chondrule 

and clast may correspond to dehydration of hydrated nepheline during Stage 2 

metasomatism. Swindle et al. (1991) used I-Xe to measure chondrule ages in Chainpur 
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(3.4) and found ages spanning 50 Myr, which corresponds the time period for Stage 3 

metasomatism. While they attributed the range in ages to shock resetting events, the high-

temperature, short-duration bursts resulting from internal degassing may also be a 

possibility. 

5. Summary and conclusions 

We conducted a study of feldspar alteration and equilibration in chondrules 

through the petrologic sequence, to further characterize the chemical and physical 

conditions present during thermal metamorphism in ordinary chondrites. We found that 

primary calcic plagioclase alters to sodalite/scapolite in petrologic types 3.2-3.6, 

nepheline in types 3.4-3.9, and albite in types 3.6-5. Calcic plagioclase also develops 

micropores in types >3.4 and alteration lamellae in types 3.6-5. Plagioclase is zoned in 

some type 3 chondrules and zoning is correlated with dissolution of chondrule mesostasis 

glass through the type 3s. Albitic plagioclase is present in minor amounts as a primary 

phase and forms as a secondary phase by the crystallization of chondrule mesostasis glass 

through the type 3 sequence. Albite also forms through the albitization reaction with 

calcic plagioclase. K-feldspar occurs in albite in types 3.6-6 as fine-scale lamellae and in 

larger patches, and both are often associated with the porosity. Plagioclase in Bishunpur 

(LL3.15) has a maximum An content of An99 and types 3.4-3.9 have maximum An 

contents of An84-87. The type 4 OCs have max An contents of An85 for Bjurböle (L/LL4) 

and Saratov (L4) and An50 for Avanhandava (H4). 

 We argue that alteration and equilibration of plagioclase in OCs is mediated by 

hydrous fluids during the early stages of thermal metamorphism. The mode of alteration 

depends on fluid chemistry, temperature, and pH. The pH of the fluid is initially low, 
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resulting in the dissolution of chondrule mesostasis glass that opens chondrules up to 

further alteration. pH then increases due to interactions with feldspar and plagioclase 

alteration occurs in high pH fluids. At low temperatures, calcic plagioclase alters to 

sodalite/scapolite in fluids with low Na/Cl ratios. Alteration transitions to nepheline as 

apatite forms causing the Na/Cl ratio of the fluid to drop. The increased Si solubility that 

comes with higher temperatures transitions the alteration mode to albite. The degree of 

albitization is correlated with temperature and we suggest that all reactions occur at low 

water/rock ratios. The Or content of the plagioclase also increases with temperature and 

may have potential as a method for determining metamorphic subtypes within petrologic 

type 4 OCs. 

 We combined these observations into an overall model of metasomatism during 

thermal metamorphism in ordinary chondrites. The model consists of three general 

stages. First, hydrous alteration occurs during prograde metamorphism producing a 

majority of the alteration features we observe in plagioclase. Second, dehydration occurs 

close to peak metamorphic temperatures, driving off water, and dehydrating hydrous 

minerals that formed during the first stage. Third, infiltration of anhydrous, alkali- and 

halogen-bearing fluids during retrograde metamorphism occurs in short duration, high 

temperature bursts that incorporate K into albite and reset apatite compositions. These 

three stages of metasomatism have the potential to disturb or reset short-lived 

radioisotope chronometers, such as Al-Mg and I-Xe, that rely on the integrity of sensitive 

phases like plagioclase and feldspathic mesostasis glass. 
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Abstract 

Thermal metamorphism in ordinary chondrites (OCs) is thought to have occurred 

through the radioactive decay of 26Al in an onion-shell-like structure. During retrograde 

metamorphism, the onion-shell model predicts slower cooling rates with increasing 

petrologic type. However, cooling rates determined by pyroxene diffusion and 

metallographic methods are inconsistent with onion-shell-like cooling. These 

inconsistencies have led to a model of asteroid disruption and reaccretion into a rubble 

pile, after peak metamorphism. Potassium-feldspar exsolution in albite, in a perthite 

texture, has been noted in OCs and can be used as another method for determining 

cooling rates. We conducted a survey of K-feldspar occurrences and textures, within 

chondrules, in petrologic type 3.6-6 H, L, and LL OCs. Potassium-feldspar is present as a 

secondary feature, in primary and secondary albite, as fine-scale exsolution lamellae, 0.1-

1.5 μm wide, as well as in larger patches up to 50 μm in size. Exsolution is present in all 

OC groups and is most common in petrologic type 4. 

In the H4 chondrite Avanhandava, we estimated the cooling rate from perthite to 

be 1 °C per 1-4 months over a temperature interval of 670-765 °C. Peristerite is also 

present in Avanhandava for which we estimated a cooling rate of 1 °C in 103-104 years 
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from 570-540 °C. In general, the fast, high temperature cooling rate determined by 

perthite is similar to cooling rates determined by pyroxene diffusion. The peristerite 

cooling rate is closer to the slow, lower temperature metallographic cooling rates. 

Because K-feldspar exsolution is present in similar fine-scale lamellae in all OC groups, 

we suggest that all OC parent bodies experienced the same cooling history at high 

temperatures. These results lead us to question predications of OC asteroid cooling from 

both onion-shell and rubble-pile models. 

1. Introduction 

 Ordinary chondrites (OCs) have undergone varying degrees of thermal 

metamorphism resulting in a myriad of chemical, textural, and mineralogical changes 

(Huss et al., 2006). These changes include compositional and textural equilibration of 

olivine and pyroxene, recrystallization of matrix and chondrule mesostasis, and the 

formation of secondary minerals, including feldspar and phosphates. The petrologic 

classification scheme is used to describe the extent of thermal metamorphism 

experienced by OCs (Van Schmus and Wood, 1967). In this scheme, OCs assigned 

petrologic type 3 have been minimally affected by heating whereas those assigned 

petrologic type 6 are considered fully equilibrated, both compositionally and texturally. 

Two general models are used to describe observations connected to asteroid thermal 

metamorphism: the onion-shell model and the rubble-pile model.  

The onion-shell model, the name first adopted by Pellas and Storzer (1981), 

describes an internally heated asteroid that cools by radiative transfer from the surface 

and by conduction through the asteroid interior. The heating mechanism for asteroids is 

generally accepted to be the radioactive decay of energetic, short-lived radionuclides, 
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largely 26Al (McSween et al., 2002; Huss et al., 2006). Heating from impact events may 

have also been a contributing factor (Rubin, 2004). In the onion-shell scenario, heating is 

rapid and results in extensive thermal metamorphism in the interior of the asteroid, 

corresponding to petrologic type 6. Partial melting at the core may also occur (e.g., 

Elkins-Tanton et al., 2011). Out from the highly metamorphosed central region, onion-

like shells of material experience less heating progressively closer to the cold, radiative 

surface. This results in petrologic types 5, 4, and 3 with type 3 being the least 

metamorphosed closest to the asteroid surface. 

While the onion-shell model works well in describing the observed petrographic 

indicators of thermal metamorphism, the detailed model predictions do not completely 

match the meteorite record. For example, the models have not been able to match the 

relative abundances of the different petrologic types contained in the meteorite record 

(McSween et al., 2002). This discrepancy has been ascribed to a bias in sample delivery 

to the Earth’s surface (e.g., Akridge et al., 1998).  

The biggest challenge to the onion-shell model has come from measurements of 

cooling rates. Onion-shell-like cooling predicts decreasing cooling rates with increasing 

petrologic type (Pellas and Storzer, 1981). However, Scott et al. (2014) show that in H 

chondrites, there is a range of metallographic cooling rates (~1 °C per 105-106 years) for 

most samples of all petrologic types and that these cooling rates are not correlated with 

petrologic type. Further, Ganguly et al. (2013, 2016) show that cooling rates determined 

through considerations of diffusion in pyroxene, between 750-875 °C, are significantly 

faster (~1 °C per 100.5-102 years) than those obtained by metallographic methods at lower 

temperature (500 °C).  
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To account for a lack of correlation between metallographic cooling rate and 

petrologic type, Scott and Rajan (1981) proposed a rubble-pile model in which OC 

asteroids may have initially evolved in an onion-shell-like manner but were ultimately 

disrupted by collisions, randomly reassembled, and then cooled in a way that did not 

correspond with their petrologic type. A rubble-pile model is also favored by Scott et al. 

(2014) and Ganguly et al. (2013, 2016). To explain the 3-4 orders-of-magnitude 

difference in cooling rates between the metallographic and pyroxene-based 

measurements, Ganguly et al. (2013, 2016) suggest that the rapid cooling rates 

determined by pyroxene diffusion reflect cooling from high temperatures, soon after 

excavation of material by an impactor, near peak metamorphism. Slower metallographic 

cooling rates then record cooling through lower temperatures long after the asteroid 

reassembled. 

 Alkali feldspar exsolution textures can also be used to measure cooling rates to 

further elucidate models of asteroid evolution. Potassium-feldspar has been noted 

previously in OCs (Lewis et al., in preparation; Lewis et al., in review; Kovach and 

Jones, 2010; Jones and Brearley, 2011; Taylor et al., 2014; Lewis and Jones, 2016) and 

by Nakamura et al. (2011) in a plagioclase-bearing particle returned from the asteroid 

Itokawa by the Hayabusa mission. Jones and Brearley (2011) argued that the fine-scale 

nature of exsolution lamellae in the LL5 chondrite Tuxtuac suggested rapid cooling rates. 

They estimated cooling rates from feldspar exsolution to be orders of magnitude faster 

(~1 °C per 100 years) than metallographic cooling rates, even though the two systems 

record cooling through a similar temperature range, 500-600 °C. While the cooling rate 

determined for K-feldspar exsolution in Tuxtuac is generally in line with cooling rates 
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determined through pyroxene diffusion, the estimated exsolution interval is considerably 

lower in temperature than the modelled pyroxene diffusion temperatures. 

 In our study of OC plagioclase alteration and evolution (Lewis et al., in 

preparation), we showed that K-feldspar in chondrule albite occurs in nearly all OC 

samples in petrologic types ≥3.6, with the greatest abundance in petrologic type 4. 

Potassium-feldspar is present in two forms: fine-scale exsolution lamellae and larger K-

feldspar patches. We argued that incorporation of K into albite occurred after peak 

metamorphism by mobilization of anhydrous fluids in short-duration, high-temperature 

events. This model was inferred from both the presence of fine-scale exsolution lamellae 

indicating rapid cooling, and the presence of K-feldspar preferentially near porous 

regions (Lewis et al., in review), suggesting the movement of K through the pore 

network.  

In this study, we conduct a more thorough examination of K-feldspar in 

chondrules from H, L, and LL chondrites in petrologic types 3.6-6, and quantify the 

cooling rate inferred from the fine-scale exsolution lamellae in the H4 chondrite 

Avanhandava. We compare that cooling rate to the cooling rates measured using other 

methods and discuss the connection between the thermochemical observations of OC 

parent body evolution and the onion-shell and rubble-pile models. 

2. Methods 

 This study uses the same samples and analytical conditions as described in Lewis 

et al. (in preparation), which will be summarized here. We examined 11 OC thin sections 

from the Institute of Meteoritics Collection at the University of New Mexico (Table 4.1): 

Bishunpur (LL3.15, UNM 1038), Chainpur (LL3.4, UNM 1041), Parnallee (LL3.6, UNM 
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1018), Dhajala (H3.8, UNM 301), Bo Xian (LL3.9, UNM 265), Bjurböle (L/LL4, UNM 

117), Saratov (L4, UNM 1145), Santa Barbara (L4, UNM 120), Avanhandava (H4, UNM 

88), Tuxtuac (LL5, UNM 627), and Sulagiri (LL6, UNM 1160). K-feldspar was 

identified in chondrules using backscattered electron (BSE) imaging and energy-

dispersive spectroscopic (EDS) X-ray analysis on an FEI Quanta 3D Scanning Electron 

Microscope equipped with a Field Emission Gun (FEG-SEM) at the University of New 

Mexico. High-contrast BSE images were captured at 10 kV and 16 nA. Quantitative X-

ray chemical analysis was performed using an Electron Probe Microanalyzer (EPMA) is 

reported in Lewis et al. (in preparation). 

Transmission electron microscope (TEM) sections from Avanhandava chondrule 

6 and Bjurböle chondrule 8 were prepared using the focused ion beam (FIB) on the FEI 

Quanta 3D Dual-beam FEG-SEM/FIB, with a final polish conducted at 5 kV to reduce 

surface amorphization. The sections were imaged at the University of New Mexico using 

a JOEL 2010 TEM for bright field (BF) images and a JEOL 2010F Scanning TEM 

(STEM) operated at 200 kV in scanning mode using a high-angle annular dark-field 

(HAADF) detector for dark field (DF) images. 

 
Table 4.1. Samples studied.  

 thin section petrologic type shock stage K-feldspar exsolution 

Bishunpur UNM 1038 LL3.15 S2R99,G05 not observed 

Chainpur UNM 1041 LL3.4 S1S91,R99,G05 not observed 

Parnallee UNM 1018 LL3.6 S3G05 rare 

Dhajala UNM 301 H3.8 S1S91,S14 rare 

Bo Xian UNM 265 LL3.9 S2L00, S3R94 not observed 

Bjurböle UNM 117 L/LL4 S1S91,R94,R04,G05 common 

Saratov UNM 1145 L4 S2R94,R04,G05, S3F04 common 

Santa Barbara UNM 120 L4 S2LJ16 common 

Avanhandava UNM 88 H4 S1S14, S2S91,R94,R04 common 

Tuxtuac UNM 627 LL5 S2R94,R04,G05 uncommon 

Sulagiri UNM 1160 LL6 S2W09 uncommon 
S91 Stöffler et al. (1991), R94 Rubin (1994), R99 Rubin (1999), L00 Li et al. (2000), R04 Rubin (2004),  
F04 Friedrich et al. (2004), G05 Gattacceca et al. (2005), W09 Weisberg et al. (2009), 
S14 Scott et al. (2014), LJ16 Lewis and Jones (2016) 
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3. Results 

 We searched for K-feldspar within chondrules in keeping with previous studies of 

OC feldspar (Lewis et al., in preparation; Lewis and Jones, in review; Kovach and Jones, 

2010; Lewis and Jones, 2016). As we described in Lewis et al. (in preparation), K-

feldspar in chondrules occurs as fine-scale exsolution lamellae in albite, or as larger 

patches in albite. Both forms commonly occur in association with pores. While we 

describe both forms here, we will focus on the fine-scale exsolution lamellae in our 

discussion on cooling rates. 

3.1. Petrologic type 3 

 In the petrologic type 3 OCs we studied (Table 4.1), we observed rare, fine-scale 

K-feldspar exsolution textures in chondrules in Parnallee (LL3.6) and Dhajala (H3.8). We 

did not observe K-feldspar in chondrules in Bishunpur (LL3.15), Chainpur (LL3.4), or 

Bo Xian (LL3.9). Although we did not observe K-feldspar in Bo Xian, its scarcity in 

Parnallee and Dhajala could make it difficult to locate in type 3 OCs in general, despite 

the fact that albite is common (Lewis et al., in preparation). We also did not observe K-

feldspar in primary-albite-bearing chondrules in the LL3.00 chondrite Semarkona (Lewis 

and Jones, in review).  

In Parnallee, K-feldspar exsolution was not observed in many chondrules and was 

only found in a few regions near chondrule edges. Figure 4.1a-c shows two occurrences 

in adjacent chondrules. In chondrule 10 (Fig. 4.1a), K-feldspar is present as 0.2-0.7 μm 

wide, irregular filaments (Fig. 4.1b) in an albite host, close to the edge of the chondrule. 

It is also present at the interface with an adjacent chondrule as 1-3 μm wide patches in 

albite (Fig. 4.1c). An example of isolated K-feldspar lamellae in another Parnallee  
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Figure 4.1. BSE images of K-feldspar in Parnallee (LL3.6) and Dhajala (H3.8) chondrules. 

Parnallee chondrule 10 (a) is an elongated porphyritic olivine (ol) and pyroxene (px) (POP) 

chondrule. K-feldspar (K-fsp) is present within the chondrule (b) and at the border with the 

adjacent chondrule (c). Within the chondrule (b), K-feldspar is present as filaments, 0.2-0.7 μm 

wide, within an albite (ab) host. (Caption continues on the following page).  
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Figure 4.1. (Caption continued from the previous page). Along the chondrule border (c), K-

feldspar is present as 1-3 μm wide patches within albite. Dhajala chondrule 6 (d) is a POP 

chondrule with a patch of primary albite (e) along the chondrule edge. In one albite lath (f), very 

fine scale, 0.1-0.3 μm wide, K-feldspar exsolution lamellae are present near μm-scale pores. The 

albite laths exist with grains of pyroxene and Fe-Ni metal in fine-grained, crystallized mesostasis 

glass (mes). 
 

 

chondrule is shown in Fig. 3.3f of Lewis et al. (in preparation). K-feldspar exsolution is 

also rare in Dhajala (Fig. 4.1d-f), mainly occurring as fine-scale lamellae in primary 

albite laths adjacent to pores. This lath morphology is exemplified in chondrule 6 (Fig. 

4.1d), that has a patch of primary albite near the chondrule edge (Fig. 4.1e). Within one 

of the albite laths (Fig. 4.1f), fine-scale, 0.1-0.3 μm wide K-feldspar exsolution lamellae 

are present adjacent to pores and the porous, fine-grained crystallized mesostasis glass. 

3.2. Petrologic type 4  

 K-feldspar exsolution is abundant in petrologic type 4 OC chondrules (Figs. 4.2-

4.5). In the L4 chondrites Santa Barbara and Saratov, K-feldspar is commonly observed 

within both primary and secondary albite throughout many chondrules, as exemplified by 

the two porphyritic olivine and pyroxene (POP) chondrules shown in Fig. 4.2. K-feldspar 

is present in Santa Barbara chondrule 1 (Fig. 4.2a) as 0.2-0.7 μm wide exsolution 

lamellae in large regions of smooth albite (Fig. 4.2b,c). Unlike the type 3 chondrites (Fig. 

4.1), exsolution lamellae are not observed preferentially adjacent to pores or near the 

chondrule edge (Fig. 4.2b,c). In Saratov chondrule 4 (Fig. 4.2d), K-feldspar exsolution is 

clearly visible in patches of primary albite close to the chondrule edge (Figs. 4.2e,f). In 

parts of Fig. 4.2e, K-feldspar exsolution lamellae lie at a low angle to the polished thin 

section surface, resulting in diffuse lamellae boundaries and making it difficult to 

measure lamellae widths. This is not the case in Fig. 4.2f where lamellae are generally 

0.1-0.4 μm wide. There is also one 7 μm wide region of K-feldspar adjacent to an 
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Figure 4.2. BSE images of K-feldspar in the L4 chondrites Santa Barbara and Saratov. Santa 

Barbara chondrule 1 (a) is a porphyritic olivine (ol) and pyroxene (px) (POP) chondrule. K-

feldspar (K-fsp) is present throughout the chondrule as 0.2-0.7 μm wide exsolution lamellae in 

albite (b). In this chondrule, exsolution lamellae are not found preferentially adjacent to pores (c). 

(Caption continues on the following page).  
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Figure 4.2. (Caption continued from the previous page). Saratov chondrule 4 (d) is a POP 

chondrule with several patches of primary albite close to the chondrule edge (e,f). K-feldspar 

exsolution from the primary albite in (e) is at a low angle to the polished thin section surface, 

resulting in diffuse lamellae boundaries. Exsolution in (f) is mostly in 0.1-0.4 μm wide lamellae, 

but there is one 7 μm wide region of K-feldspar adjacent to an elongated pore. Exsolution is also 

present in the fine-grained, crystallized mesostasis glass (mes). Elongated Ca-rich pyroxene (cpx) 

crystallites are also present in the primary albite laths. 

 

 

elongated pore. In addition to exsolution in primary albite laths of chondrule 4, lamellae 

are also present in the fine-grained, crystallized mesostasis glass. Acicular Ca-rich 

pyroxene crystallites are also present in the albite laths and are not to be confused with 

the exsolution lamellae. 

 In Bjurböle (L/LL4), exsolution is common. Figure 4.3 shows an example of a 

typical chondrule in which K-feldspar exsolution is present throughout. Chondrule 8 is a 

POP chondrule (Fig. 4.3a) with K-feldspar exsolution from both smooth primary albite 

and secondary, fine-grained albite throughout (Figs. 3b,c). Figure 4.3b shows a 70 μm 

long lath of primary albite surrounded by fine-grained crystallized mesostasis glass. The 

lath has 0.2-0.4 μm wide exsolution lamellae, regularly spaced, normal to the long axis of 

the grain. Exsolution lamellae of similar widths are also present in the albite component 

of the crystallized mesostasis glass (Fig. 4.3b). In another region of chondrule 8 (Fig. 

4.3c), K-feldspar exsolution lamellae vary in width from 0.2-1.6 μm. The widest patches 

of K-feldspar are adjacent to grain boundaries and Fe-Ni metal and may be composed of 

multiple lamellae. A FIB section extracted from the primary feldspar lath in Fig. 4.3b 

(black line) is examined in a HAADF TEM image in Fig. 4.3d. The HAADF image 

shows sub-μm K-feldspar lamellae perpendicular to the long axis of the host albite grain, 

sub-μm inclusions of Ca-rich pyroxene, and pores up to 1 μm in size. The crystallized 
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Figure 4.3. BSE SEM images (a-c) and a HAADF TEM image (d) showing albite with K-feldspar 

exsolution in Bjurböle (L/LL4) POP chondrule 8. K-feldspar (K-fsp) exsolution from primary and 

secondary albite (ab) occurs throughout the chondrule. The 70 μm long lath of primary albite in 

the center of (b) has 0.2-0.4 μm wide exsolution lamellae, regularly spaced, normal to the long 

axis of the grain. Exsolution lamellae of a similar size range are also present in the albite 

component of the crystallized mesostasis glass (mes, Fig. 4.3b). (Caption continues on the 

following page).  
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Figure 4.3. (Caption continued from the previous page). K-feldspar lamellae in (c) vary in width 

from 0.2-1.6 μm with the widest lamellae observed adjacent to grain boundaries and Fe-Ni metal. 

The black line in (b) indicates the location of a FIB section extracted for TEM imaging, shown in 

(d). The HAADF image (d) illustrates the relationship between the sub-μm K-feldspar lamellae, 

Ca-rich pyroxene (cpx) inclusions, pores, and the host albite lath. Porous crystallized mesostasis 

glass is present under the albite lath. 
 

 

mesostasis glass observed in the FIB section occurred beneath the albite lath in the SEM 

image of Fig. 4.1b. It contains abundant, fine-scale (<0.1 μm) pores. 

In Avanhandava (H4) exsolution is very common and Fig. 4.4 illustrates a 

particularly dramatic example. Chondrule 6, a porphyritic pyroxene (PP) chondrule (Fig. 

4a), has K-feldspar exsolution within large, smooth regions of albite throughout the 

chondrule. In a region near the chondrule center (Fig. 4.4b), exsolution lamellae are 

extremely abundant and are evenly distributed through many, randomly oriented -

subdomains (Fig. 4.4c-e). K-feldspar lamellae within this region vary from 0.2-1.5 μm in 

width. Some wider lamellae have linear fractures through the lamella center and fractures 

are present in albite, between lamellae, inclined 72-75° to the length of the K-feldspar 

lamellae (Fig. 4.4c). Both sets of fractures may be the result of coherency strain between 

the lamellae and the albite host. The bulk composition of a region in Fig. 4.5d, measured 

using EPMA with a 5 μm diameter, defocused beam (dashed circle), is An2.5Ab64.8Or32.7 

(Lewis et al. [in preparation], Appendix 1: Table A1.26, analysis #72).  

A FIB section was extracted from the region illustrated in Fig. 4.4e (black line) 

for further analysis by TEM (Fig. 4.5). A HAADF STEM image shows the K-feldspar 

exsolution lamellae and albite host (Fig. 4.5a). Exsolution lamellae range in width from 

160-310 nm with an average wavelength of 650 nm. The average wavelength was 

determined by measuring the distance across multiple lamellae, edge to edge, 

perpendicular to the lamellae axes, midway up the section, and then dividing by the  
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Figure 4.4. BSE images of albite with K-feldspar exsolution in Avanhandava (H4) PP chondrule 

6. K-feldspar (K-fsp) exsolution from albite (ab) occurs throughout the chondrule. In a region 

near the chondrule center (b), exsolution lamellae are extremely abundant and are evenly 

distributed through many, randomly oriented subdomains (c,d). (Caption continues on the 

following page).  
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Figure 4.4. (Caption continued from the previous page). K-feldspar lamellae in (c) vary in width 

from 0.2-1.5 μm. Some wider lamellae have linear fractures through the lamellae center and 

fractures are present in albite, between lamellae, inclined 72-75°. (d) A region near (c) with 

regular lamellae in which a 5 μm diameter EPMA analysis (dashed circle) was performed to 

estimate the bulk feldspar composition. (e) A region near (c) from which a FIB section was 

extracted (black line) and imaged using TEM (Fig. 4.5). 

