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Università di Verona
Dipartimento di Informatica
Strada le Grazie 15, 37134 Verona
Italy

Copyright 2010 c© Alberto Castellini - All rights reserved



To Silvia,
my future wife





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 From natural computing to systems biology . . . . . . . . . . . . . . . . . . . . . 1
1.2 Principles of modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Motivations and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Traditional models for biological systems . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Differential equation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 A case study: administration of drugs . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Modeling biochemical systems . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 S-systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Stochastic models of chemical reactions . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Molecular collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 The stochastic reaction constant cµ . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Computing the stochastic dynamics of biochemical systems . 21
2.2.4 A simple example: the irreversible isomerization . . . . . . . . . . . 26

3 P systems for modeling biological systems . . . . . . . . . . . . . . . . . . . . . 29
3.1 P systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Transition P systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 P systems extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Stochastic P systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Automatic parameter and structure estimation . . . . . . . . . . . . 43

3.3 Dynamical probabilistic P systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 ARMS: abstract rewriting systems on multiset . . . . . . . . . . . . . . . . . . 49
3.4.1 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Discussions and comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



VI Contents

4 Metabolic P systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1 Fundamentals of metabolic P systems . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 MP systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 MP systems with flux maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 MP systems with reaction maps . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.3 Equivalence between MPF systems and MPR systems . . . . . . 66

4.3 MP graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Equivalence between MP systems and ODEs . . . . . . . . . . . . . . . . . . . . 73
4.5 Equivalence between MP systems and hybrid functional Petri nets . 74

4.5.1 Hybrid functional Petri nets: a formalization . . . . . . . . . . . . . . 75
4.5.2 Mapping HFPN to MP systems . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.3 Mapping MP systems to HFPN . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5.4 The lac operon gene regulatory mechanism and glycolytic

pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.6 Flux discovery: the metabolic log-gain theory . . . . . . . . . . . . . . . . . . . 89

5 Statistical and optimization perspectives in MP modeling . . . . . 99
5.1 Synthesis of MP flux regulation maps from data: an

inverse-engineering problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.1.1 Mathematical representations of complex biochemical

reaction mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Regulation function synthesis by linear regression . . . . . . . . . . . . . . . . 106

5.2.1 Simple linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2.2 Multiple linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Regulation function synthesis by optimized neural networks . . . . . . . 111
5.3.1 The choice between linear and neural models . . . . . . . . . . . . . 111
5.3.2 Artificial neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.3 Traditional and evolutionary optimization algorithms for

training ANNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.4 ANNs for the synthesis of flux regulation functions . . . . . . . . 122

5.4 A case study: mitotic oscillator in early amphibian embryos . . . . . . . 124
5.4.1 Process description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.4.2 MP model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.5 Variable selection for flux regulation functions . . . . . . . . . . . . . . . . . . . 130
5.5.1 Variable selection with linear models . . . . . . . . . . . . . . . . . . . . . 134
5.5.2 Variable selection with neural networks . . . . . . . . . . . . . . . . . . 137

5.6 A pipeline for statistical data analysis and MP modeling . . . . . . . . . 143
5.6.1 MP model of the NPQ phenomenon . . . . . . . . . . . . . . . . . . . . . 145
5.6.2 A pipeline to synthesize flux regulation maps from

observed data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.6.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.6.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



Contents 1

6 MetaPlab virtual laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.1 Software for bioinformatics and systems biology: a brief overview . . 163

6.1.1 Software based on P systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.2 MetaPlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.2.1 General features and input GUI . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.2.2 Plugin-based architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.2.3 Dynamics computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.2.4 Chart plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.2.5 Flux discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.2.6 Regulation function synthesis by linear regression . . . . . . . . . . 185
6.2.7 Regulation function synthesis by optimized neural networks . 188
6.2.8 Integration with SBML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.2.9 Other plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.2.10 Future developments of MetaPlab . . . . . . . . . . . . . . . . . . . . . . . 198

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219





1

Introduction

1.1 From natural computing to systems biology

Computer science is a field of research which deals with informational processes.
Most of the efforts in the history of this science have been addressed to the anal-
ysis and development of artificial systems. Nowadays it is commonly accepted the
belief that also living systems perform crucial informational processes, in order
to keep themselves far from the thermodynamical equilibrium, to adapt to the
environment, and to evolve [210].

