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Summary

The development of functional Magnetic Resonance Imaging (fMRI) has heralded a
revolution in neuroscience, providing clinicians with a method to non-invasively
investigate the spatio-temporal patterns of neuro-functional activity. Although
primarily developed for human investigations, there exists significant scope for the
application of fMRI in pre-clinical species as a translational and investigational
platform across different areas of neuroscience and psychiatry research. However,
the realization of this potential is hampered by a number of experimental constraints
which make the application of fMRI methods to animal models less than
straightforward. As a result, most fMRI research in laboratory species has been
reduced to the employment of basic somato-sensory stimulation paradigms, thus
greatly limiting the translational potential of the technique.

An interesting approach to overcome some of these limitations has been dubbed

I”

“pharmacological MRI” (phMRI) and relies on the use of fMRI to map patterns of
brain activity induced by psychoactive drugs. The approach has demonstrated the
ability to elicit reliable fMRI signals even under anaesthesia, and to enable selective
stimulation of different neurotransmitter systems. Building upon the homology
between brain circuits in humans and laboratory animals, phMRI techniques thus
offer the opportunity of significantly expanding the stimulation repertoire available
to preclinical fMRI research, by allowing to selectively probe specific aspects of brain

function under different preconditioning states.

Within this framework, the research presented herein was aimed to broaden the
scope of application of preclinical phMRI both as a translational technique, when
applied to clinically-relevant disease models, and more generally as a versatile
platform for the pre-clinical investigation of brain activity and its functional topology
as a function of behavioural, pharmacological or genetic preconditioning.

In a first group of studies, we developed a phMRI assay to map the circuitry activated
by NMDAR antagonists in the rat brain. These psychotogenic compounds are widely
exploited to model schizophrenia symptoms and to provide experimental models
that may prove useful in the development of novel treatments for the disorder. The
results of this research highlighted a conserved cortico-limbo-thalamic circuit that is
activated by NMDAR antagonists both in humans and preclinical species, which can
be modulated by existing and novel antipsychotic drugs (Section 4.1).

The translational potential of phMRI measurements was further corroborated by a
second group of studies, where a multi-parametric phMRI-based approach was
applied to investigate multiple facets of brain function in a rodent cocaine self-

IX
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administration model, a behavioural paradigm of established construct-validity for
research of drug addiction. This line of investigation revealed specific basal and
reactive functional alterations in the brain of cocaine-exposed rodents closely related
to those observed in analogous neuroimaging studies in humans (Section 4.2).

In a third line of investigation, the combined use of advanced neuro-genetic targeting
strategies (i.e. pharmacogenetic silencing) and phMRI has proven successful in
establishing direct correlations between cells, circuit and complex behaviours in
genetically engineered mouse lines. These studies (Section 4.3) have led to the
identification of a novel cell population in the amygdala that controls the behavioural
response to fear through the recruitment of cholinergic circuits.

Finally, the phMRI approach has proven a powerful tool to explore functional
connectivity in rodents, and to map a variety of different neurotransmitter pathways
by performing measures of correlated responses in spatially remote brain areas. This
has provided a useful playground to explore novel statistical methods of analysis of
functional connectivity represented in terms of complex networks (Section 4.4).

Collectively, the results of this work strongly corroborate the translational use of
phMRI approaches, and pave the way to the integrated implementation of phMRI
and advance genetic manipulation as a novel powerful platform for basic
neurobiological research.
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Riassunto

Lo sviluppo di tecniche di risonanza magnetica funzionale (fMRI) ha rivoluzionato le
ricerca neuroscientifica clinica, determinando la possibilita di investigare le
dinamiche spazio-temporali dell’attivita cerebrale in maniera non invasiva e con
grande accuratezza. Sebbene la tecnica sia stata originariamente sviluppata in ambito
clinico, essa ha il potenziale di poter essere utilizzata in ambito preclinico come
efficace strumento investigativo e traslazionale. Tuttavia, l'implementazione
preclinica di questi metodi & complicata da una serie di costrizioni sperimentali, in
primis I'utilizzo di anestetici, che minano fortemente il potenziale traslazionale di
gueste tecniche.

Il recente sviluppo di tecniche di "MRI farmacologico" (phMRI) offre la possibilita di
superare alcune delle limitazioni sperimentali correlate all'implementazione di
approcci fMRI classici in animali da laboratorio. La tecnica si basa sull'utilizzo di
metodi fMRI per mappare alterazioni di attivita cerebrale prodotte dalla
somministrazione di sostanze psicoattive. Studi preliminari hanno evidenziato la
capacita di generare robusti e specifici segnali phMRI anche in condizioni di anestesia,
ed ha dimostrato la possibilita di stimolare selettivamente diversi sistemi di
neurotrasmettitori.

Sfruttando la conservazione di circuiti cerebrali tra specie, tecniche phMRI offrono
quindi I'opportunita di ampliare in maniera significativa il repertorio di stimolazione
neuronale a disposizione in ambito preclinico, consentendo di indagare
selettivamente specifici aspetti della funzione cerebrale in diversi stati di pre-
condizionamento neuronale.

In tale contesto, le attivita di ricerca di questa tesi sono state finalizzate ad ampliare il
campo di applicazione di metodi phMRI preclinici in due diversi ambiti sperimentali:
a) come modalita di indagine traslazionale, qualora applicata a modelli di malattia
clinicamente rilevanti, b) piu in generale come piattaforma investigativa per
I'indagine della funzione cerebrale e della sua topologia funzionale in contesti
sperimentali diversi.

In un primo gruppo di studi, tecniche phMRI sono state impiegate per mappare i
circuiti neuronali attivati da antagonisti del recettore del glutammato NMDA nel
cervello del ratto (Sezione 4.1). Tali composti, grazie alle loro proprieta
psicotogeniche, sono ampiamente sfruttati come modelli sperimentali di schizofrenia
in animali ed in volontari allo scopo di valutare e validare nuovi trattamenti per la
malattia. | risultati di questa ricerca hanno evidenziato uno specifico circuito cortico-
limbo-talamico che risulta essere attivato da antagonisti NMDAR sia nell'uomo che in

X!
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specie precliniche, e che é risultato essere modulabile da meccanismi antipsicotici
diversi (Sezione 4.2).

Il potenziale traslazionale dei metodi phMRI ¢ stato ulteriormente avvalorato da un
secondo gruppo di studi, in cui un approccio multi-parametrico “phMRI-based” &
stato impiegato per indagare molteplici aspetti della funzione cerebrale in un
modello murino di dipendenza da cocaina. Questa linea di investigazione ha
evidenziato multiple alterazioni della funzione cerebrale basale e reattiva nel cervello
di roditori esposti alla cocaina strettamente connesse a quelle osservate in analoghi
studi di imaging su pazienti cocaina-dipendenti (Sezione 4.2).

In una terza linea d’ investigazione, I'uso combinato di avanzate strategie di targeting
neuro-genetico (pharmaco-genetic silencing) e phMRI si & dimostrato efficace nello
stabilire correlazioni dirette tra cellule, circuito e comportamento in linee di topo
geneticamente modificate. Questi studi hanno portato all’identificazione di una
nuova e circoscritta popolazione neuroni nell'amigdala, in grado di controllare
qualitativamente la risposta comportamentale alla paura attraverso il reclutamento
di circuiti colinergici corticali (Sezione 4.3)

Infine, 'approccio phMRI si & dimostrato uno strumento potente e versatile per
I'implementazione di misure di connettivita funzionale nel cervello di roditori. Questo
aspetto ha permesso I'esplorazione di nuovi approcci statistici per I'analisi della
topologia funzionale del cervello basati sulla rappresentazione di misure di
connettivita in termini di reti complesse (Sezione 4.4).

Complessivamente, i risultati di questo lavoro avvalorano il potenziale traslazionale di
metodi phMRI nellambito di diverse aree delle neuroscienze e della psico-
farmacologia. La combinazione di phMRI e tecniche di manipolazione genetica
avanzate definisce una nuova, potente piattaforma tecnologica per lo studio delle
basi circuitali del comportamento in animali da laboratorio.

Xl
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Introduction

1-INTRODUCTION

1.1 Background

Since its inception in the 1970s, Magnetic Resonance Imaging (MRI) has rapidly
become a widely applied radiological technique owing to its superior soft-tissue
contrast, absence of ionizing radiation exposure, and versatility. Multiple
combinations of pulse sequences, acquisition parameters and exogenous contrast
agents can be used to sensitize image contrast to different tissue characteristics and
physiological parameters, thus enabling a variety of clinical applications to
musculoskeletal, oncological, cardiovascular and neurological imaging. The discovery
by Ogawa and colleagues (Ogawa et al. 1990a) that brain MR Images are sensitive to
changes in tissue perfusion and blood oxygenation levels paved the way for the
development of non-invasive MR imaging of brain function, dubbed functional MRI
(fMRI). Since then, the inherent advantages of fMRI over other functional imaging
methods (e.g. water PET, EEG, MEG etc) in terms of spatio-temporal resolution and
non-invasiveness have determined the prevalence of this technique in functional
neuroimaging. Following the first pioneering studies, fMRI has been extensively
applied to study the neuronal circuits engaged by neuropsychological paradigms in
the healthy human brain, and has brought about considerable progress in our
understanding of the brain functional architecture. Likewise, functional imaging
methods have provided novel tools to investigate the neurobiological substrates of
psychiatric and neurological illnesses.

Although primarily developed for human investigations, there exists significant scope
for the application of fMRI in preclinical species. Animal fMRI studies may be
employed to understand and demonstrate the construct-validity of disease models,
thus improving their relevance to the human condition and their predictivity.
Moreover, the combination of functional MRI with more invasive techniques in
preclinical species may be useful to understand the physiological basis of the fMRI
responses, and to validate the imaging endpoint for clinical investigation. Last but not
least, animal models may provide useful tools to test the effects of putative
medicines on the activity of specific brain circuits thought to be implicated in aspects
of the human disease prior to proceeding to more complex and expensive clinical
trials, thus expediting the drug-discovery process. Hence, the translational potential
of a non-invasive imaging technique like fMRI is attractive for both basic and applied
brain research.
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However, a number of constraints make the application of fMRI methods to animal
models, and particularly to rodents, less than straightforward. In particular, the use
of anaesthesia to prevent motion artefacts and ensure animal restraint strongly limits
the repertoire of stimulation paradigms that can be used under constrained
experimental conditions of an fMRI experiment. As a result, most fMRI research in
rodents has been reduced to the employment of basic somato-sensory stimulation
paradigms, thus greatly limiting the translational potential of the technique. This
aspect highlights the need to develop refined fMRI paradigms that could serve as a
translation al bridge between clinical and preclinical research.

1.2 The Scope of this Thesis

An interesting approach to broaden the fMRI stimulation repertoire in laboratory
animals has been dubbed “pharmacological MRI” (phMRI) and relies on the use of
fMRI to map spatio-temporal patterns of brain activity induced by psychoactive drugs
(Leslie and James 2000). In this context, acute drug administration serves as a probe
to stimulate or inhibit activity in neuronal circuits, or to study the modulatory effects
of behavioural pre-conditioning, pharmacological pre-treatment or genetic
background on drug-induced patterns of activation. Originally developed to describe
psycho-pharmacological action at a systems level, the main merits of phMRI lie in its
ability to elicit robust and reliable fMRI signals even under anaesthesia and to enable
selective stimulation of different neurotransmitter systems, thus providing a means
to study the neurochemical basis of fMRI responses and the corresponding circuitry
engaged.

Building upon the homology between brain circuits in humans and laboratory animals
and the exquisite spatio-temporal resolution of MRI, in the research that follows we
have developed refined phMRI approaches that significantly expand the scope of
application of preclinical fMRI both as a translational technique, when applied to
clinically-relevant disease models, and more generally as a versatile platform for the
pre-clinical investigation of brain activity and its functional topology with respect to
different behavioural, pharmacological or genetic preconditioning states.

As a first example of significant-translational value, we have developed a phMRI
assay to map the circuitry activated by NMDAR antagonists in the rat (Section 4.1).
These compounds (i.e. ketamine and PCP) are widely exploited pre-clinically and
more recently in clinical research to model schizophrenia symptoms and to provide
experimental models that may prove useful in the development of novel treatments
for the human disorder. We have also investigated the neuro-chemical determinants
of the functional cascade produced by these drugs by using current and future anti-
psychotic mechanisms.
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Moreover, in an attempt to further improve the translational scope of phMRI, we
have developed a multi-parametric phMRI-based approach to investigate multiple
facets of basal and reactive brain function in preclinical models of psychiatric
disorders. We have implemented the approach to study brain function in a rat model
of cocaine self-administration, a behavioural model of established face- and
construct-validity and high translational significance in the research of cocaine-
addiction (Section 4.2).

Furthermore, when combined with advanced neuro-genetic targeting strategies (i.e.
pharmacogenetic or optogenetic methods), the preclinical implementation of
f/phMRI can define a novel investigational platform to establish direct correlations
between circuit and behaviour in living animals. By using genetically engineered
mouse lines produce by Dr. Gross (EMBL Monetrotondo) and refined phMRI
methods, we have provided a first compelling demonstration of the potential of this
approach by unravelling the cellular and circuital basis of complex behavioural
responses like those elicited by fearful and aversive stimuli (Section 4.3).

Finally, the phMRI approach has proven a powerful tool to explore functional
connectivity in rodents, and to map a variety of different neurotransmitter pathways
by performing measures of correlated phMRI responses in spatially remote brain
areas. This has provided a useful playground to explore novel statistical methods of
analysis of functional connectivity represented in terms of complex networks (Section
4.4),

1.3 Main Contributions

The main contributions of this work can be divided in methodological and
neurofunctional. Methodological contributions include:

i. Development of high spatial resolution methods to map brain function in the
rat and its modulation by pharmacological or behavioural pre-conditioning

ii. Implementation of measures of correlated phMRI responses as an index of
functional connectivity in the rat and in transgenic mice

iii.  Development of a robust multiparametric phMRI protocol for the assessment
of multiple facets of basal and evoked brain function in rodent disease model

iv.  Development of high-resolution phMRI protocol to map evoked brain function
in transgenic mice

v.  Contribution to the implementation of complex networks approaches to
describe the functional topology of rat and mouse brain

Neuro-functional contributions include
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Identification of a phMRI-based translational paradigm to map and investigate
the circuitry acutely activated by psychotogenic doses of NMDAr antagonists
Definition of major neuro-chemical determinants of NMDAr antagonist-
induced functional response in the rat brain

Identification of the site of action and neural circuitry modulated by current
and novel anti-psychotic mechanisms

Identification of altered basal and evoked functional states mimicking clinical
neuroimaging findings in a widely-employed rat model of cocaine addiction
Identification of the cellular and circuital determinants of passive and active
behavioural response to aversive stimuli in the mouse (in collaboration with
Dr. C. Gross, EMBL, Monterotondo).

All the methodological and neurofunctional contributions have been published in the

form of peer-reviewed manuscripts or conference communications, with the

exception of the cocaine work (Appendix 5) which is currently under review (see

appendixes and publication list).

The structure of the present thesis comprises a first theoretical introduction to the

principles of MRI (Chapter 2), followed by a description of the neurovascular

foundations of the haemodynamic response and its measurements in fMRI and
phMRI paradigms (Chapter 3). The results of the experimental work are described in

the form of a general outline in Chapter 4, followed by the original manuscripts
(appendixes 1-7).



2 - Basic Principles of Magnetic Resonance Imaging

2 - BASIC PRINCIPLES OF MAGNETIC
RESONANCE IMAGING

2.1 Nuclear Magnetic Resonance (NMR)

The phenomenon of Nuclear Magnetic Resonance was first described by Edward
Purcell and Felix Bloch in 1946. The discovery, for which they received the Nobel
prize in 1952, led to the rapid diffusion of NMR as a powerful analytical tool for the
investigation of molecular structure and chemical composition. Approximately two
decades later Paul Lauterbur and Mansfield demonstrated the use of NMR to obtain
spatially resolved images of the distribution of proton spins in objects, a discovery
that paved the way to the development of MRI. Since then, the technique has been
considerably refined and MRI is now routinely employed in numerous areas of
science and it has become the most common diagnostic imaging procedure in
hospitals. The prevalence of MRI, together with recent breakthroughs in hardware
design, have been instrumental in determining the explosion of interest in the
development of fMRI methods. As a testimony of the invaluable contribution of MRI
as a diagnostic and functional tool in biomedicine, Lauterbur and Mansfield were
jointly awarded the 2003 Nobel prize in physiology and medicine.

This chapter briefly describes the theoretical foundations of nuclear magnetic
resonance and magnetic resonance imaging. The chapter serves as an outline of the
basic principles of NMR and MRI. A more detailed description can be found in
specialized texts on the subject (e.g. McRobbie et al. 2007; Gadian 2004; Huettel et
al. 2004).

2.2 Quantum Mechanical description of NMR

The quantum mechanical description of atoms and molecules, as originally
formulated by Dirac in 1930, accurately describes fundamental properties of atomic
nuclei and the way these interact with radiation. Central to the description of NMR
phenomena are the concepts of nuclear spin angular momentum and nuclear spin
magnetic momentum.

The spin angular momentum of an atom or nucleus is a vector quantity whose total
magnitude and orientation relative to some external axis are restricted to discrete
values, specified by a quantum number /. Expressed in quanto-mechanical terms, this
relationship states that the nuclear wave function (¢) is always found to be an
eigenfunction of the operator (L) corresponding to the square of the angular
momentum
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Ly =1(1+)" g 2.1)
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where h js the Planck constant. The quantum number /, often called “spin of the
nucleus” may only have integral or half-integral values as follows: a) [ is integral for
nuclei with even mass number b) / is zero for nuclei with even number of both
neutrons and protons c) / is half-integral (4) for nuclei with odd mass number (i.e 1y,
B¢, and 31P). The latter class of nuclei is of paramount importance for NMR, as these
are the nuclei that tend to have the most favourable NMR characteristics. As far as
medical applications of NMR are concerned, the proton (*H) is by far the nucleus of
most interest, because of its high natural abundance (99.98%) and high concentration
(75-90%) as part of water or lipids in most living systems. As a consequence, the vast
majority of the radiological and functional applications of MRI are primarily based on
the detection of signal from water protons. However additional nuclei may play a role
in specific diagnostic or investigational NMR-based techniques. These include 3C,
whose low abundance relative to *2C makes it suitable for tracer studies, or the
naturally occurring phosphorous nucleus *'P, which is widely used as a non-invasive
marker of tissue metabolism in living systems.

Equation 2.1 states that the operation on (¢ by the angular momentum operator L

gives solutions only for certain values of the angular momentum, the magnitude of
which is given by

IP|= a1 (1 +1) (2.2)

where 7% is equal to h/2m. Quantum mechanics also dictates that the orientation of
the vector P relative to any given direction is also restricted. In the presence of a
magnetic field applied along the z axis, it turns out that the possible values of the z-
components of the angular momentum are given by

where m may have any of the 2 / + I values, I, I-1, I-2 ... — |, and so for a nucleus of spin
%, m can be +%, or -%. Therefore, for such a nucleus

P,=+Y%n (2.4)

This relationship states that the angular momentum vector can rotate about the z-
axis, in that its components in the x or y directions are not quantized. Using Dirac’s
notation, the eigenfunction describing the spin state of the proton nucleus can be
written as \+}/2> or \-}/2> and since in quantum mechanics every physical observable has

an associated operator, two eigenvalue equations can be written to describe the
observation of the spin state as

|, |+3) =+ %)) (2.5)
|- =—%h-3) (2.6)
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where |, is the operator describing measurement of the angular momentum along
the z axis.

In order to measure the energy of the spin system, a Hamiltonian operator needs to
be built. Since nuclei by virtue of their electrical charge have magnetic properties, the
form of the Hamiltonian can be derived from classical electromagnetism for the
energy of a magnetic dipole moment placed in a magnetic field.

The magnetic moment p of a nucleus is found to be proportional to its angular
momentum

with the constant of proportionality, Yy, being called the gyromagnetic ratio. The
gyromagnetic ratio is a property of the particular nucleus which cannot be predicted
from classical physics, and has a value of 2.67 x 10® rad/T for the proton. It should be
noted that, although for most nuclei yis positive, for some, such as BN, Yis negative.

If a static magnetic field B is applied along the z-axis, the nucleus acquires energy E as
a result of the interaction between the magnetic field along z (B,) and the nuclear
magnetic moment p

E= - B (2.8)

z z
where |, is the component of the magnetic dipole moment of the nucleus along the

z-axis. By combining equations 2.4, 2.7 and 2.8 a Hamiltonian (known as Zeeman
Hamiltonian) can be defined as

H=-hyB|, (2.9)

From this relationship the energy of the eigenstate m, can be derived as follows

H|m)=-hyB,,/m)
H|m) =-nyBm|m)
E=-nyBm (2.10)

So for a proton with m=1J, a transition between the two states represents a change
in energy

AE =hyB, (2.11)
AE=" B (2.12)

2m
This is called the Zeeman splitting, and these two states are given a variety of labels,

but most commonly referred to as 'spin up', and 'spin down', with the spin-down
state having a higher energy than the spin-up state. Transitions between the two

7
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adjacent states can be induced by absorption or emission of a photon of frequency vq
such that

AE=hyB, =hy, (2.13)
-V 2.14
Vo= o (2.14)

Expressing the frequency in angular terms gives the Larmor equation which
underpins the whole of NMR as it expresses the resonance conditions for a nucleus of
gyromagnetic ratio y:

w= yBO (2.15)

The characteristic frequency, w, is often termed as the Larmor frequency. The
magnetic field, labelled By, is still assumed to be applied along the z axis, and is now
subscripted with a '0' to distinguish it from the applied radio frequency field which
will be introduced later.

This description of the quantum mechanical behaviour of an atomic nucleus leads to
the way NMR is performed. Transitions between the two energy states, spin-up and
spin-down, can occur by absorption or emission of electromagnetic radiation of
frequency given by the Larmor equation. This frequency depends, for a given species
of nuclei, purely on the applied magnetic field. It is the strength of the field
experienced by the nucleus that enables structure to be determined in spectroscopy
experiments, and spatial encoding in imaging experiments. However, in a real system
there is not just one nucleus in isolation, but many nuclei all of which could occupy a
particular spin state. This means that the theory must be extended to consider an
ensemble of spins. To do this, a single eigenstate s, which is a linear combination of
the possible spin states for a single nucleus is defined

w)=>a,[m) (2.16)

where ap are the coefficients that determine the superposition state. So for the

case of a proton with two spin states + %:

|W)=a,,|-y)-a %) (2.17)

Note that here, to simplify operations, the factor# has been removed from the
eigenvalues of the operator /,, which corresponds to expressing the hamiltonian in

frequency units rather than in joules.

When making a measurement on such a system, the expectation value of the
operation on this superposition of states is

<'z>:<‘4’\|z\‘4’>=%h(a+yzaiy2—a_%aiyz) (2.18)

8
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where a:% and ai/yz represents the complex conjugate of the coefficients a,y and
ay, respectively. In an ensemble of N spins, the total z-magnetization is the sum of
2

the z-components of the magnetic moment of each spin (eq. 2.18), multiplied by
gamma

1 * *
M, :Eth(a%a% -~a,a ) (2.19)

where the line indicates an ensamble average. Note that to preserve correct
dimensionality here the factor 7 has been reintroduced. Since the probability of
finding a particular spin in the level \+y2> is a%a:yz, by adding up these probabilities

for all the spins in the sample it is possible to find the number q}vzof spins which, on

measurement are in the level +%4. This number can be interpreted as the population
of the level +%.

n, = Na%a% (2.20)

Similar considerations can be done for the level -%

n, = Na_yza_y2 (2.21)

These relationships allow to express bulk magnetization as a quantity proportional to
the population difference between states

1
M, :Ehy(n%—n_yz) (2.22)

At equilibrium, these populations are predicted by the Boltzmann distribution

1 B2 1 By
n, :E Ne KeT and n, ZENe KeT (2.23)

where E,; and E., are the energies of the two levels, Kz is the Boltzmann constant
and T the temperature of the system. As for gamma positive the +/ state has lower
energy, the ratio of the populations of the two energy states from Boltzman statistics

n - -
g KT —g KeT 1 yhB, (2.24)

provided KT >> )i, .
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Combining equations 2.22 and 2.24, the bulk magnetisation of the N spin ensemble
becomes

(2.25)

This equation is central to the theory of MRI, as it states that the use of stronger
magnetic field strengths results in an increased the magnitude of bulk magnetisation
and hence the theoretical MR signal produced by the spin ensemble. Moreover, the
possibility to describe the behaviour of all the spins in the system in terms of
magnetisation allows a transfer from a quantum mechanical to a classical description
of NMR. The advantage of the classical description is that it gives a simple and
intuitive picture of NMR experiments and the effect of RF pulses in MRI.

10
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2.3 Classical description of NMR

2.3.1 Spin precession

According to the classical description of NMR, a nuclear spin can be visualised as a
small sphere of distributed positive charge that rotates at high speed about its axis.
Because of its rotation, it produces a current that in turn generates a small magnetic
field. According to this conceptualisation, if nuclei are regarded as tiny rotating bar
magnets possessing angular momentum P, it is possible to show using classical
physics that they will precess about a static magnetic field By with a characteristic
angular frequency as a consequence of the torque t experienced.

The magnitude of the torque experienced when a nucleus moves at some angle 6 to
the magnetic field By will be only determined by the component of the magnetic
moment vector perpendicular to the static field 7 = ¢ sin@B, or, in vector form

T=pxB, (2.26)

As the torque defines the change of angular momentum over time, eq. 2.26 can be
rewritten as

‘:'j_li‘: y(nxB,) (2.27)

These equations state that the exposure to a static magnetic field Bg induces a torque
that changes the angular momentum and magnetic moment of the spin over time.
Breaking down the magnetic moment p into scalar components along perpendicular
dimensions, eq. 2.27 becomes

du dy, _ du, _
X — _ Y = z O
dt By dt 4By dt

(2.28)

which has solution

n(t) = (u, cosat + 41, sinat)x + (u, cost + 1, siak)y + 4,z (2.29)

where x, y and z are unit vectors along three spatial dimensions, and w= yB,. This

equation specifies that the magnetic moment precesses at an angular velocity w that
is given by the same frequency of an emitted or absorbed electromagnetic pulse
during spin state changes derived in the quantum mechanical description (eq. 2.15)
thus unifying the classical and quanto-mechanic perspectives of NMR phenomena.

11
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This unification allows to visualize the quantum behaviour of spins using classical
mechanics modelling to derive basic equations for MR signal generations.

2.3.2 Measuring the Magnetic Moment of Spins in Bulk Matter

In NMR experiments, spin ensambles containing a large number (typically 10*® or
more) of nuclei are typically studied. These “nuclear magnets” all precess about the
static field Bo. However, as there is no preferred orientation in the plane
perpendicular to By (commonly described as xy-plane) the net component of
magnetic moment in the xy-plane is zero. There is however a net magnetisation
along the z-axis as a result of the slight prevalence of nuclei oriented with the field, a
phenomenon that in classical terms can be described as vector sum of the p,
components of eq. 2.29, and in quanto-mechanical terms corresponds to bulk
magnetisation (M,) of the N spin ensemble specified by eq. 2.25. In other words,
while the net magnetisation vector M initially points along the main magnetic field,
its precession angle is 0° at equilibrium.

In order to measure the magnetisation of a sample exposed to static field By, the
vector M can be tilted towards or into the xy-plane (known as the transverse plane)
and the corresponding NMR signal recorded using a detector (i.e a coil of wire)
sensitive to magnetic fields in the transverse plane. This can be accomplished by
means of appropriate radiofrequency (r.f.) pulses applied in the xy-plane, which
cause the magnetization vector to precess around the main axis of the field,
analogously to a single magnetic moment. The process is called spin excitation.

Central to the design of effective r.f. excitation pulses is the concept of resonance.
The idea is to apply a time-varying small magnetic field along a transversal axis (i.e x-
axis) but — crucially — to make this pulse resonant with the Larmor precession
frequency. In MR scanners such oscillating magnetic field is commonly generated by
feeding some RF power to the coil such to induce an oscillating current and magnetic
field (B;) at the same frequency as the spin precession. This field is called the
radiofrequency field or r.f. field.

Felix Bloch derived a set of differential equation based on the classical model of NMR
that describe the changes in magnetisation upon the application of an excitation
pulse. In analogy with single spin precession reported above (eq. 2.27), the net
magnetisation vector M, when placed in a magnetic field B that tips it away from its
equilibrium position, will experience a torque and start a precession motion
described by

am
T: yM xB = V[(Msz _Msz)X +(Msz - Msz)y +(MxBy - MyBx)Z] (230)

Here the torque on the net magnetisation depends upon the total magnetic field B

experienced by the spin system, which includes a static field along z (B,=By) and the
field (B4) rotating in the transverse plane produced by the excitation pulse. If only the

12
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circularly polarised component of B, rotating in the same direction as the precessing
magnetisation vector is considered

B,(t) =(B,coswt x— B,y sinwt ¥y (2.31)

equation 2.30 can be broken down as follows

dcl\;lx =y[M B, + M ,B,sinw]

M

dty :y[MzBlCOS%t_MxBO]

dMm, _ . (2.32)
pm =y[-M ,B;sinwt-M B, coswt ] .

If a starting condition M(0)=Mk is defined then the solutions for M are

M, (t) = M sinwt sinw,t
M, (t) = M sinwt coswt
M, (t) = M, coswt (2.32)

where @ =)B,. This implies that by applying an oscillating magnetic field of

frequency wo, the net magnetisation vector simultaneously precesses about By at wq
and B, at w4, a spiralling motion known as “nutation” (Figure 2.1).

At this point it is convenient to introduce a new frame of reference for viewing the
evolution of the magnetisation vector, the so-called “rotating frame”, which rotates

about the z-axis at frequency wy. If in the rotating frame an axis system (x',y',z) is
defined, then equation 2.30 can be re-written as

(d_Mj :(dﬂj —(,)xM:yI\/le—(,)xM:nyB—},ng (2.33)
dt rot dt fixed y

where w is the rotational frequency of the rotating frame. The equation can thus be
re-arranged to the following form:

dm
(Fjrot ) yM g [B +%] i yivl “® “ (234)
w 1
where Beff = (BO _;]Z + le (235)

and (x’, y’, z) are unit vectors in the (x’,y’,z) directions. The result of solving these
equations is a magnetisation vector which precesses about Bes, which is the effective
magnetic field experienced by the spins. Importantly, if the applied B, field is in

13
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w
resonance (i.e. B, =— ), the magnetisation vector will precess in the rotating frame

about the x'-axis at a frequency ) = yB,.

Rotating frame Laboratory frame

Figure 2.1

Spin nutation. Tipping the longitudinal magnetization into the transverse plane by a simple
rotation in the rotating reference frame (A) results in a wobbling motion known as nutation in
the laboratory frame (B). The r.f. energy is called B; because it behaves like a second
magnetic field (adapted from Huettel et al. 2004).

The most common way to carry out an NMR experiment is to apply a short burst of
resonant r.f. field. If the duration of this r.f. pulse is t, then the magnetisation will
rotate by an angle

a =yBt, (2.36)

In a typical NMR experiment, a 90° pulse is applied to tip the magnetisation vector
from the longitudinal plane to the transverse plane. The r.f. pulse has also the
important effect of bringing all the spins into phase coherence. This means that they
all point to the same position on the precession circle. Once in the transverse plane,
the magnetisation precesses about the z-axis, and can produce NMR signal in the
form of an oscillating current in a receiver coil that is placed in the transverse plane.
The signal thus obtained is called Free Induction Decay (FID).

2.3.3 NMR Signal Relaxation

The NMR signal after the application of a resonant r.f. pulse does not last indefinitely
but decays over time, generally within a few seconds, a phenomenon called
relaxation. Two primary mechanisms contribute to the loss of signal: spin-lattice (or
longitudinal) relaxation and spin-spin (or transversal) relaxation (Figure 2.2).

Spin-lattice relaxation involves exchange of energy between the spin system and its

surroundings, and the rate at which equilibrium is restored is characterised by the
spin-lattice relaxation time, T4, in a new equation of motion for Mz

14
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M, - | M. —M, (2.37)
dt T,

The spins however do not only exchange energy with the surrounding lattice, but also
among themselves. This is generally a faster process than spin-lattice relaxation, and
is characterised by the spin-spin relaxation time, T, in the equations describing the
evolution of My and M,

dM, M
M, M (23g) Y=Y (2.39)
a T, dt T,

These relaxation processes constrain how much NMR signal can be acquired
following a single r.f. excitation pulse. Equations 2.36, 2.37 and 2.38, when combined
with the earlier equation of motion (eq. 2.30) form what are known as Bloch
equations.

Longitudinal relaxation Transverse relaxation

Figure 2.2

Left; longitudinal relaxation refers to the decay of magnetisation along the Z axis; Right;
transverse relaxation refers to the decay of magnetisation on the xy plane (adapted from
Huettel et al. 2004).

For a magnetic field including both a static (B, =B,) and a rotating resonant

component on the transverse plane (B, = B,cosat and B, = B sinat)

am . M
= )(M _B,+M _B,sinat)——= 2.40
qr = VM B+ M.Bisinat)- - (2.40)
a, _ (M, B, cosat —M B, ) M, (2.41)
dt =y x =1 x =0 T2 .
d'(;/'tz =y(M,B;sinat +M B, cosut )—(@j (2.42)
1

These equations provide the theoretical foundation for all NMR experiments and can
be solved with appropriate limiting conditions. For example, immediately after the

r.f. pulse is switched off ( B, = 0), the solutions are
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M, (t) =[ M, (0)coswt+M, (0 sinyt]|e™ (2.43)
M, () =M, (0)cosat =M, (9 sirt [e™ (2.44)
M, (t)=M,(0)e"" +M,(1-e"'") (2.44)

For a s system at equilibrium, and a r.f. pulse of 90°, M,(0)=M,(0)=0 and M, (0)=M,
giving (in complex notation)

M, (t) =M gve™ (2.45)
M, (t)=M,(1-e"") (2.46)

These equations are of utmost importance for MRI: by determining the rate at which
longitudinal and transversal magnetisation return at equilibrium state, the relaxation
times T; and T, play a crucial role in defining image contrast, a consequence of the
different relaxation rates exhibited by protons in different tissues and molecular
milieus.

16
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2.4 Magnetic Resonance Imaging (MRI)

2.4.1 Magnetic Field Gradients

As previously shown (Section 2.2), the Larmor equation is fundamental to the theory
of magnetic resonance, as it describes the precession frequency of spins as a function
of the local magnetic field strength. Since a measurement of the frequency of
precession of magnetisation can give information on the field experienced by a group
of spins, by manipulating the spatio-temporal variation of the field in a known way
(i.e. via magnetic field gradients), this frequency information can be used to provide
spatial information. Such use of spatial magnetic field gradients is necessary for
measurement of spatial properties of a sample and lies at the basis of modern MRI
techniques, in essence allowing NMR to become MRI.

After the spin excitation, the magnetic field B experienced by spins at a given location
may be described as a linear combination of the static field By and direction-specific
time-varying gradient fields G that may be introduced to modulate the field strength
across the sample (Figure 2.3):

B(t) =B, +G,(t)x+G, (t)y+G,(t) z (2.47)
x-gradient y-gradient z-gradient
I\ 1-\ ‘1
A
A A
A A
}lf A /11‘ ‘ f '}
P 0| A‘/ /
k A/’ Al
' > 4 >\ >
Figure 2.3

Magnetic field gradients change the strength (but not the direction) of the static magnetic
field along different three-dimensional pathways in the image space.

Knowing that & =)B,, and combining eq. 2.47 and 2.45 we obtain the following

relationship that describes the evolution of transverse magnetisation in the presence
of magnetic field gradients as a function of location and time:

(e, @y-ci (e
Mxy(x, y,z,t) = Mxyo(x,y,z)e"’TZe'VBOte o (2.48)

As the MRI signal (S(t)) is detected by using a single antenna (e.g. a volume coil), it
reflects the sum of transverse magnetisations of all voxels within the excited sample:

S(t)= J.J.J. M., (X, y,z,t)dxdydz
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Combining eq. 2.47 and 2.58 results in the following equation, known as MR signal
equation as it reveals the relationship between the acquired signal and the properties
of the object imaged:

iyt (Gx(t)x+Gy(t)y+Gz(t)z)dt

S(t) = [[[M,o (% y,2) e j dxdydz (2.49)

Equation 2.49 can be simplified by removing the term €“'(as modern scanners
demodulate the detected signal with the resonance frequency) and by ignoring the
term e, which only affects the magnitude but not the spatial location of the signal,
giving this simplified version

t

iy [ (Gelt) G, (1) y+G (1))t

S(t) =I_”Mxyo(x, y,z)e dxdydz (2.50)

which points out the profound importance of the gradient fields for encoding spatial
information within an MR image. Equation 2.50 is in three-dimensional (3-D) form.
However, 3-D MR imaging presents additional technical challenges and presents low
tolerance to hardware imperfections; as a result, the vast majority of imaging modes
relevant to fMRI and phMRI studies use two-dimensional (2-D) imaging sequences.

2.4.2 Slice Selection

In order to reduce the signal equation to two dimensions, variation over one spatial
dimension is eliminated by separating the signal-acquisition process into two steps:
1) a particular slice within the total imaging volume is selected using a one-
dimensional excitation pulse 2) a two-dimensional encoding scheme is used within
the slice to resolve the spatial distribution of the spins.

Slice selection is accomplished by the application of a specially designed r.f excitation
pulse in combination with a static magnetic field gradient along the slice selection
axis (e.g. G,). This results in the excitation of only those spins whose Larmor
frequency, which is dictated by their position, is the same of the applied r.f. pulse. In
order to obtain sharp-edeged pseudo-rectangular slices, sinc-modulated
electromagnetic pulses are typically used, coupled to interleaved slice acquisition
schemes are used to minimise off-resonance effects across adjacent slices.

For a selective pulse along the z direction, the magnetic field gradient introduces a

position-dependent spread f in the Larmor frequency about the carrier frequency fy
such that

Af (2) = ﬁzG (2.51)

z

If an amplitude modulated r.f. 90° pulse of form

B, (t) = A(t)cos( 27f t) (2.52)
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is applied, where A is the pulse envelope, and fy is the “carrier” frequency, recalling
equation 2.36, the resultant flip angle will be (approximately)

2) = y[ At)e”™ Vet (2.53)

The integral is the Fourier transform of A(t), i.e. a(z)=yA(f). So the shape of the r.f
pulse’s spectrum determines the shape of the slice with regard to the selection
direction (here z).

2.4.3 Reciprocal (k) Space

The slices chosen by the selection process are defined by their location, orientation
and thickness. For a given location (x,y) within a slice centered at z=zy, the total
magnetisation summed along the z-direction for a thickness Az is given by

M(xy)= | Myolxy.2)de 254

Thus, by selecting an imaging slice, and denoting the number of spins at a particular
location as the spin density p(x y) eg. 2.50 can be reduced into a 2-D form

|yj ><+G
I ,0 X, y dxdy (2.55)
statlng that the total signal recorded from a slice depends upon the magnetisation
(i.e. spin density) at every location, with the phase of individual spins dependent
upon the strength and duration (t) gradient fields at that location.

In order to facilitate a better understanding of the relation between the MR signal
and the object to be imaged, a different notation scheme known as k-space is
introduced. This follows the definition of quantities ky(t) and ky(t) such that

:LJ'GX(r)dr (2.56)
Lt
- ! (2.57)

These equations state that changes in k-space over time, are given by the time
integral of gradient waveforms. By substituting these terms into eq. 2.55 the MR
signal equation can be restated using k-space coordinates

S(k(1).k, (1) = [[ o(x y) &> &> axdy (2.58)

which highlights an inverse Fourier relationship between MR signal and spin density.
Hence, the application of the gradients allows to encode the MR signal in terms of k-
space spatial frequencies, and position (x,y) and spatial frequency (kyk,) constitute a
Fourier transform pair. The process by which raw MR signal as acquired in k-space
form is converted via Fourier transforming into spatially informative images is called
image reconstruction.
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The consequences of Fourier MRI relate to the properties of the k-space. An
important property of k-space is that its central portion, corresponding to the area
covering lower spatial frequencies, is the one that determines the overall brightness
and contrast of the final image whilst the outer regions (higher spatial frequencies)
determine the fine detail.

2.4.4 Spatial Encoding

Once spins are excited within the desired slice, they must be spatially encoded so to
resolve the spatial features of the imaged object. To this purpose, magnetic fields
gradients that differ across two dimensions are applied to the sample, a process
known as frequency and phase encoding. In k-space terms, this is equivalent to
introducing sampling paths whose trajectories are determined by the shape and time
of gradient functions. While different paths can be used to cover the k-space, in the
majority of imaging sequences k-space is filled one line at a time, following a
succession of individual excitation pulses. This process is exemplified in figure 2.4.
During each excitation the combination of r.f. pulse and the G, gradient selects the
desired slice. Then the G, gradient is turned on before the data acquisition period, so
to induce a certain amount of phase offset before the activation of the G, gradient,
which changes the frequency of the spins as a function of their position. This
corresponds to the movement of the effective location of data acquisition along the
y- and x-directions, respectively. According to this scheme, gradients like G, are
typically referred to as phase-encoding gradients, while the G, gradient is typically
denoted as frequency-encoding gradient. An implication of this data acquisition
scheme is that k-space is sampled in a discrete fashion: along the K, axis, each line
represents a separate amplitude of the G, gradient. While the trajectory along the K
direction is continuous, the MR signal is sampled digitally with a specific interval.
After the k-space is filled, a 2-D inverse Fourier transform for conversion of raw data
to image space M(x,y). As a consequence of the reciprocal arrangement between the
guantities x and k,, the highest spatial frequency (NAk) represents the smallest object
detectable (i.e. the pixel size) and the largest object (i.e. the field of view, FOV) is
determined by the smallest spatial frequency 1/Ak).

It should be noted that different k-space collection schemes have been developed
and entered clinical routine in MR, including 3-D (where slice selection is replaced by
additional phase encoding along z direction), spiral and radial and more. Their
theoretical implementation can be easily extrapolated from that of 2-D imaging
presented above.

2.4.5 MR Contrast Mechanisms and Pulse Sequences

As derived in previous sections, longitudinal and transverse magnetization decay
according to the relaxation time constants T; and T, as described by equations 2.45
and 2.46. Two important factors that govern the time at which MR images are
collected are the repetition time (TR) and echo time (TE). TR is the time interval
between successive excitation pulses; in order to reduce acquisition times,
oftentimes consecutive excitations occur at time intervals not long-enough to allow
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full recovery of the longitudinal magnetization. TE can be defined as the time interval
between excitation and data acquisition of the center of k-space. Under such
conditions, the transverse magnetization is described as

M, (t) =M, (1-e™")e™m (2.58)

illustrating that MR signal depends not only on the original magnetization (i.e. proton
density), but also on the T; and T, relaxation constant of the tissue being imaged. As
substantial differences exist between relaxation times of protons of different tissues,
by manipulating TR and TE it is possible to alter the contrast (i.e. signal difference
between any two types of tissue) and thus the appearance of the MR images, a
feature that underscores the high versatility of MRl compared to other imaging
modalities.

(A) (B) by

N

1 LI_\_ B
G zé DA . -

Slice Phase Frequency
selection encoding encoding

Figure 2.4

A typical two-dimensional pulse sequence. Shown in (A) are lines representing activity of the r.f. field
and the three spatial gradients. The pulse sequence begins with a combined slice selection gradient
and excitation pulse. The G, gradient is used for selecting one line of k-space following each excitation
pulse, while the G, gradient is turned on during data acquisition (DAQ). The sequence depicted is a
gradient echo sequence where each line of k-space is acquired following a separate excitation (adapted
from Huettel et al. 2004).

One of the simplest forms of MR contrast is proton-density imaging, where contrast is
determined by the sheer number of protons in the voxel. This can be achieved by
minimising T; and T, contrast through the use of long TRs and short TEs. In order to
reduce imaging time, small flip angles (<90°) are often used to achieve faster full
longitudinal recovery.

A third important form of contrast is T, weighting. In T>-weighted images the amount
of signal loss depends upon the time between excitation and data acquisition (TE).
This can be achieved by employing long TRs (TR>T1), and ‘intermediate’ T, so to
maximize difference in transverse magnetization and minimize T,-mediated signal
loss.

Another common form of contrast is T; weighting. T;-weighted images can be
obtained choosing “intermediate” TRs such to allow longitudinal magnetization to
recover, but at the same time maximizing tissue differences in T, relaxation rates. For

21



2 - Basic Principles of Magnetic Resonance Imaging

any two tissues that differ in Ty, there is an optimal TR valued that maximally
differentiates between them. To have exclusive T;-contrast, very short TE must be
used (TE<<T,).
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Figure 2.5

A typical two-dimensional spin-echo pulse sequence. In spin-echo imaging, the time between excitation
and data acquisition (DAQ) is termed echo time (TE). In spin-echo imaging, a 180° refocusing pulse is
used at TE/2 to restore phase coherence (adapted from Huettel et al. 2004).

Unlike proton-density or T;-weighted images, whose generation can be obtained by
employing multiple types of pulse sequences, T,-weighted images can only be
obtained using spin echo-based pulse sequences, because only this kind of sequences
allow true spin-spin relaxation that does not depend on the field inhomogeneity. A
typical spin-echo pulse sequence diagram is shown in Figure 2.5. Spin-echo
sequences use a second 180° electromagnetic pulse, called refocusing pulse, to
generate a “signal echo”. Because the 180° echo pulse reverses the loss of phase
coherence experienced by spins, spin-echo imaging is insensitive to static magnetic
field inhomogeneities. This is not case of gradient-echo sequences (Figure 2.4). These
sequences use only gradients to generate a signal echo in the centre of the k-space.
In this case, the transverse relaxation is the sum of two independent components:
spin-spin interaction (T,) and changes in spin precession frequency due to local
inhomogeneities in the magnetic field (governed by the fictitious constant T,’). The
combined effect of these two factors is described by the time constant T,*. Though T,
and T,* are related (1/T,*=1/T,+1/T,’), the former constant is always greater than the
latter. Like T, contrast, T,*-weighted images are generated using long TRs and
medium TEs, with the necessary requirement of the use of a gradient-echo sequence,
as refocusing pulses will eliminate field in homogeneity effects. On the other hand,
both gradient- and spin-echo sequences can be used to generate proton density or
T1-weighted images, provided TRs and TEs are appropriately chosen.

The discovery that blood-oxygen level dependent (BOLD) contrast could be used as
an effective and sensitive marker of neuronal activation has led to a rapid increase
the use of T,*-based imaging protocols in the field of brain functional MRI (fMRI). A
more detailed discussion of the physiological basis of the BOLD effect and its
implications for functional neuroimaging will be given in chapter 3.
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2.4.6 Fast Spin Echo: the RARE Sequence

The use of fast spin-echo sequences plays a central role in the work presented here,
given the numerous advantages of this imaging method over standard T,*-based
functional imaging methods, particularly in small animal research (see sections 3.5
and following).

The Rapid Acquisition with Relaxation Enhancement (RARE) sequence, also known as
Fast spin echo (FSE) or turbo spin echo, is a spin-echo sequence originally described
by Hennig (Hennig et al. 1986) which has gained wide popularity over the last years
given its reduced acquisition time and remarkable experimental versatility. RARE
imaging relies on the use of evenly spaced multiple refocusing pulses (commonly
180°) to form an echo train Figure 2.6. The extra echoes are thus used to acquire
multiple lines of k-space data through the combined use of different phase encoding
for each echo, a strategy called “segmented” imaging. The echo train length (or RARE
factor) is the number of echoes in the spin echo train. The total scan time is thus
proportional to TR, number of phase encoding steps, and number of signal averages,
and is inversely proportional to the RARE factor. As a consequence, a sequence with a
RARE factor of 8 (i.e. 8 echoes) will run 8 times faster than the equivalent
conventional spin echo. In fast or segmented spin echo sequences like RARE, an
effective echo time (TEq) is defined as the echo time that dominates the image
contrast. This corresponds to the echo that coincides with the central parts of the k-
space (see section 2.4.3). As a consequence, the order in which the phase encoding is
applied is an important parameter that can be manipulated to affect contrast (Figure

2.7).
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Fast spin-echo (RARE) sequence with an echo train length (RARE factor of 3). IES denotes inter
echo spacing, i.e. the time between successive echoes (modified from McRobbie et al. 2007).

Although fast and versatile, the RARE sequence involves compromises, including
recued slice number (slice interleaving within TR is limited by the long echo train),
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complicated contrast behaviour (depending of phase encoding ordering, and relative
echo time of low and high spatial frequencies) and higher RF exposure. The latter is
measured in terms of the Specific Absorption Ratio (SAR) defined as the total power
in watts (W) per kilogram of tissues, and is found to be proportional to the number of
r.f. pulses in a given time, the square of By and the square of the flip angle. As
deposition of r.f. energy may lead to tissue heating, a careful control of SAR is of
pivotal importance in vivo imaging. The RARE sequence is characterized by a high SAR
per unit time, particularly on high filed scanners like the one used in the present work
(4.7 T). One way of reducing this effect is to use smaller flip angles during the
refocusing echo train. Since the discovery of the spin-echo effect by Hahn (Hahn
1950), a number of classical studies have shown that in evenly spaced-apart multi-
echo sequences like RARE, a number of coherence pathways are formed and include
contributions from “stimulated echoes”, which can coincide with the spin echoes and
combine with them to produce larger signals, as well as affect the image contrast by
introducing a Ti-weighted component (reviewed by Hennig 1988). Under this
conditions, it can be demonstrated that the signal rapidly reaches a pseudo-steady
state of amplitude proportional to sin(9/2) (Hennig 1988) . This phenomenon offers
the opportunity of using reduced flip angles (i.e. 90° instead of 180°), producing a
significant reduction of SAR (i.e. % with a flip angle of 90°) with a moderate cost in
terms of SNR (i.e. =30% since sin90°= 0.71).
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Figure 2.7

Data acquisition (k-space) filling for a three echo RARE sequence. The effective TE (TEy) is
given by the time from the initial excitation to the second echo, which is the one the fill the
central line of the k space. Each point ko and kgc represents a spatial frequency in the image
(modified from McRobbie et al. 2007).

Collectively, the possibility of acquiring fast high-resolution T,-weighted spin echo
images with controlled SAR using reduced flip angles make the RARE sequence an
ideal tool for functional MRI imaging in small animals, particularly in experimental
settings requiring the sequential acquisition of multiple images over long periods of
time. These features, together with the reduced susceptibility artefacts exhibited by
SE sequences vs. GE, led us to employ a RARE sequence with a 90° flip angle as
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sequence of choice for all the functional imaging studies reported in this thesis. The
use of fast spin-echo sequences for functional neuroimaging has also important
practical and theoretical implications in terms of signal and vascular weighting of the
functional signal measured, an aspect that is discussed in greater detail in section 3.5.
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3 - FUNCTIONAL MRI OF THE BRAIN

In the previous chapter | have introduced the principles of magnetic resonance
imaging and their application to create images of biological tissues reflecting
different biophysical properties of proton nuclei. However, for MRI to become fMRI,
it is necessary to sensitise images to biophysical processes that can be directly or
indirectly related to neuronal activity. This was made possible by the discovery of the
Blood Oxygen Level Dependent (BOLD) effect in the early 1990s by Ogawa and co-
workers.

This chapter briefly describes the neuro-physiological foundations of the BOLD effect,
and introduces to the measurement of individual haemodynamic parameters (i.e.
CBV) as an advantageous alternative to BOLD fMRI in small animal functional imaging
of the brain.

3.1 From Neuronal to Haemodynamic Activity

The fundamental element of information processing in the human brain is the
neuron. Neuronal cells exert their signalling action through changes in cell membrane
potential, leading to synaptic release of neurotransmitters. The change in membrane
potential is the consequence of the movement of ions across neuronal membranes, a
process that take the typical form of a “depolarisation” spread along neuronal axons
known as action potentials. Action potentials sweep down the axon in a self-
propagating manner until they reach the synapse, where they trigger
neurotransmitter release.

The generation of action potentials does not in itself require energy, because the ions
move along transmembrane concentration gradients. However, the restoration of ion
concentration gradients in active neurons does require a significant energy supply, an
aspect that underlies the large metabolic demand of the brain (Figure 3.1). By
comparing the metabolic demand in normal and comates brains, it has been
estimated that the restoration of transmembrane ionic gradients in neurons accounts
for 75% of the energy expenditure in grey matter (Attwell and Laughlin 2001). As the
brain is devoid of significant local energy stores, the primary metabolites (glucose
and oxygen) required by active neurons are then directly supplied by the vascular
system, and a tight coupling between neuronal activity and vascular delivery of
glucose and oxygen ensures the metabolic demand of active neurons are met under a
wide range of homeostatic conditions. The presence of tight neuro-metabolic and
neurovascular coupling mechanism defines the fundamental physiological
relationship underlying all forms of functional neuroimaging: measures of metabolic
or vascular correlates of neuronal activity can be used to make inferences about the
local functional state of the brain.
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Figure 3.1

The energy budget of the rodent brain (Attwell and Laughlin 2001); the vast majority of the
brain’s energy requirements are due to the need to restore ion concentration gradients
(adapted from Huettel et al. 2004).