 

 

 

 

 

 

 

 
 

Figure 4.5. TEM images of a FIB section extracted from Avanhandava (H4) chondrule 6 (black 

line in Fig. 4.4e). (a) HAADF TEM image showing K-feldspar exsolution lamellae (K-fsp) and 

albite (ab) host. Exsolution lamellae range in width from 160-310 nm with an average wavelength 

of 650 nm. A peristerite intergrowth is visible in the albite region with wavelengths from 90-160 

nm. Light spots are Cu surface contamination. (b) BF TEM image illustrating coherency strain 

between the K-feldspar exsolution lamellae and the albite host. Peristerite intergrowth is also 

visible in this image. 
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number of lamellae. Within the albite host, alternating bands of Ca-rich and Na-rich 

albite are present in what we are describing as peristerite. Peristerite is a subsolidus 

exsolution texture formed through NaSi-CaAl exchange in Na-rich plagioclase. The 

peristerite in Fig. 4.5a has wavelengths from 90-160 nm when measured in the albite 

host. The peristerite intergrowth is also visible in this image ~44° to the K-feldspar 

exsolution lamellae. Light spots on the HAADF image are Cu surface contamination 

from the sputtering process. A BF TEM image (Fig. 4.5b) illustrates coherency strain 

between the K-feldspar exsolution lamellae and the albite host.  

3.3. Petrologic types 5 and 6 

 K-feldspar is also present in relict chondrules in the petrologic types 5 and 6 

chondrites Tuxtuac (LL5) and Sulagiri (LL6), but in lower abundance than we observed 

in the type 4 OCs. In Tuxtuac chondrule 3, a relict POP chondrule (Fig. 4.6a), K-feldspar 

is present throughout as discrete lamellae in albite (0.2-0.7 μm wide, Fig. 4.6b) as well as 

in larger patches (20-30 μm in size, Fig. 4.6b,c) adjacent to large pores. Kovach and 

Jones (2010) show a similar texture in a Tuxtuac chondrule (their Fig. 4.7a). Additional 

examples of exsolution in L5 chondrites are shown in Lewis and Jones (2016) (Figs. 

1.7g-j). In Sulagiri chondrule 6, a relict PP chondrule (Fig. 4.6d), K-feldspar is present in 

patches (Fig. 4.6e) and in lamellae 0.1-0.7 μm wide (Fig. 4.6f). Unlike in Tuxtuac, the K-

feldspar patch in Sulagiri is irregular in shape and not specifically adjacent to large pores 

in the plane of the thin section, but it is present within a network of fractures.  
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Figure 4.6. BSE images of K-feldspar in Tuxtuac (LL5) and Sulagiri (LL6) relict chondrules. 

Tuxtuac chondrule 3 is a relict porphyritic olivine (ol) and pyroxene (px) chondrule (a). K-

feldspar (K-fsp) occurs throughout as discrete lamellae (0.2-0.7 μm wide) in an albite (ab) host 

(b) and in larger patches, 10s of μm in size (c). Sulagiri chondrule 6 is a relict porphyritic 

pyroxene chondrule (d) in which K-feldspar is present as irregular patches (e) and in lamellae 0.1-

0.7 μm wide (f). 
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4. Discussion 

The goal of this study is to understand the abundance and textures of K-feldspar 

in all OC petrologic types and groups, and to use the fine-scale exsolution 

microstructures we observe to provide an independent measure of OC cooling rates. We 

observed K-feldspar in most OCs of petrologic types 3.6-6. The occurrence of K-feldspar 

has been described in a few studies previously (Lewis et al., in preparation; Kovach and 

Jones, 2010; Nakamura et al., 2011; Jones and Brearley, 2011; Taylor et al., 2014; Lewis 

and Jones, 2016) but in general it has not been widely reported. Previous studies of OCs 

likely overlooked K-feldspar because of the extremely fine-scale nature of the exsolution 

lamellae and the high contrast needed to image exsolution using BSE imaging.  

K-feldspar is most common in type 4, less common in types 5 and 6, and rare in 

type 3 (Table 4.1). K-feldspar is observed in two general textures: fine-scale lamellae, 

typically 0.1-1.5 μm wide, and larger irregular patches (up to 50 μm: Fig. 3.9f, Lewis et 

al. [in preparation]). Intergrowths of K-feldspar and albite are generally referred to as 

perthite but perthite can also refer to albite exsolution from K-feldspar (Parsons, 2010). 

Exsolution textures involving K-feldspar lamellae in an albite host are referred to as 

antiperthite. Fine-scale exsolution textures that are too small to be visible under an 

optical microscope earn the prefix: crypto. Thus, the fine-scale exsolution texture we 

observe is termed cryptoantiperthite (Parsons, 2010). However, for the sake of brevity, 

we will refer to this texture simply as perthite in the following discussion. While the K-

feldspar patches may have initially formed by the same mechanism of K incorporation as 

the perthite, patches only seem to have been affected by exsolution along some 

boundaries (e.g., Fig. 4.6c). 
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In the discussion that follows, we look at the general implications of K-feldspar 

exsolution in OCs, estimate a cooling rate from a region of perthite in Avanhandava, and 

compare that result to the cooling rates measured using other techniques. We then discuss 

the general implications of K-feldspar exsolution on models of OC asteroid evolution. 

4.1. K-feldspar exsolution in OCs: General implications for metamorphism 

In low petrologic type OCs (petrologic types 3.00-3.15), the full range of 

plagioclase compositions from An2 to An99, with low Or content (<Or3), is present within 

chondrules as primary, igneous feldspar (Lewis et al., in preparation; Lewis and Jones, in 

review). With increasing petrologic type, albitic plagioclase crystallizes from chondrule 

mesostasis glass and anorthitic plagioclase compositions become progressively albitized 

(Lewis et al., in preparation). Hence, albite can be either primary or secondary. K-

feldspar, which is observed in OCs of petrologic types 3.6-6, is present only as a 

secondary phase, in primary and secondary albite, and most commonly as an exsolution 

texture. In general, exsolution textures form when the alkali feldspar falls below the 

solvus temperature for that bulk composition and the feldspar separates into a Na-rich 

component and a K-rich component. The wavelength of the lamellae that form depend on 

the temperature at which unmixing occurs, and the cooling rate. A more detailed 

interpretation of exsolution microstructures and compositions is discussed below (section 

4.2). 

In Lewis et al. (in preparation), we argue that incorporation of K occurred after 

peak metamorphism in high temperature, short duration events, such as internal jetting or 

external impact events. If K was incorporated prior to peak metamorphism, during, for 

example, the albitization reaction that is responsible for equilibration of anorthitic 
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plagioclase to albitic compositions, we would expect a homogeneous distribution of K-

feldspar throughout the chondrules due to the relatively rapid nature of Na-K diffusion at 

metamorphic temperatures. While some chondrules do show a moderately homogenous 

distribution of K-feldspar (e.g., Santa Barbara chondrule 1 and Avanhandava chondrule 

7), most do not. 

Another important observation is the fact that K-feldspar is often observed either 

adjacent to pores or in highly porous regions (e.g., Figs. 4.1f, 4.2f, 4.3b,c). This 

relationship could be coincidental in that the frequent occurrence of K-feldspar adjacent 

to pores in type 4 OCs is related to the fact that type 4 OCs are also the most porous of 

the petrologic types (Macke, 2010). However, the common occurrence of large K-

feldspar patches (e.g., Fig. 4.6c) and wide lamellae (e.g., Figs. 4.1f, 4.2f, 4.3b,c) adjacent 

to pores indicates the relationship between K-feldspar and porosity is process related and 

not coincidental. More importantly, it implies that K is incorporated into albitic 

plagioclase in a process that utilizes the pore network, e.g., fluid migration. Furthermore, 

Lewis et al. (in review) show K-enrichment in two large chondrules in Saratov correlates 

with the large-scale porosity. In one chondrule, K is concentrated in K-feldspar 

exsolution lamellae but in the other chondrule K is present in merrihueite, a silica 

alteration phase. The presence of both K-feldspar and merrihueite argue for general, late-

stage introduction of K into the chondrules. 

In the type 4 OCs we studied, Santa Barbara and Avanhandava have somewhat 

more uniform distributions of K-feldspar exsolution in chondrules (Figs. 4.2c, 4.4c) than 

those observed in Saratov or Bjurböle chondrules (Figs. 4.2f, 4.3b). We also observe a 

variety of differences between the two groups in terms of texture and composition. In 
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Saratov and Bjurböle regions of primary albite occur within fine-grained secondary albite 

from crystallized chondrule mesostasis glass. Texturally, they could be considered “low” 

type 4s, chondrites that experienced lower degrees of thermal metamorphism than “high” 

type 4s. Also, Saratov and Bjurböle have plagioclase Or contents that are in equilibrium 

with plagioclase solvi of 400-500 °C (Lewis et al., in preparation). In contrast, large, 

smooth regions of albite are present in Santa Barbara and Avanhandava that could be 

considered “high” type 4s. Santa Barbara and Avanhandava also have plagioclase 

compositions with Or content in equilibrium with solvi of 500-600 °C (Lewis et al., in 

preparation), higher than Saratov and Bjurböle. 

The general model we have from these observations is that K was mobilized in an 

anhydrous fluid during late stage thermal metamorphism, incorporated into albitic 

plagioclase at high temperature through previously developed porosity, and then K-

feldspar exsolved during cooling (Lewis et al., in preparation). Because we observe 

similar textures in all OC groups, we suggest that this process is common in all OC 

parent bodies. This has implications for models of parent body evolution that will be 

discussed further below (section 4.3). 

4.2. Cooling rates determined from exsolution in alkali feldspar 

 In the OCs we studied, feldspar compositions are typically Na-rich so that during 

unmixing, the Ab-rich component is more abundant than the Or-rich component. This 

results in exsolution of K-feldspar lamellae within an albite host. Alkali feldspar 

exsolution has been studied extensively in terrestrial systems and has been the subject of 

numerous experimental investigations (e.g., Yund, 1974; Sipling and Yund, 1976; Yund 

and Davidson, 1978; Brown and Parsons, 1984; Liu and Yund, 1992; Carpenter, 1994; 
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Nekvasil, 1994; Abart et al., 2009; Parsons and Lee, 2009; Parsons and Fitz Gerald, 

2011). As a result, the characteristics of alkali feldspar exsolution textures can be used to 

understand the environment in which they form. In general, as the system cools the alkali 

feldspar passes below the coherent solvus and unmixes into Ab- and Or-rich components 

(Yund, 1974). The rate of diffusion decreases rapidly with temperature, so that the final 

texture resulting from coherent exsolution is strongly dependent on both the temperature 

at which nucleation begins and the cooling rate (Abart et al., 2009). This relationship is 

useful for determining cooling rates using basic observations of alkali feldspar 

exsolution. 

 However, like any natural system, a few caveats exist that limit the precision of 

the cooling rates we are attempting to calculate. First, alkali feldspar exsolution rates 

were originally calibrated experimentally using Ca-free alkali feldspar and were intended 

to be used in analogous systems (Yund and Davidson, 1978). Second, the cooling rate 

dependence on exsolution texture requires that exsolution maintains coherency because 

post-exsolution coarsening can occur via mechanisms that release strain energy, such as 

in hydrothermal settings (e.g., Parsons and Lee, 2009). Third, the exsolution texture used 

to determine a cooling rate needs to have a reasonably consistent range of wavelengths 

(Parsons and Fitz Gerald, 2011). This means that random, or isolated, exsolution lamellae 

(e.g., Fig. 4.2b) or K-feldspar patches (e.g., Fig. 4.6c) are not useful for determining 

cooling rates. Finally, because of the time constraints of experimental studies, exsolution 

time scales extrapolated to very long durations can only be used as order-of-magnitude 

references. 
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 It is with these caveats in mind that we chose Avanhandava chondrule 6 (Fig. 4.4) 

to further investigate alkali feldspar cooling rates recorded by perthite. Anorthite contents 

of alkali feldspar compositions in this chondrule are generally low, but non-zero (average 

of An3.2: Lewis et al., [in preparation], Appendix 1: Table A1.26). We discuss the 

implications of the non-zero An content below. Exsolution is coherent in this chondrule, 

which is illustrated by the coherency strain between the exsolution lamellae and the host 

in Fig. 4.5b. The exsolution lamellae in this chondrule are remarkably regular in terms of 

lamellae width and exsolution wavelength (the average distance between lamellae). Also, 

Avanhandava is an H4 chondrite and H chondrites have been the subject of previous 

cooling rate studies (e.g., Ganguly et al., 2013; Scott et al., 2014) to which we can 

compare our results. Further, a metallographic cooling rate for Avanhandava was 

determined at 500 °C to be 20 °C/Myr by Scott et al. (2014). 

4.2.1. Exsolution temperature 

We employed two different methods to determine the temperature at which K-

feldspar exsolution began (i.e., the solvus temperature). The first method involved 

normalizing the bulk feldspar composition into alkali feldspar components and finding 

the corresponding temperature for the coherent solvus. The bulk composition we used is 

An2.5Ab64.8Or32.7 (Lewis et al. [in preparation], Appendix 1: Table A1.26, analysis #72), 

which was measured using EPMA with a defocused, 5 μm beam in a region of evenly 

spaced exsolution lamellae (Fig. 4.4d). Normalizing the composition into Ca-free 

components results in a composition of Ab66Or34. Figure 4.7 illustrates the subsolidus 

phase relations along the Or-Ab join for alkali feldspar from Parsons and Lee (2009). 

Parsons and Lee (2009) constructed these solvi using the experimental studies of Brown 
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and Parsons (1984) and Yund (1974), in order to describe layered syenites from the 

Klokken intrusion in South Greenland. Because coherency strain restricts unmixing until 

lower temperatures, the coherent solvus is below the strain-free solvus (Fig. 4.7). Since 

we have shown that the alkali feldspar in question is strain-controlled (Fig. 4.5a), we can 

determine the exsolution temperature using the coherent solvus. For our projected 

composition, Or34, the solvus temperature is 700 °C, near the solvus maximum. 

 

 

 
 

Figure 4.7. Alkali feldspar subsolidus T-composition plot after Parsons and Lee (2009). Coherent 

solvus from Yund (1974) and strain-free solvus from Brown and Parsons (1984). The solvus 

temperature, 700 °C, is shown for the average composition measured for the Avanhandava grain 

shown in Fig. 4.4d (An2.5Ab64.8Or32.7) normalized to a Ca-free, alkali feldspar (Or34).  
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It is important to note that the exsolution lamellae we observe may have formed 

via spinodal decomposition and not via nucleation and growth. However, the coarsening 

kinetics of the two processes are the same because they depend on the Na-K 

interdiffusion rate that is independent of the growth mechanism. In addition, the position 

of the coherent spinodal at the bulk composition of interest is likely within a few degrees 

of the coherent solvus (Sipling and Yund, 1976). Thus, as argued by Yund and Davidson 

(1978), the coarsening timescale will not be significantly influenced by exsolution 

mechanism. 

The second method we used to determine the solvus temperature was by 

employing the SOLVCALC software (Wen and Nekvasil, 1994) with the calibration of 

Elkins and Grove (1990) and a pressure of 1 bar. In Fig. 4.8, we plot all the EPMA 

measurements (gray points) from Avanhandava chondrule 6 from Lewis et al. (in 

preparation) (Appendix 1: Table A1.26) onto a feldspar ternary diagram. The point 

outlined in black is the bulk composition that we are working with, An2.5Ab64.8Or32.7 

measured from the region indicated in Fig. 4.4d. Most of the Or-rich (Or>20) points plot 

between the 700 °C and 800 °C solvi despite their range in compositions. The two points 

to the far left of the solvi are from Ab-rich regions without exsolution. The outlined point 

best matches a solvus temperature of 765 °C. 

As expected, the ternary solvus temperature is 65 °C higher than the Ca-free 

solvus temperature (e.g., Parsons and Lee, 2009). The errors associated with these 

temperatures are likely large but difficult to quantify. The temperature produced by the 

Ca-free alkali feldspar solvus depends on the degree of Si-Al disorder of the alkali 

feldspar at the time of exsolution and can vary up to 150 °C (Sipling and Yund, 1976). 
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We used the solvus of Yund (1974) for ordered feldspar because it has been successful in 

describing the cooling history of samples with similar microstructures (Parsons and Lee, 

2009). The Elkins and Grove (1990) ternary feldspar calibration was produced using 

experiments conducted between 700 °C and 900 °C. So, the modelled solvi are most 

accurate in this range (Nekvasil, 1994) and we can neglect errors due to extrapolation. 

Elkins and Grove (1990) compared their model with experimental data from other 

sources and could reproduce the experimental temperatures with a typical error of ±20 

°C. For the discussion that follows, we will adopt both the solvus temperatures we 

calculated, 765 °C and 700 °C, as upper and lower bounds. 

 
 

Figure 4.8. Feldspar ternary diagram with EPMA analyses (Lewis et al., in preparation) from 

Avanhandava chondrule 6 (Fig. 4.4) plotted on ternary solvi. 600-900 °C ternary solvi are 

generated in SOLVCALC (Wen and Nekvasil, 1994) using the calibration by Elkins and Grove 

(1990) at 1 bar pressure. Most points plot between the 700 and 800 °C solvi. The point outlined in 

black is the 5 μm spot analysis from Fig. 4.4d which closely matches the 765 °C solvus 

temperature.  
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4.2.2. Exsolution timescales and cooling rate 

We used the method described by Parsons and Fitz Gerald (2011) to calculate the 

timescale over which the perthitic texture in Avanhandava chondrule 6 developed. They 

state that the diffusion length of the exsolution lamellae, x, is a function of the rate 

constant, k, and the time, t: 

 𝑥2 = 𝑘𝑡, (4.1) 

where the diffusion length, x, can be taken as half the exsolution wavelength, λ: 

 
𝑥 =

𝜆

2
 , (4.2) 

and is easily measured as an average over multiple lamellae in reasonably homogeneous 

texture like those observed in Avanhandava chondrule 6 (Figs. 4.4 and 4.5). The rate 

constant, k, is then expressed as the Arrhenius relationship: 

 
𝑘 =

𝐴

𝑒𝐸𝑎 𝑅𝑇⁄
 , (4.3) 

where A is the pre-exponential term, Ea is the activation energy, R is the gas constant, and 

T is the exsolution temperature. Substituting Equations 4.2 and 4.3 into Equation 4.1 and 

solving for time, t, as a function of temperature, T results in the final equation: 

 
𝑡 =

𝜆2𝑒𝐸𝑎 𝑅𝑇⁄

4𝐴
 . (4.4) 

Values of A, Ea and R for perthite were calculated by Brady (1987), using the 

experimental results of Yund and Davidson (1978), and are given in Table 4.2. Yund and 

Davidson (1978) used a composition of Or35, very similar to the composition we are 

considering, Or34. Using the parameters in Table 4.2, we can generate a set of time-

temperature curves based on exsolution wavelength. These curves are useful for 
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illustrating how temperature and exsolution wavelength each influence the interpreted 

timescale over which exsolution develops. 

 

 
Table 4.2. Parameters governing the exsolution rate constant. 

 A (m2/s) Ea (J/mol) R (J/K mol) reference 

perthite 2.076×10−14 139825 8.314 Brady (1987), Yund and Davidson (1978) 

peristerite 3×10−8 303000 8.314 Liu and Yund (1992) 

peristerite 9×10−12 220000 8.314 Parsons and Fitz Gerald (2011) 

     

 

 

 In Fig. 4.9, we plot the time-temperature curves for various exsolution 

wavelengths between 100-1000 nm. The measured average wavelength for Avanhandava 

chondrule 6, taken from the TEM image of the FIB section in Fig. 4.5a, is 650 nm. While 

this is not the precise location that the bulk composition was measured, the SEM images 

show reasonable textural similarity and we assume that the bulk composition is similar. 

Measuring wavelength via TEM is more precise than making the same measurement 

using lower resolution SEM images in which the exsolution lamellae are at an unknown 

angle to the surface, and where resolution of individual lamellae may not be possible. 

While there are also regions within chondrule 6 that clearly have varying wavelengths 

(Fig. 4.5c), the range of wavelengths gives cooling time scales that do not change 

significantly and are within a factor of about two. The variable wavelengths within the 

chondrule, and in adjacent grains, may have resulted from heterogeneous distribution of 

alkalis within each grain prior to cooling. 

 The two solvus temperatures we calculated above, 700 °C and 765 °C, for Ca-free 

alkali feldspar and ternary feldspar compositions, respectively, are plotted as dashed lines 

on Fig. 4.9 along with lines 30 °C below the solvus temperatures at 670 °C and 735 °C. 

Parsons and Fitz Gerald (2011) argued that because diffusion slows rapidly with 
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Figure 4.9. Alkali feldspar exsolution coarsening kinetics. Curves based on temperature and 

exsolution coarsening time are generated based on the method described by Parsons and Fitz 

Gerald (2011) using the calibration of Brady (1987) and Yund and Davidson (1978). The curve 

for exsolution wavelength determined from Fig. 4.5a, 650 nm, is highlighted in black. The two 

solvus temperatures determined for the Ca-free alkali solvus and the ternary solvus are denoted at 

700 °C and 765 °C, respectively. Coarsening is expected to be completed within ~30 °C of the 

solvus (Abart et al., 2009), indicated with the 670 °C and 735 °C lines. Coarsening is calculated 

to occur between 1 and 3 years for the ternary solvus temperature and between 5 and 10 years for 

the Ca-free solvus temperature. For comparison, over the equivalent time period, cooling rates in 

H chondrites from pyroxene diffusion are 100 to 1000 years at ~800 °C (Ganguly et al., 2013) 

and metallographic cooling rates are between ~106-107 years at ~500 °C (Scott et al., 2014). 

 

 

temperature, and because the majority of the lamellar coarsening was observed within 30 

°C of the spinodal in a study by Abart et al. (2009), it was reasonable to extend that 

observation to the exsolution kinetics in their study. Following that argument, we use the 

same temperature range here as a first order approximation of the exsolution interval. In 

Fig. 4.9, the two rectangles plotted along the 650 nm wavelength line represent the two 

estimated timescale windows in which we calculate exsolution could have occurred.  
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The exsolution timescale is 5-10 years for the Ca-free alkali feldspar solvus 

temperature and 2-3 years for the ternary solvus temperature. The corresponding cooling 

rates are ~1 °C per 2-4 months from 670-700 °C and ~1 °C per month from 735-765 °C. 

For comparison, the equivalent 30 °C cooling period at the appropriate temperature using 

the metallographic and pyroxene diffusion rates mentioned above are also plotted of Fig. 

4.9.  

4.2.3. Peristerite coarsening timescale and cooling rate 

 Like the coarsening timescales that we determined for the perthite texture above, 

the peristerite intergrowth we illustrate in Fig. 4.5 can also provide a coarsening 

timescale. However, peristerite exsolution begins at a lower temperature than perthite 

(Carpenter, 1994) and there is evidence for a peristerite spinodal below the solvus 

temperature that may further affect the nucleation temperature (Carpenter, 1981). For the 

peristerite bulk composition, we use one of the Na-rich compositions measured in 

Avanhandava chondrule 6, An8.7Ab87.5Or3.8 (Lewis et al. [in preparation], Appendix 1: 

Table A1.26, analysis #69). An8.7 is close to the composition measured by Parsons and 

Fitz Gerald (2011), An8 for the peristerite sample they studied from the Klokken 

intrusion. They determined the peristerite solvus and spinodal temperatures to be 570 °C 

and 450 °C, respectively, from Carpenter (1981, 1994). 

 We can use the same formalism as the perthite coarsening kinetics described 

above (Eq. 4.4) but with a pre-exponential term, A, and an activation energy, Ea, 

calibrated for peristerite. Parsons and Fitz Gerald (2011) used the calibration of Liu and 

Yund (1992) but also calculated a modified calibration for use with the peristerite 

textures observed in their sample from the Klokken pluton. The difference between the 
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Figure 4.10. Peristerite coarsening kinetics. Curves based on temperature and exsolution 

coarsening time are generated based on the method described by Parsons and Fitz Gerald (2011) 

using the calibrations of Liu and Yund (1992), black lines, and Parsons and Fitz Gerald (2011), 

grey lines. Two lines were generated for each model with wavelengths of 90 nm and 160 nm, 

encompassing the range in wavelengths we measured in Fig. 4.5a. The peristerite solvus 

temperature, 570 °C, and spinodal temperature, 450 °C, are from Carpenter (1994) and Carpenter 

(1981), respectively. The timescale for peristerite coarsening via exsolution is 104-106 years and 

via spinodal decomposition is 107-109 years. The perthite timescales from Fig. 4.9 are shown in 

green along the 650 nm wavelength perthite curve (grey dashed line). The pyroxene and 

metallographic cooling timescales are shown in red for comparison. 

 

 

two calibrations, they argue, is due to fluid mediation in the Klokken resulting in more 

rapid coarsening than is expected under dry conditions. Because retrograde 

metamorphism in OCs is dry (Lewis et al., in preparation), we utilize the calibration of 

Liu and Yund (1992). 

