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Abstract Despite the great relevance of temporal logics in many applications
of computer science, their theoretical analysis is far from being concluded. In
particular, we still lack a satisfactory proof theory for temporal logics and this is
especially true in the case of branching-time logics.

The main contribution of this thesis consists in presenting a modular approach
to the definition of labeled (natural) deduction systems for a large class of tem-
poral logics. We start by proposing a system for the minimal Priorean tense logic
and show how to modularly enrich it in order to deal with more complex logics,
like LTL. We also consider the extension to the branching case, focusing on the
Ockhamist branching-time logics with a bundled semantics.

A detailed proof-theoretical analysis of the systems is performed. In particular,
in the case of discrete-time logics, for which rules modeling an induction principle
are required, we define a procedure of normalization inspired to those of systems
for Heyting Arithmetic. As a consequence of normalization, we obtain a purely
syntactical proof of the consistency of the systems.
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Introduction

1.1 Background and motivation

The history of the philosophical and logical reasoning about time goes back at least
to ancient Greece, with the works of Aristotle and Diodorus Cronus. However, the
birth of modern (symbolic) temporal logic is mainly connected to the name of
Prior, who in the late 1950’s developed the so-called tense logics on the model of
modal logics, in a work significantly titled “Time and Modality” [127].

Since the seminal work of Pnueli in 1977 [124], temporal logic has also gained
a great importance in computer science: applications include its use as a tool for
the specification and verification of programs and protocols [18], in the study and
development of temporal databases [39], as a framework within which to define
the semantics of temporal expressions in natural language [90] and as a language
for encoding temporal knowledge in artificial intelligence [72].

Many temporal logics have been proposed, varying both in the set of the op-
erators used and in the semantics adopted (see [88] for a survey). Despite the fact
that temporal logics have been studied for many years, their theoretical analysis
is far from being concluded. In particular, a satisfactory proof-theoretical analysis
for temporal logics is still lacking. This is especially true in the case of branching-
time logics, as shown by the fact that for one of the most important of such logics,
CTL*, even the problem of finding a complete Hilbert-style axiomatization has
been, partially, solved only recently [135]. Furthermore, when deduction systems
have been devised in a form that allows for a meta-theoretical and proof-theoretical
analysis (e.g., natural deduction, sequent systems), they have been given for spe-
cific logics and do not seem to be easily generalizable to a modular treatment of a
wide range of logics of time.

The aim of this thesis is to provide a modular approach to the definition of
deduction systems for a large class of temporal logics and to their proof-theoretical
analysis. We will mainly deal with natural deduction systems [73,125]. Such sys-
tems present an elegant meta-theory in which derivations can be treated as math-
ematical objects interesting in themselves. It follows that a “good” natural de-
duction presentation can be seen also as a useful device for understanding a logic
better and for reasoning on its properties. Namely, we believe that a good formula-
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tion, in a natural deduction setting, of a logic should at least satisfy the following
requirements:

(i) for each connective, there is exactly one introduction and one elimination
ruleﬂ, which also express, as well illustrated by Prawitz [125], the “meaning”
of the connective;

(#4) a normalization theorem holds and, moreover, the structure of normal proofs
is informative enough to let one derive important meta-theorems, such as the
subformula property or consistency.

There are a number of different reasons for the delay in the development of
temporal proof theory, but perhaps the most important one is that temporal logics
are (multi) modal logics and modal proof theory is notoriously a difficult subject.
For instance, adapting natural deduction systems for classical (or intuitionistic)
logic to modal logic is not straightforward and, in fact, it is not trivial to define
systems that enjoy properties (¢) and (#¢) mentioned above.

Fortunately, in the last decades some interesting proposals for modal proof
theory have been presented, e.g. [5,7,8,16,26,27,61,66,81,104, 143,148,159, 162].
Among these, particularly interesting are the proposals that are based on labeled
deduction [26,27,66,143,148,159], a framework that has been successfully employed
for several non-classical, and in particular modal, logics, since labeling provides
a clean and effective way of dealing with modalities and gives rise to deduction
systems with good proof-theoretical properties. The basic idea is that labels allow
one to explicitly encode additional information, of a semantical or proof-theoretical
nature, that is otherwise implicit in the logic one wants to capture. So, for instance,
instead of a formula A, one can consider the labeled formula b : A, which intuitively
means that A holds at the world denoted by b within the underlying Kripke seman-
tics. We can also use labels to specify how worlds are related, e.g. the relational
formula bRc states that the world c is accessible from b.

Such an enrichment of the language allows for defining introduction and elimi-
nation rules for modal operators that are extremely clean and follow the “spirit” of
natural deduction. For instance, we can express b : [JA as the metalevel implication
bRY = V' : A for an arbitrary b’ accessible from b to give the rules:

[bRY]
VA b:0A bRY
b o4 y.oa OF

where the rule O has the side condition that b’ is different from b and does not
occur in any assumption on which b’ : A depends other than bRb'.

Since it is possible to think of a temporal logic (at least the ones we consider in
this thesis) as a modal logic, we propose to use the framework of labeled deduction
to develop a proof theory for temporal logics. In fact, by following the Priorean
approach, mentioned at the beginning, we can see a temporal logic as a modal logic
where the worlds in the semantics are time instants and the accessibility relation is

1 Up to a few standard exceptions, like, e.g., two symmetrical elimination rules for
conjunction.
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the ordering < between such time instants. In this view, the modalities of necessity
O and possibility ¢ assume the intended meanings of always (usually denoted G)
and eventually (usually denoted F), respectively. An extension considering past
operators is also possible.

1.2 Contributions

Table [Tl presents a, clearly not comprehensive, map of temporal logics, which will
help clarify the main contributions of this thesis. The first column presents logics
whose underlying flow of time is linear, while in the second and third column we
have branching logics, i.e., the flow of time is assumed to have a tree-like structure
and the language is extended with an operator V that allows for quantifying on
the branches. A further classification can be made when reading the table by rows:
the first row presents logics where the flow of time is an arbitrary time-line or an
arbitrary tree (general time); in the second row, we consider discrete time logics,
and thus also enrich the language with a next-time operator; in the third row,
we are still in a discrete-time setting and further extend the language with the
operator until [96].

With regard to branching logics, we remark that we focus here on the so-
called Ockhamist ones, whose language allows for a free combination of temporal
operators and quantifiers, and distinguish between two forms of semantics: in the
third column, we find the standard (full) semantics of the well-known CTL* [55]
(and of its general-time corresponding OBTL [136]); in the second column, we have
logics originated by using a generalized (bundled) semantics obtained by allowing
restrictions on the set of branches considered.

In the literature, labeled natural deduction systems have been proposed for
linear-time logics [19,103] and the branching logic CTL [20,131], which, given its
syntactic restrictions on the nesting of operators, is not Ockhamist and thus is
not reported in Table [[Il In this thesis, we propose a modular approach, based
on labeling, to natural deduction for (linear and Ockhamist branching) temporal
logics and focus on a proof-theoretical analysis of the defined systems. The main
difficulties in such a work can be summarized in the following points:

(1) extending the approach from the linear to the branching case, i.e., moving
from the first to the second column of Table [Tk

(2) treating in a proof-theoretically satisfactory way the operator until, i.e., mov-
ing from the second to the third rowﬁ;

(3) capturing the full semantics of branching logics (by means of a system with
finitary rules), i.e., moving from the second to the third column;

(4) defining a normalization procedure in the case of systems for discrete-time
logics, which require a rule modeling the induction principle.

In this thesis, we mainly face and solve points (1) and (4) and give a proposal
for point (2), thus covering the first two columns of Table [Tl The very complex

2 In this thesis, we consider the use of until explicitly only in the case of discrete logics,
but indeed the recipe we propose for dealing with such an operator can be easily
adapted to the case of general-time logics.
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Li T Bundled Ockhamist | Full Ockhamist

mear=time Branching-Time |Branching-Time
General time Kl BOBTL OBTL
Until-free discrete time LTL BCTL* CTL*
Discrete time with until LTL BCTL* CcTL*

Table 1.1. A map of temporal logics.

problem of item (3) (we remind that even finding a finitary Hilbert-style axioma-
tization for such logics is still a partially open problem) is left for future work. We
further analyze these points below.

1.2.1 Labeled natural deduction for linear temporal logics

We have already seen that, at least in the case of the Priorean tense logics, tem-
poral operators are nothing more than modal operators with respect to a Kripke
semantics where the worlds are time instants and the accessibility relation is the
ordering < between the time instants. It follows that we may apply the same pat-
tern of introduction/elimination rules seen above in the modal case (just replace
O with G and R with <):

b < v]
oA b:GA b<V
b.GA ©f yoa  COF

with the usual condition of freshness for &’ in GI.

Relational properties specifying a particular flow of time can also be expressed
by means of rules that manage relational formulas, along the same line of relational
rules of labeled natural deduction systems for modal logicsﬁ [148,159]. For instance,
we can force the flow of time to be transitive by endowing the system with a rule

like:
[b1 < bs]

by <by by<by b:A
b: A

Some labeled natural deduction systems for linear temporal logics have been
proposed [19,103] by following the ideas sketched above. Our contribution with

trans <

3 Though, as we will see, some of such properties, e.g., expressing a temporal induction
principle in the case of discrete time, require a much more complex treatment than
that for most common modal logics.
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regard to these logics consists mainly in giving a uniform and modular presentation
of systems for a large class of linear temporal logics and in performing a proof-
theoretical analysis of such systems. Namely, we give a system for the general
linear tense logic Kl, consider some of its variants, e.g., K| with dense time, with
first/final point, unbounded, etc., and finally treat the case of the discrete-time
logic LTL_. With regard to the last logic, it is easy to observe that the operator
X of next-time can be treated exactly in the same way as the operator G, since it
can be seen as a [-like modal operator with respect to the functional relation of
being the immediate predecessor.