An important implication of the presence of neuro-vascular coupling mechanism is
the occurrence of local changes in the microvascular system of the brain in response
to neuronal activity. This phenomenon, known as haemodynamic response, typically
presents itself in the form of increased blood flow in areas of elevated neuronal
activity. Changes in blood flow accompanying neuronal activity are believed to be
initiated when active neurons release substances that diffuse to the nearby blood
vessels. These vasoactive substances cause the vessel to dilate, thus reducing the
vessel’s resistance to flow and producing an increased flow. However, this dilation is
not sufficient in and of itself to regulate blood flow but requires the upstream
involvement of small arteries (arterioles) on the pial surface of the brain. These
vessels, known as resistance vessels as they convert the pulsatile ejection of blood
from the heart into a steady flow, play a crucial contribution in controlling cerebral
microcirculation and blood flow through the capillary bed (Figure 3.2). Animal studies
have shown that pial arteries dilate in response to a number of neuronal stimuli,
leading to capillary increases of blood flow with a remarkable degree of neuro-
vascular selectivity (Ngai et al. 1988; ladecola et al. 1997; Ngai et al. 1995). Several
candidate substances have been indentified that may play a role in the local control
of blood flow. These include K* ions, adenosine and nitric oxide (Dirnagl et al. 1994;
Paulson and Newman 1987). The latter substance is thought to mediate both local
and distal vasodilation through a propagated action roughly analogous to a
propagated neuronal potential (ladecola et al. 1997). Mice genetically deficient in an
enzyme responsible for the production of nitric oxide showed highly attenuated
haemodynamic response, supporting the role of nitric oxide in triggering the blood
flow increases through the control of upstream resistance vessels (Yang et al. 2003).
However additional components may play a role in the neurovascular cascade, and it
should be noted that a generally accepted model that details the specific neuro-
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molecular events underlying the haemodynamic response is still lacking. Moreover,
many cortical vessels are also surrounded by intertwining neuronal processes, raising
the possibility that some aspects of cerebral microcirculation may be partly
controlled by neuronal innervations. A few studies have shown that
neurotransmitters released by these projections can dilate or constrict the vessel. For
example, dopaminergic terminals are found in apposition to small intracortical
arterioles and capillaries, whereas noradrenergic terminals are found to innervate
large pial surface vessels (Krimer et al. 1998). However, the relation between the
putative neurogenic action of dopamine and noradrenaline and local brain function
remains unknown.
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Figure 3.2

The relation between sensory stimulation and local blood flow changes (Ngai et al. 1988).
Upon peripheral stimulation of sciatic nerve of the rat (solid line), an increased arteriole
diameter and increased blood flow were recorded in the somatosensory cortex (adapted from
Huettel et al. 2004).

The major and most likely effect of increased blood flow upon capillaries is the
regularisation of flow. Studies of capillaries during baseline conditions have shown a
remarkable heterogeneity of flow velocities through individual capillaries. Upon
neuronal stimulation, the distribution of flow velocities has been shown to increase
and become more uniform. This process is accompanied by capillary distension, a
process whereby individual capillaries distend slightly and thus decrease their
resistance to flow, leading to increased flow and increased blood volume within the
capillary bed (Ngai et al. 1988; Ngai et al. 1995; Hudetz 1997). This capillary
distension would increase the surface area of individual capillaries thus maximising
the efficiency of the transfer of oxygen and glucose. This phenomenon also provides
a neuro-physiological basis for the measurement of capillary cerebral blood volume
(CBV) as a correlate of neuronal activity, a strategy that will be covered more in detail
in section 3.6. In order to better appreciate the implications of the use of single
haemodynamic parameters like cerebral blood volume (CBV) vs. conventional BOLD
methods, a brief introduction to the BOLD contrast and its haemodynamic
components will be given in the next sections.

3.2 Blood-Oxygen—Level-Dependent (BOLD) contrast

The vast majority of fMRI studies rely on endogenous measure known as blood-
oxygenation-level-dependent (BOLD) contrast. Early research on the blood’s
magnetic properties performed by the Nobel laureate Linus Pauling in 1936 led to the
important discovery that haemoglobin (i.e. a blood protein responsible for oxygen
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transport and delivery) has magnetic properties that differ depending upon whether
or not is bound to oxygen. Oxygenated hemoglobin (Hb) is diamagnetic (i.e. it has no
unpaired electrons, and zero magnetic moment) whereas deoxygenated
haemoglobin (dHb) is paramagnetic, that is, it has both unpaired electrons and a
significant magnetic moment. One crucial consequence of this is that deoxygenated
blood has a magnetic susceptibility significantly greater than fully oxygenated blood.
This aspect was verified experimentally by Thulborn and colleagues in the 1980, who
found that the decay of transverse magnetization depended on the proportion of
oxygenated Hb within a test tube of blood (Figure 3.3).

The authors also noted that the magnitude of this effect increased with the square
strength of the static magnetic field, a first experimental hint of the race for high
fields that characterise modern BOLD fMRI. Importantly, these results provided a
theoretical basis for measurement of blood oxygenation changes using MRI in vivo.
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Figure 3.3

Relationship between blood oxygenation and MR relaxation rates (Thulborn et al. 1982). T, is
not affected by blood oxygenation, while 1/T, decreases with increasing oxygenation(adapted
from Huettel et al. 2004).

During the late 1980s, Ogawa and colleagues (1990) investigated the possibility of
exploiting the magnetic properties of haemoglobin to study brain physiology using
MRI. By manipulating the proportion of oxygen delivered to experimental animals
and using GE images, the authors were able to visualize blood vessels in the brain
cortex of living rodents, an effect that was present only under hypoxic conditions,
according to an increased presence of dHb in the blood. These results demonstrated
that the presence of deoxygenated blood decreases the measured MR signal on T,*
images, relative to the presence of oxygenated blood. The authors speculated that
this finding, which would come to be called BOLD contrast, could enable
measurement of functional changes in the brain.

In subsequent in vivo experiments Ogawa and colleagues were able to demonstrate,
by performing BOLD measurements at different levels of general anaesthesia, that
the metabolic demand for oxygen was a pre-requisite for BOLD contrast (Ogawa et al.
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1990a). Moreover they observed that increasing blood velocity through the addiction
of the vasodilatory gas carbon dioxide to the breathing mixture significantly reduced
bold contrast (Ogawa et al. 1990b). Collectively, the early research by Ogawa
provided important evidence that BOLD contrast was dependent upon the total
amount of deoxygenated Hb present in a brain region, which in turn depended upon
the balance between oxygen consumption (metabolism), and oxygen supply (i.e,
blood flow and volume).

The first BOLD fMRI studies in humans were reported in 1992 by three groups. Kwong
and colleagues used EPI at 1.5 T, and demonstrated region-specific BOLD-signal
increases in the visual cortex upon presentation of visual stimuli (Kwong et al. 1992).
These finding were replicated by a similar study published by Ogawa et al, who
likewise evaluated changes in fMRI GE signal resulting from long-duration
presentation of visual stimuli (Ogawa et al. 1992). The authors also demonstrated
that the signal was dependent on T,*, as by changing T: they were able to make the
stimulus-effect disappeared. Similar effects were reported by Bandettini using a
motor task (Bandettini et al. 1992). The publication of these first pioneering studies
spurred a great interest in the method, which proved robust and of relatively easy
implementation. These factors, in conjunction with increased prevalence of MRI
scanners and the development of high-speed pulse sequences, set the stage for the
exponential growth of fMRI from the early 1990s up to this date (in 2010, 25227
entries in the pubmed database contained the keyword fMRI).

3.3 Components of the BOLD Haemodynamic Response

The change in MR signal triggered by neuronal activity is known as the
haemodynamic response (HDR). Multiple studies have investigated the nature and
dynamics of the HDR produced by different evoking stimuli under different
experimental conditions. The results of this research have highlighted a complex
dynamics between the neural events triggering the HDR and its shape. For instance,
cortical neuronal response occur within tens of milliseconds following a sensory
stimulus, but the first observable HDR changes do not occur until 1 to 2 seconds later
(Logothetis et al. 2001). Thus, the HDR is said to “lag” the neuronal events that
initiate it.

The dynamics of the HDR waveform can be better understood when the HDR is
compared to the timecourse of its individual constituents. Figure 3.4 reports the
shape of the HDR and its individual haemodynamic components (CBV ad CBF) in the
rat somatosensory cortex upon forepaw stimulation (Mandeville et al. 1998). The
same figure also describes the timecourse of Hb and dHb measured in a analogous
sensory stimulation paradigm (Malonek and Grinvald 1996). By comparing the two
figures, the overall features of a typical HDR can be inferred. After a short latency,
the metabolic demands of increased neuronal activity over baseline levels result in an
increased blood flow which in turns determine and increased inflow of oxygenated
blood (CBF increase, Figure 3.4). Importantly, the evoked changes in Hb and dHb are
quite distinct. The dHb time curve showed a rapid increase, followed by a rapid
decline to values that were below the pre-stimulus levels. In contrast, oxygenated-Hb
had a slightly delayed onset followed by a slower gradual increase lasting throughout
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the stimulation time and that was much greater in amplitude than the dHb changes.
These important results, confirmed by subsequent investigators (reviewed by Mangia
et al. 2009) suggest that more oxygen is supplied to the stimulated area than
extracted, resulting in a decrease in the amount of deoxygenated haemoglobin within
the voxel, corresponding to an increased BOLD response. After reaching its peak, the
BOLD signal decreases in amplitude to a below-baseline level, and remains below
baseline for an extended interval. This effect, known as pos-stimulus undershoot, is
thought to arise from a temporary mismatch between CBF and CBV. According to this
theory, following cessation of neuronal activity, blood flow decreases more rapidly
than blood volume leading to a transient increase in the deoxyHb level. Recent
experimental data support this view (Poser et al. 2010). Some researchers also
reported the presence of an initial transient decrease in BOLD signal (negative dip)
due to initial oxygen extraction before increases in blood flow (Menon et al. 1995).
This effect has however not consistently observed, and its nature remains elusive
(Uludag 2010). In broader terms, several theories have been invoked to explain the
paradoxical mismatch between oxygen consumption and delivery underlying BOLD
fMRI, and the interested reader may refer to the recent review by Mangia et al., for
an exhaustive discussion of these aspects (Mangia et al. 2009). Once again, it should
be noted that a generally accepted model detailing the temporal dynamics
underlying the HDR is still lacking, probably because different stimulation paradigms
and neuro-anatomical locations may entail complex and varying contributions that
need to be better understood (Ekstrom 2010).
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(A) Timecourse of the BOLD haemodynamic response and correspondign reclative changes in CBF and
CBV following neuronal activty evoked by forepaw stimulation in the rat somatosensory cotrtex
(Mandeville et al. 1998). (B) Using a similar paradigm, Malonel et al (1996) measured the time
evolution of Hb and dHb following presentation of a short (4s) sensorial stimulus (adapted from
Huettel et al. 2004).
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3.4 Vascular Components and Spatial Specificity of Conventional BOLD
Imaging

Neuronal activity associated with specific stimulation processes unfold in time and in
space. While the spatial resolution of an fMRI experiment is primarily given by its
voxel size, its ultimate functional resolution depends on the concordance of
haemodynamic and neuronal activity. In a seminal study, Logothetis and colleagues
investigated the correspondence between BOLD signal and electrophysiological
measures in the primary visual cortex of monkeys, and found good spatial (and
temporal) correspondence between the measures, particularly between BOLD and
local field potentials that reflect summated excitatory and inhibitory post synaptic
potentials (Logothetis et al. 2001). These results suggest that the BOLD contrast
mechanism reflects primarily the integrative aspects of neuronal processing (i.e.
input and neuronal processing in a given area), rather than its signalling counterpart
(i.e. the output reflected in action potential firing). They also indicate that the BOLD
fMRI signal is well-correlated with neural activity at a coarse spatial resolution. To
further examine the spatial extent of BOLD fMRI, Disbrow et al. (2000) measured
BOLD fMRI with 9-mm3 resolution and electrophysiolgical activity in anesthetized
monkeys. Interestingly, they found that the overlap between fMRI and
electrophysiological foci was 55% and the largest mismatch between the two
measurements was located at areas close to large vessels. This large vessel effect is a
well-known artefact in BOLD measurements that may significantly limit the functional
resolution of this fMRI technique.

As explained in Section 3.2 the BOLD signal is generated by the presence of
paramagnetic deoxygenated haemoglobin (dHb). As a result, the BOLD signal is only
produced in capillaries and veins, as dHb is absent in fully oxygenated arterial blood.
Because dHb molecules are paramagnetic, they create magnetic field gradients
within the vessels that extend into surrounding tissues. On a microscopic scale, the
primary mechanism for BOLD signal is thus the dephasing of spins within water
molecules as they diffuse through these gradients fields, which can be divided into
intravascular (1V) and extravascular (EV) (i.e. parenchymatic) components.

Since exchange of water between these two compartments (average water residence
time in capillaries >500 ms) is relatively slow when compared with the imaging time
(echo time <100 ms), MRI signals from these can be treated as separate pools. In a
typical fMRI experiment using gradient-echo sequences, the BOLD signal reflects both
intravascular and extravascular sources. However, because dHb is removed from the
brain by the venous system, confounding signal changes unrelated to neuronal
activity can arise from draining veins that are distant from neuronal activity, giving
rise to large-vessel effects (supra vide).

Advanced acquisition techniques can be used to exclude components of BOLD signal
that are distant from the neuronal activities. These techniques take advantage of
different magnetic properties of large- and small-calibre vessels, and the different
diffusion properties of EV and IV spins (Figure 3.5). When a blood vessel is considered
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as an infinite cylinder, the frequency shift induced by dHb within the vessel (IV) can
be approximated by

A, =2\, (1-Y )w,(co$6- 1/3 (3.1)

where Ay, is the maximum susceptibility difference between fully oxygenated and
fully deoxygenated blood, Y is the fraction of oxygenation in venous blood, wy is the
applied magnetic field of the magnet, and 0 is the angle between the applied
magnetic field (By) and vessel orientation (Kim and Ugurbil 2003). It should be noted
that frequency and magnetic field (Bo) are interchangeable because wy=yBywherey is
the gyromagnetic ratio. Typically, many vessels with different orientations exist in a
given voxel. When components with different frequency shifts are added within a
voxel, signal loss will occur for T,* -weighted MRI.

Blood vessel

Figure 3.5

Diagram of a blood vessel and the parameters that determine the susceptibility effect induced by dHb
in red blood cells at a distance r from the center of a vessel. The vessel with a radius a is oriented at
angle © from the main magnetic field B,. @ is the angle between r and plane defined by B, and the
vessel axis.

Importantly, during fMRI measurements, water rapidly exchanges between red blood
cells with paramagnetic dHb and plasma (average water residence time in blood cell
is 5 ms) and travel through inhomogeneous magnetic fields by exchange and
diffusion. Since the diffusion distance of intravascular water is large compared to the
spatial extent of the deoxygenated Hb-induced magnetic field (e.g., diffusion distance
during 50 ms measurement time is ca. 17 um), “dynamic’ time averaging occurs over
the many different fields induced by dHb (i.e. the spins experience a dynamic
magnetic field inhomogeneity), resulting in reduction of T,. It should be noted that at
high magnetic fields, venous blood T, can be shortened relative to tissue T, because
the R,=1/T, of venous blood is quadratically dependent on magnetic field (Thulborn
et al. 1982). Thus, by setting an echo time to be much longer than T,*/ T, of venous
blood at sufficiently high fields (i.e. > 7T) the IV effect can be virtually eliminated
(Duong et al. 2002).
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At any location outside the blood vessel, the frequency shift can be described by

Aw
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=21\, (1-Y ), @ /r Y (sir’ 8 )(cos @ (3.2)

where a is the radius of the blood vessel, r is the distance from the point of interest
to the center of the blood vessel, and ¢ is the angle between r and the plane defined

by Bo and the vessel axis (Figure 3.5). At the lumen of vessels (r=a) Aa), is identical
and independent of vessel size. At r=5a, the susceptibility effect is 4% of the
maximally available Ad),. Hence, the same frequency shift is observed at 15 pm

around a 3 um-radius capillary and hat 150 um around a 30 um-radius venule. The
dephasing effect around a larger vessel is therefore more spatially extensive because
of a smaller susceptibility gradient. As a result, the EV contribution from large vessels
to conventional BOLD signal is significant, regardless of magnetic field strength (Lu
and van Zijl 2005). These contributions highlight a major limitation in the spatial
specificity of classic gradient echo BOLD measurements, that is, the presence of
unspecific functional contributions from large-vessels. This aspect is often non-
negligible in preclinical fMRI research, where the small dimensions of the rodent
brain imposes the application of high-resolution functional methods to adequately
resolve small brain structures.

The use of conventional BOLD schemes in small animals is also limited by the
presence of significant susceptibility artefacts at air-tissue interfaces, a contribution
that is exacerbated by the use of T,*-weighted EPI sequences typically employed in
BOLD imaging. As a consequence of the particular anatomy of auditory canals in
rodent species, these artefacts are particularly severe in ventro-lateral brain regions
(i.e. amygdala, hypothalamus, midbrain, ventral hippocampus etc.). Consequently,
the implementation of whole-brain multi-slice BOLD acquisition schemes is vexed by
the presence of signal dropouts and distortion artefacts that prevents the
investigation important limbic and midbrain structures, an effect greatly exacerbated
by the use of high magnetic field strengths due to increased T,* (Huettel et al. 2004).

Taken together, the limitations of conventional BOLD schemes highlight the need to
develop more accurate and functionally sensitive fMRI approaches, particularly in
experimental applications requiring maximal spatial resolution like the
implementation of whole-brain functional neuroimaging in small preclinical species.

3.5 Improving the Spatial Specificity of fMRI: Spin-Echo Imaging

To improve the spatial specificity of fMRI by minimising the extra-vascular effects
from large vessels, SE-based fMRI methods can be used (Weisskoff et al. 1994; Ogawa
et al. 1993; Boxerman et al. 1995). As water molecules diffuse =17 um during a
typical echo time used for fMRI studies (e.g., = 50ms), the extension of this motion
covers the entire range of susceptibility around a small capillary (i.e 3-um radius), but
only a limited portion of the static susceptibility effect associated to a 30-um radius
venule. Thus, tissue water spins around capillaries will be “dynamically” averaged
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over the many different fields. However, as the magnetic field gradient surrounding
large vessels changes more slowly, the static dephasing effect is dominant and can be
refocused by a SE 180° r.f. pulse, thus minimising the extra-vascular contribution of
large vessels (Figure 3.6). This feature, together with the insensitivity of SE sequences
to “through-plane” susceptibility gradients (i.e. at air-tissue interface), make SE fMRI
an attractive alternative to gradient-echo BOLD, particularly in preclinical paradigms
requiring high-resolution whole-brain coverage with high spatial specificity. It should
however be noted that spins within intravascular diffusing water molecules will also
experience dynamic magnetic field inhomogeneities, and for this reason, SE
sequences are still sensitive to the intravascular BOLD signal in small as well as in
large vessels. Thus, while SE pulse sequences can eliminate the extravascular large-
vessel component of the BOLD signal, their use is not in and of itself sufficient to
eliminate the intravascular large-vessel BOLD signal, especially at low magnetic fields
(i.e <5 Tesla).
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Figure 3.6

Extravascular dephasing effects from a 3 um-radius capillary and a 30-um-radius venule.
Magnitude of dephasing effect (dashed decay lines from vessels) is shown as a function of
distance. Displacement of a water molecule due to diffusion is indicated. Spin-echo cannot
refocus dephasing effects around a small vessel because of dynamic averaging due to
diffusion, while it can refocus static dephasing (shown in averaged phases in circles)(modified
from Kim and Ugurbil 2003).

The situation is however different at higher high fields, as a results of the different
sensitivities to the distribution of vessel sizes within an imaged voxel exhibited by GE
and SE sequences. A number of theoretical models and in vitro experimental results
have shown that, whereas SE measurements are strongly weighted towards vessel
diameters on the order of the water diffusion length during the pulse duration such
as capillaries and venules (i.e. =10um), GE sequences are much less sensitive to the
vessel size (Oja et al. 1999; Boxerman et al. 1995; Weisskoff et al. 1994)(Figure 3.7).
An important consequence of this, is that the sensitivity of SE technique is typically
two to three times less than that of gradient-echo BOLD, a finding that reflects the
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fact that SE methods are only sensitive to the microvascular fraction of the
haemodynamic response within imaged voxels (Lee et al. 2002). This phenomenon is
important in making SE not viable for high-resolution fMRI because at low magnetic
fields, due to the presence of contaminating intra-vascular effects, and especially
because of the its low sensitivity compared to GE methods. However, provided that
the intravascular contribution to SE imaging is minimised, and sufficient functional
contrast is available, the microvascular weighting of SE methods offer the attractive
opportunity to increase the spatial specificity of fMRI measures by allowing to image
only the microvascular components of the haemodynamic events which are known to
be colocalised with the neuronal activity of interest (supra vide).
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Theoretical simulation of AR,* (TE = 60 ms) and AR, (TE =100 ms) as a function of vessel
diameter, assuming a QAX of 1x107, corresponding to the administration of a
superparamagnetic intravascular contrast agent. (modified from Boxerman et al. 1995). It
should be noted that AR, peaks for microvessels and that AR,* exceeds AR, at all radii,
reaches a plateau for macrovessels, and is actually greater for macrovessels than for
microvessels (Boxerman et al. 1995).

In order to achieve this goal, one experimental option that can be effectively
exploited is the use of higher magnetic fields (i.e > 7 Tesla). The use of increased
scanner field strengths has the first obvious advantage of improving the functional
signal-to-noise ratio (SNR) by augmenting the net magnetisation of the sample. As
static field strengths increases linearly, raw signal increases quadratically, whereas
thermal noise scales linearly with the filed strength, resulting in a linear increase of
SNR with field strength (Huettel et al. 2004). This increased SNR can compensate for
the low sensitivity of SE fMRI at low fields, thus permitting to obtain adequate
functional SNR for fMRI measurements at sufficiently high fields (i.e. > 4T)(Duong et
al. 2002). More importantly, the intravascular blood contribution is almost entirely
suppressed at high magnetic fields because the apparent T, of blood shortens
dramatically with increasing fields (i.e. from 180 to 7 ms at 1.5 and 7 T, respectively),
while the gray matter T, decreases slightly (from 90 ms to 55 ms, at 1.5 and 7 T,
respectively). Therefore, at TEs comparable to the T, of tissue, the blood signal is
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greatly diminished and thus contributes negligibly to SE BOLD at high fields.
Furthermore, theoretical simulations show that at higher magnetic fields the
relativity size dependence curve shifts towards an even greater microvascular
selectivity for SE acquisition (Boxerman et al. 1995). Thus, the use of high magnetic
field has then the advantage of compensating for the reduced functional SNR of SE
BOLD measurements, and to eliminate intravascular BOLD contributions, while
preserving the microvascular selectivity of SE methods. Collectively, these features
make the implementation of SE BOLD methods an attractive alternative to GE BOLDS
for high resolution whole-brain imaging of the brain, both in humans (Poser et al.
2010; Boujraf et al. 2009; Thompson et al. 2010) and pre-clinical species (Lee et al.
2002).

Among the SE sequences that have been successfully used to demonstrate these
principles, are SE-based echo-planar imaging sequences (SE-EPI) and multiple-
refocused sequence, such as FSE (Poser and Norris 2007; Norris et al. 2002).
However, SE-EPI sequences suffer from in-plane distortions due to residual T,*
weighting caused by the long EPI readout typically employed (i.e 40 ms), the severity
of which increases rapidly with field strength due to the shortened relaxation time
(Duong et al. 2002). Alternatively, BOLD fMRI with pure T, contrast and no EPI
artefacts can be performed by using FSE sequences. Although this approach is
associated to longer acquisition times typically exceeding those of a conventional SE-
EPI experiment, this practical aspect does not limit the temporal resolution in phMRI
experiments like those described in the present thesis, given the slow and sustained
temporal dynamics of drug-induced changes in brain function (i.e. in the order of
minutes, infra vide). On the other hand, the high energy deposition produced by
multiple refocusing pulses of FSE is an experimental factor that needs to be
controlled. As discussed more in detail in section 2.4.6, this problem can be
minimised by using long repetition times, reduced refocusing flip angles in evenly
spaced-apart multi-echo sequences like the RARE sequence (Hennig 1988) thus
exploiting coherence pathway associated to this scheme. For instance, by employing
a 90° refocusing pulse, the energy deposited is one fourth than associated to a
traditional 180° pulse, with a moderate cost in terms of SNR (i.e. =30% since sin(90°)=
0.71). The use of FSE is thus a valuable alternative to SE-EPI for high-resolution fMRI
of the brain whenever low-frequency brain stimulation paradigms are employed.

3.6 Improving Sensitivity: CBV-based fMRI with Exogenous Contrast
Agents

The theoretical arguments supporting the use of SE BOLD at high fields to eliminate
intravascular BOLD contributions and increase SNR crucially highlight an alternative
strategy to achieve the same goal at low fields. The approach relies on the use of
exogenous intravascular contrast agents to increase the blood’s magnetic
susceptibility leading so to generate CBV-based functional contrast. If paramagnetic
blood-pool contrast agents with long half-lives are used, it is possible to significantly
reduce intravascular T, thus eliminating intravascular contributions, and at the same
time amplify the spatial range of extravascular magnetic field inhomogeneity
associated to the haemodynamic response, thus sensibly increasing the functional
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SNR at low fields. An important implication of this approach is that, unlike BOLD
contrast which depends on the absolute change in Hb concentration and thus is
susceptible to complex haemodynamic and metabolic contributions (i.e. blood flow,
blood oxygenation, oxygen extraction) the use of exogenous contrast methods
generally rely on the measurement of CBV, a meaningful physiological component of
the haemodynamic response. As CBV is also robust marker of basal metabolism
(Gaisler-Salomon et al. 2009; Sheth et al. 2004), an important prerogative of this
approach is the possibility to offer a multi-parametric assessments of brain function.
The same imaging session can thus provide an estimate of basal relative CBV (rCBV),
a parameter that can be used for inter-group analysis of resting brain-function, and a
subsequent assessment of evoked brain function (through dynamic CBV mapping)
elicited by different stimulation paradigms. For these reasons, and with the aim to
maximise the functional CNR and spatial selectivity at the field strength (4.7 T)
available in our lab, a CBV-based spin-echo protocol was used in all the phMRI studies
reported in this experimental thesis.
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Figure 3.8
Super—paramagnetic iron oxide (SPIO) contrast agents contain a small iron oxide core (4-12)
coated with dextran or other chemically inert and bio-compatible materials to form small
nanoparticles (ultra-small SPIO, or USPIO) or beads (i.e. Endorem,Guerbet, the agent used in
this thesis).

CBV-based techniques use exogenous paramagnetic or superparamagnetic
intravascular  contrast agents with high susceptibility. Dextran-coated
superparamagnetic iron oxide nanoparticles (SPIO) that maintain a steady-state
blood concentration permit measurements of relative CBV with good temporal
resolution relative to bolus agents, such as gadolinium derivatives (Belliveau et al.
1991). SPIO are a family of MRI contrast agents (reviewed by Wang et al. 2001) that
consist of monocrystalline iron oxide cores (4-10 nm) highly coated with dextran
(final size is 120-150 nm) to decrease opsonization by plasma proteins, minimizing
removal by the reticuloendothelial system and thus producing an extended (i.e. > 3
hr in the rat) blood half-life (Figure 3.8).

Unlike BOLD measurements, however, iron oxide concentration in blood does not
change with alterations in blood flow and oxygen consumption induced by neuronal
activity. Thus, CBV-based functional methods measure signal perturbations reflecting
changes in the particle content of the imaged voxel, which is, under steady-state
conditions, solely determined by the changes in CBV consequent to local
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cerebrovascular dilation or constriction. As a result, an increase in CBV during
stimulation will induce an increase in the content of contrast agents and,
consequently, a decrease in MRI signal (Figure 3.9). Importantly, although the change
in dHb associated to functional activation may counteract the reduced relaxation
rates produced by an increased CBV in individual voxels, in vivo experiments
(Mandeville et al. 1998; Chen et al. 2001) have shown that this contribution at low
fields is not sufficient to neutralize the increased CNR associated to the use of
contrast agent, resulting in an overall three-fold CNR increase with respect to
conventional GE-BOLD fMRI at the field of the present studies (4.7 T). However, since
BOLD CNR increases as a function of field strength, while that of the iron oxide agent
does not (the magnetization curve of the superparamagnetic agents used in this
thesis (Endorem, Guerbert) is saturated at field strengths of 2T (Kyrtatos et al. 2009)),
at sufficiently high fields BOLD may well provide as much CNR as extrinsic injection of
a contrast. Interestingly, recent experiments suggest that this equality is achieved
roughly at 9.4 T when SE fMRI is used, but that the benefits provided by exogenous
agents may persist even at much higher magnetic fields than 9.4 if GE-based CBV-
mapping is employed (Mandeville et al. 2004).

As small vessels (including pre-capillary arterioles) dilate vigorously during neural
stimulation, whereas large vessels only show negligible dilation (Zaharchuk et al.
1999; Edvinsson and Krause 2002), the use of CBV-based methods has the intrinsic
advantage of providing a haemodynamic readout that is more closely related to the
actual site of neuronal activation than BOLD fMRI. Since the MRI signal is weaker in
voxels containing large vessels due to its high content of contrast agent, signal
perturbations following CBV alterations in such voxels are intrinsically less prominent
that those detected in parenchymal regions, thus making this technique less
susceptible to the effect of large vessels. Moreover, experimental measures and
theoretical models have also demonstrated that CBV has methods have more
uniform sensitivity to functional changes across brain regions that BOLD methods
(Mandeville and Marota 1999). These features make CBV-based measurements an
attractive alternative to BOLD fMRI in preclinical species, particularly when used in
combination with SE-imaging (Sheth et al. 2004; Duong et al. 2002; Mandeville et al.
2004).

From a theoretical standpoint, the parameters that determine the functional SNR in
CBV-based methods are the field strength, the echo time (TE) and contrast agent
dose. As mentioned above, since the BOLD contribution is supralinearly dependent
on magnetic field while the CBV change remains constant due to full magnetic
saturation of SPIO at high fields, the SNR gain of the CBV technique over BOLD is
higher at low fields. A seminal work from Mandeville and colleagues (Mandeville et
al. 1998) has investigated the theoretical foundations of functional CNR maximisation
as a function of TE and contrast agent dose (at a fixed field strength). The authors
defined an experimental framework, supported by detailed numerical simulations
(Boxerman et al. 1995) where a SPIO agent produces a change in transverse
relaxation rate (AR,*= 1/A T>* or AR,= 1/A T,, for GE and SE, respectively) relative to
the preinjection baseline proportional to local CBV (V) times some function (f) of the
plasma concentration of paramagnetic agent ([P]).
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AR, =k« ([P])-V (3.3)

If long TR are used (i.e. negligible T;-weighting) and SPIO particles reaches a steady
state concentration in blood plasma, then Eq. 3.3 reduces to a simple linear
relationship between AR,* and CBV at any time (t)

AR, = K.V (t) (3.4)
where the constant K now includes the agent blood concentration and therefore
depends on SPIO dose. Importantly, increases in AR,* due to increased blood volume
(Eg. 3.3) may compete with decreases in AR,* due to endogenous deoxyhemoglobin
changes associated to the BOLD affect. Therefore, a sufficient amount of contrast
agent (typically 10-25 mg/Kg of Fe) must be used so that relaxation rate changes due
to exogenous agent greatly exceed BOLD effects. This assumption is implicit in the
theoretical discussion that follows, and consistent with our experimental results at
the doses of agent used in the studies presented here.
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Figure 3.9
(A) Single voxel raw MR signal timecourse from a pharmacological MRI experiment using the SPIO
agent Endorem in the rat. T,-weighted signal changes due to contrast agent administration and
washout, and CBV changes following an acute i.v. challenge with the psychostimulant cocaine (B)
detail of panel (A).
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Percent CBV change during a functional challenge can be simply calculated assuming
monoexponential signal decay and negligible competing BOLD signal change. If AV(t)
is the change in volume with respect to V(0), and Sere is the signal before injection of
agent, according to Eq 2.58, the signal S(t) can be described as

S(t) = Sppe€ “ (3.5)

and the corresponding fractional volume change is

AV (t) AR (t) ,_In(S(t)/s(0))
v((())) AR, ((0)) e In(S(t) /Sere ) (3.6)

The first expression for percent volume in Eg. 3.6 is general, whereas the second
expression requires that the TE is constant throughout the experiment. This second
expression states that a functional change in fractional blood plasma volume can be
calculated as the natural log of the functional signal change with respect to the
reduced baseline signal after injection of agent divided by the log of the signal
reduction due to agent injection. Implict in this equation is the fact that the
measurement of relative CBV changes entails an estimate of baseline CBV, (i.e. basal
CBV prior to any stimulation V(0)), an established marker of basal metabolism that
can be conveniently used to assess resting brain function in inter-group
measurements of altered brain function (Section 4.2, Appendix 5). This characteristic,
together with fact that one is able to obtain a direct measurement of a
physiologically relevant parameter—CBV, represents an additional advantage of CBV-
based methods over traditional BOLD techniques.

In terms of functional contrast to noise ratio (CNR), the same authors (Mandeville et
al. 1998) described a simple theoretical model that accounts for the effect of TE and
contrast agent dose. If CNR is defined as the signal change during a functional
challenge divided by the noise, the CNR for a given physiological response (blood
volume change) depends on the TE and the dose of contrast agent that has been
administered. As TE or dose increases, the percent signal change with respect to the
post-injection baseline increases in magnitude, whereas the SNR decreases. Since the
CNR is the product of these quantities, an optimal CNR is achieved by compromising
enhancement of percent signal change and reduction of SNR. CNR can be optimized
in terms of either agent dose or TE.

Using the assumptions implicit in Eqg. 3.6, the CNR for a given hemodynamic response
is

CNR: S) e—TERz* e—TEKV(O) (e—TEKV(t)_ 1 (37)

where R,* is the (static) relaxation rate before injection of agent and Sq is the SNR at
TE = 0. The term inside parentheses is the fractional signal change during the
functional challenge, and the terms outside parentheses define the SNR after agent
injection. If Eq. 3.7 is maximized with respect to K (contrast agent dose), it can be
demonstrated that the optimal post-injection signal is found to be a slowly varying
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function of the relative volume change and is approximately 1/e of the preinjection
signal for small changes in blood volume (Mandeville et al. 1998). Figure 3.10 shows
the calculated relative CNR versus signal drop due to agent injection for a functional
response with a 20% increase in blood volume. The optimal signal drop is
approximately 60%.
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Figure 3.10

Theoretical CNR for functional blood volume studies can be optimized in terms of agent dose
or TE. (a) Relative CNR versus signal drop due to agent injection for any fixed TE. (b) Relative
CNR and contrast agent dose versus TE relative to preinjection T, for an optimal signal drop.
Both graphs assume a 20% increase in blood volume (from Mandeville et al. 1998).

Eq. 3.7 can also be maximized with respect to TE for a given contrast agent dose. The
optimal TE is then found to be approximately equal to the tissue relaxation time after
agent injection

Optimal TE = 1 (3.8)

R, +AR;(0)
The maximum CNR that can be obtained using an exogenous agent and T,-weighted
imaging can be predicted from measured SNR and percent volume change and is (for
small percent volume changes)

maximum CNR = S = e‘lAV_V (3.9)

Relative CNR versus dose of contrast agent for an optimal signal drop due to agent
injection is shown in Figure 3.8. CNR increases in proportion to the SNR before agent
injection. A maximum value of CNR, which is a factor of e larger than the CNR at TE
=T, is reached at TE = 0. Since the quantity TE x K is fixed to yield the optimal signal
drop, the dose of contrast agent approaches infinity as TE approaches zero and
relative CNR asymptotically approaches e. Therefore, Eq. 3.9 represents the upper
limit of CNR, which is not completely obtainable in practice. In summary, these
theoretical calculations show that the optimal agent dose drops signal to
approximately 40% of its preinjection value for any fixed TE. For a fixed dose, on the
other hand, the optimal TE is equal to the T,, (or T,*) of the tissue after agent
injection.
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The application of the theoretical constructs described above is of great practical
importance for the experimental implementation of high-resolution fMRI and phMRI
small animal species. In the present thesis, the optimized use of SPION and FSE
imaging according to the aforesaid principles enabled us to perform high-CNR
artefact-free whole-brain functional imaging in rats and mice with an in-plane spatial
resolution of 300 um? and 156 um?, respectively, and with adequate TR (typically 26-
40 s) to resolve the temporal dynamics of the signal changes produced by the
psychoactive substances used in phMRI. This shows how a judicious choice of
experimental parameters may enable the implementation of CBV-based approaches
that overcome several of the limitations of the BOLD approach in small animals, thus
greatly facilitating the preclinical implementation of functional neuroimaging
strategies.

Clearly, the biggest disadvantage to the IRON technique is the large amount of iron
that must be injected to obtain optimal CNRs (5-20 mg/kg), which hinders a direct
methodological translation of this method to the clinic. While iron is relatively
nontoxic, such an increase in body iron load may represent an unwarranted cost for
the relative benefit of the MR exam. Similar agents to those used in the present work
are already being used in humans for imaging liver or splendid lesions. Although no
adverse toxicological events have been reported with the human use of SPION, it
should be noted that the total iron dose injected is smaller than what is typically
employed in CBV imaging (i.e. 0.8-1.8 mg/kg of iron vs. 20 mg/kg in our protocol),
and the toxicological effects of such a significant iron increase, if any, are unknown.
Preliminary animal research did not highlight any major acute toxic effects with the
relatively high doses of SPION used in the present work, even after multiple studies in
the same animals over the course of 1 year (Chen et al. 2001; Jenkins et al. 2004).
This issue, however, will require further study for potential use in humans.
Nevertheless, the tight physiological relationship between CBV-based imaging and
the neuro-metabolic processing underlying BOLD fMRI and other neuroimaging
measures of neuro-metabolic function (i.e FDG-PET, ASL, perfusion SPECT, or MRI.)
make CBV-based imaging a preclinical research tool of unquestionable translational
value.

3.7 Statistical Analysis of phMRI time-series

The extrapolation of functionally-meaningful and statistically-significant parameters
from raw fMRI image time-series is an active field of research, and a comprehensive
description of the potential and pitfalls of the methods available is beyond the scope
of this thesis. In this section | will briefly summarize the general approach employed
to analyse the phMRI timeseries. A detailed coverage of the theoretical foundations
of these methods can be found in specialised texts (Huettel et al. 2004; Friston et al.
2007). Given the lack of established fMRI image-processing tools for preclinical
research, image pre-processing and statistical analysis are often implemented by
individual researchers through the use of multi-purpose computational platforms for

image and signal analysis such as Matlab® or IDL®. This work, together with a crucial
appraisal of the theoretical foundations underlying the development of the analytical
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approach described here, is the results of a joint effort within the GSK neuroimaging
lab, with a fundamental practical and theoretical contribution from Dr A. Schwarz,
which | would like to acknowledge.

3.7.1 Experimental Design in phMRI

The strategy in an fMRI (and indeed any) experiment is based on an intervention in a
system (brain) and observation of the modulation of the system response (i.e. BOLD
effect) resulting from this ‘provocation’ (i.e. stimulation paradigm). Because fMRI
data are not an absolute measure of neuronal activity, all study designs must also
provide the opportunity to statistically contrast the neuronal activity of interest with
a suitable rest or background condition. As results, a typical fMRI experiment consists
in alternating the acquisition of blocks of N fMRI images of the brain while the
subject is in an active state, that is, performing a specific task, with the acquisition of
blocks of M images while the subject is in a control state (typically, resting). This
active-control or ON-OFF cycle constitutes the so-called fMRI stimulation paradigm.

In phMRI studies of the brain, fMRI time series are used to probe the effect of
psychoactive compounds upon the central haemodynamic response (Leslie and
James 2000). Hence, the simplest experimental design in phMRI involves a
comparison between the response to a psychoactive drug injection (i.e. the
stimulation paradigm) versus placebo (control state, typically the drug vehicle, i.e.
saline). In order to rule out non-negligible contributions of placebo on brain function,
this approach usually entails the randomised use of two different group of subjects,
of which one receives drug of interest (stimulation paradigm), and the other vehicle
(placebo). The functional effect of the drug is then assessed by performing inter-
group image statistics. More complex designs can be employed to assess more
subtle, second-level effects, that is, the effect of behavioural, genetic, or
pharmacological pre-conditioning on the response to a “probe” drug (Sections 4.1-
4.4). In such cases, the ultimate readout would be an inter-group assessment of the
brain function elicited by the drug, between N differently-conditioned experimental
groups.

Operationally, phMRI studies entail the following experimental steps: a) animal
preparation, b) phMRI data acquisition, c) image post-processing and d) statistical
analysis of phMRI timeseries. Animal preparation consists on the implementation of
anaesthetic procedures to minimize the discomfort associated to animal restraint and
reduce motion artefacts, as well as the application of monitoring devices aimed to
peripherally record physiological parameters that, if not tightly controlled, could
confound central haemodynamic readouts (i.e. supra-physiological changes in blood
pressure (Gozzi et al. 2006) or arterial blood gases (Steward et al. 2005)).

phMRI timeseries acquisition is usually preceded by the acquisition of high resolution
anatomical image of the brain. This scan serves to facilitate the subsequent mapping
of each subject’s functional timeseries to a common three-dimensional coordinate
system, an essential prerequisite to the performance of meaningful voxel-based
inter-group statistics. In phMRI studies where the site of activation is often unknown
and distributed across different regions, contiguous slices are acquired to obtain a
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three-dimensional reference volume. In the rat phMRI studies reported in this thesis,
a T,-weighted RARE reference volume with a FOV of 4 cm, a 256 x 256 image matrix
and 16 or 20 1-mm thick contiguous slices where used, yielding a 0.3 mm? in-plane
and 1 mm longitudinal resolution, respectively.

The anatomical scan is followed by the functional time series acquisition. This scan
acquires an epoch of multiple image volumes that allow to follow the evolution of
phMRI signal in space and time. Functional time series are typically co-centred with
the anatomical reference volume, and acquired with the same spatial coverage (i.e.
number of slices). However, their spatial resolution is often reduced as a trade-off for
the need to achieve adequate temporal-resolution. In this thesis, this was achieved
by reducing the matrix size (128x128, corresponding to an in plane resolution of 0.6
mm?), and increasing the RARE factor from 8 to 32. The resulting TR was =25 seconds
for a 20-slice brain-volume. The typical duration of a phMRI experiment is =60 min
corresponding to ca. 100-120 repetitions.

In the phMRI protocols used here, spin-echo fMRI time-series were sensitised to CBV
by infusing a commercially-available SPION agent (Endorem, Guerbert, see Section
3.6). As illustrated in Figure 3.9, contrast agent administration produces a sharp signal
drop (= 50%) that proportionally reflects “resting state” cerebral blood volume. Resting
state CBV is a first important parameter that can be analysed and mapped in the living
brain, by virtue of its established relationship with basal metabolic activity of neuronal
populations (Sheth et al. 2004). Thus, quantification of basal CBV levels can be used to
obtain an estimate of basal neuronal activity, and its modulation by disease or
pharmacological states (Section 4.2).

After an appropriate equilibration time, the psychoactive drug of interest (or its
vehicle) is injected. Psychoactive compounds typically induce slow but sustained CBV
alterations that reflect different pharmaco-dynamic properties of the drug (Bifone and
Gozzi 2010). The quantification of the relative CBV (rCBV) change produced by the drug
with respect to the per-injection baseline is thus be used a spatio-temporal index of
drug-induced neuronal activity. Figure 3.9 also illustrate an important aspect of CBV-
based methods. The use of contrast agent is often associated with a drifting
background signal, a feature that reflects gradual elimination of contrast agent from
the vascular system (contrast agent washout). Therefore, for the phMRI signal to be
analysed properly, the drifting contribution of contrast agent washout must be filtered
out. In the case of the work presented here, the SPION agent used was shown to give
rise to monotonic signal changes amenable to detrending (i.e. rectification of the signal
change) by using a mono-exponential input function (described in Schwarz et al. 2003).

3.7.2. Image Pre-Processing

A number of computational procedures, known as pre-processing steps, are operated
on fMRI and phMRI data following image reconstruction but prior to statistical analysis.
The goals of pre-processing procedures are to reduce unwanted variability in the
experimental data and to improve the validity of statistical analysis. Figure 3.11
summarises the pre-processing steps used for image pre-processing in the phMRI
experiments depicted in this thesis.
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Statistical
analysis
Figure 3.11.

Schematic representation of the image pre-processing workflow applied to the phMRI
timeseries produced in this thesis.

Import and convert data to Analyze format. As MRI scanner images are produced in a
proprietary format (Bruker), the initial step of the pre-processing pipeline is the
conversion into the standard medical imaging format Analyze 7.0. Analyze images are
composed of a header file (.hdr) and an image file (.img). The binary header file has
fixed size and is organized as a ‘C’ structure. It contains basic image information such
as matrix dimensions, number of slices, volumes (time points), field of view dimension,
etcetera. The image file is a flat (uncompressed) binary file containing the actual image
data.
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Image Cropping. This is an optional step that can be employed to reduce the effective
field of view of MRI images, permitting to discard pixels outside the anatomical region
of interest. Most MR images are acquired using a substantially larger FOV than
necessary, a strategy that is required to reduce the occurrence of “aliasing artefacts”
to which frequency-encoded measurements such as MRI are very susceptible. The
cropping tools employed in the post-processing pipeline (developed by F. Agosta)
returns a reduced versions matrix version of the anatomical and phMRI images (e.g.
from 128x128 to 64x64 pixels, respectively) with the obvious advantage of reducing by
a factor 4 halving the amount of disk space and computational time required by the
subsequent steps.

Spatial coverage check. This step checks the correspondence between the number of
slices of the anatomical and the time series image volumes. If inconsistencies arise, the
two can be harmonised by removing the exceeding slices. The objective of this step is
to make sure the dimension of anatomical and time series brain volumes are identical.
This prerequisite is essential for subsequent co-registration to standard stereotaxic
template.

Slice orientation check. This step checks for consistency in the dorso-ventral
orientation of the images between scans. When discrepant, orientation is rectified by
flipping the required image.

Co-register fMRI timeseries to MRI stereotaxic template. In order to allow voxel-wise
statistical group comparisons, each subject needs to be mapped on a common three-
dimensional coordinate system. Our lab developed and published a stereotaxic MRI
template set for the rat brain co-registered with an anatomical atlas (Schwarz et al.
2006a). This consists of an “averaged” MRI rat brain template co-localised with a
volumetric reconstruction of the Paxinos and Watson rat brain atlas (Paxinos and
Watson 2005), thus enabling the localisation of functional effects in terms of atlas
structure and stereotaxic coordinates. Moreover, voxels falling within selected brain
structures can be combined to define anatomically based 3D volumes of interest
(VOls), free of operator bias.

In order to use the template, each subject’s reference brain volume was mapped on
the coordinate set of the brain atlas by means of a rigid-body volumetric
transformation involving nine degrees of freedom (three rotation, three translation,
three scaling). This was accomplished by using FSL/FLIRT (Smith et al. 2004a), a clinical
fMRI software suite developed by the Oxford Centre for Functional MRI of the Brain
(http://www.fmrib.ox.ac.uk/). The transformation matrix was then applied to the
accompanying fMRI time series. Obviously, an essential prerequisite in order for this
procedure to give meaningful result is that all the brain volumes are originally acquired
in the same MRI scanner “coordinate system” (i.e. they are co-centred).

Mask data. In order to reduce computational time and improve display of results, non-
brain tissue and cerebrospinal fluid (ventricles) were removed from images. This is
achieved by multiplying time series data by a binary “brain mask” (1 is brain tissue, 0
all the rest) that accompanies the stereotaxic template (Schwarz et al. 2006a).
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Extrapolation of haemodynamic parameters: basal CBV. CBV-weighted phMRI time
series signal can be converted on a pixel-wise basis into an index of bCBV through the
following transform (section 3.6):

S

RE

CBV(t) =In (3.10)

where S(t) is MRI signal at time t, and Spge is mean signal prior to contrast agent
administration. In order to have a more robust assessment of bCBV, several
consecutive bCBV(t) volumes were calculated and averaged into a single
representative “mean” bCBV volume covering a small time-window (typically 5-10
min). In order to account for signal drifts reflecting contrast agent washout, the
monoexponential signal decay produced by the contrast agent elimination (Schwarz et
al. 2003) can be effectively modelled by a linear function over the limited time-window
(5-10 min) typically used for bCBV calculation.

Extrapolation of haemodynamic parameters: rCBV. CBV-weighted MRI signal can also
be converted into fractional CBV changes (rCBV) relative to a pre-stimulation condition.
This step entails the conversion of raw phMRI signal into rCBV timeseries covering the
event of interest (i.e. drug or vehicle administration). In this case the effect of the drug
is expressed as a ratio between the incremental CBV alteration produced by the drug
(i.e. “delta CBV”), and bCBV prior to drug administration, allowing the expression of
the change in percentage terms.

As described in section 3.6, CBV-weighted phMRI raw signal can be transformed into
rCBV by applying the following transform

(st)
rCBV (1) _LEESEE% (3.11)

where S(t) is the raw MR signal intensity at time (t), Spre is signal intensity prior to
contrast agent administration, and B(t) is an estimate of the background signal in the
absence of transient functional activity. Over long time windows (> 15 min) the fact
that the background signal is not constant but reflects elimination of contrast agent
from blood compartment must be taken into account. In the case of the contrast agent
used in this study, this can be accomplished by detrending the background signal by

means of a constrained exponential fit of the form
1

B(t) = SPRE _(SPRE - SPosr)eTw (3.12)
where Spre and Spost are set to values obtained from the same time course to be
detrended, with Spost being the mean signal value of N time points following contrast
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agent administration and equilibration, and T,, a known decay time constant which in
the case of Endorem is 240 min (Schwarz et al. 2003). It should be noted that the
choice of the most appropriate estimation method strictly depends on the time
window considered, and dose and type of contrast agent used (Schwarz et al. 2003).

3.7.3 VOIl-based Statistics

After image pre-processing, the phMRI timeseries can be subjected to inter-group (i.e.
drug vs. vehicle) statistical comparisons. Two complementary approaches are usually
employed. One first robust approach relies on the intergroup comparison of phMRI
signal-timecourses in anatomical regions or volumes of interest (ROls, or VOls,
respectively). To this purpose, the brain volume is parcellated into a series of VOIs that
coincide with 3D reconstructions of rat brain atlas regions if a stereotaxic MRI template
like the one developed in our laboratory is used (Schwarz et al. 2006a). This approach
allows, for each subject, to extract a single rCBV time course from individual brain
regions that averages all the individual voxels belonging to the same anatomical region
(Figure 3.12), free of operator-bias. The phMRI timecourses can then be averaged on a
“per group” basis in order to highlight regional differences in magnitude and time-
profile of drug induced functional response. By using simple summary measurements
(i.e. mean response over time-window or areas under the curve) the phMRI data are
then amenable to be analysed for statistically significant effects through the use of
standard post-hoc statistical tests (i.e. student’s t test, ANOVA, Figure 3.13).

VOI analyses have two main advantages over voxelwise methods (see next section).
First, because there many fewer VOIs than voxels, the total number of statistical
comparisons is greatly reduced, minimising the need for correction for multiple
comparisons. Second, each VOI combines data from multiple voxels thus increasing the
functional signal-to-noise provided that the VOI is functionally homogenous. The major
drawback of to this approach is the need for a subjective input from the experimenter,
who is required to manually draw a ROIs, or like in the case of the present work, to
select a number of brain meta-regions a priori. A second important problem is the
potential mismatching of anatomical and functional regions of the brain. For example,
only small portions of an anatomical brain region may contain the functional
contribution of interest, and this factor may significantly reduce the functional signal to
noise. Conversely, a single anatomical region may contain multiple functional
contributions. In this case, it may be beneficial to subdivide the anatomical VOI, which
however has the disadvantage of increasing the number of VOI once again raising the
statistical issue of multiple comparisons. On the whole, due the variability in function
within any anatomical region, ROl or VOI-based approaches are typically combined
with image-based approaches whenever possible.
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Figure 3.12

Representative temporal profiles of rCBV (signal) following administration of a psycho-
stimulant drug (D-amphetamine) or vehicle (control, blue lines) in an anatomical volume of
interest (Caudate Putamen) as a function of group pre-treatment Top panel: individual rCBV
timecourses, Bottom panel: Mean (+SEM) rCBV response across different groups of
experimental subjects.

3.7.4 Image-based Statistics

In order to map regions that exhibit statistically significant changes in brain function
upon the administration of an experimental stimulus, voxelwise statistics can be
employed. These methods complement VOI-based investigation by providing a
detailed three-dimensional spatial description of where in the brain the effect of
stimulus is statistically significant.

The main purpose of image-based analysis in phMRI is to permit a voxel-wise
comparison of the effect of a drug on fMRI time series across experimental conditions,
to produce “activation” or “deactivation” maps. In its simplest form, a typical phMRI
experiments entails the comparison of interest is between drug and placebo (vehicle),
although second order effects can be equally assessed (i.e. pretreatment- drug vs.
control-drug). In this thesis, image-based statistics was implemented with FSL, versatile
software suite originally developed for analysis of clinical fMRI images (Smith et al.
2004b).
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Figure 3.13

Different ways to analyze and present the results of the statistical analysis of phMRI data (a) Statistical
parametric map of the effect of the psycho-stimulant apomorphine versus vehicle, thresholded at a Z
score level of 2. (b) Time courses (mean *SEM at each time point) showing signal changes in each
group from the insular cortex VOI, defined using the co-registered atlas. (c) Group mean responses
from representative VOlIs of interest (statistical significance of two-sided t test comparisons versus
vehicle: *P < 0.05, **P < 0.01, ***P <0.001).
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The main purpose of image-based statistics is to identify a scalar parameter that
describes the effect of the stimulus of interest on individual voxel time-series. In most
fMRI and phMRI studies statistical parametric maps are generated. These are colour-
coded maps that display in each voxel an indicator of the degree of statistical
significance (i.e. the probability that each voxels is consistent with the null hypothesis)
of stimulus-induced signal changes with respect to a control (baseline) condition. The
statistical maps are usually displayed on top of a base image that illustrates the
underlying brain anatomy. An arbitrary threshold (usually a<0.05 or less) is typically
introduced to retain only “significantly” activated (or deactivated) voxels.
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Figure 3.14

Basic principles of the General Linear Model (GLM) in phMRI. The GLM attempts to find the set
of experimental parameters (8) for a design matrix X that best accounts for the original data Y.

Voxel-based statistics of fMRI and phMRI data can be effectively performed within the
theoretical framework of the “general linear model” (GLM). The GLM is an all-purpose
statistical framework that generalizes linear regression by allowing a given signal
model (regressor, or input function) to be related to the response variable (i.e. voxel
time-course) to assess the effect of interest. This way, GLM can be used to identify
f/phMRI time-courses that correlate in time with a signal model reflecting the
“stimulation” paradigm used (in phMRI, the presence of drug).