 In Fig. 4.10, we plot the peristerite time-temperature curves for 90 nm and 160 

nm wavelengths, the range measured from the FIB section in Fig. 4.5a, using the Liu and 
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Yund (1992) calibration (black lines). The Parsons and Fitz Gerald (2011) calibration is 

also plotted for reference (grey lines). Like the perthite discussion above, we use a 30 °C 

coarsening interval for both the solvus and the spinodal, i.e., 570-540 °C and 450-420 °C, 

respectively. At these temperatures, the coarsening timescales are ~104-105 years for the 

solvus and 107-109 years for the spinodal (Fig. 4.10, blue rectangles). These correspond 

to cooling rates of 1 °C in 103-104 years and 1 °C in 106-107 years for the solvus and 

spinodal, respectively. For comparison, the exsolution timescales we calculated for 

perthite are shown in green with the 650 nm wavelength curve (grey dashed line). 

Pyroxene and metallographic cooling timescales are shown in red.  

4.3. Cooling rate comparison and implications for asteroid evolution models 

 Figure 4.11 illustrates the cooling rates calculated above, as well as the cooling 

rates calculated for H chondrites using pyroxene (Ganguly et al., 2013) and 

metallographic (Scott et al., 2014) methods. Because the peristerite solvus is better 

characterized than the spinodal (Carpenter, 1981, 1994), we will focus on the cooling rate 

measured using the peristerite solvus temperature, in addition to the two perthite solvus 

temperatures. Taken together, the cooling rate data from feldspars, pyroxenes, and metal 

show a general trend of fast cooling at high temperature and slow cooling at low 

temperature. The fastest rates span a temperature range of 670-850 °C and consist of 

cooling rates of 1 °C per 0.1-100 years, determined by perthite (this study) and pyroxene 

diffusion rates (Ganguly et al., 2013). Slower cooling rates span the temperature range of 

about 500-600 °C with cooling rates of 1 °C between 103-105 years, determined by 

peristerite (this study) and metallographic measurements (Scott et al., 2014). Jones and 

Brearley (2011) also estimated an exsolution interval of 500-600 °C for the perthite they  
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Figure 4.11. Comparison of feldspar, pyroxene, and metallographic cooling rates for H 

chondrites. Cooling rates for alkali feldspar solvus combine estimates from both the ternary 

feldspar solvus and the Ca-free solvus. Cooling rates determined from the peristerite spinodal are 

in grey because they are not considered as representative of the compositions and textures we 

observe. Pyroxene (Ganguly et al., 2013) and metallographic (Scott et al., 2014) cooling rates 

consist of all H chondrites, not just H4 chondrites. The black point within the range of 

metallographic cooling rates is the cooling rate measured specifically for Avanhandava (H4). 

 

 

observe in Tuxtuac based on similarity to textures described in the Klokken intrusion 

(Brown and Parsons, 1988).  

Despite the ambiguity in the peristerite measurements, the rough correlation 

between cooling rates determined from feldspar and from other methods is important for 

understanding the long-term evolution of OC-like asteroids. As Ganguly et al. (2013, 

2016) point out, the fast cooling rates are inconsistent with the cooling rates predicted by 

an onion-shell model and suggest disruption after peak metamorphism in the rubble-pile 

scenario of Scott and Rajan (1981). A rubble-pile model is also suggested by Scott et al. 
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(2014) to explain a lack of trend in metallographic cooling rates with the petrologic type. 

We argue in Lewis et al. (in preparation) for high temperature, low duration bursts from 

internal degassing, or from impacts, to explain the heterogeneous incorporation of K and 

the rapid cooling rates inferred from fine-scale K-feldspar exsolution. While internal 

degassing is consistent with slow metallographic cooling rates, it cannot explain the rapid 

cooling rates determined from pyroxene. 

 The relatively consistent range of K-feldspar lamellae widths indicate consistently 

fast cooling rates at high temperatures in different chondrules in the same chondrite, 

among chondrites of different petrologic types, and among the different OC groups. The 

cooling rates determined based on pyroxene diffusion are also consistently fast for H4-6 

chondrites (Ganguly et al., 2013). The metallographic measurements record consistently 

low cooling rates for lower temperatures over a range of petrologic types, but like the 

pyroxene-based cooling, are only measured in H chondrites (Scott et al., 2014). Clearly, 

cooling rates in any system are not correlated with petrologic type in the equilibrated H 

chondrites and the perthite textures may indicate no difference between the OC groups. 

 However, there does not appear to be consistency within a single group and 

petrologic type either. Telus et al. (2014) measured Al-Mg systematics in plagioclase of 

four H4 chondrites and found evidence for live 26Al in three of the chondrites: Ste. 

Marguerite, Forest Vale, and Beaver Creek. They suggest these chondrites cooled rapidly 

below the Al-Mg closure temperature of ~450 °C. These three chondrites also had 

anomalously fast metallographic cooling rates of  >1 °C per 200 years, at 500 °C, 

compared to 1 °C per 104-105 years for most H chondrites (Scott et al., 2014). The fourth 

H4 chondrite, Sena, did not have evidence for live 26Al and had a typical, slow, 
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metallographic cooling rate (Telus et al., 2014; Scott et al., 2014). In Avanhandava, we 

measure a fast cooling rate at high temperature, >1 °C per year and Scott et al. (2014) 

measured a slow metallographic cooling rate at lower temperatures of 1 °C per 104.7 years 

that is roughly consistent with our peristerite measurement of 1 °C in 103-104 years, at 

slightly higher temperatures (Fig. 4.11). 

 Ganguly et al. (2013) suggest a staged cooling model for H chondrites where 

petrologic types 4-6 initially cool quickly from high temperatures due to excavation by an 

impactor after peak metamorphism. Cooling rates at lower temperatures then decrease 

with increasing petrologic type due to reaccretion and burial in a way that allows type 4 

to cool faster than type 6. Ganguly et al. (2013) based part of their low-temperature 

staged cooling rates on the Ar-Ar ages of Trieloff et al. (2003). However, the old Ar-Ar 

ages Trieloff et al. (2003) measured were in Ste Marguerite and Forest Vale, two 

chondrites found subsequently to have anomalously fast metallographic cooling rates 

(Scott et al., 2014) and evidence for live 26Al that also indicate fast cooling rates (Telus et 

al., 2014). These new measurements suggest that OC cooling is more complex than the 

staged cooling model of Ganguly et al. (2013). Blackburn et al. (2017) suggest fast 

cooling rates in H4 chondrites are due to erosional impacting before 6 Myr.  

 We can say a few things given the observations discussed above. First, all OCs 

appear to have cooled rapidly (>1 °C per 100 years) at high temperature (>670 °C). 

Second, petrologic types 5 and 6 H chondrites cooled slowly (1 °C per 103-105 years) at 

lower temperature (500-600 °C). Third, type 4 H chondrites have low temperature 

cooling rates that vary from the slow rates experienced by type 5 and 6, to much faster 

cooling rates. Finally, none of these observations are consistent with simple onion-shell 
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cooling. While disruption after peak metamorphism (i.e., the rubble-pile model) does 

provide a framework for semi-chaotic cooling rates, the abundance of fine-scale K-

feldspar exsolution lamellae in H, L, and LL OCs would imply multiple parent bodies 

underwent disruption at a similar point in their metamorphic history. It also implies that 

type 5 and 6 material were reaccreted such that they experienced the same range in 

metallographic cooling rates whereas type 4 material was exposed to a wide range of 

cooling rates at lower temperatures, presumably at burial depths of varying distance from 

the surface. Overall, our observations argue against rubble-pile cooling as well. 

 In Lewis et al. (in preparation), we suggest that interior degassing, in the form of 

high-temperature, short-duration bursts, as a mechanism for heterogeneous incorporation 

of K into plagioclase after peak metamorphism. While this provides a parent-body-

independent model for K incorporation, and the presence of fine-scale K-feldspar 

exsolution, it does not provide an explanation for all the cooling rate measurements, 

particularly those made using pyroxene diffusion. Blackburn et al. (2017) attempt to 

reconcile seemingly contradictory observations through modeling and suggest that there 

was collisional erosion before 6 Myr for the H4 and L4 chondrites and full disruption at 

about 60 Myr followed by reaccretion. 

Overall, K-feldspar exsolution textures have the potential to provide further 

constraints on OC cooling rates at high temperatures. Because we only present one 

cooling rate measured in one chondrite, many more cooling rates will need to be 

measured in order to provide a better understanding of feldspar-based cooling rates and 

cooling rate variability. Furthermore, because there appears to be significant variability in 

cooling paths among different OCs, particularly the type 4s, coordinated studies of 
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cooling rates using different methods (e.g., K-feldspar, pyroxene, and metallographic) on 

the same samples may be fruitful in discerning typical parent body processes from 

sample heterogeneity. 

5. Summary and conclusions 

 We conducted a thorough examination of K-feldspar occurrences and textures, 

within chondrules, in petrologic type 3.6-6 H, L, and LL ordinary chondrites as an 

extension of our study on plagioclase alteration and equilibration (Lewis et al., in 

preparation). K-feldspar is a secondary mineral present in primary and secondary albite 

as fine-scale exsolution lamellae, 0.1-1.5 μm wide, in textures resembling perthite seen in 

terrestrial alkali feldspars. Larger patches of K-feldspar, up to 50 μm in size, are also 

present. Exsolution is observed in all OC groups but it is more common in petrologic type 

4 than in types 5 and 6, rare in types 3.6-3.9, and absent in types <3.6. In the H4 

Avanhandava, we also identified a peristerite intergrowth in the plagioclase. 

We estimated cooling rates from the perthite and peristerite exsolution textures. 

For perthite, we determined cooling occurred at a rate of 1 °C per 1-4 months over a 

temperature interval of 670-765 °C. For peristerite, we estimated cooling occurred at a 

rate of 1 °C in 103-104 years from 570-540 °C. However, a lower temperature interval, 

450-420 °C, corresponding to the peristerite spinodal, yields 1 °C per 106-107 years. In 

general, the fast, high temperature cooling rate determined by perthite is similar to 

cooling rates determined by pyroxene diffusion (Ganguly et al., 2013, 2016), while the 

peristerite cooling rate is closer to slow, low temperature, metallographic cooling rates 

(Scott et al., 2014). Because K-feldspar exsolution is present in similar fine-scale 

lamellae in all OC groups, we suggest that all OC parent bodies experienced the same 
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cooling history at high temperatures. These observations appear to be inconsistent with 

cooling models in both onion-shell and rubble-pile scenarios. 
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Abstract 

Porosity is an important physical property of meteorites and asteroids that affects 

density, material strength, and thermal diffusivity. Porosity can also promote chemical 

exchange by facilitating the transport of fluids and dissolved ions. We measured the 

porosity of individual chondrules from the L4 ordinary chondrite Saratov, using X-ray 

microtomography (μCT) and scanning electron microscopy, to examine the abundance 

and distribution of porosity in chondrules, and to understand how porosity relates to 

chemical exchange during parent body processes. Porosity was 1-2% by volume in the 

chondrules that we measured and maximum pore sizes were ~300 μm. Porosity 

distribution and morphology indicate that porosity is a secondary feature and most pores 

>1 μm were formed from the dissolution of chondrule mesostasis glass. Iron and K are 

preferentially enriched in phases adjacent to the most porous regions: Fe is enriched in 

pyroxene, and K is enriched in mesostasis where it is observed as either the silica 

alteration phase merrihueite, or fine-scale, K-feldspar exsolution in albitic feldspar. Some 

pores can be described as vugs, as they contain euhedral olivine and chromite, with 

textures indicating vapor deposition. Knowing the chondrule porosity, we estimate the 

matrix porosity in Saratov to be very high, 40-60%. We suggest that during prograde 
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metamorphism, an aqueous fluid originating from the matrix dissolved chondrule 

mesostasis glass, producing the observed porosity, and introducing FeO into the pyroxene 

phenocrysts. Fluids were less abundant through peak metamorphism, and chondrule 

mesostasis glass crystallized to fine-grained albite. During retrograde metamorphism, 

high temperature, short duration bursts of a dry, alkali-bearing fluid from the asteroid 

interior infiltrated the pore network, formed the vug phases, altered silica to merrihueite, 

and introduced K to the secondary albite. Fine-scale K-feldspar then exsolved from albite 

during rapid cooling to the ambient temperature. Overall, development of porosity during 

metamorphism on the L chondrite parent body contributed to the chemical evolution of 

its components, as well as affecting the physical properties of the parent asteroid. 

1. Introduction 

Porosity has significant effects on the physical properties of meteorites and 

asteroids, including density, material strength, and thermal diffusivity. An increasing 

number of density measurements have found that many asteroids are underdense when 

compared to the grain densities of their inferred meteorite analogs (Carry, 2012). Low 

asteroid densities are attributed to a combination of low density phases in the interior, 

such as volatile ices, small-scale microporosity that is observed in meteorites, and large-

scale macroporosity that reflects the internal structure of the asteroid itself (Scheeres et 

al., 2015). For example, the S-type asteroid 25143 Itokawa, visited by the Hayabusa 

spacecraft, has an ordinary chondrite (OC) composition (Nakamura et al., 2011). It has a 

porosity of 41%, greater than most OCs, suggesting high macroporosity and possibly a 

rubble-pile-like interior structure (Fujiwara et al., 2006). 
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Density and porosity are important for understanding how asteroids respond to 

impact and other dynamical events. During an impact, compaction of porous material can 

help absorb the impact energy, reduce the likelihood of fragmentation, and increase the 

probability of survival of the body (Holsapple, 2009). Conversely, porosity can also 

lower the strength of an asteroid, leaving it more susceptible to disruption from 

dynamical forces, including tidal forces and YORP spin-up (Sánchez and Scheeres, 

2014). In addition, the thermal evolution of an asteroid is strongly influenced by its 

porosity. Incorporation of energetic radioisotopes, such as short-lived 26Al, into 

planetesimals during accretion heats up and thermally metamorphoses the surrounding 

material. Numerical models find that the insulating effects of porosity, when applied 

globally (Bennett and McSween, 1996) or in a surface regolith (Akridge et al., 1998; 

Harrison and Grimm, 2010), greatly affect the intensity and duration of thermal 

metamorphism. This is because thermal diffusivity is directly related to the material 

properties and porosity of the heated material (Opeil et al., 2012). 

The presence of porosity also has important implications for chemical changes in 

asteroidal materials. In chondrites, porosity can facilitate the transport of fluids during 

aqueous alteration and during metasomatism that accompanies thermal metamorphism. 

Fluids carry elements into and out of various chondrite components, resulting in changes 

to primary mineralogy and the formation of secondary minerals. In carbonaceous 

chondrites, fluids alter primary phases and form phyllosilicates, carbonates, and other 

secondary minerals (Brearley, 2006). In OCs, porosity is seen in association with the 

development, and subsequent alteration, of the secondary minerals apatite, merrillite, and 

feldspar, during thermal metamorphism (Kovach and Jones, 2010; Jones et al., 2014; 
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Jones et al., 2016; Lewis and Jones, 2016b). In petrologic type 3 and 4 OCs, the 

development of porosity within chondrules provides evidence for aqueous alteration 

(Lewis and Jones, in review; Dobrică and Brearley, 2014; Lewis and Jones, 2014, 2015, 

2016a) and dissolution of chondrule mesostasis in so-called “bleached chondrules” 

(Grossman et al., 2000). However, our understanding of the development and 

characteristics of porosity in OCs is limited. 

Bulk porosity is currently measured in meteorites using two methods: glass bead 

volumetry with ideal-gas pycnometry (Macke, 2010) or X-ray microtomography (μCT: 

Almeida et al., 2014). Ideal-gas pycnometry uses an ideal gas (typically He) to penetrate 

the network of pores and to measure the volume of the solid material. While useful for 

interconnected pore networks, regardless of pore size, isolated pores are not included 

using this method. In contrast, µCT uses X-rays to successively image a rotating object 

and mathematically reconstruct the internal structure. Hence, this technique can measure 

porosity regardless of degree of interconnectivity. However, the voxel size of the scan, 

which is directly connected with the resolution, dictates the size of the smallest pores that 

can be measured. Therefore, only pores above a certain size (typically 2-3 times the voxel 

size: Maire and Withers, 2014) are included in these porosity measurements. In effect, 

both methods can lead to an underestimate of the bulk porosity. Almeida et al. (2014) 

calculated that bulk porosity measurements on chondrites made with µCT (using a 

resolution of 5-10 µm/voxel) were lower than, but within 15-20%, of those reported for 

ideal-gas pycnometry. They attributed these differences to the resolution limits of the 

µCT measurements and heterogeneity between different samples of the same meteorite. 
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Macke (2010) measured the bulk porosity of a wide variety of meteorite samples 

using ideal-gas pycnometry, including OCs. He found that OC falls had an average bulk 

porosity of ~10% but with a considerable range that extends up to 25% porosity for some 

samples. He also found that petrologic type 4 OCs have the highest average bulk porosity 

out of all the petrologic types. Macke (2010) noted an increase in porosity with increase 

in matrix abundance for all the chondrite groups, implying that the majority of the 

porosity is contained within the matrix. Almeida et al. (2014) made similar observations, 

but noted that the OCs with the highest bulk porosity also tended to have pores within 

chondrules in addition to the matrix. Ebel and Rivers (2007) used synchrotron-based μCT 

to characterize porosity in two chondrules separated from the CV3 chondrite, Allende. 

They measured the bulk porosity of the chondrules to be 0.1-0.6%, but did not suggest an 

origin for the pores.  

Chondrules are igneous objects formed from the flash heating, and rapid cooling, 

of nebular material. Primary pores in igneous rocks are often formed by exsolution of 

gaseous species from a melt (i.e., vesicles) due to changes in physical environment like a 

reduction in pressure or temperature. However, secondary processes that cause in the 

dissolution and transport of primary phases can also result in the development of 

porosity. To better understand the abundance and distribution of pores within chondrules, 

the processes responsible for porosity development, as well as the nature and extent of 

chemical exchange between chondrules and matrix, we measured the porosity of 

individual chondrules from the L4 chondrite Saratov using laboratory µCT and scanning 

electron microscopy (SEM). 



 

237 

 

μCT-based porosity measurements allow for 3D porosity characterization that has 

several advantages over porosity characterization made on 2D polished sections. First, 

viewing porosity in 3D allows for a better understanding of pore connectivity throughout 

the sample. Second, 3D pore sizes can be measured directly so stereological corrections 

of 2D measurements are not needed. Third, heterogeneous distributions of porosity can 

be seen directly and do not need to be inferred though studies of multiple thin sections. 

Finally, and most importantly, there is no artificial increase in porosity due to mechanical 

removal of material during sample preparation. 

Saratov has been the subject of a number of studies including investigations into 

shock (Rubin, 1994; Friedrich et al., 2004), thermal equilibration (Kessel et al., 2007), 

metasomatism (Lewis and Jones, 2015; Lewis and Jones, 2016a), and porosity 

(Alexeyva, 1958; Semenenko et al., 1992; Flynn et al., 1999; Girich and Semenenko, 

2003; Macke, 2010). Saratov has experienced light to moderate shock and has been 

assigned shock stages of S2 (Rubin, 1994) and S3 (Friedrich et al., 2004). Bulk porosities 

were measured using He-pycnometry resulting in average porosities of 13% (Flynn et al., 

1999) and 12.5% (Macke, 2010). Alexeyva (1958) reported bulk porosity of 18.2% using 

a mercury-based method. These porosity measurements are far higher than the average 

porosity for L chondrite falls of 8.0% (Macke, 2010). Saratov also contains highly porous 

fragments with porosities up to 65% (Semenenko et al., 1992; Girich and Semenenko, 

2003). Lewis and Jones (2016a) noted a range of textures in chondrule plagioclase that 

indicate alteration by a metasomatic fluid, including the presence of pores that ranged 

from sub-µm to tens of µm in size. Because of the high bulk porosity and evidence for 

metasomatism, Saratov is a good candidate to investigate chondrule porosity. 
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In this paper, we present μCT measurements of chondrules and correlated 2D 

scanning electron microscope (SEM) observations to address the origins of chondrule 

porosity and to test the hypothesis that chondrule porosity is a secondary feature 

produced by metasomatic processes. We use measurements of chondrule porosity to 

understand the relative distribution of porosity between chondrules and matrix in Saratov, 

with implications for the physical properties of OC-like asteroids. We also discuss the 

role of porosity in providing pathways for fluid flow and facilitating the chemical 

evolution of chondrules and chondrites during thermal metamorphism. 

2. Methods 

2.1. µCT analysis 

We separated chondrules from a Saratov hand sample through gentle crushing in 

an agate mortar and pestle. Saratov is very friable, so we could easily separate the 

chondrules from the matrix without fracturing the chondrules. We selected two large 

chondrules (Ch1, 3.7 mm and Ch7, 2.0 mm diameter) and 30 small chondrules (0.5-1.2 

mm) for analysis by µCT. We used the Zeiss Xradia Versa 520 XCT at the Henry 

Moseley X-ray Imaging Facility, University of Manchester. The scans were conducted 

using an energy of 80 kV, 1600 projections, and an exposure time of 4 seconds. The large 

chondrules were scanned individually with voxel sizes of 3.7 µm and 1.3 µm for Ch1 and 

Ch7, respectively. The small chondrules were placed together in a pipette tip, packed 

with plastic wrap, and scanned using a voxel size of 1.8 µm. Porosity was calculated as 

the percentage void space within the solid material using the Avizo software package. 

Initially, an automatic threshold was applied and the results obtained were then refined 

using sophisticated segmentation methods to achieve more accurate estimates. 
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2.2. SEM analysis 

Following µCT analysis, the two large chondrules were cut in half using a 0.15 

mm wide diamond wafering blade. One half of each chondrule was mounted in epoxy 

and polished for electron beam analysis. The other half of each chondrule was left 

unpolished and used to image vugs. Backscattered electron (BSE) images were acquired 

at 10 kV and 16 nA on an FEI Quanta 3D Dualbeam® field emission gun scanning 

electron microscope (FEG-SEM) at the University of New Mexico. We made high-

resolution (0.35 µm/px) BSE maps of each chondrule for 2D porosity analysis to estimate 

the percentage of bulk porosity at resolutions higher than allowed by the µCT 

measurements. Thresholding and particle analysis was performed in ImageJ, and we 

included all pores that were ≥1 µm in diameter using the measured pore area equivalent 

to the circular diameter (i.e., 7 total pixels). In addition to the chondrule maps, BSE maps 

were made of two full Saratov thin sections, UNM 1145 and USNM 1423-3. The maps 

consist of individual 1024x800 pixel images, captured at 1 μm/px, and stitched together 

in ImageJ (Preibisch et al., 2009). 

2.3. TEM analysis 

Two focused ion beam (FIB) sections were made, one in each of the large 

chondrules, using the FEI Quanta 3D Dualbeam® FEG-SEM/FIB to investigate the sub-

μm porosity within the crystallized mesostasis. The FIB sections were imaged at 200 kV 

on a JEOL 2010F field emission gun scanning transmission electron microscope (STEM) 

using high-angle annular dark-field (HAADF) imaging and selected area electron 

diffraction (SAED). FIB/TEM work was performed at the University of New Mexico. 
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2.4. Quantitative EPMA maps 

Quantitative wavelength-dispersive spectroscopic (WDS) maps of the two 

chondrules were acquired on a JEOL 8200 Electron Probe Microanalyzer (EPMA) at the 

University of New Mexico operated at 15 kV and 20 nA. Maps were made with Probe 

Software’s Probe for EPMA in two passes using 100 ms/px dwell times with dimensions 

of 501x483 px and 467x433 px and 6 μm and 4 μm spot size for Ch1 and Ch7, 

respectively. The resulting intensity maps were quantified in CalcImage using ZAF 

corrections combined with mean atomic number (MAN) background corrections. MAN 

curves were generated using the following Taylor standards: olivine, albite, orthoclase, 

chromite, spessartine, MgO, hematite, and nickel and additional standards: doped 

diopside, labradorite, and sodalite.  

The quantitative maps were then masked in Adobe Photoshop and the bulk 

silicate compositions of the chondrules calculated using a custom MATLAB script to 

identify chondrule pixels with oxide sums greater than 95%. In addition, pixels with SiO2 

contents of less than 20% were omitted to eliminate Fe-Ni metal and sulfides. Densities 

were determined for each pixel based on the assigned mineral phases, and the bulk 

silicate composition of each chondrule was calculated as the mean of the density-

weighted compositions of accepted pixels. This method for determining the bulk 

compositions of multimineralic assemblages is similar to the method described by 

Carpenter et al. (2013, 2017). A detailed description of this process is presented in 

Appendix 2. 
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3. Results 

It is worth considering the terminology surrounding porosity so that we may 

provide a self-consistent description of the chondrule porosities that we present here in 

comparison to literature studies. For our purposes, we use the term pore to refer to a 

volume that is absent of material within a sample. The term pore does not imply a 

specific process or morphology, but it does carry with it the connotation of being original 

to the sample (i.e., not the result of sample preparation). The bulk porosity of a sample is 

defined as the volume ratio of the sum of all pores to the total volume of the sample. This 

definition includes cracks and fractures that can be important for the bulk porosity of 

chondritic material. 

Two important process-related terms for pore that are used consistently in the 

literature are vesicle and vug. Vesicles formed by the exsolution of gaseous species from 

a melt and are preserved during solidification. Vugs refer to pores that contain euhedral 

crystalline phases that have grown into the pore space by liquid or vapor depositional 

processes. It is important to note that the term vug does not imply an origin for the pore 

itself and only describes the presence of crystalline phases within it. Like pore, the terms 

void and hole are commonly used in the literature when referring to the absence of 

material in a sample. However, void and hole are often used in a broader context than 

pore and used in thin section studies where the effects of sample preparation are 

unknown. We will avoid the terms void and hole and will only use the terms pore, 

vesicle, and vug within their appropriate context. 
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3.1. Chondrule textures 

Figure 5.1 shows µCT cross-sections and 3D porosity renderings for Ch1 (Fig. 