1.2.2 Labeled natural deduction for branching temporal logics

When we are interested in reasoning about concurrent or non-deterministic pro-
cesses, it can be convenient to refer to richer semantical structures and more expres-
sive languages than those of linear-time logics. Namely, we can consider tree-like
structures and exploit the possibility of quantifying over sets of branches of such
trees, where a single branch represents a possible computation. In this thesis, we
will mainly deal with the so-called bundled branching-time logics, which are ob-
tained by considering a generalization of the standard tree-based semantics. The
semantics is defined on the larger class of bundled trees, where a bundled tree is
represented by a (standard) tree and a set of branches, satisfying some closure
properties, on it

Bundled versions of branching logics have been often considered in the liter-
ature [31,139,150,167] and, though less popular than the corresponding “full”
logics, are relevant both from a philosophical point of view [116,118] and in the
case of applications to computer science, e.g., when we are interested in restricting
the set of computations to be taken into consideration; namely, in the case of rea-
soning under fairness assumptions. In fact, it has been shown in [42] that BCTL* is
equivalent to the logic generated by fair structures, i.e. transition systems endowed
with a mechanism for expressing conditions of generalized fairness [63].

The extension of the system for linear-time logics to the bundled branching-
time logics requires the definition of rules for treating the path quantifier V. The
idea we apply here consists in considering a different, but equivalent, semantical
formulation of such logics, given by means of the so-called Ockhamist frames [150,
167]. An Ockhamist frame is a Kripke frame with two accessibility relations] (say
< and ~) obtained from a bundled tree as follows:

e each branch of the tree is a world of the Ockhamist frame;
e by < by if by is a sub-branch of by;
o by ~ by if by and by share the same initial node.

4 Namely, in the case of BOBTL, the set of branches must be closed under sub-branches
and super-branches and such that every node of the tree belongs to some branch in
the set. In the case of BCTL", and of its until-free fragment, the bundled semantics is
obtained by removing the so-called limit-closure condition from the standard semantics
of CTL*. Details in Chapter &

5 In the case of discrete-time logics, we can also consider a relation of immediate sub-
branch on which the operator X will be defined.
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Fig. 1.1. A bundled tree (left) and the corresponding Ockhamist frame (right).

Figure [l illustrates this correspondence, which, as observed in [167], allows for
giving a genuine Kripke-style semantics, where also the path quantifier V is seen
as a standard (55) modal operator with respect to the equivalence relation ~.

We have observed above that, when dealing with “pure” modal operators,
labeling allows for devising clean and effective introduction and elimination natural
deduction rules. And in fact, with this semantics in mind, and by using labels to
refer to branches rather than to time instants, we are able to give well-behaved
rules for the quantifier V as well: just consider the rules for G given above and
replace G with V and < with ~.

This leads to a clean and strongly modular deduction system where each basic
operator (i.e. G, V and, possibly, X) is seen as a modal operator and is endowed with
a proper accessibility relation. Interactions between the relations are expressed by
means of structural rules that do not involve the operators themselves directly.

A detailed proof-theoretical analysis of the system is also made. Normalization
is especially problematic in the case of the logics with both the operators X and
G because of the underlying temporal induction principle, which relates the next-
time relation and the order relation. Such temporal induction is handled, inside the
system, in a way strongly similar to first-order induction of Peano/Heyting Arith-
metics and in fact the normalization procedure follows those defined for systems
for Heyting Arithmetics in [74,126,151]. As is standard in these cases, we present
an intuitionistic version of the system and, though the standard subformula prop-
erty cannot hold, we are able to prove for it confluence and weak normalization;
then we use such results to give a purely syntactical proof of consistency for the
intuitionistic system and, via a proper translation, for the classical system as well.

1.2.3 The treatment of until

In the thesis, normalization is studied in the case of systems for until-free logics.
In fact, the until U is a quite complex operator, from a proof-theoretical point
of view, mainly because of its ambivalent nature of being both “universal” and
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“existential”fl. Indeed, if one is interested in a natural deduction presentation en-
joying the properties (7) and (i) illustrated in Section [l the solutions given in
the literature do not seem to be really satisfactory. Here we give a proposal based
on using a slightly more complex labeling discipline than the usual one, so that a
formula can be also labeled by a pair of labels, and on introducing a new temporal
operator history V, which allows for a bounded universal quantification between
two points. So, for instance, we are allowed to write bc : VA to say that A holds
in all the points contained between the instants denoted by b and c. Rules for
the new operator can be given in a very clean way, which mirrors the one of the
other temporal operators, and until can be clearly expressed in terms of the new
operator by exploiting the following equivalence:

AUB = BV F(XB A VAN.

In the thesis, we give a system for a variant of LTL, obtained by replacing until
with history, and prove that such a variant is as expressive as standard LTL. We
remark, however, that our solution is fully general and can be easily adapted to
the case of other (possibly branching) logics with until.

1.2.4 Mosaics for temporal logics

In this thesis we also consider an “orthogonal” model-theoretical topic: the use of
the mosaic method in temporal logic [105]. Although the subject is rather different,
our contribution, which consists in an extension of the method from the linear to
the bundled branching case and is based on the same intuition related to the
Ockhamist frames, is in a way similar.

The mosaic method has been introduced in algebraic logic as a way of proving
the decidability of the theories of some classes of algebras of relations [114,115].
The basic idea consists in showing that the existence of a model is equivalent to
the existence of a (finite) set of fragments of models (called mosaics), satisfying
a given number of requirements. From that, we get a decision procedure for the
logic, which consists in checking whether such a (finite) set exists or not. The
mosaic method has been recently applied [105,134,137,140] to prove decidability,
complexity results and completeness of Hilbert-style axiomatizations for several
linear temporal logics, namely KI and some of its variants.

Here we propose an extension of the method to the case of bundled branching-
time logics, i.e., we move from KI (for which the mosaic method is defined in [105])
to BOBTL, and in doing so we also consider a number of intermediate logics. The
results concerning decidability and completeness of these logics are already well

5 In LTL, the formula AUB holds at the current time instant b iff either B holds at b or
there ezists a time instant b’ in the future at which B holds and such that A holds in
all the time instants between the current one and b’. The words in emphasis highlight
the dual existential and universal nature of U.

" That is: AUB iff either B holds or there exists a time instant ' in the future (as
expressed by the sometime in the future operator F) such that (i) B holds in the
successor time instant, and (i) A holds in all the time instants between the current
one and b’ (included). The latter conjunct is precisely what the history operator V
expresses.
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known [31], however we believe that the mosaic method is interesting in itself as
it provides a uniform way of establishing such results for many logics, by simple
and modular modifications of the basic definitions. Moreover, our proposal for this
class of branching-time logics can be seen as a basis for dealing with other more
interesting logics, for which decidability and complexity results are still missing.

1.3 Synopsis

Part [ - Background
- In Chapter Bl we give a brief presentation of modal and temporal logics,
focusing on those considered in the thesis.
- In Chapter Bl we introduce labeled natural deduction and describe its use in
the case of most common modal logics.
Part [[1l - Labeled Natural Deduction for Temporal Logics
- In Chapter Hl, we present and analyze labeled natural deduction systems for
linear temporal logics; a proposal for the treatment of until is also given.
- In Chapter Bl we describe labeled natural deduction for a number of bundled
branching-time logics, and study normalization, in particular, of the system
for BCTL* .
Part [[TIl - Mosaics for Temporal Logics
- In Chapter B we introduce the technique of mosaics in temporal logics and
describe an extension to the case of bundled branching Ockhamist logics.

Finally, in Chapter [ we summarize the contents of the thesis and discuss some
possible directions for future work.

In order to ease readability, some of the proofs of Chapter Bl are given in an
appendix.

1.4 Publications

Some of the material of this thesis has been published or submitted for publication.
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Modal and Temporal Logics

2.1 Introduction

In this chapter, we present the basic notions related to the logics that will be
considered in the thesis. We will start introducing the most basic modal logics
and then, by enriching the language and by refining the semantical structures
considered, we will move to describe a number of linear-time and branching-time
temporal logics. For most of the logics, we will also present Hilbert-style axiom-
atizations, which will turn out to be useful, in the rest of the thesis, in order to
prove meta-theoretical properties (typically, completeness) of the natural deduc-
tion systems defined.

We remark that in this chapter (as in the rest of the thesis) we restrict to
consider only propositional modal and temporal logics.

The structure of the chapter is the following:

- in Section ZZ we introduce the minimal normal modal logic K and some of its
most common extensions;

- in Section Z3 we present linear-time temporal logics;

- in Section B we describe branching-time temporal logics, focusing on the so-
called Ockhamist ones.

2.2 Modal Logics

While classical logic has been devised for dealing with the basic notions of true and
false, modal logics allow for qualifying the truth of a judgment. This is obtained by
using modal operators, commonly denoted by [J and ¢, with the intended meaning
of “necessarily” and “possibly”, respectively. There are other possible readings for
such modal operators, each of which giving rise to a particular class of modal logics.
Some common interpretations are collected in Table X1l Modal logics also have
important applications in computer science. For an introduction, see [16,38,62].
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Modal logic Interpretation for (JA

Alethic A is necessarily true
Epistemic A is known
Deontic it is obligatory that A

Temporal |it will always be the case that A

Table 2.1. Interpretation of modal operators in most common modal logics.