The model is expressed by the equality:
y=g,+taxtax,+..tax +e (3.12)

where in each voxel the data y (i.e. the rCBV time-course in a single voxel), is equal to a
weighted combination of several model factors (x;) plus an additive error term (e). The
parameter weights (a;) indicate how much a factor contributes to the overall data,
whereas the parameter ay reflects the total contribution of all factors that are held
constant throughout the experiment. In solving the linear model equation, the
researcher has only one known quantity, the experimental data. The model factors in
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phMRI are typically the presence of a drug, which is typically described by a boxcar
waveform (e.g., drug off= 0, drug on=1). However, more complex model functions that
more closely describe the varying temporal course of drug-induced fMRI responses can
be employed to maximise the statistical power of parameter estimation, like for
example data-driven model functions identified using wavelet-cluster analysis
(Schwarz et al. 2006b). Given the data and a specified set of model factors, the
researcher can than calculate what combination of weights serves to minimise the
residual error term.

In fMRI, the experimental data are represented as a two dimensional matrix consisting
of n time points by V voxels (Figure 3.14). A design matrix is used to specify the linear
model to be evaluated, consisting of M model factors, each n time points in length. In
phMRI the design matrix usually consists of a signal model that can be inferred from
experimental design (i.e. drug on—off). The parameter matrix contains M rows and V
columns, such that each cell indicates amplitude of one of the model factors for a given
voxel. Finally the error term is an n-by-V matrix. Once the design matrix has been set-
up for a given experiment, the combination of weights yielding the smallest error term
is calculated by computing a cost function, typically least-squares errors (i.e. the sum
of squared residuals for each time point). Then, the significance of a model factor for a
given voxel can be tested by dividing its associated parameters by the residual error, a
quantity that follows the so called “F distribution”, and so its statistical significance can
be evaluated as a function of the available degrees of freedom (i.e. number of
independent observations). Conceptually, this process is very similar to a simple
correlation analysis, in that it generates an estimate of the “goodness of fit” at each
voxel timeseries that can be mapped on a statistical parametric image and that is also
amenable to a second-level group comparison. One common way to plot the results of
a GLM analysis is by colour-encoding the value p (probability of null hypothesis)
defining the significance of the regressions in each voxel, or more commonly, by
calculating the z score associated to each voxels’ fit, where z is a parameter that gives a
measure of the size of the measured effect divided by standard deviation of the
sample (Figure 3.15).

In phMRI studies, the output of a GLM analysis typically an individual activation (or
deactivation) map showing brain regions whose activity correlates significantly with
the input function describing the drug administration paradigm employed (Figure
3.15). However, as phMRI typically imply a comparison between a treated and a
control group, a “second level” inter-subject analysis is often performed. An essential
prerequisite to this, is that all the subject’s images have been mapped into a common
three dimensional coordinate space through template co-registration as described
above. In order to make inferences about the population from which subjects are
drawn, a two-stage random effect analysis is usually performed. In the first stage,
voxelwise maps are generated for each subject independently (1* level GLM analysis,
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Figure 3.15). In the second stage, the distribution of the individual subjects’ statistics is
itself tested for significance (Figure 3.16). This can be simply done by using a t-test the
evaluates whether the individual subjects’ summary statistics (e.g. z score) are drawn
from a distribution with a mean of zero. If the second-stage statistical test is significant
at the established alpha (significance) value, than it can be concluded that the
experimental manipulation (in phMRI, the drug administration) would have an effect
on the population from which the subjects were drawn.
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Figure 3.15

Overview of voxel-based 1° level statistical analysis of phMRI timeseries. A signal model is inferred from
experimental design and used within the GLM to generate estimates of the coefficients of interest that
minimise the error term of the GLM equation. The result of this process is a degree of statistical
significance versus a control condition (no drug) at each rCBV time series voxel that can be superimposed
on an anatomical image to generate a map of goodness of fit of the chosen regressor at each voxel.

Voxelwise analysis of bCBV data can be likewise performed using GLM approaches.
However, bCBV data are not expressed as time-series but reflect an individual
summary measurements the averages bCBV over a defined time-window to vyield a
single bCBV brain volume per subject. In order to perform group analysis of these data
within a GLM framework, individual bCBV volumes can be serially concatenated group-
wise, and statistical comparisons between groups can be simply performed by using an
input function that captures the experimental parameters of interest. In the simple
case of two different groups of subjects (say control, and disease state), this would
results in a “pseudo-time-series” of concatenated volumes that is analysed using an
input function of “zeros” corresponding to control, and “ones” corresponding to the
disease state group. The results of this simple first-level analysis will yield maps of
voxels where the bCBV is significantly different between groups.

Images-based analysis is usually associated with additional image pre-processing steps
that are typically incorporated in the software packages used for statistical analysis.

One important step that is often introduced is spatial smoothing. The purpose of
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spatial smoothing is to improve the signal to noise by blurring sharp edges and
suppress spurious signal contributions. Spatial smoothing is achieved by convolving
individual images with a Gaussian Kernel which effectively acts as a low-pass spatial
filter. If judiciously performed (i.e. the extent of the filter matches the activation
extent), spatial smoothing results in an augmented contrast-to-noise ratio and
improved statistical power by increasing the normality of the data (Huettel et al. 2004).
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Figure 3.16

Inter-group (2nd level) analysis in phMRI; The distribution of the individual subjects’ statistics (i.e. the
results of the 1st level analysis) is itself tested for significance on a voxel-base.

An important issue related to voxelwise analysis is the problem of multiple statistical
comparisons. As typical fMRI data sets may contain about 100.000 voxels, with an
alpha level of 0.05, as many as 5000 voxels are expected to be flagged as significantly
activated due to chance alone (false positives). Hence, all voxel based statistical
methods should be accompanied by corrections for multiple comparisons. An
approach that is gaining acceptance in the imaging community and that has been
implemented in the software employed to analyse the phMRI studies of this thesis, is
based on the use of random field theory. This approach is more conservative than
standard strategies relying on the use of stricter alpha values based on the number of
independent tests (i.e. the “Bonferroni method”). Indeed, in fMRI images voxels are
not completely independent. Time courses in adjacent voxels tend to be highly
correlated, as haemodynamic responses spans relatively large regions, and spatial
smoothing during pre-processing ensures that no voxel is independent of its
neighbours. As a result, methods like the Bonferroni correction, where the alpha level
is decreased proportionally to the number n of independent tests (agon=0/n) greatly
overestimates the number of independent statistical tests, resulting in an alpha value
that is much too conservative. To determine a better correction factor, Worsley and
colleagues (Worsley et al. 1992) applied the theory of Gaussian random fields to fMRI
data. Random field theory estimates the number of independent statistical tests based
upon spatial correlation, or smoothness, of the experimental data, a factor that
depends both on the spatial smoothing applied and the intrinsic degree of correlation.
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Based on smoothness, a parameter expressed in number of voxels, the number of
independent tests in a data can be calculated, a value known as resolution element, or
resel. With even small smoothenss in the data, this value will be much less than the
original number of voxels. From the number of resells, one can estimate how many
clusters of activity should be found by chance at a given statistical threshold, and use
this computation to adjust the significance levels of the maps to obtain a cluster-
corrected alpha-level (Smith et al. 2004a; Worsley et al. 1992). A more detailed
description of random field theory and cluster correction can be found in specialised
texts (Huettel et al. 2004; Friston 1996; Worsley et al. 1992).
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4 - Probing Brain Function with
Pharmacological MRI

The development of fMRI methods has revolutionised neuroscience, providing
clinicians and researchers with a method to investigate the spatio-temporal patterns
of neuro-functional activity with unprecedented accuracy. Although primarily
developed for human investigations, there exists significant scope for the application
of fMRI in preclinical species. For example, fMRI methods can be applied to
investigate the physiological basis of the fMRI responses, and to validate the imaging
endpoint for clinical investigation. More importantly, animal models may provide
useful tools to understand and demonstrate the construct-validity of disease models,
and to test the effects of putative medicines on the activity of specific brain circuits
thought to be implicated in aspects of the human disease. Hence, the translational
potential of a non-invasive imaging technique like fMRI is big and attractive for both
basic and applied brain research.

However, a number of experimental constraints hamper the application of fMRI
methods to small laboratory animals. Firstly, imaging experiments in rodents require
the use of anaesthesia to prevent motion artefacts and to reduce animal stress
(Flecknell 1987). Moreover, the vast repertoire of paradigms used to probe cognitive
or emotional aspects of brain function in freely moving and behaving animals cannot
be applied under the constrained experimental conditions of an fMRI experiment. As
a result, the development of fMRI-based translational paradigms has lagged, with
most of the preclinical fMRI research being reduced to the employment of basic
somato-sensory stimulation paradigms of restricted translational value.

An interesting approach to overcome some of these limitations relies on
pharmacological manipulation, and has been dubbed “pharmacological MRI” (phMRI)
(Leslie and James 2000), i.e. fMRI as applied to map spatio-temporal patterns of brain
activity induced by pharmacological challenges. Originally develop to study the
circuital basis of pharmacological activity, the approach has demonstrated the ability
to elicit robust and reliable fMRI signals even under anaesthesia, and to enable
selective stimulation of different neurotransmitter systems (Jenkins et al. 2003).

Building upon the homology between brain circuits in humans and laboratory
animals, phMRI techniques thus offer the attractive opportunity of significantly
expanding the stimulation repertoire available to preclinical fMRI research, by
allowing to selectively probe specific aspects of brain function under different
experimental settings. Within this framework, my research activity has been
dedicated to the development of refined phMRI approaches with the aim to broaden
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the scope of application of preclinical fMRI both as a translational technique, when
applied to clinically-relevant disease models, and more generally as a broad-spectrum
platform for the pre-clinical investigation of brain activity and its functional topology
under a number of preconditioning states. The results of this research highlight four
significant examples of the translational potential and versatility of the technique
both for applied and basic neuroscience research.

In a first group of studies, we developed a phMRI assay to map the circuitry activated
by NMDAR antagonists in the rat. These compounds (i.e ketamine and PCP) are
widely exploited pre-clinically and more recently in clinical research to model
schizophrenia symptoms and to provide experimental models that may prove useful
in the development of novel treatments for the human disorder. The results of this
research (Section 4.1) showed a conserved cortico-limbo-thalamic circuit that is
activated by NMDAR antagonists both in human volunteers and rodent species, and
that can be modulated by existing and novel antipsychotic drugs.

The translational potential of phMRI measurements has been further corroborated
by a second group of studies, where a multi-parametric phMRI-based approach was
applied to investigate multiple facets of brain function in a rodent cocaine self-
administration model, a behavioural paradigm of established construct-validity for
research of drug addiction. This line of investigation (Section 4.2) highlighted specific
basal and reactive brain functional alterations that are present both in human addicts
and rat chronically self-administering cocaine, thus further underscoring the
translational potential of the method.

In a third line of research, the combined use of advanced neuro-genetic targeting
strategies and fMRI has proven successful in establishing direct correlations between
cells, circuit and complex behaviours in genetically engineered mouse lines. These
studies (Section 4.3) have led to the identification of a novel cell population in the
amygdala that controls the behavioural response to fear through the recruitment of
cholinergic circuits.

Finally, the phMRI approach has proven a powerful tool to explore functional
connectivity in rodents, and to map a variety of different neurotransmitter pathways
by performing measures of correlated phMRI responses in spatially remote brain
areas. This latter aspect has also provided a useful playground to explore novel
statistical methods of analysis of functional connectivity represented in terms of
complex networks (Section 4.4).
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4.1 phMRI of Phencyclidine: Imaging the Circuit of Psychosis and its
Modulation

Schizophrenia is a debilitating mental disorder, characterised by abnormalities of
thought and behaviour. Recent biochemical evidence suggests a significant patho-
physiological contribution of glutamatergic alterations in specific symptomatic
manifestations of the disease. The cornerstone of this hypothesis is the observation
that glutamate N-methyl-D-Aspartate receptor (NMDAr) antagonists (i.e
Phencyclidine — PCP, or ketamine) can induce perceptual abnormalities and psychotic
symptoms in healthy humans resembling those observed in schizophrenic patients, a
finding that has led to the hypothesis that a decreased NMDAR function may be a
predisposing or even causative factor for this disabling disease (Kristiansen et al.
2007; Farber 2003). NMDAr antagonists are thought to exert their action through a
selective disinhibition of GABAergic interneurons leading to a dysregulated
glutamatergic activity (Figure 4.1).
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Figure 4.1

Model of the local neuronal circuit that is postulated to be involved in the psychotomimetic cascade
elicited by ketamine and PCP (Large 2007; Gozzi et al. 2008a). GABAergic interneurons receive input
and thereby exert inhibitory control on pyramidal cells (Pyr) through recurrent projections. In the
presence of NMDAr antagonists, (i.e. PCP and ketamine) this local feedback inhibition becomes
selectively disrupted (Greene 2001), an effect leading to an aberrant glutamatergic activity of
pyramidal cells which may cascade to downstream neurotransmitter systems (DA: dopamine, 5-HT:
serotonin, NA: noradrenaline)

The similarity between NMDAR antagonist-induced psychosis and schizophrenia is
also widely exploited pre-clinically to model schizophrenia symptoms and to provide
experimental models that may prove useful in the development of novel treatments
for the human disorder. Specifically, the ability of drugs to inhibit behaviours induced

59



4 - Probing Brain Function with Pharmacological MRI

by NMDAR antagonists may be interpreted as a pharmacodynamic signal of
pharmacological activity, or as a predictor of the efficacy of novel pharmacological
treatments for schizophrenia (Large 2007). Within this framework, non-invasive
neuroimaging techniques like phMRI can be applied to spatially-resolve the neuronal
circuitry engaged by glutamate NMDAR antagonism in humans and preclinical
species, thus providing a valuable translational tool for schizophrenia and psychosis
research.

The use of NMDAr antagonists to model schizophrenia symptoms in preclinical
models is however complicated by the strong dose-dependence of the effects they
exert. Indeed, at sufficiently high doses PCP and ketamine act as anaesthetics and
their psychotogenic effects arise only at lower, sub-anaesthetic doses (Krystal et al.
1994; Morris et al. 2005). As rodent neuroimaging studies are typically performed
under anaesthesia, the interaction of NMDAr antagonists with the anaesthetic agents
needs to be carefully assessed in order to identify workable doses and anaesthetic
regimens.

Phencyclidine —
0.5 mg/kg i.v. . J

phMRI 2-DG*
MK-801 PCP Ketamine
conscious anaesthesia conscious

Figure 4.2

Left: Map of the cortico-limbo-thalamic loop activated by PCP in the rat brain (Appendix 2, Gozzi et al.
2008b). Right: Spatial correspondence of the regions activated by PCP and the 2-DG uptake produced
by the PCP analogous MK-801 and ketamine in freely moving animals (Appendix 1, Gozzi et al. 2008c)
(PFC or MFC, medial-prefrontal cortex; Acb, nucleus accumbens; Cing, cingulate cortex; CPu, caudate
putamen; Rs, retrosplenial cortex; AV, anteroventral thalamus, MD, mediodorsal thalamus).

We developed a translational phMRI paradigm allowing a high-resolution
investigation mapping of the circuits that are recruited by PCP in the rat. The role of
potential experimental confounds (PCP dose and anaesthetic level) was
systematically evaluated, in a series of experiments where the phMRI response to
PCP in halothane-anaesthetised rats was mapped for varying levels of anaesthesia
and different PCP challenge doses (Appendix 1, Gozzi et al. 2008c). As expected, both
anatomical distribution and sign of the response depended strongly on anaesthetic
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level and challenge dose, with sustained and widespread deactivation at higher PCP
doses or anaesthesia levels, a signal of positive interaction between the drug and the
anaesthetic agent (Appendix 1). However, at appropriate combinations of PCP and
anaesthetic dose a focal and robust pattern of activation was observed in cortico-
limbo-thalamic areas, including visual, orbitofrontal, cingulate cortices, the amygdala,
dorsolateral and ventromedial thalamus, ventral and posterior hippocampus and
basal ganglia.
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Figure 4.3

Conservation of the neural circuitry activated by acute administration of NMDAr antagonists in the rat
(PCP) and human (Ketamine) brain. The results delineate the involvement of a focal and well-
characterised cortico-limbo-thalamic network (Morris et al. 2005). PFC: prefrontal cortex; Cg: cingulate
cortex; Thal: thalamus.

Notably, the activation pattern highlighted in these studies is consistent with that
observed in conscious rats with 2-deoxyglucose autoradiography (Duncan et al.
1998b; Duncan et al. 1999; Duncan et al. 1998a; Miyamoto et al. 2000), single unit
electrophysiological recording (Homayoun et al. 2005), [14C]-iodoantipyrine CBF
measurements (Cavazzuti et al. 1987) and immediate-early gene expression (Nakki et
al. 1996). Thus, a judicious choice of anaesthetic regimen and drug dose appears to
preserve the neuro-anatomical substrates stimulated by NMDAR antagonists in
conscious subjects. Importantly, a good correspondence (Figure 4.3) was also found
between these animal findings and the patterns of brain activity measured in humans
under ketamine infusion using either metabolic (FDG-PET) or haemodynamic (BOLD)
neuroimaging techniques (Deakin et al. 2008; Gozzi et al. 2008b; Langsjo et al. 2003).
Hence, the circuitry recruited by acute NMDAR antagonism appears to be consistent
across species and imaging modalities, thus making the use of NMDAr antagonists an
attractive translational paradigm (Figure 4.1).
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Inhibition of metablic response to Inhibition of phMRI response
ketamine by clozapine to PCP

Human brain, FDG-PET Rat brain, phMRI
Courtesy of Prof. FX Vollenweider, Zurich Gozzi et al. (2008) Neuropsychopharmacology
Figure 4.4

The antipsychotic clozapine produces a focal thalamic inhibition of the functional response to NMDAr
antagonism both in the human (left) and in the rat brain (right) (Appendix 2, Gozzi et al. 2008b).

The focal nature and anatomical localisation of the pattern of activation produced by
NMDAR antagonism may provide important information regarding the circuitry
mediating psychosis. A number of clinical neuroimaging studies show evidence of a
strong correlation between fronto-thalamo-hippocampal hyperactivity and cognitive
and perceptual alterations observed in unmedicated schizophrenia patients
(Silbersweig et al. 1995; Liddle et al. 2000; Parellada et al. 1994; Ngan et al. 2002;
Soyka et al. 2005). Moreover, functional impairment of limbic cortical areas such as
cingulate and retrosplenial cortices has been associated with the development of
thought disorder, disturbance of consciousness, and overall cognitive decline
(Mitelman et al. 2005; Kircher and Thienel 2005). Likewise, the identification of
robust foci of activation in the thalamus is in agreement with recent evidence
supporting a critical role of thalamic gating disturbance in the pathophysiology of
schizophrenia (Clinton and Meador-Woodruff 2004). Finally, PCP-induced activation
of mesolimbic and nigrostriatal structures is in good agreement with the classical
dopamine hypothesis of schizophrenia, where dysregulation of dopamine
transmission is implicated in the onset of positive symptoms (Carlsson et al. 1999).
These observations demonstrate a significant degree of correspondence between the
brain areas activated by PCP challenge, and some of the key brain circuits that are
thought to be dysfunctional in schizophrenia. This suggests that phMRI with NMDAR
antagonists may provide a useful paradigm to study the neuroanatomical substrate
of psychosis, and to test the effects of existing and putative antipsychotics on these
circuits.
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We therefore investigated the modulatory effects of several antipsychotic agents
with distinct pharmacological mechanisms on the patterns of activation induced by
PCP in the rat (Appendix 2, Gozzi et al. 2008b). Dopaminergic agents like the
dopamine D, receptor antagonists raclopride did not significantly affect the response
to PCP, consistent with a downstream implication of the dopamine system with
respect to the mechanism that elicits the phMRI response to the PCP challenge. On
the other hand, agents known to inhibit aberrant glutamatergic activity, like
metabotropic glutamate receptors (mGIuR2/3) agonists LY354740, or the sodium
channel blocker lamotrigine, suppressed entirely the activation induced by PCP, thus
indicating a primary role of glutamatergic neurotransmission in the functional
response to PCP. Consistent with this notion, in another study (Appendix 3, Gozzi et
al. 2008a), we showed that stimulation of the glycine co-agonist site of the NMDAR
either by direct agonism with D-serine, or by blockade of glycine re-uptake with the
glycine transporter type 1 (GlyT-1) inhibitor SSR504734 completely prevented PCP-
induced phMRI activation in anaesthetised rats. Some of these findings in animal
models have been confirmed in psychobiological (Anand et al. 2000) or neuroimaging
(Deakin et al. 2008) studies with the NMDAR antagonist ketamine in humans.
Interestingly, the mGIuR2/3 receptor agonist LY2140023 was shown to provide
significant therapeutic benefit to schizophrenia patients in a randomised phase-ll
clinical trial (Patil et al. 2007), a finding that has not been replicated in a recent
second study, where however a larger-than-anticipated effect in the placebo group
was observed (Kinon et al. 2010). Although further research is needed to ascertain
the exact therapeutic contribution of this mechanism in schizophrenia, the limited
clinical data produced so far support a putative physio-pathological role of NMDAR
dysfunction and the translational use of neuroimaging assays exploiting the
psychotogenic effects of NMDAR antagonists.

The ability of neuroimaging methods to resolve the anatomical distribution of the
pattern of activation is critical to identify the neuronal substrate of drugs with multi-
receptor targets. In one study performed in our lab, (Appendix 2, Gozzi et al. 2008b),
pre-treatment with the prototypical second-generation antipsychotic clozapine, a
drug characterized by a complex receptor profile (Meltzer 1996), resulted in a region-
dependent modulation of the phMRI response to PCP, with complete suppression of
the functional response in the thalamus (Appendix 2, Gozzi et al. 2008b).
Importantly, analogous thalamic effects were observed when clozapine was used as a
pretreatment to ketamine in human volunteers (FX Vollenweider, Zurich, personal
communication, Figure 4.4). In the light of the key role of altered thalamic gating to
the etio-pathology of schizophrenia, it is tempting to interpret the region-dependent
effect of clozapine as a mechanistic marker of its superior antipsychotic efficacy,
particularly in refractory patients.
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Individual components of the complex profiles of many antipsychotics can be studied
using the PCP/phMRI paradigm in combination with selective tool compounds. In
another study (Appendix 4, Gozzi et al. 2010a), selective serotonin 5HT,s receptor
antagonism, an important component of clozapine and other second generation
antipsychotics, was shown to regionally inhibit the pattern of activation produced by
PCP in the septo-fronto-hippocampal circuit (Figure 4.5). This observation is of
particular interest given the ample clinical evidence suggesting a correlation between
fronto-hippocampal hyperactivity and cognitive and perceptual alterations in
unmedicated schizophrenia patients (Silbersweig et al. 1995; Liddle et al. 2000;
Parellada et al. 1994; Ngan et al. 2002; Soyka et al. 2005; Medoff et al. 2001).
Notably, glucose metabolism studies using PET demonstrated a tight correlation
between depression of cortico-hippocampal activity and antipsychotic action elicited
by a single-dose of the atypical anti-psychotic risperidone (Liddle et al. 2000), thus
corroborating the clinical significance of this circuit in schizophrenia. Collectively, all
these pre-clinical and clinical findings support the use of NMDAR antagonist in
combination with phMRI as a valuable translational paradigm to study the
neuropathological processes that might contribute to the symptoms of
schizophrenia, and to investigate how these processes are modulated by
antipsychotic agents.

a) rCBV response to PCP b) Attenuation by M100907

Figure 4.5

The selective 5-HT,, antagonist M100907 selectively inhibits the functional response to the NMDAr
antagonist PCP in the fronto-septo-hippocampal circuit (Appendix 2, Gozzi et al. 2010a).
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4.2 Multi-parametric Assessment of Brain Function in Disease Models:
the Cocaine Self-Administration Paradigm

Chronic cocaine use produces complex and long-lasting neurobiological changes that
are thought to underlie the loss of control over drug intake that defines cocaine
dependence (Koob et al. 1998). A number of clinical imaging studies have started to
shed light on the nature of these complex neuro-adaptational changes. For example,
reduced fronto-striatal perfusion and metabolism in abstinent cocaine abusers have
been consistently observed (Strickland et al. 1993; London et al. 1999; Volkow et al.
1992). It has been proposed that disrupted function of frontal regions may contribute
to the persistent neuropsychological deficits and the impaired control over drug
taking that frequently triggers relapse (Strickland et al. 1993; Kalivas 2004).
Moreover, several positron emission tomography (PET) studies with selective D,
dopamine (DA) ligands have demonstrated persistent decreased dopaminergic
responsivity in components of the “reward circuit” in cocaine addicts, an abnormality
that may contribute to the decreased sensitivity to natural reinforcers experienced by
these subjects (Volkow et al. 2007). Finally, recent research suggests that altered
functional connectivity of catecholamine circuits may underlie the lower recruitment
of subcortical resources and impaired inhibition of cortical function observed in
cocaine abusers, a finding that describes novel pathways for the neuroadaptational
processes associated to addictive states (Tomasi et al. 2010; Gu et al. 2010).

Cocaine addiction can be effectively modelled in experimental paradigms where
rodents are trained to self-administer the drug. These models reproduce several
hallmark features of drug addiction, including compulsive drug seeking, uncontrolled
drug use, and increased motivation to self-administer the drug (Vanderschuren and
Everitt 2004; Ahmed and Koob 1998; Paterson and Markou 2003). These features
make these models an experimental tool of excellent face-validity to investigate the
neuroplastic events associated to voluntary drug-intake at a cellular and behavioural
level (Roberts et al. 2007). However, specific clinical correlates of cocaine addiction,
such as the blunted DA responsivity of striatal areas observed in PET studies, do not
appear to be adequately modelled by traditional limited-access time-limited cocaine
SA paradigms, where instead “sensitised” (i.e. increased) dopaminergic responses
are typically observed (reviewed by Narendran and Martinez 2008). Moreover, the
exact degree to which these models replicate the multiple neuro-functional
alterations observed in human neuroimaging studies remains unknown.

In order to address these questions, we have used a multi-parametric MRI protocol
to map basal and evoked brain function in a rat model of chronic cocaine self-
administration (SA) (Appendix 5). A prolonged (52 days), extended-access (12 hours)
SA protocol was employed to model the characteristics of high-dose, chronic cocaine
abuse in humans (Gawin and Ellinwood 1988), and repeated abstinence periods were
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introduced to minimize the acute toxic effects of the drug. We measured basal
cerebral blood volume (bCBV) as an indirect indicator of basal brain function, and
assessed the reactivity of dopaminergic system by mapping the phMRI response to
an acute challenge with the dopamine-releaser D-amphetamine. Moreover,
correlation analysis (Section 4.4) between resting (bCBV) and amphetamine-evoked
(rCBV) responses was performed in an attempt to identify disregulation in circuits
that control the recruitment and functional responsiveness of specific brain areas.
Finally, post mortem histo-pathological examinations were carried out to assess the
potential contribution of direct vascular and neurotoxic effects of cocaine to the
imaging findings.

e

=N
Cocaine self-administration paradigms are employed to mimic the cellular, behavioural and neuro-
adaptational effects of long-term cocaine intake in laboratory animals. The experimental subjects are

trained to press a lever that induces a self-injection of behaviourally active doses of the drug (modified
from Caine et al. 1993).

Figure 4.6

Rats chronically exposed to cocaine exhibited significantly reduced bCBV in regions
that play a key contribution in higher cognitive functions and inhibitory control
(fronto-cortical areas), craving and anticipation (fronto-hippocampal areas) and
reward (mesolimbic areas, Figure 4.7). These data highlight an excellent agreement
with clinical neuroimaging research of cocaine addiction, where reduced frontal and
striatal perfusion during protracted withdrawal has been observed by several
investigators (Strickland et al. 1993; Tumeh et al. 1990; London et al. 1999; Volkow et
al. 1992; Volkow et al. 1988) and found to correlate with cognitive impairment,
compulsion and loss of inhibitory control over drug which frequently triggers relapse
(Strickland et al. 1993; Kalivas 2004; Kalivas et al. 2005). Importantly, analogous
cognitive deficits have been observed in rats allowed extended (but not limited)
access to cocaine (Briand et al. 2008), a phenomenon that involved working memory
and sustained attention tasks (two prefrontal-cortex-dependent tasks) as well as
object recognition measures (a hippocampus dependent task).
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Figure 4.7

Chronic cocaine intake produces reduced frontal bCBV in the rat brain (Right, Gozzi et al., submitted),
an effect that correlates well with clinical findings of reduced frontal perfusion (bottom panel, Tucker
et al. 2004) and metabolism (Volkow et al. 1992) in cocaine addicts.

The SA group also exhibited a weak but significant reduction in striatal response to D-
amphetamine, an effect that was significantly correlated with the total cocaine intake
(Figure 4.8). Since previous phMRI studies (reviewed by Knutson and Gibbs 2007)
have provided robust evidence that the striatal haemodynamic response produced by
D-amphetamine reflect primarily dopaminergic effects, this finding points towards a
reduced-responsivity of ventro-striatal dopaminergic function analogous to that
demonstrated in PET studies in humans (Narendran and Martinez 2008). These
results provide for the first time a plausible preclinical neuroimaging correlate of one
of the most replicated clinical manifestation of cocaine addiction, which is believed to
play a key contribution to the anhedonia and amotivation reported by drug-addicted
subjects during protracted withdrawal (Volkow et al. 1997). Importantly, this result
documents a potentially important correspondence between clinical and preclinical
neuro-adaptational changes induced by cocaine on DA systems, an aspect that does
not appear to be adequately modelled by traditional cocaine exposure paradigms,
where “sensitised” (i.e. increased) dopaminergic responses are typically observed
(reviewed by Narendran and Martinez 2008).

Finally, correlation analysis between resting (bCBV) and amphetamine-evoked (rCBV)
responses revealed an inverse relationship between bCBV in the reticular thalamus
and posterior thalamus, and frontal activation due to d-amphetamine in control
subjects but not in the cocaine group (Appendix 5). The presence of an inverse
relationship between tonic reticular thalamic activity and evoked frontal function is
consistent with the functional connectivity of these regions (Paxinos 2008) and the
GABAergic composition of the reticular thalamus (Paxinos 2008). As prefrontal
projections to the thalami reticular nucleus have been suggested to play a unique
circuit for attentional mechanisms (Zikopoulos and Barbas 2006) we speculate that
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the loss of correlation between basal and evoked function in cocaine SA subjects may
be indicative of an altered inhibitory interplay between these structures which may
underlie some of the attentional deficits observed in rats allowed extended access to
cocaine (Briand et al. 2008). Importantly, histopathological examinations did not
show significant vascular or cellular aberrations n the brain of SA subjects, thus ruling
out major unspecific pathological or vascular contributions to the imaging findings.

Taken together, these findings provide evidence of altered brain function in rats that
underwent prolonged and extended access cocaine self-administration. Consistent
with clinical neuroimaging findings, cocaine-exposed animals revealed reduced basal
brain function in fronto-cortical and thalamic areas, and attenuated responsivity in
striatal regions upon challenge with the DA releaser D-amphetamine, an effect that
was significantly correlated with the total cocaine intake. The consistency of these
findings with neuroimaging measures in cocaine-addicted patients supports the use
of prolonged and extended-access SA paradigms in the rat to investigate the neuro-
adaptations underlying cocaine-addiction, and highlight an important contribution of
phMRI approaches to facilitate translational research of drug addiction.
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Figure 4.8

Top: Chronic cocaine intake is associated with reduced dopaminergic responsiveness in striatal regions,
a finding originally described by Volkow et al (1997) using PET and the dopamine-releasing agent
methylphenidate (MP) as molecular probe. Similar findings were observed in the rat brain (Gozzi et al.,
submitted) using phMRI with the dopamine release amphetamine (bottom, A,B,C). The effect was
significantly correlated to the cumulative amount of cocaine self-administered by the subjects
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4.3 Linking Circuit and Behaviour: Mapping the Circuit of Fear with
Pharmacogenetic Silencing and phMRI

Recent advancements in mouse genetics have led to the development of methods to
induce transient and cell-type-specific silencing of neuronal activity in vivo (Luo et al.
2008; Lee et al. 2010). In combination with behavioural observations, this novel
approach provides a powerful means to assess the functional contributions of specific
neuronal population to specific behaviours. Crucially, if combined with spatially-
resolved techniques such as fMRI, these methods offer the unprecedented
opportunity to reveal the circuital basis of specific behaviours.
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Figure 4.9

Pharmacogenetic silencing of a discrete neuronal population (“Type 1”) in the central nucleus of the
amygdala (CeA). (A) A mouse line expressing the serotonin receptor Htrla only in selected neurons of
the CeA has been devised by Dr. C. Gross and T. Tsetsenis at EMBL Monterotondo (Tsetsenis et al.
2007). (B) The Htrla receptor is coupled to GIRK potassium channels, and its activation by selective
agonists (i.e. by the compound 8-OH-DPAT) (C) induces rapid and reversible membrane hyper-
polarization of the cells expressing the receptor. (D) Systemically-administered Htr1aR agonists can be
used to obtain cell-specific inhibition of spontaneous neuronal firing in behaving animals and correlate
the behavioural output with phMRI measures of circuital activation.

In a work performed in collaboration with Dr Gross (EMBL, Rome) we have provided
the first demonstration of the combination of fMRI and tissue-specific
pharmacogenetic silencing (Figure 4.9) to spatially resolve behaviour-specific circuits
controlled by focal neuronal populations in the mouse brain (Appendix 6, Gozzi et al.
2010b). Specifically, we combined phMRI, functional connectivity analysis (Section
4.4), c-Fos mapping and behavioural measures to examine the effect of inhibition of
neural activity in a subset of neurons of the central nucleus of the amygdala (CeA), a
key structure involved in the control of emotional and fear responses (Aggleton 1992;
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LeDoux 2000; Davis and Whalen 2001). Reversible suppression of neural activity in a
subset (“Type-1”) of CeA neurons was achieved by inducing tissue-specific re-
expression of the serotonin 1A receptor (Htrla) in mice devoid of the endogenous
receptor, a strategy recently described by Gross and co-workers (Tsetsenis et al.
2007). The HtrlaR is coupled to GIRK potassium channels, and its activation induces
rapid and reversible membrane hyper-polarization of the cells expressing the
receptor. Hence, the use of systemically-administered HtrlaR agonists (like the
selective compound 8-OH-DPAT) can be exploited to obtain cell-specific inhibition of
spontaneous neuronal firing in behaving animals (Tsetsenis et al. 2007). At the same
time, the pharmaco-genetic inhibition strategy is optimally-suited to be implemented
as an phMRI paradigm to map the downstream functional effects of CeA silencing,
and to correlate the observed circuital responses with the behavioural and cellular
events associated to the silencing of Type-l amygdala neurons.

By using this approach, we were able to identify a novel pathway in the mammalian
brain apt to regulate passive and more active components of fear responses
(Appendix 6, Gozzi et al. 2010b). Specifically, selective inhibition of CeA Type-I
neurons led to decreased conditioned freezing behaviour, and widespread increased
cortical arousal as visualized by phMRI upon acute administration of the selective
Htr1AR agonist 8-OH-DPAT (Figure 4.10). Inter-subject functional connectivity
analysis of phMRI time-courses was critical in resolving the neuronal circuitry
underlying the increased cortical activity. Significant correlation was found between
the CeA and several ventral forebrain cholinergic nuclei such as the substantia
innominata and the diagonal band, and the same cholinergic nuclei exhibited tight
correlations with the cortical areas activated upon inhibition of type-I CeA neurons.
The involvement of the cholinergic system was confirmed in additional phMRI studies
showing that the cortical arousal was blocked by central (but not peripheral)
cholinergic antagonists. Remarkably, an analysis of the behavioural correlates of
cortical activation in Htrla®” mice highlighted a pivotal role of type-l CeA cells as
suppressors of cholinergic- activity and exploratory behaviour and promoters of
freezing (passive) fear responses, thus leading to the identification of a novel neural
pathway that biases fear responses toward either passive or active coping strategies.

Methodologically, this work expands the applicability of phMRI and functional
connectivity analyses to genetically-modified mouse models, and provides at the
same time a first, compelling demonstration of the combined use neuroimaging
methods and advanced pharmaco-genetic systems as a new powerful paradigm to
identify and resolve behaviourally-relevant neural circuits in the living brain.
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(a) Cortical arousal following suppression of type-1 CeA cells. (b,c) Ventral forebrain cholinergic neurons are a downstream target of the CeA. Maps of 8-OH-DPATinduced rCBV

response significantly correlated with CeA (b) or somatosensory cortex (c) in HtrlaCeA mice (d,e) Cortical arousal depends on central cholinergic neurotransmission.

Pretreatment with atropine sulphate (AS, d) but not the non-brain penetrant salt AMN, (e) suppressed the mean rCBV response to 8-OH-DPAT (f, g) Decreased passive and
increased active behavioural responses to conditioned aversive stimulus (adapted from Gozzi et al. 2010b, Appendix 6 ).
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4.4 Functional Connectivity Analysis of Brain Circuits with phMRI

Functional Magnetic Resonance Imaging has been instrumental to study brain
functional segregation, i.e. the functional specialization of discrete brain regions
engaged by specific stimuli (Posner et al. 1988). However, while the evidence of
functional specialization of brain cortical regions appears compelling, even the
simplest sensorimotor task involves the integrated activity of multiple brain areas
(Luria 1973), a notion consistent with the dicothomic principles of functional
segregation and integration underlying the brain’s functional organization. Hence,
multivariate analyses of fMRI time series can be applied to assess interactivity among
different structures (Rogers et al. 2007; Friston et al. 1994). These approaches rely on
the evaluation of some definition of correlation or covariance between spatially
remote neurofunctional events. In this context, statistical dependencies among
signals originating in different brain regions are interpreted in terms of functional
connectivity, as opposed to structural connectivity, which denotes the presence of
physical neuronal connections between remote brain structures (Ramnani et al.
2004).

The inception of fMRI has significantly expanded the repertoire of methods to study
functional interactivity in the human brain. The recent discovery that spontaneous,
low frequency fluctuations in the fMRI signals from the human brain at rest exhibit
coherent patterns within defined networks has opened an interesting avenue of
investigation, often referred to as “resting-state fMRI”(Beckmann et al. 2005). By way
of example, a network of functional connectivity corresponding to brain regions
whose activity is higher at rest than during an experimental task has been identified,
and interpreted as evidence in support of the existence of a “default mode” of
baseline brain function (Greicius et al. 2003). Interestingly, alterations in resting state
functional connectivity have been observed under a number of pathological
conditions, including Alzheimer’s disease (Li et al. 2002), multiple sclerosis (Lowe et
al. 2002) and schizophrenia (Zhou et al. 2008).

While there is a large body of work assessing functional connectivity in the human
brain, the extension of these methods to pre-clinical species, and particularly to
rodents, is very recent (Bifone et al. 2010). Several studies in laboratory animals have
followed the path of human resting state fMRI. Synchronous low-frequency
fluctuations were detected in bilateral primary somatosensory cortex in the rat brain
at rest under different anaesthetic conditions (Pawela et al. 2009; Pawela et al. 2008;
Zhao et al. 2008). All these studies used a seed-correlation region approach (i.e.
signal time-course correlations were computed with respect to a specific region
chosen by the experimenter a priori) and demonstrated encouraging correlations
between bilaterally symmetrical cortical regions. However, coherent networks of
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connectivity akin to those observed in humans (e.g. the default mode network) have
not been observed in the rat using this method to date. Whether this reflects
experimental impediments (e.g. the use of anaesthesia, or high stress-levels due to
restraint) or rather a different functional architecture of the rodent brain with
respect to that of higher species such as primates is the subject for further
investigation.

A conceptually different approach to the study of functional connectivity in rodents
has been explored in our lab using pharmacological MRI. The strategy has proven
very effective in determining the circuital and neurochemical basis of
pharmacologically-evoked fMRI responses. Several recent studies using this approach
have shown exquisite delineation of focal patterns of correlated responses
corresponding to key neurotransmitter pathways (Schwarz et al. 2007b; Schwarz et
al. 2007a; Schwarz et al. 2007c; Schwarz et al. 2008; Schwarz et al. 2009). Moreover,
network analysis of functional connectivity patterns obtained with phMRI has
provided the first evidence of organized networks of functional connectivity in the rat
brain, thus demonstrating the potential of this method to explore the brain
functional architecture.

4.4.1 Correlation Analysis in phMRI

Functional connectivity analysis of phMRI data requires image analysis approaches
that are substantially different from those applied to study low frequency
spontaneous fluctuations. The approach relies on a calculation of interregional
correlations in the response amplitude across subjects (Schwarz et al. 2007b), in the
fashion of the procedures applied in metabolic PET or autoradiography studies
(Horwitz et al. 1984; Soncrant et al. 1986). Schematically, the correlation analysis
procedure used in phMRI studies can be summarized in terms of the following steps.
First, individual subject time series are co-registered to a common stereotaxic space
(Schwarz et al. 2006a). Time courses from individual image voxels are then extracted
for each subject, and suitable regressors are fitted to the data to determine response
amplitudes. These values provide voxel-specific vectors of response amplitude across
subjects. Inter-subject correlations are then calculated for each voxel in reference to
a selected ‘seed’ region, using the vector of response amplitudes from step B. Finally,
statistical correlation maps, i.e. maps of voxels whose response amplitude correlates
significantly (in a statistical sense) with those in the reference region are generated.
This approach leverages variations in the spatial profile of the response observed
across subjects following drug challenge. Figure 4.11 provides an outline of this
process, and an exaggerated visual impression of the intersubject variability in the
phMRI response profile.
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Figure 4.11

Schematic overview of the principle underlying across-subject functional correlation. Different subjects
show different spatial profiles of responses to the pharmacological challenge. This variability is
leveraged to extract response vectors for each image voxel (left-hand panel). Intersubject correlations
are then calculated for each pair of image voxels or for a voxel in reference to a seed region.

The first demonstration of this approach applied correlation analysis of rCBV changes
in the rat induced by acute challenge with D-amphetamine and fluoxetine, two
widely used drugs that target key monoaminergic systems (Schwarz et al. 2007b). D-
amphetamine stimulates the pre-synaptic release of dopamine, and the psychoactive
and reinforcing properties of the compound are thought to be mediated by
stimulation of the mesolimbic dopamine pathway, a small bundle of neurons
originating from the ventral vegmental area (VTA) in the midbrain. Consistent with
this hypothesis, correlation maps of phMRI responses referenced to the VTA clearly
delineated the parallel major axes of this pathway forward through the ventromedial
thalamus to the ventral striatum (Figure 4.12). In the same work, correlation analysis
of the phMRI response to fluoxetine, a clinically effective antidepressant, revealed a
focal delineation of major ascending serotonergic projections to the forebrain and
cortex, in keeping with the drug’s mechanism of action. This study represented the
first in vivo demonstration of functional connectivity in discrete neurotransmitter
systems. The correlation analysis was guided by a judicious choice of seed region that
was informed by previous knowledge of the systems under investigation. However,
similar findings were obtained using a hypothesis-free k-means cluster analysis
without prior definition of a seed correlation region (Schwarz et al. 2006a), an
optimization-based method that minimizes a distance measure between the n
response vectors. This result significantly expands the scope of application of the
approach, by allowing the implementation of computational approaches free of
operator bias.

In the phMRI approach, a drug challenge serves the purpose of eliciting a brain
response whose intersubject variability provides a basis to calculate interregional
correlations. From a pharmacological point of view, it is also important to ascertain
whether drug treatment can modulate brain functional connectivity, since this might
shed light on the drug mechanism of action at a systems level. One interesting

74



4 - Probing Brain Function with Pharmacological MRI

approach to addressing this problem has been proposed by our lab (2007c), whereby
the effects of a compound of interest (DA D3 receptor antagonist) was shown to
produce a region-dependent modulation of the correlated responses to a different
probe compound (D-amphetamine). Methodologically, this study extended the
applicability of inter-subject functional connectivity analyses of phMRI data to
antagonist-agonist experiments, where modulations in the correlation structure
underlying the response to a probe signal may be detected.

Sagittal plane, x=1.1mm

Figure 4.12

(a) Map of the responses to D-amphetamine covarying (across-subjects) with that in the ventral
tegmental area (VTA). (b) The pattern of connectivity delineates the mesolimbic DA pathway extending
forward to the striatum.

4.4.2 Complex Network Analysis of Functional Connectivity in the Rat Brain

Functional connectivity analyses of neuroimaging data aim to elucidate relationships
between signals originating in spatially distinct brain regions. This emphasis on
interaction between different brain structures is a good conceptual match for
representing the data as a graph, or network, of nodes and links. In this
representation, image voxels or parcellated brain regions represent the nodes, and a
measure of similarity or correlation in their responses defines the edges linking the
nodes (Salvador et al. 2005; Eguiluz et al. 2005; Achard et al. 2006; Achard and
Bullmore 2007). In recent years, networks from a wide variety of fields have been
characterized and found to exhibit rich behaviours beyond those of simple random
networks; accordingly, they are referred to as ‘complex networks’ (Strogatz 2001).
Network analysis of functional connectivity data to date has concentrated on the
characterization of global properties of the network, which can reveal much about
the properties of the system. For example, networks derived from human brain
imaging data have been shown to possess a scale-free degree distribution and exhibit
‘small world’ behaviour—a finding that has implications for information transfer in the
brain(Bullmore and Sporns 2009).
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Complex networks of functional connectivity derived from phMRI data in the rat have
been recently investigated in our laboratory (Schwarz et al. 2008; Schwarz et al.
2009). In these works, the nodes were defined as individual image voxels (0.128
mm?) in the 3D image volume, and the strength of the edge between each pair of
nodes was based on the Pearson correlation coefficient between the inter-subject
response amplitude vectors in the two voxels. This value was converted into an
equivalent z-statistic using Fisher’s r-to-z transformation. The magnitudes of these
normalized correlation values were used to describe the strength of the correlation
between each pair of nodes and used to construct an edge weight matrix. Finally, the
edge weight matrix was thresholded and binarised to define a binary adjacency
matrix. Analysis of the structural properties of the resulting networks outlined
interesting topological features, including a small-world structure, and a long tailed
distribution of node degrees (i.e. number of connections for certain node), indicative
of the presence of hubs, namely a subset of highly connected nodes in cortical
regions.

Beyond global characterization, the coexistence of functional segregation and
integration in brain activity suggest that some degree of modularity i.e., sub-
networks or clusters of more tightly linked nodes, might exist within functional
connectivity networks. This concept originated in the study of social relationships and
has been consequently dubbed “community” structure. The first application of this
concept to the analysis of brain functional connectivity networks has been recently
demonstrated using phMRI data in rodents challenged with fluoxetine (Schwarz et al.
2008). In this work, a community structure algorithm, based on maximization of a
mathematical formalism of ‘modularity,” (Newman and Girvan 2004; Newman 2006)
was applied to resolve functionally and anatomically segregated communities within
a functional connectivity network derived from phMRI responses. The method was
applied to identify number and composition of subnetworks within a widely
distribute network of functional connectivity obtained under pharmacological
challenge with the antidepressant fluoxetine. For a certain partition of the network,
Q measures the difference between the fraction of the edges connecting nodes
within communities and the same fraction in the case of a randomly connected
network with the same partition. The closer the value of Q is to its theoretical
maximum 1, the stronger the community structure, i.e. the more modular the
network. The application of this method to the functional connectivity network in the
rat challenged with fluoxetine revealed three communities of nodes (Figure 4.13).
The pixels in the two largest communities were symmetrically distributed between
the left and right hemispheres and their distributions corresponded closely to known
anatomical and functional subdivisions of the rat brain. Interestingly, one of the
communities comprised nodes corresponding primarily to sub-cortical structures —
striatum, thalamus and amygdala — but also regions of the hippocampus and
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entorhinal, medial pre-frontal and cingulate cortices. The finding of pixels in the
cingulate and prefrontal areas grouped with those in striatal and thalamic structures
is consistent with the fact that these cortical regions are the main cortical target of
input from the basal ganglia via extensive reciprocal connections with the thalamus
(Uylings et al. 2003). These cortical regions are anatomically similar to other regions
of the cortex yet functionally distinct. Similarly, pixels in the entorhinal cortex and in
the hippocampus were assigned to the same community, reflecting the dense
connections between these structures. Most other cortical nodes, including those
located in the motor, somatosensory and visual cortices, were assigned to a second
community (Figure 4.13b), while a third community (Figure 4.13c) mainly comprised
pixels near the brain edge, the ventricles and in white matter and the cerebellum.

The community structure approach is somewhat akin to other multivariate methods,
like Principal Component Analysis and Independent Component Analysis, which have
been extensively applied to seek structure within imaging data in a model-
independent way (Friston 1997; McKeown et al. 1998; Beckmann and Smith 2004).
Unlike these, however, this community structure approach explicitly takes into
account the topology of the functional connections, with communities defined on the
basis of link density and distribution. This concept may be more readily interpretable
in biological terms than measures such as the orthogonality (Friston et al. 1993;
Friston 1997) or statistical independence (McKeown et al. 1998) of spatial modes
that are optimized by other algorithms.

A key point in this approach is that the identification of communities within a
functional imaging network contains information on both segregation and
integration. A partition of the overall network into smaller sub-units suggests a
degree of functional segregation in the response, whereas the set of brain regions —
not necessarily contiguous — identified within each sub-network reflects their
integrated action in response to the experimental stimulus. Importantly, the value of
the modularity Q provides a measure of the degree of functional segregation in the
network and may provide the basis for an operational definition of this.

This first demonstration of the potential of community structure analysis of
functional connectivity in pre-clinical species has been rapidly translated to human
functional connectivity, and several studies extending this approach to resting state
fMRI have subsequently appeared in the literature (Meunier et al. 2009; Bullmore
and Sporns 2009). However, a few questions remain open and are the object of
active investigation. For example, the origin of structured patterns of correlated
responses is still largely unknown. Specifically, it is unclear whether the patterns of
functional connectivity reflect interregional correlations induced by the drug
challenge itself, or the intrinsic organization of the brain, perhaps determined by the
structure of the underlying neuronal substrate. A follow-up paper applied community

77



4 - Probing Brain Function with Pharmacological MRI

structure analysis to address this question (Appendix 7, Schwarz et al. 2009). To this
end, three different pharmacological challenges (D-amphetamine, fluoxetine and
nicotine) were investigated, and the emergent communities under different
pharmacological conditions were compared to discriminate between connectivity
patterns that are stimulus-specific and those independent of the particular
neurotransmitter system(s) engaged by the drug, which may thus correspond to
general features of the rat brain functional architecture. Interestingly, common
features across all three networks revealed two groups of tightly coupled brain
structures that responded as functional units independent of the drug, including a
network involving the prefrontal cortex and sub-cortical regions extending from the
striatum to the amygdala. This suggests that this network of functional connectivity
may reflect a general feature of the brain organization, and is consistent with
evidence showing strong intrinsic connectivity between neurons in these brain
structures. Hence, structural connectivity of the neuronal substrate appears to
constraint functional connectivity, and stimulus independent patterns of functional
connectivity reflect the structure of large scale neuronal wiring in the rat brain.
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Figure 4.13

Anatomical representation of the three communities identified by modularity
maximization in a functional network derived from phMRI responses to fluoxetine.
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4.5 Conclusion

Functional Magnetic Resonance Imaging methods have been extensively applied over
the last 20 years to study the human brain and its functional organization in healthy
and disease states. A strong rationale exists for the extension of this approach to
animal models as a translational tool to bridge clinical and preclinical research.
Within this framework, the use of pharmacological MR, i.e. the application of fMRI to
map spatio-temporal patterns of brain activity induced by pharmacological agents,
shows potential as a means to overcome the limited stimulation repertoire available
in anesthetised rodents. The main merits of this approach lie in its ability to elicit
robust and reliable activations even under anaesthesia conditions required to reduce
motion artefacts and animal stress, and to enable selective stimulation of different
neurotransmitter systems, thus providing a playground to study the neurochemical
basis of fMRI responses.

My three years’ research has focused on the development of refined preclinical
phMRI paradigms to focally probe different facets of brain function under a variety of
experimental conditions. The results of this effort highlighted encouraging
correspondences in the circuits that are recruited by psychotogenic agents, or
altered by prolonged drug use, across species and image modality, thus strongly
corroborating the translational potential of the approach. Importantly, the
combination of this technique with advanced neuro-genetic targeting strategies has
been instrumental to unequivocally disclose the circuital determinants of specific
behaviours, an approach that is expected to significantly advance our understanding
of the neurobiological basis of behaviour. Finally, the application of network
partitioning methods to phMRI measures of functional connectivity have made it
possible for the first time to resolve biologically and anatomically meaningful
patterns of correlated responses in the rat brain, thus providing a novel and powerful
method to investigate the brain functional architecture in pre-clinical species.

While fMRI in preclinical species has been driven by imaging applications in humans,
the methodological gap between the clinical and the preclinical arenas is closing, with
increasingly sophisticated approaches now available for animal studies. The few
examples shown here support the use of phMRI approaches as a translational tool,
and paves the way to the integrated implementation of phMRI and advance genetic
manipulation as a novel powerful platform for basic neurobiological research. Like
any contemporary research, the work presented in this dissertation is still in
progress. Hopefully, the incremental progress reported in the present studies will
motivate the application of phMRI across different areas of basic and applied
neurosciences, and provide a basis for future investigations that will help elucidate
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the pathological mechanisms of neuro-psychiatric disorders, and guide the
development of innovative and more effective therapies.
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Abstract

Pharmacological magnetic resonance imaging (phMRI) provides a powerful means to map the effects of drugs on brain activity, with
important applications in pharmacological research. However, phMRI studies in preclinical species are often conducted under general
anaesthesia as a means to avoid head motion and to minimise the stress induced by the procedure. Under these conditions, the phMRI
response to the drug of interest may be affected by interactions with the anaesthetic agent, with consequences for the interpretation of the
data. Here, we have investigated the phMRI response to phencyclidine (PCP), an NMDA receptor blocker, in the halothane-anaesthetised rat
for varying levels of anaesthesia and different PCP challenge doses. PCP induces psychotic-like symptoms in humans and laboratory animals
and is widely applied as a pharmacological model of schizophrenia. However, PCP possesses anaesthetic properties per se, and its
interactions with halothane might result in significant effects on the phMRI activation patterns. We observed two qualitatively different
patterns of phMRI response. At 0.5 mg/kg iv PCP and 0.8% halothane maintenance anaesthesia, the lowest doses explored, an activation of
discrete cortico-limbo-thalamic structures was observed, consistent with neuroimaging studies in humans and 2-deoxyglucose functional
mapping in conscious animal models. However, higher anaesthetic concentrations or higher PCP challenge doses resulted in complete
abolition of the positive response and in a widespread cortical deactivation (negative response). In the intermediate regime, we observed a
dichotomic behaviour, with individual subjects showing one pattern or the other. These findings indicate a dose-dependent drug—anaesthetic
interaction, with a complete reversal of the effects of PCP at higher challenge doses or HT concentrations.
© 2008 Elsevier Inc. All rights reserved.