5.1a,b) and Ch7 (Fig. 5.1c,d). Both are porphyritic pyroxene (PP) chondrules. Both are 

roughly radially zoned, with higher contrast (bright regions on the edge) indicating FeO 

enrichment in the outer zones of the chondrules (Fig. 5.1a,c). We interpret this to indicate 

that the chondrules were originally FeO-rich (Type II) and the outer zones were further 

enriched in FeO during parent body processing. This will be described in more detail 

below. The small chondrules that were scanned together (Fig. 5.2a) include a variety of 

textural types, including: porphyritic olivine (PO, Figs. 5.2b,c), porphyritic pyroxene (PP, 

Fig. 5.2d), porphyritic olivine and pyroxene (POP, Figs. 5.2e,f), barred olivine (BO, Fig. 

5.2g), radiating pyroxene (RP, Fig. 5.2h), and cryptocrystalline (CC, Fig. 5.2i). 

3.2. 3D porosity characterization 

The 3D distribution of porosity within the two large chondrules is rendered in 

Figs. 5.1b and 5.1d. We measured the bulk porosity of Ch1 and Ch7 to be 0.8% and 

1.0%, respectively (Table 5.1). We scanned and measured the bulk porosity of the 30 

small chondrules together and determined an average porosity of 0.8%. Because the 

resolution of the scan dictates the smallest pores that can be resolved, it is important to 

consider the range of pores accounted for in each scan. Ch1 was scanned using a voxel 

size of 3.7 μm and, based on visual inspection of threshold data, it was estimated that at 

least 5 voxels are needed to resolve a pore. We used the spherical equivalent diameter, 

defined as the diameter of a sphere that has the same volume as the measured pore, 

regardless of morphology. Therefore, each voxel has a volume of ~ 51 μm3, and 5 voxels 

have a combined volume of 253 μm3 that has a spherical equivalent diameter of 8 μm. 
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Figure 5.1. μCT cross-sections and 3D porosity renderings of the two large chondrules. A 

representative cross-section of Ch1 (a) shows round pores near the outer rim and distinct zoning 

(dashed line) with darkening toward the interior of the chondrule. The 3D rendering of the pore 

space in Ch1 (b) shows all the large pores (blue) are concentrated near the exterior of the 

chondrule (grey) and are not interconnected based on the observations obtained by the resolution 

of the scan (voxel size of 3.7 µm). The cross-section of Ch7 (c) shows elongate porosity in the 

upper left, near an area of remnant matrix, and zoning (dashed line) similar to Ch1 with darkening 

in the chondrule interior. The 3D porosity rendering (d) shows most of the porosity is 

interconnected and concentrated in the upper left. The use of higher resolution (voxel size of 1.3 

µm) in this latter case allowed for the detection of interconnectivity between pores.  
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Figure 5.2. (a) μCT cross-sections of the small chondrules scanned together showing the 

dominant phases: olivine (ol), pyroxene (px), and mesostasis (mes). These include a variety of 

textural types including porphyritic olivine (b,c), porphyritic pyroxene (d), porphyritic olivine and 

pyroxene (e,f), barred olivine (g), radiating pyroxene (h), and a bleached, cryptocrystalline 

chondrule (i). All these chondrules contain pores including one within an olivine phenocryst (f), 

possibly through the dissolution of a melt inclusion (mlt). 
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Thus, the porosity measurement of Ch1 accounts for pores ≥8 μm in diameter. In 

addition, following the common rule that the resolution is equal to 2-3 times the voxel 

size considered (Maire and Withers, 2014), we achieve the same threshold value of ≥8 

μm, when we are considering the voxel size of 3.7 μm. However, the approach based on 

the spherical equivalent diameter has the advantage that it can be used in comparing 

results obtained in 3D with those associated with the 2D analysis described below. Using 

this method, the porosity of Ch7 and the small chondrules are for pores ≥3 μm and ≥4 μm 

in diameter respectively.  

 

Table 5.1. Porosity and other physical properties. 

 Ch1 Ch7 

small 

chondrules 

3D bulk porosity (%)    

≥8 μm 0.8   

≥3 μm  1.0  

≥4 μm   0.81 

adjusted porosity ≥ 1 μm2 1.6 1.1 1.1 

    

2D bulk porosity (%)    

≥8 μm 1.3   

≥3 μm  7.7  

≥1 μm 2.6 8.7  

% 2D bulk 

porosity 

≥1 μm by 

pore diameter 

1-3 µm 33 11  

1-4 µm 39 14 263 

3-8 µm 15 10  

8-25 µm 11 13  

25-100 µm 18 23  

>100 µm 22 43  

    

volume (mm3) 11.3 2.7  

mass (mg) 36.2 7.8  

bulk density (g/cm3) 3.2 2.9  

major diameter (mm) 3.7 2.0 0.5-1.2 
1 average of 30 small chondrules scanned together 
2 estimated from 2D porosity analysis 
3 averaged from Ch1 and Ch7 estimate 
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Ch1 has several large, nearly spherical pores (~250 µm, Figs. 5.1a,b) in the outer 

few hundred µm of its volume, rendered in blue in Fig. 5.1b. It also has smaller porous 

regions that follow the morphology of intercrystalline mesostasis. Porosity in Ch1 is not 

connected as far as can be determined at the resolution used (with pores ≥8 µm), but it is 

possible that interconnected porosity could be detected if analyzed at finer scales. In 

contrast, most pores in Ch7 (Fig. 5.1d) are elongated, following the mesostasis 

morphology. They cluster in one region of the chondrule that is adjacent to the edge of 

the chondrule (Fig. 5.1c,d). Pores in this chondrule are largely interconnected at the 

resolution of the scan (pores ≥3 µm). Pores in the small chondrules also follow the 

morphology of the intercrystalline mesostasis (Fig. 5.2) and some are concentrated in the 

central regions of the chondrules (Figs. 5.2b-e). In other chondrules, pores are located 

closer to the chondrule exterior like in Ch1 (Fig. 5.2f). Chondrules with small 

phenocrysts and low mesostasis abundances only have small pores (<10 μm, Figs. 5.2g-

i). The largest pores we observe are ~300 μm. 

3.3. 2D pore size distribution 

We have previously shown that Saratov chondrules contain a wide range of pore 

sizes from sub-µm to hundreds of µm (Lewis and Jones, 2016a). To understand the 

distribution of chondrule porosity at sizes below the resolution provided by the 3D scans, 

we estimated the size distribution of pores using high-resolution 2D BSE maps of cut and 

polished sections of Ch1 and Ch7 (Fig. 5.3). Like the 3D case considered above, the 2D 

diameter measurement used is a circular area equivalent diameter: the diameter of a circle 

that has the same area as the measured pore, regardless of its morphology. The maps have 

a resolution of 0.35 µm/px that allowed us to confidently resolve pores ≥1 µm in  
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Figure 5.3. BSE images of the cut and polished faces of Ch1 (a) and Ch7 (b). White squares 

indicate areas represented in Fig. 5.5. White phases are metal and sulfides, the small, light gray 

grains are olivine (ol), the large region of zoned, medium grey is pyroxene (px), dark grey regions 

are silica (sil) and crystallized mesostasis glass (mes), and black regions are pores. 

 

 

diameter (≥7 px). The results are presented graphically in Fig. 5.4 as the percentage of the 

total calculated porosity accounted for by pores within a given size range. 

The porosity in Ch1 is dominated by small pores in the 1-3 μm range, whereas the 

porosity in Ch7 is dominated by the largest pores (>100 μm). This difference in porosity 

distribution between the two chondrules makes it difficult to ascribe a single pore size 

distribution to all chondrules. However, we can use the chondrule-specific curves to 

normalize the two large chondrules to pore sizes ≥1 μm, the results of which are 

presented in Table 5.1. The measured 3D porosity of Ch1, 0.8%, accounts for pores ≥8 

μm. This is equivalent to 52% of the 2D pore distribution. Adding in the 1-8 μm pore 

range increases the porosity of Ch1 to 1.6%, defined as “adjusted porosity.” Similarly, 

the measured 3D porosity of Ch7 is 1.0% and includes pores ≥3 μm, or 89% of the 2D 
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pore distribution. The porosity of Ch7 increases to 1.1% by including the 1-3 μm range of 

pore sizes.  

The porosity of the small chondrules is 0.8% and includes pores ≥4 μm. The 

porosity accounted for by pores ≥4 μm in the two large chondrules is 61% and 86% for 

Ch1 and Ch7, respectively (Table 5.1). Hence, the average porosity of the large 

chondrules accounted for by pores in this size range is 74%. We can use this as a very 

rough estimate of the pore size distribution of the small chondrules and correct the 

porosity to 1.1% for pores ≥ 1 μm. However, as mentioned above, each chondrule has its 

own characteristic pore size distribution that may be significantly different from the 

distributions of the two chondrules we describe in detail here.  

 

 

 
 

Figure 5.4. Porosity distribution calculated from 2D cut faces of Ch1 (circles) and Ch7 

(triangles). Ch1 has a greater abundance of smaller pores, due to the greater abundance of 

chondrule mesostasis glass than Ch7 which has a greater abundance of large pores. 
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Figure 5.5. Detailed BSE images of Ch1 (a-d) and Ch7 (e-f), from regions highlighted in Fig. 5.3. 

(a) Shows the K-enriched border between the Fe-rich outer zone and the silica-bearing core of 

Ch1. The region contains low-Ca pyroxene (px), Ca-rich pyroxene (cpx), silica (sil), and 

crystallized mesostasis glass (mes). Three sub-regions are highlighted (b-d). (b) Shows pores and 

melt inclusions within the pyroxene phenocryst. (c) Illustrates porosity within the crystallized 

mesostasis glass dominated by albite exsolving K-feldspar (Kfsp) and adjacent to Ca-rich 

pyroxene rimmed silica. (Caption continues on the following page). 
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Figure 5.5. (Caption continued from the previous page). (d) Shows two different regions of 

crystallized mesostasis glass: the left side is enriched in K relative to the right side. Potassium is 

also preferentially enriched near the larger pores. The line in (d) shows the region in which a FIB 

section was extracted, illustrated in Fig. 5.6a. (e) A region of K enrichment in Ch7 in which silica 

has been altered to merrihueite (merr). (f) Close-up of a region in (e) illustrating the textural 

relationship between the silica and merrihueite and the porosity in the isolated patches of 

crystallized mesostasis glass. The line in (f) shows the FIB section extracted for Fig. 5.6c. 

 

 

It is worth noting that the cumulative porosity measured in 2D is greater than that 

measured in 3D, even when measured over the same range. For Ch1, the measured 

porosity (≥8 μm) is 1.3% and 0.8% for 2D and 3D, respectively. Similarly, the measured 

2D and 3D porosity for Ch7 (≥3 μm) is 7.7% and 1.0%, respectively. There are several 

reasons for this difference. First, we cut the chondrules roughly through the center along 

the long axis, where most of the porosity was observed in the μCT images. Second, 

removal of grains during polishing might have increased the observed porosity of the 2D 

sections, particularly in Ch7’s highly porous region. Third, there may be differences in 

the results of porosity segmentation in 2D versus 3D. Overall, the 3D porosity 

measurements are likely more robust than the 2D measurements over the equivalent pore 

size range. We use an average chondrule porosity of 1-2% for the discussion below. 

3.4. Chondrule mineralogy 

2D BSE images (Figs. 5.3 and 5.5) reveal more detailed mineralogy in the two 

larger chondrules (Ch1 and Ch7) than can be seen in the μCT cross-sections. In both 

chondrules, the major phenocrysts are low-Ca pyroxene, commonly with rims of Ca-rich 

pyroxene (Fig. 5.5a,b,e). Interstitial to the large pyroxene phenocrysts, and what was 

referred to above as intercrystalline mesostasis, are grains of silica, isolated grains of Ca-

rich pyroxene, and patches of crystallized mesostasis glass (Fig. 5.5a,c-f). Crystallized 

mesostasis glass is a fine-grained assemblage typically consisting of albitic plagioclase,  
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Figure 5.6. (On previous page). HAADF STEM images of FIB sections extracted from Ch1 (a-b) 

and Ch7 (c-d). (a) FIB section of Ch1 from Fig. 5.5d with porous crystallized mesostasis glass 

containing albite (ab) with K-feldspar exsolution (Kfsp), Ca-rich pyroxene (cpx), and silica (sil). 

(b) A close-up of (a) illustrating the extremely fine scale of the porosity. (c) FIB section of Ch7 

from Fig. 5.5f with porous crystallized mesostasis glass, Ca-rich pyroxene, low-Ca pyroxene 

(px), twinned silica, and merrihueite (merr). (d) Close-up of crystallized mesostasis glass from (c) 

showing fine scale of porosity and the presence of pores predominantly along grain boundaries. 

Two SAD diffraction patterns from regions in (c) index as [011] merrihueite (e), and [221] 

cristobalite (f). 

 

 

Ca-rich pyroxene, and oxides that form from devitrification of chondrule glass during 

thermal metamorphism. Merrihueite, (K,Na)2(Fe,Mg)5Si12O30, is also present in Ch7 (Fig. 

5.5e,f), interstitial to the pyroxene phenocrysts, in a texture indicating replacement of 

silica. Merrihueite, and its Na-rich endmember roedderite, are known silica alteration 

phases in ordinary chondrites (Krot and Wasson, 1994; Wood and Holmberg, 1994). The 

texture we observe in Ch7 is similar to the textures observed by Krot and Wasson (1994) 

and Wood and Holmberg (1994). 

3.5. 2D pore morphology 

A closer look at 2D pore morphology below the resolution of the μCT scans (Fig. 

5.5) reveals that porosity is present in low-Ca pyroxene, silica, and crystallized 

mesostasis in Ch1 (Figs. 5.5a-d). The cores of the pyroxene grains have circular pores 

several μm in size as well as cracks throughout (Figs. 5.5a,b). Porosity in the silica grains 

is only present as cracks (Fig. 5.5c). Most of the small-scale porosity is present in the 

crystallized mesostasis glass, which in Ch1 consists of albite with K-feldspar exsolution 

lamellae, Ca-rich pyroxene, oxides, and pores with a range of sizes up to ~1 μm in 

diameter (Figs. 5.5c,d). Coarser K-feldspar exsolution lamellae are present in the material 

directly adjacent to the larger pores (Figs. 5.5c,d). The abundance of K-feldspar lamellae 
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is heterogeneous in the crystallized mesostasis glass with some areas notably enriched in 

K (Fig. 5d). 

The small-scale porosity in Ch7 (Figs. 5.5e,f) is almost entirely concentrated in 

the crystallized mesostasis glass, although minor porosity is seen in the low-Ca pyroxene, 

silica, and merrihueite. Fractures are present throughout all the phases. The crystallized 

mesostasis glass consists of albite, Ca-rich pyroxene, and pores up to ~1 μm in diameter. 

Unlike Ch1, oxides are rare and K-feldspar exsolution is absent. Crystallized mesostasis 

glass is also much less abundant in Ch7 relative to Ch1 as will be discussed further 

below.  

FIB sections, labelled as 6a and 6c in Figs. 5.5d and 5.5f, respectively, were 

extracted from representative regions of crystallized mesostasis glass in the two 

chondrules considered and were imaged using HAADF STEM. These reveal a range of 

pore sizes and crystal morphologies (Fig. 5.6). Crystallized mesostasis glass in Ch1 

includes 100-200 nm Ca-rich pyroxene grains and 50 nm wide sub-parallel K-feldspar 

exsolution lamellae in albite (Figs. 5.6a,b). Pore sizes generally range from ~10-100 nm, 

although μm-scale pores are also present. In Ch7, crystallized mesostasis glass has 100-

300 nm grains of intergrown albite and Ca-rich pyroxene with triple junctions and ~10-

100 nm diameter pores along grain boundaries (Figs. 5.6c,d). Parallel tracks of nm-scale 

pores are present within some of the albite grains (Fig. 5.6d). Both FIB sections include 

silica grains with polycrystalline Ca-rich pyroxene rims. The SAD patterns taken in the 

FIB section of Ch7 index to [011] merrihueite (Fig. 5.6e) and [221] cristobalite (Fig. 5.6f) 

for the silica phase. 
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Figure 5.7. (a-b) μCT cross-sections of Ch1 showing vugs with acicular olivine crystals. (c-f) 

BSE images of phases in vugs from the unpolished cut half of Ch1. (c) A vug with euhedral 

olivine crystals including an acicular olivine illustrated in (d). (e) Vug with bladed and rounded 

olivine growing on low-Ca pyroxene. (f) Vug with euhedral chromite growing on low-Ca 

pyroxene. 
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3.6. Chondrule vugs 

The large, spheroidal pores in Ch1 contain euhedral phases protruding from the 

pore boundary into the pore space (Fig. 5.7), which suggests that we should consider 

these objects to be vugs. In μCT slices (Fig. 5.7a,b), the phases growing into the vugs are 

brighter (greater attenuation, higher atomic number) than the surrounding low-Ca 

pyroxene, similar to the rare grains of olivine found along the outer edge of the chondrule 

(Fig. 5.7a). We also examined vugs in the unpolished half of Ch1 in the SEM. A few 

large, 200-250 μm diameter, pores are present at the surface and nearly all contain 

euhedral grains growing into them (Fig. 5.7c-f). Most of these grains are olivine of 

blocky or bladed morphologies with a similar composition to the surrounding material, 

approximately Fo80, estimated using quantitative EDS. Nearly all the olivine showed 

growth bands on all or nearly all the observed faces (Fig. 5.7d,e). 

Chromite, identified by EDS, was also observed growing as near perfect 

tetrahedra in many of the pores (Fig. 5.7f). The presence of chromite is not correlated 

with the presence of olivine as it appears in pores on its own or with olivine. Both olivine 

and chromite appear to have grown out of the pores using the abundant low-Ca pyroxene 

as a substrate. The pore surfaces are rough, and the orientation of low-Ca pyroxene 

substrate does not appear to correlate with the orientation of the vug crystals.  

3.7. Quantitative element maps 

Quantitative element maps and phase abundance maps for the two large 

chondrules are presented in Fig. 5.8, and the modal phase abundances are tabulated in 

Table 5.2. Ch1 is dominated by low-Ca pyroxene (65%) which is evident in the BSE 

image (Fig. 5.3a) and the phase abundance map (Fig. 5.8a). Other phases included Ca-
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rich pyroxene (18%), olivine (1%), silica (3%) and crystallized mesostasis glass (13%). 

Metals and sulfides are present around the exterior of the chondrule (Fig. 5.8a). The 

pyroxene zoning noted in the μCT image (Fig. 5.1a) and visible as gray zoning in the 

BSE image (Fig. 5.3a) is very pronounced in the Mg# map in Fig. 5.8b, where Mg# is 

defined as Mg/(Mg+Fe)×100. Mg# is higher in the core with an average Mg# (atomic) of 

90 and lower in the outer zone with an Mg# of 81. The pattern of zoning is not perfectly 

concentric but rather traces the positions of the large pores. In addition to zoning in FeO 

and MgO, zoning is present in SiO2 and K2O, as illustrated in the three element RGB 

(FeKSi) map shown in Fig. 5.8c. Zoning in SiO2 reflects the higher abundance of silica, 

which is concentrated in the center of the chondrule. The crystallized mesostasis glass is 

enriched in K, as K-feldspar, along the border between the Fe-rich outer zone and silica-

bearing core but is absent from the outer zone of the chondrule. 

 

Table 5.2. Modal phase abundances. 

 Ch1 Ch7 

low-Ca pyx 65% 61% 

Ca-pyx 18% 20% 

olivine 1% 3% 

silica 3% 7% 

merrihueite  1% 

mesostasis1 13% 8% 
1 crystallized mesostasis glass, 

a fine-grained assemblage of 

feldspar, Ca-rich pyroxene, and 

oxides 
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Figure 5.8. (On previous page). EPMA maps of Ch1 (a-c) and Ch7 (d-f). Phase maps are shown 

in (a,d) and quantified in Table 5.2. Atomic Mg# (Mg/(Mg+Fe) × 100) is visualized in (b,e) to 

emphasize the Fe-enrichment in the outer zone. FeKSi RGB maps are shown in (c,f) to illustrate 

the correlation between the abundance of silica and K-enrichment with Fe-enriched outer zones. 

 

 

As we have already shown, there are many similarities between Ch1 and Ch7. 

The latter is also dominated by low-Ca pyroxene (61%) with accessory Ca-rich pyroxene 

(20%), olivine (3%), silica (7%), merrihueite (1%), and crystallized mesostasis glass 

(8%) as shown in Figs. 5.8d. A few metals and sulfides are present along the chondrule 

exterior and are mostly concentrated in the region with the greatest porosity (Fig. 5.8d). 

Ch7 is also zoned with a higher Mg# core (atomic Mg# = 87) and lower Mg# outer zone 

(Mg# = 80), Fig 5.8e. Like Ch1, the degree of zoning follows the morphology of the 

porous regions, with the FeO rich region being the most porous. However, unlike Ch1, 

silica is not concentrated in the center but is evenly distributed throughout (Fig. 5.8d,f). 

Also, while there is some K enrichment in the boundary between the porous region and 

unaltered interior (Fig. 5.8f) like Ch1 (Fig. 5.8c), K is present in the K-bearing phase, 

merrihueite, and not as K-feldspar-bearing crystallized mesostasis glass. 

3.8. Bulk silicate composition 

The bulk silicate compositions for Ch1 and Ch7 are tabulated in Table 5.3. These 

were calculated using the quantitative element maps, as described in the methods section 

above. Phases were assigned to each pixel based on compositions (Figs. 5.8a,d) so that 

mineral densities could be used to produce accurate estimates of the bulk silicate 

compositions. Metals and sulfides are highlighted in the phase maps to illustrate their 

distributions but are not included in the silicate-only bulk compositions. As would be 

expected from their mineralogical similarity, the bulk compositions of the two chondrules 

are alike (Table 5.3). The overall Mg# (atomic) for the two chondrules are 84.3 and 82.5  
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Table 5.3. Bulk silicate compositions of large chondrules. 

 Chondrule 1  Chondrule 7  Type IIB1 

 bulk inner outer  bulk inner outer  bulk mesostasis 

SiO2 58.2 62.2 55.7  57.7 60.3 55.2  55.1 65.0 

Al2O3 2.78 2.41 2.79  2.34 2.95 2.11  3.55 13.4 

Cr2O3 0.55 0.55 0.53  0.48 0.50 0.49  0.54 0.12 

FeO 8.77 5.23 11.3  9.95 6.93 11.8  10.2 10.4 

MgO 26.5 26.2 26.8  26.3 26.4 27.0  26.9 1.46 

CaO 1.93 2.19 1.71  2.33 1.86 2.65  2.18 4.68 

Na2O 1.16 1.19 1.04  0.80 0.98 0.75  1.33 4.27 

K2O 0.17 0.11 0.10  0.08 0.08 0.08  0.19 0.62 

Total 100.0 100.0 100.0  100.0 100.0 100.0  100.0 100.0 

            

Mg#2 75.1 83.3 70.5  72.6 79.2 69.6  72.4 12.3 

Mg#3 84.3 89.9 81.0  82.5 87.2 80.3  82.4 20.0 
1 chondrules in Semarkona (LL3.00) from Jones (1996) 
2 MgO/(MgO+FeO)×100, wt.% 
3 Mg/(Mg+Fe)×100, atomic 

 

 

for Ch1 and Ch7, respectively. The biggest differences are that Ch7 has ~1 wt.% more 

FeO and 50% less alkalis than Ch1. 

Bulk compositions for the core and outer zones of the two chondrules, calculated 

for approximately the inner and outer third of the chondrule, respectively, are also 

tabulated in Table 5.3. For both chondrules, the cores have higher SiO2 and Na2O and 

outer zones have higher FeO. Cr2O3 and MgO do not show differences in concentration 

between core and outer zone for both chondrules. K2O is also not zoned between the core 

and outer zones, but there is K2O enrichment in the regions between the cores and outer 

zones (Figs. 5.8c,f) that is not captured in the core/outer zone measurements. CaO is 

higher in the core of Ch1 and Al2O3 is higher in the outer zone. The opposite is true for 

Ch7 with higher CaO in the outer zone and higher Al2O3 in the core. Zoning in the bulk 

SiO2, Na2O, Al2O3, and CaO content likely relates to the development of porosity through 

the removal of a mesostasis rich in these components. In contrast, zoning in K2O likely 
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reflects the introduction of K and formation of the K-bearing phases K-feldspar and 

merrihueite. 

3.9. Matrix porosity 

We made additional observations of two Saratov thin sections (UNM 1145 and 

USNM 1423-3) to gain insight into porosity within the matrix. We estimate the chondrule 

abundance to be 70-80% in the two thin sections. Porosity is common in chondrules and 

in the matrix of both thin sections (Fig. 5.9a), but is generally more abundant in USNM 

1423-3 (Fig. 5.9b) than UNM 1145 (Fig. 5.9c). In both cases, pores are more abundant in 

the matrix than in the chondrules but because Saratov is friable, matrix porosity may have 

been introduced by mechanical plucking of grains during thin section production. 