2.2.1 The minimal normal modal logic K

First we introduce syntax and semantics of the minimal normal modal logic K.
As we will show in Section EZZ2 several extensions of K can be obtained by
considering the same language but a different semantical characterization.

Syntax

The language of propositional modal logic K consists of a functionally complete
set of classical connectives (here we will use falsum, denoted by L, and implication,
denoted by D), a modal operator O and a denumerable set of propositional symbols
(or propositional symbols).

Definition 2.1. Given a set P of propositional symbols, the set of (well-formed)
modal formulas is defined by the grammar

Az=p|L| ADA | UOA,

where p € P. The set of atomic formulas is PU{L}. The complexity of a formula
is the number of occurrences of connectives (D) and operators (O).

The given syntax uses a restricted set of classical connectives and modal op-
erators. As is standard, we can introduce abbreviations and use, e.g., =, A and V
for the negation, the conjunction and the disjunction, respectively. For instance,
-A = A D1. We can also define the dual modal operator of [J, denoted by ¢,
ie. OA = -[0-A.

Semantics

Since the early sixties, semantics for modal logics has been given by means of
relational (Kripke) structures, i.e. structures consisting of a set of elements (usually
called worlds, or points) on which a binary accessibility relation is defined [] We
also associate each relational structure with a valuation function, which assigns to
every world the set of propositional symbols that are true in it. The truth at every
world is defined locally by using the laws of classical logic, while truth for A in a
given world w is defined by considering that (JA is true in w if A is true in every
world accessible from w.

1 As a generalization, we obtain multi-modal logics by considering structures with more
than one relation (and a distinct modal operator for each relation) and more complex
modal logics, e.g. relevance logics, by allowing relations that are not necessarily binary.
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Definition 2.2. A Kripke frame is a pair F = (W, R) where:

e W is a non empty set of worlds (or points);
o R is a binary relation on W, called accessibility relation.

Given a set P of propositional symbols, a Kripke structure (or Kripke model) on

P is a triple M = (W, R, V) where:

e (W,R) is a Kripke frame;

e V: W — 27 is a (valuation) function that assigns to each world in W a
(possibly empty) set of propositional symbols.

Definition 2.3. Truth in the logic K for a modal formula at a point w in a Kripke
structure M = (W, R, V) is the smallest relation =, satisfying:

Mwp iff peV(w)
MwkE, ADB iff M,wl, A implies M,w =, B
M,wE, OA iff M,w' E, A forallw' s.t. wRw'

Note that M,w E_L for every M and w. By extension, given a modal formula A
and a set of modal formulas I', we write:

ME A iff Mwl, AforalweW

MET iff M, AforalAel

', A iff M, I implies M =, A, for every Kripke structure M
E. A iff M, A for every Kripke structure M.

We say that:

e a modal formula A is K-satisfiable in a Kripke structure M iff there exists a
world w in M such that M,w &, A;

e a modal formula A is K-satisfiable iff A is satisfiable in some Kripke structure
M; otherwise it is K-unsatisfiable;
a modal formula A is K-valid in a Kripke structure M iff M =, A;
a modal formula A is K-valid in a Kripke frame F iff M =, A for every
model M defined on the frame F;

e amodal formula A is K-valid iff =, A, i.e. A isvalid in every Kripke structure.

We can now define the logic K as the set of formulas that are valid according
to the semantics given above, i.e. K = {A | &, A}.

A Hilbert-style axiomatization

For the minimal modal logic K, we can give the following Hilbert-style axiomati-
zation H(K):

(CL) Any tautology instance of classical propositional logic
(K) O(A>B)>((HAD>OB)
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We have also the inference rules of modus ponens and modal necessitation (or
generalization):

(MP)If A and AD B then B
(Nec) If A then A

The set of theorems of H(K) is defined as the smallest set of modal formulas
containing the set of axioms and closed with respect to the rules of inference above.
We denote with I, the notion of derivability in H(K), i.e. -, A iff A is a theorem
of H(K). Furthermore we write I' -, A (A follows deductively from I') if A can
be derived from all theorems of H(K) and the formulas in I" by applying the rule
(MP) onlyH

We can now state a relation between the notions of logical consequence,
ie. I' B, A, and deductive consequence, i.e. I' F, A,. In fact, by a Henkin-style
construction (see, e.g., [89]), it is possible to show the following result of sound-
ness (right-to-left direction) and completeness (left-to-right direction) for the given
axiomatization.

Theorem 2.4 (Soundness and completeness). Given a modal formula A and
a set of modal formulas I', it holds:

', A & T'FH A,

2.2.2 Axiomatic extensions

Several further modal logics (we call them frame logics) can be defined as exten-
sions of the logic K by simply restricting the class of frames we consider. Classes of
frames can be distinguished by means of the properties (e.g., reflexivity, transitiv-
ity, etc.) of their accessibility relation. Many of the restrictions we are interested
in are definable as formulas of first-order logic where the binary predicate R(x,y)
refers to the corresponding accessibility relation ] Table B2 adapted from [81],
summarizes some of the most common frame logics, describing the corresponding
frame property. The semantics of a given logic K P can be inferred from the one
for K of Definition we just consider Kripke models whose accessibility relation
satisfies the property P instead of generic Kripke models. This idea can be further
generalized by defining a logic K P; ... P, as the logic of frames satisfying the set
of properties {Pi,..., P,}.

At the heart of correspondence theory (see [144,154] for details) lays the fact
that particular axioms correspond to particular restrictions on the accessibility
relation, i.e. suppose (W, R) is a frame, then a certain axiom P will be valid on
all the models based on (W, R) if and only if the accessibility relation R meets
a certain condition P (for simplicity, we give the same name to properties of the
accessibility relation and axioms).

2 We remark that, due to the rule of necessitation, the deduction theorem (I” F. ADB
iff 'U{A} F B) fails if we adopt the same notion of derivability as in classical Hilbert
system formulations (see, e.g., [62] for details).

3 Note that, for simplicity, we use here the same symbol for denoting both the accessi-
bility relation and the predicate.
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Axiom Condition First-Order Formula
T Reflexive Yw : R(w,w)
D Serial VwIw' : R(w,w")
4 Transitive Vs, t,u: (R(s,t) AR(t,u)) = R(s,u)
5 Euclidean Vs, t,u ( (s,8) AR(s,u)) = R(t,u)
B Symmetric Vw, w" : R(w,w") = R(w', w
2 Weakly-Directed | Vs, t,udv: (R(s,t) A R(s,u)) = (R(¢t,v) A R(u,v))
L  |Weakly-Connected|Vs,t,u : (R(s,t) AR(s,u)) = (R(t,u) Vt=uV R(u,t))
X Dense Vu,vIw : (R(u,v) = (R(u, w) A R(w,v)

Table 2.2. Axioms and corresponding first-order conditions on R.

It is obviously possible to extend the notions of K -satisfiability and K-validity
to the case of a logic KP,...P, = {A |Ekp,..p, A}. The same analogy holds
also in considering axiomatic deduction systems: for each property described in
Table Z2 we give a corresponding defining axiom in Table Let P be one of
such axioms; then, by adding the axiom P to the axiomatization H(K) we get an
axiomatization H(K P) that is sound and complete for the logic K P.

Traditionally, some of these axiomatic extensions of K have been denoted in
the literature with specific names. In particular, the following equivalences hold:
S4 = KT4, S5 = KT4B. In other words, S4 denotes the logic of reflexive and
transitive frames, while S5 denotes the logic of frames whose accessibility relation
is an equivalence relation.

Axiom Defining Formula
O0(A D> B) D (HADOB)
OADA
O0ADOA
0A>0O0A
0A > 0O0A
ADOCA
O0A D O0A
O(AADOA) D B)vO({(BAOB) D A)
OoA>OA

Ml e || o O 1| =

Table 2.3. Modal logics and corresponding defining formulas.

2.3 Linear Temporal Logics

Temporal logics can be seen as a branch of modal logic, where the accessibility
relation is used to model the flow of time and each world in a structure corresponds
to a time instant. In this section we focus on linear temporal logics, i.e. those whose
underlying semantical structures represent flows of time with the shape of a line.
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First, we will present some basic tense logic whose definition is due to Prior [128]
(see also [34,68]). Then we will present more interesting logics from a computa-
tional point of view, i.e LTL [124] and fragments of LTL.

2.3.1 The basic tense logic Kt

As for modal logics, we begin by fixing a temporal language that will be used first
for introducing a basic tense logic, called Kt, and then for considering axiomatic
extensions of it, in the vein of the extensions presented in Section

Syntax

The language of propositional priorean tense logic consists of a functionally com-
plete set of classical connectives, two modal operators (G and P) and a denumerable
set of propositional symbols.

Definition 2.5. Given a set P of propositional symbols, the set of (well-formed)
tense formulas is defined by the grammar

Au=p|L| ADA| GA | HA,

where p € P. The set of atomic formulas is PU{L}. The complexity of a formula
is the number of occurrences of connectives (D) and operators (G and H).

G and H are “universal” modal operators, whose intuitive meaning is always in
the future and always in the past, respectively. Their duals F and P (eventually in
the future and sometime in the past, respectively) can be defined as FA = -G-A
and PA = -H—-A. Other classical connectives can also be defined as usual.

Semantics

Temporal frames and structures are simple adaptations of the standard Kripke
ones (Section ZZTl). Since we are interested in representing a flow of time, from
now on we will use the symbol < (recalling the idea of an order relation) to denote
the accessibility relation R and the term instant instead of world. For the moment
we do not make any particular assumption about the nature of the relation <A

Truth for a tense formula is then defined by letting G behave as the operator
0O and H as its analogous with respect to the symmetric relation <~1.