Keywords: Phencyclidine; PCP; phMRI; fMRI; Rat; Anaesthesia; Anesthesia; Halothane; CBV; NMDA; Schizophrenia

1. Introduction

Pharmacological magnetic resonance imaging (phMRI)
tracks signal changes that reflect a central haemodynamic
response to acute drug challenges and may be considered
as a surrogate for changes in the underlying neuronal
activity [1]. Recent years have seen an increasing
application of phMRI to study central effects of drugs on
the central nervous system in humans and animal models.
In preclinical species, phMRI techniques have been
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successfully applied to map the central effects produced by
a number of psychoactive drugs belonging to different
pharmacological classes, including psychostimulant [2,3],
antidepressant [4] and anxiolytic compounds [5]. phMRI
studies in rodents are often conducted under general
anaesthesia as a means to avoid head motion and to
minimise the stress induced by restraint. However, the
phMRI response to the drug of interest may be affected by
interactions with the anaesthetic agent, with consequences
for the interpretation of the data. Previous studies have
addressed specific issues related to the use of general
anaesthesia in phMRI, such as potential perturbations of
cerebrovascular autoregulation following the administration
of vasoactive compounds [6] or the effect of specific
anaesthetics on neurotransmitter function [7]. Potential
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interactions between the anaesthetic and the drug challenge
represent another potential confound that can affect the
interpretation of the results. The investigation of these
effects becomes particularly important when the com-
pounds under investigation are known to possess anaes-
thetic properties per se, like in the case of the
psychotogenic drugs phencyclidine (PCP) or ketamine
[8.9].

Acute administration of PCP or ketamine, two drugs
acting as NMDA receptor (NMDAR) antagonists, induces
psychotic symptoms in healthy subjects [10] and can trigger
psychotic episodes in schizophrenic patients [11]. These
observations have led to the hypothesis that some aspects of
schizophrenia may be due to deficient glutamatergic
neurotransmission [12] and have prompted considerable
research effort to develop medications for schizophrenia
based on this putative mechanism. Glycinergic drugs [13]
and AMPAKkines [14] represent the best-known examples of
novel therapeutic strategies explicitly aimed to enhance
glutamatergic neurotransmission. The similarity between
NMDAR antagonist-induced psychosis and schizophrenia
has also been widely exploited preclinically to provide
models to aid the development of novel treatments for the
disorder. In these studies, the ability of drugs to inhibit
behaviours induced by NMDAR antagonists is assessed in
an attempt to predict the efficacy of novel pharmacological
treatments for schizophrenia [15]. The application of
imaging techniques to map the neuronal substrate underlying
these effects can help assess the neurofunctional basis and
the predictive value of the use of NMDAR antagonists to
mimic schizophrenia.

Recent neuroimaging studies have examined the regional
effects of NMDAR antagonists in the human brain. Langsjo
et al. [16] reported robust dose-dependent relative cerebral
blood flow (rCBF) increases in the anterior cingulate,
thalamus, putamen and frontal cortex in healthy volunteers
receiving ketamine. Consistent findings were observed by
McKie et al. [17] using BOLD fMRI. Recent phMRI studies
performed in our lab showed the activation of discrete
cortico-limbo-thalamic structures by acute PCP challenge in
the halothane-anaesthetised rat, an effect that could be
antagonised by antipsychotics and glutamate-release mod-
ulators [18]. Littlewood et al. [19] reported an increase in
the BOLD response in the hippocampus, retrosplenial
cortex and orbital cortex of isoflurane-anaesthetised rats
challenged with ketamine. However, no attempt has yet
been made to investigate the potential interaction between
NMDAR and anaesthesia in phMRI studies.

In the current study, we have investigated the relative
cerebral blood volume (rCBV) response to PCP in the
halothane-anaesthetised rat for varying concentrations of
anaesthesia and different PCP challenge doses. The phMRI
protocol used has been previously employed by ourselves
and other groups to map the central haemodynamic
response to a number of neuroactive compounds
[3,18,20-23].

2. Methods

All in vivo studies were conducted in accordance with
Italian laws (DL 116, 1992 Ministero della Sanita, Roma).
Animal research protocols were also reviewed and consented
to by a local animal care committee, in accordance with the
guidelines of the Principles of Laboratory Animal Care
(NIH publication 86-23, revised 1985). The studies were
performed on male Sprague—Dawley rats [mean (+S.E.M.)
weight, 293433 g; Charles River, Como, Italy]. Animals had
free access to standard rat chow and tap water and were
housed in groups of five in solid-bottom cages with sawdust
litter. Room temperature (20—22°C), relative humidity (45—
65%) and dark—light cycles (12 h each, lights on at 0600 h)
were automatically controlled. After arrival, rats were
allowed to acclimatise for at least 5 days.

Animal preparation/monitoring and MRI acquisition in
each phMRI study have been described previously [18].
Briefly, rats were anaesthetised with 3% halothane in a
30%:70% O,:N, gas mixture, tracheotomised and artificially
ventilated with a mechanical respirator. The left femoral
artery and vein were cannulated, and the animal was
paralysed with a 0.25-mg/kg iv bolus of D-tubocurarine
followed by a continuous infusion of 0.25 mg/kg/h through
the artery. All wounds were infiltrated with 1% lidocaine
before incision. After surgery, the rat was secured into a
customised stereotactic holder, and the halothane level was
set to 0.8% or 1% (see Section 2.2). The ventilation
parameters were adjusted to maintain physiological arterial
blood gas levels according to p,CO, and p,O, measurements
performed during the study. A statistical comparison of
p.CO, values using ANOVA and Fisher’s LSD test for
multiple comparisons did not reveal any significant differ-
ence between pre- and post-MRI p,CO, values or between
treatment groups. A magnetic-resonance-compatible ther-
mocouple probe was used to measure rectal temperature. The
body temperature of all subjects was maintained within
physiological range (37+0.8°C) throughout the experiment,
by using a water heating system incorporated in the
stereotactic holder. Mean arterial blood pressure (MABP)
was monitored continually through the femoral artery. At the
end of the experiment, the animals were euthanised with an
overdose of anaesthetic followed by cervical dislocation.

2.1. rCBV measurement

MRI data were acquired using a Bruker Avance 4.7-T
system, a 72-mm birdcage resonator for radiofrequency
pulse transmit and a Bruker curved “Rat Brain” quadrature
receive coil. The MR acquisition for each subject comprised
T,-weighted anatomical images using the RARE sequence
(Hennig et al., 1986) (TR.=5000 ms, TE.=76 ms, RARE
factor=8, FOV=40 mm, 256%x256 matrix, 16 contiguous
I-mm slices) followed by a time-series acquisition with the
same spatial coverage and similar parameters (TR ;=2700
ms, TE.#=110 ms, RARE factor=32) but with a lower
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in-plane spatial resolution (128x128) giving a functional
pixel volume of ~0.1 mm?. The use of 7>-weighted images
for the time-series acquisition minimises sensitivity to both
large blood vessels and inhomogeneities of the static
magnetic field (Boxerman et al., 1995) and also ensured
that the geometry of the time-series images matched the
anatomical reference images, facilitating subsequent image
analysis. Four successive scans were averaged for a resulting
time resolution of 80 s. Following five reference images,
2.67 ml/kg of the blood pool contrast agent Endorem
(Guerbet, France) was injected so that subsequent signal
changes would reflect alterations in rCBV [24]. Prior to the
challenge injection, an equilibration period of at least 15 min
was allowed. The MRI data were acquired over a period of at
least 20 min following the PCP challenge.

2.2. Study design

A total of 32 male Sprague—Dawley rats (250-350 g)
underwent phMRI of acute PCP challenge. Rats were
randomly assigned to one of four arms:

1. Maintenance anaesthesia concentration, 0.8%; PCP chal-
lenge dose, 0.5 mg/kg (n=6) [0.8% HT, 0.5 mg/kg PCP]
2. Maintenance anaesthesia concentration, 0.8%; PCP
challenge dose, 1 mg/kg (n=12) [0.8% HT, 1 mg/kg PCP]
3. Maintenance anaesthesia concentration, 1%; PCP chal-
lenge dose, 0.5 mg/kg (n=5) [1% HT, 0.5 mg/kg PCP]
4. Maintenance anaesthesia concentration, 1%; PCP
challenge dose, 1 mg/kg (n=5) [1% HT, 1 mg/kg PCP]

A fifth group of animals was imaged at 0.8% halothane
and challenged with vehicle (saline, n=4). This cohort of
animals was used as baseline reference for all the other four
arms of the study. Previous experiments in our lab performed
at various halothane concentrations did not show any
significant difference in baseline rCBV profile following
the administration of saline. PCP (Sigma, Milan) and vehicle
were injected at a rate of 1 ml/min. Drug quantities refer to
the salt form of the compound. Both the PCP doses tested are
subanaesthetic and behaviourally effective in freely moving
rats [25]. The study was performed using a single halothane
vaporiser calibrated against an external reference for
accuracy (2B, Varese, Italy). MABP and heart rate were
monitored throughout the experiments to assess the level of
anaesthesia. Moreover, a pilot study that was performed
without neuromuscular blockade showed stable cardiovas-
cular parameters (heart rate and blood pressure) under all
experimental conditions used in this study, suggesting that
the anaesthetic regimens used are adequate for maintenance.

2.3. Data analysis

The rCBV time-series image data for each experiment
were analysed within the framework of the general linear
model. Signal intensity changes in the time series were
converted into fractional rCBV on a pixel-wise basis, using a
constrained exponential model of the gradual elimination of

contrast agent from the blood pool [26]. Individual subjects
in each study were spatially normalised by a 9-degree-of-
freedom affine transformation mapping their 7,-weighted
anatomical images to a stereotaxic rat brain MRI template set
[27] and applying the resulting transformation matrix to the
accompanying rCBV time series. rCBV time series for the
PCP challenge were calculated covering 8 min (6 time
points) preinjection baseline and 21 min 20 s (16 time points)
postinjection window, normalised to a common injection
time point. Image-based time-series analysis was carried out
using FEAT (FMRI Expert Analysis Tool) Version 5.63, part
of FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/
fsl) with 0.8 mm spatial smoothing (=2.5x% in-plane voxel
dimension), and using a model function identified by
wavelet cluster analysis across all animals in the cohort,
capturing the temporal profile of the signal change induced
by PCP challenge in each group [28,29]. The design matrix
also included the temporal derivative of this regressor and a
linear ramp (both orthogonalised to the regressor of interest).
The coefficients of the model function thus provided a map
of rCBV response amplitude for each injection in each
subject. Higher-level group comparisons were carried out
using FLAME (FMRIB’s Local Analysis of Mixed Effects);
Z (Gaussianised T/F) statistic images were thresholded using
clusters determined by Z>2.3 and a corrected cluster
significance threshold of P=.01 [30,31].

The anatomical distribution of the rCBV changes in both
the activation and attenuation maps was used as a guide for
the selection of VOIs, which were used to quantify the
response to the challenge. VOI time courses were extracted
from unsmoothed rCBV time-series data using a 3D digital
reconstruction of a rat brain atlas coregistered with the MRI
template [27], using custom in-house software written in IDL
(Research Systems Inc., Boulder, CO). Pretreatment and
PCP administration produced transient alterations of MABP,
whose peak magnitude was well within the CBF autoregula-
tion range (60—120 mmHg) under halothane anaesthesia.
Experiments performed in our lab using the same anaesthetic
protocol applied here have shown that pharmacologically
evoked MABP changes within the autoregulation range
mentioned above do not result in significant central rCBV
response [6].

3. Results

The different combinations of PCP dose and anaesthetic
level resulted in significant differences in the sign and
magnitude of the rCBV changes observed. The spatiotem-
poral response pattern in each animal followed one of two
distinct profiles. In the [0.8% HT, 0.5 mg/kg PCP] arm,
predominantly positive rCBV changes were observed,
distributed in a reproducible pattern involving discrete
cortical and subcortical areas (Figs. 1 and 2). Strong foci
of activation were observed in cortico-limbic areas such
as the medial-prefrontal, cingulate, orbitofrontal and
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Fig. 1. Summary of study arms and observed responses. Group time courses (mean+S.E.M) are shown for two representative VOIs: the somatosensory cortex
(S1BF region; S1BF) and the ventromedial thalamus (VM Thal). rCBV data from four rats challenged with saline were used as baseline reference.

Positive response pattern:

Fig. 2. Representative group activation maps indicating the two characteristic activation signatures observed, depending on the challenge dose and anaesthetic
level. Top panel: anatomical distribution of the rCBV changes produced by acute PCP challenge (0.5 mg/kg iv) at a maintenance anaesthesia level of 0.8%.
Bottom panel: anatomical distribution of the rCBV changes produced by acute PCP challenge (1 mg/kg iv) at a maintenance anaesthesia level of 1%. Z statistics
thresholding levels are reported on the right. The significance of the effect has been calculated versus vehicle baseline. Yellow or orange indicates increased
rCBYV versus vehicle baseline; blue indicates reduced rCBV versus vehicle baseline. RS, retrosplenial cortex; Cg, cingulate cortex; DL/VM Th, dorsolateral/
ventromedial thalamus; CPu, caudate putamen; mPFC, medial prefrontal cortex; Acb, nucleus accumbens.
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retrosplenial cortices, with extension into the motor,
visual, parietal and temporal association and rhinal
cortical areas. Robust activation was also detected in
several subcortical nuclei, including the medial and lateral
habenula; the amygdala; the anterodorsal, dorsolateral
and ventromedial thalamus; the posteroventral hippocam-
pus; the dorsal striatum; and the nucleus accumbens. The
time course of PCP-induced activation was similarly
sustained in all the activated regions. No significant
alterations in rCBV were observed in the somatosensory,
piriform and insular cortices; hypothalamus; superior
colliculi; or cerebellum.

At ahigher dose of PCP, in the [0.8% HT, 1.0 mg/kg PCP]
arm, the response was mixed, while 5/12 of the animals
showed a positive response similar to that described above (if
slightly weaker); the remaining 7/12 evidenced no positive
rCBV changes but rather a different response pattern
comprising a decrease in rCBV localised to cortical regions
(Fig. 1).

At the higher maintenance anaesthetic level, in both
[1.0% HT, 0.5 mg/kg PCP] and [1.0% HT, 1.0 mg/kg PCP]
arms, PCP produced widespread cortical deactivation. The
effect was weak (approximately —8%) but sustained and
lasted throughout the time window examined (20 min). No
positive rCBV changes were observed in either group in any
of the brain regions examined.

As observed in previous rCBYV studies, the administration
of vehicle produced a slight and transient alteration of rCBV,
probably the result of a transitory dilution of the intravas-
cular contrast agent. Both vehicle and PCP administration
produced transient changes in MABP. The magnitude of
these changes was well within the range of CBF autoregula-
tion (60—120 mmHg) within which abrupt pharmacological
manipulation of arterial blood pressure can be home-
ostatically compensated without producing significant
alterations of CBV [6].

4. Discussion

In the present study, we investigated the rCBV response to
PCP in the halothane-anaesthetised rat for varying levels of
anaesthesia and different PCP challenge doses. We found
that the anatomical distribution and the direction of the rCBV
response produced by PCP in the halothane-anaesthetised rat
depend on both the anaesthetic concentration and PCP
challenge dose. Two distinct activation patterns, charac-
terised by a different direction and anatomical distribution of
the rCBV response, were observed. At the lowest PCP and
halothane doses explored (0.5 mg/kg PCP and 0.8%
halothane), robust and reproducible rCBV increases were
measured in several cortico-limbo-thalamic structures. At
higher PCP or anaesthetic doses, no positive rtCBV changes
were detected, and a widespread pattern of cortical
deactivation became predominant. These findings indicate
a dose-dependent drug—anaesthetic interaction, with a

complete reversal of the effects of PCP at higher challenge
doses or HT levels.

Recent years have seen an increasing application of
phMRI to study central effects of drugs on the central
nervous system in humans and animal models. The need to
avoid head motion and to minimise stress induced by
restraint has prompted the development of phMRI protocols
in anaesthetised animals [7]. Previous studies have specifi-
cally addressed specific issues related to the use of general
anaesthesia in phMRI, such as potential perturbations of
CBF autoregulation [6,32] or the effect of specific
anaesthetics on neurotransmitter function [7]. One further
issue that can complicate the interpretation of the results is
the occurrence of potential interactions between the drug
challenge and the anaesthetic. Such interactions can be
compound dependent and dose dependent and, therefore,
difficult to predict. Consequently, a systematic investigation
of the sign and spatiotemporal distribution of the response
for varying levels of anaesthesia and challenge dose may be
required to assess the potential influence of these effects on
the specific phMRI readout of interest. Such studies are
particularly important when the compounds to be examined
are known to possess anaesthetic properties per se, like in the
case of the psychotogenic drugs PCP or ketamine [8,9].

The observation that changes in anaesthetic level or
challenge dose can produce a complete reversal of the
effects of PCP is not paralleled by analogous studies using
different classes of psychoactive compounds. For instance,
experiments performed in our lab showed that increasing
the level of halothane anaesthesia from 0.8% to 1% did not
substantially affect the magnitude and distribution of
amphetamine- or nicotine-induced rCBV response (Gozzi,
unpublished results). Similar observations can be inferred
from the literature, where acute challenge with ampheta-
mine has been shown to produce consistent patterns of
activation at halothane concentrations of 0.8% or 1% (cf.
Refs. [33,34]). It should also be emphasised that literature
studies often report the use of ranges of anaesthetic
significantly wider than those explored in the present study
(e.g., HT 1-1.5% [22,35]). The lack of a linear relation-
ship between challenge dose and amplitude of the elicited
response is another atypical finding that differentiates PCP
from most of the centrally active agents and that testifies to
the occurrence of a dose-dependent interaction between
PCP and the anaesthetic. This interaction does not appear
to be specific to halothane, as preliminary studies
performed in isoflurane-anaesthetised rats produced very
similar findings at anaesthetic concentrations of 1% and
1.2% (Gozzi, unpublished results).

Consistent with our previous study [18], at 0.5 mg/kg
PCP and 0.8% halothane concentration, robust and
reproducible rCBV increases were observed in discrete
cortical and subcortical structures that have been shown to
be activated by NMDAR antagonists in neurofunctional
studies performed in conscious rats and in humans. For
instance, 2-deoxyglucose functional mapping of the
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NMDAR antagonists MK-801 and ketamine in freely
moving animals shows a pattern of increased metabolic
activity remarkably similar to the distribution of positive
rCBV changes observed in this study (Fig. 3) [36—40].
Moreover, the presence of positive rCBV changes in
response to PCP is consistent with the overall excitatory
effects observed in freely moving rodents using single-unit
recording [41] or ['*C]-iodoantipyrine CBF measurements
[42]. Very similar patterns of increased activity in non-
anaesthetised rodents have also been obtained, measuring
immediate-early gene expression. Furthermore, the positive
response pattern observed at lower PCP and anaesthetic
doses is consistent with the results of neuroimaging studies
with ketamine in healthy humans. For instance, Langsjo et
al. [16] reported robust dose-dependent rCBF increases in
the anterior cingulate, thalamus, putamen and frontal
cortex in healthy human volunteers receiving ketamine.
Using BOLD fMRI, McKie et al. [17] also reported a very
similar pattern in healthy human volunteers. Overall, these
findings highlight a significant overlap between the
positive rCBV response pattern and metabolic maps of

PCP KETAMINE

"B
- Q0

Cing

MK-801

CPu

2-DG*

* From Duncan et a/. {1999) Brain Res, 843

rCBvV 2-DG*

Fig. 3. Spatial correspondence of the regions activated by PCP [0.8% HT;
PCP 0.5 mg/kg] and the 2-DG uptake produced by the NMDAR antagonists
MK-801 and ketamine in freely moving animals. The 2-DG maps were
modified from Duncan et al. [38] with permission (MFC, medial—prefrontal
cortex; Acb, nucleus accumbens; Cing, cingulate cortex; CPu, caudate
putamen; Rs, retrosplenial cortex; AV, anteroventral thalamus, MD,
mediodorsal thalamus).

NMDAR antagonists in conscious animals and similarities
with respect to regions activated by ketamine in humans.
Taken together, these observations suggest that the positive
rCBV pattern observed at low PCP (0.5 mg/kg) and
anaesthesia doses (halothane 0.8%) is representative of the
neurofunctional effects produced by NMDAR blockers in
humans and in conscious animals.

At higher PCP and/or anaesthetic doses, a markedly
different response pattern was observed, comprising a
widespread cortical decrease in rCBV. As PCP itself acts
as a general anaesthetic at sufficiently high doses [9], the
observed cortical deactivation may reflect a synergistic
interaction between the drug challenge and the anaesthetic,
resulting in widespread suppression of cortical activity.
Recent studies have suggested that the psychotogenic action
of NMDAR antagonists is a dose-dependent manifestation of
a selective inhibition of GABAergic interneurons, resulting
in unregulated activity of principal neurons leading to
excessive release of glutamate [43,44]. According to this
view, by specifically disinhibiting cortical GABA interneur-
ons, subanaesthetic doses of PCP can produce an increased
glutamate transmission via non-NMDAR glutamate recep-
tors, thus originating a hyperexcitatory state that is thought to
underlie NMDAR-induced psychosis and that, in all
probability, forms the basis of the positive rCBV response
observed in this study. However, at sufficiently high doses,
PCP can produce a general blockade of NMDAR activity in
the brain, an effect that outweighs the hyperexcitatory
cortical response and that is thought to underlie the
analgesic, amnestic and hypnotic properties of the drug.
Therefore, as halothane acts primarily by potentiating
GABAergic neurotransmission [8,45], the sign (and dis-
tribution) of the functional changes produced by PCP may
reflect a dose-dependent imbalance between the competing
pharmacological action of PCP (via an increase in glutamate
neurotransmission) and the anaesthetic (via potentiation of
GABAergic inhibition). The presence of a dichotomic
response in the [0.8% HT and PCP 1 mg/kg] arm is
indicative of how tight the interaction is between these two
opposed pharmacological mechanisms in vivo.

Our findings can be of great importance for the
interpretation of published results. For instance, Risterucci
et al. [46] investigated the functional response to PCP in
isoflurane-anaesthetised rats using perfusion imaging and
reported the presence of wide areas of decreased perfusion
in the cortex and dorsal striatum. As discussed earlier, the
presence of decreased cortical perfusion following PCP
challenge is at odds with the strong excitatory response
observed in neurofunctional studies performed in conscious
animals. Considering the high anaesthetic level and PCP
used by Risterucci et al. [1.6 minimal alveolar concen-
tration (MAC) of isoflurane vs. 0.8—1 MAC of halothane
in this study], and as discussed above in relation to
appropriate combination of PCP dose and level of anaes-
thesia, the findings of their work may reflect a general
suppression of cortical activity resulting from the use of a
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relatively high dose of PCP (1 mg/kg) combined with high
anaesthetic levels.

In conclusion, our data show a dose-dependent interaction
between PCP and maintenance anaesthesia, with a complete
reversal of the rCBV response at higher challenge doses or
anaesthetic levels. However, the use of lower PCP and halo-
thane doses produces a reproducible pattern of activation that
is not qualitatively different from that observed in neuroima-
ging studies in humans and with 2-deoxyglucose functional
mapping in conscious animals. A careful evaluation of the
experimental conditions, particularly of the anaesthetic dose,
is key to the successful exploitation of phMRI as a preclinical
tool to eclucidate the neural substrate of psychoactive
compounds, particularly when these are prone to significant
pharmacological interaction with the anaesthetic.
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Differential Effects of Antipsychotic and Glutamatergic Agents
on the phMRI Response to Phencyclidine
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Acute administration of NMDA receptor (NMDAR) antagonists such as phencyclidine (PCP) or ketamine induces symptoms that closely
resemble those of schizophrenia in humans, a finding that has led to the hypothesis that a decreased NMDAR function may be a
predisposing or even causative factor in schizophrenia. However, the precise neuropharmacological mechanisms underlying these effects
remain to be fully elucidated. Here, we applied pharmacological MRl (phMRI) to examine the brain circuitry underlying the
psychotomimetic action of PCP in the anesthetized rat, and investigated how these functional changes are modulated by drugs that
possess distinct pharmacological mechanisms. Acute administration of PCP (0.5 mg/kg iv.) produced robust and sustained positive
relative cerebral blood volume (rCBV) changes in discrete cortico-limbo-thalamic regions. Pretreatment with the selective D, dopamine
antagonist raclopride (0.3 mg/kg i.p.) did not significantly affect the rCBV response to PCP, while the atypical antipsychotic clozapine
(5mg/kg i.p.) produced region-dependent effects, with complete suppression of the rCBV response in the thalamus, and weaker
attenuation of the response in cortical and hippocampal structures. The response to PCP was strongly suppressed in all regions by
pretreatment with two drugs that can inhibit aberrant glutamatergic activity: the anticonvulsant lamotrigine (10 mg/kg ip.) and the
mGIuR2/3 agonist LY354740 (10 mg/kg i.p.). Taken together, our findings corroborate the pivotal role of dysfunctional glutamatergic
neurotransmission in the functional response elicited by PCP, while the lack of effect of raclopride argues against a primary role of
dopamine D, receptor activation in this process. Finally, the thalamic effect of clozapine could be key to elucidating the functional basis of

its pharmacological action.

INTRODUCTION

NMDA receptor (NMDAR) antagonists such as ketamine
and phencyclidine (PCP) induce perceptual abnormalities,
psychotic symptoms, and mood changes in healthy humans
(Adler et al, 1999; Javitt and Zukin, 1991). Many of the
symptoms induced by NMDR antagonists are considered
similar to those of schizophrenia, and include core
symptoms, such as thought disorder and hallucinations
(Malhotra et al, 1996). These compounds have also been
shown to exacerbate positive symptoms of patients with
schizophrenia (Lahti et al, 2001; Malhotra et al, 1997b).
Moreover, both clinical and experimental evidence suggest
that the expression and functionality of NMDAR might be
dysregulated in schizophrenia (Kristiansen et al, 2007;
Millan, 2005). These findings have led to the hypothesis that
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a decreased NMDAR function may be a predisposing or
even causative factor for this disabling disease (Farber,
2003; Greene, 2001). The similarity between NMDAR
antagonist-induced psychosis and schizophrenia has also
been widely exploited preclinically to provide models to aid
the development of novel treatments for the disorder. In
these studies, the ability of drugs to inhibit behaviors
induced by NMDAR antagonists is assessed in an attempt to
predict the efficacy of novel pharmacological treatments for
schizophrenia (reviewed by Large, 2007). Therefore, the site
and mode of action of NMDAR antagonists in relation to
different symptoms or behaviors that they induce is the
object of extensive research.

Neuroimaging studies have provided some initial insights
into the site of action of NMDAR antagonists in the human
brain. Langsjo et al (2003) reported robust dose-dependent
rCBF increases in the anterior cingulate, thalamus, puta-
men, and frontal cortex in healthy volunteers receiving
ketamine. Consistent findings were observed by McKie et al
(2007) using BOLD fMRI. Holcomb et al (2005) showed that
ketamine increased cerebral blood flow (CBF) in the
anterior cingulate and frontal cortices in both healthy
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volunteers and patients with schizophrenia. Earlier studies
also reported that low doses of ketamine affect selectively
the areas that are thought to be dysfunctional in schizo-
phrenia such as the limbic cortex and basal ganglia (Morris
et al, 2005; Soyka et al, 2005; Tamminga et al, 2003). Recent
neuroimaging studies have also examined the regional
effects of NMDAR antagonists in the rat. Ketamine has been
shown to increase the BOLD response in the hippocampus,
retrosplenial cortex, and orbital cortex of anesthetized rats;
weaker effects were reported in the nucleus accumbens and
ventral pallidum (Littlewood et al, 2006a). Risterucci et al
(2005) examined the effects of PCP in the rat using
perfusion imaging. They reported increased perfusion in
the enthorhinal cortex, nucleus accumbens, thalamus, and
ventral pallidum, but decreased perfusion in prefrontal and
temporal cortices and dorsal striatum.

Overall, the two studies in rat suggest similarities in the
regions of the brain activated by PCP and ketamine, and
similarities with respect to regions activated by ketamine in
humans. However, no attempt has yet been made to
determine the contribution of specific receptor systems to
the different regional effects observed in functional studies
of NMDAR antagonists. In order to begin to address this
question, here we have applied pharmacological MRI
(phMRI) methods to investigate the spatio-temporal
distribution of relative cerebral blood volume (rCBV)
changes induced by acute PCP challenge in the rat, and
examined how these changes are modulated by drugs that
possess distinct pharmacological mechanisms. As the effect
of NMDAR antagonists is thought to involve a dysregulation
of glutamatergic neurotransmission (Farber, 2003), we
assessed the effect of two drugs that have been suggested
to prevent aberrant glutamatergic activity through distinct
pharmacological mechanisms: the metabotropic glutamate
2/3 (mGluR2/3) receptor agonist LY354740 and the brain
sodium channel blocker lamotrigine. LY354740 has been
shown to prevent PCP-induced glutamate release (Moghad-
dam and Adams, 1998), and to block dose-dependently the
behavioral effects of NMDAR antagonists in rodents
(Schoepp and Marek, 2002) and in human volunteers
(Krystal et al, 2005). Lamotrigine (lamictal, Messenheimer,
1995) is a broad-spectrum anticonvulsant that reduces
neuronal excitability and glutamatergic transmission (Large
et al, 2005), and that has been shown to prevent psychotic
symptoms and disruption of behavior induced by ketamine
or PCP in rodents and human volunteers (Idris et al, 2005;
Brody et al, 2003; Anand et al, 2000). Moreover, since
NMDAR antagonists may be used in preclinical studies to
predict the efficacy of novel antipsychotic drugs, we
examined the modulation of PCP response by compounds
representative of conventional and atypical antipsychotics.
Raclopride, a potent and selective dopamine D, receptor
antagonist (Lahti et al, 1993; Kohler et al, 1985), was used to
probe the classic mechanism of action of first-generation
antipsychotics relying on D, dopamine blockade. The
contribution of dopamine to the psychotogenic action of
PCP is still the subject of debate, with the literature showing
inconsistent effects of dopamine D, blockers in rodents
(Idris et al, 2005; Linn et al, 2003; Duncan et al, 1998a;
Corbett et al, 1995) and humans (Krystal et al, 1999),
despite evidence of altered dopamine release following
NMDAR antagonist administration (Adams and Moghaddam,
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1998). The effect of raclopride was compared with that of
clozapine, a prototypical new-generation antipsychotic that,
in addition to blocking dopamine D, receptors, possesses
multiple antagonistic actions at several other receptors
(Meltzer, 1996). Clozapine has been reported to reverse the
cognitive and social behavior deficits induced by NMDAR
antagonists in rodents (Idris et al, 2005) and humans
(Malhotra et al, 1997a). The parallel investigation of drugs
representative of the mechanisms of action of typical and
atypical antipsychotics is of great interest in light of the wide
preclinical use of NMDAR antagonists as a neuropharmaco-
logical model to aid the development of novel treatments
for schizophrenia. If these drugs also differentially modify
regional brain activation, then it may be possible to link
regions to behaviors and to identify the neurofunctional basis
of the pharmacological action of antipsychotic drugs.

METHODS
Animal Preparation

All in vivo studies were conducted in accordance with the
Italian laws (DL 116, 1992 Ministero della Sanita, Roma).
Animal research protocols were also reviewed and con-
sented to by a local animal care committee, in accordance
with the guidelines of the Principles of Laboratory Animal
Care (NIH publication 86-23, revised 1985). The studies
were performed on male Sprague-Dawley rats (mean
SEM, 293 + 33 g, Charles River, Como, Italy). Animals had
free access to standard rat chow and tap water and were
housed in groups of five in solid bottom cages with sawdust
litter. Room temperature (20-22°C), relative humidity
(45-65%), and dark-light cycles (12h each, lights on at
0600 hours) were automatically controlled. After arrival, rats
were allowed to acclimatize for at least 5 days.

Animal preparation/monitoring and MRI acquisition
in each phMRI study were similar to previous studies
(Gozzi et al, 2005). Briefly, rats were anesthetized with
3% halothane in a 30%:70% O,:N, gas mixture, tracheo-
tomized, and artificially ventilated with a mechanical
respirator. The left femoral artery and vein were cannulated
and animals were paralyzed with a 0.25mg/kg i.v. bolus
of p-tubocurarine followed by a continuous infusion of
0.25 mg/kg/h through the artery. All wounds were infiltrated
with 1% lidocaine before incision. A PE50 cannula was also
inserted intraperitoneally for drug pretreatment. After
surgery the rat was secured into a customized stereotactic
holder (Bruker, Ettlingen, Germany) and the halothane level
set to 0.8%. The ventilation parameters were adjusted to
maintain physiological arterial blood gases levels according
to p.CO, and p,0, measurements performed during the
study. A statistical comparison of p,CO, values using
ANOVA and a Fisher’s LSD test for multiple comparisons
did not reveal any significant difference between pre- and
post-MRI p,CO, values, or between treatment groups. A
magnetic resonance-compatible thermocouple probe was
used to measure rectal temperature. The body temperature
of all subjects was maintained within physiological range
(37 £ 0.8°C) throughout the experiment, by using a water
heating system incorporated in the stereotactic holder.
Mean arterial blood pressure (MABP) was monitored
continually through the femoral artery. At the end of the
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experiment, the animals were euthanized with an overdose
of anesthetic followed by cervical dislocation.

rCBV Measurement

MRI data were acquired using a Bruker Avance 4.7 Tesla
system, a 72mm birdcage resonator for radio frequency
pulse transmit and a Bruker curved ‘Rat Brain’ quadrature
receive coil. The MR acquisition for each subject comprised
T,-weighted anatomical images using the RARE sequence
(Hennig et al, 1986) (TR.g=5000ms, TE.s=76 ms, RARE
factor 8, FOV 40 mm, 256 x 256 matrix, 16 contiguous 1 mm
slices) followed by a time series acquisition with the same
spatial coverage and similar parameters (TR.g= 2700 ms,
TE.=110ms, RARE factor 32), but with a lower in-plane
spatial resolution (128 x 128) giving a functional pixel
volume of ~0.1 mm”. The use of T,-weighted images for the
time-series acquisition minimizes sensitivity to both large
blood vessels and inhomogeneities of the static magnetic
field (Boxerman et al, 1995), and also ensured that the
geometry of the time-series images matched the anatomical
reference images, facilitating subsequent image analysis.
Two successive scans were averaged for a resulting time
resolution of 40 s. Following five reference images, 2.67 ml/
kg of the blood pool contrast agent Endorem (Guerbet,
France) was injected so that subsequent signal changes
would reflect alterations in relative rCBV (Mandeville et al,
1998). Prior to the injection of drug pretreatment, an
equilibration period of 15min was allowed. Experiments
(see below) were performed following an antagonist-agonist
design, with intraperitoneal injection of drug (or vehicle)
pretreatment followed by PCP challenge (or vehicle) 30 min
later. The MRI data were acquired over a period of at least
20 min following the administration of the PCP challenge.

Experiments and Compounds

Rats were randomly assigned to one of the following
treatment groups:

(1) Intraperitoneal preadministration of vehicle (water,
1 ml/kg) followed by an intravenous challenge with
PCP (phencyclidine hydrochloride, Sigma-Aldrich,
Italy, 0.5 mg/kg, 1 ml/rat) 30 min later (n=24);

(2) Intraperitoneal preadministration of raclopride (S(—)-
raclopride ( + )-tartrate, Sigma-Aldrich, Italy, 0.3 mg/kg)
followed by an intravenous challenge with PCP (0.5 mg/
kg) 30 min later (n=26);

(3) Intraperitoneal preadministration of clozapine (Sigma-
Aldrich, Italy, 5mg/kg) followed by an intravenous
challenge with PCP (0.5 mg/kg) 30 min later (n=7);

(4) Intraperitoneal preadministration of LY354740 (GSK,
Italy, 10 mg/kg) followed by an intravenous challenge
with PCP (0.5 mg/kg) 30 min later (n=7);

(5) Intraperitoneal preadministration of lamotrigine (la-
mictal, lamotrigine isothionate, GSK, Italy, 10 mg/kg
free base) followed by an intravenous challenge with
PCP (0.5 mg/kg) 30 min later (n=26);

(6) Intraperitoneal preadministration of vehicle (water)
followed by an intravenous challenge with vehicle
(saline, 1 ml/rat) 30 min later (n=6). This group of rats
was used as double-negative control group (baseline).

Drug modulation of phMRI response to PCP
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All the compounds were injected at a rate of 1 ml/min. PCP
was dissolved in saline, while all the pretreatments were
dissolved in water. Clozapine was dissolved in a few drops of
1N HC1 and brought to volume with water. The final pH of
the clozapine solution was adjusted to 7 with a few microliters
of 1N NaOH. The doses chosen for the different drugs were
based on previously published in vivo studies. PCP at 0.5 mg/
kg iv. has been shown to elicit robust behavioral and
metabolic (2DG) effects in freely moving rats (Weissman et al,
1987). The dose of raclopride used in this study (0.3 mg/kg
i.p.) produces ~75% dopamine D, receptor occupancy, a
value that ensures a robust antipsychotic response without
inducing cataleptic behavior (Wadenberg et al, 2000). The
dose of clozapine tested (5mg/kg i.p.) has been shown to
produce a D, receptor occupancy of approximately 40% (see
Kapur et al, 2003; Schotte et al, 1993, 1996), with one study
showing a slightly lower value (ca. 25%, Mukherjee et al,
2001). These values are consistent with those determined in
schizophrenic patients treated with clozapine (eg 16-68% in
Kapur et al, 1999; 20-67% in Nordstrom et al, 1995). The
same dose of clozapine ensures serotonin 5-HT,, receptor
occupancy analogous to the one measured in the clinical
condition (ca. 80 vs 84-94%, Nordstrom et al, 1995; Schotte
et al, 1995). Clozapine at 5 mg/kg i.p. has also been shown to
prevent the behavioral and metabolic effects of PCP and other
NMDAR antagonists in freely moving rats (Idris et al, 2005;
Duncan et al, 1998a, 2000; Corbett et al, 1995; Bakshi et al,
1994). Therefore, the dose selected produces robust pharma-
cological effects while maintaining its ‘atypicality’ with regard
to the degree of D, receptor occupancy, a feature that
differentiates this clozapine from atypical antipsychotics and
most new-generation neuroleptics such as risperidone and
olanzapine (Kapur et al, 1999). LY354740 at 10 mg/kg i.p. has
been shown to prevent the behavioral and neurochemical
effects of PCP (Schoepp and Marek, 2002). Lamotrigine was
given at a nonsedative dose (10mg/kg ip.), which was
recently shown to affect PCP-induced disruption of a reversal
learning task in rats (Idris et al, 2005).

Data Analysis

The rCBV time-series image data for each experiment were
analyzed within the framework of the general linear model
(GLM). Signal intensity changes in the time series were
converted into fractional rCBV on a pixel-wise basis, using a
constrained exponential model of the gradual elimination of
contrast agent from the blood pool (Schwarz et al, 2003).
Individual subjects in each study were spatially normalized
by a nine-degree-of-freedom affine transformation mapping
their T,-weighted anatomical images to a stereotaxic rat
brain MRI template set (Schwarz et al, 2006a) and applying
the resulting transformation matrix to the accompanying
rCBV time series. RCBV time series for the PCP challenge
were calculated covering 8 min (12 time points) preinjection
baseline and 20 min (30 time points) postinjection window,
normalized to a common injection time point. RCBV time
series were also calculated for the pretreatment covering
6 min (9 time points) preinjection baseline and 20 min (30
time points) postinjection window normalized to a common
injection time point. Image-based time series analysis
was performed using FEAT (FMRI Expert Analysis Tool)
Version 5.63, part of FSL (FMRIB’s Software Library,
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www.fmrib.ox.ac.uk/fs]) with 0.8 mm spatial smoothing
(~2.5 x in-plane voxel dimension) and using a model
function identified by Wavelet Cluster Analysis (WCA)
across all animals in the cohort, capturing the temporal
profile of the signal change induced by PCP challenge in
each group (Figure 1 inset shows the model function chosen
for PCP response in vehicle-PCP group) (Schwarz et al,
2006b; Whitcher et al, 2005). The design matrix also
included the temporal derivative of this regressor and a
linear ramp (both orthogonalized to the regressor of
interest). The coefficients of the model function thus
provided a map of rCBV response amplitude for each
injection in each subject. Higher level group comparisons
were performed using FLAME (FMRIB’s Local Analysis of
Mixed Effects); Z (Gaussianized T/F) statistic images were
thresholded using clusters determined by Z>2.3 and a
corrected cluster significance threshold of p =0.01 (Friston
et al, 1994; Worsley et al, 1992). Maps of the attenuation of
the PCP response by pretreatments were created comparing
the rCBV response of the vehicle-PCP group (group 1) vs
each pretreated group (groups 2-5). Attenuation maps were
also thresholded using clusters determined by Z>2.3 and a
corrected cluster significance threshold (P.) of p=0.01. The
anatomical distribution of the rCBV changes in both the
activation and attenuation maps was used as guide for a
selection of VOIs, which were used to quantify and compare
the efficacy of the pretreatment.

Phencyclidine
0.5 mg/kg i.v.

VOI time courses for both the pretreatment and the PCP
challenge were extracted from unsmoothed rCBV time
series data using a 3D digital reconstruction of a rat brain
atlas (Paxinos and Watson, 1998) co-registered with the
MRI template (Schwarz et al, 2006a), using custom in-house
software written in IDL (Research Systems Inc., Boulder,
Colorado). A list with the anatomical definition of the VOIs
examined that has been previously described can be found
in nucleus accumbens (Acb); caudate putamen (Cpu);
antero-dorsal region of the hippocampus (regions of
hippocampus dorsal to a line 5.5 mm ventral from bregma,
Figures 25-35 in Paxinos and Watson (1998), hippocampus
AD); postero-dorsal region of the hippocampus (regions of
hippocampus dorsal to a line 5.5 mm ventral from bregma,
Figures 36-45 in Paxinos and Watson (1998), excluding
subiculum and DG region in Figure 45, hippocampus PD);
ventral hippocampus (regions of hippocampus greater than
5.5 mm ventral from bregma, Figures 36-45 in Paxinos and
Watson (1998), excluding subiculum and DG region in
Figure 45, hippocampus V); posterior layers of the dentate
gyrus (DG and PoDG regions, Figures 45-47 in Paxinos and
Watson (1998), hippocampus PDG); dorso-lateral thalamus
(thalamus DL); medio-dorsal thalamus (thalamus MD);
ventro-medial thalamus (thalamus VM); lateral hypothala-
mus (LH); ventro-lateral part of latero-dorsal thalamus
(LDVL); dorso-medial part of latero-dorsal thalamus
(LDDM); hypothalamus (Hth); medial prefrontal cortex

Figure |

Maps of rCBV response following acute phencyclidine (PCP) challenge (0.5 mg/kg iv,; n=24) relative to vehicle (n=#6). Orange/yellow

indicated increased rCBV vs baseline (vehicle). The temporal profile of the regressor used as a signal model in the general linear model (GLM) analysis (see
Methods) is shown at the top right of the activation map, with an arrow indicating the time of injection. (Abbreviations: VI, primary visual cortex; VHip,
ventral hippocampus; RS, retrosplenial cortex; DLth, dorso-lateral thalamus; VMth, ventro-medial thalamus; Cg, cingulate cortex, Acb, nucleus accumbens;

mPFC, medial prefrontal cortex.)
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(PFC); cingulate cortex (Cg); orbito-frontal cortex (OFC);
retrosplenial cortex (RS); motor cortex (MC); primary
somatosensory cortex (SI); primary visual cortex (V1);
entorhinal cortex (includes ectorhinal and perirhinal areas)
(Ent); piriform cortex (includes both Pir layer and adjacent
tissue, Pir); insular cortex (Ins); parietal association cortex
(PtA); temporal association cortex (TeA); ventral tegmental
area (VTA); substantia nigra (SN); raphe nuclei (raphe);
superior colliculi (SupCo); pons (pons); amygdala (includes
basolateral and basomedial and medial amygdaloid nuclei
plus central nucleus of the amygdala, Amy).

For each VOI time course, the average rCBV over a 16 min
time window covering the peak response to PCP (4-20 min
post injection) was used as a summary statistic of the
relative change. The effect of pretreatment on the magni-
tude of average rCBV in different VOIs was assessed by a
one-way ANOVA followed by a Dunnett’s test vs group 1.
Threshold for statistical significance was considered as
p=0.05. Results are quoted and displayed as mean + SEM
unless otherwise indicated.

The rCBV time profiles of the intraperitoneal pretreat-
ment per se did not show clear or sustained signal changes
compared to vehicle for all the compounds in any of the
VOIs examined (PFC, RS, V1, S1, Pir, Ins, OFC, Ent cortices,
LD and VM thalami, Hth, Hc, Cpu, Acb, septum, VTA,
SupCo, Amy, SN).

Pretreatment and PCP administration produced transient
alterations of MABP whose peak magnitude was well within
the CBF autoregulation range 60-120 mm Hg under halo-
thane anesthesia. Experiments performed in our lab using
the same anesthetic protocol applied here have shown
that pharmacologically evoked MABP changes within the
autoregulation range mentioned above do not result in
significant central rCBV response (Gozzi et al, 2007a).

RESULTS

PCP (0.5mg/kg) induced a robust activation of distinct
cortico-limbo-thalamic structures (Figure 1). Significant
positive rCBV changes (Z>2.3 vs vehicle, cluster correction
at p=0.05) were observed in limbic cortical regions (medial
prefrontal, cingulate, orbito-frontal, and retrosplenial cor-
tices), with extension into the motor, visual, parietal-, and
temporal association and rhinal cortices. Significant foci of
activation were also observed in specific subcortical
structures, including the medial and lateral habenula,
amygdala, antero-dorsal, dorso-lateral and ventro-medial
thalamus, postero-dorsal, antero-dorsal and ventral and
posterior hippocampus, the dorsal striatum, and the
nucleus accumbens. The time course of PCP-induced
activation was similar in all the activated regions (eg medial
prefrontal cortex, hippocampus, and latero-dorsal thala-
mus, Figure 2), with a brief dip followed by a rapid increase
in rCBV that reached a plateau within 5min of drug
injection, and remained sustained over the period exam-
ined. In nonactivated regions (eg somatosensory cortex,
Figure 2), the transient dip was not followed by any
appreciable increase in rCBV with respect to control
animals challenged with vehicle (baseline). The magnitude
of the rCBV response to PCP was region-dependent, with
the largest response in specific subregions of the cortex and
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the thalamus (eg mean rCBV increase at peak in cingulate
+17.7£1.7% and prefrontal cortex +14.9 £ 1.6%, respec-
tively; +19.0+£1.6% and +19.3+2.3% in ventro-medial
and dorso-lateral thalami, respectively). Smaller changes in
rCBV were observed in other cortical areas (eg visual cortex
+11.9+£1.2%) and subcortical structures (eg ventral
hippocampus +10.0 £ 1.2%). These effects are summarized
in Figure 3. PCP did not produce significant changes in
rCBV with respect to vehicle in the somatosensory, piriform
and insular cortices, hypothalamus, superior colliculi, or
cerebellum.

PCP administration produced a rapid rise in MABP
(+8.9+3.3mmHg, peak 1 min post injection) followed by
an undershoot (—6.9+2.1 mmHg), which returned to
preinjection baseline (99.2 3.1 mm Hg) about 10-12 min
post injection. Intraperitoneal preadministration of vehicle
also produced a transient (&2 min) change in arterial blood
pressure (—30 mm Hg). The injection of vehicle produced
negligible rCBV changes per se in all the brain regions
examined.

Clozapine

Preadministration of clozapine (5mg/kg i.p.) significantly
inhibited the rCBV response to PCP in the cortex, thalamus,
antero-dorsal hippocampus, and striatum (Figure 4). The
degree of inhibition varied by region, with foci of strong
inhibition in the dorso-lateral and ventro-medial thalami
(p=0.0002 and 0.001, respectively), areas of moderate
inhibition in the medial prefrontal (p=0.02), cingulate
(p=0.01), and visual cortices (p=0.01), and regions of
weak and nonsignificant inhibition in the ventral hippo-
campus and posterior dentate gyrus (p=0.30 and 0.18,
respectively). These effects could also be clearly seen in the
rCBV time courses (Figures 2 and 4). Cortical regions such
as the medial prefrontal cingulate, retrosplenial, temporal
association, and visual cortices showed an attenuated, but
sustained response to PCP, which lasted throughout the
time window examined. In areas of stronger inhibition by
clozapine, such as the latero-dorsal and ventro-medial
thalami and dorsal striatum, no appreciable rCBV response
to PCP was observed. Total suppression of PCP activation
was also observed in strongly responding subthalamic
nuclei such as the LDVL and LDDM (dorso-medial and
ventro-lateral part of latero-dorsal thalamus, p =0.0003 and
0.00008 respectively). A trend for a subregional specificity
in clozapine response was also observed in the hippocam-
pus. Clozapine significantly inhibited PCP activation in the
antero-dorsal and posterior dorsal hippocampus (p =0.02
in both regions). However, clozapine did not significantly
inhibit PCP-induced activation of the ventral hippocampus
or posterior dentate gyrus. Within the basal ganglia,
clozapine significantly inhibited PCP-induced activation in
the striatum (p =0.006), but failed to suppress activation in
the nucleus accumbens (p =0.35).

Preadministration of clozapine was followed by a gradual
decrease in MABP (—25.6 = 8.3 mm Hg), which plateaued
4-6 min after injection. The effect persisted for more than
30 min and was still present at the time of PCP challenge.
The rCBV changes produced by preadministration of
clozapine per se were negligible in all the brain regions
examined (Figure 5).
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Figure 2

rCBV time course following phencyclidine (PCP) injection as a function of pretreatment in four representative brain structures. Arrows indicate

the time of PCP injection. Baseline data were obtained in animals pretreated and challenged with vehicle (saline). Data are plotted as mean = SEM within
each group. (clozapine—PCP n=7; raclopride-PCP n = 6; lamotrigine—PCP n = 6, LY354740-PCP n=7; vehicle-PCP n=24.)

Raclopride

Intraperitoneal pretreatment with raclopride (0.3 mg/kg)
did not significantly attenuate the response to PCP in any of
the regions examined (Figures 2 and 4). However, a trend
toward attenuation was observed in the dorso-lateral
thalamus (p = 0.10, Figure 4), caudate putamen, and nucleus
accumbens (p=0.08 and 0.11, respectively; Figure 4).
Equally, the time course of rCBV changes following PCP
administration in raclopride-treated rats was not signifi-
cantly modified compared to control, in either the regions
activated by PCP (eg thalamus, limbic cortex, hippocampus)
or those not activated by PCP (eg somatosensory cortex,
Figures 2 and 4). Raclopride did not produce significant
alterations of basal MABP, with respect to vehicle, and the
rCBV changes produced by preadministration of raclopride

Neuropsychopharmacology

per se were negligible in all the brain regions examined
(Figure 5).

LY354740

LY354740 (10 mg/kg i.p.) induced a significant inhibition of
the rCBV response to PCP in all the activated regions
examined (Figures 2 and 4). The inhibition was marked
in all activated cortical areas (p<0.001 in all regions
examined, Figure 4). Marked inhibition was also observed
in the ventro-medial thalamus (p=0.009) and dorsal
hippocampus (p =0.002). Significant inhibition was ob-
served also in mesolimbic areas such as the striatum and the
nucleus accumbens (p=0.02 and 0.04, respectively). Time
course analysis of rCBV changes showed a significant
inhibition of the response to PCP in animals pretreated with
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rCBV response to PCP (0.5 mg/kg i.v.)
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Figure 3 rCBV response to PCP in representative VOlIs. The effect was
plotted as mean rCBV over a |6min time window covering the peak
response to phencyclidine (PCP) (420 min post injection). Baseline data
of control animals pretreated and challenged with vehicle are reported
for comparison (vehicle-vehicle). *p<0.05, **p<0.0l, ***p<0.001, vs
vehicle—vehicle. (Abbreviations: Acb, nucleus accumbens; Cpu, caudate
putamen; LDVL ventro-lateral part of latero-dorsal thalamus, LDDM dorso-
medial part of latero-dorsal thalamus, DL, dorso-lateral thalamus; VM,
ventro-medial thalamus, AD, antero-dorsal hippocampus; V, ventral
hippocampus; PDG, posterior dentate gyrus; PD, postero-dorsal hippo-
campus; S|, primary somatosensory cortex; VI, primary visual cortex;
Cg, cingulate cortex; PFC, medial prefrontal cortex.)

LY354740 both in the amplitude and the duration of the
response (Figure 2). As observed with lamotrigine, weak but
sustained rCBV decreases in cortical areas were observed
upon the injection of PCP after LY354740 pretreatment,
particularly in the motor and somatosensory regions (eg
somatosensory cortex, p =0.01, Figures 2 and 4). LY354740
did not produce significant alterations of basal MABP, with
respect to vehicle, and the rCBV changes produced by
preadministration of LY354740 per se were negligible in all
the brain regions examined (Figure 5).

Lamotrigine

Lamotrigine (10mg/kg i.p.) significantly inhibited the
activation induced by PCP in all regions (Figures 2 and
4). The effect was particularly marked in strongly respond-
ing cortical regions, such as prefrontal, cingulate, and
retrosplenial cortices, where preadministration of lamotri-
gine completely suppressed the PCP response (p=0.002,
0.0003, and 0.002, respectively). Robust or complete
suppression was also observed in key subcortical structures
including the ventro-medial and dorso-lateral thalamus
(p=0.004 and 0.003, respectively), the hippocampus
(p<0.02 in all the hippocampal regions examined), and
the dorsal striatum (p=0.006). Time course analysis of
rCBV changes showed robust inhibition of the response to
PCP over the period examined (Figure 2). Weak but
sustained rCBV decreases in cortical areas were observed
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upon the injection of PCP after lamotrigine pretreatment,
particularly in the motor and somatosensory regions
(eg somatosensory cortex, p =0.005, Figures 2 and 4).