However, friability also implies low material strength that could be an indication of high 

matrix porosity. We will present a more detailed discussion of matrix porosity and its 

implications below. 

4. Discussion 

 For OCs, bulk porosities are well characterized, due to the large number of 

samples available for study and extensive surveys of these samples (Macke, 2010). 

However, the distribution of porosities between the chondrite components, particularly 

between chondrules and matrix, is largely unexplored. Because chondrules compose such 

a large fraction of the bulk volume in OCs (60-80%: Scott and Krot, 2014), any variation 

of the amount of porosity within chondrules has a large effect on the calculated 

distribution of porosity in the matrix. It is also important to understand the origins of the 

pores within chondrules as it is fundamental to understand the effects of porosity on the 

physical properties of the whole chondrite. The development of chondrule porosity has 
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Figure 5.9. (a) A collage of BSE mosaics of two Saratov thin section, UNM 1145 and USNM 

1423-3, illustrating thin-section-scale porosity. (b) Close-up of highly porous region from USNM 

1423-3. (c) Close-up of porous region in UNM 1145 in which there are large pores within a 

porphyritic olivine chondrule. 
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important implications for the chemical evolution of chondrites during metamorphism. 

The abundance and interconnectivity of pores affects the open or closed system behavior 

of chondrules when interacting with metasomatic fluids, thus influencing the degree of 

chemical exchange between chondrules and the matrix and the chemical composition of 

fluids. 

In the discussion that follows, we consider the possible origins of chondrule 

porosity, whether nebular (primary), parent body (secondary), or as the products of 

processes occurring on Earth (tertiary). We estimate the relative distribution of bulk 

porosity between chondrules and the matrix and discuss the physical implications. We 

discuss the presence of the vapor-deposited phases within the pores in context with other 

studies of vugs in OCs. Finally, we describe the overall effect of the development of 

porosity on the bulk chondrule composition in relation to secondary processes on the OC 

parent body. 

4.1. Origin of chondrule porosity 

In the chondrules we measured, porosity was found to be 1-2% by volume. This is 

similar to the bulk porosity measured by Ebel and Rivers (2007) in Allende (CV3) 

chondrules using μCT. Based on our results, pore sizes vary by 4-5 orders of magnitude 

(from nm to hundreds of μm) and the largest pores have morphologies indicating that 

they formed from the dissolution of chondrule mesostasis. Smaller pores are also present 

in the crystallized mesostasis, within phenocrysts, and as cracks found throughout. We 

now consider the origin of this porosity. 

Many different processes can contribute to chondrule porosity and we broadly 

group these into primary, secondary and tertiary processes. What we refer to as primary 
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porosity, involves processes related to chondrule formation that took place in the solar 

nebula before accretion onto the parent asteroid. Porosity that develops in the parent body 

during secondary processing, such as aqueous alteration, thermal metamorphism, and 

shock, is what we refer to as secondary porosity. Tertiary porosity, involves processes 

that occur during the meteorite’s residence on Earth such as weathering and sample 

preparation. 

Pore forming processes include: degassing of chondrule melt (i.e., formation of 

vesicles), removal of mineral or amorphous phases through dissolution and chemical 

transport either on the parent asteroid or during weathering reactions on Earth, volume 

changes during primary or secondary crystallization, and mechanical processing such as 

impact or compaction. In addition, sample preparation, such as cutting and polishing, can 

loosen and remove mineral grains resulting in what is effectively a form of tertiary 

porosity. The study of porosity from thin sections and surficial studies of fragments leads 

to questions about whether the observed porosity is inherent to the sample or the result of 

sample preparation (Zbik and Lang, 1983). Using μCT allows us to avoid sample 

preparation issues in considering the nature and origins of chondrule porosity. 

Primary chondrule porosity would form in the solar nebula, prior to accretion to 

the OC parent body. The most obvious possible source of primary porosity is gas 

entrained in chondrule melt, which could exsolve and form vesicles during chondrule 

cooling. Volatile species in the form of ices or hydrated mineral phases may also have 

been present in the precursor materials (e.g., Maharaj and Hewins, 1998). During the 

chondrule forming event, ices, as well as volatile species adsorbed onto precursor 

material, will become trapped in the molten droplets. If cooled rapidly, these volatiles 
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could possibly be retained within the chondrules, resulting in vesicles. Experimental 

studies of chondrule formation often result in vesicle-bearing charges whether from 

intentionally incorporated hydrous phases (Wdowiak, 1983; Maharaj and Hewins, 1998) 

or not (Maharaj and Hewins, 1994; Cohen and Hewins, 2004). However, there are no 

convincing reports of vesicles in natural chondrules, an important observation that 

Maharaj and Hewins (1998) use to argue against the incorporation of hydrous phases 

during chondrule formation. A study by Zbik and Lang (1983) did describe a subset of 

chondrule pores as vesicles, but these observations were made in chondrites that had 

undergone significant parent body processing and, as we will discuss further below, are 

likely secondary in origin. Similarly, a possible interpretation of the spheroidal pores in 

Ch1 is that they could have originally been vesicles, but without well-documented 

vesicles in unaltered chondrites we consider this interpretation unlikely. 

Primary porosity that is not vesicular in nature is possible through the volume 

change that accompanies rapid crystallization. An experimental study by Connolly and 

Hewins (1995), in which dust was puffed onto molten chondrules to induce nucleation, 

produced intercrystalline pores, often connected to the chondrule surface, that they 

attribute to contraction of the remaining liquid during crystallization. The pore space in 

Ch7 resembles this texture to the extent that the pores are intercrystalline with some 

connection to the chondrule surface. However, the surface morphology and crystal 

growth patterns seen by Connolly and Hewins (1995) are significantly different from 

those we observe in Ch7. Also, the porosity described in their experimental study could 

have derived from volatile loss like the studies described above. While intercrystalline 

porosity has been noted within chondrules in low petrologic type OCs, it is attributed to 
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leaching of chondrule mesostasis during low temperature aqueous alteration (Lewis and 

Jones, in review; Grossman et al., 2000). Overall, without documented evidence of 

primary porosity observed in chondrules that have not undergone secondary processing, 

we cannot attribute the porosity we observe in these chondrules to primary processes. 

Secondary porosity forms on the parent body during or after accretion and can be 

physical or chemical in nature. Bulk porosity that forms during accretion due to 

chondrule stacking or incomplete compaction of fluffy matrix particles is unlikely to 

affect chondrule porosity directly. However, physical processes such as compaction from 

impacts can cause fractures within chondrules. The large fracture in Ch1 (Figs. 5.1a, 

5.3a) was likely formed by a physical process. 

Two major chemical processes can cause chondrule porosity: volume changes 

associated with phase changes such as the crystallization of chondrule mesostasis glass, 

and the dissolution and removal of phases in a fluid. A combination of these two 

processes appears to be the major source of porosity in the two large chondrules we 

studied. The mesostasis in Ch1 (Fig. 5.5c,d, 5.6a,b) and Ch7 (Fig. 5.5f, 5.6c,d) contains 

abundant μm to sub-μm pores, fine-grained albitic plagioclase, Ca-rich pyroxene, and 

oxides consistent with crystallization of chondrule mesostasis glass during chondrule 

metamorphism. The greater abundance of 1-3 μm pores in Ch1 versus Ch7 (Fig. 5.4) is 

simply due to the greater abundance of crystallized mesostasis glass (Table 5.2) in which 

the fine-scale pores can form.  

However, as we noted in the results, the expression of fine-scale porosity in the 

mesostasis of these two chondrules is different. The Ch7 pores are mainly found along 

grain boundaries (Fig. 5.6d), whereas the Ch1 pores are within phases (Fig. 5.6b). The 
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pores in Ch1 may have been formed, or at least modified, during the fluid infiltration that 

brought K into the chondrule to form the abundant K-feldspar exsolution we observe. The 

pores in Ch7 may have been formed by a solid-state crystallization process leaving pores 

on grain boundaries due to volume reduction. The K-bearing fluid that altered Ch1 may 

not have been able to penetrate the mesostasis glass in Ch7, but K is enriched in Ch7 in 

the silica alteration phase merrihueite. The fine-scale pores in Ch7 may not necessarily be 

interconnected, and hence may not be measured by He-pycnometry. However, as 

discussed above, they are also too small (<3 μm) to be adequately resolved by our μCT 

measurements. 

Large-scale porosity, on a scale of tens of μm or greater, is likely too big to have 

been formed by phase change alone. For this reason, we consider that it must be the 

product of leaching. In Ch7, the pore morphology (Figs. 5.1c,d, 5.3b, 5.8d-f) is consistent 

with removal of chondrule mesostasis for several reasons. First, the pore structure mimics 

the elongated morphology of the mesostasis (Fig. 5.3b). Second, unlike the fine-scale 

porosity, the large-scale porosity is highly interconnected implying progressive removal 

and transport of material, not just localized contraction. Finally, the pore network is in 

direct contact with the edge of the chondrule. 

Compared with Ch7, many large pores in Ch1 are more rounded (Figs. 5.1a,b, 

5.3a, 5.8a-c). While we cannot rule out the possibility that these pores were originally 

metal/sulfide grains, several lines of evidence would suggest that they also formed by the 

removal of mesostasis. First, dissolution of large metal/sulfide grains without more 

pervasively dissolved mesostasis is difficult to reconcile considering the presence of 

intact metal/sulfide grains on the chondrule exterior (Fig. 5.8a). Second, some of the 
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smaller pores in Ch1 do follow the mesostasis morphology (Fig. 5.3a: top right and 

bottom), so the large pores could have originally been large regions of intercrystalline 

mesostasis. Finally, pervasive porosity at the μm to sub-μm scale could lead to the 

interconnectivity required to move material into and out of the chondrule. Further 

evidence for this is seen in Figs. 5.5c,d in which the material immediately surrounding 

μm-size pores is preferentially enriched in K (as K-feldspar) suggesting incorporation of 

K from a fluid that flowed through that pore. 

Most pores present within the small chondrules also exhibit morphologies that 

indicate the dissolution of chondrule mesostasis (Fig. 5.2). Some of these pores can be 

very large (up to 300 μm long) relative to the size of the porphyritic chondrules (700-

1000 μm in diameter) in which they are present (Figs. 5.2d-f). Large pores occur 

preferentially in porphyritic chondrules because of the relatively large regions of 

mesostasis found in these chondrules compared to finer-grained chondrule textures such 

as barred olivine, radiating pyroxene, and cryptocrystalline (Figs. 5.2g-i). Porosity is also 

present in the non-porphyritic chondrules, but is generally smaller and more difficult to 

resolve at the μCT scan resolution we used. The chondrule in Fig. 5.2f appears to have a 

pore within an olivine phenocryst. The presence of melt inclusions in the other olivine 

phenocrysts in this chondrule indicates that the olivine-bearing pore may have been 

produced by leaching of a melt inclusion, possibly connected to the grain edge through a 

crack. 

Tertiary processes, those that have affected porosity since the meteorite has been 

on Earth, are unlikely to have had a significant impact on μCT-based chondrule porosity 

measurements of Saratov. The primary reason for this is that because Saratov is a fall, the 
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time this meteorite has spent outside of curation, and exposed to terrestrial weather, is 

minimal. Also, terrestrial weathering of ordinary chondrites is known to decrease 

porosity through the expansion of oxidation products into the pore space (Bland et al., 

1998). We have not observed any of these weathering products within the chondrules in 

this study. While removal of grains during the cutting and polishing procedure may cause 

an increase in the 2D porosity measurements of Ch1 and Ch7 as discussed above, the 3D 

measurements are unaffected by sample preparation. 

Overall, our observations of the porosity within these chondrules indicate a 

secondary, parent-body origin. The absence of observed primary porosity in unaltered 

chondrules renders the possibility of major primary porosity in these chondrules unlikely. 

Tertiary porosity is also unlikely because Saratov was not subject to terrestrial weathering 

and the μCT porosity measurements preclude the possibility of sample-preparation-

induced porosity through mechanical removal of chondrule material. We suggest that the 

porosity in these chondrules is predominantly the result of mesostasis leaching. In 

addition, volume change during mesostasis crystallization may be responsible for some of 

the sub-μm porosity. 

4.2. Porosity distribution and implications for asteroid physical properties 

Generally speaking, the OCs are chondrule-rich assemblages (up to 80% 

chondrules in primitive OCs: Scott and Krot, 2014) and the chondrules are cemented 

together by a fine-grained matrix that coarsens with increasing petrologic type. Macke 

(2010) compared bulk porosity, averaged for each chondrite group, with the average 

chondrite matrix abundances of those groups from Brearley and Jones (1998). He noted a 

general trend toward increasing bulk porosity with increasing matrix abundance and 



 

269 

 

inferred that most of the porosity was contained within the matrix. This makes intuitive 

sense because chondrules are igneous objects and are expected to be relatively dense 

while the matrix largely consists of a fine-grained assemblage of crystalline and 

amorphous silicates, metals, and sulfides. We can evaluate this quantitatively using our 

observations: we can estimate matrix porosity in Saratov using the chondrule porosities 

we measured (1-2%), the bulk chondrite porosities measured by other studies, and an 

estimate of the chondrule abundance. 

The bulk porosity of Saratov has been measured as 13% (Flynn et al., 1999), 

14.1%, and 11.3% (Macke, 2010) using He-pycnometry. Alexeyva (1958) measured the 

bulk porosity of Saratov as 18.2% using a Hg-based technique. However, because we 

consider the He-pycnometry values to be more robust, we use the mass-weighted average 

porosity of the recent studies, 13%, for this discussion. A mass-weighted average is used 

under the assumption that larger samples will yield more representative bulk porosity 

measurements. Using the estimated chondrule abundance in Saratov, 70-80%, the 

average bulk porosity, and our adjusted chondrule porosity measurement of 1-2%, we 

estimate that the matrix porosity is 40-60%, the highest value being for an 80% chondrule 

abundance with a 1% chondrule porosity. 

Examining the matrix directly in thin section it is easy to see that matrix porosity 

is highly variable (Fig. 5.9a). USNM 1423-3 (Fig. 5.9b) is much more porous than UNM 

1145 (Fig. 5.9c), although both may fall within our 40-60% estimate. In addition, high 

porosity fragments (or aggregates), with porosities estimated to be up to 65%, were noted 

in Saratov by Semenenko et al. (1992) and Girich and Semenenko (2003) and fall near 

the upper range of our matrix porosity estimates. Because of the extremely friable nature 
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of Saratov, determining matrix porosity directly from thin section is not reliable due to 

the possibility of removing material during the sample preparation process. However, it is 

apparent from both our estimate above and the fragility of Saratov that matrix porosity is 

substantial. 

A highly porous matrix has important implications for the physical properties of 

the parent asteroid, particularly material strength, thermal diffusivity, and fluid 

permeability. The friable nature of Saratov is likely due to low material strength in the 

matrix resulting from high porosity. Early numerical thermal models of OC onion-shell-

like metamorphism effectively assigned a single porosity value to the whole asteroid, 

incorporated into the average thermal properties measured for porous OCs (Miyamoto et 

al., 1981). Bennett and McSween (1996) used thermal properties for both high (9-10%) 

and low (3-5%) porosity OCs to explore the differences between compacted and 

uncompacted asteroids. More recent models have recognized the importance of regolith 

insulation and include highly porous (up to 50%) outer layers into their models (Akridge 

et al., 1998; Harrison and Grimm, 2010). 

For these onion-shell models, the extent of thermal metamorphism decreases from 

the core to the surface, resulting in successive layers that are represented by petrologic 

type 6 (core) to 3 (surface). Because the bulk porosity of OCs varies with petrologic type 

(Macke, 2010), the thermal properties of each layer are likely dependent on the degree of 

metamorphism experienced and thus evolve over the thermal history of the asteroid. For 

example, petrologic type 4 could represent an insulating layer at depth, below the 

regolith, that has not been considered. This is because petrologic type 4 represents the 

material where evidence for fluid activity is extensive, but the effects have not been 
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annealed out by progressive heating such as has been experienced by petrologic types 5 

and 6. Average OC porosity decreases from type 4 to type 6 (Macke, 2010), so the 

thermal diffusivity of the asteroid should also increase with depth, and time, during the 

metamorphic process. Because bulk chondrule porosity is small compared to matrix 

porosity, the evolution of porosity with petrologic type is tied to processes that affect 

matrix, most likely recrystallization during thermal metamorphism. However, this simple 

picture is complicated by the fact that decreasing bulk porosity is also correlated with 

increasing shock stage (Macke, 2010) so that the porosity produced during thermal 

evolution of an asteroid can be subsequently altered by compaction and annealing during 

impact processing. 

Porosity is also important because it controls permeability, and hence fluid flow, 

during aqueous alteration and during metasomatism associated with thermal 

metamorphism. The effects of aqueous alteration have been noted in Type 3 OCs 

(Alexander et al., 1989; Grossman et al., 2000; Grossman et al., 2002) and metasomatism 

is prevalent in petrologic types 4 and 5, including Saratov (Lewis and Jones, 2016a). 

Permeability requires interconnected porosity and the high porosity of OC matrix, at least 

in Saratov, implies a relatively high bulk permeability. However, the permeability of 

chondrules themselves is considerably lower. 

We can estimate the difference in permeability between chondrules and matrix 

from the porosity estimates above, using the porosity-permeability relationship of Costa 

(2006). This relationship applies to non-granular porous media with fractal pore space 

geometry, like chondrules, unlike the classic Kozeny–Carman relation which is more 

appropriate for permeability in porous granular media, such as sand. In the absence of fit 
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parameters measured for chondrites, we used a variety of fit parameters determined by 

Costa (2006) for different studies of natural eruptive material (basalts and pumice) to 

provide estimates on the differences in permeability between chondrules and the matrix. 

Using this method, the estimated permeabilities of the chondrules that we measured are 

between 10-3-100 mdarcy (1-2% porosity, measured) and the permeability of the matrix 

between 101-103 mdarcy (40-60% porosity, calculated), a difference of four orders of 

magnitude.  

Extending this estimation to the bulk porosity of Saratov, 13%, yields a 

permeability of 100-102 mdarcy. However, Corrigan et al. (1997) measured the 

permeability of chondrites to be lower: 10-2 mdarcy for Julesburg (L3.6, 5% porosity),  

10-2-10-1 mdarcy for Bali (CV3, 10% porosity), and 10-1-100 mdarcy for Murchison 

(CM2, 23% porosity). The difference between their measurements and our estimates is 

due to a lack of chondrite-appropriate fit parameters for the porosity-permeability 

relation. While the shape of the relation curve is reasonable, as is the 104 mdarcy 

difference in permeability between chondrules and matrix, the absolute permeability 

values are clearly too high. 

Additionally, the permeability of the chondrules is complicated in detail. Ch1 has 

large pores that, based on the resolution of the μCT scan used, are not interconnected; 

however, it is likely that they are connected at smaller scales. In contrast, Ch7 has 

interconnected porosity through one end of the chondrule that is easily visible in the μCT 

scan. In both cases, the total porosity is low and BSE images suggest that not all the pores 

are interconnected at smaller scales with respect to the resolution of the μCT scans, such 

as the pores internal to the pyroxene phenocrysts in Ch1 (Fig. 5.5b) or the matrix pores in 
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Ch7 (Fig. 5.6d). Permeability in chondrules is largely facilitated by leached and highly 

porous mesostasis in addition to cracks. It is likely that the high permeability of the 

matrix has allowed fluid flow, resulting in the dissolution and removal of chondrule 

mesostasis, which in turn led to the development of chondrule porosity. 

4.3. Vugs and vapor deposited minerals 

 Euhedral crystals of olivine and chromite protruding into vugs, like those in Ch1 

(Fig. 5.7), have been reported in several equilibrated OCs. Vugs have been described 

primarily, but not exclusively, in petrologic type 5 L and H chondrites. The crystals have 

been interpreted as the products of vapor deposition, and two mechanisms for their 

formation have been proposed: the fluids from which the crystals are deposited may be 

derived from shock volatilization or by parent body degassing during thermal 

metamorphism. 

 Olsen (1981) described large vugs (as big as 10 x 10 mm) in Farmington (L5), 

Oryinio (H5), and Tadjera (L5) and noted vugs in Lubock (L5), Arapahoe (L5) and 

Wickenburg (L6), all chondrites which were studied for extensive shock features by 

Smith and Goldstein (1977). In addition, vugs have been described in the heavily shocked 

meteorites Chelyabinsk (LL5), Shaw (L5), Rose City (H5), Jinju (H5), and Yanzhuang 

(H6) (Fruland, 1975; Taylor et al., 1979; Xie and Chen, 1997; Choi et al., 2015; Sharygin 

et al., 2015). The shock mechanism invokes the heterogeneous nature of shock 

propagation to vaporize small amounts of material during high energy shock events. The 

vaporized material then condenses into nearby pore spaces producing euhedral minerals. 

These minerals are typically common chondrite-forming minerals and include olivine, 

pyroxene, plagioclase, and chromite. The composition of these phases is often the same, 
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or similar, to the corresponding phases in the rest of the chondrite apart from albite: 

(Olsen, 1981) noted near endmember albite growing into pores in Farmington.   

 Vugs are also reported in the L5 chondrites Baszowka and Mt. Tazerzait (Wlotzka 

and Otto, 2001) and the H4 chondrite Sena (Christophe-Michel-Lévy, 1979), meteorites 

that do not have indications of high degrees of shock. Wlotzka and Otto (2001) 

differentiate vugs in these low-shock meteorites from vugs in meteorites that show 

evidence for high degrees of shock. They attribute the growth of olivine and pyroxene 

into pores of low-shock samples to vapor deposition during thermal metamorphism. 

Saratov also has a low degree of shock with an assigned shock stage of S2 (Rubin, 1994) 

or S3 (Friedrich et al., 2004). Since we have also shown that there is independent 

evidence for metasomatism in Saratov (Lewis and Jones, 2016b), we conclude that the 

vugs we observe in Saratov chondrules are more likely formed during thermal 

metamorphism via parent body degassing than from vapors produced during shock 

events. 

 Vugs within chondrules have only been reported specifically by Choi et al. (2015) 

in Jinju. It is likely that vugs are present in chondrules within other meteorites mentioned 

above, but the relatively large sizes of the vugs in the bulk meteorite relative to the 

chondrule sizes makes them less likely to be observed and reported. While the vugs 

within the matrix can be caused by pore spaces produced in the voids between chondrule 

components (e.g., pores between packed chondrules), vugs within chondrules require at 

least two events to produce them: removal of material to form the pore and addition of 

vapor to deposit the minerals.  
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 The presence of vugs predominantly in type 5 OCs is instructive as to the 

processes involved in their formation. Although there is a large degree of heterogeneity 

between samples, type 4 OCs have, on average, the highest porosity of OC falls (Macke, 

2010). This could be due to a combination of the crystallization of matrix and the 

removal of material via metasomatic fluids during thermal metamorphism. Thermal 

metamorphism is also characterized by the progressive chemical and textural 

equilibration of OC mineralogy through petrologic type 6. The temperatures experienced 

by type 5s may lead to deposition of minerals into the pores developed during 

metamorphic/metasomatic processing in type 4s. Porosity decreases in type 6 OCs 

relative to lower petrologic types with the completion of textural equilibration (Macke, 

2010).  

 In summary, the mineral grains in vugs that we observe in Saratov chondrules 

were most likely formed by vapor deposition during thermal metamorphism. Large scale 

porosity, developed in the chondrules largely by dissolution and transport of chondrule 

mesostasis, was followed by a period of vapor transport and deposition. 

4.4. Changes in bulk chondrule chemistry driven by porosity 

Porosity affects bulk chondrule chemistry in two ways: through the removal of 

material during pore development and from metasomatic reactions that utilize pore 

networks. The development of porosity through dissolution of chondrule mesostasis 

glass, and transport of dissolved species out of the chondrule, removes elements enriched 

in the mesostasis like Si, Al, Na, and K. We estimate 20-30% loss of mesostasis in the 

two large chondrules based on the porosity and mesostasis abundance measurements 

made from the 2D chondrule maps (Fig. 5.3, Table 5.2). We can use the bulk and 
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mesostasis compositions of Type IIB chondrules (Table 5.3), measured in minimally 

metamorphosed, petrologic type 3.00 chondrite Semarkona (Jones, 1996), as an 

approximate analog for the pre-alteration composition of the Saratov chondrules. 

Removal of 25% of the mesostasis, with an average mesostasis abundance of 10% (Table 

5.2), corresponds to a 21% loss of Al2O3 and 15% loss of alkalis from the bulk chondrule 

composition, in addition to minor losses of SiO2 and CaO. From the μCT scans of the 

smaller chondrules (Figs. 5.2d-f) and the BSE maps of Saratov in thin sections (Fig. 5.9), 

it is evident that some chondrules have experienced an even greater degree of mesostasis 

loss. 

Porosity also provides a transportation network for fluids that can engage in 

metasomatic exchange reactions with olivine and pyroxene phenocrysts in addition to 

crystallized feldspathic mesostasis and other phases. Ch1 and Ch7 have pronounced 

zoning in Mg# (Figs. 5.8b, 5.8e) with an average chondrule core Mg# (atomic) of 87-90 

in both chondrules, surrounded by outer zones with an average Mg# of 80-81 (Table 5.3). 