Definition 2.6. A temporal frame is a pair F = (W, <) where:

o W is a non empty set of (time) instants;
o < is a binary relation on W.

Given a set P of propositional symbols, a temporal structure (model) on P is a
triple M = (W, <, V) where:

4 For convenience, we present Kt in the section devoted to linear temporal logics, but
indeed there is no assumption of linearity in the semantical structures of Kt.
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o (W, <) is a temporal frame;
o V:W — 2% is a (valuation) function that assigns to each instant in W a
(possibly empty) set of propositional symbols.

Definition 2.7. Truth in the logic Kt for a tense formula at an instant w in a
temporal structure M = (W, <,V) is the smallest relation |=,, satisfying:

Muw g p iff peV(w)
MwlkE, ADB iff M,wls,, A implies M,w =, B
MwkE, GA iff Mw' =, A foralw st w=<w
M,wk,, HA iff Mw' &, A foralw st w <w

Note that, as a consequence, we have M,w E_L for every M and w. By extension,
given a tense formula A and a set of tense formulas I', we write:

MELA iff Mowlk, A foralweW

ME,T iff ME,AforalAcl

'e,A iff Mg, I implies M |=,, A, for every linear temporal structure M
Eo.A iff ME,, A for every linear temporal structure M.

We say that:

e q tense formula A is Kt-satisfiable in a temporal structure M iff there exists
a world w in M such that M,w =, A;

e atense formula A is Kt-satisfiable iff A is satisfiable in some temporal structure
M; otherwise it is Kt-unsatisfiable;
a tense formula A is Kt-valid in a temporal structure M iff M =,, A;
a tense formula A is Kt-valid in a temporal frame F iff M =, A for every
model M defined on the frame F;

o a tense formula A is Kt-valid iff =, A, i.e. A is valid in every temporal
structure.

As we did for K, we can define the logic Kt as the set of formulas that are
Kt-valid according to the semantics given above, i.e. Kt = {A ||, A}.

A Hilbert-style axiomatization

A Hilbert-style axiomatization H(Kt) for Kt can be easily obtained by adapting
the one for K (see, e.g., [75]). An equivalent of the axiom schema K is needed for
both the operators G and H, in addition to a couple of axioms stating the relation
between the two operators.

CL) Any tautology instance of classical propositional logic
) G(AD B) D> (GA>GB)

Kny) HLAD B) D (HADHB)

GP) A D> GPA

HF) A D HFA
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We also need the inference rules of modus ponens and necessitation (or general-
ization):

(MP) If A and AD B then B

(Necg) If A then GA

(Necy) If A then HA

As for K, we define the notions of theorem of H(Kt) and derivability in H(Kt)
(F,,) and enunciate a theorem of soundness and completeness [75].

Theorem 2.8 (Soundness and completeness). Given a tense formula A and
a set of tense formulas I', it holds::

Ik, A 'k, A.

Kt

2.3.2 Axiomatic extensions

As in Section ZZZ2A we can obtain extensions of the basic logic, in this case Kt, by
adding axioms to the given axiomatization H(Kt). Some of the most interesting
axioms (and the corresponding properties) are shown in Table 241

Axiom Property Formula
(REFLR) | Right-Reflexivity GADA
(REFLL) | Left-Reflexivity HAD A

(TRANSR)| Right-Transitivity GA D GGA
(TRANSL)| Left-Transitivity HA D HHA
(CONNRg) | Right-Linearity |[(HAA AAGA) D GHA
(CONNL) Left-Linearity |(HAA AAGA) D HGA

(SERR) Right-seriality FT

(SERL) Left-seriality PT
(FINAL) |Right-Boundedness G LVFG L
(FIRST) | Left-Boundedness HLVPH_L
(DENSR) Right-Density FADFFA
(DENSL) Left-Density PA D PPA
(DISCRR) | Right-Discreteness | (FT A AAHA) D FHA
(DISCRL) | Left-Discreteness [(PT A AAGA) D PGA

Table 2.4. Axioms expressing temporal properties.

Such axioms are obviously not completely independent one of each other. Some
combinations give rise to interesting tense logics extending Kt.

In the following, we present explicitly those axiomatic extensions to which we
will refer more often in the thesis: the linear tense logic Kl and some of its variants.

The logic Kl

The language of the logic Kl is the language of tense formulas defined in Definition

23
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Semantics

The semantics is given on a refinement of the temporal structures of Definition B
that takes into account transitivity and linearity (or connectedness) of the flow of
time.

Definition 2.9. A linear temporal frame is a pair F = (W, <), where:

o W is a non-empty set of (time) instants;

o <C W x W is a binary relation that satisfies the properties of irreflexivity,
transitivity and connectedness, i.e. for all (w,w') € W? we have w = w' or
(w,w") €< or (W, ,w) €<.

Given a set P of propositional symbols, a linear temporal structure (model) on P
is a triple M = (W, <, V) where:

o (W,=) is a linear temporal frame;
e V:W — 2% is a (valuation) function that assigns to each instant in W a
(possibly empty) set of propositional symbols.

Truth in the logic Kl for a tense formula is defined as in Definition B2 where
we consider linear temporal structures instead of temporal structures. We also
extend the notion of Kl-truth to the notions of Kl-satisfiability and Kl-validity in
a standard way and define KI as the set of Kl-valid formulas.

A Hilbert-style axiomatization

A Hilbert-style axiomatization H (K1) for K is obtained (see, e.g., [75]) by extend-
ing the one for Kt of Section P23l with the following axiom schemata:

(TRANSR) GA D GGA
(TRANSL) HA D> HHA
(CONNp) HAAAAGA D GHA
(CONNL) HAAAAGA D HGA

Axioms (TRANSE) and (TRANSL) express the transitivity of <, while (CONNRg)
and (CONN]) expresses its connectedness.

Kl with unbounded time

We can further restrict the set of linear temporal frames by requiring that they
satisfy additional relational properties. For instance, we can express the fact that
the sequence of time points is unbounded, towards the future and/or towards the
past. This corresponds to adding the conditions of seriality on the right and/or on
the left, i.e. every point has a successor and/or a predecessor.

The axioms expressing unboundedness are SERg and SER, in Table B2l which
express, respectively, the following two properties:

o Vxdy.z <y;
o Vxdy.y<ux.
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Kl with a first/final point

The semantics of Kl is given by means of temporal structures where nothing is
said about the existence of a first or a final point. To express the existence of such
points, we add the axioms (FINAL) and (FIRST) of Table Z4l which correspond
to the properties:

o dxVy.-(y<z);
o JxVy.-(x <y).

Kl with dense time

Another constraint that we can impose on relational structures is that the flow of
time is dense, i.e. between any two points we can find a third point:

o VaVy.x <y = Jz.z <z and 2 <y.

This property is represented by the two axioms DENSgr and DENS|,.

Kl with discrete time

Finally, we can express discreteness both towards the future:

e for all z,y, if x < y, then there exists z such that:
- x<z;and
- for all w, =(z < w) or ~(w < z);

and towards the past:

e for all z,y, if x < y, then there exists z such that:
- z=<y;and
- for all w, =(z < w) or ~(w < y).

In terms of axiomatization, this corresponds to the addition of the axioms DISCRR
and DISCR;, respectively, to H(KI).

2.3.3 Language extensions

Interesting extensions can also be obtained by considering languages enriched with
further temporal operators on the semantical structures of Section In his
doctoral dissertation [96], Kamp extended the basic tense language with the binary
operator until (and its past-oriented version since), which has been shown to be
very expressive and particularly useful for applications to computer science. In
the case of discrete flows of time, it makes also sense to consider an operator of
next-time. For a description of the more expressive resulting logics, see [68,75].

Here we will consider both until and next-time in Section B34 in the specific
context of LTL, where we will also formalize their semantics.
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2.3.4 LTL

LTL is probably the most popular linear temporal logic in computer science. It has
been proposed in [124] and further developed and studied in [71]. Here we recall
the syntax and semantics of LTL and give an axiomatization for it.

Syntax

When considering LTL, we are used to restrict the attention to the future-oriented
operators. The set of basic temporal operators is enriched by the next-time (de-
noted X) and the until (denoted U) operators.

Definition 2.10. Given a set P of propositional symbols, the set of (well-formed)
LTL-formulas is defined by the grammar

Au=pl|L|AD A|GA|XA| AUA

where p € P. The set of LTL-atomic formulas is P U {L}. The complexity of an
LTL-formula is the number of occurrences of the connective O and of the temporal
operators G, X, and U.

The intuitive meaning of the temporal operators G, X, and U is the standard
one:

GA states that A holds always in the future;

XA states that A holds in the next time instant;

AUB states that B holds at the current time instant or there is a time instant
w in the future such that B holds in w and A holds in all the time instants
between the current one and w.

Semantics

The semantics of LTL is defined on structures that are isomorphic to the set of
natural numbers. Note that in this case we consider a non-strict order relation <,
as it seems to be more common in the literature when considering LTL. So, for
example, GA holds in a time instant w iff A holds in w and in all its successors.