Natural computing is the area of computer science that investigates models and
computational techniques inspired by nature and, dually, attempts to understand
the world around us in terms of information processing [114,199,200]. Significant
advances in this area have been made through two main branches:

• computing performed by natural materials, which aims to generate novel com-
puting paradigms employing natural materials (e.g., DNA molecules, light, etc.)
to perform computations, instead of classical silicon-based processors;

• computing inspired by nature (also called biologically inspired computing),
whose aim is to develop nature-inspired tools (i.e., algorithms) and models
for efficient problem solving.

The first branch mainly involves DNA computing and quantum computing.
The former attempts to perform computations by using high parallel operations
on DNA molecules, i.e., hybridization, polymerase chain reaction (PCR), and so
forth. This field has been initiated in 1994 by Adleman who devised a breakthrough
experiment showing the possibility to compute by molecules [2]. The latter branch
aims to generate new computing paradigms based on quantum physics [63,166].

As for the branch of computing “inspired by nature”, one of the most known
research area is evolutionary computing. Evolutionary techniques make use of bio-
inspired concepts, such as evolution and selection, to find suitable solutions to opti-
mization problems usually spanning huge solution spaces. As an example, genetic
algorithms (GAs) [97] are a searching technique which employs genetic-inspired
operations, like crossover, mutation and selection, to find exact or approximate
solutions to optimization and searching problems. Whereas GAs evolve solutions
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(named chromosomes), represented by vectors of variables (named genes), a sim-
ilar technique called genetic programming (GP) [123] performs an evolution of
(opportunely encoded) computer programs in order to let them execute specific
user-defined tasks. Swarm intelligence techniques, such as particle swarm opti-
mization [116] and ant colony optimization [54], are evolutionary artificial intel-
ligence techniques based on the study of collective behavior in decentralized and
self-organized systems. Neural networks [24], which abstract some feature of brain
and nervous system, are a paradigm of information processing successfully used in
many fields, like regression and pattern recognition.

The recently-born area of membrane computing, also belonging to the branch
of computing “inspired by nature”, has been introduced by Gheorghe Păun in
1998, and in 2003 has been addressed by the American Institute for Scientific In-
formation as “a fast emerging research front” in computer science. As we will see
in more details in Chapter 3, membrane systems, or P systems, are distributed
and parallel theoretical computing devices inspired by the functioning and struc-
ture of living cells. The aim of this formalism is to perform computational tasks
by mimicking cellular behaviors [182, 184, 185]. Two main topics have been in-
vestigated in this area. The first one concerns the computational power (and the
universality) of different classes of P systems [44, 185], the second is related to
the usage of P systems as a bio-inspired modeling framework for biological sys-
tems [39,44,106,108,141,170,171,173,180,196,220]. In this thesis we present some
new results about the second topic, and in particular about metabolic P systems
(shortly MP systems) [17–22,29–36,67–69,71,72,136–149,168] a special class of P
systems conceived by Vincenzo Manca to model dynamics of biological phenomena
related to metabolism in the living cell. Our final aim is to provide biology and
medicine with new (simulation-based) analytical tools for systems understanding
and knowledge discovery. For this reason our investigations can be also related to
the research area of computational systems biology [119], which recently stemmed
from the combination of life sciences and engineering.

According to the principles of this discipline, biological systems should be in-
vestigated from a systemic and holistic perspective, since some behaviors of these
complex systems cannot be understood by just explaining the behaviors of their
parts. This idea come from the observation that in complexly interconnected sys-
tems components behave differently within the system than in isolation. In other
words [234], “there is a tremendous difference between a living organism and a
bottle containing all its chemical components. A birthday cake is more than flour,
milk, eggs, sugar and candles”. This difference lies in the organization of system
components and in their interconnections. In many cases there exists a hierarchy in
organizational levels corresponding to a hierarchy of timescales at which processes
occur, and a hierarchy in spatial organization. A key challenge of systems biol-
ogy concerns the development of mathematical and computational models which
consider these hierarchies for a better explanation of biological processes.