The administration of lamotrigine did not produce
significant alterations of basal MABP with respect to
vehicle, and the rCBV changes produced by preadministra-
tion of lamotrigine per se were negligible in all the brain
regions examined (Figure 5).

DISCUSSION

Acute administration of NMDAR antagonists like phency-
clidine (PCP) or ketamine induces symptoms that closely
resemble those of schizophrenia in humans, a finding that
led to the hypothesis that a decreased NMDAR function
may be a predisposing or even causative factor in
schizophrenia. However, the brain circuitry and the precise
neuropharmacological mechanisms underlying these effects
remain to be fully elucidated. Here, we applied phMRI to
examine the brain circuitry underlying the psychotomi-
metic action of PCP, and investigated how these functional
changes are modulated by drugs that possess distinct
pharmacological mechanisms. Acute administration of
PCP produced robust activation of cortico-limbo-thalamic
regions. Pretreatment with the selective D, dopamine
antagonist raclopride did not significantly affect the rCBV
response to PCP, while the atypical antipsychotic clozapine
produced region-dependent effects, with complete suppres-
sion of the rCBV response in the thalamus, and weaker
attenuation of the response in cortical and hippocampal
structures. The response to PCP was also strongly
suppressed by pretreatment with two drugs that can prevent
aberrant glutamatergic activity: the anticonvulsant lamo-
trigine and the mGluR2/3 agonist LY354740.

rCBV Response to PCP

Acute administration of PCP produced a robust and
reproducible increase in rCBV in discrete cortico-limbic,
thalamic, and hippocampal regions. Multiple lines of
evidence argue that the rCBV changes observed reflect
underlying neuronal activation. First, the observed rCBV
increases are unlikely to be the result of global hemody-
namic effects, since PCP induced a sustained activation of
discrete cortical and subcortical structures, with no effects
in other regions. Next, PCP and the intraperitoneal
pretreatments induced only modest and transient altera-
tions of arterial blood pressure. The magnitude of these
changes under halothane anesthesia was well within the
range (60-120 mm Hg) within which abrupt pharmacologi-
cal manipulation of MABP can be homeostatically compen-
sated without producing significant alterations of CBV
(Gozzi et al, 2007a). Finally, the observed pattern of rCBV
changes is consistent with the results from studies of the
functional effects of NMDAR antagonists performed with a
variety of other measures in ex vivo experiments that should
not be sensitive to hemodynamic confounds; eg '*C-2-
deoxyglucose (2DG) uptake and immediate early gene
expression (Duncan et al, 1999c, d; Nakki et al, 1996).

The use of anesthetic is a putative confound that can
potentially affect the sign and distribution of the functional
response. This aspect has been extensively studied in our
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Figure 4 Effect of pretreatment on the rCBV response to phencyclidine (PCP) in representative VOIs. Data are expressed as mean + SEM (clozapine—
PCP n=7; raclopride—PCP n = 6; lamotrigine—PCP n = 6; LY354740-PCP n=7; vehicle-PCP n =24). *p <0.05, **p» <0.01, ***p <0.001, vs vehicle-PCP.
(Abbreviations: Acb, nucleus accumbens; Cpu, caudate putamen; LDVL, ventro-lateral part of latero-dorsal thalamus; LDDM, dorso-medial part of latero-
dorsal thalamus; DL, dorso-lateral thalamus; VM, ventro-medial thalamus; AD, antero-dorsal hippocampus; V, ventral hippocampus; PDG, posterior dentate
gyrus; PD, postero-dorsal hippocampus; S|, primary somatosensory cortex; VI, primary visual cortex; Cg, cingulate cortex; PFC, medial prefrontal cortex.)

lab through a comprehensive series of studies aimed to
identify a dose of PCP and an anesthetic level that resulted
in a pattern of activation consistent with the result of
neurofunctional studies performed in conscious animals
(eg single unit recording, ['*C]-iodoantipyrine CBF mea-
surements, 2-deoxyglucose uptake etc). This work has
highlighted a critical interaction between PCP and main-
tenance anesthetic, with the appearance of widespread brain
deactivation as the level of anesthesia or PCP dose is
increased. However, when rats were imaged under 0.8%
halothane anesthesia and challenged with a subanesthetic
dose of PCP (0.5mg/kg iv.), robust and reproducible
activation of discrete cortico-limbo-thalamic structures was
observed (Gozzi et al, 2007b). These conditions were,
therefore, used in the present study. Several lines of
evidence support the suggestion that the observed pattern
of activation is representative of the central effects of PCP in
freely moving animals and in humans. First, the observation
of activation in response to PCP is consistent with the
excitatory effects of NMDAR antagonists observed in freely
moving rodents, measured with single unit recording
(Homayoun et al, 2005), [14C]—iodoantipyrine CBF mea-
surements (Cavazzuti et al, 1987), and 2DG (Miyamoto et al,
2000; Duncan et al, 1998a,b, 1999b, 2000; Weissman et al,
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1987; Meibach et al, 1979). Second, the anatomical
distribution of rCBV changes is consistent with regions of
increased 2DG uptake in conscious rats upon injection of
NMDAr antagonist such as PCP, ketamine, or MK-801
(Duncan et al, 1999a). Third, the pattern of functional
changes described in the present work is very similar to that
observed in neuroimaging studies of the effects of ketamine
in healthy humans. For example, Langsjo et al (2003)
reported robust dose-dependent rCBF increases in the
anterior cingulate, thalamus, putamen, and frontal cortex in
healthy human volunteers receiving ketamine. McKie et al
(2007) using BOLD fMRI also report a similar pattern in
healthy human volunteers. Taken together, these observa-
tions suggest that the level of anesthesia (and dose of PCP)
used in the present study did not qualitatively affect the
central effects of PCP.

Other groups have also examined the regional effects of
NMDAR antagonists in the rat brain using neuroimaging
techniques. Subanesthetic doses of ketamine in isoflurane-
anesthetized rats were shown to increase the BOLD
response in the hippocampus, the retrosplenial and orbital
cortices, the nucleus accumbens, and the ventral pallidum
(Littlewood et al, 2006a,b), regions that have also been
identified in the present study. Risterucci et al (2005)
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Figure 5 Effect of pretreatment per se on basal rCBV in four

representative brain regions. Drugs were administered at time 0. Data
are plotted as mean + SEM within each group.

investigated the functional response to PCP in isoflurane-
anesthetized rats using perfusion imaging. Similar to the
present study, they reported increased perfusion in the
enthorhinal cortex, nucleus accumbens shell, thalamus, and
ventral pallidum; however, they reported decreased perfu-
sion in prefrontal and temporal cortices and dorsal
striatum, and no change in the hippocampus. The presence
of areas of decreased perfusion in limbic cortical structures
is at odds with our results. A possible explanation for this
discrepancy is the use of a higher level of anesthetic (1.6
MAC (minimum alveolar concentration) of isoflurane) than
that used in the present study (0.8 MAC (minimum alveolar
concentration) of halothane). As PCP itself acts as a general
anesthetic at sufficiently high doses, and as discussed earlier
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in relation to appropriate combination of PCP dose and
level of anesthesia, the findings by Risterucci might reflect a
general suppression of cortical activity resulting from the
use of a higher dose of PCP combined with high levels of
isoflurane (Gozzi et al, 2007b).

PCP altered rCBV in well-defined neural structures, such
as the prefrontal cortex, hippocampus, amygdala, and
thalamus, which are known to form a cortico-limbo-
thalamic loop that has been the subject of research into
the underlying neuropathological basis of schizophrenia
(Large, 2007). While acute administration of PCP is unlikely
to mimic comprehensively a complex multifactorial disease
like schizophrenia, at some level PCP may, however, modify
neural function in these key circuits to induce some
symptoms in healthy humans that are remarkably similar
to symptoms of psychosis. For instance, functional impair-
ment of limbic cortical areas has been shown to be coupled
to the decline in executive functioning that is often
experienced by patients with schizophrenia (Kircher and
Thienel, 2005). Similarly, dysfunction of the posterior
cingulate and retrosplenial cortices has been associated
with the development of thought disorder, disturbance of
consciousness, and overall cognitive decline (Mitelman
et al, 2005). Dysregulation of the amygdala-hippocampus
complex has been linked to symptoms of affect, such as the
inability to recognize emotional faces (Mancini-Marie et al,
2004; Schneider et al, 1998). Furthermore, aberrant
hippocampal activity has been associated with memory
impairment, which is observed in patients with schizo-
phrenia (Kircher and Thienel, 2005). Likewise, the identi-
fication of focal activation by PCP of areas of the thalamus
is in agreement with recent evidence supporting a critical
role for this region in the pathophysiology of schizophrenia
(Clinton and Meador-Woodruff, 2004). Finally, PCP-in-
duced activation of mesolimbic and nigrostriatal structures
is in good agreement with the classical dopamine hypoth-
esis of schizophrenia, where dysregulation of accumbens
dopamine transmission is implicated in the onset of positive
symptoms. Overall, these observations suggest a degree of
overlap between the regions that are affected by PCP, and
some of the key brain circuits that may be dysfunctional in
schizophrenia. Consequently, the use of PCP combined with
functional neuroimaging provides a valuable approach to
identifying neuropathological processes that might con-
tribute to the symptoms of schizophrenia. Importantly, the
approach is also ideally suited for investigating the site of
action of existing and future antipsychotic drugs.

Effect of Antipsychotic Drugs

Among the atypical antipsychotic agents, clozapine pos-
sesses superior efficacy in the treatment of patients with
schizophrenia, especially in those refractory to therapy with
conventional D, receptor antagonists (Tandon and Fleisch-
hacker, 2005; Kane et al, 1988). In the present study,
pretreatment with clozapine produced a profound suppres-
sion of the response to PCP in specific brain structures,
such as the cingulate and medial prefrontal cortex, the
thalamus, the antero-dorsal hippocampus, and the striatum.
Our results are consistent with preclinical work examining
the effects of clozapine on NMDAR function. Studies have
shown that clozapine, but not the D, receptor antagonist
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haloperidol, reversed deficits in cognitive and social behavior
induced by NMDAR agonists in rodents, primates (Idris et al,
2005; Gaisler-Salomon and Weiner, 2003; Linn et al, 2003;
Qiao et al, 2001), and humans (Malhotra et al, 1997a). Similar
findings have been reported using functional readouts such
as 2DG uptake (Duncan et al, 1998a, 2000).

The pharmacological profile of clozapine is broad,
including affinity for D, and D, dopamine receptors, and
potent antagonist action at affinity for 5-HT,,, 5-HT,,
5-HTs, 5-HT;, o4- and o,-adenergic, histamine H;, and
muscarinic M; receptors (Meltzer, 1996). Classically, D,
receptor blockade has been considered to be the key
pharmacological mechanism underlying clozapine efficacy.
However, in the present study, pretreatment with the
selective dopamine D, antagonist raclopride did not
produce significant inhibition of the response to PCP in
any of the regions analyzed. Raclopride was given at a
subcataleptic dose that is expected to produce ~75%
dopamine D, receptor occupancy (Wadenberg et al, 2000),
a value that is in line with the threshold of occupancy
(65-70%) required for therapeutic effect in patients with
schizophrenia (Farde et al, 1992). The same dose of
raclopride has also been shown to be active in tests
classically considered to reflect in vivo blockade of DA
transmission, such as p-amphetamine-induced hyperloco-
motion (Mark et al, 2004; Maurel-Remy et al, 1995). In
contrast, the dose of clozapine tested in the present study
would be expected to occupy just 40% of dopamine D,
receptors (Kapur et al, 2003; Mukherjee et al, 2001), a value
that is also consistent with the occupancies determined in
schizophrenic patients treated with clozapine (eg 16-68% in
Kapur et al, 1999; 20-67% in Nordstrom et al, 1995). Thus,
the lack of inhibitory effect of raclopride at a dose that
significantly blocks dopamine D, neurotransmission argues
against a primary role for dopamine D, receptors in the
generation of psychotic symptoms by NMDAR antagonists,
and suggests that the efficacy of clozapine in the models is
not due to D, receptor blockade. Consistent with the present
observations with raclopride, NMDAR antagonists are
reported to increase dopamine release in limbic and frontal
cortical brain areas (Adams and Moghaddam, 1998; Hertel
et al, 1995), but dopamine D, receptor antagonists or
dopamine depletion was unable to prevent the behavioral
effects induced by NMDAR antagonists in rodents (Idris
et al, 2005; Linn et al, 2003; Carlsson et al, 1999; Duncan
et al, 1998a; Corbett et al, 1995) and humans (Krystal et al,
1999). These findings also underscore a potential limitation
in the validity of the NMDAR deficit model as a tool to
predict the therapeutic efficacy of antipsychotic agents
relying on blockade of D, dopamine receptors.

Clozapine also has affinity for dopamine D; receptors,
although it is still unclear whether the drug acts as an
agonist or antagonist (Tauscher et al, 2004). D; receptor
activation by other drugs has also been shown to promote
NMDAR function (Flores-Hernandez et al, 2002; Morari
et al, 1994). Alternatively, or in addition, clozapine may
potentiate NMDAR activation by elevating synaptic levels of
glycine through inhibition of type 1 glycine transporters
(GlyT-1) (Javitt et al, 2005). Such a mechanism could also
be implicated in the focal effect of clozapine in the
thalamus, given the high level of Gly-T1 receptor expression
in this region, with respect to the cortex and other limbic
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areas (Zafra et al, 1995). Thus the efficacy of clozapine in
the present study might arise through a direct or indirect
enhancement of NMDAR function, counteracting the effect
of NMDAR block by PCP.

Clozapine has a high affinity for 5-HT,4 receptors so it is
also possible that these receptors mediate the efficacy of the
drug in the present model, perhaps via an indirect
modulatory effect on cortical glutamate neurotransmission
(Seeman, 2002; Aghajanian and Marek, 1999). This is also
consistent with the strong effects observed with lamotrigine
and LY354740, which are also thought to act via the
inhibition of glutamate transmission. However, direct
studies of the effects of clozapine on glutamate release have
produced conflicting results, with both increased (Yama-
moto and Cooperman, 1994; Daly and Moghaddam, 1993)
and decreased (Yang and Wang, 2005) levels of cortical
glutamate observed following the administration of cloza-
pine to rats.

The observation from the present study that clozapine
produces a stronger effect in the thalamus, compared to the
cortex or limbic brain areas, is of particular interest and
suggests a regional selectivity that might be key to
understanding the functional basis of its pharmacological
action. It can be speculated that the superior therapeutic
efficacy of clozapine with respect to other antipsychotics
(Tandon and Fleischhacker, 2005; Breier et al, 1994; Kane
et al, 1988) might be at least partly mediated by a more
effective restoration (or preservation) of thalamic function.
This hypothesis would be consistent with the recent
neuropathological and neuroimaging evidence pointing to
structural and metabolic abnormalities in the thalamus
giving rise to deficits in sensory processing and some
symptoms of psychosis (Sim et al, 2006; Clinton and
Meador-Woodruff, 2004). The regional specificity of cloza-
pine might also provide an additional clue as to the
contribution of specific receptor systems to its mechanism
of action. For example, serotonin 5-HT; receptors are highly
expressed in the thalamus, and are known to be inhibited by
clozapine (Heidmann et al, 1998). It is, therefore, tempting
to speculate that 5-HT; receptors might be implicated in the
focal effect of clozapine on the thalamus. Consistent with
this hypothesis, a recent study showed that the selective
serotonin 5-HT; agonist SB269970A prevented deficits in
reversal learning induced by PCP in rats (Neill et al, 2006).
It is also noteworthy that recent genetic or post mortem
studies have implicated 5-HT, receptors in the pathology
underlying schizophrenia (Dean et al, 2006; Ikeda et al,
2006; East et al, 2002).

Effect of LY354740

LY354740 produced a potent and widespread suppression of
the rCBV response to PCP. This compound is a selective
metabotropic glutamate (mGlu) 2/3 receptor agonist that
can prevent glutamate hyperexcitation by decreasing the
evoked release of glutamate from forebrain and limbic
glutamatergic synapses (Schoepp and Marek, 2002; Cartmell
and Schoepp, 2000). Consistent with this, LY354740 has
been shown to inhibit increases in glutamate induced by the
depolarizing agent veratridine in the striatum of freely
moving rats (Battaglia et al, 1997), and reduce the response
to electrically evoked glutamate release in a manner
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consistent with a presynaptic site of action (Capogna, 2004;
Kilbride et al, 1998). Agonists of mGluR2/3 such as
LY354740 can antagonize the behavioral and neurochemical
effects of PCP in rodents (Lorrain et al, 2003; Cartmell et al,
1999; Moghaddam and Adams, 1998) and produce a dose-
dependent suppression of ketamine-induced impairment of
working memory by ketamine in human volunteers (Krystal
et al, 2005). Our results show a significant inhibition of the
amplitude of the response to PCP in most of the activated
regions, an effect that parallels the preclinical and clinical
findings mentioned above.

The results with LY354740, a compound that can
modulate glutamate release, add to a growing body of
evidence that implicates glutamate transmission and an
aberrant activity of glutamatergic neurons (eg cortical and
hippocampal pyramidal cells) in the behavioral and
neurometabolic effects of NMDA antagonists. Electrophy-
siological and neurotoxicological studies suggest that the
cognitive, psychotomimetic, and eventually neurodegenera-
tive actions of NMDA antagonists are dose-dependent
manifestations of a general inhibition of GABAergic
interneurons, resulting in unregulated activity of principal
neurons leading to excessive release of glutamate (Farber,
2003; Greene, 2001). By selectively disinhibiting cortical
interneurons, psychotogenic doses of NMDA can produce
an increased glutamate transmission via non-NMDA
glutamate receptors over major excitatory projections from
the cortex to the basal forebrain and the thalamus, thus
originating a hyperexcitatory state that is thought to
underlie NMDA-induced psychosis. Our findings that
LY354740 completely suppressed the response to PCP are
in agreement with this theory. It is noteworthy that the
response suppression was widespread and affected all the
activated regions, suggesting that disruption of glutamate
transmission may occur early in the cascade of events
leading from NMDAR blockade to psychomimetic reaction.

The observation that LY354740 can produce anxiolytic
effects on rodents (Ferris et al, 2001) has led some authors to
hypothesize a direct involvement of mGluR2/3 receptors in
GABA neurotransmission. However, neurophysiological and
neuroanatomical studies do not provide evidence of a direct
modulation of GABAergic activity by mGluR2/3 agonists,
and preclinical data suggest that the anxiolytic action of
LY354740 is probably mediated by an inhibition of glutamate
release from excitatory inputs to crucial brain structures,
such as the amygdala and hypothalamus (reviewed by
Swanson et al, 2005). Moreover, drugs that do directly
enhance GABAergic inhibition (eg sodium valproate, diaze-
pam, lorazepam) do not prevent the effects of NMDAR
antagonists in either rodents or humans (Large, 2007; Krystal
et al, 1998), thus suggesting that GABA-enhancement alone is
not sufficient to prevent the psychotomimetic action of
NMDA antagonists (Large, 2007). Taken together, these
findings point to a modulation of glutamate release as the
most plausible mechanism by which LY354740 can inhibit
the psychotomimetic effects of PCP.

Effect of Lamotrigine

Lamotrigine is a broad spectrum anticonvulsant that inhibits
voltage-gated sodium channels in a use-dependent manner;
the drug has also been shown to reduce neuronal excitability
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and glutamatergic transmission (Large et al, 2005). Studies in
rodents show that acute treatment with lamotrigine can
prevent the disruption of behavior induced by NMDA
antagonists (Large et al, 2005), and in healthy human
volunteers lamotrigine has been shown to attenuate positive,
negative, and cognitive effects of ketamine (Anand et al,
2000). In the present study, pretreatment with lamotrigine
produced a potent and widespread inhibition of the rCBV
response to PCP in all the activated regions, which is
consistent with recent results showing that lamotrigine
pretreatment can reduce the BOLD response to ketamine in
healthy human volunteers (McKie et al, 2007).

Several studies have shown that PCP, ketamine, and other
NMDAR antagonists can induce aberrant glutamatergic
neurotransmission by altering the firing of cortical neurons
in rats (Jodo et al, 2005; Jackson et al, 2004; Tamminga et al,
2003; Shi and Zhang, 2003). Thus the efficacy of lamotrigine
in these models and in the present study supports the
hypothesis that the psychotomimetic effects of NMDAR
antagonists arise through dysregulation of cortical neural
activity and possibly an increase in excitatory transmission.
However, since glutamate release is intimately linked to the
underlying pattern of neuronal activity, it is not yet clear
whether lamotrigine effects are directed at one or the other.
Despite this, the efficacy of lamotrigine underscores once
more a central role of dysregulation of cortical neuronal
activity and glutamate release in the psychotomimetic effect
of NMDAR antagonists. The widespread effect of lamotri-
gine, reducing the PCP-induced rCBV response in all brain
areas, further indicates that the inhibition of activity and/or
glutamate transmission lies proximal to the primary effect
of NMDAR antagonists.

In conclusion, we investigated the spatio-temporal dis-
tribution of changes in rCBV induced by acute challenge
with PCP in the anesthetized rat and examined how these
effects are modulated by drugs that differentially modify
NMDAR antagonist-induced behaviors. PCP produced
increases in rCBV in discrete cortico-limbo-thalamic
regions. This effect was strongly suppressed by pretreat-
ment with compounds that can reduce neuronal excitability
and modulate glutamatergic transmission such as the
sodium channel blocker lamotrigine and the mGluR2/3
agonist LY354740, thus corroborating the pivotal role of
cortical glutamatergic neurotransmission in the psychoto-
mimetic action of NMDAR antagonists. Pretreatment with
the selective D, dopamine antagonist raclopride did not
significantly affect the response to PCP, a finding that
argues against a primary role for dopamine D, receptors in
the functional response elicited by NMDAR antagonists.
Finally, clozapine produced a region-dependent suppres-
sion of PCP response, with moderate but significant
inhibition in the cortex, and total response suppression in
the thalamus. This regional effect of NMDAR antagonists
could be key to elucidating the functional basis of clozapine
pharmacological action.
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Abstract

Rationale Increasing experimental evidence suggests that
impaired N-methyl-D-aspartic acid (NMDA) receptor
(NMDAr) function could be a key pathophysiological
determinant of schizophrenia. Agonists at the allosteric
glycine (Gly) binding site of the NMDA complex can
promote NMDAr activity, a strategy that could provide
therapeutic efficacy for the disorder. NMDATr antagonists
like phencyclidine (PCP) can induce psychotic and disso-
ciative symptoms similar to those observed in schizophre-
nia and are therefore widely used experimentally to impair
NMDA neurotransmission in vivo.

Objectives In the present study, we used pharmacological
magnetic resonance imaging (phMRI) to investigate the
modulatory effects of endogenous and exogenous agonists
at the NMDAr Gly site on the spatiotemporal patterns of
brain activation induced by acute PCP challenge in the rat.
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The drugs investigated were D-serine, an endogenous
agonist of the NMDAr Gly site, and SSR504734, a potent
Gly transporter type 1 (GlyT-1) inhibitor that can potentiate
NMDAr function by increasing synaptic levels of Gly.
Results Acute administration of PCP induced robust and
sustained activation of discrete cortico-limbo-thalamic
circuits. Pretreatment with D-serine (1 g/kg) or
SSR504734 (10 mg/kg) completely inhibited PCP-induced
functional activation. This effect was accompanied by weak
but sustained deactivation particularly in cortical areas.
Conclusions These findings suggest that agents that stim-
ulate NMDAr via Gly co-agonist site can potentiate NMDAr
activity in the living brain and corroborate the potential for
this class of drugs to provide selective enhancement of
NMDATr neurotransmission in schizophrenia.

Keywords fMRI - Glycine - PCP- D-serine - Gly-T1 -
phMRI - SSR504734 - CBV

Introduction

Accumulating clinical and experimental evidence suggests
that impaired expression and functionality of the N-methyl-
D-aspartate receptor (NMDAr) could be a key pathophys-
iological determinant of schizophrenia (Kristiansen et al.
2007). This observation has prompted considerable re-
search effort to develop novel medications aimed to
enhance NMDAr functionality in vivo. The NMDAr is
unique among ligand-gated ion channels because its
functional activation requires the presence of glutamate,
the primary receptor ligand, and glycine (Gly), an obliga-
tory co-agonist that binds to a separate modulatory site of
the receptor complex (Leeson and Iversen 1994).
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Several in vitro studies have demonstrated that agents
that directly bind to the Gly co-agonist site such as Gly
itself, the endogenous co-agonist D-serine, or the partial
agonist cycloserine can dose-dependently promote NMDAr
neurotransmission (Millan 2002). NMDAr activity can also
be promoted by increasing endogenous glycine levels in
proximity of the NMDAr receptor by using Gly transporter
(GlyT) inhibitors, which can raise synaptic Gly levels by
preventing its removal from the synaptic cleft (Javitt 2007).
Two high-affinity Gly transporter subtypes, referred to as
GlyT-1 and GlyT-2, have been identified which share
approximately 50% amino acid sequence identity (Sur and
Kinney 2007). The distribution of GlyT-2 is relatively
restricted, being present mainly on inhibitory glycinergic
neurons in the spinal cord, brainstem, and cerebellum. In
contrast, GlyT-1 is more widely expressed throughout the
body, with expression in the central nervous system (CNS)
being much greater than it is in the periphery. Within the
CNS, GlyT-1 is expressed on both glial and neuronal cells
around the synapses where it provides the principal high-
affinity transport system controlling extracellular glycine
levels (Sur and Kinney 2007). By inhibiting GlyT-1 and
raising the extracellular glycine concentration, it is possible
to strengthen NMDAr-mediated synaptic inputs and still
retain the temporal and spatial specificity of activation of
NMDA receptors, since this is governed by the synaptic
release of glutamate which is still required to activate the
receptor. Thus, GlyT-1 inhibitors have the potential to
provide selective enhancement of NMDAr activity and
have been shown to promote downstream processes related
to NMDAr function, e.g., synaptic plasticity (Kinney et al.
2003). As a result, a number of chemically diverse GlyT-1
inhibitors have been developed that can raise extracellular
glycine levels and potentiate NMDA receptor-related
activity (Sur and Kinney 2007).

A prerequisite for the successful exploitation of these
mechanisms in vivo is the presence of non-saturating levels
of Gly under homeostatic conditions. This aspect has been
the object of a considerable debate in recent years. Early
studies reporting the detection of high extracellular Gly
levels in the brain (3—10 uM) led to the proposal that tonic
Gly levels could be saturating under physiological con-
ditions (Thomson 1990; Westergren et al. 1994). This
hypothesis has been challenged by subsequent electrophys-
iology studies where in vitro and in vivo NMDAr
potentiation was induced by administration of agents that
stimulate Gly co-agonist site (Kinney et al. 2003; Martina
et al. 2003; Chen et al. 2003). These data seem to support
the view that the effective Gly concentration in the synaptic
cleft could be much lower (nM range), due to the action of
Gly transporters strategically placed around the synapse
(Javitt and Heresco-Levy 2000). However, some contro-
versy still exists as to the nature and role of the interaction
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of Gly and the NMDAr in vivo, with multiple studies
showing the lack of modulatory effects following the
application of Gly site agonists (Long et al. 2007; Meur et
al. 2007; Obrenovitch et al. 1997). Such discrepant results
have led some authors to propose that the degree of NMDA
Gly site saturation might be region-dependent (Li and Han
2007; Ballard et al. 2002).

NMDA receptor antagonists like ketamine or phencycli-
dine (PCP) can be used experimentally to induce impair-
ment of NMDAr neurotransmission in vivo. Acute
administration of these compounds produces robust and
well-characterized behavioral and neurofunctional effects
(Krystal et al. 2002) that can be reversed or prevented by
agents that stimulate NMDAr activity, including glycinergic
agents (Large 2007). In the present study, we applied
pharmacological magnetic resonance imaging (phMRI) to
examine if compounds that stimulate the Gly-binding site
on the NMDAr can modulate the spatio-temporal pattern of
response to an acute PCP challenge in the rat brain. phMRI
is a noninvasive technique that measures central hemody-
namic changes to acute drug challenges as surrogate for
changes in the underlying neuronal activity and can
therefore be employed to investigate drug—receptor inter-
actions in the living brain and at a systems level (Jenkins et
al. 2003; Gozzi et al. 2005). The drugs investigated were D-
serine, an endogenous agonist of the NMDAr Gly site
(Nishikawa 2005) and SSR504734, a potent Gly transporter
type 1 (GlyT-1) inhibitor that potentiates NMDAr function
by increasing extracellular levels of Gly (Depoortere et al.
2005).

Materials and methods
Animal preparation

All in vivo studies were conducted in accordance with the
Italian laws (DL 116, 1992 Ministero della Sanita, Roma).
Animal research protocols were also reviewed and con-
sented to by the GSK animal care committee, in accordance
with the guidelines of the Principles of Laboratory Animal
Care (NIH publication 86-23, revised 1985). The studies
were performed on male Sprague—Dawley rats (mean#
SEM, 293+5 g, Charles River, Como, Italy). Animals had
free access to standard rat chow and tap water and were
housed in groups of five in solid-bottom cages with
sawdust litter. Room temperature (20-22°C), relative
humidity (45-65%), and dark—light cycles (12 h each,
lights on at 0600 hours) were automatically controlled.
After arrival, rats were allowed to acclimatize for at least
5 days.

Animal preparation/monitoring and MRI acquisition in
each phMRI study were similar to previous studies (Gozzi
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et al. 2008b). Briefly, rats were anesthetized with 3%
halothane in a 30:70% O,:N, gas mixture, tracheotomized
and artificially ventilated with a mechanical respirator. The
left femoral artery and vein were cannulated and animal
paralyzed with a 0.25-mg/kg i.v. bolus of D-tubocurarine
followed by a continuous infusion of 0.25 mg/kg/h through
the artery. A PE50 cannula was inserted intraperitoneally
for drug pretreatment. Average duration of surgery was 25—
35 min. After surgery, the rat was secured into a customized
stereotactic holder (Bruker, Ettlingen, Germany) and the
halothane level set to 0.8%. The ventilation parameters
were adjusted to maintain physiological arterial blood gas
levels according to p,CO, and p,0, measurements per-
formed prior to and at the end of the fMRI time-series
acquisition. No statistically significant difference between
pre- and post-acquisition p,CO, values for each of the
experimental groups was found (p>0.23, all groups). A
student ¢ test corrected for multiple comparisons using the
Benajmini—Hochberg method did not evidence any statis-
tically significant intergroup difference between pre- or
post-acquisition p,CO, values. Moreover, linear regression
analysis did not show significant correlation between the
amplitude of the relative cerebral blood volume (rCBV)
response to PCP (expressed as 4-20 min postinjection
average in the medial prefrontal cortex) and p,CO, levels,
when these were expressed as basal values, or pre- and
post- acquisition difference (P>.19, r<.33). A magnetic
resonance-compatible thermocouple probe was used to
measure rectal temperature. The body temperature of all
subjects was maintained within physiological range (37+
0.8°C) throughout the experiment, by using a water-heating
system incorporated in the stereotactic holder. Mean arterial
blood pressure (MABP) was monitored continually through
the femoral artery. At the end of the experiment, the
animals were euthanized with an overdose of anesthetic
followed by cervical dislocation.

Relative cerebral volume measurement

MRI data were acquired using a Bruker Avance 4.7 Tesla
system, a 72-mm birdcage resonator for radiofrequency
pulse transmit and a Bruker curved “Rat Brain” quadrature
receive coil. The MR acquisition for each subject com-
prised T,-weighted anatomical images using the RARE
sequence (Hennig et al. 1986) (TR.x=5,000 ms, TE.¢ =
76 ms, RARE factor 8, FOV 40 mm, 256 x256 matrix, 16
contiguous 1 mm slices) followed by a time-series
acquisition with the same spatial coverage and similar
parameters (TR ¢ =2,700 ms, TE. =110 ms, RARE factor
32), but with a lower in-plane spatial resolution (128 x 128)
giving a functional pixel volume of ~0. mm’. Two
successive scans were averaged for a resulting time
resolution of 40 s.

In each experiment, intraperitoneal injection of drug (or
vehicle) was followed by PCP challenge (or vehicle) 30 min
(groups 3-5, see below) or 24 h later (groups 1-2). In the
latter case, animals were pretreated outside the magnet and
underwent surgical preparation for MRI acquisition 22.5 h
later. In these subjects, the start of the rtCBV time series was
timed to allow PCP administration to take place 24 h post-i.p.
pretreatment. Total MRI time-series acquisition time was 80-
min (120 repetitions) for all groups. Following five reference
images, 2.67 ml/kg of the blood pool contrast agent Endorem
(Guerbet, France) was injected so that subsequent signal
changes would reflect alterations in relative cerebral blood
volume (rCBV; Mandeville et al. 1998). In groups 3-5, prior
to the injection of i.p. drug pretreatment, an equilibration
period of 15 min (23 images) was allowed. PCP challenge
(groups 1-4) was administered at image 73, ensuring a 30-
min delay between i.p. pretreatment (when present, groups
3-5) and the subsequent intravenous PCP bolus. The MRI
data were acquired over a period of 30 min following the
administration of the PCP challenge.

Compounds and experimental arms

D-serine study A 24-h delay between pretreatment and
challenge was used to ensure a stable elevation of D-serine
levels in the brain (Hashimoto and Chiba 2004). Rats were
randomly assigned to one of the following groups:

(1) intraperitoneal pretreatment with vehicle (water 2 ml/kg
n=>5) and intravenous challenge with PCP (0.5 mg/kg,
1 ml/rat IV) 24 h later

(2) intraperitoneal pretreatment with D-serine (10 mmol-
1 g/kg, n=8) and intravenous challenge with PCP
(0.5 mg/kg, 1 ml/rat IV) 24 h later

SSR504734 study Rats were randomly assigned to one of
the three following groups

(3) intraperitoneal pretreatment with vehicle (water, n=6,
1 ml/kg) and intravenous challenge with PCP (0.5 mg/
kg, 1 ml/rat IV) 30 min later

(4) intraperitoneal pretreatment with SSR504734 (10 mg/
kg, n=5) and intravenous administration of PCP
(0.5 mg/kg, 1 ml/rat IV) 30 min later

(5) intraperitoneal pretreatment with water (1 ml/kg; n=6)
and intravenous challenge with saline (1 ml/rat)
30 min later. This group served as reference rCBV
baseline for PCP in both studies.

D-serine and phencyclidine hydrochloride (PCP) were
purchased at Sigma-Aldrich (Milan- Italy). SSR504734
was synthesized by GSK department of Medicinal Chem-
istry. All the compounds were injected at a rate of 1 ml/min.
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Compound injection was followed by administration of
0.4 ml of saline to flush the intravenous line. The doses
chosen for the different drugs were based on previously
published in vivo studies. PCP at 0.5 mg/kg i.v. produces
robust fMRI activation of discrete cortico-limbo-thalamic
structures in the anesthetized rat (Gozzi et al. 2008b). The
same dose of PCP has also been reported to elicit robust
behavioral and metabolic (2-deoxyglucose) effects in freely
moving rats (Weissman et al. 1987; Gozzi et al. 2008b).
The dose of SSR504734 tested (10 mg/kg i.p.) exhibited
robust efficacy in NMDA-antagonist models of schizophre-
nia (Depoortere et al. 2005). The pretreatment scheme and
dose of D-serine used have been reported to produce robust
and sustained D-serine elevation in the brain (Hashimoto
and Chiba 2004). Similar amounts of D-serine have been
shown to be effective in preventing PCP-induced cognitive
deficits (Andersen and Pouzet 2004) and stereotyped
behavior in freely moving rats (Tanii et al. 1994).

Data analysis

rCBV time-series image data for each experiment were
analyzed within the framework of the general linear model
(GLM) to obtain Z statistic maps (Worsley et al. 1992). The
maps thus obtained were used to guide the selection of
activated/deactivated regions for subsequent volume of
interest (VOI)-based quantification and comparison of effica-
cy of pretreatments.

Signal intensity changes in the time series were
converted into fractional rCBV on a pixel-wise basis, using
a constrained exponential model of the gradual elimination
of contrast agent from the blood pool (Schwarz et al. 2003).
Individual subjects in each study were spatially normalized
by a 9-df affine transformation mapping their T2-weighted
anatomical images to a stereotaxic rat brain MRI template
set (Schwarz et al. 2006a) and applying the resulting
transformation matrix to the accompanying rCBV time
series. rCBV time series for the PCP or vehicle challenge
(groups 1-5) were calculated covering 8 min (12 time-
points) prechallenge baseline and 25 min (38 timepoints)
postchallenge window, normalized to a common injection
timepoint. Image-based time series analysis was carried out
using FMRI Expert Analysis Tool (FEAT) Version 5.63,
part of FSL (FMRIB’s Software Library, www.fmrib.ox.ac.
uk/fsl) with 0.8 mm spatial smoothing (=2.5 x in-plane
voxel dimension) and using a model function identified by
wavelet cluster analysis (WCA) across all animals in the
cohort, capturing the temporal profile of the signal change
induced by PCP challenge in each group (Whitcher et al.
2005; Schwarz et al. 2006b). The design matrix also
included the temporal derivative of this regressor and a
linear ramp (both orthogonalized to the regressor of
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interest) with the aim to capture additional variance due to
slight deviations in individual subjects or brain regions
from the signal model time course as described more in
detail in Schwarz et al. (2006b). The model function
obtained for groups 1 and 3 (vehicle-PCP) was very similar
to the one previously described in a similar phMRI
experiment (Gozzi et al. 2008b), while groups 2 and 4
exhibited a negative model function that described well the
profile of the sustained negative rCBV changes produced
by PCP after drug pretreatment (see Fig. 2, SS cortex). The
coefficients of the model function thus provided a map of
rCBV response amplitude for each injection in each subject.
Higher-level group comparisons were carried out using
FMRIB’s local analysis of mixed effects (FLAME ); Z
(Gaussianised 7/F) statistic images were thresholded using
clusters determined by Z>2.33 (study 1) or Z>1.96 (study
2) and a corrected cluster significance threshold of p=0.05
(Worsley et al. 1992; Friston et al. 1994).

To rule out the presence of significant short-lived
contributions to the pattern of activation produced by PCP
in the different groups, we performed an additional GLM
analysis using a regressor that we identified retaining only
high temporal frequency components in the WCA analysis
with the aim to capture subtle short-lived responses like
those induced by vehicle injection. This analysis did not
highlight any significantly activated or deactivated voxel
vs. vehicle—vehicle baseline for any of the groups analyzed
(Z>1.6, cluster correction p=0.05).

rCBV maps were displayed using different Z scores to
better highlight the high degree of spatial overlap in the
anatomical distribution of PCP-induced response in the two
independent studies. The lower statistical threshold used for
D-serine study reflects a higher variance and a lower mean
response observed in some of the regions activated by PCP
in the vehicle-PCP cohort of this study with respect to the
corresponding group in SSR504734 study (group 3, see
Fig. 3). However, a formal comparison of the magnitude of
the response in the two vehicle-pretreated groups is beyond
the scope of the study, as the two experiments were
performed at different times, using different animal batches
and presented differences in the pretreatment protocol (see
“Materials and methods” section). We therefore opted for
different Z scores in order to highlight the substantial
correspondence between the neural circuitry activated by
PCP in the two control groups.

VOI time courses for the PCP challenge were extracted
from unsmoothed rCBV time-series data using a 3D digital
reconstruction of a rat brain atlas (Paxinos and Watson
1998) co-registered with the MRI template (Schwarz et al.
2006a), using custom in-house software written in IDL
(Research Systems, Boulder, CO, USA). A list of the VOIs
examined and their anatomical definitions can be found in
Gozzi et al. (2008b). For each VOI timecourse, the average
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rCBV over a 16-min time window covering the peak
response to PCP (4-20 min postinjection) was used as a
summary statistic of the relative change. The effect of
pretreatment on the magnitude of average rCBV in different
VOIs was assessed by a one-way analysis of variance
(ANOVA) followed by a Dunnett’s test versus vehicle
(group 5). Threshold for statistical significance was
considered as p=0.05. Results are quoted and displayed
as mean+SEM unless otherwise indicated.

As subjects from groups 3—5 received the pretreatment
during the phMRI time-series acquisition, VOI timecourses
of pretreatment per se were examined to exclude the
presence of rCBV “ceiling” or “floor” effects that might
have influenced or prevented the subsequent response to
PCP. To this end, rCBV timecourses were also calculated
for the pretreatment over a time-window covering 6 min
(eight timepoints) preinjection baseline and 21 min (32
timepoints) postinjection window normalized to a common
injection timepoint. VOI timecourses were extracted from
unsmoothed rCBV time series in the same regions
examined for the PCP challenge. This procedure could not
be applied to subjects from groups 1 and 2, as these animals
received the pretreatment outside the magnet. In these
subjects, we therefore examined if the pretreatment pro-
duced alterations of basal (resting-state) CBV, which was
calculated as previously described (Mandeville et al. 2001)

using images 0—5 as precontrast period (0—3.3 min prior to
contras agent injection) and images 20-25 as postcontrast
(and postequilibration) period (13.3-16.6 min time-win-
dow; approximately 30 min prior to PCP challenge). Basal
CBV values were then extracted using the digitized brain
atlas (Schwarz et al. 2006a) for all the VOIs previously
analyzed for PCP effects. The presence of statistically
significant differences in mean basal CBV difference
between groups 1 and 2 in each of the VOI examined was
assessed with ANOVA followed by a Fisher least signifi-
cant difference test for multiple comparisons.

Pretreatment and PCP administration produced transient
alterations of MABP whose peak magnitude was well within
the cerebral blood flow (CBF) autoregulation range 60—
120 mmHg under 0.8% halothane anesthesia. Previous
experiments performed at the same anesthetic doses used here
have shown that positive or negative pharmacologically evoked
MABP changes within the autoregulation range mentioned
above do not result in significant central rCBV response
(Gozzi et al. 2007; Zaharchuk et al. 1999; Gozzi et al. 2005)

Results

Vehicle-pretreated animals (groups 1 and 3) showed a
robust and sustained rCBV response to PCP in distinct

Distribution of PCP-induced rCBV changes as a function of pretreatment

VEH +PCP D-serine+ PCP

Fig. 1 Anatomical distribution of the rCBV response to acute PCP
challenge (0.5 mg/kg i.v.) as a function of pretreatment. Form left to
right, maps correspond to experimental groups nr / (vehicle-PCP, n=
5), 2 (p-serine 1 g/kg-PCP, n=8), 3 (vehicle-PCP, n=6), and 4
(SSR504734 10 mg/kg-PCP, n=5), respectively. Groups 1 and 2
received i.p. pretreatment 24 h prior to PCP challenge, while groups nr.

VEH + PCP SSR504734 + PCP

B
Al

3 and 4 were pretreated during the fMRI time-series acquisition 30 min
before PCP. Orange/yellow indicate increased rCBV versus baseline
(vehicle—vehicle). Blue indicates decreased rCBYV versus baseline. An
annotated version of a representative vehicle-PCP activation map can
be found in Gozzi et al. (2008b)
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corticolimbo-thalamic structures (Figs. 1, 2, and 3).
Significant signal increases were observed in limbic cortical
regions (medial prefrontal, cingulate, orbitofrontal, and
retrosplenial cortices), with extension into the motor, visual,
parietal- and temporal-association and rhinal cortices.
Significant foci of activation were also observed in specific
subcortical structures, including the medial and lateral
habenula, amygdala, anterodorsal, dorsolateral and ventro-
medial thalamus, posterodorsal, anterodorsal and ventral
and posterior hippocampus, the dorsal striatum and the
nucleus accumbens (Fig. 1). The overall time-profile of
PCP-induced activation was similar in all the activated
regions (Fig. 2), with a brief dip followed by a rapid
increase in rCBV that reached a plateau within 5 min of
drug injection, and remained sustained over the period
examined. The magnitude of the rCBV response to PCP
was region dependent, with the largest response in cortical
and thalamic regions. In nonactivated regions (e.g., so-
matosensory cortex, Fig. 2), the transient dip was not

followed by any appreciable increase in rCBV with respect
to control animals challenged with vehicle (baseline). The
regional distribution and time-profile of PCP in the two
control groups pretreated with vehicle (groups 1 and 3) were
comparable, although a trend for a stronger and less variable
response was apparent in group 3 (SSR504734 study).

Pre-administration of D-serine (1 g/kg i.p.) significantly
inhibited the positive rCBV response to PCP in all the
activated regions examined (Figs. 1-3). The effect did not
appear to be region specific, with significant suppression
taking place in all the major cortical and subcortical
structures. Small but sustained rCBV decreases in cortical
areas were observed upon injection of PCP in D-serine pre-
administered animals particularly in motor and somatosen-
sory areas of the cortex. These effects could be best seen in
the rCBYV timecourses (Fig. 2). Pretreatment of D-serine per
se did not produce significant alterations of basal (resting-
state) CBV prior to the PCP challenge in any of the VOIs
examined (Fig. 4; p>0.18, all regions).

Fig. 2 rCBV timecourse 0.307 mPF cortex 0307 mPF cortex
following PCP injection in
representative brain structures.
PCP was administered at time 0. 0.151 i; 0.151
Baseline data were obtained B ) E
in animals pretreated and Q { s o PR 4 ]
challenged with vehicle (saline, 0.00 ? %ﬁ!ﬁﬁnmﬂmﬁfﬂm{«ﬁl 0.00
group 5). Data are plotted as
mean+SEM within each group. 015 0415
Left Veh—Veh (group 5) n=6; . .
Veh—PCP (group 1) n=>5, -10 0 10 20 10 0 _ 10 20
p-serine 1 g/kg—PCP (group 2) min min
n=38; Right: Veh—Veh (group 5)
n=6; Veh—PCP (group 3) n=6; 0.30 0.30
SSR504734 10 mg/kg—PCP LOYL thel LOYL that
(group 4) n=5 (mPF Medial
prefrontal cortex, LDVL thal 0.15 0.15
ventrolateral part of laterodorsal - 3
thalamus, SS somatosensory Qo 0.00 e 0.00
cortex) ’ .
-0.15 -0.15
10 0 10 20 -10 0 10 20
min min
030, 0.30,
SS cortex SS cortex
0.151 0.151
& @ .
e © 00| sy g
T N 25 "
-0.151 0.151
10 0 10 20 10 0 10 20
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Fig. 3 Magnitude of rCBV response to PCP in representative regions
of interest. The effect was plotted as mean rCBV over a 16-min time
window covering the peak response to PCP (4—20 min postinjection).
Baseline data of control animals pretreated and challenged with
vehicle are reported for comparison (Veh—Veh). *p<0.05, **p<0.01,
**%p<0.001 versus Veh—Veh. Left: Veh—Veh (group 5) n=6; Veh—PCP
(group 1) n=5, p-serine 1 g/kg—PCP (group 2) n=8; Right: Veh—Veh
(group 5) n=6; Veh—PCP (group 4) n=6; SSR504734 10 mg/kg—PCP

Pretreatment with the Gly-TI inhibitor SSR504734
(10 mg/kg i.p.) completely suppressed positive rCBV
response to PCP in all the brain regions examined (Figs. 1—
3). The effect did not show region dependence with robust
and sustained response inhibition in both cortical and
subcortical areas. The inhibitory action of SSR504734
was accompanied by widespread and sustained negative
rCBV changes following PCP injection in all the subjects
treated. The administration of SSR504734 per se gave rise
to small, short-lived (2-8 min) rCBV increases in most of
the cortical and subcortical regions examined (Fig. 5). The
increase was small and transient, and at the time of PCP
challenge, no clear basal rCBV alteration was present in any
of the regions examined.

Discussion

NMDA receptor antagonists like ketamine or phencyclidine
(PCP) are widely used experimentally to investigate
NMDATr neurotransmission in vivo. Acute administration
of these drugs produces a complex cascade of neuro-
behavioral effects that, in humans, present in the form of

(group 5) n=5. (Acb Nucleus accumbens, Cpu caudate putamen,
LDVL ventrolateral part of laterodorsal thalamus, LDDM dorsomedial
part of laterodorsal thalamus, DL dorsolateral thalamus, VM ventro-
medial thalamus, 4D anterodorsal hippocampus, V" ventral hippocam-
pus, PDG posterior dentate gyrus, PD posterodorsal hippocampus, S/
primary somatosensory cortex, ¥/ primary visual cortex, Cg cingulate
cortex, PFC medial prefrontal cortex)

psychotic symptoms very similar to those observed in
schizophrenia. (Malhotra et al. 1996; Krystal et al. 2002)
Recent phMRI studies performed in our lab have shown the
activation of discrete corticolimbo-thalamic circuits follow-
ing acute PCP challenge in the anesthetized rat (Gozzi et al.
2008b, a). The same experimental protocol was used here
to test if this effect could be modulated by agents that
stimulate NMDAr function by acting at the Gly co-agonist
site. Consistent with our two preceding studies, acute
administration of PCP elicited spatially selective functional
activation of distinct cortico-thalamic and hippocampal
areas. The magnitude and timecourse of PCP-induced
rCBV changes in the two control (vehicle-pretreated)
groups of this study were comparable to those observed in
previous studies, a finding that is of interest per se as it
testifies to the reproducibility of the experimental paradigm
used and underscores the potential of phMRI as a tool to
explore system-level pharmacology in the living brain.
Pretreatment with the endogenous NMDATr co-agonist D-
serine produced robust and widespread inhibition of the
functional activation elicited by PCP. This finding suggests
that stimulation of NMDAr Gly site can strengthen
NMDAR glutamatergic neurotransmission in vivo, and
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Fig. 4 Effect of pretreatment with D-serine per se (1 g/kg i.p.) on
basal CBV in representative brain regions. Data are plotted as mean+
SEM within each group

corroborates the hypothesis that the Gly sites of NMDAr
are not tonically saturated under homeostatic conditions in
vivo. Consistent with our results, a number of previous
reports have shown the ability of similar doses of D-serine
to antagonize both the acute and chronic neuro-behavioral
effects of PCP in freely moving rodents (Tanii et al. 1994;
Nilsson et al. 1997; Andersen and Pouzet 2004; Karasawa
et al. 2008; Hashimoto et al. 2008). The anatomical
distribution of the D-serine inhibitory effect revealed
widespread general inhibition of PCP response, with no
clear signs of regional-dependence. This observation would
argue against the hypothesis that NMDAr Gly sites could
present variable region-dependent degrees of saturation in
the brain, at least as far as the regions activated by PCP are
concerned. However, it is still unclear which of the
neurofunctional effects of PCP reflect local impairment of
NMDA neurotransmission and which originate in remote
brain structures through long-range afferent/efferent termi-
nals. Until the relative contribution of these complementary
mechanisms is fully clarified, it will not be possible to
determine the exact local or global nature of an inhibitory
action like the one produced by D-serine.

The dose and administration scheme of D-serine used in
this study were selected from the work by Hashimoto and
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Fig. 5 Effect of pretreatment with SSR504734 per se (10 mg/kg i.p.)
on rCBV baseline in three representative brain regions. SSR504734
(group 4, n=5) or vehicle (groups 3 and 5, n=12) were administered
at time 0. Data are plotted as mean+SEM within each group

Chiba (2004) who demonstrated a slow but sustained
increase in the CNS levels of the amino acid following
systemic administration, with a plateau 6 h postinjection
that remains elevated for the subsequent 24 h. D-serine slow
pharmacokinetics correlates well with the results of
preliminary experiments performed in our lab showing the
inability of the same dose of D-serine to produce significant
effects after intraperitoneal administration 30 min prior to
the PCP challenge (A. Gozzi, unpublished results). The time-
dependence of the inhibitory action of D-serine on PCP
therefore provides an indirect confirmation of the specific
pharmacological nature of the inhibitory action observed.
D-serine has been reported to elicit basal CBV increases
in the hippocampus of isoflurane-anesthetized rat 2 h
postintraperitoneal administration (Panizzutti et al. 2005).
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In the present study, the drug did not produce significant
changes in baseline CBV 23 h after i.p. administration. The
absence of significant CBV alterations in spite of the
presence of elevated D-serine levels in the CNS (Hashimoto
and Chiba 2004) is not totally unexpected, as prior phMRI
studies have demonstrated that the profile of hemodynamic
response to a drug challenge does not necessarily correlate
with its pharmacokinetic exposure (Schwarz et al. 2004).
This finding also permits to rule out the presence of “ceiling”
or “floor” rCBV alterations that could have prevented the
subsequent response to PCP. Similar considerations apply to
SSR504734, which induced weak- and short-lived rCBV
increases in cortical and subcortical areas that returned to
preinjection baseline values well before the PCP challenge.

Consistent with the results of D-serine, pretreatment with
the selective GlyT-1 inhibitor SSR504734 completely
blocked the positive functional response to PCP. The
inhibition appeared to be robust and generalized, with
complete suppression of the positive rCBV response in all
the brain regions examined. This finding adds to previous
preclinical evidence showing that glycinergic stimulation of
the NMDAr can antagonize the neurofunctional and
psychotogenic effects produced by PCP and other NMDAr
antagonists in rodents. For example, Depoortere et al.
(2005) showed that SSR504734 can significantly inhibit
NMDA antagonist-induced brain metabolic activity, EEG
perturbations, and locomotor hyperactivity. Similar results

a)

Pyr

Fig. 6 Model of the local neuronal circuit disinhibition in response to
PCP and putative modulatory effect of glycinergic agents on circuit
dynamics. a GABAergic interneurons (GABAI) receive input and
thereby exert inhibitory control on pyramidal cells (Pyr) through
recurrent projections. b In the presence of PCP, this local feedback
inhibition becomes selectively disrupted. As PCP is a use-dependent
NMDAr channel blocker, this effect may reflect higher tonic activity

have been reported for other GlyT-1 inhibitors (Harsing et
al. 2003; Hashimoto et al. 2008; Karasawa et al. 2008)
suggesting that the effect of SSR504734 is related to its
mechanism of action, rather than being specific to a
particular molecular moiety. These findings are consistent with
the view by which high-capacity astroglial GLYT-1 exert a
stringent control of Gly levels within the synaptic cleft (Zafra
et al. 1995) and are thus responsible for keeping the effective
synaptic concentrations of Gly well below the micromolar
range measured in the extracellular space (Javitt 2007).