Definition 2.11. Let N = (N, s : N — N, <) be the standard structure of natural
numbers, where s and < are the successor function and the total (reflexive) order
relation, respectively. An LTL-structure is a pair M = (N, V) where V : N — 27,
Truth for an LTL-formula at a point n € N in an LTL-structure M = (N,V) is
the smallest relation |=,,, satisfying:

Mn,p o iff peVn)
Mnk,,, ADB iff Mk, Aimplies M,nl=,,, B
M,n =, GA iff M,ml,, Aforalm>n
MnE,, XA iff Min+lfE,, A
M,n =, AUB iff there exists n’ > n such that M,n’' =,,, B
and M,m |=,,, A for alln <m <n’
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Note that M,n ¥, L for every M and n. By extension, we write:

ME,, A iff M,nlk,, A forevery natural number n
ME,,, I iff ME, AforalAel
'E,.A iff Mg, I implies M |=,,, A, for every LTL-structure M

A Hilbert-style axiomatization

We now present a sound and complete Hilbert-style axiomatization, which we call
H(LTL), for LTL (see, e.g., [75]). H(LTL) consists of the axioms

1) Any tautology instance

2) G(AD> B) D> (GADGB)

3) (XA & —XA)

4) X(AD B) D (XA DXB)

5) GA D AANXGA

6) G(ADXA) D (ADGA)

7) AUB < (BV (AAX(AUB)))
8) AUB > FB

PN

where we denote with « the double implication, and of the rules of inference

(MP) If A and A D B then B
(Necx) If A then XA
(Necg) If A then GA

The set of theorems of H(LTL) is the smallest set containing these axioms and
closed with respect to these rules of inference. The notion of derivability in H(LTL)
will be denoted with F,,, and the deductive consequence I" I-,,, A is defined as
usual.

With regard to H(LTL), we need to notice that it is possible to express only
a result of weak completeness, i.e. a result in terms of single valid formulas, or
in terms of a consequence relation I' =, A where I' is a finite set. As H(LTL)
consists of only finitary rules, it cannot be strongly complete and indeed all the
finitary deduction systems for temporal logics equipped with at least the operators
X and G (and thus not compact) present such a problem; see, e.g., [100, Chapter
6]. In fact, it is easy to check that {X?A};~,, [=,,, GA but (via soundness) we can
see that {X'A},<, /., GA, where XA is just A and XiT! A stands for XX?A. We
will return to this point in Chapter Bl when discussing completeness of a natural
deduction system for (a fragment of) LTL.

L

Theorem 2.12 (Soundness and completeness). Let A be an LTL-formula and
I' a set of LTL-formulas. Then it holds:

F FLTL A = F ':LTL A’
':LTL A = |7LTL A :
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Until-free LTL: LTL_

Since we will consider it in the thesis, we also define here a fragment of LTL named
LTL_. It corresponds to the until-free fragment of LTL.
The syntax is given by the following definition.

Definition 2.13. Given a set P of propositional symbols, the set of (well-formed)
LTL_-formulas is defined by the grammar

Au=p|L|ADA|GA|XA
where p € P.

The semantics is given on LTL-structures and can be inferred from that of LTL,
ie., given an LTL_-formula A and an LTL-structure M, we have M |=,,, A iff

M [=,,, A. The notions of validity and consequence relation come from it as is
standard.

A sound and weakly complete axiomatization H(LTL ) for LTL (see, e.g., [75])
is obtained by just removing the axioms (A7) and (A8) (concerning the until) from
the axiomatization H(LTL).

2.4 Branching Temporal Logics

The temporal logics presented so far are of interest for reasoning about single
computations. When we are interested in reasoning about concurrent or non-
deterministic processes, it is convenient to refer to richer semantical structures
and more expressive languages. Namely, we will consider tree-like structures and
exploit the possibility of quantifying over sets of branches of such trees, where a
single branch represents a possible computation.

The philosophical basis of branching-time logics can be found already in the
work of Prior [128]. However their development in computer science is due to
[2,13,40,55]. A survey for the “philosophical” branching-time logics is in [167]; for
a survey more oriented towards computer science, see [52].

Here we will focus on those branching-time logics according to which the past
is determined and cannot be changed (from which the term historical necessity de-
rives), while the future is non-deterministic and can take different possible courses.
However, before defining the most standard logics of historical necessity, we will
also present (by following the taxonomy in [167]) several intermediate logics, whose
tree-like branching nature is much weaker.

In particular, we will consider here the logics originated from the so-called
Ockhamist semantics (see [128,167]). In an Ockhamist view, the actual future is
in some way determined, that is temporal formulas are evaluated with respect not
just to a given instant but to an instant and a branch beginning from such instant.

First we will present a class of logics, to which we will refer as bundled Ock-
hamist logics with general time, that have been mainly object of philosophical
study and in which arbitrary trees are allowed as flows of time. Then we will move
to the so-called computation tree logics, which are more interesting from a compu-
tational point of view: these logics consider flows of time that are discrete w-height
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trees. In both cases, particular attention will be concentrated on the definition of a
generalized semantics (usually referred to as bundled), in addition to the standard
one, since such a generalized semantics will be object of study in the rest of the
thesis.

2.4.1 Bundled Ockhamist logics with general time
Syntax

The language of the branching logics considered in this section consists of a set
of classical connectives enriched by some linear temporal operators (the ones we
have already considered in Section Z3) and by one or more path quantifiers.

Definition 2.14. Given a set P of propositional symbols, the set of (well-formed)
Ockhamist formulas is defined by the grammar

Au=p|L| ADA|GA | HA | VA,

where p € P. The set of atomic formulas is P U {L}. The complexity of a for-
mula is the number of occurrences of connectives (D), operators (G, H) and path

quantifiers (V).

The intuitive meaning of the linear operators G and H is as in linear temporal
logics with respect to a single branch of the tree. The path quantifier V allows one
to switch from a branch to another: intuitively, VA holds at a node s iff A holds
in all the branches starting from the node s.

Semantics
Semantics in terms of trees

As we anticipated, we consider as branching logics the logics whose semantical
structure have a tree-like representation.

Definition 2.15. A tree is an irreflezive ordered set T = (T, <) in which the set
of the <-predecessors of any element t of T is linearly ordered by <, that is, for
allz,y, zinT, if t < z and y < z then either x <y ory < x orz =y.

A path in a tree T is a maximal linearly ordered set of nodes. A branch in a
tree T is any set of nodes {y | y € m and x < y} for a given path m and a node
x € w. The least node x of a branch b is the initial node of b, denoted by I(b) and
b is said to be stemming from x. The set of all branches in T will be denoted by
B(T). If b and ¢ are branches and b C ¢ then we say that b is a sub-branch of ¢
and ¢ is a super-branch of b.

We will refer to the notion of validity based on trees, as defined above, as full
validity and to the logic originating from such trees as OBTL, or full Ockhamist
logic. However, in this thesis we will be mainly concerned with the notion of the
so-called bundled validity and with the bundled logics (introduced in [31]), in which
the modal quantification over branches is restricted to a given set.
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Definition 2.16. Given a tree T, a bundle B on T is a subset of B(T) closed
under sub-branches and super-branches and such that every node of T belongs to
some branch in B. A bundled tree is a pair (T, B) where T is a tree and B is a
bundle on T. We say that a bundled tree (T, B) is complete when B = B(T).

We can define the semantics for such logics by providing trees with a valuation
function. With respect to this point, we notice that different branching-time logics
are defined according to the policy we associate to such valuations. Many authors
(see, e.g., [128]) assume that propositional symbols refer in some way to the future.
A consequence of this assumption is that the valuation of an atom depends not
only on the node we are considering but also on a particular branch containing that
node. Thus the valuation function is defined in terms of pairs (branch, instant).

A different point of view consists in assuming that propositional symbols con-
tain no trace of futurity [136]. This leads to consider all the branches starting
from a given instant in a tree-like frame as sharing the same evaluation of every
propositional variable.

In the following, we will adopt this no trace of futurity approach (we will some-
times also call it atomic harmony assumption), since it is more common in com-
puter science-oriented branching temporal logicsﬁ Namely, the logics presented in
this section are those described in [167] with the only difference that we adopt, as,
e.g., in [136], the atomic harmony assumption. As a consequence, we have that the
classical substitution rule is not a valid deduction rule in the axiomatizations of our
logics, e.g., the validity of the formula p D Vp is not preserved under substitution.

Definition 2.17. Given a bundled tree (T, B), a valuation V on (7, B) is a func-
tion assigning a (possibly empty) set of propositional symbols to each branch in B,
such that if I(b) = I(b') then V(b) = V(V').

Given a bundled tree (T, B) and a valuation V on it, truth for an Ockhamist
formula at a branch b € B is the smallest relation |= defined as follows:

M,bEp iff peV(b);

MbEADB iff M,bE A implies M,b = B;

M, bE=GA iff foralb e€Bst.bCd, MV |EA;
M,bEHA iff forallb € B st. b Cb, M,V = A;
M,bEVA if forallb € B s.t. I(b) =1(V), M,b = A.

Semantics in terms of Ockhamist frames

In order to give a semantics to bundled logics in a more traditional Kripke style,
we can give a different characterization of bundled trees. Namely we can view a
bundled tree (7, B) as a triple (W, <, ~), in which:

e )W is B, i.e. the set of branches of the bundled tree;
e < is D, i.e. the inclusion relation between branches;
e =~ is the relation of having the same initial point, i.e. b >~ ¢ iff I(b) = I(c).

The structures that we obtain correspond to the Ockhamist frames of, e.g., [167].

5 In fact, both the most well-known computation tree logics, CTL and CTL* (see Section
2232, rely on this assumption.
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Definition 2.18. A basic frame is a triple (W, <,~), where W is a non-empty
set, < is a union of irreflexive linear orders on W and ~ is an equivalence relation
on W.