1.2 Principles of modeling

The vast structure of knowledge we now call Science originates from humankind’s
discoveries about itself and the surrounding environment. The search for expla-
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nations dates back to humans’ first observation of the “movement” of the sun,
which challenged many philosophers and scientists from Aristotle and Ptolemaeus
to Brahe, Kepler, Halley, Newton, Euler and Einstein, just to mention a few major
scholars. The principal aim of a scientific investigation is to achieve a deeper un-
derstanding and control of some part of the universe (which includes all measurable
entities and processes within the physical reality), but no significant part of the
universe is sufficiently simple to be grasped and controlled without abstraction.
Abstraction consists in replacing the part of the universe under investigation by
a model of similar but simpler structure. The active use of models is necessary
because the subject of investigation is usually too complex to work with. The
complexities may arise from two fronts: i) the very large number of interactions
among the elements of the system, or ii) the presence in the system of a “black
box”, namely, an element that is inaccessible to observation. In fact, it is some-
times impossible to “observe” all the elements of a system, especially at the time
desired [152].

A romantic metaphor for modeling, inspired by the Plato’s Myth of the cave,
is suggested in [17] where the modeling process “is seen as the work of an artist
while reproducing reality in a paint. The artist looks at the real world and, based
on all his knowledge of colors, materials and lighting effects, he makes a rough
sketch of the whole picture. This initial representation is then subsequently inte-
grated by a cycle of comparisons of the representation on the canvas with the real
scene, ending up in a more detailed picture”. A key point is that, by changing
the abstraction level of the paint (both in space and time), different aspects of
the pictured reality may pop up (see Figure 1.1). Undoubtedly, a good model is
like a piece of art, in which we can find some relevant traits of the described real-
ity. The (modeling) approach of collecting quantitative observations, storing them
and eventually trying to explain the main features of the system which generated
these observations, has been successfully employed in several scientific disciplines,
such as, astronomy, physics, chemistry, life sciences, engineering, meteorology, so-
ciology and economics. All these disciplines, indeed, deal with inverse-engineering
problems of understanding, predicting and controlling system behaviors from ob-
servations.

The heart of modeling consists of identifying variables and invariants of ob-
served behaviors. Many systems, such as, a cell, a city, a company or a river,
are always different in many important aspects if observed at different instants of
time, but their essence keeps unchanged during all the instants of their life. The
philosopher says [193], “Panta rei” (πὰντα ρὲι), that is, “everything is chang-
ing” or also “existence is change”. But, as mentioned in [143]: “when something
changes according to a rule, something does not change... Existence is a mysteri-
ous mixing of variation and invariance underlying objects and events, at each level
of reality”. In any system evolving in time, a set of variables can be identified,
such as, the amount of drug in a body, the gross domestic product of a nation or
the income of a company. Since they define the behavior of a system, variables
must satisfy some rules, which are the invariants of the behavior. For instance,
the second Newton’s law is an invariant rule describing, in terms of differential
equations, the relationship between two variables of a physical system, i.e., force
and acceleration.
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Fig. 1.1. Complex systems display different aspects when viewed from different “dis-
tances”. Models should be able to adapt their spatial and temporal abstraction levels to
the dimension and the “speed” of the system under investigation.

Many kinds of models have been devised for analyzing various kinds of systems
from different perspectives. A coarse classification can be done between continu-
ous [109] and discrete [130, 184] models, static [25, 45] and dynamical [48, 225]
models, deterministic [109] and stochastic [79] models. As said in [152]: “The
proper selection of an appropriate model for a certain system is critically impor-
tant. The value and power of any model as a deductive or inductive tool depends
on the speed and freedom with which the investigator can visualize relationships
and concepts based on it. It is important to notice that there may be a number
of different, yet equally successful, models for the same subject of investigation.
Having achieved one model does not give the right to state, “this is how it works”.
Establishing a particular model above all others is like erecting a barrier to open
thought and to any amendment that could someday further clarify the subject. A
model is an invention, not a discovery. It may prove to be a valid description, but
this is far from being the essential truth”.