In both chondrules, the locations of Fe-rich zones are directly correlated with the location 

of the highly porous regions. This implies the introduction of Fe into the chondrule 

through a mechanism related to the porosity. However, it is not clear whether the Fe was 

introduced during the mesostasis leaching event, by Fe-bearing fluids, or whether 

mesostasis leaching was later followed by infiltration of Fe-bearing fluids that utilized the 

existent porosity network. As discussed further below, introduction of Fe is usually 

thought to result from solid-state Fe-Mg diffusional exchange. 

Like Fe, K appears to have been introduced through the pore network, either 

during or after mesostasis leaching. Potassium is enriched in the mesostasis along the 
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boundary between the core and outer zone in Ch1 and, to a lesser extent Ch7. However, 

the expression of K enrichment is very different between the two chondrules. Ch1 has K-

feldspar exsolution from albite in the crystallized chondrule mesostasis (Fig. 5.5c,d). The 

presence of albite might also be evidence for the introduction of Na in addition to K. 

Albitization of Ca-bearing plagioclase is known to affect type 4 OCs (Kovach and Jones, 

2010; Lewis and Jones, 2016b) and Saratov in particular (Lewis and Jones, 2016a). 

Although there is no evidence that Ca-plagioclase was present in these chondrules, the 

albitization in other chondrules requires the involvement of a Na-rich fluid. K-feldspar 

exsolution is coarser near the larger pores and generally heterogeneous throughout the 

boundary zone, indicating infiltration of an alkali-bearing fluid through the pore network. 

The presence of exsolution in what may be generally described as an antiperthite 

texture, K-feldspar lamellae in an albite host, implies that the K was added at a 

temperature above the alkali-feldspar solvus, ~600 °C (Brown and Parsons, 1989), 

followed by cooling and exsolution. The fluids could have acted during metamorphism 

with exsolution taking place during retrograde metamorphism. However, the fine scale of 

the exsolution lamellae implies rapid cooling, ~1 °C per 101-103 year (Brown et al., 1983; 

Brown and Parsons, 1989; Lewis et al., 2016), much faster than is typically measured for 

retrograde metamorphism of ~1 °C per 104-106 years (Scott et al., 2014). Alternatively, 

late stage, high-temperature fluids moving through the asteroid during, or after, 

retrograde metamorphism could act in discrete bursts followed by rapid cooling to the 

ambient temperature, producing the textures we observe. 

In contrast to Ch1, Ch7 contains merrihueite, an alkali-bearing phase, intergrown 

with the silica, and no K-feldspar in the crystallized mesostasis (Fig. 5.5f). The formation 
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of merrihueite in silica-merrihueite-bearing pyroxene chondrules has been attributed to a 

reaction of silica with an alkali-rich vapor on the parent body (Krot and Wasson, 1994) or 

in the solar nebula (Wood and Holmberg, 1994). Seifert and Schreyer (1969) studied the 

formation conditions of merrihueite and found that it formed in hydrous conditions at 

temperatures >560 °C at 0.5 kb fluid pressure. This is in line with the temperatures 

expected for incorporation of K into alkali feldspar in Ch1. Interestingly, while both 

chondrules were only a few mm apart in the hand sample, and both are silica-bearing, 

only Ch7 shows silica alteration to merrihueite. 

There are two possible explanations for the difference in alteration features 

between the two chondrules. First, alteration of silica to merrihueite could have occurred 

in the solar nebula as was suggested by Wood and Holmberg (1994). Differences in the 

formation regions could then explain the differences in alteration between the two 

chondrules prior to their accretion near to each other on the parent body. However, one 

would expect parent body alteration by a K-bearing fluid to have then affected both 

chondrules equally and produce K-feldspar exsolution in both. Also, Krot and Wasson 

(1994) point out that merrihueite has only been seen in type 3 chondrites >3.7, implying a 

relationship with mild metamorphism. 

A second, more likely, possibility is that the mode of alteration (K-feldspar vs 

merrihueite) is related to the abundance and distribution of the altered phase. Ch1 has 

over four times the abundance of crystallized mesostasis glass than silica (Table 5.2) and 

the silica is concentrated in the core (Figs. 5.5a, 5.8a,c), interior to a large portion of 

crystallized mesostasis. Ch7 has a more equal abundance and distribution of silica (plus 

merrihueite) and crystallized mesostasis glass (Table 5.2, Figs. 5.5e, 5.8d,f). The 
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crystallized mesostasis in Ch7 is also present in small, disconnected patches. K-bearing 

fluid infiltration from the chondrule exterior, through the pore network, is more likely to 

encounter mesostasis glass in Ch1 and silica in Ch7.  

We suggest that a hot, >600 °C, anhydrous, K-bearing fluid infiltrated both 

chondrules during retrograde metamorphism, altering the major primary mesostasis 

phase, silica or glass/albite and that the system then cooled rapidly to ambient 

temperature. While Krot and Wasson (1994) did not consider hydrous alteration of silica 

to merrihueite, Seifert and Schreyer (1969) show that it is a viable mechanism. However, 

late-stage fluids are suggested to be anhydrous by the lack of OH in OC apatite (Jones et 

al., 2014; Jones et al., 2016; Lewis and Jones, 2016b). Krot and Wasson (1994) also 

suggest that merrihueite formation occurs during impact events that produced hot, alkali-

bearing vapor alteration. This would explain the high-temperature incorporation of K into 

alkali feldspar following by rapid cooling to produce fine-scale antiperthite. It is also in 

line with the suggestion by Olsen (1981) that vugs are produced during impact events. 

However, the associated indicators for shock processing, such as high shock stage or 

brecciation, are absent in Saratov. Instead, we suggest that outgassing events from the 

asteroid core could also produce similar signatures in all cases. In an onion-shell asteroid 

model, the asteroid interior can still be at high temperatures, and may even be partially 

molten, while the exterior layers are undergoing retrograde metamorphism. 

Overall, a complicated picture of secondary processing is painted by the 

development of porosity and the signature of chemical exchange revealed by these 

chondrules. OC chondrules clearly behaved as open systems during metamorphic 

processing. The development of chondrule porosity implies transport of Si, Al, Na, and K 
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out of the chondrules, largely through the dissolution of chondrule mesostasis. Pores 

created during mesostasis leaching serve as conduits for further metasomatic processing. 

The reduction of Mg# in the outer zone and near pores, and the presence of K-rich 

alteration of mesostasis and silica, implies the transport of Fe and K into the chondrules. 

We have previously observed that both K and Na are introduced into chondrules by fluids 

during thermal metasomatism and that alkali metasomatism of anorthitic feldspar is likely 

the major driver of plagioclase equilibration in type 3 and 4 OCs (Lewis and Jones, 2014; 

Lewis and Jones, 2016b). It is possible that Fe is incorporated during retrograde 

metamorphism along with Na and K, but this seems unlikely given the consistency with 

which Fe incorporation dictates the petrologic sequence. 

Iron-Mg exchange between chondrules and the matrix is not often considered to 

be the result of fluid activity in OCs. It is treated as a solid state diffusional process in 

which olivine and pyroxene equilibrate chemically, as well as texturally, during thermal 

metamorphism. If this is the case here, then the Fe-Mg exchange must have postdated the 

formation of the porosity to achieve the pattern of Fe-enrichment we observe. However, 

fluid infiltration of Fe could produce the same effect. We propose the following sequence 

of events. During prograde metamorphism, aqueous fluids, derived from ices 

incorporated during accretion, leach away chondrule mesostasis glass, producing 

porosity, incorporating Fe into olivine and pyroxene, and transporting dissolved ions into 

the matrix. The fluid then runs out and the mesostasis continues to crystalize through 

peak metamorphism. During retrograde metamorphism, high temperature outgassing 

from the asteroid interior alters silica to merrihueite, incorporates Na and K into alkali 

feldspar, and crystalizes the vug phases, olivine and chromite, into the larger pores. The 
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temperature drops rapidly to the ambient temperature producing fine-scale K-feldspar 

exsolution. 

The scale to which the system can be considered open beyond the chondrule scale 

is ambiguous. Concentrations of the elements lost during mesostasis leaching (Si, Al, Na, 

and K) do not show appreciable differences in bulk OCs between individual samples or 

petrologic types (Kallemeyn et al., 1989), suggesting closed system behavior on cm 

length scales. If this is the case, then the fluid carrying mesostasis-derived ions must have 

precipitated its salt ions nearby. One possibility is that they were precipitated into the 

matrix as an alkali-rich phase such as feldspar. In addition, this alkali-rich fluid could 

have altered phases within other chondrules, such as the albitization reactions seen in 

anorthitic plagioclase (Lewis and Jones, 2016a).  

However, the lack of evidence for hydrated minerals in metamorphosed OCs 

implies that water itself must have acted in an open system manner on kilometer length 

scales. Dehydration of any hydrated phases through increasing metamorphic temperatures 

would have driven water into the outer layers of the asteroid. Large scale flow without 

long distance transport of ions could be facilitated by a low water-rock ratio. Leaching 

and transport of mesostasis ions would closely be followed by alteration of nearby 

material and ultimately precipitation of salt ions during evaporation. 

5. Conclusions 

We measured porosity in Saratov chondrules, using three-dimensional μCT and 

two-dimensional SEM observations, to characterize the abundance and distribution of 

pores within chondrules and to help understand how porosity facilitates chemical 

exchange during metamorphism. Bulk porosity in the chondrules we measured is 1-2% 
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by volume. We argue that chondrule porosity is a secondary, parent body feature. Pores 

form through the dissolution of chondrule mesostasis by an aqueous fluid during the 

metasomatism that accompanies thermal metamorphism. Because chondrule porosity is 

far less than the bulk chondrite porosity measured for Saratov, ~13%, and because 

chondrules comprise 70-80% of the volume, we estimate a highly porous matrix of 40-

60%. This is consistent with thin section observations and the extremely friable nature of 

Saratov in hand sample. 

Fluid-mediated chemical exchange utilizing pore networks is suggested through 

two observations. The first is through the presence of vugs, i.e., pores in which euhedral 

olivine and chromite crystals are present. We suggest that the vugs formed from vapor 

deposition during thermal metamorphism after the formation of large scale porosity. The 

second observation is the enrichment of Fe and K correlating with the pore network in 

chondrules. Pyroxene is enriched in Fe in the outer zones of chondrules and adjacent to 

the major pores, implying transport of Fe from the matrix through the pore network. K-

enrichment, as K-feldspar exsolution in the crystallized mesostasis glass of Ch1, 

preferentially occurs near the Fe-enriched regions. In Ch7, K-enrichment occurs as the 

silica alteration phase merrihueite. We suggest that K-alteration of the two phases 

occurred during the same event(s) during retrograde metamorphism. Overall, the 

development of porosity during thermal metamorphism of the L chondrite parent body 

altered its physical properties and contributed to its chemical evolution. 
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APPENDIX 2 

 

Method for determining bulk chemical compositions from quantitative EPMA maps 

 

 

 

1. Introduction 

 Determining bulk chemical compositions of geologic materials from polished 

mounts and thin sections is useful for answering a range of questions. In chondrites, the 

bulk compositions of chondrules can be used to understand their formation in the solar 

nebula (e.g., Fig. 2.6) and their alteration during parent body processing (e.g., Fig. 5.8). 

In achondrites, the bulk compositions of clasts (Carpenter et al., 2017) and symplectites 

(Carpenter et al., 2013) can be used to understand the origin and history of the host 

material. However, these samples can be complex and determining bulk compositions 

difficult. Some are characterized by fine-grained intergrowths and others exhibit 

pronounced compositional zoning. 

Electron probe microanalysis (EPMA) is primary tool for making precise 

measurements of minerals and other phases in polished mounts or thin sections. There are 

two general methods for determining bulk compositions using EPMA: defocused beam 

analysis (DBA) and modal recombination analysis (MRA). DBA uses a broad beam, or 

scanned beam with continuous collection, to average the composition of the material over 

the area of interest. MRA uses modal phase abundances, determined from electron or 

element maps, combined with phase compositions and densities to determine an average 

composition.  

Berlin (2009) illustrates that MRA is superior to DBA because the former suffers 

from compositional misrepresentation of phases that differ from the average density of 
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the analyzed material. That is, in DBA, high density phases such as metals and sulfides 

are underrepresented in the bulk composition whereas low density phases such as glasses 

are overrepresented. However, accurate MRA can be difficult to achieve using phase 

compositions from representative point analyses if individual mineral phases show 

pronounced zoning. 

In this appendix, I will demonstrate a method of processing quantitative EPMA 

maps that results in density-corrected bulk chemical compositions. This method can be 

used in heavily zoned minerals even if the density varies with composition. I will also 

demonstrate its use in determining modal mineral abundances and in isolating and 

characterizing individual minerals. While I used MATLAB to implement this method, it 

is not specific to MATLAB and can be implemented in various analytical software  

packages and programming languages. For this example, I will use Semarkona (LL3.00) 

chondrule 23, a Type I POP chondrule from Lewis and Jones (in review) (Figs. 2.3c,d, 

2.6). A backscattered electron (BSE) image and qualitative FeMgAl RGB image of 

chondrule 23 are shown in Fig. A2.1. 

2. Data acquisition 

For chondrule 23, I acquired 300x300 pixel maps for 10 elements in two passes 

on a JEOL 8200 EPMA using Probe for EPMA software. I used 80 ms/px dwell time and 

a 2 μm spot size producing 600x600 μm maps. The resulting intensity maps were 

processed using mean atomic number (MAN) background corrections to produce 

quantitative oxide maps using CalcImage. MAN background corrections are useful for 

estimating peak background intensities without having to produce off-peak maps.  
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Figure A2.1. BSE image and RGB element map of Semarkona (LL3.00) chondrule 23. 

(a) BSE image illustrating Type I POP chondrule in Semarkona. (b) Qualitative FeMgAl 

RGB element map of chondrule 23 illustrating troilite (red), olivine (bright green), 

pyroxene (dark green), and feldspathic mesostasis (blue). 

 

 

However, other background correction methods can also be used. The resulting full-

frame quantitative oxide maps are shown in Fig. A2.2. 

3. Masking and point selection 

 After data collection and processing to produce quantitative oxide maps, I use the 

BSE image (Fig. A2.1a) to produce a mask of the chondrule to remove matrix, and other 

external features, that are not wanted in the bulk composition. I typically do this in Adobe 

Photoshop with unwanted areas colored black and the chondrule colored white. The mask 

needs to contain only black and white pixels and be the same exact resolution as the 

maps. The BSE image generated during acquisition is perfect for this purpose. 

 I apply the chondrule mask to all oxide maps and then produce a histogram of 

oxide totals (Fig. A2.3a). There should be a peak near 100%. I then constrain totals to a 

symmetric window around the peak. In this example, the peak is at 98% and I use a broad 
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Figure A2.2. Quantitative EPMA oxide maps for SiO2, Al2O3, Cr2O3, MgO, FeO, and 

CaO. 
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Figure A2.2. (Continued). Quantitative EPMA oxide maps for Na2O, K2O, total wt.% 

oxide, and atomic Mg# (Mg/(Mg+Fe)×100%). 

 

 

window of 90-106% (Fig. A2.3b). Because of the low dwell time (80 ms/px), the 

precision of any given pixel is not as good as typical 30 second point analyses. As such a 

broad window that captures most of the peak will provide enough points to calculate a 

bulk composition. Furthermore, I eliminate pixels where the SiO2 content is <20% 

because I am only interested in the bulk silicate composition of this chondrule, not the 

metals or sulfides. However, metals and sulfides can also be calculated with this method. 

 Figure A2.4 illustrates the masking process with the chondrule mask (Fig. A2.4a) 

and the accepted pixel mask (Fig. A2.4b) applied to the FeMgAl image (Figs. A2.4c,d).  
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Figure A2.3. Histogram of oxide totals. (a) Broad histogram showing oxide totals from 

all masked pixels between 70 and 120 wt.% oxide totals. (b) Final selected window of 

90-106 wt.% oxide totals, centered on the peak at 98%. 
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Notice the sulfides (red in Fig. A2.4c) are removed in the final set of accepted pixels 

(Fig. A2.4d). Also absent are pores, cracks, and many grain boundaries. These are 

regions in which the totals deviate from the accepted window (Fig. A2.3b). 

 

 

 
 

Figure A2.4. Illustration of masking. (a) Chondrule only mask and (b) chondrule mask 

with rejected pixels removed for violating totals restriction or SiO2 content constraints. 

(c) FeMgAl RGB map with chondrule only mask applied. (d) FeMgAl RGB map with 

chondrule mask and accepted pixels mask applied.  
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4. Phase selection and abundance 

Once a set of acceptable pixels are selected, the next step is to divide those pixels 

up into different phases. This is done through visualization in oxide-oxide plots (Fig. 

A2.5). This chondrule is simple in that it only contains four major phases: olivine, 

clinopyroxene (CPX), orthopyroxene (OPX), and mesostasis. Olivine is separated from 

the other phases based on its high MgO/SiO2 ratio (blue pixels in Fig. A2.5a). Next, 

mesostasis is separated out based on its high Al2O3 content (purple pixels in Fig. A2.5b). 

Finally, CPX and OPX are separated based on CaO content (orange and yellow pixels in 

Fig. A2.5c). 

There is considerable scatter in the individual points that can lead to difficulty 

discerning phase boundaries, particularly in zoned phases. However, heat maps can 

reveal compositional clustering and provide more easily visible boundaries between the 

phases. These heat maps are 2D histograms in which the count/bin is assigned a color 

value. In addition, the heat maps have been converted to log10(count) so that, in this case, 

the white pixels have nearly two orders of magnitude more counts than the green pixels. 

The resulting phase map is shown in Fig. A2.6 and can be compared to the BSE image to 

check for consistency and reliability. The phase map can also be used to determine the 

modal phase abundances by dividing the number of pixels assigned to a phase by the total 

number of good pixels. The modal phase abundances for chondrule 23 are listed in Table 

2.2. 
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Figure A2.5. Oxide-oxide plots for phase discrimination. These are presented as point 

plots and as log-based heat maps. (a) SiO2-MgO plot to distinguish olivine (blue). (b) 

SiO2-Al2O3 plot to distinguish mesostasis (purple). (c) SiO2-CaO to distinguish CPX 

(yellow) from OPX (orange). 
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Figure A2.6. Chondrule phase map illustrating OPX (green), CPX (red), olivine (blue), 

and mesostasis (white). 

 

 

5. Density mapping and bulk composition 

The next step is to assign a density to each phase. This can be done simply, such 

as one density value per phase, or in a more complex manner involving solid solution. In 

this example we use a density of 2.6 g/cm3 (average plagioclase) for the mesostasis. 

Olivine was assigned 3.2-4.4 g/cm3 as a solid solution between forsterite and fayalite, 

based on atomic Mg# (Fig. A2.2). A similar process was done with OPX: 3.2-3.9 g/cm3 

for enstatite-ferrosilite and CPX: 3.3-3.6 g/cm3 for diopside-hedenbergite. The density 

map for chondrule 23 is illustrated in Fig. A2.7. The bulk composition is then determined 

by taking a density-weighted mean of each oxide map. The bulk composition for 

chondrule 23 produced by this method is listed in Table 2.2. 
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.  

 

Figure A2.7. Phase density map for chondrule 23. 

 

 

6. Additional uses and limitations 

 Figure A2.8 illustrates a simple application of this method to major mineralogy in 

chondrule 23. Atomic Mg# is being displayed for olivine, CPX, and OPX together in Fig. 

A2.8a and for each mineral separately in Figs. A2.8b-d. Any given phase can be extracted 

and displayed using any of the chemical information produced by the maps. This is 

particularly useful for zoned phases. Here, we can see OPX laths (Figure A2.8b) are not 

zoned whereas the olivine phenocrysts are zoned in Mg relative to Fe (Figure A2.8c) with 

the outer rim matching the Mg# of CPX (Figure A2.8d). Another potential use of these 

data is more statistically rigorous cluster analysis than the simple visual phase separation 

displayed in Fig. A2.5. 
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Figure A2.8. Atomic Mg# of major phenocrysts in chondrule 23. (a) Olivine, CPX, and 

OPX, (b) OPX only, (c) olivine only, and (d) CPX only. 
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Figure A2.9. Histogram of wt.% oxide totals for each phase separately. 
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 There are also limitations to the accuracy of the bulk composition generated using 

this method. First, removing low and high totals removes anomalous analyses, 

particularly those on grain boundaries (Fig. A2.6). Removal of pixels on grain boundaries 

leads to the loss of a greater percentage of low-abundance phases, such as mesostasis 

glass in this case. Second, not all phases have the same histogram peak seen in Fig. A2.3. 

In fact, each phase can have its own peak and the bulk peak is just a sum of the different 

phases. This is illustrated in Fig. A2.9 where olivine and OPX share one peak and CPX 

and mesostasis are close to another peak at lower Mg#. Thus, constraining all phases to 

the 90-106% window preferentially removes good pixels in some phases over others. 

Finally, the precision of the bulk composition is dependent upon on the precision of the 

original data. Despite these potential issues, this method provides a reasonable starting 

point for generating bulk chemical compositions using quantitative EPMA maps in 

complex samples. 
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APPENDIX 3 

 

Compilation of radiogenic ages from ordinary and carbonaceous chondrites 

 

 

 

1. Introduction 

 The formation and early evolution of the solar system is tied to our understanding 

of primitive asteroids. Chondrites are samples of these primitive asteroids that have fallen 

to Earth as meteorites and are known to contain the first solids formed in the solar nebula: 

calcium-aluminum-rich inclusions (CAIs) and chondrules (Scott and Krot, 2005). In 

addition to their primitive constituents, chondrites retain records of some of the earliest 

chemical and physical processing in the forms of aqueous alteration (Brearley, 2006) and 

thermal metamorphism (Huss et al., 2006). Also, chondrites are nearly identical in 

composition to the bulk solar system (i.e., the Sun) so they are often taken to be the 

starting material for the terrestrial planets (Anders and Grevesse, 1989; McDonough and 

Sun, 1995). Since the earliest histories of Earth and the other terrestrial planets have 

largely been lost due to differentiation and extensive geologic processing, chondrites can 

be used as proxies for reconstructing the first few million years of solar system evolution. 

 Perhaps the most powerful tools for understanding the chronology of geologic 

processes are radioactive isotopes. Both long- and short-lived isotope systems are 

applicable to the study of chondrites and their components. The long-lived U-Pb system 

has proven useful for absolute dating of a variety of solar system materials. Due to its two 

simultaneous systems 238U→206Pb and 235U→207Pb, only the Pb components typically 

need to be measured to provide useful (Pb-Pb) ages. Most importantly, Pb-Pb dating of 

CAIs, the first material to condense in the solar nebula, has set the formation age of the 
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solar system to 4567.30±0.16 Ma (Connelly et al., 2012). Lead-Pb can also be used to 

date chondrite metamorphism due to the development of phosphates which can contain 

relatively high concentrations of U (Göpel et al., 1994). 

Short-lived radioisotope systems provide ages relative to an anchor sample. It is 

commonly thought that a supernova injected a variety of radioactive isotopes into the 

solar nebula shortly before the first materials started to form although other sources of 

short-lived radioisotopes are possible (Davis and McKeegan, 2014). These isotopes decay 

fairly quickly and can provide detailed chronology of the early solar system relative the 

anchor sample. In order to provide an absolute age, the absolute age for the anchor 

sample needs to be measured (e.g., Pb-Pb age). 

Although they only provide relative ages, short-lived radioisotope systems have 

some advantages over long-lived systems. Their analytical procedures are easier than 

high-precision, long-lived isotope measurements and certain phases can be targeted due 

to their preference for the short-lived parent isotopes. For example, Al-Mg is used to date 

chondrule formation because chondrules often have Al-rich mesostasis glass and Mn-Cr 

is used to date aqueous alteration because Mn2+ easily substitutes for Ca2+ or Mg2+ in 

precipitating carbonates. However, these methods rely on an important assumption that 

the solar nebula was homogenous with respect to the isotope in question. So far, this 

assumption appears to hold, at least for the inner solar system materials for which we 

have samples (Villeneuve et al., 2009). 

 The purpose of this study was to use radioisotope ages to create a chronology for 

the assembly, aqueous alteration, and thermal metamorphism of chondritic asteroids. This 
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was done by compiling a wide range of ages from the literature pertaining to chondrite 

components and parent body processes. 

2. Methods 

 An extensive search through the literature was required to create a coherent 

timeline for chondritic asteroids. However, constraints were made on the types of ages 

collected and a large percentage of the data required reprocessing in order to be internally 

consistent. These constraints and processes are described below. 

2.1. Data acquisition 

There were several considerations made when assembling this set of data. First, a 

limited number of isotopic systems were included: Pb-Pb, Al-Mg, Mn-Cr, and Hf-W. 

These systems are commonly applied to chondritic materials and cover the range of 

processes considered in this chronology with enough data points to provide representative 

durations for each process. Lead-Pb is the long-lived system primarily used to date the 

short-lived radioisotope anchors (CAIs and angrites) and thermal metamorphism from 

phosphates. Aluminum-Mg is often used to date chondrule formation from Al-rich 

mesostasis and thermal metamorphism from the development of feldspar. Manganese-Cr 

is used to date aqueous alteration due to the formation of the carbonate minerals calcite, 

dolomite, and breunnerite. Hafnium-W is used to date metamorphism in the metal-

bearing ordinary chondrites. Argon-Ar ages have also been used to date late-stage 

metamorphism from feldspar due to relatively low closure temperatures but will not be 

included here because the system is easily disturbed by shock. In fact, Ar-Ar is also used 

to reveal impact histories of meteorite parent bodies though asteroid disruption is outside 

the scope of this study. 