An Ockhamist frame is a basic frame (W, <, =), satisfying the following con-
ditions:

(Dis) if x ~y then x A y;
(PI) if © ~ y, then there exists an order-isomorphism f between {z | z < x} and
{z | z <y} such that for all z <z, z ~ f(z);
(WDC) if v <y =~y , then there exists ' such that v ~ 2’ <y ;
(MB) if x ~ y and x # y, then there exists ' > x such that for all z = y not-
(' ~2).

(Dis) stays for disjointness of < and ~ and comes from the irreflexivity of
<. (PI) expresses the past isomorphism of two points that are ~-related, while
(WDC) stays for weak diagram completion and both properties are consequences
of the left linearity of <. Finally, since two distinct branches in a tree must have
disjoint subbranches, a property expressing the mazimality of branches holds.

It is possible to prove (see [167]) that for every Ockhamist frame there exists
a corresponding bundled tree, from which the Ockhamist frame can be built as
suggested above. Thus the semantics generated by bundled trees is exactly the
same that we get when we consider Ockhamist frames. In the following we choose
to refer to Ockhamist frames, since this gives us the possibility of defining the
notion of truth in a pure Kripke-style. We anticipate that this possibility is in fact
what will allow us, in Chapter [l to extend the labeled deduction framework used
for standard modal logics to the context of these branching-time logics.

Note also that the properties (Dis), (PI), (WDC) and (MB) are not completely
independent one of each other, e.g. (Dis) + (WDC) implies (PI). We enumerate
all of them because, as in [167], this gives us the possibility of considering several
intermediate logics, according to which of the conditions above we require the
frames to satisfy. In particular, we will consider, in the rest of the thesis, the
following classes of frames.

Definition 2.19. A (Dis)-frame is a basic frame satisfying the condition (Dis). A
(WDC)-frame is a basic frame satisfying the condition (WDC). A (Dis+WDC)-
frame is a (Dis)-frame that is also a (WDC)-frame.

As usual, we can obtain a class of structures from each class of frames consid-
ered, by providing the frames with a valuation function. As we remarked above
when defining valuation functions for trees, the policy that we follow in this thesis
is such that all the points ~-related in an Ockhamist frame satisfy the same set
of atoms.

Definition 2.20. Let P be a denumerable set of propositional symbols. A basic
(Dis, WDC, Dis+WDC, Ockhamist) structure is a 4-ple (W, <,~, V), where (W, <
,~) is a basic (Dis, WDC, Dis+WDC, Ockhamist) frame and V is a valuation
function V : W — 27 such that for all u,v € W, if u ~ v then V(u) = V(v).

Now we give the notion of truth with respect to a point in a structure. Note
that truth is defined by having the temporal operators G and H operate along the
=<-lines of points, and the quantifier V within a ~-equivalence class.
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Definition 2.21. Given a basic (Dis, WDC, Dis+WDC, Ockhamist) structure
M = W, <,~=V) and a point uw € W the corresponding notion of basic (Dis,
WDC, Dis+WDC, Ockhamist) truth for a Ockhamist formula is the smallest re-
lation = defined as follows:

M,up iff peV(u);

MulEADB iff M,ulE A implies M,u = B;
M, u E GA iff  forallv st. u<v, M,vE A;
M,u EHA iff  forallv st. v <u, M,vE A;
M, u EVA iff  forallv st u~uv, M,vE A;

As is standard, we can extend this notion of truth to the notions of basic (Dis,
WDC, Dis+WDC, Ockhamist) satisfiability and validity.

In the following, we will use the symbols ..., Eu 5o, etc. to refer to the
corresponding notions of truth and validity. =,,, will denote basic truth/validity.
=, will denote Ockhamist truth/validity. We will refer to the logic of Ockhamist
frames also as BOBTL. Sometimes we will also consider frames and validities orig-
inating from other combinations, e.g., (Dis+PI)-validity is the notion of validity
determined by (Dis+PI)-frames; i.e. by basic frames satisfying both the properties
(Dis) and (PI).

Some interesting results concerning the relations between these notions of va-
lidity are described in [167]. First of all, it has been shown that, as long as validity
is concerned, the property (MB) can be replaced by:

(MB7) if z is a <-maximal element, then, for every y,  ~ y implies z = y.

Moreover, if we put ourselves in the no trace of futurity setting, we can further
simplify the maximality of branches property as follows:

(MB~7) if z is a <-maximal element, and x ~ y, then y is a <-maximal element.

We introduce also another property that will be useful in the following sections.
It can be seen as a strong form of (WDC) and will be referred to as strong diagram
completion:

(SDC) if z < y < z ~ 2z’ = 2’ ~ x, then there exists ¢y’ such that ¢y ~ y and
<y <2
It is interesting because one can prove that the logic determined by (Dis+WDC)-
frames and the logic determined by (WDC+SDC)-frames coincide.

We collect in the following lemma some comparison results that can be easily
adapted from [167].

Lemma 2.22. Basic validity and (Dis)-validity coincide. (Dis+WDC)-validity,
(Dis+PI)-validity and (WDC+SDC)-validity coincide. (Dis+WDC+MB)-validity,
(Dis+WDC+MB~ )-validity, (Dis+ WDC+MB~~ )-validity and Ockhamist validity

coincide.

Proof. By trivial adaptations of the analogous results proved in [167] in the case
where no assumptions are made about the evaluation of the atoms.
O
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Hilbert-style axiomatizations

Hilbert-style axiomatizations for several bundled Ockhamist logics have been pro-
posed in [68,136,164,167]. In this section, we present the ones corresponding to
the logics considered above.

Note that for the full Ockhamist logic OBTL, i.e. the logic of complete bundled
trees, as for its corresponding computation tree logic CTL*, no finitary complete
axiomatization is known.

The logic of basic frames (or (Dis)-frames)

First, we present a Hilbert-style axiomatization H(bas) (slightly adapted from
[167]) for the logic of basic frames (or, which is the same, the logic of Dis-frames).
We have that the temporal axioms for linear time, plus the modal axioms for S5
with respect to the operator V, plus a rule for atomic harmony (i.e., branches with
the same initial point satisfy the same atoms), plus the usual deduction rules form
a complete deductive system.

(CL)  Any tautology instance of classical propositional logic
(Ke) G(ADB)>(GA>GB)
(Ku) H(ADB)D>(HADHB)
(Ky) VY(ADB)D> (VYADVB)
(GP) ADGPA

(HF)  ADHFA

(L1) FADG(FAVAVPA)
(L2) PADH(FAV AVPA)
(L3) GADGGA

(L4) HADHHA

(V1) VADWA

(V2) VADA

(Vv3) ADV3A

(Atom) p D Vp for each atomic proposition p

Notice that the axioms above have to be considered axiom schemata: in fact,
because of the axiom (Atom), the common rule of substitution does not hold for
this logic.

The rules of inference are the following:

MP) If A and AD B then B

(

(Necg) If A then GA
(Necy) If A then HA
(Necy) If A then VA

As usual, we define the notions of theorem of H(bas) and derivability in H(bas)
(denoted F,,,).
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The logic of (WDC)-frames

Such an axiomatization can be extended to capture the logic of (WDC)-frames by
adding the following axiom (from [167]). We denote with H(WDC') the resulting
axiomatization.

(WDC) PA D VP3A
The logic of (Dis+WDC)-frames

The logic of (Dis+WDC)-frames is much more difficult to capture by means of
Hilbert-style axioms. The use of a form of the Gabbay irreflexivity rule [64] as a
further deduction rule greatly simplifies the task, as proposed in [68].

In [164], Zanardo proposes the following two rather complex (but with a stan-
dard form) Hilbert-style axioms:

(DW1) P(VAAGB)AH=(BA3C)
DV[GA; APC D P(AA(CVPC))AGC D GAy)

(DW2) [HAAH=(BA3IC AF(BAAA3C)))AP(VA; AGB)]
D V[GBl D P(Al A\ G(C D G(Cl D GBl)))]

The addition of them to the ones for the logic of (WDC)-frames gives an axioma-
tization H(Dis + WDC') for the (Dis+WDC)-frames logic.

The logic BOBTL of Ockhamist frames

Finally, we get an axiomatization H(O) for the logic BOBTL by adding the fol-
lowing axiom expressing the maximality of branches.

(MB~™)  G.1>OVGL

Theorem 2.23 (Soundness and completeness). The Hilbert-style axiomatiza-
tions H(bas), H(WDC), H(Dis + WDC) and H(O) are sound and complete with
respect to the corresponding semantics.

Proof. The axiomatizations are trivial adaptations of the ones given in [164] and
[167] for a version of the logics that did not consider atomic harmony. Proofs can
be easily adapted to deal with the case in which branches with the same initial
node agree on the valuation of propositional symbols.

O

Related logics

Although they will not be explicitly treated in this thesis, it is worth mentioning
some variations and extensions of the logics presented above. They include the
logics obtained by adding until and since operators [166] and logics originating
from allowing the truth of propositional symbols to be dependent both on branches
and time-instants [128,136,167].

Finally, we remark that we focused here on Ockhamist branching logics. An-
other important class is that of Peircean branching logics [128,129,165], in which
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truth of all formulas depends only on the time instant of evaluation and not on a
branch. In other words, all the formulas can be considered to be state formulas. An
example is represented by a sublanguage of the Ockhamist logics above, obtained
by allowing the combination of branching and linear operators only in the form of
a single linear operator preceded by a single path quantifier, as in VG, VH, VF, VP,
3G, JH, JF and 3P.

2.4.2 Computation tree logics

In this section, we present some branching temporal logics that are more common
in computer science and are usually referred to as computation tree logics.

CTL*

The logic CTL* has been introduced in [55] as an extension of the less expressive
CTL. Here we first define CTL* and then specify which is the subset corresponding
to CTL.