An interesting finding of the present study was the
detection of significant PCP-induced rCBV decreases (i.e.,
deactivation) following the administration of PCP in rats
pretreated with D-serine or SSR504734. The effect was
more pronounced and spatially extended in animals
receiving SSR504734 with respect to D-serine, the latter
showing significant deactivation only in somatosensory
cortical regions. The origin and significance of this negative
response to PCP are not entirely clear. Additional studies
performed in our lab with chemically diverse Gly-TI
inhibitors produced analogous effects (A Gozzi, unpub-
lished results). The degree of deactivation also appeared to
be dose-dependent. This feature was however not observed
with antipsychotic drugs like clozapine or with compounds
that inhibit the PCP response by modulating presynaptically
glutamate release (Gozzi et al. 2008b), suggesting that the
effect could be specific to this particular pharmacological
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of GABA NMDAr pool, resulting in a large population of open
NMDAr channels accessible to the antagonist. ¢ Allosteric modulators
of NMDAr like D-serine or glycine, by increasing opening frequency
of NMDATr pyramidal pool can alter this balance and make pyramidal
NMDAr more accessible to the antagonistic action of PCP thus
leading to generalized depression of NMDAr neurotransmission in the
brain (d)
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mechanism. A tentative explanation of this finding may lie
in the basic neuropharmacological mechanisms governing
the psychotomimetic reaction to PCP. As comprehensively
reviewed by Greene (2001), electrophysiology data strong-
ly suggest that the functional and behavioral effects of
NMDAr antagonists are mediated by a dose-dependent
disinhibition of cortical projection cell firing (e.g., pyrami-
dal neurons, Fig. 6). This phenomenon appears to reflect
selective antagonization by PCP of NMDAr located on the
GABAergic interneurons responsible for recurrent inhib-
itory feedback onto pyramidal cells (Homayoun and
Moghaddam 2007). Two main mechanisms are thought to
significantly contribute to this selective neuropharmacolog-
ical action. First, NMDAr on interneurons are not as
strongly voltage sensitive as pyramidal NMDAr, probably
a consequence of a different NMDAr subunit composition
(Greene 2001; Grunze et al. 1996). As a result, tonic
pyramidal neurotransmission is intrinsically much less
susceptible to NMDAr antagonism than the corresponding
recurrent inhibitory circuit. This is because pyramidal
neurons require a significant depolarizing influence (usually
form other synaptic inputs) to activate NMDAr-dependent
conductance by removal of the voltage-sensitive Mg "
blocking the NMDAr channel. The functional contribution
of this phenomenon is probably magnified by a second
contributing mechanism, namely, the fact that PCP acts
primarily by binding to a site that resides within the NMDA
channel (MacDonald et al. 1991). As a result, PCP will
exert a stronger pharmacological inhibition in the channel
pool that is most active (i.e., GABAergic interneurons)
compared to the one that is less active (i.e., pyramidal cells;
Fig. 6b). Thus, if the NMDATr of interneurons are more
active, then PCP-induced selective blockade of these
channels might occur prior to reaching a neuropharmaco-
logical equilibrium or can even preclude ever reaching
equilibrium. According to this model, agents that stimulate
the NMDAr Gly site may alter this equilibrium by
increasing the opening frequency of pyramidal NMDAr
channels (Fig. 6¢) and thereby promote PCP-induced
blockade of NMDAr-mediated excitatory input onto pyra-
midal cells. This effect can, in turn, counterbalance and/or
outweigh the inhibitory action of PCP on GABAergic
interneurons, leading to generalized antagonism of all
NMDA-dependent neurotransmission (Fig. 6d), an effect
that would functionally reflect in widespread depression of
brain activity similar to that observed in subjects pretreated
with SSR534740 and, to a lower extent, in the cortex of
subjects treated with D-serine. According to this view, the
widespread pattern of deactivation observed in rats pre-
treated with SSR534740 would also argue against the
hypothesis that NMDAr Gly sites could present region-
dependent degrees of saturation in the brain.
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The use of the anesthetic may represent a confound that
can, in principle, affect the magnitude and distribution of
the functional response to drugs. This aspect has been
discussed in greater detail in a dedicated study (Gozzi et al.
2008a). It is, however, noteworthy to emphasize here the
striking correspondence that we found between the pattern
of activation produced by PCP in this protocol and the
results of neuroimaging and 2-deoxyglucose functional
mapping in conscious animal models, a result that strongly
suggests that the functional changes mapped are represen-
tative of the central effects of PCP in freely moving animals
and in humans. The consistency between our results with D-
serine and SSR534740 and those obtained in the behavioral
models discussed above provides an ulterior indirect
confirmation of this argument.

In conclusion, our results show that D-serine and
SSR504734 can significantly inhibit the fMRI response to
acute PCP challenge in the rat. These findings are
consistent with the hypothesis that pharmacological stimu-
lation of NMDA receptors via Gly co-agonist site can
potentiate NMDAr neurotransmission in the living brain.
These results are consistent with previous findings suggest-
ing that Gly levels in vivo are not saturating under
homeostatic conditions. The efficacy of the Gly-TI inhibitor
shows a potential for this class of drugs to provide selective
enhancement of NMDAr activity, a pharmacological strat-
egy that can be exploited therapeutically to restore NMDAr
hypofunctionality in schizophrenia.
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Abstract

Rationale Several second-generation antipsychotics are char-
acterised by a significant antagonistic effect at serotonin
5-HT,A receptors (5-HT,oR), a feature that has been
associated with lower incidence of extra-pyramidal symp-
toms and a putative amelioration of positive and negative
symptoms experienced by schizophrenic patients. However,
the neurofunctional substrate of 5-HT,, antagonism and its
exact contribution to the complex pharmacological profile of
these drugs remain to be elucidated.

Objectives Here, we used pharmacological magnetic reso-
nance imaging to map the modulatory effects of the selective
5-HT, 4R antagonist MI00907 on the spatiotemporal patterns
of brain activity elicited by acute phencyclidine (PCP)
challenge in the rat. PCP is a non-competitive NMDA

Electronic supplementary material The online version of this article
(doi:10.1007/s00213-009-1772-4) contains supplementary material,
which is available to authorized users.

A. Gozzi - M. Clemens * A. Bifone

Biology, Neurosciences CEDD,
GlaxoSmithKline Medicines Research Centre,
Verona, Italy

V. Crestan * G. Turrini

Laboratory Animal Science, Neurosciences CEDD,
GlaxoSmithKline Medicines Research Centre,
Verona, Italy

A. Gozzi (<)

Neuroimaging, GSK Neurosciences CEDD,
Fleming 4,

37100 Verona, Italy

e-mail: alessandro.gozzi@gsk.com

Present Address:

M. Clemens

Osservatorio Astronomico di Padova,
Padova, Italy

receptor antagonist that induces dysregulation of corticolimbic
glutamatergic neurotransmission and produces cognitive
impairment and psychotic-like symptoms reminiscent of those
observed in schizophrenia.

Results Pre-administration of M100907 produced focal and
region-dependent attenuation of PCP-induced response in
frontoseptohippocampal areas. As early studies highlighted a
permissive role of 5-HT,5R on frontal dopamine release, the
role of post-synaptic dopamine D, receptors on PCP-induced
response was examined by using the potent antagonist
SCH23390. Interestingly, SCH23390 did not affect PCP’s
response in any of the regions examined. This finding rules
out a significant contribution of dopamine in the functional
changes mapped and, indirectly, the inhibitory effect of
M100907, in favour of a glutamatergic origin.

Conclusions Our data expand recent evidence suggesting a
key role of 5-HT;oR in modulating glutamate-mediated
cognitive performance in the prefrontal cortex and highlight
the whole frontoseptohippocampal circuit as a key functional
substrate of 5-HT,5R antagonism in normal and disease
states.

Keywords fMRI - Phencyclidine - M100907 - phMRI -
Schizophrenia - Cognition

Introduction

Schizophrenia is a disabling psychiatric disorder charac-
terised by complex and severe symptoms, including
psychosis, hallucinations, cognitive deficits and mood
alterations. Whilst the first antipsychotic agents targeted
selectively the dopamine system through dopamine D,
receptors, second-generation antipsychotics (SGA; e.g.
clozapine) are characterised by a multifaceted pharmacological

@ Springer


http://dx.doi.org/10.1007/s00213-009-1772-4

Appendix 4
38

Psychopharmacology (2010) 209:37-50

profile, including multiple antagonist or inverse agonist
properties at several neuroreceptor systems including seroto-
nin, noradrenaline and histamine (Seeman 2002). This
complexity makes it difficult to unravel the role and
pharmacological contribution of individual target receptors,
and despite almost two decades of active research since the
identification of the first atypical antipsychotic clozapine, the
precise mechanism responsible for the therapeutic effect of
these molecules remains elusive.

The observation that several SGA present relatively low
dopamine D, receptors affinity but high affinity for
serotonin (5-HT) receptors has stimulated great interest in
the neurophysiological role of this neurotransmitter in
schizophrenia (Meltzer 1996). In particular, it has been
suggested that the relatively high affinity of clozapine for
the 5-HT,5 receptor (5-HT,5R) may contribute to its
reduced side effect liability and to its greater efficacy in
therapy-resistant schizophrenia (Tandon and Fleischhacker
2005; Ichikawa and Meltzer 1999; Meltzer et al. 1989).

Pre-clinical experimental evidence indicates the possi-
bility of a significant role for 5HT,5 receptors in
modulating specific effects of SGA. Early studies showed
that systemic or local administration of selective 5-HT,5R
antagonists in the rat medial prefrontal cortex stimulates
dopamine efflux (Schmidt and Fadayel 1995). This
finding has led to the hypothesis of a permissive role of
5-HT,AR on frontal dopamine release as a contributory
factor for a potentially superior cognitive effect of novel
generation antipsychotics over classic dopamine D2
receptor antagonists (Kuroki et al. 1999; Ichikawa and
Meltzer 1999). This hypothesis, however, has not been
consistently confirmed in clinical studies, and the benefit
exerted by SGA medications on cognitive performance
remains questionable (Davidson et al. 1999). Recent
studies have revealed an additional contribution of
5-HT,AR as modulators of glutamatergic neurotransmission
in frontocortical areas (Scruggs et al. 2000, 2003; Zhai et al.
2002), an effect that seems to be relevant for the control of
attentional and cognitive performance of rat prefrontal cortex
(Carli et al. 2005; Mirjana et al. 2004) and could exert a
direct anti-psychotic effect in disease states involving hyper-
glutamatergic neurotransmission (Coyle 2006). However,
most of the studies that investigated the neurobehavioural
correlates of frontal 5-HT,,R antagonism have employed
local impairment of NMDA and/or 5-HT,;5R activity
through in situ administration of pharmacological agents
(Mirjana et al. 2004; Martin-Ruiz et al. 2001; Ceglia et al.
2004). Whilst this approach is valuable in linking discrete
receptor populations with the cellular determinants of
behaviour, its pharmacological significance is severely
limited by the local nature of the manipulations
employed, which neglects potentially important afferent
and efferent contributions of a complex receptor system
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like 5-HT, 4. Moreover, the wide distribution of 5-HT, 4R
in the brain (Hoyer et al. 1986) and its pre- and post-
synaptic location at different neuronal sub-types (Meltzer
et al. 2003) make it difficult to predict the overall
functional effect and exact neuronal substrates of SHT,4R
antagonism in the living brain. As most of the pre-clinical
research so far has focused on the role of the receptor in
frontal areas, the function and possible contributions of
the wide extra-frontal 5-HT,,R pool has remained
virtually unexplored.

Non-invasive neuroimaging techniques such as pharmaco-
logical magnetic resonance imaging (phMRI) simultaneously
integrate multiple functional contributions from widely
distributed receptor populations, providing a spatially
resolved description of pharmacological activity that is not
straightforwardly related to receptor distribution and density
(Jenkins et al. 2003; Gozzi et al. 2006; Honey and Bullmore
2004). In an attempt to identify the circuits modulated by
5-HT,AR antagonism in the living brain, we used a rat
phMRI protocol to map the modulatory effect of the
selective 5-HT,5R antagonist M100907 (Kehne et al.
1996) on the spatiotemporal pattern of response to an acute
challenge with the N-methyl-D-aspartic acid receptor
(NMDAR) antagonist phencyclidine (PCP). NMDAR
antagonists like ketamine and PCP induce perceptual
abnormalities, psychosis-like symptoms and mood
changes in healthy humans and patients with schizophre-
nia (Malhotra et al. 1997; Adler et al. 1999; Allen and
Young 1978), a finding that has led to the hypothesis that
a decreased NMDAR function may be a pre-disposing or
even causative factor in schizophrenia (Kristiansen et al.
2007; Krystal et al. 2002). The behavioural and functional
effects of NMDAR antagonists are thought to arise
primarily from a dose-dependent disinhibition of thalamo-
cortical glutamatergic neurotransmission (Greene 2001;
Large 2007), an event that cascades to involve several
neurotransmitter systems including serotonin and dopamine
(Greene 2001; Large 2007; Moghaddam et al. 1997). Recent
neuroimaging studies have demonstrated the ability of
NMDAR antagonists to elicit focal corticolimbothalamic
activation in pre-clinical species (Gozzi et al. 2008b;
Littlewood et al. 2006) and humans (Langsjo et al. 2003;
Deakin et al. 2008), an effect totally suppressed by agents
that modulate glutamate neurotransmission and regionally
attenuated by atypical antipsychotics like clozapine (Gozzi
et al. 2008a, b). In the present study, we explored the
modulatory effect of the selective 5-HT,,R antagonist
M100907 on the functional response to PCP as a means to
identify and spatially resolve the circuital substrate of
5-HT, AR antagonism in the living brain. This approach
allowed us to identify a focal and region-dependent
attenuation of PCP-induced response by M100907 in
frontoseptohippocampal areas.
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Moreover, in an attempt to elucidate the neurochemical
determinants of the changes mapped, we examined the role
of dopamine D, antagonism on the pattern of activation of
PCP using the potent antagonist SCH22390 (Neisewander
et al. 1998). Dopamine D, receptors are crucially involved
in the control of cognitive functions processed at a
prefrontal level (Robbins 2005). Since M100907 has been
reported to stimulate dopamine release in frontal areas
(Schmidt and Fadayel 1995), the effect of this drug may
involve post-synaptic activation of D; dopamine recep-
tors. Given the prevalent role of dopamine D; receptors in
mediating the fMRI response to dopamine-releasing
agents (reviewed by Knutson and Gibbs 2007), by
assessing the effect SCH22390, we sought to determine
whether the functional response to PCP in our model
presents significant contributions of dopaminergic nature.
When considered with previous evidence of a negligible
role of dopamine D, receptors in the same experimental
setup (Gozzi et al. 2008Db), a lack of modulatory effect by
SCH233990 would strongly argue against a predominant
contribution of dopamine in the functional response to
PCP mapped and, in turn, in the inhibitory effect of
M100907. In the light of the established facilitatory role of
5-HT,5R on pyramidal glutamate neurotransmission
(Scruggs et al. 2000, 2003; Zhai et al. 2002), this finding
would thus provide important indirect evidence supporting
a glutamatergic origin of the effects mapped with
M100907.

Materials and methods
Animal preparation

The studies were performed on male Sprague—Dawley rats
(250-350 g, Charles River, Como, Italy). Animal prepara-
tion/monitoring and MRI acquisition have been previously
described in greater detail (Gozzi et al. 2008b). Briefly, rats
were anaesthetised with 3% halothane, tracheotomised and
artificially ventilated with a mechanical respirator. The left
femoral artery and vein were cannulated and animal
paralysed with a 0.25-mg/kg i.v. bolus of D-tubocurarine
followed by a continuous infusion of 0.25 mg/kg/h through
the artery. After surgery, halothane level was set to 0.8%.
Arterial blood samples (0.5 ml) were taken immediately
prior to and at the end of the fMRI time series acquisition,
and p,CO, and p,0, were measured using a blood gas
analyser (Table SI). No statistically significant difference in
mean pre- and post-acquisition p,CO, values for each pair
of PCP-challenged groups was found (p>0.33, all groups;
ANOVA, followed by Fisher’s least significant difference
(LSD) test for multiple comparisons). The body tempera-
ture of all subjects was maintained within physiological

range (37+0.8°C) throughout the experiment by using a
water heating system. Mean arterial blood pressure
(MABP) was monitored continually through a transducer
placed in the femoral artery.

rCBV measurement

MRI acquisition parameters have been previously described in
greater detail (Gozzi et al. 2008a). Images were acquired
using a Bruker Avance 4.7-T system. The MR acquisition for
each subject comprised T,-weighted anatomical images
using the rapid acquisition relaxation enhanced (RARE)
sequence (Hennig et al. 1986; TR=5,000 ms, TE.z=76 ms,
RARE factor 8, FOV 40 mm, 256%x256 matrix, 16
contiguous 1 mm slices) followed by a time series
acquisition with same spatial coverage (TR.y=2,700 ms,
TE.5=110 ms, RARE factor 32, 128 x 128 matrix, NA=2,
dt=40).

Total MRI time-series acquisition time was 77 min (110
repetitions) for all groups. Following six reference images,
2.67 ml/kg of the blood pool contrast agent Endorem
(Guerbet, France) was injected so that subsequent signal
changes would reflect alterations in relative cerebral blood
volume (rCBV; Mandeville et al. 1998).

Compounds, doses and experimental design

In order to allow for a better randomisation and keep
the study manageable, drugs were tested in two
separate studies. PCP challenge was administered 30
or 20 min after i.p. or s.c. pre-treatment (see below),
and MRI data were acquired over a period of 30 min
following the administration of the PCP challenge.
Male SD rats were randomly assigned to one of the
groups below.

M100907 1.5 mg/kg study

1. Intraperitoneal pre-treatment with vehicle (water 1 ml/
kg) followed by intravenous challenge with PCP
(0.5 mg/kg, 1 ml/rat) 30 min later (n=5)

2. Intraperitoneal pre-treatment with M100907 (1.5 mg/kg)
and intravenous challenge with PCP (0.5 mg/kg, 1 ml/rat)
30 min later (n=6)

MI100907 0.5 mg/kg study

3. [Intraperitoneal pre-treatment with vehicle (saline, 1 ml/
kg), followed by intravenous challenge with PCP
(0.5 mg/kg, 1 ml/rat) 30 min later (n=8)

4. Intraperitoneal pre-treatment with M100907 (0.5 mg/kg)
followed by intravenous administration of PCP (0.5 mg/kg,
1 ml/rat) 30 min later (n=6)
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SCH23390 0.5 mg/kg study

5. Subcutaneous pre-treatment with vehicle (water, 1 ml/kg)
followed by intravenous challenge with PCP (0.5 mg/kg,
1 ml/rat) 20 min later (n=6)

6. Subcutaneous pre-treatment with SCH23390 (0.1 mg/kg;
1 ml/kg) followed by intravenous challenge with PCP
(0.5 mg/kg, 1 ml/rat) 20 min later (n=8)

7. Intraperitoneal pre-treatment with water (1 ml/kg)
followed by intravenous challenge with saline (1 ml/
rat) 30 min later (n=6). This group served as reference
rCBYV baseline for PCP in all studies

Phencyclidine hydrochloride was purchased from Tocris
(Bristol, UK). M100907 was synthesised by the GSK
department of Medicinal Chemistry. All compounds were
dissolved in saline and injected at a rate of 1 ml/min. The
doses chosen for the different drugs were based on
previously published in vivo studies. PCP was tested at a
sub-anaesthetic dose (0.5 mg/kg i.v.) that produces robust
corticolimbothalamic activation in halothane-anesthetised
rat (Gozzi et al. 2008c). The same dose of PCP has also
been reported to elicit robust behavioural and metabolic
(2-deoxyglucose) effects in conscious and freely-moving
rats (Weissman et al. 1987; Gozzi et al. 2008b).

The doses of M100907 used in the present study
showed robust effects in multiple behavioural readouts in
rodents (reviewed by Kehne et al. 1996). The compound
exhibits high potency and excellent selectivity (>100-fold
separation at 26 receptors) and has been shown to be
devoid of ex vivo receptor binding at alphal-adrenetrgic
or D,-dopamine receptor at doses 7-fold higher than the
maximal dose tested in our experiments (Kehne et al.
1996). SCH23390 is a potent dopamine D; antagonist
(Andersen et al. 1992). The pre-treatment regimen used
with SCH23390 has been reported to produce rapid and
sustained exposure in the rat brain (Hietala et al. 1992).
The same dose of SCH223390 tested produced robust in
vivo antagonism of acute and chronic effect of dopami-
nergic agents in numerous rat behavioural paradigms
(Molloy and Waddington 1984; Garris et al. 1994; Wolf
and Xue 1999; Zahrt et al. 1997) whilst minimising the
cataleptic and cognitive-impairing effects reported at
higher doses (Wadenberg 1992).

Data analysis

rCBV time series image data for each experiment were
analysed within the framework of the general linear
model as described in greater detail elsewhere (Worsley
et al. 1992; Schwarz et al. 2006b). The maps thus
obtained were used to guide the selection of activated/
deactivated regions for subsequent volume of interest
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(VOI)-based quantification and comparison of efficacy of
pre-treatments.

Signal intensity changes in the time series were
converted into fractional rCBV on a pixel-wise basis, using
a constrained exponential model of the gradual elimination
of contrast agent from the blood pool (Schwarz et al. 2003,
2006b). Individual subjects in each study were spatially
normalised by a 9 degree-of-freedom affine transformation
mapping their T,-weighted anatomical images to a stereo-
taxic rat brain MRI template set (Schwarz et al. 2006a) and
applying the resulting transformation matrix to the accom-
panying rCBV time series. rTCBV time series for the PCP or
vehicle challenge were calculated covering 8 min (12 time
points) pre-challenge baseline and 25 min (38 time points)
post-challenge window, normalised to a common injection
time point. Image-based time series analysis was carried out
using FMRI Expert Analysis Tool Version 5.63, part of
FMRIB’s Software Library (www.fmrib.ox.ac.uk/fsl) with
0.8 mm spatial smoothing (=2.5 xin-plane voxel dimension)
and using a model function identified by Wavelet Cluster
Analysis across all animals in the cohort, capturing the
temporal profile of the signal change induced by PCP
challenge (Whitcher et al. 2005; Schwarz et al. 2006b). As
no substantial differences in the temporal profile of PCP-
induced changes were observed across PCP-challenged
groups (see “Results” section), a common regressor was
used (Supplementary Figure 1). Consistent with previous
studies, PCP did not produce any significant short-lived or
negative signal changes in any of the regions analysed
(Gozzi et al. 2008a, b).

The design matrix also included the temporal derivative of
this regressor and a linear ramp (both orthogonalised to the
regressor of interest) with the aim to capture additional
variance due to slight deviations in individual subjects or
brain regions from the signal model time course as described
in more detail in Schwarz et al. (2006b). The coefficients of
the model function thus provided a map of rCBV response
amplitude for each injection in each subject. Higher-level
group comparisons were carried out using FMRIB’s Local
Analysis of Mixed Effects; Z (Gaussianised T/F) statistic
images were thresholded using clusters determined by Z>2.3
and a corrected cluster significance threshold of p=0.01
(Worsley et al. 1992; Friston et al. 1994). Volumetric three-
dimensional reconstructions of activation maps were gener-
ated using custom in-house software written in IDL
(Research Systems Inc., Boulder, CO, USA).

VOI time courses for the PCP challenge were extracted
from unsmoothed rCBV time series data using a 3D digital
reconstruction of a rat brain atlas (Paxinos and Watson
1998) co-registered with the MRI template (Schwarz et al.
2006a), using custom in-house software written in IDL
(Research Systems Inc., Boulder, CO, USA). A list of the
VOIs examined and their anatomical definitions can be
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found in (Gozzi et al. 2008b). For each VOI time course,
the average rCBV over a 16-min time window covering the
peak response to PCP (4-20 min post-injection) was used
as a summary statistic of the relative change. The effect of
pre-treatment on the magnitude of average rCBV in
different VOIs was assessed by a one-way ANOVA
followed by Fisher’s LSD test for multiple comparisons.

VOI time courses pre- and post-M 100907 administration
were also examined to assess potential effects of pre-
treatment per se on basal CBV. To this end, rCBV time
courses were also calculated for the pre-treatment over a
time window covering 6 min (8 time points) pre-injection
baseline and 22 min (32 time points, groups 1-4 and 7) or
17 min (24 time points, groups 5 and 6) post-injection
window normalised to a common injection time point. VOI
time courses were extracted from unsmoothed rCBV time
series in the same regions examined for the PCP challenge.

Administration of vehicle, SCH23390 or PCP was
accompanied by small and transient alterations of MABP.
M100907 produced a sustained decrease in MABP that
lasted throughout PCP’s pre-injection time window (mean
MABP~65 mmHg). In all cases, peak magnitude of the
MABP observed was within the cerebral blood flow auto-
regulation range measured under the same anaesthetic
conditions used in the present study (Gozzi et al. 2007).
As shown by us and other groups, positive or negative
pharmacologically evoked MABP changes within the auto-
regulation range mentioned above do not result in significant
central rCBV response when spin-echo MRI sequences are
used (Zaharchuk et al. 1999; Gozzi et al. 2000).

Results

Vehicle-pre-treated animals (groups 1 and 3 and 5) showed a
robust and sustained rCBV response to PCP in several
corticolimbothalamic structures (Figs. 1, 2, 3, 4 and 5),
consistent with previous observations (Gozzi et al. 2008b, c).
Statistically significant activation was observed in limbic
cortical regions with extension into the motor, visual,
parietal- and temporal association and rhinal cortices.
Additional foci of subcortical activation were observed in
the medial and lateral habenula, amygdala, anterodorsal,
dorsolateral and ventromedial thalamus, posterodorsal,
anterodorsal and ventral and posterior hippocampus, the
striatum and the nucleus accumbens. The overall tempo-
ral profile of PCP-induced activation was comparable in
all the activated regions (Fig. 4; Supplementary Figures 2
and 3). Despite differences in the peak magnitude of PCP
response across studies, the spatial distribution and
relative amplitude of the regional response to PCP were
very consistent and conserved across the different control
groups (groups 1, 3 and 5; Figs. 3 and 5).

a Vehicle - PCP

Fig. 1 a Anatomical distribution of the rCBV response following
acute challenge with PCP (0.5 mg/kg i.v., group 1) with respect to
baseline (vehicle—vehicle, group 5). b Anatomical distribution of the
rCBV response following acute challenge with PCP (0.5 mg/kg i.v.,
group 1) in animals pre-treated with M100907 with respect to baseline
(vehicle—vehicle, group 5). Orangelyellow indicates increased rCBV
versus baseline (vehicle—vehicle). ¢ Map of the regions showing an
attenuated PCP response in animals pre-treated with M100907
(1.5 mg/kg i.p., group 1 vs. group 2). Blue indicates decreased rCBV
versus baseline. Z statistics threshold levels are reported beside each
map. Maps were cluster-corrected using a p=0.01 significance level.
mPFC medial prefrontal cortex, Sp septum, VHec ventral hippocampus

Pre-administration of M100907 (1.5 mg/kg i.p.) produced
region-dependent and sustained attenuation of PCP-induced
rCBV response (Figs. 1, 2, 3 and 4). Foci of significant
inhibition were observed in the medial prefrontal cortex,
diagonal band, septal nuclei and in ventral hippocampal and
peri-hippocampal areas, including the rhinal cortex (p<0.05,
ANOVA; Figs. 1, 2, 3 and 4). Three-dimensional recon-
struction of the areas of attenuation highlighted the involve-
ment of contiguous septofrontal and hippocampal structures
(Fig. 2). No areas of increased response to PCP were
observed. The lower dose of M100907 (0.5 mg/kg i.p.) did
not produce statistically significant attenuation of PCP
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a rCBV response to PCP

Fig. 2 a Volumetric reconstruction of the pattern of rCBV activation
produced by acute challenge with PCP with respect to vehicle and b
attenuating effect of pre-treatment with the selective 5-HT,, antagonist

response in any of the regions examined (p>0.28 all regions;
Fig. 3), although a trend was evident in the medial prefrontal
cortex (p<0.09). This effect was best seen on rCBV time
courses (Supplementary Figure 2). Pre-administration of
SCH23390 (0.1 mg/kg i.p.) did not produce any significant
alteration of PCP response in any of the regions examined
(p>0.24, all regions; Fig. 5; Supplementary Figure 3).
Administration of M100907 per se (0.5 or 1.5 mg/kg i.p.)
produced small (2-8%) and short-lived (4-9 min) rCBV
increases in various brain regions, including the medial
prefrontal cortex and ventral hippocampus (Supplementary
Figures 4 and 5). At the time of PCP challenge, no apparent
basal rCBV alteration with respect to vehicle was present in
any of the regions examined. Intraperitoneal administration

Ach
Cpu

Thalamus B. ganglia

Hippocampus

Corex
<

0.15 0.30

rCBV

Il Veh - PCP
MO00907 0.5 mgkg - PCP

Fig. 3 Magnitude of mean rCBV response (AUC4 5 min) to PCP in
representative regions of interest. Left Veh-PCP (group 3); Veh-PCP
(group 4). Right Veh-PCP (group 1), M100907 1.5 mg/kg-PCP
(group 2); *p<0.05 versus Veh-PCP (group 1), ANOVA followed by
Fisher LSD test for multiple comparison. Acb nucleus accumbens, Cpu
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b Attenuation by M100907

M100907 (1.5 mg/kg i.p.) in frontoseptohippocampal regions. PFC
medial prefrontal cortex, VHc ventral hippocampus, Sp septum

of SCH23390 did not produce visible alteration of basal
rCBV with respect to vehicle in any of the regions examined
(Supplementary Figure 6).

Discussion

In the present study, we show that selective antagonism of
5-HT,4R induces focal attenuation of PCP-induced activa-
tion in frontoseptohippocampal areas of the rat brain. Our
results extend previous findings of a role of 5-HT,AR in
modulating frontocortical activity (Ceglia et al. 2004;
Mirjana et al. 2004) by highlighting the additional
involvement of septal and ventral-hippocampal structures
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caudate putamen, DL dorsolateral thalamus, VM ventromedial thalamus,
AD anterodorsal hippocampus, V" ventral hippocampus, PDG posterior
dentate gyrus, PD posterodorsal hippocampus, S/ primary somatosen-
sory cortex, V' primary visual cortex, Cg cingulate cortex, PFC medial
prefrontal cortex
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Fig. 4 rCBV time course 0.4
following PCP injection in
representative brain structures.
PCP was administered at time 0.
Baseline data were obtained in
animals pre-treated and chal-
lenged with vehicle (saline,
group 5). Data are plotted as
mean + SEM within each group.

rCBV

Veh-PCP: group 1, M100907
(1.5 mg/kg i.p.)-PCP: group 2,
Veh-Veh: group 7. PFC medial
prefrontal cortex, VHc ventral
hippocampus, DLTh dorsolateral 0.3
thalamus, S7Ctx primary
somatosensory cortex
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as integrated substrate of the action of 5-HT,5R antagonism
in the living brain. This finding is of particular interest in
the light of clinical evidence suggesting a correlation

between frontohippocampal hyperactivity and cognitive
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Fig. 5 Magnitude of mean rCBV response (AUC4 50 min) to PCP in
representative regions of interest. Veh-PCP (group 5), SCH23390
0.1 mg/kg (group 6). Ach nucleus accumbens, Cpu caudate putamen,
DL dorsolateral thalamus, VM ventromedial thalamus, AD anterodor-
sal hippocampus, V' ventral hippocampus, PDG posterior dentate
gyrus, PD posterodorsal hippocampus, S/ primary somatosensory
cortex, V1 primary visual cortex, Cg cingulate cortex, PFC medial
prefrontal cortex

min

and perceptual alterations observed in unmedicated schizo-
phrenia patients (Silbersweig et al. 1995; Liddle et al. 2000;
Parellada et al. 1994; Ngan et al. 2002; Soyka et al. 2005;
Medoff et al. 2001)

The observation that 5-HT,,R antagonism affects brain
activity in frontohippocampal areas is consistent with
previous pre-clinical research. 5-HT,, receptor density in
these regions is high (Cornea-Hebert et al. 1999), and
immunofluorescence studies have demonstrated marked
5-HT,AR immunoreactivity in GABAergic and cholinergic
septohippocampal terminals, as well as in pyramidal and
granule cells of the hippocampus (Luttgen et al. 2004).
These findings suggest that 5-HT,,R can regulate hippo-
campal activity both via local pre-synaptic mechanisms and
upstream modulation of septal outputs. In agreement with
this, electrophysiology studies showed that M100907 and
atypical antipsychotic can potently inhibit the excitatory
action of serotonin on various septohippocampal neuronal
populations (Alreja 1996; Liu and Alreja 1997; Piguet and
Galvan 1994; Shen and Andrade 1998). However, the effect
does not trivially reflect 5-HT,5R receptor distribution.
Indeed, high 5-HT,5R density has been reported in large
brain structures such as basal ganglia, thalamus and
neocortex (Cornea-Hebert et al. 1999) which did not show
significant modulation by M100907. This finding is of
interest, as it highlights a discrete circuit whose activity is
focally modulated by a widely distributed receptor popula-
tion, and underscores the possibility to use functional
neuroimaging methods to describe specific psychopharma-
cological contributions in terms of modulation of focal
neural circuits.

The functional imaging technique used for this study
does not provide direct information on the specific cellular
or neurochemical determinants of the modulatory action of
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M100907. However, multiple lines of evidence support a
glutamatergic origin of the effect mapped. Firstly, 5-HT,AR
can positively modulate glutamatergic neurotransmission in
frontocortical areas (Ceglia et al. 2004; Scruggs et al. 2000;
Aghajanian and Marek 1997), through blockade of 5-HT, 5
pre-synaptic heteroreceptors (Aghajanian and Marek 2000;
Martin-Ruiz et al. 2001). Consistent with this hypothesis,
NMDAR antagonists have been shown to induce a dose-
and use-dependent hyper-glutamatergic state through de-
regulation of pyramidal glutamatergic activity by selectively
impairing recurrent feedback from GABAergic inter-
neurons (Gozzi et al. 2008a; Greene 2001; Homayoun
and Moghaddam 2007). Secondly, compounds that modu-
late pyramidal glutamate release have been shown to
markedly attenuate the functional and behavioural cascade
triggered by NMDAR antagonism (Gozzi et al. 2008a, b;
Cartmell et al. 1999). In agreement with this, Ceglia et al.
(2004) reported the ability of M100907 to prevent the
increase in frontocortical glutamate induced by the
NMDAR antagonist 3-(R)-2-carboxypiperazin-4-propyl-
1-phosphonic acid (CPP), an effect that also produced an
improvement of CPP-induced impairment in attentional
performance. Conversely, little or no inhibitory effect has
been observed with drugs that target neurotransmitter
systems secondarily activated by the effect of NMDAR
antagonism such as dopamine D, antagonists (Idris et al.
2005; Gozzi et al. 2008b; Large 2007).

Alternatively, since M100907 has been reported to
stimulate dopamine release in frontal areas (Schmidt and
Fadayel 1995), the inhibitory effect observed could reflect
post-synaptic activation of D; dopamine receptors. How-
ever, this effect, however, cannot be straightforwardly
investigated by using dopamine-mimetic drugs, as these
compounds produce robust and widespread haemodynamic
alterations that could saturate the subsequent response to a
PCP challenge (Choi et al. 2006; Schwarz et al. 2004,
2007). We therefore examined the role of post-synaptic
dopamine D; receptors on PCP-induced fMRI response
examined using a potent D; antagonist (SCH23390,
0.1 mg/kg; Andersen et al. 1992). Acute administration of
PCP generates disinhibition of corticothalamic glutamatergic
neurotransmission, an event that cascades to involve several
neurotransmitter systems including serotonin and dopamine
(Greene 2001; Large 2007, Moghaddam et al. 1997).
Increased dopamine release upon acute administration of
NMDAR antagonists has been observed in mesolimbic areas
and in frontal regions of the rat (Moghaddam et al. 1997
Javitt et al. 1999). Given the prevalent role of dopamine D,
receptors in mediating the fMRI response to dopamine-
releasing agents (Knutson and Gibbs 2007), by assessing the
effect of selective DA antagonists, we sought to determine
whether the functional response to PCP in our model
presents significant contributions of dopaminergic nature.
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Interestingly, pre-administration of SCH23390 did not
produce any significant alteration of PCP response in any
of the regions examined. When considered with previous
evidence of a negligible role of dopamine D, receptors in
the same experimental setup (Gozzi et al. 2008b), this
finding strongly argues against a predominant role of
dopamine in the functional changes mapped and, in turn,
in the inhibitory action observed with M100907. In the
light of the established facilitatory role of 5-HT,,R on
pyramidal glutamate neurotransmission discussed above,
it seems thus likely that that the effect of M100907 reflects
a local reduction in glutamatergic neurotransmission.
However, whilst this is by far the most plausible
neurochemical mechanism, our data do not permit to rule
out contributions of PCP-induced serotonergic neurotrans-
mission independent of the neuromodulatory role of the
5-HT,AR on glutamate release

Although a comprehensive discussion of the role of
dopamine in the cascade elicited by NMDAR antagonism is
beyond the scope of the manuscript, the lack of effect of
SCH22390 is of interest per se as it provides additional
evidence of a subsidiary role of this neurotransmitter in
mediating the neurobehavioural effects of these drugs, a
finding observed by numerous investigators using dopa-
mine D, antagonists in different experimental models and
readouts (Idris et al. 2005; Gozzi et al. 2008b; Krystal et al.
1999; Linn et al. 2003). Our finding extends these results to
the D; receptor subtype, suggesting that dopaminergic
mechanisms are engaged far downstream in the neurofunc-
tional cascade triggered by psychotogenic doses of
NMDAR antagonists.

M100907 produced significant attenuation of PCP only
at the highest dose (1.5 mg/kg), although a trend in the
mPFC was apparent at the lower dose tested (0.5 mg/kg;
Fig. 3). As pharmacodynamic studies reported complete
inhibition of behavioural response to serotonergic agents at
doses of 0.1 mg/kg (Schreiber et al. 1995; Kehne et al.
1996), the presence of significant attenuation only at the
higher dose may call into question putative contributions
from other receptor types, namely alphal-adrenergic,
dopamine D, or 5-HT,.. However, multiple lines of
evidence make this hypothesis very unlikely. Firstly,
M100907’s affinity for D, receptors is >2,500-fold lower
than 5-HT,, (Kehne et al. 1996). Consistent with this, the
drug failed to reduce apomorphine induced climbing in rats,
an index of D, receptor antagonism, at a dose as high as
8 mg/kg (Kehne et al. 1996; Sorensen et al. 1993).
Although the selectivity at alpha;-adrenergic receptor is
slightly lower (>100-fold), the drug did not show signifi-
cant ex vivo receptor binding at alpha,-adrenergic receptors
at doses up to 10 mg/kg (Kehne et al. 1996). Moreover, a
dose of 16 mg/kg of M100907 (i.e. 10-fold higher than the
effective dose of our study) failed to antagonise the acute
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cardiovascular effects of the alpha;-adrenergic agonist
phenylephrine (Kehne et al. 1996) in a widely used
behavioural assay index of alpha;-receptor antagonism
(Peroutka et al. 1977). Finally, 1 mg/kg of M100907 did
not show significant antagonism of the pre-pulse inhibition-
disruptive effect of the potent alpha,-adrenergic agonist
cirazoline in two different rat strains (Varty et al. 1999). In
the light of these findings, a significant contribution of
dopamine D, or alpha,-adrenergic receptors appears
extremely unlikely.

Secondly, although receptor binding data indicate a
>100-fold selectivity over 5-HT,c receptors (Kehne et al.
1996; Palfreyman et al. 1993), in vitro antagonism assays
of functional selectivity highlighted a >1,000-fold separa-
tion between the two receptors (Kehne et al. 1996). In
agreement with this, a number of in vivo studies showed
that M100907, at the same or higher doses tested here, did
not produce detectable effects in behavioural paradigms
sensitive to the action of selective 5-HT,c antagonism
(Fletcher et al. 2002; Zaniewska et al. 2007; Hajos et al.
2003), or produced significant effects that were not
paralleled by the action of selective 5-HT,c antagonists
(Varty et al. 1999). Thirdly, the nature of the behavioural
alterations produced by 5-HT,c antagonism in models of
NMDAR hypo-function cannot be easily be reconciled with
our findings, as several reports showed that 5-HT,c
antagonism does not inhibit, but rather exacerbates, the
acute effects of NMDAR antagonists (Higgins et al. 2003;
Hutson et al. 2000; O’Neill et al. 1999; Wood et al. 2001).
These effects have been linked to an increased dopaminer-
gic tone consequent to the blockade of 5- HT,¢ receptors in
several mesocortical areas, including the medial prefrontal
cortex (Gobert et al. 2000). However, as discussed above,
our data with the dopamine D,; antagonists SCH23390
argue against a significant contribution of dopaminergic
neurotransmission in the functional effect mapped. More-
over, consistent with the hypothesis of an opposing
functional role of 5-HT,, and 5-HT,¢ receptors (Ichikawa
and Meltzer 1999), electrophysiology studies demonstrated
that 5-HT,c antagonism do not decreases, but rather
increases the activity of septohippocampal circuit
(expressed as theta waves recordings), an effect reversed
by selective 5-HT,c agonists (Hajos et al. 2003). In
agreement with this, selective 5-HT,c agonists have been
recently shown to be highly efficacious in inhibiting the
behavioural effects of NMDAR antagonism (Marquis et al.
2007).When considered together, these data strongly argue
against a significant contribution of 5-HT,c or other
spurious receptor systems in the inhibitory effect of
M100907 observed in this study.

Based on recent ex vivo receptor occupancy data in the
rat frontal cortex, the doses of M100907 used in the present
manuscript (1.5 and 0.5 mg/kg i.p.) would be expected to

have an estimated receptor occupancy of approximately
100% and 80% at the end 30-min post-PCP time window
examined (Knauer et al. 2008). Although the different
receptor occupancy alone could explain the lack of
response at the low dose, other experimental factors could
have contributed to stretch or right-shift the effective dose—
efficacy curve. For example, pharmacokinetic studies of
M100907 in the rat showed that the compound reaches
peak brain concentrations (7jn.x) 32+11 min after its
intravenous administration (5 mg/kg; Scott and Heath
1998). Assuming similar parameters following use of
intraperitoneal route, the relatively long-time window used
to quantify its effect in the present manuscript (30-60 min
post-administration) may not be optimally suited to maxi-
mise the sensitivity of the measurements. Furthermore,
molecular interactions between M100907, PCP and the
anaesthetic used (halothane) could also play a significant
contribution in vivo. Recent work from (Kapur and Seeman
2002) showed the ability of PCP and ketamine to bind to
the high-affinity state of 5-HT, receptor with micromolar
affinity, a value consistent with brain exposure of PCP at
the dose used in the present work (Proksch et al. 2000).
Moreover, the same authors recently demonstrated that low
doses of volatile anaesthetics such as halothane or
isoflurane can also bind to (and stimulate) the activity of
5-HT, receptors (Seeman and Kapur 2003). Thus,
simultaneous interactions of PCP and anaesthetic with
5-HT,, receptors may produce significant functional
antagonisation or pharmacological displacement of
M100907, resulting in the need of higher doses to exert
pharmacologically significant effects. Interestingly, a num-
ber of studies of 5-HT,, antagonism in PCP models of
NMDAR hypo-function showed significant effects only at
doses similar to those used in our study (Varty et al. 1999;
Habara et al. 2001), whilst studies performed at lower doses
do not consistently show effects (Rodefer et al. 2008;
Winter et al. 2004; Adams and Moghaddam 2001). This
suggests that PCP-5-HT,4 receptor interactions might be
non-negligible even in absence of anaesthesia. Future
experiments using NMDAR antagonist devoid of significant
5-HT,4 affinity (i.e. CPP; Lehmann et al. 1987) may be
performed to investigate this hypothesis. Nonetheless, it
should be emphasised that if these interactions do occur in
vivo, they are expected to affect the effectiveness, but not the
outcome, of 5-HT,, antagonism in the brain, thus leaving
unaltered the functional significance of the effects described
in our manuscript.

Whilst the transient state produced by the acute
administration of PCP cannot possibly mimic the entire
syndrome and course of a multi-factorial disease like
schizophrenia, the ability of NMDAR antagonists to
produce behavioural effects akin to positive and negative
symptoms of the disorder in human volunteers (Krystal et
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al. 2003; Adler et al. 1999) suggests that the hyper-
glutamatergic state produced by these drugs alters neural
function in circuits that are relevant for this condition.
Importantly, the circuits activated by NMDAR antagonists
in rodents and humans as seen with various functional
imaging modalities (Deakin et al. 2008; Gozzi et al. 2008c;
Langsjo et al. 2003; Vollenweider, personal communica-
tion) show a high degree of homology between species and
do not appear to be qualitatively affected by the anaesthesia
(Gozzi et al. 2008c). Several neuroimaging studies have
provided evidence for localised anatomical and functional
abnormalities in frontohippocampal areas of schizophrenia
patients. Imaging studies of haemodynamic parameters
have highlighted increased blood flow and abnormal
hippocampal activity at rest and during the performance
of memory retrieval tasks (Heckers 2001; Medoff et al.
2001). Similarly, neurometabolic studies in unmedicated
schizophrenic patients have highlighted increased tonic
frontocortical activity, a feature that has been linked to the
sensory flooding, cognitive fragmentation and ego-
dissolution seen in both drug-induced and disorder-based
psychosis (Parellada et al. 1994; Soyka et al. 2005; Geyer
and Vollenweider 2008; Volkow et al. 1986). Thus, the
ability of 5-HT,5R antagonism to produce region-selective
attenuation of aberrant frontohippocampal states suggests
that this pharmacological mechanism might contribute to
some of the therapeutic effect of clozapine and other second
generation anti-psychotics that possess significant 5-HT,,R
affinity (Ichikawa and Meltzer 1999). A few clinical studies
have recently addressed the role of selective 5-HT,5R
antagonism in schizophrenia patients. In a two multicenter,
placebo and haloperidol-controlled studies in USA,
M100907 showed statistically significant efficacy on total
score versus placebo of positive and negative symptoms
(De Paulis 2001; Marder 1999), although the drug was less
effective than haloperidol. The effect was not confirmed in
a European study involving patients with predominantly
negative symptoms, although M100907-treated schizo-
phrenic subjects showed significantly fewer preservative
errors in the Wisconsin Card Sorting Test (Roth et al.
2004). A recent placebo-controlled study using a the
5-HT,a/>cR antagonist SR46349B produced significant
reductions in the positive and negative syndrome scale
total and negative scores versus placebo (Meltzer et al.
2004). Likewise, the 5-HT,A/>cR antagonist mianserin
produced significant improvement in measures of cogni-
tive function (learning, memory and sustained attention)
when the drug was tested as add-on therapy in schizo-
phrenic patients (Poyurovsky et al. 2003). Collectively,
the limited clinical data available suggest that 5-HT,a
antagonism per se may produce mild, but clinically
significant antipsychotic effects, involving a moderate
improvement of both positive and negative symptoms.
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This is in agreement with our observation that the 5-HT,,R
antagonist M100907, unlike glutamatergic compounds
(Gozzi et al. 2008a, b), is unable to entirely suppress the
functional cascade produced by PCP in the rat brain, but
selectively reduces PCP-induced activation in the frontosep-
tohippocampal circuit, a key substrate of higher cognitive
functions that appears to be tonically hyper-activated in
drug-induced and disorder-based psychosis. Consistent find-
ings have been reproduced in pre-clinical behavioural
models, where 5-HT,R receptor antagonists do not consis-
tently antagonise the entire spectrum of behavioural and
neurochemical responses produced by NMDAR antagonists
in the rat (Large 2007; Adams and Moghaddam 2001) but
have been shown to improve frontocortical functions
(Mirjana et al. 2004; Winstanley et al. 2003). Of interest,
glucose metabolism studies using positron emission tomog-
raphy highlighted a tight correlation between depression of
corticohippocampal activity and antipsychotic action elicited
by a single dose of the atypical anti-psychotics risperidone
(Liddle et al. 2000). Whilst multiple receptor contributions
are likely to contribute to this effect, this finding is important
as it suggests that the circuital mechanism identified in our
study may be of clinical significance.

In conclusion, we have shown that 5-HT,,R antagonist
reduces PCP-induced activation in discrete brain regions,
including frontal cortex, septum and ventral-hippocampal
areas. These results are consistent with pre-clinical studies
highlighting a key role of 5-HT,,R in modulating
glutamate-mediated cognitive performance in the rodent
prefrontal cortex and extend those findings by highlighting
a role of the frontoseptohippocampal circuit as an integrated
substrate of the action of SHT,, antagonism in the living
brain. Collectively, pre-clinical and clinical research pro-
vide converging evidence that 5-HT,,R antagonism can
exert a region-selective modulation of frontoseptohippo-
campal activity that might be of clinical benefit when the
circuit is functionally hyperactive.
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Abstract

Cocaine addiction is often modeled in experimental paradigms where rodents learn to self-administer the drug. However,
the extent to which these models replicate the functional alterations observed in clinical neuroimaging studies of cocaine
addiction remains unknown.

We used Magnetic Resonance Imaging (MRI) to assess basal and evoked brain function in rats subjected to a prolonged,
extended-access cocaine self-administration scheme. Specifically, we measured basal cerebral blood volume (bCBV), an
established correlate of basal metabolism, and assessed the reactivity of the dopaminergic system by mapping the
pharmacological MRI (phMRI) response evoked by the dopamine-releaser amphetamine.

Cocaine-exposed subjects exhibited reduced bCBV in fronto-cortical areas, nucleus accumbens, ventral hippocampus and
thalamus. The cocaine group also showed an attenuated functional response to amphetamine in ventro-striatal areas, an
effect that was significantly correlated with total cocaine intake. An inverse relationship between bCBV in the reticular
thalamus and the frontal response elicited by amphetamine was found in control subjects but not in the cocaine group,
suggesting that the inhibitory interplay within this attentional circuit may be compromised by the drug. Importantly,
histopathological analysis did not reveal significant alterations of the microvascular bed in the brain of cocaine-exposed
subjects, suggesting that the imaging findings cannot be merely ascribed to cocaine-induced vascular damage.

These results document that chronic, extended-access cocaine SA in the rat produces neuroimaging alterations that closely
mimic hallmark imaging findings in human cocaine addicts. The functional alterations observed serve as plausible neuro-
biological substrate for the behavioral expression of compulsive drug-intake in laboratory animals.

Introduction

Chronic cocaine use produces long-lasting neurobiological changes that are thought to underlie the loss of control over
drug intake that defines cocaine dependence (1). Human neuroimaging studies have started to shed light on the nature of
these changes and their relationship with specific behaviors or symptoms. Reduced fronto-striatal perfusion and
metabolism in abstinent cocaine abusers have been reported by multiple investigators (2-4). The disrupted function of
frontal regions has been linked to the persistent neuropsychological deficits and impaired control over drug taking that
frequently triggers relapse (2, 5). Positron emission tomography (PET) studies with selective D, dopamine (DA) ligands have
demonstrated that subjects with cocaine addiction show persistent reduction in D, DA receptor availability (6, 7) and
decreased dopaminergic responsivity in the ventral striatum and other components of the “reward circuit” (8), consistent
with a decreased sensitivity to natural reinforcers observed in these subjects (9). Recent research suggests that altered
functional connectivity of catecholamine circuits may underlie the impaired inhibition of cortical function observed in
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cocaine abusers, a finding that portrays novel pathways for the neuroadptational processes associated to addictive states
(10, 11).

Cocaine abuse is often modelled pre-clinically in experimental paradigms where rats are trained to self-administer (SA) the
drug. By employing different SA patterns, experimenters have been able to reproduce several hallmark features of drug
addiction, including compulsive drug seeking (12), uncontrolled drug use (13) and increased motivation to self-administer
the drug (14). These features make these models an experimental tool of excellent face-validity to investigate the
neuroplastic events associated to voluntary drug-intake (15). However, specific clinical correlates of cocaine addiction, such
as the blunted DA responsivity of striatal areas observed in PET studies (6, 7), do not appear to be adequately modelled by
traditional short-term, limited-access cocaine SA paradigms, where instead “sensitised” (i.e. increased) dopaminergic
responses are typically observed (16). Moreover, the extent to which these models replicate the multiple neuro-functional
alterations observed in human neuroimaging studies remains unknown.

In the present study, we used Magnetic Resonance Imaging (MRI) to map basal and evoked brain function in a rat model of
cocaine SA. A prolonged (52 days), extended-access (12 hours) SA protocol was employed to model the characteristics of
high-dose, chronic cocaine abuse in humans (17, 18). Repeated abstinence periods were introduced to minimize the acute
toxic effects of the drug and to ensure sustained motivation to self-administer high doses of cocaine (15). After a 10-day
detoxification period, we measured microvascular basal cerebral blood volume (bCBV), an indirect indicator of resting brain
function (19, 20), and assessed the reactivity of dopaminergic system by mapping the functional response elicited by the
DA-releaser amphetamine using a CBV-based pharmacological MRI (phMRI) protocol (21, 22). Correlation analysis between
resting (bCBV) and amphetamine-evoked (rCBV) responses were performed in an attempt to identify disregulation in
circuits that control the recruitment and functional responsiveness of specific brain areas. Finally, post mortem histo-
pathological examinations were carried out to assess the potential contribution of direct vascular and neurotoxic effects of
prolonged cocaine SA to the imaging findings.

Methods

Experiments were carried out in accordance with Italian regulations governing animal welfare and protection. Protocols
were also reviewed and consented to by a local animal care committee, in accordance with the guidelines of the Principles
of Laboratory Animal Care (NIH publication 86-23, revised 1985).

Cocaine self administration

Rats that underwent cocaine SA were tested in operant chambers as previously described (23). Each experimental chamber
(Med Associates Inc., St. Albans, VT) was fitted with a cue light placed above each lever, and with a 2900-Hz tone module.
An infusion pump was connected via an external catheter to a single-channel liquid swivel (Instech Laboratories Inc.,
Plymouth Meeting, PA). Data acquisition and operant-schedule parameters were controlled by a Med-PC software (Med
Associates Inc.).