Differential equations have been the most employed modeling framework for
dynamical systems since the first discoveries of planetary motion laws. Their ap-
plication to the analysis of very complex systems formulated within life sciences,
economy, meteorology, and many other areas, however, have recently pointed out
some limitations of this framework. A new generation of discrete dynamical mod-
els are being proposed which replace the classical differential viewpoint with an
algorithmic perspective. Their aim is to provide new insight on the mechanisms
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involved in the generation of complex dynamics in order to open new frontiers for
tackling the challenges of the new millennium in several scientific fields [143].

Just to hint the main traits of this new paradigm, let us consider a simple
phenomenon from a discrete point of view. Suppose to observe a device generating
words over a particular alphabet. Given a set of words observed from the device,
some very natural questions arise: “which is the grammar of the language generated
by this device?” and, “how the internal structure of the device realizes the gener-
ation of these words?” As pointed out in [143]: “If we consider the observations of
any system as words of a language, then the search for invariant rules underlying
processes can, in principle, correspond to the search of a grammar”. From this
perspective, the search for models can be supported by new tools imported from
formal language theory [201]. These tools have rarely been employed before for
modeling and they can yield innovative modeling approaches. As for metabolic
phenomena, we will show in the following of this thesis that concepts and rules
usually expressed in terms of differential equations can be reformulated in terms
of some special classes of grammars. Moreover, these grammars are often directly
related to the biochemical mechanisms generating the biochemical phenomena.

1.3 Motivations and results

In this thesis the research field of biological system modeling is introduced by
an analysis of the literature about some conventional (i.e., differential equations,
Gillespie’s models) and unconventional (i.e., P systems and metabolic P systems)
modeling frameworks. Subsequently I report the results achieved during my Ph.D.
with regard to three research topics, namely:

• equivalences between MP systems and hybrid functional Petri nets,
• statistical and optimization perspectives in the generation of MP models from

experimental data,
• development of the virtual laboratory MetaPlab, a Java software based on MP

systems.

All these topics have a strong scientific motivation. The equivalence between
MP systems and hybrid functional Petri nets results specially relevant in the frame-
work of biological modeling, since it guarantees robust modeling capabilities for
MP systems. The second research topic concerns the core of modeling. Indeed,
generating new models of biological systems is usually the best way to gain new
insight about them, which is very important in fields like medicine, biology and
pharmaceutics. The last point is more applicative, and is motivated by the neces-
sity of computational tools for assisting modelers and biologists to cope with the
high complexity of biological systems, in which a very large number of elements
with different functions interact selectively and nonlinearly to produce coherent
behaviors.

Chapter 2 presents two classical frameworks for biological systems modeling,
namely, ordinary differential equations (ODE) [109] and Gillespie’s stochastic mod-
els [79]. In this chapter the problem of modeling is tackled by means of several
examples, such as, the variation of a population size over time, the administration
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of drugs and the irreversible isomerization. Along a discussion about ODEs, the
concepts of rate of change, reaction rate constants, reaction orders, are described
and main numerical procedures for solving differential equations are explained as
well. At the end of this section S-systems are presented [205, 234]. On the other
hand, the discussion about Gillespie’s algorithm refers to the basis of molecular
collision and stochastic modeling.

In Chapter 3 the modeling framework of P systems is presented and several
extensions of this formalism are described [44,185], such as, P systems with sym-
port/antiport, P systems with active membranes, tissue-like P systems, and so
forth. Some results about the computational power of P systems are reported, but
the focus is subsequently diverted to three variants of P systems developed for
modeling biological systems, namely, stochastic P systems [171], probabilistic P
systems [172,173] and abstract rewriting systems on multisets (ARMS) [221].

Chapter 4 copes with metabolic P systems [137, 140–142, 145], the modeling
framework, introduced by Manca, to which all the original contributions of this
thesis refer. After a formal definition of MP systems with flux regulation maps
(MPF) and MP systems with reaction maps (MPR) we report some equivalences
between the two classes [141]. Subsequently, MP graphs are introduced [144] as a
graphical formalism for easily visualizing MP models. The chapter then presents
two important equivalences: one between MP systems and ODE [68], and another,
developed in [30,31,35], between MP systems and hybrid function Petri nets. This
equivalence, reported in Section 4.4, represents the first original result of this
thesis. The author has contributed to conceive the mapping procedures between
the two formalisms, to prove two theorems about the same equivalence, and to
perform in silico experiments (simulations) for the case study of the lac operon
gene regulatory mechanism and glycolytic pathway. The chapter ends with the
description of a very important theory devised by Manca, namely, the log-gain
theory [140, 142], which permits a first step towards the actual generation of MP
models from observed data.