 

367 

 

Second, relative ages were not included for objects acting as anchors. For 

example, Al-Mg ages were not included for CAIs because CAIs act as the anchor for the 

for the Al-Mg system. While it is important to consider Al-Mg for CAIs in terms of 

initial ratios, nebular homogeneity, and duration of CAI formation, the absolute ages 

produced from using these ratios acquire a degree of circularity and were not considered 

here. Relative ages for angrites were also not included because they act as the Mn-Cr and 

Hf-W anchor and there may be evidence for disturbance of the Al-Mg system (Kleine et 

al., 2012). Also, angrites are only presented as an anchor and not a major part of the 

chondrite timeline itself. 

Third, spurious data were avoided. This was only a problem with Mn-Cr ages for 

which poor standards caused issues with early analyses resulting in alteration ages 

predating parent body assembly. Poor data were specifically called out in the literature 

and not included here. Data that have generated considerable literature discussion but 

have not been proven spurious (e.g., Pb-Pb ages of select CAIs) were still included. 

Finally, anchors for the short-lived systems were chosen from the literature based 

on how commonly they have been used and how confidently the literature perceives in 

their reliability. CAIs are often used to anchor the Al-Mg system because if their high Al 

content. D'Orbigny is the oldest angrite sample and produces Mn-Cr and Hf-W values in 

the range needed for aqueous alteration and thermal metamorphism. Initial ratios and 

absolute ages were chosen from different literature sources as their values have been 

revised and updated over time. Decay constants were calculated from half-lives reported 

in the National Nuclear Data Center’s NuDat 2 database 

(http://www.nndc.bnl.gov/nudat2/). 
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2.2. Standardization of short-lived radioisotope data 

 Measurement of short-lived radioisotopes consists of producing isochron 

diagrams from which the initial amount of radioactive material can be determined using 

the slope of a linear regression. The relative age of the sample is then calculated 

according to Equation A3.1 using the Al-Mg system as an example: 

 Δ𝑡 = −
1

𝜆
ln

(

 
 
(
Al26

Al27 )
𝑠𝑎𝑚𝑝𝑙𝑒

(
Al26

Al27 )
𝑎𝑛𝑐ℎ𝑜𝑟)

 
 

 (A3.1) 

where Δt is the age relative to the anchor sample and λ is the decay constant. The 

absolute age is then calculated relative to the absolute age of the anchor. 

 Ages reported in the literature for short-lived radioisotope measurements used the 

best values for decay constants, anchor initial ratios, and anchor absolute ages at the time 

they were published. However, since the data acquired for this project were reported over 

a 25-year period, the values used to calculate their relative and absolute ages have 

changed over that time, sometimes considerably. For example, literature values for the 

half-life of 26Al ranges from 7.00×105 y to 7.30×105 y with the current value being 

7.17×105 y.  

Because of these variations, short-lived radioisotope ages cannot be compared to 

each other using the values as they have been reported. However, the initial ratios can be 

used to recalculate an internally consistent set of ages using updated literature values and 

Equation A3.1. The constant and anchor values used to recalculated absolute ages in the 

three short-lived radioisotope systems are listed in Table A3.1. Errors (2σ) for the initial 

ratios were propagated using Equation A3.1 but the errors associated with the half-life 
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and anchor values were not included. Changes in the decay constants for long-lived 

radioisotopes were not considered.  

 

 
Table A3.1. Values used for standardizing short-lived radioisotope ages. 

 Al-Mg Mn-Cr Hf-W 

Half-Life (t½) a 7.17×105 y 3.74×106 y 8.90×106 y 

Decay Constant (λ) b 9.67×10-7 y-1 1.85×10-7 y-1 7.79×10-8 y-1 

A
n

ch
o

r Sample 
CAIs 

(Allende & Efremovka) 

D'Orbigny 

(angrite) 

D'Orbigny 

(angrite) 

Initial Ratio 26Al/27Al = 5.23×10-5 c 53Mn/55Mn = 3.24×10-6 d 182Hf/180Hf = 7.15×10-5 e 

Absolute Age 4567.30 Ma f 4563.37 Ma g 4563.37 Ma g 
 

a Half-lives from National Nuclear Data Center, NuDat 2 database, http://www.nndc.bnl.gov/nudat2/; b calculated: 

𝜆 = ln 2 𝑡½⁄ ; c Jacobsen et al. (2008); d Glavin et al. (2004); e Kleine et al. (2012); f Connelly et al. (2012);  
g Brennecka and Wadhwa (2012). 

 

 

 

3. Results 

 A total of 220 radiogenic ages were assembled from the literature in order to 

construct the chondrite chronology. The distribution of these ages is summarized 

numerically by object and system in Table A3.2 and summarized visually by object and 

age in Figure A3.1. All data are plotted in Figures A3.2-A3.7 in the discussion and 

tabulated with references in Table A3.3. Each point is assigned a number which appears 

next to that point in each figure and corresponds to the row number in Table A3.3. These 

point numbers will be referred to in the text. 

 CAIs constitute the shortest formation interval of 3.18 Myr and range from 

4568.50 Ma to 4565.32 Ma (points 1-13). The age of the solar system is taken to be 

4567.30 Ma from Connelly et al. (2012) and the scatter about this age will be addressed 

in the discussion. Chondrule formation has a longer duration of 4.70 Myr and starts 

approximately with the start of the solar system (points 14-160). The assembly of the 
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various chondrite parent asteroids can then be assumed to have occurred after the last 

chondrule age for that group using the principal of inclusions. Possible exceptions to this 

are the CB chondrites (points 83 and 84) which will be addressed in the discussion. 

Aqueous alteration and thermal metamorphism are typically assumed to take place on the 

parent asteroids after assembly.  

 

Table A3.2. Number of ages per object and isotopic system. 

 Pb-Pb Al-Mg Mn-Cr Hf-W Total 

CAIs 13    13 

Chondrules 11 132 3 1 147 

Aqueous Alteration   24  24 

Thermal Metamorphism 21 2  4 27 

Angrites 9    9 

Total 54 134 27 5 220 

 

 

Aqueous alteration spans 4.84 Myr and starting at 4565.92 Ma, 1.37 Myr after the 

formation of the solar system (points 161-184). The heavily aqueously altered meteorites 

(CIs and CMs) typically do not have any remaining chondrules with which to constrain 

asteroid assembly however chondrules in the weakly altered CM Paris were dated to 

4566.47 Ma (point 75; Hewins et al., 2014) which is consistent with subsequent aqueous 

alteration. Thermal metamorphism appears to be a much longer process with ages 

ranging from 4562.70 Ma to 4504.40 Ma, a 58.30 Myr span (points 185-211). All 

metamorphic ages are older than the chondrule ages which is also consistent with thermal 

metamorphism post-dating assembly. Lead-Pb ages for angrites range 7.82 Myr from 

4564.42 Ma to 4556.60 Ma (points 212-220), considerably shorter than the metamorphic 

history recorded in chondrites. 
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Figure A3.1. Distribution of ages for chondrite components and processes. All points are 

represented in 1 Myr bins. 

 

 

4. Discussion 

4.1. CAIs 

 CAIs (calcium-aluminum-rich inclusions) are refractory nebular condensates 

found within most chondrites in varying modal abundances. CAI mineralogy was 

thermodynamically predicted to condense out of a high temperature gas of solar 

composition and the first inclusions were described in the CV chondrite Allende shortly 

after it fell in 1969 (McSween and Huss, 2010). As such, these refractory inclusions are 

of great interest for understanding the high temperature environment surrounding the 

early Sun. Duration of formation is expected to be relatively short and roughly 

correspond to Type 0 young solar objects (YSOs). Astronomically, these objects are  
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Figure A3.2. CAIs. Individual meteorites are grouped, red and blue lines represent the CAI and 

D’Orbigny anchors respectively. See text for details. 

 

 

characterized by rapid accretion onto the young star from an envelope of gas and dust for 

less than a million years (Williams and Cieza, 2011). Figure A3.2 shows the literature 

values for absolute ages of CAIs which show a range of 3.18 Myr. Although this is a 

shorter duration than the other objects considered here, it is still considerably longer than 

the expected million-year timescale.  

A possible explanation for this discrepancy lies in how the ages were calculated. 

Typically, the 238U/235U ratio is assumed to be fixed with a value of 137.88. This 

assumption simplifies the analysis as only Pb isotopic ratios need to be measured to in 

order to produce the final isochron. However, Amelin et al. (2010) pointed out that large 

variability in CAI ages may be due to 238U/235U ratios differing from the canonical value 

of 137.88 and showed that measured ratios indeed differ with values of 137.876 and 
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137.724 for Allende CAIs and chondrules respectively. Using the measured 238U/235U 

ratio, Amelin et al. (2010) produced an age of 4567.18 Ma for the Allende CAI (point 6). 

More recently, Connelly et al. (2012) produced three more CAI ages from the CV 

Efremovka ranging from 4567.23 Ma to 4567.38 Ma with measured 238U/235U ratios of 

137.627 to 137.832 (points 9-11). The average of these last three points is 4567.30±0.16 

Ma (implying a 0.16 Myr duration) and is the value adopted in this paper for CAI 

formation and the starting age of the solar system (Connelly et al., 2012). 

 While variable 238U/235U ratios may account for some scatter in the CAI ages 

(e.g., point 7), it does not make the issue disappear entirely. Points 1-3 hover around 4568 

Ma and while point 3 was measured assuming constant 238U/235U, points 1 and 2 were 

measured using the updated method (Bouvier and Wadhwa, 2010; Bouvier et al., 2011). 

This leaves two possibilities. First, that CAI ages are bimodal with one set forming 

around 4567 Ma and the other around 4568 Ma (at least within the scope of this limited 

data set). This may not be impossible as it is known that accretion onto a young star is not 

always a continuous process. FU Orionis has been observed to produce short, intense 

bursts which are attributed to surges of accretion (Williams and Cieza, 2011). However, 

these bursts occur on observational timescales much shorter than would be necessary to 

describe the million-year range shown in the data. Though in principal, discrete, high-

energy bursts of accretion could create CAIs with discrete age populations. The other 

possibility to describe the remaining scatter in the data is that there are additional 

unsolved analytical issues. 
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4.2. Chondrules 

 Chondrules are millimeter sized igneous spherules that are common in most 

chondrites. They formed from flash heating of nebular material in the first few AU from 

the sun, further than the inferred formation environment of CAIs. While there is little 

agreement on the exact mechanism that causes the flash heating events (impacts, bow 

shocks, nebular lightning, magnetic reconnection events, etc.), it is generally accepted 

that chondrules mark a time characterized by high energy processing of material within 

the solar nebula (Scott and Krot, 2005). Chondrule formation roughly lasts through the 

Type III YSO phase and ends with dissipation of gas and dust in the protoplanetary disk 

leaving a bare scattered disk (Williams and Cieza, 2011). The duration of chondrule 

formation from literature ages is 4.70 Myr with a mean age 1.87 Myr after CAI formation 

(Figure A3.3). 

The start of chondrule formation has been the source of considerable debate. 

Initially, the limited amount of chondrule data seemed to indicate a million-year gap 

between the formation of CAIs and chondrules. However, more recent data for the CV3 

chondrite Allende show some chondrules are just as old as CAIs (points 14-19) and must 

have started forming at roughly the same time (Bizzarro et al., 2004; Connelly et al., 

2012). These early ages are further enforced by observations of chondrules found within 

CAIs (Krot et al., 2005b). Interestingly, most meteorites do not show such primitive ages 

but instead have youngest reported ages of around 4566.5 Ma or less. 

The duration of chondrule formation from the data presented in Figure A3.3 is 

4.70 Myr. However, this includes two points for CB chondrites (points 83 and 84) which 

are noticeable outliers from the rest of the data. CB chondrites are also unusual in that  
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they contain up to 70% metal by volume, far greater than any other chondrite class. It is 

because of this, and other evidence, they are not considered to form in the same manner 

as other chondrites but instead formed as the product of an impact generated vapor-melt 

plume. As such, chondrules within CB chondrites likely date the impact event at ~4563 

Ma (Krot et al., 2005a). Removing CB chondrites reduces the duration for chondrule 

formation by 30% to 3.29 Myr with no chondrules after 4564 Ma. 

Figure A3.4 is a histogram illustrating the age distribution of chondrules in 

carbonaceous and ordinary chondrites. It also serves to highlight the above discussion 

concerning the ages of chondrules in Allende and the CB chondrites. Removing these two 

groups from consideration, the majority of chondrule formation occurs between 4567 Ma 

and 4564 Ma and averaging 4565.26 Ma with a single peak in both carbonaceous and 

ordinary chondrites. In fact, the averages for each of these groups considered separately 

only varies by 0.29 Ma. Since ordinary and carbonaceous chondrites originate from the 

inner and outer asteroid belt respectively, the similar age distributions seem to indicate 

that the chondrule formation interval was not radially dependent within the resolution of 

the data. The peak in the age distribution of chondrules may represent the peak in 

chondrule production within the disk. However, it is more likely this peak age represents 

the end of the high energy period in the nebula and a decrease in probability that a given 

chondrule will be reprocessed before accreting onto its parent asteroid. 

4.3. Aqueous alteration 

Most carbonaceous chondrites have experienced varying degrees of aqueous 

alteration (Brearley, 2006). Models of fluid flow and alteration in chondritic asteroids 

often assume small bodies (≤ 50 km) which accretes with a fraction of ice that melts due 
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to heat from radioactive decay, typically 26Al and 60Fe (e.g., Palguta et al., 2010). The 

melted ice then moves through the asteroid due to pressure gradients or convective 

processes altering the primary mineralogy to phyllosilicates. Carbonates also form during 

this process and can be dated to provide an age of alteration. The duration of this 

alteration from CM and CI chondrites from the literature is 4.84 Myr starting 1.38 Myr 

after CAIs (Figure A3.5).  

 

 
Figure A3.4. Distribution of chondrules ages. All chondrule ages are represented in 0.5 Myr bins. 
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Figure A3.5. Aqueous alteration. Individual meteorites are grouped, red and blue lines represent 

the CAI and D’Orbigny anchors respectively. See text for details. 

 

 

As mentioned in the results, chondrules for CIs and CMs do not typically survive 

the alteration process so only one measurement attributed to a chondrule is available for 

the CM chondrite Paris (point 75). As would be expected, this chondrule age which 

predates CM alteration although Hewins et al. (2014) attributes this measurement to 

chondrule formation purely because of its old age. As such, establishing the assembly-

alteration timeline is not yet possible. What does seem apparent from the literature data is 

that carbonates were forming on asteroids while chondrules were still being formed 

though largely after the 4565.26 Ma peak in chondrule ages. This is possibly another 

indication that the dynamic environment in the solar nebula started to relax after that 

time. 

However, Mn-Cr dating is not without its issues. As mentioned above, data from a 

couple studies were not included (e.g., Brearley and Hutcheon, 2000, 2002) because 

anomalously high initial ratios produced carbonate ages that predated CAI formation, 
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sometimes significantly. Fujiya et al. (2012) pointed out that differences in matrix effects 

between the carbonate samples and olivine standards could produce errors of over 2 Myr. 

Recent studies use synthetic standards and have produced more reasonable ages for 

carbonate formation but another problem may exist, that of the half-life measurement. As 

in this study, most reported ages do not propagate errors associated with half-lives and 

these errors can be quite substantial, 10% in the case of 53Mn. In addition, the 53Mn half-

life has not been recalculated since 1974 during which the analytical precision of 

measurements requiring an accurate determination of the half-life have increased 

dramatically (Tyra, 2015). 

4.4. Thermal metamorphism 

While carbonaceous chondrites typically experience aqueous alteration, ordinary 

chondrites more commonly experience thermal metamorphism. Similar to aqueous 

alteration, thermal metamorphism is driven by the radioactive decay of short-lived 

radionuclides such as 26Al and 60Fe. However, ordinary chondrites seem to have accreted 

with little or no ice and to a size large enough that internal heating caused extensive 

thermal metamorphism not typically seen in carbonaceous chondrites. From the literature, 

the first metamorphic ages are from 4562.7 and span over 58 Myr (Figure A3.6). Since 

there are far more ordinary chondrite chondrule ages than for aqueously altered chondrite 

groups it is easy to say that metamorphism postdated assembly as is expected. However, 

these ages typically date retrograde metamorphism and provide little information about 

the period of onset. 

Degree of thermal metamorphism is denoted by a numerical petrologic type 

between 4 and 6 where type 6 has seen the greatest amount of recrystallization (Huss et 
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al., 2006). Typically metamorphism modeled as an onion shell where the core of asteroid 

has the highest petrologic type (greatest degree of thermal metamorphism) and the outer 

layers show progressively fewer metamorphic effects closer to the cold surface (Harrison 

and Grimm, 2010). It is predicted that layers of lower petrologic type will cool sooner 

than the higher petrologic type layers which broadly appears to be true as can be seen in 

phosphate ages of H chondrites (e.g., points 189, 193, and 199). 

The approximate closure temperatures for Pb-Pb are 725ºC in silicates and 450ºC 

in phosphates, for Hf-W in metal-silicate is 875ºC, and for Al-Mg in plagioclase is 450ºC 

so that the higher temperature chronometers should recorder older ages than those with 

lower closure temperatures (Kleine et al., 2008; Telus et al., 2014). Again, this is broadly 

true as exemplified by Richardton which shows younger silicate Pb-Pb and metal-silicate 

Hf-W ages (points 190 and 191) and older Pb-Pb phosphate ages (points 192 and 193). 

Unfortunately, while these data seem to indicate quiescent onion shell metamorphism for 

ordinary chondrite asteroids, metallographic cooling rates show a more turbulent history 

and suggest many of these meteorites were excavated by impact and cooled in an ejecta 

blanket (Scott et al., 2014).  

Metamorphic ages may also be affected by a number of other processes. Lead-Pb 

ages were measured on phosphates which are known to alter in the presence of fluids 

from merrillite to apatite with considerably lower abundances of REEs (Jones et al., 

2014). Aluminum-Mg ages conducted on plagioclase are subject to two potential issues: 

diffusion and alteration. Magnesium diffusion in albitic plagioclase is considerably faster 

(lower closure temperature) than anorthite so measurements of albite may report lower 

26Mg excess and subsequently older ages (Van Orman et al., 2014). This may also be a  
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Figure A3.6. Thermal metamorphism. Individual meteorites are grouped, red and blue lines 

represent the CAI and D’Orbigny anchors respectively. See text for details. 

 

 

problem for Al-Mg ages of albite-bearing chondrules. Anorthitic feldspar is also known 

to alter to anorthite, likely stripping its excess Mg (Kovach and Jones, 2010). Finally, Al-

Mg and Hf-W are of limited use beyond a few half-lives of the beginning of the solar 

system (CAIs) and only provide information about the earliest parts of the metamorphic 

process. While initial 238U/235U ratios for the Pb-Pb ages may also stray from canonical, 

the shift in ages expected for variable U isotopes is minor compared to the large spread of 

metamorphic ages. 

4.5. Angrites 

 Angrites are derived from an unknown differentiated asteroid (or possibly group 

of asteroids). This asteroid was large enough (or accreted early enough) for heat from 

radioactive decay to cause melting and differentiation. While angrites are only included 

here as the anchor for the Mn-Cr and Hf-W systems, the duration of geologic processing 

on the angrite parent body is of interest as a comparison to chondritic processes. Lead-Pb 
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ages for angrites are shown in Figure A3.7 and span 7.82 Myr from 4567.42 Ma to 

4556.60 Ma. 

The anchor for the two short-lived systems Mn-Cr and Hf-W was chosen to be 

D'Orbigny (point 213) because it is well characterized and the Pb-Pb age was recently 

redetermined using a measured 238U/235U ratio (Brennecka and Wadhwa, 2012). Though 

as is apparent from the figure, angrites as a whole do not represent a discrete point in time 

but instead record igneous activity over an approximately 8 Myr period. Depending on 

the validity of point 212 which assumed constant 238U/235U (Amelin, 2008), the earliest 

recorded angrite melts were produced after, or at least towards the end of, chondrule 

formation. This is consistent with the timing of CB chondrules which were likely formed 

in an impact event between large planetary embryos that were at least partially 

differentiated (Krot et al., 2005a). 

Figure A3.7. Angrites. Individual meteorites are grouped, red and blue lines represent the CAI 

and D’Orbigny anchors respectively. See text for details.  



 

384 

 

5. Summary and conclusions 

 CAIs show a wider range of ages than expected and this is likely, at least in part, 

due to the variability of 238U/235U. The age of the solar system from CAIs is taken to be 

4567.30 Ma. Chondrules appear to have started forming simultaneously with CAIs and 

lasted a little over 3 Myr. Ordinary and carbonaceous chondrites have similar age 

distributions though the CV3 Allende appears to have anomalously young chondrules. 

Chondrules in CB chondrites post-date all other chondrule forming events which is 

attributed to formation from the collisions of planetesimals. The peak in chondrule ages 

at 4565.26 Ma may signal a calming of the disk. 

This period roughly corresponds to the start of aqueous alteration which 

progresses for less than 5 Myr. Though the Mn-Cr system used to date aqueous alteration 

may still be prone to significant analytical uncertainty. Thermal metamorphism postdates 

chondrule formation by 1 Myr and lasts over 58 Myr. Metamorphic ages of different 

phases are roughly consistent with their respective closure temperatures though the 

cooling environment may not be so simple. Angrites underwent geologic processing over 

an 8 Myr period starting at the end of chondrule formation which is consistent with 

formation of CB chondrites by collision of planetesimals and the start of thermal 

metamorphism. 

 This chronology of chondritic asteroids not only helps in understanding of the 

formation and evolution of material in the asteroid belt, it illuminates the dynamic 

environment in which the Earth was formed. Our planet likely went through many of the 

same stages and incorporated much of the same material as chondritic asteroids but on a 
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far larger scale. The diminutive size of chondritic asteroids allows for these early solar 

system processes to be preserved and studied 4.5 billion years later. 

 

 

Table A3.3. Radiogenic age data. 