Cocaine SA procedure

Thirty male Lister-Hooded rats (Charles-River, UK) weighing 275-300 g were individually housed in a temperature and
humidity controlled room with water available ad libitum. Animals were food-restricted throughout the experiment to
maintain a constant body weight of 300 g (+ 10 g).

After their arrival, rats were acclimatized for one week and subsequently implanted with a catheter in the jugular vein as
previously described (23). After a 7-day recovery period, rats were transported to the operant chamber. Cocaine self-
administration procedure was initiated under a fixed ratio (FR) 1 schedule of reinforcement. Each press on the active lever
was associated with a 0.1 ml infusion of a cocaine hydrochloride solution (300 pg/kg) plus the simultaneous illumination of
the stimulus (cue) light and extinction of the chamber light for 20 s. Presses on the “inactive” lever had no programmed
consequences. Each drug infusion (“reward delivery”) was followed by a 20-s lever retraction. The first three “training”
sessions were terminated after either 50 infusions or 2 h from the start of the session. In the subsequent 30 sessions the
cocaine access time was extended to 12 hours (6.00 p.m. — 6 a.m.), the unit dose reduced to 0.150 pg/kg/infusion, and FR
gradually increased to 3 (sessions 4-6) and eventually to 5 (remaining 27 sessions).
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Subjects that lost catheter patency or appeared unhealthy (i.e. showed signs of infection) were removed from the study
(eleven subjects altogether). Repeated 48-72 hrs abstinence periods were introduced on days 16 (session 14, 72 hrs), 23
(session 18, 72 hrs), 31 (session 23, 48 hrs) to minimize the risk of acute cocaine-induced intoxication. Session 30 was
followed by a longer (5 days) binge abstinence followed by two additional sessions. Such intervals were introduced due to
the necessity to harmonise the timing of MRI scan and self-administration protocol over the

relatively large number of subjects employed. A 10-day detoxification period within the home cage was introduced prior to
the imaging experiment.

Vehicle SA procedure

A group of fourteen rats was used as baseline reference group. The subjects were implanted with a jugular catheter and
subjected to the same training and SA procedures (including number, duration of SA sessions and abstinence) as described
above, except for the use of vehicle (saline, 0.1 ml) instead of cocaine during operant sessions.

Magnetic resonance Imaging
Animal preparation

Imaging studies were performed 10 days after the last SA session. Animal preparation and MRI acquisition parameters
have been previously described in greater detail (21, 22). Briefly, rats were anaesthetized with 3% halothane,
tracheotomised and artificially ventilated with a mechanical respirator. A femoral artery and vein were cannulated and the
animals were paralyzed with D-Tubocurarine. After surgery halothane level was set to 0.8%. Arterial blood gases (p,CO,
and p,0,) were measured prior to and after the fMRI timeseries (Supplementary Table 1). No statistically significant
difference in mean pre- or post-acquisition p,CO, values between groups was found (p>0.1, all groups; one-way ANOVA).
The body temperature of all subjects was maintained within physiological range and mean arterial blood pressure (MABP)
was monitored continually through the femoral artery.

MR Image acquisition

Anatomical and fMRI timeseries were acquired on a Bruker Avance 4.7 Tesla system. A T,-weighted anatomical volume was
acquired using the RARE sequence (TR= 5461ms, TE. = 72 ms, RARE factor 8, FOV 40mm, 256x256 matrix, 20 contiguous
1mm slices) followed by a time series acquisition (TRe = 2700 ms, TE. = 111 ms, RARE factor 32, dt=27) with same spatial
coverage. Total MRI time-series acquisition time was 58-min (128 repetitions) for both groups.

Following five reference images, 2.67ml/kg of the contrast agent Endorem (Guerbet, France) was injected to make the
fMRI signal changes sensitive to cerebral blood volume (rCBV) (24, 25). D-amphetamine (0.5 mg/kg) was administered
intravenously 25 min after contrast agent injection, and MRI data were acquired over a period of 25 min following the
challenge. The dose of d-amphetamine was chosen based on previous in vivo studies (22, 26). The dose ensures robust
brain activation, does not produce “ceiling” rCBV responses (27) and elicits transient MABP responses that are
homeostatically compensated under halothane anaesthesia (28, 29)

Data analysis
Basal CBV (bCBV)

bCBV time series image data for each experiment were analyzed within the framework of the general linear model (30).
Individual subjects were spatially normalized to a stereotaxic rat brain MRI template set (31). Signal intensity changes were
converted into basal cerebral blood volume (bCBV(t)) on a pixel-wise basis as previously described (24, 32). bCBV time
series were calculated over a 4.5 minute time-window starting 6.8 min after contrast agent injection. Mean bCBV volumes
for individual subjects were created by averaging the 10 time-points time-wise. Linear detrending was introduced to
account for contrast agent washout (25). Voxel-wise group statistics was carried out using FSL (33) using multi-level
Bayesian inference, with 0.7 mm spatial smoothing, a Z threshold > than 1.6 and a corrected cluster significance threshold
of p=0.01.

phMRI response to D-amphetamine

MRI signal intensity changes were converted into fractional CBV (rCBV) as previously described (24). rCBV time series for
amphetamine challenge were calculated covering 12.5 minute pre-challenge and 24 minutes post-challenge window.
Voxel-wise statistics was carried out using FEAT with 0.7 mm spatial smoothing and using a model function (Supplementary
Figure 1) capturing the temporal profile of amphetamine-induced rCBV response (34). Higher-level group comparisons
were carried out with multi-level Bayesian inference and thresholded at Z>1.6 with a corrected cluster significance
threshold of p=0.01. In order to specifically test the hypothesis of an altered striatal reactivity to D-amphetamine in
cocaine rats, a 3D binary mask of the striatum was generated using a digital reconstruction of the rat brain atlas (31) and
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used to pre-threshold rCBV time series prior to higher-level FSL analysis. The same analysis was repeated on non-masked
rCBV datasets.

Volume of interest (VOI) mean bCBV values and time courses for the amphetamine challenge were extracted as previously
described (31, 35). Statistical differences in mean bCBV were assessed using a one-way ANOVA test followed by Fisher’s
test for multiple comparisons.

Correlation analysis

Maps of correlated bCBV and D-amphetamine induced rCBV responses across subjects were calculated within the GLM
framework at the group level with reference to bCBV in representative regions using FSL (36, 37). A number of
representative VOIs were selected based on the results of the inter-group bCBV maps (medial prefrontal, insular,
orbitofrontal, somatosensory cortex, caudate putamen, nucleus accumbens, reticular thalamus, posteroventral thalamus).
For each VOI, the design matrix comprised a regressor capturing the group mean bCBV signal in the anatomical structure
and another containing the zero-meaned bCBV vector across the N subjects in the group from the selected reference
structure. Z statistic images were calculated via contrasts capturing positive and negative correlations with the reference
response, and were thresholded with Z>1.6 and a corrected cluster significance threshold of p=0.01. Linear regression plots
of correlated bCBV and rCBV responses were calculated by plotting bCBV and mean rCBV response to amphetamine across
individual subjects, the latter being expressed as mean response over a 20 minute (4-24 min post injection) time-window.

Histopathology

Histopathological evaluation was performed on 10 cocaine subject and 8 randomly- chosen controls as previously
described (38). After the MRI experiment, rats were maintained under deep anaesthesia (halothane 5%), and a 15 min
aortic perfusion of fixative media (10% buffered formalin) was performed, preceded by a 5 minutes infusion of saline.
Perfused brains were removed and stored in fixative solution for further 24-72 hours. Brain trimming was then performed
using a brain matrix (ASI-Instruments®) designed for rats weighing 200-400 g. Tissue samples were paraffin-embedded,
sectioned into 5 um-thin slices, and stained with a combination of Haematoxylin-eosin and Luxol Fast Blue (39). The slice
and brain regions analysed where the cingulate and prefrontal cortex, caudate putamen, corpus callosum, hippocampus
(C2), cerebellum (purkinje cells) and substantia nigra. The examination was performed by two study-blind veterinary
pathologists.
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Results
Cocaine Self-Administration

All the subjects completed the 33 cocaine SA sessions successfully over a time period of 52 days. The SA schedule used
ensured a prolonged and sustained intake of cocaine throughout the study (Figure 1). The average cumulative intake of SA
cocaine per subject was 1138.4 +33.3 mg/rat. Both active level presses and cocaine intake appeared to be rather stable
throughout the course of the experiment, although linear regression highlighted a weak but significant (p<0.03, F=4.62)
trend towards an overall increased cocaine intake over time when all homogeneous sessions were compared (sessions 4-
31, FR 3-5, binge abstinence intervals 48-72 hrs) (Supplementary Figure 2).

Cocaine SA rats show reduced frontal bCBV

In order to investigate the effect of chronic cocaine administration on basal brain function, we measured bCBV in cocaine
SA and control subjects and mapped the regions exhibiting statistically significant differences between groups. Cocaine SA
rats showed significantly reduced bCBV in several brain areas compared to control rats (Figure 2 and 3). The effect was
prominent in the medial-prefrontal, cingulate, orbitofrontal cortex, septum, ventral hippocampus, in the core region of the
nucleus accumbens as well as raphe nuclei and reticular thalamic areas. No difference in total CBV between groups was
observed (p=0.23, student’s t test).

Cocaine SA rats show reduced striatal responsiveness to amphetamine

In order to probe striatal dopaminergic reactivity, cocaine SA and control rats were challenged with the DA releaser
amphetamine, and the presence of functional alterations in the magnitude of the rCBV response elicited by the drug was
assessed via voxel-wise statistics in sub-cortical areas. Consistent with previous studies (22) amphetamine produced robust
activation of sub-cortical and cortical areas in both groups of subjects (Figure 4). Cocaine SA rats exhibited an attenuated
functional response to amphetamine in the striatum compared to control rats (Figure 5). The magnitude of the striatal
response to amphetamine was found to be inversely correlated with cumulative cocaine intake (p=0.03, Figure 5).
Additional foci of reduced functional response to amphetamine were observed in sensory-motor and orbitofrontal cortex
(Supplementary Figure 3). Administration of amphetamine produced transient increases in MABP (Supplementary Figure
4). The effect was not temporally correlated with the functional response, and well within the blood flow autoregulatory
range within which vasopressive responses are homeostatically compensated without producing significant rCBV
alterations (28, 29).

Cocaine SA rats revealed altered thalamo—frontal activity

In an attempt to establish a correlation between basal and evoked functional activity and to investigate dysregulations in
the control of these two states, we measured the correlation between bCBV and amphetamine-induced response in
control and cocaine SA animals. No correlation between bCBV and amphetamine-induced rCBV responses was found in
either group in any of the regions examined, with exception of the reticular and posterior-ventral thalamus which revealed,
in control subjects, an inverse relationship with amphetamine-induced rCBV in fronto-cortical areas (Supplementary Figure
5). This correlation appeared to be disrupted in the cocaine SA group (Figure 6).

Cocaine SA brains do not present microvascular alterations

A histopathological evaluation of brain white and grey matter, glial and interstitial compartments, as well as macro- and
micro-vascular, ependymal and meningeal structures did not highlight any neurocellular, interstitial or microvascular
lesions in either group. Specifically, no signs of cellular pyknosis or atrophy, fiber alteration, necrosis, interstitial oedema,
were observed in any of the brain regions examined., nor alterations of the microvascular and capillary bed (i.e., basal
membrane dilation or rupture, hemorrage, endothelial thickening or wall fibrosis, thrombi or occlusions, necrosis or
vacuolation of endothelial cells).
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Discussion

The present study documents that chronic, extended-access cocaine SA in the rat produces neuroimaging alterations that
closely mimic hallmark imaging findings in human cocaine addicts. Specifically, we observed significantly reduced bCBV, a
marker of resting brain function, in regions that play a key contribution in higher cognitive functions and inhibitory control
(fronto-cortical areas), craving and anticipation (fronto-hippocampal areas) and reward (mesolimbic areas). Moreover,
cocaine SA was associated with reduced striatal reactivity to dopaminergic stimulation, and the presence of putative
functional alterations in the inhibitory interplay between reticular thalamus and the activation of fronto-cortical areas. Our
results provide neuroimaging evidence of multiple alterations in rat brain function following chronic and voluntary cocaine-
intake that serve as plausible neuro-biological substrate for the behavioural expression of compulsive drug-intake in
laboratory animals.

Chronic cocaine abuse is often modelled in behavioural paradigms where rodents are trained to voluntarily self-administer
the drug. Several experimental parameters are known to exert a significant influence on the pattern of drug intake, thus
allowing a better reproduction of key clinical features of cocaine addiction (reviewed in 15). Here we implemented a
prolonged, extended-access cocaine SA protocol with repeated binge-abstinence periods (40-42) to mimic the
characteristics of high-dose, chronic cocaine abuse in humans. Prolonged SA is instrumental in inducing behavioural
patterns of drug intake that mimic key clinical features of cocaine-addiction such as compulsive drug-use despite the
presence of environmental adversities (12), and high propensity to relapse to drug seeking (43). The chronic nature of the
protocol employed (covering = 10% of the average adult life-span of a rat) (44) permits to mimic patient populations with a
significant history (> 6 months) of cocaine addiction like those typically enrolled in human neuroimaging studies, thus
maximising the translational relevance of our findings.

Moreover, the use of an extended-access to cocaine (i.e. 2 6 hours) allows to model specific neuro-behavioural features of
addiction, such as persistent alterations in cognitive functions (18), increased motivation for cocaine (14), and escalation in
drug intake (13). Repeated periods of forced abstinence were introduced to reduce the acute toxic effects of the drug and
to ensure sustained motivation to self-administer high doses of cocaine (15). Although the total cocaine intake achieved
with the present protocol is higher than that observed with short-access paradigms, the values attained are sufficiently
distant from the limit of acute toxicity (45, 46), which explains the lack of lethality observed in this study.

Compared to unlimited access protocols, where drug intake exhibits high and low numbers of infusions on alternating days
(41), the extended-access protocol used here ensured sustained SA of high doses of cocaine. In contrast to what reported
by other groups (13, 46, 47), we did not observe unequivocal evidence of dose escalation (either in the first hour or over
the whole session), although a trend towards an increased cocaine intake was apparent after linear regression analysis of
mean cocaine intake over consecutive sessions (Supplementary Figure 3). Several experimental parameters may account
for this discrepancy, especially differences in ceiling of cocaine intake across different rat strains (discussed in 48, and 49).

A ten-day washout period was introduced prior to the imaging study to rule out acute carry-over effects of the drug and
minimise the potential interference of acute abstinence symptoms on measures of brain function. Most of the
neurochemical and behavioural alterations that can be related to acute withdrawal have an almost immediate onset, peak
between 6 and 72 h after termination of drug access and generally cease within 2—7 days from the last cocaine session.
(50-54). It is therefore unlikely that the imaging findings contain major contributions from transient neuro-biological
phenomena related to acute cocaine abstinence.

MRI measures of bCBV allow high resolution mapping of resting brain function that tightly correlate with regional energy
metabolism and cerebral blood flow (19, 55, 56). Our data showed the presence of reduced bCBV in the cingulated gyrus,
pre-frontal and orbito-frontal cortex, thalamus and hippocampus of cocaine SA subjects. These results are in excellent
agreement with clinical neuroimaging research of cocaine addiction, where reduced frontal and striatal perfusion have
been consistently observed (2-4, 57, 58), a feature that is found to correlate with the cognitive impairments, compulsion
and loss of inhibitory control over drug taking which may lead to relapse (2, 5, 59). Importantly, cognitive deficits have
been observed in rats allowed extended (but not limited) access to cocaine (18), a phenomenon that involved working
memory and sustained attention tasks (two prefrontal-cortex-dependent tasks) as well as object recognition measures (a
hippocampus dependent task). The involvement of hippocampal systems is also consistent with the role played by this
brain structure in contextual conditioning and memory, two functions that are altered by cocaine use and are believed to
play a role in cue-elicited craving (reviewed in 60). Likewise, the reduced bCBV in ventral striatum and nucleus accumbens
was not unexpected, given the established interconnection between fronto-cortical activity and ventro-striatal DA cell
firing and release (59). In keeping with this, recent PET imaging studies showed lower levels of endogenous DA in cocaine
addicts relative to comparison subjects (61) and primate research revealed reduced glucose utilisation in the striatal areas
upon chronic cocaine use, a feature that increased cocaine exposure (62). The observation of focal bCBV reductions in the
reticular thalamic and raphe nuclei discloses a plausible contribution of focal sub-cortical networks to the long-lasting
neuro-adaptations produced chronic cocaine addiction. The thalamic effect correlates well with human neuroimaging
studies showing altered GABAergic neurotransmission in the thalamus of abstinent cocaine abusers (63) and recent
electrophysiological evidence of a state of protracted over-inhibition of reticular thalamic areas following binge
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administration of cocaine (64). Interestingly, as serotonin is known to exert a direct excitatory action on GABAergic
neurons in the thalamic reticular nucleus (65), the reduced activity of this nucleus and that observed in regions of the
raphe may be functionally interrelated and part of a single defective circuit.

In attempt to identify a fMRI correlate of the decreased striatal dopaminergic responsivity observed in human PET studies
(6, 7, 66), we also mapped the functional response elicited by the DA-releaser amphetamine using a phMRI protocol (22,
67). Several phMRI studies have provided compelling evidence that the striatal haemodynamic response produced by
amphetamine reflect primarily dopaminergic effects (reviewed in 68). For example, amphetamine has been shown to elicit
BOLD or rCBV increases in DA-rich ventro-striatal areas that are linearly-correlated to synaptic DA concentrations (37, 69-
72). Morevoer, amphetamine-induced rCBV responses are abolished in the DA denervated areas (73, 74), an effect that can
be later restored after fetal or stem cell transplantation (73, 75). Thus, the sum of these data indicates that amphetamine-
induced rCBV responses can be reliably used as a marker of striatal DA neurotransmission. Within this framework, the
presence of an attenuated striatal rCBV response to amphetamine in the cocaine SA group points towards a reduced-
responsivity of ventro-striatal dopaminergic function analogous to what observed in PET studies in humans (16). This
finding provides for the first time a plausible preclinical neuroimaging correlate of one of the most replicated clinical
manifestation of cocaine addiction, which is believed to play a key contribution to the anhedonia and amotivation reported
by drug-addicted subjects during protracted withdrawal (8). This result documents a potentially important correspondence
between clinical and preclinical neuro-adaptational changes induced by cocaine on DA systems, an aspect that does not
appear to be adequately modelled by traditional cocaine exposure paradigms, where “sensitised” (i.e. increased)
dopaminergic responses are typically observed (reviewed by 16). As similarly attenuated striatal responses were not
observed in rodent neuroimaging studies using short-term (5-days) drug administration protocols (76, 77, Gozzi A.
unpublished results), our data suggest that, for this characteristic to be modelled in rodents, prolonged and extended
access to high doses of cocaine may be required.

Correlation analysis between resting and amphetamine-evoked (rCBV) responses revealed an inverse relationship between
bCBV in reticular thalamic areas and amphetamine-induced frontal activation in control subjects, but not in cocaine group.
The presence of an inverse relationship between tonic reticular thalamic activity and evoked frontal function is consistent
with the functional connectivity of these regions (78). The reticular thalamic nucleus is extremely rich in GABAergic
neurons (78), and its inhibition can enhance fronto-cortical dopaminergic neurotransmission (79). As prefrontal projections
to the thalamic reticular nucleus have been suggested to play a unique circuit for attentional mechanisms (80) the loss of
correlation between basal and evoked function in cocaine SA subjects may be indicative of an altered inhibitory interplay
between these structures which may underlie some of the attentional deficits observed in rats allowed extended access to
cocaine (18). A role for thalamo-frontal dysfunctions in cocaine addiction is supported by recent neuroimaging studies
showing altered thalamo-cortical connectivity in cocaine abusers under resting conditions (11) and when performing a
cognitive task (81). However, as correlation measurements do not reflect causal association, further research is warranted
to elucidate the exact nature of this finding. Importantly, no appreciable microscopic lesions in the vascular, neurocellular
and interstitial compartments of cocaine SA brains were observed. This result is important, as it permits to rule out a
potential contribution of abnormal cerebrovascular processes on the haemodynamic measures of brain function
performed (i.e. bCBV and rCBV).

In summary, we provide evidence of altered brain function in rats that underwent prolonged and extended access cocaine
self-administration. Consistent with clinical neuroimaging findings, cocaine-exposed animals revealed reduced basal brain
function in fronto-cortical and thalamic areas, and attenuated responsivity in striatal regions upon challenge with the DA
releaser amphetamine, an effect that was significantly correlated with the total cocaine intake. The consistency of these
findings with neuroimaging measures in cocaine-addicted patients supports the use of prolonged and extended-access SA
paradigms in the rat to investigate the neuroadaptations underlying cocaine-addiction.
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A: Number of active lever presses recorded in the cocaine SA group (N=19) and control (saline SA, N=14) within the 12 h SA
sessions. FR: fixed-ratio; B; Average cocaine intake (mg/rat/session) over the course of the experiment. The dose of
cocaine administered per single injection is reported on the top line (150 pg, session 1-3, 300 ug all remaining sessions)

Figure 2

Anatomical distribution of the regions exhibiting significantly lower bCBV in rats chronically self-administering cocaine
(cocaine SA; N=20) vs. control subjects (vehicle SA; N=14; Z> 1.6, cluster correction p=.001) in representative horizontal (A),
saggital (B), and coronal slices (C). [mPFC: medial pre-frontal cortex; Plc: pre-limbic cortex; Cg: cingulate cortex; Sp;
septum; AcbC: core of the nucleus accumbens; Ra: raphe nucleus: rTh; reticular thalamic nucleus; VHc; ventral

hippocampus; OFC: orbito-frontal cortex]
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Figure 3

Mean bCBV in representative 3D anatomical volumes (VOIs, 31) for cocaine SA (N=20) and control subjects (saline SA;
N=14). [Amy: amygdala, mPFC: medial pre-frontal cortex; Cg: cingulate cortex; Sp; septum; AcbC: core of the nucleus
accumbens; AcbSh: shell of the nucleus accumbens; Cpu; caudate putamen; Ra: raphe nucleus: rTh; reticular thalamic
nucleus; VHc; ventral hippocampus; Hypoth: hypothalamus; OFC: orbito-frontal cortex; Rs: retrosplenial cortex; SS;
somatosensory cortex; *p<0.05; **p>0.01; one-way ANOVA, followd by Fisher LSD test]
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Figure 4

Temporal-profile of amphetamine-induced rCBV changes in representative VOIs of for cocaine SA (N=20) and control
subjects (saline SA, N=14). Data are plotted as mean+SEM within each group. [Amy: amygdala; Cpu: caudate putamen;
Thal; thalamus; VHc: ventral hippocampus; Rs: retrosplenial cortex; SS; somatosensory cortex]
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Figure 5
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response to D-ampheatmine in rats chronically self-administering cocaine (cocaine SA; N=20) vs. control subjects (vehicle
SA; N=14);( Z>1.6; cluster correction p=05). Cpu: caudate putamen. D: correlation rCBV response to d-amphetamine in the
striatum and cumulative cocaine intake over the 52 days of self-administration (p=0.03, dashed lines represent 95%

confidence interval).
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SUMMARY

The central nucleus of the amygdala (CeA) serves as
a major output of this structure and plays a critical
role in the expression of conditioned fear. By com-
bining cell- and tissue-specific pharmacogenetic
inhibition with functional magnetic resonance
imaging (fMRI), we identified circuits downstream
of CeA that control fear expression in mice. Selec-
tive inhibition of a subset of neurons in CeA led to
decreased conditioned freezing behavior and in-
creased cortical arousal as visualized by fMRI.
Correlation analysis of fMRI signals identified func-
tional connectivity between CeA, cholinergic fore-
brain nuclei, and activated cortical structures, and
cortical arousal was blocked by cholinergic antago-
nists. Importantly, inhibition of these neurons
switched behavioral responses to the fear stimulus
from passive to active responses. Our findings
identify a neural circuit in CeA that biases fear
responses toward either passive or active coping
strategies.

INTRODUCTION

Research over the past decades has consistently pointed to the
amygdala as a key component of the brain’s emotional network.
Numerous studies in rodents, primates, and humans have
demonstrated the involvement of this structure in mediating
the emotional, behavioral, and physiological responses associ-
ated with fear and anxiety particularly in response to conditioned
aversive cues (Aggleton, 1992; Davis and Whalen, 2001;
LeDoux, 2000). The amygdala is a highly heterogeneous cluster
of forebrain nuclei that can be subdivided into cortical and
striatal divisions (Swanson and Petrovich, 1998). The central
nucleus (CeA) is located within the striatal division and serves
as a major output of the amygdala for the control of mid- and
hind-brain circuits involved in physiological and behavioral
defensive responses (Amaral et al., 1992). The CeA can be
further subdivided into medial and lateral subnuclei whose

656 Neuron 67, 656-666, August 26, 2010 ©2010 Elsevier Inc.

neurons express different neuromodulatory receptors (Huber
et al., 2005; Tribollet et al., 1988; Veinante and Freund-Mercier,
1997) and appear to differentially project to downstream targets
(Jolkkonen et al., 2002). However, it remains unknown how
aversive signals are processed within CeA and how this nucleus
differentially engages diverse downstream targets to support
stimulus-appropriate fear responses.

Using a pharmacogenetic inhibition strategy (Luo et al.,
2008) in transgenic mice, we were recently able to show that
neural activity in a subset of neurons in CeA is necessary for
freezing behavior in response to a conditioned aversive stim-
ulus (Tsetsenis et al., 2007). These neurons, which we called
type | cells (Tsetsenis et al., 2007) and which are likely to be
similar to type B neurons described in rats (Schiess et al.,
1999; Sah et al., 2003; Lopez De Armentia and Sah, 2004),
are distinguished from the majority of remaining neurons
(called type I, Tsetsenis et al., 2007) by the presence of a
prominent depolarizing after-potential. Selective pharmacolog-
ical suppression of neural activity in type | CeA neurons was
achieved by expressing the Ga;-coupled serotonin 1A receptor
(Htr1a) under the control of a tissue-specific promoter in
transgenic mice that are missing the endogenous receptor
(the resulting mice are called Htr1a®®"). Systemic treatment
of Htr1a®” mice with a selective agonist of Htrla, 8-
hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), led to the
opening of G protein coupled inward rectifying potassium
(GIRK) channels, membrane hyperpolarization, and suppres-
sion of neural firing (Tsetsenis et al., 2007). A suppression of
conditioned freezing behavior following inhibition of CeA
neurons is consistent with the proposed role of CeA as an
output circuit that promotes autonomic and behavioral re-
sponses to conditioned fear (Wilensky et al., 2006). Here, we
combine pharmacogenetic inhibition of neural activity in CeA
with functional magnetic resonance imaging (fMRI) to map
in vivo neural activity in circuits downstream of CeA that are
involved in conditioned fear responding. This approach identi-
fied ventral forebrain cholinergic neurons as a critical down-
stream target of CeA and demonstrated that type | cells within
CeA actively suppress cholinergic-mediated cortical arousal
and exploratory behavior at the same time as promoting
freezing responses and thus serve as a switch between active
and passive fear.
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Figure 1. Pharmacological Activation of Htr1a Leads to Widespread Inhibition of Neural Activity in Wild-Type Mice

Anatomical distribution of the rCBV changes produced by administration of the Htr1a agonist, 8-OH-DPAT (0.5 mg/kg i.a.) in (A) wild-type (n = 14) and (B) Htr1a
knockout (Htr1aX®, n = 8) mice. Blue indicates significantly reduced rCBV compared with vehicle baseline (Z > 1.96, cluster correction, p = 0.01). For each mouse
line the rCBV time course following vehicle or 8-OH-DPAT injection in a representative brain region is shown below each map (vDG, ventral dentate gyrus; Rs,
retrosplenial cortex; Amy, amygdala; Cg, cingulate cortex; Cpu, caudate putamen; mPFC, medial prefrontal cortex; Sctx, somatosensory cortex). A significant
decrease in rCBV was observed following 8-OH-DPAT treatment in wild-type, but not Htr1aX© mice, demonstrating the feasibility of using rCBV to map Htr1a-
dependent inhibition of neural activity. Htr1a receptor distribution (*2°I-MPPI autoradiography) in a representative brain slice for each strain is shown for reference.

RESULTS

fMRI Mapping of Neural Activity Following
Cell-Type-Specific Inhibition

To determine the feasibility of using fMRI to map neural activity
changes following cell type-specific neural inhibition using the
Htr1a-based system (Tsetsenis et al., 2007), wild-type mice
were placed in the MR scanner and fMRI signal changes induced
by systemic administration of the Htria agonist 8-OH-DPAT
(0.5 mg/kg i.a.) were examined. For all studies, we used relative
cerebral blood volume (rCBV) as a surrogate for the underlying
changes in neural activity (Sheth et al., 2004). This measure
has gained acceptance as the measure of choice in small animal
fMRI studies where sensitivity is a significant technical challenge
(Chen et al., 2001; Jenkins et al., 2003). Consistent with the effi-
cient coupling of Htria to inhibitory GIRK channels (Luscher
et al., 1997), systemic treatment with 8-OH-DPAT led to a signif-
icant and widespread decrease in rCBV in all structures where
Htr1a is expressed (Figure 1A), including striatum, amygdala,
ventral hippocampus, and prefrontal, cingulate, insular, and
rhinal cortices (Z > 1.96, cluster corrected at p = 0.05). The
time profile of the effect was similar in all regions examined,
with a sustained negative response that lasted throughout the
time-window examined (Figure S1). As seen previously (Gozzi

et al., 2007; Schwarz et al., 2006), vehicle injection produced
a small decrease in rCBV that probably reflected dilution of the
blood-pool contrast agent.

Importantly, the agonist-induced decrease in rCBV was
absent in Htrla knockout mice confirming the selectivity of
8-OH-DPAT for Htr1a at this dose in vivo (Figure 1B). As ex-
pected, time profiles of rCBV following vehicle or 8-OH-DPAT
administration in knockout mice (Htr7a"°) showed substantial
overlap in all regions examined (Figure S1). Similarly, image-
based analysis did not highlight significant agonist-induced
activation or deactivation (Z > 1.96, cluster correction p =
0.05). These data indicate that neural inhibition associated
with activation of Htr1a can be mapped in vivo using pharmaco-
logical fMRI.

Suppression of Type | CeA Neurons Leads

to Widespread Cortical Activation

Next, we examined rCBV changes following agonist-induced
inhibition of type | neurons in CeA using Htr1a®®* mice
(Htr1a%°/Htr1aX;Nrip2-Htr1a/+; Tsetsenis et al., 2007). Unex-
pectedly, a significantly increased rCBV signal was seen in
several forebrain areas, including cerebral cortex, thalamus,
ventral hippocampus, amygdala, caudate putamen, and septum
(Figure 2). Time course analyses of the rCBV response to

Neuron 67, 656-666, August 26, 2010 ©2010 Elsevier Inc. 657
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Figure 2. Cortical Arousal Following Suppression of Type | CeA Cells
Neural activity as measured by rCBV using fMRI in Htr1a®®* mice treated with
the Htr1a agonist, 8-OH-DPAT (0.5 mg/kg i.a., n = 9). Yellow/orange indicates
significantly increased rCBV compared with vehicle baseline (Z > 3.5; cluster
correction p = 0.01). Bottom panel shows rCBV time course following vehicle
or 8-OH-DPAT injection in the somatosensory cortex. Significant increases in
rCBV were detected following agonist treatment in several regions, including
cerebral cortex, thalamus, ventral hippocampus, amygdala, caudate puta-
men, and septum. Htr1a receptor distribution ('2°I-MPPI autoradiography) in
a representative brain slice of Htr1a®®* is reported for reference (vDG, ventral
dentate gyrus; Th, thalamus; Cpu, caudate putamen; mPFC, medial prefrontal
cortex; SC, somatosensory cortex; MS, medial septum).

8-OH-DPAT in representative regions of interest (ROls) revealed
a sustained activation that lasted throughout the time-window
examined (Figure S2). Again, no agonist-induced activation
was seen in knockout littermates (Htr1a*°; Figure 1B; Figure S1).

In order to map neural circuits that mediate cortical activation
in Htr1a°** mice following agonist treatment, we applied corre-
lation analysis to the regional fMRI responses. This approach
aims to elucidate relationships between signals elicited by
agonist challenge in spatially distinct brain regions and comple-
ments the univariate approach applied to generate rCBV maps
(Figures 1 and 2). These correlations can be interpreted as
reflecting functional connectivity between the regions involved
(Schwarz et al., 2007a) and can be used to resolve specific brain
circuits engaged by pharmacological agents (Schwarz et al.,
2007b). Correlation analysis revealed brain regions whose
agonist-induced rCBV responses significantly correlated with a
seed region located in CeA (Figure 3A). A significant pattern of
correlated activity was identified linking CeA with cholinergic
nuclei in the ventral forebrain, including substantia innominata

658 Neuron 67, 656-666, August 26, 2010 ©2010 Elsevier Inc.
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(Sl), diagonal band (DB), and nucleus basalis of Meynert (NBM)
in 8-OH-DPAT-treated Htr1a®®* mice (Figure 3A). A similar anal-
ysis of bottom-up connectivity from the cortical regions most
strongly activated by 8-OH-DPAT in the same group showed
significant connectivity between cortex and the same cholinergic
nuclei (SI, DB, and NBM; Figure 3B). This connectivity is consis-
tent with anatomical and functional studies demonstrating
cholinergic innervation of cortex by these structures in rodents
(Mesulam et al., 1983). When considered together with the find-
ings of our univariate analysis (Figure 2), these results suggest
that suppression of neural activity in type | CeA neurons leads
to a disinhibition of selected ventral forebrain cholinergic nuclei
and a consequent arousal of cortical circuits.

To test the hypothesis of a functional involvement of cholin-
ergic circuits in the observed cortical arousal, we performed
fMRI mapping in response to 8-OH-DPAT in Htr1a®* mice
pretreated with atropine, an antagonist of muscarinic acetylcho-
line receptors. Atropine-sulfate (0.3 mg/kg, i.p.) significantly
attenuated 8-OH-DPAT induced activation in all brain regions
examined (Figures 3C and S3). Importantly, atropine-methyIni-
trate (0.3 mg/kg, i.p.), an atropine salt with poor blood-brain
barrier penetration (Boccia et al., 2003), did not significantly
block cortical arousal (Figures 3D, S2, and S3) arguing against
a role of peripheral cholinergic receptors in mediating the effect.
Moreover, atropine sulfate did not attenuate the rCBV response
to 8-OH-DPAT in wild-type mice (Figure S3). These findings
support a role for central cholinergic disinhibition in the cortical
arousal seen after silencing of type | CeA neurons and are
consistent with our functional connectivity mapping analysis.

Switch from Passive to Active Conditioned Behavior

Next, we examined the behavioral correlates of cortical arousal
following suppression of type | CeA neuron activity. As previ-
ously reported (Tsetsenis et al., 2007), Htr1a®®* mice treated
with 8-OH-DPAT (0.2 mg/kg, s.c.) showed a significant reduction
of freezing behavior during the tone when compared with
vehicle-treated Htr1a®* mice (Figure 4A) and no change in
freezing to the tone was seen in agonist-treated Htr1a*® control
littermates (ANOVA — genotype x treatment effect for freezing to
the tone: F[1, 100] = 4.51, p = 0.0362, n = 19-30; Figure 4B).
However, agonist-treated Htr1a®®* mice also showed a signifi-
cant increase in several exploratory and risk assessment behav-
iors, including digging, exploration, and rearing (Figure 4C).
When summed as total active behavior (cumulative digging,
exploration, and rearing), agonist-treated Hir1a®®*, but not
Htr1ak® mice showed a dramatic shift from passive to active
conditioned behavior during the tone (ANOVA - genotype X
treatment effect on active behavior during tone: F[1,100] =
4.475, p = 0.0369, n = 19-30; Figures 4A-4D). Notably, agonist
treatment produced only a small, nonsignificant increase in
active behaviors in Htr1a°® mice during the prestimulus period
and a similar trend was seen in Htr1a“° mice (data not shown).
These data argue for a shift in the quality of responses to the
conditioned aversive stimulus following inhibition of type | CeA
neurons. To determine whether active and passive behaviors
were mutually exclusive expressions of fear, we examined
within-animal correlations of active and passive behavior during
exposure to the conditioned stimulus. An inverse correlation
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Figure 3. Atropine Blocks Cortical Arousal
Following Inhibition of Type | CeA Cells

Maps of 8-OH-DPAT-induced rCBV response that
significantly correlated with rCBV signal in (A) CeA
and (B) somatosensory cortex (SSctx) in Htr1a®eA
mice (Z > 1.6, cluster correction p = 0.01, n = 9).
The three images in (A) refer to three perpendicular
sections located at Zyregma —0.6 mm, interaural
1.2 mm, and lateral 1.4 mm, respectively. Signifi-
cantly correlated rCBV signal was detected
between CeA, Si, and db and between SSctx, Si,
db, MS, and NB, suggesting a functional connec-
tivity network linking CeA, ventral forebrain cholin-
ergic nuclei, and neocortex. Pretreatment with (C)
atropine sulfate (n = 5), but not (D) a non-brain
penetrant salt of atropine (atropine methyl-nitrite,
n = 5) blocked the rCBV signal increases seen after
8-OH-DPAT (0.5 mg/kg i.a) treatment of Htr1a®*
mice (n = 9; **p < 0.01 versus vehicle-pretreated
subjects, one-way ANOVA followed by Fisher’s
LSD test; CeA, central nucleus of the amygdala;
LH, lateral hypothalamus; gp, external globus
pallidus; IC, internal capsule; Si, substantia inno-
minata; db, nucleus of the diagonal band of Broca;
MS, medial septum; NB, nucleus basalis of

c D Meynert; SS, somatosensory cortex; M1, motor
_— = Enth cortex; Hipoth, hypothalamus; Amy, amygdala;
o CPu, caudate putamen; V1, visual cortex; Enth,
Vi o e vi T ] entorhinal cortex).
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" o — " Htr1a"® mice suggesting normal fear
my wx —a Am . . .
o I : H recall in the presence of atropine (Figures
Thal — .
alamus | " o Thalamus ’ 4F and 4H). In Htr1a®®* mice, however,
vhe e 0o atropine pretreatment significantly re-
versed the suppression of freezing be-
015 248 L 018 015 -0.05 0.05 0.15 havior and showed a trend for a reversal
mean rCBV mean rCBV of the induction of active behaviors

emerged between freezing and active behavior (? = 0.35;
Figure 4l), suggesting that expression of these responses was
codependent.

One interpretation of our findings is that suppression of type |
CeA neurons induced cortical arousal during behavioral testing,
and this cortical activity directly contributed to a shift in behav-
ioral responses to the conditioned stimulus. First, we tested
whether inhibition of type | cells was associated with cortical
arousal in awake behaving mice by performing c-Fos immuno-
histochemistry following treatment of Htr1a®®* and Htr1a®©
littermates with 8-OH-DPAT (0.2 mg/kg, s.c.). The number of
c-Fos-positive cells in the anterior cingulate area (a region
showing prominent rCBYV increases following agonist treatment;
Figure 2) was significantly greater in agonist-treated Htr1a®®*
than Hir1a“°® mice (Figure 5). These findings confirmed in-
creased cortical neuron activity following suppression of type |
CeA neurons in behaving mice. Second, we examined whether
pretreatment with atropine was able to interfere with behavioral
responses to the fear stimulus. While atropine had no significant

following 8-OH-DPAT treatment (Figures

4E and 4G). These data suggest that
cholinergic neurotransmission directly contributes to the switch
between passive and active behavioral responses. Notably,
however, the low dose of atropine (0.1 mg/kg) had a significant
and selective effect on freezing, while leaving active behaviors
unaltered (Figures 4E and 4G). This dissociation reveals that
active and passive behaviors are differentially dependent on
cholinergic neurotransmission.

Activation of Oxytocin-Responsive Neurons in Lateral
CeA

Given the dissociation between oxytocin and vasopressin
receptor-expressing GABAergic projection neurons in lateral
and medial CeA, respectively (Veinante and Freund-Mercier,
1997) and the exclusive enervation of SI/NBM by lateral, but
not medial CeA projections (Jolkkonen et al., 2002), we consid-
ered whether type | cells might selectively inhibit oxytocin
receptor-expressing cells in the lateral CeA. Whole-cell
recordings in lateral CeA neurons in slices from Htr1a®®* and
Htr1ak® littermates confirmed the presence of depolarizing

Neuron 67, 656-666, August 26, 2010 ©2010 Elsevier Inc. 659



Appendix 6

Neuron

A Neural Switch for Active and Passive Fear

A B Figure 4. Switch from Passive to Active Fear
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after-potential (DAP) positive, type | (Figure 6A) and DAP-nega-
tive, type Il (Figure 6F) neurons in this subnucleus (Tsetsenis
et al., 2007). Application of 8-OH-DPAT (50 uM, 1-3 min) caused
inhibition of cell firing in type | neurons of Htr1a®** (Figures 6B
and 6C), but not Htr1a® (3.51 + 0.88 Hzt0 3.05 + 0.99 Hz; n= 7,
p = 0.13) mice, consistent with our previous observations
(Tsetsenis et al., 2007). Application of the oxytocin receptor
agonist [Thr*, Gly’]-oxytocin (TGOT, 0.2 pM, 1-3 min) had no
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We have used pharmacological fMRI to map

circuits downstream of the amygdala that are
involved in the expression of conditioned fear responses. Our
findings point to ventral forebrain cholinergic nuclei as a critical
downstream target of CeA that promote cortical arousal and
facilitate active responses at the expense of passive responses
to a conditioned aversive stimulus. Several conclusions can be
drawn from our study in light of previous anatomical and func-
tional studies. First, anterograde tracing studies demonstrate
that projections from amygdala to ventral forebrain cholinergic
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Figure 5. Increased Cortical c-Fos Immunoreactivity Following
Inhibition of Type | CeA Cells

Quantification of c-Fos immunoreactivity in sections from brains of mice
90 min after treatment with 8-OH-DPAT (0.2 mg/kg, s.c.). A significantly
greater increase in the number of c-Fos IR-positive nuclei was seen in the
anterior cingulate area (ACA) of Htr1a®®” (n = 4) versus Htr1ak® (n = 3) mice
(*p < 0.001).

nuclei such as Sl, DB, and NBM originate exclusively from the
lateral and/or capsular subnuclei of CeA (Jolkkonen et al.,
2002). Because these connections make symmetric synapses
onto neurons in the vicinity of cholinergic cell bodies in these
target nuclei, they are likely to be GABAergic projection neurons
that regulate activity of cholinergic neurons via inhibition of local
GABAergic interneurons (Jolkkonen et al., 2002). An excitatory
role for CeA on cortical activity is confirmed by electrophysiolog-
ical studies that demonstrate a shift from large irregular slow
activity (synchronous) to low voltage fast (asynchronous) cortical
activity following electrical stimulation of CeA, an effect that is
blocked by the cholinergic antagonist scopolamine (Dringenberg
and Vanderwolf, 1997). Our electrophysiological studies demon-
strate that type Il cells are likely to be identical to the GABAergic,
oxytocin receptor-expressing projection neurons previously
described in the lateral CeA (Huber et al., 2005). Firing of these
cells was consistently increased by bath application of the
Htr1a agonist in Htr1a®®” mice (Figures 6G and 6H), consistent
with a direct inhibitory connection between type | and type Il cells
in lateral CeA. Thus, we speculate that type Il neurons in lateral
CeA are equal to the previously described CeA-SI/NBM projec-
ting neurons (Jolkkonen et al., 2002) and are responsible for
mediating the cortical arousal seen in our fMRI (Figure 2) and
c-Fos (Figure 5) mapping studies.

Second, previous work has shown that oxytocin receptor-
expressing cells in lateral CeA also project to and directly inhibit
vasopressin receptor-expressing cells in medial CeA (Huber
et al., 2005; data not shown). Efferents from the medial CeA
project to hypothalamic and brainstem circuits that control
freezing and autonomic fear responses and are thought to be
responsible for conditioned freezing and autonomic responses
to painful stimuli (Ehrlich et al., 2009). Thus, it is possible that

disinhibition of type Il cells by Htria agonist treatment in
Htr1a®®* mice suppresses conditioned freezing in part by
directly inhibiting medial CeA projection neurons.

Third, our experiments showing that atropine blocked the
switch from freezing to active behavior suggest that ventral
forebrain cholinergic circuits are critical for modulating the
quality of fear responses. Whether this switch is a direct conse-
quence of increased cortical arousal or is also in part due to
increased inhibition of medial CeA outputs that have been
proposed to be responsible for behavioral immobility is not
completely clear from our results. Our observation that atropine
was able to completely reverse the effects of 8-OH-DPAT at least
on freezing suggest that cholinergic mechanisms are necessary
(but not necessarily sufficient) to switch away from passive fear
(Figure 4E). The apparent reduced efficacy of atropine in re-
versing active behaviors induced by the Htr1a agonist (Figure 4G)
suggests either that these are less sensitive to atropine or that
other circuits are involved.

Thus, our data suggest a model in which the activity of lateral
CeA projection neurons determines CeA outputs, switching
behavioral responses from freezing to risk assessment and
exploration (Figure 7). Under normal conditions (switch ON),
lateral CeA projection neurons are tonically inhibited by type |
neurons and medial CeA projection neurons are free to respond
to inputs and promote freezing. When type | neurons are silenced
(switch OFF) type Il, oxytocin receptor-expressing lateral CeA
projection neurons are disinhibited, leading to increased lateral
CeA outputs to ventral forebrain and inhibition of medial CeA
outputs. CeA efferents to the ventral forebrain (NBM/SI) lead to
a disinhibition of cholinergic neurons and increased cortical
arousal. Blockade of cholinergic neurotransmission is able to
reverse the behavioral effects of the switch, suggesting that
CeA-ventral forebrain outputs play a critical role in the switch.
Such a circuitry is consistent with the suppression and facilita-
tion of fear responses reported after intra-CeA administration
of oxytocin and vasopressin receptor agonists, respectively
(Roozendaal et al.,, 1992) and is in agreement with existing
models of CeA function (Viviani and Stoop, 2008;Walker and
Davis, 2008; Ehrlich et al., 2009).

One possible confound in the interpretation of our fMRI results
is the possibility that low levels of expression of Htr1a outside
type | CeA neurons may have contributed to the signal observed.
Several lines of evidence suggest that such ectopic activation, if
present, is minimal and does not mediate the rCBV and behav-
ioral effects seen following 8-OH-DPAT treatment. First, similar
experiments in a line of mice expressing Htr1a under the same
promoter but showing expression selectively in dentate gyrus
granule cells of the hippocampus (Htr1aP®; Tsetsenis et al.,
2007) did not show any increase in cortical rCBV signal
(Figure S4) despite the fact that this line shows low levels of
Htr1a expression in CeA (Tsetsenis et al., 2007). Thus, low levels
of Htr1a do not appear to cause membrane hyperpolarization
sufficient to alter neuronal firing, and this conclusion is confirmed
by electrophysiological studies in slices taken from these mice
(Tsetsenis et al., 2007). Second, the ability of centrally delivered
atropine to suppress rCBV signal activation following 8-OH-
DPAT treatment argues against the effect being mediated by
activation of Htr1a within a local cortical circuit. Another possible
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Figure 6. Type | CeA Cells Tonically Suppress Firing of Oxytocin-Responsive Neurons in Lateral CeA

Distinct firing signatures distinguished two major cell types in lateral CeA: (A) DAP* type | and (F) DAP~ type Il neurons. Whole-cell recordings in lateral CeA
neurons of slices taken from Htr1a®®* mice demonstrated that bath application of 8-OH-DPAT (DPAT, 50 uM, 1-3 min) induced a significant decrease in spon-
taneous firing of type | cells (B and C, n = 7) and increase in firing of type Il cells (G and H, n = 9). Type Il cells (I-J, n = 7), but not type | cells (D and E, n = 5) showed
increased firing following application of the oxytocin receptor agonist, [Thr*, Gly’]-oxytocin (TGOT, 0.2 uM, 1-3 min). (B, D, G, and |) Relative mean firing frequency
expressed as percentage of control value before drug delivery. (C, E, H, and J) Time course of the firing frequency of a representative cell. No significant changes
in neuronal firing following 8-OH-DPAT administration were seen in slices taken from Htr1aX© control mice (type | cells: 3.51 + 0.88t0 3.05 + 0.99 Hz, n =7,
p =0.13).

confound derives from or use of a Htr1a knockout background
for our studies. While these mice do show significant behavioral
and physiological differences these are unlikely to have affected
our conclusions given the combination of pharmacological
(8-OH-DPAT versus vehicle) and genetic (Htr1a®®” versus
Htr1a%®) controls.

An important question raised by our findings is whether type |
CeA neurons are selectively involved in phasic, conditioned fear

responses (Walker and Davis, 2008), or whether they also
actively modulate tonic, unconditioned behavior. The fact that
we detected cortical arousal following agonist treatment in
both unstimulated, anaesthetized and awake, freely moving
animals suggests that type | CeA neurons are tonically active
in the absence of any conditioned stimulus. However, active
behaviors, although in some cases present before stimulus
presentation, were significantly enhanced only during the tone

SWItCh ON SWItCh OFF Figure 7. Proposed Circuit by which CeA
Influences Active and Passive Fear
Responses
7 lateral neocortex i lateral neocortex
Afpe) & CeA lype '——"'l ¥ CeA Under standard conditions (Switch ON) type | cells
neuron neuron

o1

are responsible for tonically inhibiting type Il

OTR OTR . . .
¥, »; oxytocin receptor-expressing neurons in lateral
r:ii?;L g r:i%?::‘——-——-— LA CeA that project to nucleus basalis of Meynert
NBM/SI NBM/SI and substantia innominata (NBM/SI). When type |
AVPR AVPR ) ' cells are inhibited (Switch OFF), oxytocin receptor-
S e - expressing GABAergic projection neurons in lateral

medial (&0 medial (&) R .

CeA CeA . CeA are disinhibited. Increased firing of lateral CeA
freezing risk projection neurons leads to inhibition of ventral fore-
assessment brain interneurons that maintain suppression of

firing of cholinergic neurons responsible for pro-

moting neocortical arousal. Blocking cholinergic neocortical activation (e.g., with the muscarinic antagonist atropine) leads to a reversal of the switch from
passive to active behavior. Oxytocin receptor-expressing lateral CeA neurons also directly inhibit vasopressin receptor-expressing medial CeA neurons that
project to hypothalamic and brainstem structures to promote freezing and parasympathetic responses to aversive conditioned stimuli (OTR, oxytocin receptor;
AVPR, arginine/vasopressin receptor; arrows highlighted in white indicate relative changes in neuronal firing).
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(data not shown) suggesting that relief of tonic inhibition in CeA
was not sufficient to moderate behaviors in the absence of
appropriate upstream inputs. Thus, we conclude that CeA disin-
hibition permits the expression of exploratory and risk assess-
ment behaviors in the presence of a fear stimulus, but that this
disinhibition is not sufficient to modulate unconditioned fear
responses that may converge at a lower level in the fear circuitry.

Another question of importance is whether the switch from
passive to active behavior we see reflects a change in the quality
of the fear response or rather a change in its intensity. Although
our observed behavioral switch is clearly one of quality, rather
than quantity, it is possible that it acts to regulate the activity
of a single downstream circuit. Lesions of the dorsal premamil-
lary nucleus, for example, can transform fear in the presence
of a predator from freezing to cautious exploration, and, contex-
tual fear of the predator from cautious to relaxed exploration
(Cezario et al., 2008), for example. Thus, the CeA switch may
be acting on a downstream rheostat-like circuit that dials
between freezing/risk assessment/nonfear in a way that is
consistent with the defensive distance hypothesis. Alternatively,
the CeA switch could be acting independently to suppress
passive and promote active behaviors. Our observation that
low doses of atropine (0.1 mg/kg) selectively reverses the effects
of 8-OH-DPAT on freezing in Htr1a®®* mice, while leaving active
behaviors unaffected (Figures 4G and 4H), suggests that
separate circuits may be involved in these two coping strategies.
A related question involves the degree to which variation in CeA
switch efficacy might explain individual variation in fear behavior.
It is possible, for example, that different set points of tonic
activity of type | CeA cells could predispose animals to a more
passive or active fear coping style. Future experiments aimed
at examining the role of defensive distance or intensity as well
as interindividual variability in modulating the CeA switch may
help in address these hypotheses.

In summary, we have applied fMRI and correlation analysis to
map circuits downstream of CeA that are involved in modulating
conditioned fear. Our findings demonstrate that CeA outputs to
ventral forebrain cholinergic neurons driving cortical arousal
are under tonic inhibition by type | neurons in CeA and that
modulation of their activity offers the animal a route to shift its
conditioned fear responses from passive to active behaviors.
These findings demonstrate that CeA circuits are involved in
determining both the magnitude and quality of conditioned fear
responses and is consistent with studies arguing in favor of
a more complex role for the amygdala in modulating fear coping
behavior (Walker and Davis, 2008;Wilensky et al., 2006).

EXPERIMENTAL PROCEDURES

Animals

All in vivo studies were conducted in accordance with the laws of the Italian
Ministry of Health (DL 116, 1992). Protocols were reviewed and approved
by a local animal care committee in accordance with the guidelines of the
Principles of Laboratory Animal Care (NIH publication 86-23, revised 1985).
fMRI experiments were performed in adult (>10 weeks) male mice. The trans-
genic lines used have been previously described (Tsetsenis et al., 2007). The
strains were maintained on a mixed C57BL/6J;CBA/J;129S6/SvEvTac back-
ground. Littermates were used for all control experiments. Experiments on
the effect of atropine sulfate on the inhibitory action of 8-OH-DPAT in wild-

type mice were performed in C57BL/6J male mice (Charles River ltalia,
Como, ltaly). Animals used in fMRI studies were singly housed with food and
water provided ad libitum and under controlled temperature (20°C-22°C),
humidity (45%-65%), and lighting (12 hr light/dark, lights on at 06:00 hr).
Animals used in behavioral studies were housed as previously described
(Tsetsenis et al., 2007).