Syntax

The language of CTL* extends that of Ockhamist logics presented in Section
EZT with the linear temporal operator until and restricts the attention to future-
oriented operators.

Definition 2.24. Given a set P of propositional symbols, the set of (well-formed)
CTL*-formulas is defined by the grammar

Az=p|L]| ADA|GA| XA | AUB | VA,

where p € P. The set of atomic formulas is PU{_L}. The complexity of a formula
is the number of occurrences of connectives (D), operators (X, G and U) and path

quantifiers (V).

Semantics

Several alternative characterizations can be given for CTL* and the other compu-
tation tree logics and some equivalence results have been shown (see, e.g., [51]).

In particular, as for the Ockhamist logics seen in Section 241l we can give two
main notions of validity: the full validity and the bundled validity; for a detailed
account see [52,135].

The notion of validity underlying the semantics of CTL* is the full one.

If we define a transition system as consisting of a set S of states and of a serial]
relation R on S, i.e. a relation such that for every s in S there exists a ¢t in S for
which sRt holds, then the notion of full validity is given by defining the semantics
with respect to the set of all the R-generable paths, i.e. of all the w-sequences
S1, 82, ... such that (s;,s;4+1) € R for all i € N. The following definitions formalize
these notions.

5 In the computer science literature, the condition of seriality is often referred to as
totality.
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Definition 2.25. A transition system is a pair F = (S, R) where:

e S is a non empty set of states;
o R is a serial binary relation on S, i.e. for each s € S there exists t € S such
that (s,t) € R.

Given a set P of propositional symbols, a labeled transition system is a triple
M= (S,R,V) where:
e (S8,R) is a transition system;
V:8 — 2% is a (labeling) function that assigns to each state in S a (possibly
empty) set of propositional symbols.

A fullpath (or just path) in a (labeled) transition system M = (S, R,V) is an

infinite sequence sg, s1, So, ... of states in S.
Given a fullpath ¢ = sg,s1,52,..., we write o’ to denote the suffix path
Siy Sit+1, Sit2,--. and o(i) to denote the i-th state of o, i.e. s;.

Note that we are considering here the case of monomodal transition systems:
the generalization to transition systems with more relations (actions) is straight-
forward.

It is quite common to present the language of computation tree logics by dis-
tinguishing between state formulas, which are evaluated with respect to a state,
and path formulas, which are evaluated with respect to a fullpath.

The distinction between state and path formulas is specified by the following
alternative formulation of the language of CTL*-formulas:

Su=p|L]| SDS|VP

P:=S|P>P|XP|GP| PUP,

where S denotes the category of state formulas and P the category of path formu-
las.

It is also possible to define the notion of truth for a formula just with respect
to fullpaths, by assuming that an atomic proposition is true at a fullpath o iff it
is true at the initial state of o. Note that here, as in LTL, and since it seems to
be more common in the literature, we assume the relation behind linear temporal
operators to be reflexive.

Definition 2.26. Truth in the logic CTL* for a CTL*-formula at a fullpath o in a
labeled transition system M = (S,R,V) is the smallest relation = satisfying:

M,o . v iff pEV(0(0))
Mo . ADB iff Mok, Aimplies Mo, . B
M,oE,,. GA iff M,o" . A forali>0
Mo Eope XA iff Moo' g, A
M,o =y, AUBiff Mo’ =_,,. B for some j >0 and
M,o" =, A for every 0 <k < j
M,o k=, YA iff M, T=,,,. A for every fullpath T s.t. 7(0) = o(0)

CTL*
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By extension, given a CTL*-formula A and a set of CTL*-formulas I', we write:

ME_..A iff M,ok=_,. A forevery fullpath o
ME,,..T iff ME,,. AforadlAcT
e . A iff Mg, I implies M \=_,.,. A, for every labeled transition
system M
Eoe A iff M=_,. A for every labeled transition system M.

As in the previous sections, we can generalize this notion of truth to the notions
of satisfiability and validity and define C'TL* as the set of formulas that are CTL*-
valid according to the resulting semantics.

We remark that a (kind of “unorthodox”) Hilbert-style axiomatization for
CTL* has been provided by Reynolds [135], by using a special auziliary atoms
rule, which allows for adding new atoms in a derivation.

CTL

The sublogic CTL is obtained by restricting the syntax of C'T'L* to disallow boolean
combinations and nestings of linear-time operators, i.e. linear-time operators can
appear only immediately preceded by a path quantifier. While CTL* can be seen
as the computational version of Ockhamist branching-time logic, C'T'L can be con-
sidered the computational version of the Peircean branching logic (for more details
on this, consult, e.g., [79]).

Given this syntactic restriction, the semantics of CTL is trivially inferred from
the one of CTL*, i.e. a CTL-formula is CTL-valid iff it is CTL*-valid. In other
words, CTL* is a conservative extension of CTL.

Since in the rest of the thesis the focus will be on Ockhamist logics, we do
not go into details concerning C'TL; the interested reader can see [52]. A further
restriction consists in considering the until-free fragment of CTL, presented in [13]
with the name of UB.

BCTL*

As we anticipated when presenting CTL*, it is possible to give a generalized se-
mantics, by considering more general structures. This gives rise to a logic that is
a subset of CTL* and is usually named BCTL] [139], i.c. bundled CTL*.

The language considered is the same of CTL* (see Section 2Z22).

Semantics in terms of transition systems

In order to introduce the semantics of BCTL*, we recall that the semantics of
CTL* is given by considering all the R-generable paths of a transition system. The
notion of bundled validity, in the context of computation tree logics, is obtained by
restricting the set P of admissible paths. The only requirement that such restricted
set has to satisfy is given by the following conditions:

7 This logic coincides with the logic determined by the deductive system VLTFC de-
scribed in [149].
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(1) suffiz-closure, i.e. if the path sg, s1, $2... is in P then the path s1, s2, ... is also
in P; and

(it) fusion-closure, i.e. if $1, 82, ..., Sn, Snt1, Snt2, ... and S, 85, ..., 8, _1, Sny 51,
Sy40,-- are in P then s1,s2,..., 80,8, 1,5, ,9,... is also in P.

We remark that, in order to retrieve the set of all the R-generable paths, a
third condition needs to be added (a proof is in [51]):

(2i1) limit-closure, i.e. if the paths (s1,01), (s1, $2,02), (s1, S2, $3,03), etc.
are in P then the path (s1, s2, $3, . ..), which is the limit of the prefixes
(s1), (s1,52), (s1,82,53), etc. is also in P.

An example showing that the full and the bundled validity are distinct notions
is given by the formula A = VG(p D IXp) D (p D IGp), where p is an atomic
formula. It is possible to check (see [135]) that A is valid with respect to the full
semantics, i.e. in CTL*, but not with respect to the bundled one, i.e. in BCTL*.

Thus the notion of truth in BCTL* can be inferred from that given for CTL*
in Definition The only difference is that now we consider not just labeled
transition systems but also all the variants of such systems obtained by restricting
the set of admissible paths to a subset, satisfying suffix- and fusion-closure, of the
set of all paths. This means that we have a greater number of structures, i.e. a
smaller set of valid formulas.

In [42], it has been shown that it is possible to give a precise characterization of
the family of transition systems giving rise to the logic BCTL*. Such a definition
consists in endowing transition systems with a mechanism for excluding those
computation paths that do not fit some fairness requirements.

Definition 2.27. A fair transition system is a triple F = (S, R,C) where:

e (S8,R) is a transition system;
C C 25 x 29 s the fairness condition.

C is a set of pairs (X;,Y;) of subsets of S and it is used to define the set of fair
paths through F.

A fullpath is defined as for transition systems. Given a set X C S and a
fullpath o, we define the size of the intersection of X with o (denoted | X Nol) as
the cardinality of the set {j € w|o(j) € X}. A fullpath o is fair iff, for all pairs
(X:,Y;) € C, if | X; No| is infinite, then |Y; No| is also infinite.

Given a set P of propositional symbols, a fair labeled transition system is a
4-ple M = (8, R,C, V) where:

e (8,R,C) is a fair transition system;
V:S — 2% is a (labeling) function that assigns to each state in S a (possibly
empty) set of propositional symbols.

Then a notion of truth given in terms of fair transition systems can be obtained
from Definition by letting the quantification range over just fair paths.
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Fig. 2.1. An Ockhamist frame (left) and the corresponding bundled tree (right).

Semantics in terms of Ockhamist frames

However, here we prefer to consider a different but equivalent semantical formu-
lation given by frames where the basic entities (or worlds, in a Kripke-style ter-
minology) are the paths of computation rather than the states. In fact, this view
allows us to present a more genuine Kripke-style semantics.

We thus introduce (N x W)-structures [135], which are closely related to the
Kamp and Ockhamist structures, described respectively in [150] and [167], and
introduced in Section ZZT1

We need to adapt the general notion of Ockhamist frame to a notion that
considers the fact that the flow of time behind each computation is now required
to be isomorphic to the set of natural numbers.