 

CAIs 
# Meteorite Class Feature Method Age (Ma) 2σ (+/-) Reference 

1 NWA 2364 CV3-ox CAIs Pb-Pb 4568.22 0.17/0.17 Bouvier and Wadhwa (2010) 

2 NWA 6991 CV3-ox CAIs Pb-Pb 4567.94 0.31/0.31 Bouvier et al. (2011) 

3 Allende CV3-ox CAIs Pb-Pb 4568.50 0.50/0.50 Bouvier et al. (2007) 

4 Allende CV3-ox CAIs Pb-Pb 4567.72 0.93/0.93 Connelly et al. (2008) 

5 Allende CV3-ox CAIs Pb-Pb 4567.60 0.36/0.36 Jacobsen et al. (2008) 

6 Allende CV3-ox CAIs Pb-Pb 4567.18 0.50/0.50 Amelin et al. (2010) 

7 Allende CV3-ox CAIs Pb-Pb 4565.32 0.81/0.81 Connelly and Bizzarro (2009) 

8 Efremovka CV3-red CAIs Pb-Pb 4567.40 1.10/1.10 Amelin et al. (2002) 

9 Efremovka CV3-red CAIs Pb-Pb 4567.38 0.31/0.31 Connelly et al. (2012) 

10 Efremovka CV3-red CAIs Pb-Pb 4567.35 0.28/0.28 Connelly et al. (2012) 

11 Efremovka CV3-red CAIs Pb-Pb 4567.23 0.29/0.29 Connelly et al. (2012) 

12 Efremovka CV3-red CAIs Pb-Pb 4567.17 0.70/0.70 Amelin et al. (2002) 

13 Efremovka CV3-red CAIs Pb-Pb 4567.11 0.16/0.16 Amelin et al. (2006) 

        
Chondrules 

# Meteorite Class Feature Method Age (Ma) 2σ (+/-) Reference 

14 Allende CV3-ox chondrules Al-Mg 4567.40 0.21/0.26 Bizzarro et al. (2004) 

15 Allende CV3-ox chondrules Al-Mg 4567.37 0.17/0.20 Bizzarro et al. (2004) 

16 Allende CV3-ox chondrules Al-Mg 4567.34 0.15/0.18 Bizzarro et al. (2004) 

17 Allende CV3-ox chondrules Al-Mg 4567.33 0.27/0.37 Bizzarro et al. (2004) 

18 Allende CV3-ox chondrules Pb-Pb 4567.32 0.42/0.42 Connelly et al. (2012) 

19 Allende CV3-ox chondrules Al-Mg 4567.28 0.11/0.12 Bizzarro et al. (2004) 

20 Allende CV3-ox chondrules Al-Mg 4567.04 0.14/0.16 Bizzarro et al. (2004) 

21 Allende CV3-ox chondrules Al-Mg 4567.03 0.18/0.22 Bizzarro et al. (2004) 

22 Allende CV3-ox chondrules Al-Mg 4566.91 0.25/0.33 Bizzarro et al. (2004) 

23 Allende CV3-ox chondrules Mn-Cr 4566.90 0.67/0.76 Yin et al. (2009) 

24 Allende CV3-ox chondrules Al-Mg 4566.73 0.14/0.16 Bizzarro et al. (2004) 

25 Allende CV3-ox chondrules Pb-Pb 4566.60 1.00/1.00 Amelin and Krot (2007) 

26 Allende CV3-ox chondrules Al-Mg 4566.51 0.26/0.35 Bizzarro et al. (2004) 

27 Allende CV3-ox chondrules Al-Mg 4566.36 0.25/0.33 Bizzarro et al. (2004) 

28 Allende CV3-ox chondrules Al-Mg 4566.28 0.23/0.30 Bizzarro et al. (2004) 

29 Allende CV3-ox chondrules Pb-Pb 4566.24 0.63/0.63 Connelly et al. (2012) 

30 Allende CV3-ox chondrules Al-Mg 4566.11 0.37/0.59 Bizzarro et al. (2004) 

31 Allende CV3-ox chondrules Al-Mg 4565.91 0.33/0.50 Bizzarro et al. (2004) 

32 Allende CV3-ox chondrules Pb-Pb 4565.45 0.45/0.45 Connelly et al. (2008) 

33 Allende CV3-ox chondrules Al-Mg 4565.37 0.30/0.42 Hutcheon et al. (2009) 

34 Allende CV3-ox chondrules Pb-Pb 4565.32 0.81/0.81 Connelly and Bizzarro (2009) 

35 Allende CV3-ox chondrules Al-Mg 4564.38 0.70/3.55 Hutcheon et al. (2009) 

36 Allende CV3-ox chondrules Al-Mg 4564.27 0.39/0.65 Hutcheon et al. (2009) 

37 Efremovka CV3-red chondrules Al-Mg 4565.99 0.51/1.06 Hutcheon et al. (2009) 

38 Efremovka CV3-red chondrules Al-Mg 4565.83 0.53/1.14 Hutcheon et al. (2009) 

39 Efremovka CV3-red chondrules Al-Mg 4565.20 0.70/3.66 Hutcheon et al. (2009) 

40 Efremovka CV3-red chondrules Al-Mg 4565.19 0.64/1.98 Hutcheon et al. (2009) 

41 Efremovka CV3-red chondrules Al-Mg 4565.13 0.60/1.57 Hutcheon et al. (2009) 

42 Efremovka CV3-red chondrules Al-Mg 4564.99 0.48/0.92 Hutcheon et al. (2000) 
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43 Y-81020 CO3.05 chondrules Al-Mg 4565.62 0.25/0.33 Kurahashi et al. (2008) 

44 Y-81020 CO3.05 chondrules Al-Mg 4565.48 0.28/0.39 Kurahashi et al. (2008) 

45 Y-81020 CO3.05 chondrules Al-Mg 4565.46 0.57/1.34 Kurahashi et al. (2008) 

46 Y-81020 CO3.05 chondrules Al-Mg 4565.38 0.14/0.16 Kurahashi et al. (2008) 

47 Y-81020 CO3.05 chondrules Al-Mg 4565.34 0.15/0.17 Kurahashi et al. (2008) 

48 Y-81020 CO3.05 chondrules Al-Mg 4565.28 0.26/0.35 Kurahashi et al. (2008) 

49 Y-81020 CO3.05 chondrules Al-Mg 4565.28 0.46/0.87 Kurahashi et al. (2008) 

50 Y-81020 CO3.05 chondrules Al-Mg 4565.26 0.15/0.17 Kurahashi et al. (2008) 

51 Y-81020 CO3.05 chondrules Al-Mg 4565.22 0.26/0.35 Kurahashi et al. (2008) 

52 Y-81020 CO3.05 chondrules Al-Mg 4565.20 0.26/0.35 Kurahashi et al. (2008) 

53 Y-81020 CO3.05 chondrules Al-Mg 4565.16 0.17/0.21 Kurahashi et al. (2008) 

54 Y-81020 CO3.05 chondrules Al-Mg 4565.16 0.44/0.78 Kurahashi et al. (2008) 

55 Y-81020 CO3.05 chondrules Al-Mg 4565.16 0.26/0.35 Kurahashi et al. (2008) 

56 Y-81020 CO3.05 chondrules Al-Mg 4565.14 0.41/0.70 Kunihiro et al. (2004) 

57 Y-81020 CO3.05 chondrules Al-Mg 4565.09 0.28/0.38 Kurahashi et al. (2008) 

58 Y-81020 CO3.05 chondrules Al-Mg 4565.08 0.23/0.29 Kurahashi et al. (2008) 

59 Y-81020 CO3.05 chondrules Al-Mg 4565.01 0.24/0.32 Kurahashi et al. (2008) 

60 Y-81020 CO3.05 chondrules Al-Mg 4565.01 0.43/0.74 Kurahashi et al. (2008) 

61 Y-81020 CO3.05 chondrules Al-Mg 4564.85 0.26/0.35 Kurahashi et al. (2008) 

62 Y-81020 CO3.05 chondrules Al-Mg 4564.79 0.34/0.51 Kurahashi et al. (2008) 

63 Y-81020 CO3.05 chondrules Al-Mg 4564.79 0.52/1.09 Yurimoto and Wasson (2002) 

64 Y-81020 CO3.05 chondrules Al-Mg 4564.69 0.28/0.38 Kunihiro et al. (2004) 

65 Y-81020 CO3.05 chondrules Al-Mg 4564.67 0.25/0.32 Kurahashi et al. (2008) 

66 Y-81020 CO3.05 chondrules Al-Mg 4564.64 0.40/0.67 Kunihiro et al. (2004) 

67 Y-81020 CO3.05 chondrules Al-Mg 4564.56 0.27/0.36 Kunihiro et al. (2004) 

68 Y-81020 CO3.05 chondrules Al-Mg 4564.31 0.28/0.38 Kurahashi et al. (2008) 

69 Y-81020 CO3.05 chondrules Al-Mg 4564.11 0.55/1.27 Kunihiro et al. (2004) 

70 EET 92042 CR2 chondrules Al-Mg 4564.97 0.68/2.71 Hutcheon et al. (2009) 

71 El Djouf 001 CR2 chondrules Al-Mg 4564.76 0.23/0.29 Nagashima et al. (2008) 

72 El Djouf 001 CR2 chondrules Al-Mg 4564.41 0.35/0.54 Nagashima et al. (2008) 

73 Acfer 059 CR2 chondrules Pb-Pb 4564.66 0.63/0.63 Amelin et al. (2002) 

74 Acfer 311 CR2 chondrules Al-Mg 4564.41 0.38/0.60 Nagashima et al. (2008) 

75 Paris CM chondrules Mn-Cr 4566.47 0.67/0.76 Hewins et al. (2014) 

76 Ningqiang C3-Ung chondrules Al-Mg 4565.13 0.46/0.86 Hsu et al. (2003) 

77 Ningqiang C3-Ung chondrules Al-Mg 4564.47 0.50/0.99 Hsu et al. (2003) 

78 Acfer 094 C2-ung chondrules Al-Mg 4565.97 0.30/0.42 Hutcheon et al. (2009) 

79 Acfer 094 C2-ung chondrules Al-Mg 4565.78 0.30/0.42 Hutcheon et al. (2000) 

80 Acfer 094 C2-ung chondrules Al-Mg 4565.62 0.56/1.31 Sugiura and Krot (2007) 

81 Acfer 094 C2-ung chondrules Al-Mg 4565.43 0.35/0.54 Hutcheon et al. (2009) 

82 Acfer 094 C2-ung chondrules Al-Mg 4565.06 0.51/1.04 Sugiura and Krot (2007) 

83 Gujba CBa chondrules Pb-Pb 4562.70 0.50/0.50 (Krot et al., 2005a) 

84 HaH 237 CBb chondrules Pb-Pb 4562.80 0.90/0.90 (Krot et al., 2005a) 

85 Ste. Margeurite H4 chondrules Hf-W 4566.01 0.35/0.36 Kleine et al. (2008) 

86 NWA 5697 L3 chondrules Pb-Pb 4566.67 0.43/0.43 Connelly et al. (2012) 

87 NWA 5697 L3 chondrules Pb-Pb 4566.02 0.26/0.26 Connelly et al. (2012) 

88 NWA 5697 L3 chondrules Pb-Pb 4564.71 0.30/0.30 Connelly et al. (2012) 

89 LEW 86134 L3.0 chondrules Al-Mg 4566.09 0.38/0.60 Rudraswami and Goswami (2007) 

90 LEW 86134 L3.0 chondrules Al-Mg 4565.62 0.35/0.54 Rudraswami and Goswami (2007) 

91 LEW 86134 L3.0 chondrules Al-Mg 4565.23 0.59/1.48 Rudraswami and Goswami (2007) 

92 QUE 97008 L3.05 chondrules Al-Mg 4566.28 0.34/0.51 Rudraswami and Goswami (2007) 

93 QUE 97008 L3.05 chondrules Al-Mg 4565.69 0.63/1.87 Rudraswami and Goswami (2007) 

94 QUE 97008 L3.05 chondrules Al-Mg 4565.58 0.49/0.96 Rudraswami and Goswami (2007) 

95 QUE 97008 L3.05 chondrules Al-Mg 4565.34 0.39/0.63 Rudraswami and Goswami (2007) 

96 LEW 86018 L3.1 chondrules Al-Mg 4565.30 0.40/0.66 Rudraswami and Goswami (2007) 

97 LEW 86018 L3.1 chondrules Al-Mg 4565.28 0.25/0.33 Rudraswami and Goswami (2007) 

98 LEW 86018 L3.1 chondrules Al-Mg 4565.17 0.44/0.80 Rudraswami and Goswami (2007) 

99 LEW 86018 L3.1 chondrules Al-Mg 4565.14 0.31/0.45 Rudraswami and Goswami (2007) 

100 ALHA 77176 L3.2 chondrules Al-Mg 4565.56 0.57/1.36 Rudraswami and Goswami (2007) 

101 ALHA 77176 L3.2 chondrules Al-Mg 4565.14 0.66/2.31 Rudraswami and Goswami (2007) 
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102 Adrar 003 L/LL3.1 chondrules Al-Mg 4565.41 0.68/2.73 Rudraswami and Goswami (2007) 

103 Adrar 003 L/LL3.1 chondrules Al-Mg 4565.11 0.51/1.04 Rudraswami and Goswami (2007) 

104 Inman L/LL3.4 chondrules Al-Mg 4565.52 0.53/1.15 Russell et al. (1996) 

105 Semarkona LL3.00 chondrules Al-Mg 4566.54 0.22/0.28 Russell et al. (1997) 

106 Semarkona LL3.00 chondrules Al-Mg 4566.09 0.10/0.11 Villeneuve et al. (2009) 

107 Semarkona LL3.00 chondrules Al-Mg 4565.81 0.36/0.56 Rudraswami et al. (2008) 

108 Semarkona LL3.00 chondrules Al-Mg 4565.73 0.40/0.66 Rudraswami et al. (2008) 

109 Semarkona LL3.00 chondrules Al-Mg 4565.69 0.12/0.14 Villeneuve et al. (2009) 

110 Semarkona LL3.00 chondrules Al-Mg 4565.69 0.20/0.25 Rudraswami et al. (2008) 

111 Semarkona LL3.00 chondrules Al-Mg 4565.56 0.59/1.53 Mishra and Goswami (2014) 

112 Semarkona LL3.00 chondrules Al-Mg 4565.50 0.45/0.81 Kita et al. (2000) 

113 Semarkona LL3.00 chondrules Al-Mg 4565.48 0.17/0.20 Kita et al. (2000) 

114 Semarkona LL3.00 chondrules Al-Mg 4565.47 0.10/0.11 Villeneuve et al. (2009) 

115 Semarkona LL3.00 chondrules Al-Mg 4565.46 0.31/0.45 Kita et al. (2000) 

116 Semarkona LL3.00 chondrules Al-Mg 4565.35 0.32/0.48 Villeneuve et al. (2009) 

117 Semarkona LL3.00 chondrules Al-Mg 4565.34 0.14/0.16 Villeneuve et al. (2009) 

118 Semarkona LL3.00 chondrules Al-Mg 4565.32 0.25/0.33 Hutcheon and Hutchison (1989) 

119 Semarkona LL3.00 chondrules Al-Mg 4565.26 0.25/0.32 Villeneuve et al. (2009) 

120 Semarkona LL3.00 chondrules Al-Mg 4565.25 0.34/0.51 Mishra et al. (2010) 

121 Semarkona LL3.00 chondrules Al-Mg 4565.25 0.17/0.20 Villeneuve et al. (2009) 

122 Semarkona LL3.00 chondrules Al-Mg 4565.20 0.63/1.90 Mishra et al. (2010) 

123 Semarkona LL3.00 chondrules Al-Mg 4565.16 0.26/0.35 Kita et al. (2000) 

124 Semarkona LL3.00 chondrules Al-Mg 4565.16 0.27/0.37 Mishra et al. (2010) 

125 Semarkona LL3.00 chondrules Al-Mg 4565.15 0.17/0.21 Villeneuve et al. (2009) 

126 Semarkona LL3.00 chondrules Al-Mg 4565.02 0.17/0.20 Villeneuve et al. (2009) 

127 Semarkona LL3.00 chondrules Al-Mg 4565.01 0.39/0.63 Kita et al. (2000) 

128 Semarkona LL3.00 chondrules Al-Mg 4564.97 0.06/0.06 Rudraswami et al. (2008) 

129 Semarkona LL3.00 chondrules Al-Mg 4564.89 0.32/0.46 Villeneuve et al. (2009) 

130 Semarkona LL3.00 chondrules Al-Mg 4564.83 0.21/0.27 Villeneuve et al. (2009) 

131 Semarkona LL3.00 chondrules Al-Mg 4564.82 0.20/0.25 Villeneuve et al. (2009) 

132 Semarkona LL3.00 chondrules Al-Mg 4564.79 0.39/0.63 Mostefaoui et al. (2002) 

133 Semarkona LL3.00 chondrules Al-Mg 4564.48 0.31/0.45 Villeneuve et al. (2009) 

134 Semarkona LL3.00 chondrules Al-Mg 4564.35 0.35/0.54 Villeneuve et al. (2009) 

135 Semarkona LL3.00 chondrules Al-Mg 4564.35 0.48/0.93 Mishra and Goswami (2014) 

136 Semarkona LL3.00 chondrules Al-Mg 4564.23 0.52/1.08 Mishra and Goswami (2014) 

137 Bishunpur LL3.15 chondrules Al-Mg 4566.44 0.29/0.40 Mostefaoui et al. (2002) 

138 Bishunpur LL3.15 chondrules Al-Mg 4566.04 0.41/0.69 Mostefaoui et al. (2002) 

139 Bishunpur LL3.15 chondrules Al-Mg 4565.94 0.39/0.65 Mostefaoui et al. (2002) 

140 Bishunpur LL3.15 chondrules Al-Mg 4565.78 0.19/0.23 Kita et al. (2005) 

141 Bishunpur LL3.15 chondrules Al-Mg 4565.61 0.44/0.78 Mostefaoui et al. (2002) 

142 Bishunpur LL3.15 chondrules Al-Mg 4565.55 0.09/0.10 Kita et al. (2005) 

143 Bishunpur LL3.15 chondrules Al-Mg 4565.54 0.68/2.86 Mostefaoui et al. (2002) 

144 Bishunpur LL3.15 chondrules Al-Mg 4565.41 0.39/0.65 Kita et al. (2005) 

145 Bishunpur LL3.15 chondrules Al-Mg 4565.28 0.59/1.52 Mostefaoui et al. (2002) 

146 Bishunpur LL3.15 chondrules Al-Mg 4565.03 0.44/0.79 Rudraswami et al. (2008) 

147 Bishunpur LL3.15 chondrules Al-Mg 4565.03 0.33/0.49 Rudraswami et al. (2008) 

148 Bishunpur LL3.15 chondrules Al-Mg 4565.01 0.31/0.45 Mostefaoui et al. (2002) 

149 Bishunpur LL3.15 chondrules Al-Mg 4564.76 0.40/0.65 Mostefaoui et al. (2002) 

150 Y-791324 LL3.15 chondrules Al-Mg 4565.79 0.37/0.57 Rudraswami et al. (2008) 

151 Y-791324 LL3.15 chondrules Al-Mg 4565.69 0.67/2.48 Rudraswami et al. (2008) 

152 ALHA 76004 LL3.2 chondrules Al-Mg 4565.73 0.27/0.36 Rudraswami et al. (2008) 

153 ALHA 76004 LL3.2 chondrules Al-Mg 4565.72 0.23/0.29 Rudraswami et al. (2008) 

154 ALHA 76004 LL3.2 chondrules Al-Mg 4565.65 0.28/0.39 Rudraswami et al. (2008) 

155 ALHA 76004 LL3.2 chondrules Al-Mg 4565.23 0.26/0.34 Rudraswami et al. (2008) 

156 Krymka LL3.2 chondrules Al-Mg 4565.62 0.14/0.16 Kita et al. (2005) 

157 Krymka LL3.2 chondrules Al-Mg 4565.08 0.25/0.34 Kita et al. (2005) 

158 Chainpur LL3.4 chondrules Mn-Cr 4566.42 1.33/1.78 Yin et al. (2007) 

159 Chainpur LL3.4 chondrules Al-Mg 4565.34 0.30/0.43 Russell et al. (1996) 

160 Chainpur LL3.4 chondrules Al-Mg 4564.72 0.31/0.44 Russell et al. (1997) 
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Aqueous alteration 
# Meteorite Class Feature Method Age (Ma) 2σ (+/-) Reference 

161 Orgueil CI dolomite Mn-Cr 4565.33 0.52/0.57 Hoppe et al. (2007) 

162 Orgueil CI dolomite Mn-Cr 4564.72 0.18/0.18 Hoppe et al. (2007) 

163 Orgueil CI dolomite Mn-Cr 4564.30 0.23/0.24 Hoppe et al. (2007) 

164 Orgueil CI dolomite Mn-Cr 4564.04 0.45/0.49 Hoppe et al. (2007) 

165 Orgueil CI breunnerite Mn-Cr 4563.58 0.10/0.10 Hoppe et al. (2007) 

166 Orgueil CI breunnerite Mn-Cr 4563.53 0.30/0.32 Hoppe et al. (2007) 

167 Orgueil CI dolomite Mn-Cr 4563.37 0.69/0.79 Fujiya et al. (2013) 

168 Orgueil CI breunnerite Mn-Cr 4563.35 0.32/0.34 Hoppe et al. (2007) 

169 Orgueil CI breunnerite Mn-Cr 4561.91 0.38/0.41 Hoppe et al. (2007) 

170 Orgueil CI breunnerite Mn-Cr 4561.08 0.44/0.48 Hoppe et al. (2007) 

171 Kaidun CI (clast) dolomite Mn-Cr 4565.92 1.04/1.28 Petitat et al. (2011) 

172 Kaidun CI (clast) dolomite Mn-Cr 4565.26 1.34/1.79 Petitat et al. (2011) 

173 Kaidun CI (clast) dolomite Mn-Cr 4564.77 0.49/0.54 Petitat et al. (2011) 

174 Ivuna CI dolomite Mn-Cr 4562.26 0.74/0.86 Fujiya et al. (2013) 

175 Y-980115 CI dolomite Mn-Cr 4563.58 1.18/1.50 Fujiya et al. (2013) 

176 ALH 83100 CM2 carbonates Mn-Cr 4565.82 1.55/2.19 de Leuw et al. (2009) 

177 ALH 83100 CM2 dolomite Mn-Cr 4562.56 0.84/1.00 Fujiya et al. (2012) 

178 QUE 93005 CM2 dolomite Mn-Cr 4564.98 0.23/0.24 Lee et al. (2012) 

179 QUE 93005 CM2 dolomite Mn-Cr 4564.64 1.39/1.87 de Leuw et al. (2009) 

180 Sutter's Mill CM2 dolomite Mn-Cr 4563.66 1.21/1.56 Jilly et al. (2014) 

181 Y-791198 CM2 calcite Mn-Cr 4563.63 1.06/1.32 Fujiya et al. (2012) 

182 Sayama CM2 dolomite Mn-Cr 4563.60 0.60/0.68 Fujiya et al. (2012) 

183 Murchison CM2 calcite Mn-Cr 4562.31 1.40/1.90 Fujiya et al. (2012) 

184 Tagish Lake C2-ung dolomite Mn-Cr 4563.24 1.07/1.33 Fujiya et al. (2013) 

        
Thermal metamorphism 

# Meteorite Class Feature Method Age (Ma) 2σ (+/-) Reference 

185 Ste. Margeurite H4 phosphates Pb-Pb 4562.70 0.70/0.70 Göpel et al. (1994) 

186 Ste. Margeurite H4 phosphates Pb-Pb 4562.70 0.60/0.60 Göpel et al. (1994) 

187 Ste. Margeurite H4 feldspar Al-Mg 4561.96 0.16/0.19 Telus et al. (2014) 

188 Forest Vale H4 feldspar Al-Mg 4561.24 0.40/0.65 Telus et al. (2014) 

189 Forest Vale H4 phosphates Pb-Pb 4560.90 0.70/0.70 Göpel et al. (1994) 

190 Richardton H5 silicate Pb-Pb 4562.70 1.70/1.70 Amelin et al. (2005) 

191 Richardton H5 metal-silicate Hf-W 4562.09 0.84/0.90 Kleine et al. (2008) 

192 Richardton H5 phosphates Pb-Pb 4551.40 0.60/0.60 Göpel et al. (1994) 

193 Richardton H5 phosphates Pb-Pb 4550.70 2.60/2.60 Amelin et al. (2005) 

194 ALH 84069 H5 metal-silicate Hf-W 4561.83 1.23/1.37 Kleine et al. (2008) 

195 Nadiobondi H5 phosphates Pb-Pb 4555.60 3.40/3.40 Göpel et al. (1994) 

196 Allegan H5 phosphates Pb-Pb 4550.20 0.70/0.70 Göpel et al. (1994) 

197 Kernouve H6 metal-silicate Hf-W 4558.31 0.92/1.00 Kleine et al. (2008) 

198 Kernouve H6 phosphates Pb-Pb 4523.90 0.50/0.50 Göpel et al. (1994) 

199 Kernouve H6 phosphates Pb-Pb 4521.10 0.50/0.50 Göpel et al. (1994) 

200 Guareña H6 phosphates Pb-Pb 4504.40 0.50/0.50 Göpel et al. (1994) 

201 Guareña H6 phosphates Pb-Pb 4504.40 0.50/0.50 Göpel et al. (1994) 

202 Estacado H6 metal-silicate Hf-W 4557.68 1.45/1.64 Kleine et al. (2008) 

203 Knyahinya L5 phosphates Pb-Pb 4539.50 1.00/1.00 Göpel et al. (1994) 

204 Barwell L5 phosphates Pb-Pb 4538.20 0.70/0.70 Göpel et al. (1994) 

205 Knyahinya L5 phosphates Pb-Pb 4533.00 0.80/0.80 Göpel et al. (1994) 

206 Ausson L5 phosphates Pb-Pb 4526.80 0.90/0.90 Göpel et al. (1994) 

207 Homestead L5 phosphates Pb-Pb 4514.20 0.60/0.60 Göpel et al. (1994) 

208 Marion (Iowa) L6 phosphates Pb-Pb 4510.70 0.50/0.50 Göpel et al. (1994) 

209 Tuxtuac LL5 phosphates Pb-Pb 4543.60 2.10/2.10 Göpel et al. (1994) 

210 Guidder LL5 phosphates Pb-Pb 4535.30 0.60/0.60 Göpel et al. (1994) 

211 Saint-Séverin LL6 phosphates Pb-Pb 4553.60 0.70/0.70 Göpel et al. (1994) 
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Angrites 
# Meteorite Class Feature Method Age (Ma) 2σ (+/-) Reference 

212 D'Orbigny angrite bulk Pb-Pb 4564.42 0.12/0.12 Amelin (2008) 

213 D'Orbigny angrite bulk Pb-Pb 4563.37 0.25/0.25 Brennecka and Wadhwa (2012) 

214 NWA 2999 angrite bulk Pb-Pb 4560.74 0.47/0.47 Brennecka and Wadhwa (2012) 

215 NWA 6291 angrite bulk Pb-Pb 4560.21 1.05/1.05 Brennecka and Wadhwa (2012) 

216 LEW 86010 angrite bulk Pb-Pb 4558.55 0.15/0.15 Amelin (2008) 

217 NWA 4590 angrite bulk Pb-Pb 4557.81 0.37/0.37 Brennecka and Wadhwa (2012) 

218 NWA 4801 angrite bulk Pb-Pb 4557.01 0.27/0.27 Brennecka and Wadhwa (2012) 

219 Angra dos Reis angrite bulk Pb-Pb 4557.65 0.13/0.13 Amelin (2008) 

220 Angra dos Reis angrite bulk Pb-Pb 4556.60 0.26/0.26 Brennecka and Wadhwa (2012) 
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«Планета есть колыбель разума, но нельзя вечно жить в колыбели». 

―Константин Циолковский 

 

“A planet is the cradle of mind, but one cannot live in a cradle forever.” 

―Konstantin Tsiolkovsky 
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