Animal Anesthesia and Physiological Monitoring

Mice were anaesthetized with 4% isoflurane in a 1:1 oxygen/nitrogen mixture
(0.9 I/min + 0.9 I/min) within an induction chamber connected to a vaporizer
(Burtons Medical Equipment, UK). The animal was then placed supine on an
interactive heating pad (Harvard Apparatus, UK) and gaseous anesthesia
continuously delivered through a face mask. Mice were subsequently tracheo-
tomized and artificially ventilated (see below). The left femoral artery was
cannulated for compound administration, continuous blood pressure moni-
toring, infusion of paralyzing agent (pancuronium bromide, 0.5 mg/kg/hr,
Sigma-Aldrich, Italy), and blood sampling for measurement of arterial blood
gases. Htr1a®®” and wild-type animals were also fitted with an intraperitoneal
cannula to allow administration of anticholinergic drugs. Arterial blood gases
paCO, and p,0O, were measured terminally and the values used retrospectively
to exclude subjects that presented parameters outside the physiological range
(20-50 mmHg for p,CO,, > 80 mmHg for p,0,). Mean weight and p,CO levels
recorded are reported in Supplemental Information (Table S1). No statistically
significant difference in postacquisition p,CO, values between any of the
groups was observed (one-way ANOVA followed by Fisher's LSD and
Hochberg’s correction for multiple comparisons with o = 0.05).

Tracheostomy

Prior to surgical incision, each mouse received a subcutaneous infiltration of
0.05% tetracaine solution at each surgical site (neck and femoral area) at
volume of 0.02 ml/point (0.04 ml/mouse). Tetracaine was chosen due to its
negligible degree of brain penetration (Ferrari et al., 2010). The neck and
femoral area were shaved with an electrical shaver and the skin disinfected.
Rolled gauze was placed under the neck in order to extend it and facilitate
the subsequent exposure of trachea for surgery incision. A midline skin incision
was made along the length of the neck and, after separating the two halves of
the sternohyoid muscle, the trachea exposed. The incision covered the sublar-
yngeal region, and a G23 cannula (Vygon, France), shortened to 0.7 cm, was
inserted into the trachea. The cannula was then secured with silk suture thread
(8-0 Ethicon, Johnson-Johnson, Belgium) passed through the holes of its
plastic “butterfly.” The cannula was then connected to a ventilation pump
(Inspira ASV, Harvard Apparatus) and anesthetic gas delivery switched from
the mask to the pump. Ventilation parameters were 70 bpm and tidal volume
(V1) in the range of 5.3-5.9 ml/kg. Starting Vt was chosen on the basis of
measurements performed on a separate group of wild-type mice (n = 10).

Femoral Artery Cannulation

Femoral artery cannulation was performed at an IF level of 3%. We chose to
cannulate the femoral artery instead of the femoral vein as customary in rat
surgery due to the former’s higher elasticity and resistance. This procedure
allowed for quicker surgery and higher throughput compared to vein cannula-
tion. The left leg of the animal was extended and taped on the surgical mat.
A skin incision of roughly one centimeter was made above the femoral area.
The left femoral artery was isolated and cannulated with a polyethylene
catheter (PE10, OD 0.61 mm, ID 0.28 mm) filled with heparinized physiologic
solution (25 Ul/ml) containing 0.0375 mg/ml of pancuronium bromide that
was continuously infused (rate 6.7 mil/kg/h) throughout the experiment to
ensure constant neuromuscular blockade. This catheter was connected to
a blood-pressure transducer (Biopac Systems) through a flow/flush device
(CRITIFLO TA4004, Becton Dickinson). In order to allow for compound admin-
istration, a homemade Plexiglas Y-piece was placed in between the femoral
catheter and the MABP transducer. The PE10 catheter was connected to
the Y piece through a 2 cm PVCA40 junction (OD 0.90 mm, ID 0.50 mm) inserted
into a piece of Silicone tubing (Fr 3). The two-way system allowed simulta-
neous recording of MABP and infusion of paralyzing agent plus the injection
of compounds (upon clamping of the opposite way to prevent the delivery of
compound in the wrong line). After surgery (25-35 min in duration) mice
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were placed into a customized stereotactic holder (Bruker, Germany) and
anesthesia lowered to 1.2%.

rCBV Measurement

MRI data were acquired using a Bruker Avance 4.7 Tesla system, a 72 mm
birdcage resonator for radiofrequency pulse transmit, and a Bruker curved
“Mouse Brain” quadrature receive coil. The MR acquisition for each subject
comprised T2-weighted anatomical images using the RARE sequence (Hennig
et al., 1986; TRes = 5597 ms, TEq« = 76 ms, RARE factor 8, FOV 40 mm, 256 x
256 matrix, 24 contiguous 0.75 mm slices) followed by a time series acquisition
with the same spatial coverage and similar parameters (TR = 5436 ms, TEq¢ =
112 ms, RARE factor 32, 128 x 128 matrix, 24 contiguous 0.75 mm slices), but
lower in-plane spatial resolution (312 um?) giving a functional pixel volume of
~0.07 mm3. Two successive scans were averaged for a resulting time
resolution of 42 s.

Total MRI time series acquisition time was 70 min (100 repetitions) for all
groups. Following five reference images, 3.75 pl/g of the blood pool contrast
agent Endorem (Guerbet, France) was injected so that subsequent signal
changes would reflect alterations in relative cerebral blood volume (rCBV;
Mandeville et al., 1998). The dose of Endorem was selected to ensure a
mean signal decrease of ~60% necessary to optimize the contrast-to-noise
ratio of the rCBV measurement as described (Mandeville et al., 1998). Each
subject received an intra-arterial injection of vehicle (saline, 5 pl/g) followed
by a challenge with 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT,
Sigma, Milano) 25 min later. Vehicle injection was performed 15 min after
administration of contrast agent. Htr1a®®* and wild-type littermates mice
received anticholinergic agents (0.3 mg/kg, i.p.) or saline vehicle between
intra-arterial vehicle and 8-OH-DPAT injections (14 min apart). The MRI time
series were acquired over a period of 25 min following the administration of
the 8-OH-DPAT challenge. The dose of 8-OH-DPAT and atropine were chosen
based on previous in vivo studies (Tsetsenis et al., 2007; Gasbarri et al., 1997;
Boccia et al., 2003; Baratti et al., 1979). Atropine sulfate is a nonselective
acetylcholine muscarinic receptor antagonist; atropine methyl-nitrate is
a non-brain-penetrant salt form of atropine. All compounds were injected at
1 ml/min. Compound injection was followed by administration of 0.2 ml of
saline to flush the intra-arterial line.

fMRI Data Analysis

rCBV time series data for each experiment were analyzed within the framework
of the general linear model (GLM) to obtain Z statistic maps (Worsley et al.,
1992). Signal intensity changes in the time series were then converted into
fractional rCBV changes on a pixel-wise basis using the transform (Mandeville
et al., 1998) rCBV(t) = In(S(t)/B(t))/In(B(t)/SPRE), where S(t) is the measured
signal, B(t) the estimated background signal in the absence of transient
functional stimuli, and SPRE the signal intensity prior to administration of the
contrast agent. B(t) was set equal to the mean signal intensity B, during the
8.4 min (12 time points) period prior to compound injection. For each time
series, a rCBV time series surrounding the vehicle and 8-OH-DPAT injection
points were calculated independently using identical parameters, covering
8.4 min (12 time points) prechallenge baseline and 22.4 min (32 time points)
postchallenge window, normalized to a common injection time point. In
contrast to what we observed in the rat (Schwarz et al., 2003) the slow rate
of blood-pool contrast agent elimination from mouse blood resulted in negli-
gible signal drifts over the time-window examined, which did not require the
application of detrending corrections. The T,-weighted anatomical images
from each subject were coregistered by rigid body alignment to a brain
template using FLIRT, Version 5.63, part of FSL (FMRIB’s Software Library,
www.fmrib.ox.ac.uk/fsl) and applying the resulting transformation matrix to
the accompanying rCBV time series.

Two separate anatomical templates were created in order to account for the
presence of slight but significant differences in the size of the brain of the trans-
genic lines (KO, CeA, and DG) with respect to wild-types, with the latter
showing a reduced dorsoventral and horizontal extension. Average brain
templates were created by coregistering and overlaying all the anatomical
scans to a representative subjects using FSL/FLIRT (affine transformation,
6 degrees of freedom). Non-brain tissue was removed from the template using
FSL/BET (brain extraction tool) followed by manual removal of residual signal
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from spurious subcutaneous fat in posterior slices. The template thus obtained
(template 1) was then used to mask individual anatomical images. The final
template was created through a second iteration of the coregistration process
using individual masked anatomicals and masked template 1 (affine, 7 degrees
of freedom, FSL/FLIRT). The resulting transformation matrix was applied to the
accompanying rCBV time series. The use of the paralyzing agent ensured that
no motion-related effects were present in the time series. Data from all animals
were checked for motion following acquisition by subtraction of image frames
at beginning and end of the time series, and at intermediate points (e.g., before
and after injection) revealing no motion artifacts in all the subjects examined.

Data were analyzed as previously described (Schwarz et al., 2006, 2007b). In
brief, subjects were coregistered by rigid body alignment to a mouse brain
template using FLIRT, Version 5.63, part of FSL (www.fmrib.ox.ac.uk/fsl).
The template was created by coregistering and overlaying all the anatomical
scans onto a representative subject using FSL/FLIRT. Signal time course
analysis in pericranial ROls of individual animals did not highlight significant
motion artifacts in any of the subjects imaged. Signal intensity changes were
converted into fractional rCBV changes (Mandeville et al., 1998). rCBV time
series before and after intra-arterial injections were calculated with 8 and
28 pre- and postchallenge time points, respectively. Ten and 18 time points
pre- and postadministration were used for intra-peritoneal administration.
Activation/deactivation maps were analyzed using FEAT Version 5.63, part
of FSL, with 0.8 mm spatial smoothing and model functions identified by
Wavelet Cluster Analysis (Schwarz et al., 2006). Two separate regressors
were identified for wild-type and Hitr1a®”* subjects (Reg 1 and Reg 2,
Figure S5). Image analysis of Htr1aP® and Htr1ak® was performed using Reg
1 as no plausible regressor describing 8-OH-DPAT was found. Group compar-
isons were carried out using FLAME (FMRIB’s Local Analysis of Mixed Effects).
Z (Gaussianised T/F) statistic images were thresholded using clusters deter-
mined by Z > 1.96 (unless otherwise described) and a corrected cluster signif-
icance threshold of p = 0.01 (Friston et al., 1994; Worsley et al., 1992). rCBV
time series for 8-OH-DPAT, vehicle, or atropine injections (Figures S1-S4)
were extracted bilaterally for specific regions of interest (ROls) anatomically
defined based on a mouse stereotactic atlas (Paxinos and Franklin, 2003).
The effect of atropine pretreatment on the agonist response was assessed
using average rCBV over an 8-20 min postinjection time window and one-
way ANOVA followed by Fisher LSD. Results are quoted and displayed as
mean + SEM unless otherwise indicated.

Unsmoothed rCBV time series for 8-OH-DPAT and vehicle injection in each
subject were extracted for specific regions of interest (ROls) based on corre-
spondence between the anatomical images and stereotactic atlas of the
mouse brain (Paxinos and Franklin, 2003) using custom in-house software
written in IDL (Research Systems, Boulder, CO). rCBV time course data
were shown as group mean + standard error (SEM). Regions examined
and their approximate rostrocaudal position from zyregma) Were amygdala
—1.58 mm), caudate putamen (+0.74 mm), ventral dentate gyrus
—4.24 mm), dorsal dentate gyrus (—1.34 mm), posterior dentate gyrus
—3.16 mm), thalamus (—1.82 mm), hypothalamus (—1.82 mm), motor cortex
+0.62 mm), somatosensory cortex (+0.02 mm), prefrontal cortex
+1.54 mm), and cingulate cortex (+0.74 mm). All ROIs were drawn bilaterally.
Maps of correlated responses across subjects (Figure 3) were calculated
within a General Linear Model framework at the higher level using FSL with
FLAME as previously described (Schwarz et al., 2007b). Two reference
(seed) regions, left CeA (Zpregma —0.6 mm) and left somatosensory cortex
(Zbregma —0.9 mm), were selected a priori. Maps were thresholded using
clusters determined by Z > 1.6 and a corrected cluster significance threshold
of p = 0.01. Mean arterial blood pressure data were rebinned in 10 sample
subdivisions and plotted using 40 s bins (Figure S6).

Arterial blood pressure time courses were recorded using an intra-arterial
transducer and a 50 Hz sampling frequency (AcgKnowledge 3.1, Biopac
Systems, Goleta). Mean arterial blood pressure (MABP) was calculated by
temporally smoothing raw blood pressure traces using a moving average of
300 samples (6 s). MABP data were then rebinned in 10 subdivisions. Average
MABP response over a 0-20 min postinjection time window was used as a
summary measurement for statistical comparison between groups. Statistical
comparison of MABP and arterial blood gases (p,CO, and p,O,) was per-
formed using one-way ANOVA followed by Fisher’s LSD (least significant
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difference) test using Statistica 8.0 (Statsoft, Tulsa, OK). To simplify data
presentation, MABP time course data were plotted using 40 s bins.

The composition of the experimental groups and treatments is summarized
as follows: Group 1 — Htr1a*®, vehicle/8-OH-DPAT, n = 8; Group 2 — Htr1a®®,
vehicle/vehicle/8-OH-DPAT, n = 9; Group 3 - Htr1a®®A, vehicle/atropine-
sulfate/8-OH-DPAT, n = 5; Group 4 - Hir1a®eA, vehicle/atropine-methyl-
nitrate/8-OHDPAT, n = 5; Group 5 — Htr1aP%, vehicle/8-OH-DPAT, n = 6; Group
6 —wild-type, vehicle/8-OH-DPAT, n = 14; Group 7 — wild-type vehicle/vehicle/
8-OH-DPAT, n = 8; Group 8 — wild-type, vehicle/atropine-sulfate/8-OH-DPAT,
n=_8.

Immunohistochemistry

Undisturbed littermates were injected with 8-OH-DPAT (one mouse/genotype/
cage) and returned to their home cage for 90 min before trans-cardial perfusion
with saline and paraformaldehyde under anesthesia. Brains were removed,
postfixed overnight, and rapidly frozen before cryosectioning (40 pm).
Anti-c-Fos (Calbiochem) immunohistochemistry was carried out on free-
floating coronal brain sections using the ABC detection system (Vector
Labs). Immunostaining was quantified manually from microscope images of
matched sections (two sections/animal; averaging between hemispheres)
with the aid of Image J software.

Behavioral Testing

Fear conditioning was carried out as previously described (Tsetsenis et al.,
2007). In brief, mice were exposed on day 1 to a partially conditioned tone
and a perfectly conditioned light stimulus (20 s stimulus coterminating with
0.5 mA, 1 s footshock, 3x tone-light-shock, 2x tone interspersed; tone:
3000 Hz, 85 dB), and tested for freezing during the tone delivered in a novel
cage on day 2 (3 min baseline period followed by 6 min tone presentation).
Behavioral data were extracted by manual scoring of video recordings from
the 3 min baseline and first 3 min of the tone presentation with the aid of
Observer software (Noldus, Wageningen, Netherlands). Digging was scored
when the animal was close to the edge of the cage and was using his paws
to dig and pull up the plastic flooring. Exploration was scored when the animal
made pronounced whole-body movements that extended across the cage.
Rearing included both wall and center rearing. All behaviors were recorded
as total duration of the activity. All scoring was performed blind to genotype
and treatment.

Electrophysiological Recordings

Mice (P21-P55 littermates) were deeply anesthetized with halothane and
decapitated, and whole brains were rapidly removed and immersed for
10 min in oxygenated (95% O, 5% CO, [pH 7.4]) ice-cold ACSF containing
125 mM NaCl, 2.5 mM KClI, 1.25 mM NaH,PO,4, 1.0 mM MgCl,, 2.0 mM
CaCl,, 10 mM glucose, and 26 mM NaHCOj;. Horizontal (250 pum) slices
were cut at 4°C with a vibratome, placed in a chamber containing oxygenated
ACSF, and allowed to recover for 2 hr at room temperature. Individual slices
were then transferred to the submerged slice-recording chamber and main-
tained at 32°C and constantly superfused with oxygenated ACSF. Central
amygdala regions were identified using the hippocampus CA2 and lateral
amygdala regions as references. Recording electrode resistance was
8-12 MQ when filled with an intracellular solution of 140 mM K-gluconate,
4 mM MgCl,, 0.5 mM EGTA, 10 mM HEPES, 2 mM MgATP, and 0.5 mM
NaGTP (pH 7.3, 280 mOsm). Whole-cell recordings were made using an ampli-
fier (Multiclamp 700B, Axon Instruments) and signals filtered and digitized at
10 kHz with an A/D converter (Digidata 1322A, Axon Instruments) and stored
using pClamp 9 software (Axon Instruments). Spontaneous firing was re-
corded in current-clamp configuration with neurons held near the spiking
threshold (—55 + 5mV) by depolarizing current injection. In some experiments
spontaneous frequency was enhanced by lowering ACSF Ca?* concentration
to 0.5 mM. Baseline activity was monitored for at least 4 min and stable base-
line spiking frequency obtained before applying agonists. Drugs were freshly
prepared from stock solutions and applied to the slice by a gravity-driven
perfusion system (flow rate = 2 ml/min, one exchange every 3 min). Washout
of agonists with ACSF reestablished spiking to initial levels within 10-15 min.
Spontaneous spiking activity was analyzed by Mini Analysis Program
(Synaptosoft, Decatur, GA) with detection parameters adjusted for each

data file to obtain correct values of peak amplitude and frequency both in
simple events and complex bursts. Mean spike frequency time course was
obtained by averaging the interevent interval in 10 s bins. Effects of drugs
application were quantified by averaging spike frequency at baseline and
the effect plateau (1-2 min each).

Statistical Testing

Statistical testing of behavioral data was carried out using ANOVA and Fisher
LSD post-hoc testing in cases of significance, except for the atropine study in
which we tested the a priori hypothesis that atropine would reverse the
behavioral effects of 8-OH-DPAT and used t tests. c-Fos and electrophysio-
logical data were analyzed by t test. Correlation was assessed by Pearson’s
regression testing. Statistical testing of imaging data is described above or
in the figure legends.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and one table and can be found
online at doi:10.1016/j.neuron.2010.07.008.
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ABSTRACT

In the study of functional connectivity, fMRI data can be represented mathematically as a network of nodes
and links, where image voxels represent the nodes and the connections between them reflect a degree of
correlation or similarity in their response. Here we show that, within this framework, functional imaging
data can be partitioned into ‘communities’ of tightly interconnected voxels corresponding to maximum
modularity within the overall network. We evaluated this approach systematically in application to networks
constructed from pharmacological MRI (phMRI) of the rat brain in response to acute challenge with three
different compounds with distinct mechanisms of action (d-amphetamine, fluoxetine, and nicotine) as well
as vehicle (physiological saline). This approach resulted in bilaterally symmetric sub-networks correspond-
ing to meaningful anatomical and functional connectivity pathways consistent with the purported
mechanism of action of each drug. Interestingly, common features across all three networks revealed two
groups of tightly coupled brain structures that responded as functional units independent of the specific
neurotransmitter systems stimulated by the drug challenge, including a network involving the prefrontal
cortex and sub-cortical regions extending from the striatum to the amygdala. This finding suggests that each
of these networks includes general underlying features of the functional organization of the rat brain.

Nicotine
Modularity
Community structure

© 2009 Elsevier Inc. All rights reserved.

Introduction

Functional connectivity analyses of neuroimaging data aim to
elucidate relationships between signals originating in spatially distinct
brain regions, an approach that complements the more established
univariate approaches in which the responses in each brain region are
analyzed independently (influence of local smoothness notwithstand-
ing). A number of recent studies have shown that functional imaging
data sets from individuals or groups of subjects can be resolved into
several distinct ‘sub-networks’, each of which comprises a set of
distributed brain regions in which signal changes are correlated
(Cordes et al., 2001; Fransson, 2005; Beckmann et al., 2005; De Luca et
al., 2006; Damoiseaux et al., 2006; Schwarz et al.,, 2007a). These
correlations are interpreted as reflecting a functional connectivity
between the brain regions involved. In keeping with the concept that
brain function involves interplay between segregation and integration,
such networks have been identified in a number of experimental
settings, including task-free (‘resting state’) fMRI data in humans

* Corresponding author.
E-mail address: angelo.2.bifone@gsk.com (A. Bifone).
! Present address: Translational Imaging Group, Exploratory and Program Medicine,
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.

1053-8119/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.neuroimage.2009.03.064

(Cordes et al., 2001; Fransson, 2005; Beckmann et al., 2005; De Luca et
al., 2006; Damoiseaux et al., 2006) and in response to pharmacological
challenge in experimental animal models (Schwarz et al., 2007a).

This emphasis on interaction between different brain structures in
the study of functional connectivity is a good conceptual match for
considering the data as a graph, or complex network (Strogatz, 2001),
of nodes and links. In this representation, image voxels or parcellated
brain regions represent the nodes and a measure of similarity in their
responses defines the links between them (Eguiluz et al., 2005;
Salvador et al., 2005; Achard et al., 2006; Achard and Bullmore, 2007).
Global statistical properties of the network can then be used to infer
properties such as ‘small world’ behavior (Watts and Strogatz, 1998;
Achard et al., 2006) which have deep implications for the behavior of
the system as a whole.

However, in addition to evaluating global properties, working with
a complex network representation of the data also allows the iden-
tification of different 'sub-networks’ within the overall data set. Such a
network partitioning essentially addresses the same problem as cluster
analysis or independent component analysis (ICA) techniques—that
is, to sensibly group brain regions into sets, for each of which the
members have similar profiles. In the context of a complex network,
partitioning algorithms seek a division of a network into groups of
nodes whose within-group links are denser than links between
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groups. The presence of this feature is commonly referred to as
‘community structure,’ from its origins in the study of social networks,
but has recently seen application to complex networks more generally
and a number of algorithms have been developed (Zhou, 2003;
Clauset et al., 2004; Newman and Girvan, 2004; Vragovic and Louis,
2006; Newman, 2006a,b; Raghavan et al., 2007; Ruan and Zhang,
2008). In the case of complex networks derived from brain imaging
data, network partitioning has the potential to reveal system-level
functional structure of the brain. Moreover, the use of community
structure algorithms based on the maximization of a network-
theoretic quantity known as modularity provides a quantification of
the emergent modularity within the network (Clauset et al., 2004;
Newman, 2006b). That is, the optimum value of the modularity
parameter for a given network reflects the degree of segregation
between the different component sub-networks. Applications of
community structure approaches based on maximum modularity to
the partition of brain functional connectivity networks have been
demonstrated in rodents (Schwarz et al., 2008) and, more recently, in
humans (Meunier et al., 2009).

In the present paper we describe the partitioning of complex
networks derived from the response of the rat brain to acute
pharmacological challenge (“pharmacological MRI; phMRI”). Under
these conditions, widespread networks of functional connections
have been demonstrated (Schwarz et al., 2007a,b,c). However, it is
unclear to what extent these patterns reflect interregional correlations
induced by the drug challenge itself, or the intrinsic organization of
the brain, perhaps determined by the structure of the underlying
neuronal substrate. To this end, we investigated the community
structure of functional connectivity networks under different phar-
macological stimuli, thus probing the effects arising from the
engagement of different neurotransmitter systems. Specifically, we
compared the emergent community structure under different condi-
tions to discriminate between connectivity patterns that are stimulus-
specific and those independent of the particular neurotransmitter
system(s) engaged by the drug, which may thus correspond to general
features of the rat brain functional architecture.

We work within a formal network representation of the data with
nodes defined at the voxel level, and the links reflecting signal
correlations between pairs of nodes. While intra-subject temporal
correlations are often used to infer functional connectivity from fMRI
time series, this approach can be problematic in phMRI, due to the
relatively slow and widespread signal changes typically induced by a
pharmacological challenge (Schwarz et al., 2007b). However, across-
subject correlations in response amplitude have been used for many
years with imaging techniques that do not afford high-temporal
resolution, e.g., in 2DG autoradiography (Soncrant et al., 1986) and
FDG-PET (Horwitz et al., 1998). By extending this approach to the
analysis of phMRI data, we have recently demonstrated functional
connectivity along specific neurotransmitter pathways in the rat brain
under pharmacological stimulation (Schwarz et al., 2007a,b). Here,
we construct and characterize whole-brain functional networks
derived from inter-subject correlations in the response amplitude
following drug administration. We employ a community structure
algorithm based on the maximization of modularity to extract ‘sub-
networks’ of tightly interconnected nodes and investigate differences
and common features in the connectivity as the pharmacological
stimulus is varied. Moreover, in order to identify the central structural
features of these sub-networks, we specify a criterion to discriminate
between ‘core’ and ‘peripheral’ nodes, i.e. between those that are
much more densely connected to nodes within their assigned group
than to those outside it, and nodes that are more loosely integrated
within the assigned community.

This substantially extends recent work on complex network
analyses of phMRI data (Schwarz et al.,, 2008) in two ways: (a) by
providing a comparative partitioning across networks derived from
different pharmacological challenges, thus allowing identification of
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common functional structures that are stimulus-independent; and (b)
by specification of a criterion to improve the identification of the core
structure of each sub-network.

Methods
MRI data acquisition

All experiments were carried out in accordance with Italian
regulations governing animal welfare and protection. Protocols were
also reviewed and consented to by a local animal care committee, in
accordance with the guidelines of the Principles of Laboratory Animal
Care (NIH publication 86-23, revised 1985). The data described in this
paper originate from three studies, for which acquisition details were
substantially similar and which have been published previously (Gozzi
etal.,2006,2008; Schwarz et al., 2007b). In short, phMRI data sensitive
to changes in relative cerebral blood volume (rCBV) were acquired
from male Sprague-Dawley rats on a Bruker 4.7T system under 0.8%
halothane maintenance anesthesia, neuromuscular blockade and
artificial ventilation with blood gas values maintained within
physiological range (30<pC0O,<50; pO,>100). Images were sensitized
to rCBV changes by injection of the blood pool contrast agent Endorem
(2.67 ml/kg). Anatomical reference images were acquired using a
RARE sequence with RARE factor 32, matrix 256 x 256, FOV 40 mm, 16
contiguous 1 mm coronal slices, TReg= 5500 ms, TE.¢= 76 ms. This
was followed by a time series acquisition using the same sequence, but
with reduced matrix size (128 x128), TRor=2700 ms and TE.¢=
100 ms. Acquisition time per image volume was 20 s, with 4 successive
excitations averaged and 64 time points per subject. In the first study,
the animals were challenged with either d-amphetamine (1 mg/kg i.
v., N=17) or vehicle (saline, N=7) respectively (Schwarz et al., 2007a,
b).In the second, animals were challenged with fluoxetine (10 mg/kg .
p.,N=7) (Schwarzetal.,2007b). In the third, animals were challenged
with nicotine (1 mg/kg i.v., N=9) (Gozzi et al., 2006). All drug
challenges were infused over 1 min following 30 min equilibration
after contrast agent administration. Subsequent signal changes were
tracked for approximately 20 min after the challenge, to capture the
initial rCBV changes following infusion. In all cases, the drug-induced
changes in peripheral arterial blood pressure were within the
autoregulatory range associated with halothane anesthesia
(60<BP<120 mm Hg) (Zaharchuk et al., 1999; Gozzi et al., 2007),
within which abrupt pharmacological manipulation of blood pressure
can be homeostatically compensated without producing significant
alterations of CBV.

In total, complex networks were constructed as detailed below
from four subject cohorts: the d-amphetamine and vehicle groups in
the first study as well as from the fluoxetine and nicotine arms in the
second and third.

PhMRI analysis details

Following spatial and temporal pre-processing (Schwarz et al.,
2003, 2006, 2007b), image based time series analysis of the response
in individual subjects was carried out within a general linear model
framework (Schwarz et al., 2007b,d) in order to calculate 3D maps of
the post-injection response amplitude in each subject. The response
maps for the subjects in each study were then stacked together so that
each voxel had an associated vector of response amplitudes across
subjects. The inter-subject correlations analyzed here leverage the
differential anatomical profiles of phMRI response between subjects
(Fig. 1(a)).

Creation of network representations

The individual subject response amplitude maps calculated at the
dimensions of the standard template brain (Schwarz et al., 2006) were
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subject

a) Image data defines response vector for
each voxel.

e)Retain only ‘core’ nodes
in each module.

d) Partition into modules by
maximizing modularity.
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b) Cross-correlation between all
pairs of voxels to define
complete weighted network.

]

C) Threshold to retain
strongest links and generate
binary network.

Fig. 1. Schematic overview of network creation and analysis. (a) The phMRI signal amplitude defines a response vector for each brain region or voxel. (b) Considering each voxel as a
node, correlations between these vectors are used to determine link strengths in a complete, weighted network representation of the data. (c) The network is binarized by retaining
only links of weight greater than a certain threshold. (d) The application of a community structure algorithm partitions the full network into ‘communities’ of densely interconnected
nodes. (e) The use of a null model enables the selection of ‘core’ nodes, preferentially connected to other nodes within the same community.

rebinned in-plane by a factor of two. This was performed so that
subsequent adjacency matrices remained within the memory limits of
the IDL software used for much of the processing and also provided
voxel volumes closer to the actual acquisition resolution (as part of the
spatial normalization process, the time series' were rebinned to the
template resolution; voxel size 1.94 x 1.94x 8 mm?). For each study, a
binary brain mask (Schwarz et al., 2006), covering only slices for
which complete data were present for all subjects in the cohort, was
used to define brain parenchyma voxels for further analysis.

A fully weighted, complete network was created for each study by
considering each voxel as a node and defining the strength of the edge
between each pair of voxels based on the linear correlation between
the response vectors associated with each (Fig. 1(b)). Specifically, the
weight of each edge wj; was defined as the absolute value of the
Pearson correlation coefficient r;; between the inter-subject response
amplitudes in each voxel, converted to lie under an approximately
normal distribution by applying Fisher's r-to-z transformation:

wi = |z;],
1, (147 M

where i, j €{1,..., Npodes} specify the pair of nodes connected by each
edge. These networks are undirected—each edge simply conveys the
strength of a connection without regard to a causal direction. Each of
the four weighted networks was then converted into a binary one by
retaining only the edges with the highest weights (i.e., representing
the strongest connections) (Fig. 1(c)). This step was performed in
order to make networks of this size tractable for further analysis—the
implementation of the community structure algorithm employed for
network partitioning (see below) was only compatible with binary

networks. Although extension of complex network theory to weighted
networks is of considerable current interest, properties of binary
networks are well established and previous fMRI complex network
studies (Eguiluz et al., 2005; Achard et al., 2006) have also employed a
binarization step. We applied a threshold determined as that which
retained the strongest 2% of the Npodes X (Nnodes — 1) / 2 edges in the
fully weighted network. This value was empirically determined as one
that allows a diversity of node connectivities, while retaining a
connected network (Schwarz et al., 2008; see also Discussion).

The resulting binary networks can be represented mathematically
by an adjacency matrix A, whose elements a;; describe the connectivity:

@ = 1,if nodes i and j are connected 2)
U710, otherwise.

The numbers of nodes remaining in each network were 9898
(amphetamine), 11459 (fluoxetine), 11607 (nicotine) and 9917 (vehicle).

Network partitioning—community structure decomposition

To explore the ‘community structure’ within the phMRI networks
(Fig. 1(d)) we applied a recent algorithm that seeks a network
partition maximizing a cost function known as the modularity, Q €
[—1, 1], defined for a binary network as

1 kik;\ _group
Q= 4> (A1 = 5 )5, 3)

ij

where m = }37; ; A; is the total number of edges in the network, k;=
3A; is the degree of node i and 62" equals 1 if nodes i and j are in
the same community and O otherwise. For a given partition of the
network, Q measures the difference between the fraction of the edges
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connecting nodes within communities and the same fraction in the
case of a randomly connected network with the same partition. The
closer the value of Q is to its theoretical maximum 1, the stronger the
community structure, i.e. the more modular the network. Algorithms
seeking a network partition that maximizes modularity yield an
estimate of the number of communities into which the network
should be optimally split, the composition of each community and an
associated value of Q.

In this study we used the ‘Fast Community’ algorithm (http://
www.cs.unm.edu/~aaron/research/fastmodularity.htm), which has
only a linear dependence of computation time on network size. (The
community structure of the networks evaluated in this study were
resolved in ~3 min each on an IBM Intellistation Z pro dual-core
workstation, a process that involved two runs of the algorithm—one to
determine the step at which the maximum value of Q was reached,
and a second to repeat and save the resulting partition corresponding
to that step). Since this algorithm assigns every node to a community,
very small clusters of loosely connected nodes may be identified as
communities. In order to avoid this potential confound, we applied a
cut-off of N=100 (approx 1% of the total number of nodes) as the
minimum size for a community to be carried forward for further
analysis. A cut-off for small clusters is justified theoretically by the
intrinsic “resolution limit” of approaches based on maximum
modularity (Fortunato and Barthelemy, 2007) (see also Discussion).
Nevertheless, all communities whose size was below this threshold
were inspected to assess the number of edges and the distribution of
nodes with respect to the anatomical reference images in order to
ensure that no meaningful communities were unduly discarded.
Inspection of the communities below the cut-off showed a few
clusters comprising very few nodes (in most cases fewer than 10),
whose distribution was scattered and not considered meaningful
within the aims of this study.

Core vs. peripheral nodes

Since the community structure algorithm per se assigns every node
to a community, it is useful to have some basis for disregarding nodes
that may be as strongly connected to nodes in other communities as to
those in their own (or more so, if the node has been erroneously
assigned by the algorithm). A measure of how ‘internal’ each node is
to its community can be provided by the difference between the
number of connections to other nodes in the same community (ki)
and those to nodes outside its community (ko) (Radicchi et al.,
2004). As we were primarily interested in identifying nodes with high
connectivity to other nodes assigned to the same community, we
defined the nodewise measure Ak as:

kiy — k

Ak = out 100 (4)

c

where N, is the number of nodes in the community and the maximum
value is scaled to 100 (cf. Guimera et al., 2005; Guimera and Nunes
Amaral, 2005 and see also Discussion). ‘Core’ nodes, with ki >> Koue
would therefore be associated with high values of Ak, whereas
‘peripheral’ nodes may have ki, ~ kou: and hence Ak~ 0. This concept
provides the basis of a simple thresholding procedure to retain only
the core nodes in each community. We generated five instances of a
random network of a similar size (10% nodes) to the phMRI networks.
In each case, weighted adjacency matrices were created with link
weights randomly distributed under a zero-mean, unit standard
deviation normal distribution. Then, the 2% of the links with the
greatest weight magnitude were retained to form a binary network
(i.e., as per the phMRI networks described above). We then applied
the community structure algorithm to these random networks to
derive a histogram of Ak capturing the distribution of the intra- vs.
inter-community link counts. The algorithm determined a similar
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number of communities for the random networks as for the phMRI
networks, but with qualitatively different Ak distributions (values
tightly clustered around zero). Histograms were very similar for each
of the five random networks and could be accurately modeled by a
Gaussian distribution. Accordingly, a histogram of Ak from all
communities combined was fit with a Gaussian function to determine
the mean (u= —0.164) and standard deviation (0= 0.268) of Ak for
the random network case. From these values, a threshold correspond-
ing to p=0.05 (Bonferroni-corrected; @+ 4.40) was determined as
Ak =1.02. For each community, nodes with Ak>1.02 were mapped at
their voxel locations on anatomical template in a color map
proportional to Ak, whereas nodes with Ak<1.02 were considered
not significantly “within” the community under this random-network
model (Fig. 1(e)).

Network modularity null model

The theoretical value for the modularity of a random network is
zero. However, finite random networks can present finite, positive
values of the parameter Q due to statistical fluctuations (Guimera et
al., 2004). Hence, the values of maximum modularity obtained for the
real functional connectivity networks under investigation must be
interpreted in comparison with an appropriate null model. To this end,
we used the maximum modularity values for the five random
networks described above as a comparator.

Results
Modularity and binarization threshold for phMRI networks

The community structure approach based on maximum modular-
ity partitioned each network into three communities. The maximum
modularity values, Qmax, are summarized in Table 1. Of the four phMRI
networks, the values of Qun.x were higher for the three networks
constructed from response to the psychoactive compounds (0.31-
0.38) than that for the vehicle network (0.29). However, all four had
Qmax significantly greater than values found with equivalent random
networks (~0.05).

In the same table, the binarization thresholds applied to retain 2%
of the links in each network are also reported. The value z of the
threshold reflects the average strength of the correlations for each
treatment group. The lowest threshold was applied to the vehicle
network, reflecting substantially weaker inter-voxel correlations.
Application of a higher threshold would have yielded fewer links
(less than 0.1% or 0.5%, at z=3.85 and z=3.45), with many
disconnected nodes, consistent with an overall more loosely con-
nected network for the vehicle control group.

Distribution of Ak

The distribution of Ak for the random networks yielded a bimodal
distribution, with most values clustered about Ak=0 and the
remainder under a second peak at Ak~—11. The portion of the

Table 1

Binarization threshold (z), and maximum modularity (Qmax) found using the
FastCommunity algorithm for each of the four phMRI networks and the random
networks.

Drug z-threshold Qmax
Amphetamine 345 0.31

Fluoxetine 3.45 0.38

Nicotine 3.85 0.37

Vehicle 3.05 0.29

Random? 2.334+2.9e-4 0.051 4 0.00017

¢ Mean =+ standard deviation of N=>5 instances of random network.


http://www.cs.unm.edu/~aaron/research/fastmodularity.htm
http://www.cs.unm.edu/~aaron/research/fastmodularity.htm
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histogram at Ak~0 was well described by a Gaussian function which
was fit to the data in order to establish a positive cut-off value of Ak,
for which larger values could be interpreted as unlikely under the null
scenario of random connections (Fig. 2(a)). A one-sided probability of
Peorr<0.05 under this null distribution was used to derive a cut-off
value of Ak>1.02 to define the ‘core’ nodes in each community.

Applying this threshold to the phMRI networks removed nodes
with Ak<1.02 that were not sufficiently ‘internal’ to the community,
or were mis-assigned (Ak<0) (Fig. 2(b)). In two of the three
communities in each of the three active challenge phMRI networks,
these removed nodes corresponded mainly to voxels around the edges
(spatially) of node clusters containing anatomically reasonable
distributions of core nodes. Additionally, one of the three commu-
nities in each active-challenge phMRI network comprised almost
exclusively below-threshold nodes, with few surviving the thresh-
olding process (Fig. 2(b)).

Anatomical distribution of voxel communities
In all three active-challenge phMRI networks, the two commu-
nities with voxels predominantly surviving the random model

thresholding corresponded to anatomically plausible, symmetrical
distributions of voxels (Figs. 3(a-c)). In each case, one community
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was dominated by voxels in the cortex—particularly sensorimotor
regions—while the other identified connectivity structure that
included more sub-cortical and limbic areas.

In the amphetamine network, the second community comprised
voxels primarily in sub-cortical regions and prefrontal cortices (Fig. 3
(a))—a pattern that strongly resembled the ‘mesolimbic dopamine’
signature previously obtained from a cluster analysis of the same data
(Schwarz et al., 2007a). (This community also provided a most
dramatic illustration of the utility of the thresholding method to retain
core nodes—see Supplementary data).

In the fluoxetine network, the second community presented a
different anatomical distribution, involving the prefrontal and ante-
rior cingulate cortices, ventral cortical regions (e.g., Piriform cortex),
the amygdala and more extensive involvement of the striatum,
thalamus and hippocampus (Fig. 3(b)).

In the nicotine network, the sensorimotor cortical regions were
grouped together with voxels in the thalamus, hypothalamus,
hippocampus and inferior colliculi (Fig. 3(c)).The second community
included voxels in cingulate, prefrontal and orbitofrontal cortices,
extending back to the striatum, amygdala, piriform cortex, entorhinal
cortex and visual/parietal cortices.

In contrast to the three networks derived from active drug
challenge, the community structure in the vehicle (saline) network

Gaussian fit to portion of histogram about zero

T T
PRTEET NSRS BT SATI BRI

]
w
'
n
'
Y
o
e
n
w

100 fluoxetine

80
60

40

relative frequency

20

O[T [T T[T [TT I 7T [TTT

40

(2]
o

100 vehicle

80
60

40

relative frequency

LN AL LA R R B

20

FFETH NITITE ATETA S AP AP A

I \”\\. "
20 40
Ak

[=2]
@

Fig. 2. (a) Distribution of Ak following partitioning of the null model networks. The peak centered close to zero was well described by a Gaussian distribution. Since we are interested
in identifying nodes with positive Ak values greater than expected in the null scenario, we selected a threshold value corresponding to a one-sided p<0.05 under this null
distribution (Bonferroni-corrected for multiple comparisons by the number of nodes in the network)—namely Ak = 1.02. (b) Histograms of Ak for each community in each of the
four networks. Portions of the histogram corresponding to Ak>1.02 are shown in bold to the right of the solid vertical line and represent core nodes retained after the thresholding
procedure. Ak=0 is shown as a vertical dotted line. Histograms of the different communities are shown in different colors for clarity.
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Fig. 3. Community structure as a function of pharmacological challenge. Maps of the voxels in each of the two major communities resolved by the maximum-modularity partitioning of the four networks are shown for (a) d-amphetamine, (b)
fluoxetine, (c) nicotine and (d) saline. For each community, the ‘core’ nodes surviving the null model thresholding are mapped at their corresponding voxel locations. The color assigned to each voxel reflects the Ak statistic at that node.
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Voxels assigned to the same community
in all three phMRI networks

Fig. 4. Voxels assigned to the same community in all three drug-challenge phMRI networks. (a) A set of cortical voxels comprising motor (M1), somatosensory (SSCx) and parietal
cortices. (b) A set of voxels in regions including cingulate (Cg) and medial prefrontal (mPFC) cortices, parts of the caudate putamen (CPu) and accumbens (NAc), septum/BNST (Sp),

hypothalamus and amygdale (Amy).

resulted in more scattered, less symmetric anatomical distributions of
voxels (Fig. 3(d)). The main anatomical features present were a
concentration of voxels with higher Ak values in the mPFC and ventral
hippocampal regions in the first community.

Common connectivity features across the drug-challenge networks

While there were some interesting differences between the
communities identified for each drug, common connectivity features
independent of the drug challenge were apparent in the three phMRI
maps. The voxels that were commonly assigned to each community
across all three drug challenge networks are shown in Fig. 4. Motor
and somatosensory cortical regions were consistently grouped
together (Fig. 4(a)). Another connectivity signature common across
all drug challenges comprised voxels in cingulate and medial
prefrontal cortices, parts of the caudate putamen and accumbens,
hypothalamus and amygdala (Fig. 4(b)). The functional division
identified between sensorimotor and cingulate/prefrontal cortices is
consistent with neuroanatomical boundaries (Paxinos and Watson,
1998).

Discussion

We have shown that phMRI data, represented mathematically as a
network of nodes with links determined by correlation strength, can
be partitioned into meaningful ‘communities’ of closely intercon-
nected voxels by means of a widely-used community structure
algorithm. When mapped back into the anatomical space of the rat
brain, these communities presented anatomically reasonable, bilateral
patterns for all three drugs investigated.

The correlations in response amplitude used to determine the
connections between nodes can be considered to represent a
functional coupling between the different brain regions in response
to the pharmacological challenge administered. This interpretation is
consistent with the brain structures identified as being functionally
connected in the different communities. In the d-amphetamine
network, the communities identified strongly resembled the ‘fronto-
cortical’ and ‘mesolimbic dopamine’ distributions found by applying a
k-means clustering algorithm to the same data set (Schwarz et al.,

2007a). The mesolimbic dopamine system in particular is a critical
brain system underlying response to rewarding stimuli and implicated
in psychiatric conditions including drug addiction, depression and
schizophrenia (Hyman and Malenka, 2001; Laruelle et al., 2003;
Nestler and Carlezon, 2006) and was delineated by the present
method as a set of functionally connected brain structures including
the dopaminergic midbrain (ventral tegmental area), striatum and
prefrontal/cingulate cortices. The identification of such functional
structure opens the possibility of detecting modulation of this brain
system in disease models or by pharmacological treatment (Schwarz
et al.,, 2007c¢). In the fluoxetine network, the second community was
highly reminiscent of the sub-cortical ‘network’ identified in a prior
seed-region analysis (Schwarz et al., 2007b). In the nicotine network,
the second community closely resembled the univariate activation
map but with increased involvement of the parietal and visual
cortices. In contrast, the univariate activation maps in the ampheta-
mine and fluoxetine data sets more closely resembled the predomi-
nantly cortical regions assigned to the first community.

These data show that each of three distinct drug challenges
induces coupled responses in particular communities of connected
brain regions, including structures not identified in a standard
univariate group comparison with vehicle. Interestingly, a group of
voxels involving the prefrontal/cingulate cortices and parts of the
caudate putamen, accumbens, septum/BNST and amygdala were
grouped together in all three pharmacological challenge networks, as
were a group of voxels in the sensorimotor cortex. This suggests that
the response to pharmacological stimulus involves tightly coupled
responses in these regions independent of the specific drug employed,
and is consistent with evidence showing strong intrinsic connectivity
between neurons in these brain structures; in particular, a group of
structures extending from the central nucleus of the amygdala rostral
through the bed nucleus of the stria terminalis to the nucleus
accumbens has been proposed as a functional unit known as the
extended amygdala and underlying the reinforcing properties of drugs
of abuse (Koob, 2003). Consistent with this, the present data
identified pixels in these regions along with parts of the caudate
putamen, prefrontal and cingulate cortices as a functional unit
independent of the three challenge drugs. Moreover, the finding of
this grouping of brain structures across all three compound networks
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suggests that these regions respond as a functional unit more
generally than just in a drug dependence setting. Finally, while most
functional connectivity studies with human structural or functional
data have resolved mostly cortical networks, the present results
demonstrate key features within the organization of the limbic system
and its interface to the prefrontal cortex.

Since the community structure algorithm assigns every node to a
community, an important aspect of the present study was the use of a
random network model to provide a well-defined “null” distribution
of Ak and hence a basis for deciding whether a node is really ‘within’
its assigned community (having many more connections to nodes
within the same community than to those in others). In other words,
the thresholding procedure provided a means of retaining only core
nodes and eliminating peripheral nodes that are not strongly within
the community to which they were assigned by the algorithm. The
model applied in this study was derived from simple random
networks but there is scope for the development of more sophisti-
cated null scenarios. In a conceptually different approach to thresh-
olding nodes based on the Ak statistic, core nodes can also be
identified as those whose community assignment is stable upon
multiple network partitions with noise added to the edge weights
(Gfeller et al., 2005). Moreover, while in the present study we sought a
core/peripheral node distinction, a more general consideration of the
role of nodes based on their topological characteristics is possible. For
example, a measure of within-community degree and a ‘participation
coefficient’ capturing the extent to which a node is linked outside its
community were used together to define a range of node roles,
including ‘connectors’ which possess many links to more than one
community and are thus critical for communication between com-
munities (Guimera et al., 2005; Guimera and Nunes Amaral, 2005).?
The identification of ‘hubs’ or nodes with connector properties from
human structural and resting state functional connectivity networks
has also been recently reported (Hagmann et al., 2008). Whereas our
emphasis in the present study was on the segregation of the
functional connectivity networks into functional units, nodes (and
hence neuroanatomical regions) with connector-like roles are likely to
be critical to the integration of these separate functional units
(Hagmann et al., 2008; Buckner et al., 2009). These aspects remain
to be elucidated for the rat brain.

Community structure algorithms provide an attractive means of
partitioning functional connectivity data represented as networks.
The algorithm employed in the present study enabled the large
(~10* node) networks, created from a voxel-level representation of
the imaging data, to be partitioned in a reasonable computation
time. However, an issue with many algorithms based on the
maximization of modularity is what is referred to as a “resolution
limit” (Fortunato and Barthelemy, 2007)—small communities tend
not to be detected as the algorithm identifies structure on a scale
similar to that of the parent network. This may be the case in the
present data, where all four phMRI networks were partitioned into
three communities, each with membership on the order of thou-
sands. Despite the compelling anatomical distributions of the
functional structures identified, the present results may not there-
fore represent globally optimal partitions of the networks including
structure on all network size scales. However, the d-amphetamine
data set was also partitioned using a k-means clustering approach
(Schwarz et al., 2007a), which showed a similar subdivision in terms
of number and size of clusters of nodes as those found in the present
study. Moreover, pharmacological stimuli activate widespread
neurotransmitter networks (e.g., dopaminergic for d-amphetamine

2 Interestingly, in the context of an emphasis on connections between communities,
nodes with many or all of their links within the same community were designated
‘peripheral’ in (Guimera et al., 2005; Guimera and Nunes Amaral, 2005), in contrast to
the terminology employed in the present study.
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or serotonergic for fluoxetine) which project extensively in the brain,
and are unlikely to result in small and localized sub-networks of
correlated activity. Nevertheless, a potential bias towards large
communities should be borne in mind when interpreting the
present results. The development of community structure algorithms
that do not suffer from this limitation is an active area of current
research in the field of complex networks (Rosvall and Bergstrom,
2007, 2008; Ruan and Zhang, 2008; Arenas et al., 2008).

The correlations between the responses in all pairs of voxels
generate variable link weights in a weighted, complete network (i.e.,
all possible connections exist). However, in large networks such as
those investigated in the present study (ca. 10 nodes), a conversion of
the fully-weighted network into a binary one is often necessary for
reasons of computational tractability. We thresholded each network
S0 as to retain the strongest 2% of the edges in a binarized version. The
resulting network topology represents a middle ground between two
undesirable extremes. As more edges are retained, node connections
become increasingly dense and, since weight values are ignored,
dynamic range in the link weights and hence topological distinction is
lost. Alternatively, as fewer edges are retained, the network becomes
disconnected and topological information also becomes suppressed.
To assess the impact of the choice of binarization threshold on the
resulting communities, we also ran the algorithm on versions of the
networks created using different thresholds. For thresholds such that
the retained fraction of links was in the range ~1%-10%, the main
features of the communities were stable and independent of the
precise choice of threshold. For fractions lower and higher than this,
the communities began to split and merge respectively, consistent
with the loss of information associated with the two extreme cases
outlined above.

The images were smoothed before conversion into the network
representation, introducing a local correlation between responses in
neighboring voxels. However, a key reason for smoothing is to
compensate in part for residual differences in image alignment
between different subjects when performing group-level, voxelwise
operations. In the present data, the networks are derived from inter-
subject correlations and so this point is critical. To assess the effect of
smoothing, we also performed the analyses on networks derived from
unsmoothed image data. The anatomical structures identified in each
community were highly consistent between networks constructed
from the smoothed and unsmoothed data, while the maps were much
cleaner in the smoothed case (see Supplementary data).

In addition to comparing networks derived from the response to
three active compounds at active doses, we explicitly considered a
network constructed from a vehicle group throughout. This provides a
valuable comparator in the interpretation of results from the other
three networks beyond parameters derived from the random net-
works. Explicit comparison with a vehicle group is standard practice in
order to differentiate the effects of the pharmaceutical compound from
those due to the solvent in which it is dissolved. Ideally a benign
vehicle, such as physiological saline in the present study, is used and
expected to elicit minimal central response per se. This is reflected in
the overall weaker correlations, as reflected by the lower binarization
threshold that retained 2% of the nodes. Nevertheless, in addition to
capturing physiological ‘baseline’ variation in the time courses, the
injection of a vehicle bolus may conceivably give rise to weak
functional effect. In the present study, an intravenous injection volume
of 1 ml/kg was used, along with a 0.3 ml/kg flush, yielding a total
injection volume of 1.3 ml/kg, injected over 1 min. For a 300 g rat,
assuming a blood volume of 18.77 ml this equates to ~7% of the total
blood volume. When using blood pool contrast agents, this results in a
slight dilution of the agent which can manifest as a small signal change
post-injection. The injection may also give rise to an autonomic
response related to the sensation of the injection. The network analysis
of the vehicle data showed weaker neuroanatomical features than in
the other three networks, but nevertheless a substantially larger value
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of the maximum modularity coefficient compared to a random
network, and some anatomical dependence, suggesting correlated
responses in the mPFC and ventral hippocampus.

The networks examined in the present study were derived from
inter-subject correlations in the haemodynamic response amplitude
following acute drug administration. Complex networks can also be
generated from intra-subject temporal correlations, for example those
examined in studies of baseline or ‘resting state’ functional con-
nectivity (Raichle and Snyder, 2007) or from task-evoked responses
(Eguiluz et al., 2005). Several recent studies have demonstrated
correlations in resting-state low-frequency fMRI signal fluctuations in
anaesthetized rodents (Kannurpatti et al., 2003; Lu et al.,, 2007;
Pawela et al., 2008; Zhao et al., 2008; Kannurpatti et al., 2008).
Interestingly, bilateral patterns of connectivity were observed apply-
ing seed-region correlation analysis under various anaesthetic regi-
mens, including urethane (Kannurpatti et al.,, 2003), medetomidine
(Pawela et al., 2008; Zhao et al., 2008), isoflurane (Kannurpatti et al.,
2008) and alpha-chloralose (Lu et al., 2007). Functional connectivity
derived from temporal correlations is conceptually different from the
connectivity whose structure was explored here. While the former
relies on spontaneous fluctuations, whose origin is still the subject of
active investigation, our approach exploits the inter-subject variability
in the response to a pharmacological challenge and reflects correlated
responses to specific stimuli. The approach of community structure
partitioning is easily applicable to all these scenarios and the modular
structure identified within such functional connectivity networks may
reveal important aspects of brain function not resolved by global
network analyses (Achard and Bullmore, 2007).

In conclusion, we have shown that functional imaging data,
represented as a network of nodes and links, can be partitioned into
communities of tightly interconnected voxels using a network-
theoretic algorithm to determine a solution corresponding to
maximum modularity within the overall network. The specification
and characterization of null comparator networks provided a means
to retain only the core nodes representing true functional structure
within each community. Investigating the functional structure of the
rat brain in response to pharmacological challenge with three
different psychoactive compounds revealed bilaterally symmetric
patterns of functional connectivity underlying the engagement of
different neurotransmitter systems in vivo. Moreover, common
features across all three networks revealed two groups of brain
structures that responded as functional units independent of the drug
challenge, including a network involving the prefrontal cortex and
sub-cortical regions extending from the striatum to the amygdala. This
finding indicates that the engagement of these functional units does
not depend on the specific neurotransmitter system or pattern of
activation elicited by the drug, but reflects general features of the
functional organization of the rat brain.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2009.03.064.
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