Definition 2.28. A floored Ockhamist frame (of countable height) is a triple
(T, =<, ) where:

1. T is the set of points;

2. < is a transitive, anti-symmetric, irreflexive, linear relation on T, i.e.:
a)Va,y,z. ((x <y) Ay < 2)) = (z < 2);
b)Va,y.~((x < y) A (y < @));
¢)Ve. - (z < z);

AVr,y,z. (x<y)A(x<2)=((z<y)V(z=y)V
&) Vo.y, 2 ((y <) A (2 <)) = ((z <) V (2 = y)
3. {y |y < x} is finite for each x € T;
4. =~ is an equivalence relation such that:
a) if x ~ y then it is not the case that © < y;
b) if x ~y and u < x then there is a v such that v <y and u ~ v;
5. there is an element 0 € T such that for each w € T, there is a w' € T such
that 0 ~ w' and either w' < w or w' = w (the equivalence class 0/~ is known
as the floor).

y =< Z)))
y < 2));

)

<
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Intuitively, every Ockhamist point can be thought of as corresponding to a path
in a transition system and the relation < as the equivalent of the relation “is a
prefix of”, i.e. x < y stands for “the path z is a prefix of the path y”. The branching
nature of Ockhamist frames is hidden in the ~-equivalence relation, where the idea
is that each ~-class of points contains all the paths of the corresponding transition
system that share a same initial state.

More precisely, there exists an equivalence [138] between Ockhamist frames (or
their unwindings into bundled trees, as exemplified in Fig. EZT]) and fair transition
systems. Such an equivalence is based on the fact that Ockhamist points correspond
to paths in the transition system while points related by ~ correspond to paths
with the same initial state.

In order to give a proper semantics for every linear temporal operator, we
require the lines of points defined by < to be isomorphic to the natural numbers.

Definition 2.29. An Ockhamist frame (T, <,~) is an (N x W)-frame iff

(i) there is some set W such that T = (N x W);
(i) the order < is defined by (n,u) < (m,v) iff n <m and u = v.

As usual, we obtain a structure by providing the frame a valuation function.
In this case, as for the logics of Section B2l we also require that all points in a
~-equivalence class satisfy the same set of atoms.

Definition 2.30. The structure (T, <,~,V) is an (N x W)-structure iff (7, <, ~)
is an (N x W)-frame, V : (N x W) — 2% and for all n € N and for all u,v € W,
if (n,u) ~ (n,v) then V(n,u) = V(n,v).

It is easy to show by induction the following lemma (see [138]), which will be
useful later on.

Lemma 2.31. Given an (N x W)-structure (7, <,~, V) and two points (n,w) and
(m,v) in T, if (n,w) ~ (m,v) then n = m.

Definition 2.32. Given an (N x W)-structure M = (T,<,~,V), where T =
(N x W) for some set W, truth in the logic BCTL* for a CTL*-formula at a
point (n,w) € T is the smallest relation = satisfying:

BCTL*

My(0,0) Epore p i P € Vi)
M, (0,0) Fporye AD B iff M, (1,10) oy A implies M, (n,0) | porye B
M, (n, w) ':BUTL* GA iff M, (
M, (nvw) ':BUTL* XA off M (
M, (n,w) E,0p- AUB  iff M, (m,w) =,.,. B for some m >n and
M, ( ) Epors A for everyn <m' <m
M, (n,w) E,om. YA iff M, (n,0) E,0,. A for every point (n,v)

s.t. (n,w) ~ (n,v)

As for CTL*, we can generalize this notion of truth to the notions of logical
consequence (I' =, ,,. A), satisfiability and validity and define BCTL* as the set
of formulas that are BCTL*-valid according to the resulting semantics.
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BCTL* : the until-free version of BCTL*

In the rest of the thesis, we will often refer to a syntactic restriction of BCTL*,
obtained by just removing the operator until.

Syntax

Definition 2.33. Given a set P of propositional symbols, the set of (well-formed)
BCTL? -formulas is defined by the grammar

Az=p|L| ADA | GA | XA | VA,
where p € P.
Semantics

BCTL* is a conservative extension of BCTL* : a BCTL* -formula is BCTL* -valid
iff it is BCTL*-valid. We use the symbol = to denote the notion of truth in

BCTL*
BCTL? ; its extension to express logical consequence is also standard.

A Hilbert-style aziomatization for BCTL*

Now we give a Hilbert-style axiomatization, which we call H(BCTL* ), for the logic
BCTL®. H(BCTL*) consists of two sets of axioms (axioms for linear temporal
formulas and axioms for quantified formulas) and a set of inference rules. For the
first set of axioms, we refer to a standard axiomatization for until-free LTL [149]:

) Any tautology instance
) G(A> B) > (GADGB)
) (X=A D —XA) A (-XA D X-A4)
L4) X(AD B)D (XA DXB)
) GA D AAXGA
) G(ADXA) > (ADGA)

The second set of axioms ensures that the path modality V behaves as a [J in
the modal logic S5 and defines some interactions between the linear temporal

operators and the path quantifier. This set of axioms comes from [135] and is
slightly different from, but clearly equivalent to, the one in [149]:

Atom) p D Vp for each atomic proposition p
Fusion) VXA D XVA

(Kv) Y(AD B) D> (VADVB)
(V1) VA D WA

(V2) VAD A

(V3) ADV3IA

(

(

Finally, we have the inference rules of modus ponens and temporal and path gen-
eralization:
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MP) If A and AD B then B
Necx) If A then XA
Necg) If A then GA
Necy) If A then VA
The set of theorems of H(BCTL*) is the smallest set containing the set of
axioms above and closed with respect to the rules of inference. Soundness and weak

completenesﬂ of this axiomatization can be easily verified by adapting analogous
proofs for similar axiom systems, as in the following lemma.

(
(
(
(

Lemma 2.34. The aziom system H(BCTL*) is sound and weakly complete for
the logic BCTL* | i.e. the set of theorems of H(BCTL®) coincides with the set
BCTL* .

Proof. (Sketch) The proof mirrors the one given in [149] for BCTL*, with respect
to which our axiom system only misses the two axioms concerning the operator
until, namely:

(L7) AUB D FB
(L8) AUB < BV (A AX(AUB))

where we denote with < the double implication.

H(BCTL*) is sound as it is a subset of the axiomatization in [149] and BCTL*
structures coincide with BCTL* structures. A proof of completeness can be easily
obtained by adapting the one in [149], which consists of two parts:

(i) first a Henkin-style proof is given for the LTL axiomatization, by the defini-
tion of a canonical model construction;

2 en such a construction is extended in order to consider the system for

1) th h ion i ded i d ider the sy f
BCTL*.

We can modify such a proof for our case by noticing that in (¢) the axioms (L7) and
(L8) are used along the proof only to deal with formulas containing the operator
until. We can use the same arguments to show that the axioms (L1) — (L6) form
a complete axiomatization for until-free LTL (as it is done for example in [71]). It
is also easy to observe that the arguments in (47) do not make use of the axioms
(L7) and (L8). Thus, we can mirror part (i¢) of the proof in [149] to extend our
canonical model construction for until-free LTL to a canonical model construction
for BCTL* . The main idea here is to consider the equivalence relation between
points of the linear canonical model that satisfy the same state formulas and take
such equivalence classes as the points of the branching canonical model.

O

8 On the impossibility of giving a finitary and strongly complete axiomatization for
BCTL? , see the discussion about H(LTL) in Section 2341
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Labeled Natural Deduction for Modal Logics

3.1 Introduction

Labeling [10,61,66] (sometimes also called prefixing, annotating or subscripting)
is a method designed for giving uniform presentations of logics, typically the non-
classical ones, such as modal, substructural or non-monotonic logics. Labeling
allows one to explicitly encode additional information, of a semantic or proof-
theoretical nature, that is otherwise implicit in the logic one wants to capture.
Such additional information is typically internalized in the syntax by means of
proper labels. So, for instance, we will consider a labeled formula of the form b : A
instead of the standard logical formula A. Some possible interpretations of the
label b in a formula b : A, as suggested by Gabbay in [66], are the following:

possible world where A holds (modal logics);

time instant when A holds (temporal logics);

fuzzy reliability value, i.e. b is a number between 0 and 1 (fuzzy logics);
origin of A, i.e. b indicates where the input A comes from (databases).

This general approach has then been used [4,9,10,23,43,66,93,103,119,148,159]
in the context of several different logics and with respect to different classes of
deduction systems: natural deduction, sequent calculus, tableaux methods.

Since in the thesis we will mainly deal with natural deduction systems [73],
the rest of this chapter will be devoted to give a general presentation of natural
deduction and to consider the specific example of the application of labeling tech-
niques to natural deduction systems. In particular, we will illustrate the use of
labeled natural deduction in the case of modal logic. This will provide a basis for
the definition of labeled natural deduction systems for temporal logics, which will
be treated in Chapters Bl and

The structure of this chapter is the following;:

- in Section B2 we present the basis of classical natural deduction and give a brief
description of normalization in the context of natural deduction;

- in Section B33, we discuss the adaptation of natural deduction to the case of
modal logics and, in particular, present an approach to natural deduction for
modal logics based on labeling.
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3.2 Natural Deduction

Natural deduction is the term used to denote a class of deduction systems that
have been first proposed by Gentzen [73].

A key property of natural deduction systems is the fact that they formalize
intuitive reasoning very closely. This is mainly due to the possibility of reasoning
“under assumptions”, e.g., in order to prove A D B one can assume the truth of A
and prove (under such an assumption) the truth of B. During the deduction pro-
cess, the assumption A is active and can be used to derive B. When the derivation
of B is concluded, the assumption A may be cancelled so to obtain a derivation of
A D B which does not depend on the truth of A.

From a proof-theoretical point of view, natural deduction systems present an
elegant meta-theory in which derivations are treated as mathematical objects in-
teresting in themselves.

We give here a brief presentation of natural deduction, focusing for concreteness
on a system for propositional classical logic. For a formal and exhaustive treatment,
standard references are [125,152].

3.2.1 Rules and derivations

A natural deduction system is described by means of a set of logical rules. As an
example, we give here a set of logical rules for propositional classical logic (where
we consider only