Chapter 5 contains the second original result of this thesis, pertaining to
the generation of MP models from observed data. At the beginning of this chap-
ter the reverse-engineering problem of flux regulation function synthesis is intro-
duced [33]. It involves two main phases: the discovery of reaction fluxes from data
(by means of the log-gain theory) and the generation of functions able to fit these
fluxes. Some important function forms for representing complex biochemical reac-
tion mechanisms are reviewed [46] and two regression techniques are subsequently
presented for synthesizing these functions, namely, linear regression [1] and neural
networks [24]. The original contributions of the author concern three topics: i) the
employment of neural networks (with traditional and evolutionary learning tech-
niques) for the generation of flux regulation functions from data [33] (Sections 5.3
and 5.4), ii) a new approach for feature selection with neural networks [36] (Sec-
tion 5.5), and iii) a complete pipeline for data analysis [32] which addresses the
entire process of flux regulation function synthesis from data preparation to model
validation (Section 5.5). The proposed techniques are tested by two case studies,
namely, the mitotic oscillator in early amphibian embryos [33] and the non pho-
tochemical quenching phenomenon (NPQ) [32].
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Chapter 6 presents MetaPlab [146,241], a Java software based on MP systems
and implemented to automatize modeling and analysis of biological systems. As a
virtual laboratory this software is equipped with an extensible set of virtual tools,
in the form of plugins, performing various processing jobs, such as, dynamics com-
putation, flux discovery (by means of the log-gain theory), and regulation function
synthesis (by linear regression and neural networks). This chapter starts with a
brief overview on some prominent tools for bioinformatics and systems biology.
Then it describes the main features of MetaPlab, that range from an innovative
software architecture to a set of user friendly interfaces. The third original re-
sult of this thesis concerns the author’s contributions to this software for: i) design
and development of the plugin architecture on which the software is based [34],
ii) implementation of four plugins (i.e., neural network regression tool, linear re-
gression tool, flux discovery tool, and dynamic computation tool) [146,241], some
of which have been realized in collaboration with other students, iii) design of
the MetaPlab website [241], iv) realization of the MetaPlab user guide and plugin
tutorials [146].

In Chapter 7 we report some conclusions about the overall research project
presented in this thesis and a we suggest few ideas for the development of future
research lines in this field.





2

Traditional models for biological systems

In this chapter we introduce two of the main mathematical approaches for model-
ing biological systems and their dynamics, namely, ordinary differential equations
(ODE) [109] and Gillespie’s stochastic models [79]. Many other approaches have
been proposed for similar purposes, such as, Petri nets [154, 189], cellular au-
tomata [78,248], Lindenmayer’s systems (L systems) [130], and so on. We mainly
focus on ODE and Gillespie’s models because they are the most traditional frame-
works for deterministic and stochastic modeling respectively. For both the ap-
proaches we present a few theoretical foundations, some applications and we out-
line advantages and disadvantages of using these techniques in practice. ODE
systems are explained in Section 2.1, where case studies of drug administration
and biochemical system modeling are considered in Subsections 2.1.2 and 2.1.3
respectively. S-systems [205–207, 234], a class of ODE systems developed specif-
ically for modeling biochemical systems, are introduced and theoretically moti-
vated in Subsection 2.1.4. The second part of this chapter concerns stochastic
models of chemical reactions. At the beginning of Section 2.2 we introduce some
basis of molecular collisions (Subsection 2.2.1), in which the stochastic approach is
rooted. Subsequently, we motivate the employment of the “stochastic simulation
approach”, proposed by Gillespie, in place of the “master equation approach” for
computing biochemical dynamics (Subsections 2.2.2 and 2.2.3). The chapter ends
with an example showing the application of the Gillespie’s algorithm to the case
study of irreversible isomerization (Section 2.2.4).

2.1 Differential equation models

2.1.1 Introduction

To understand complex systems often we need to know how their main components
evolve over time. Measurements, apt to reveal dynamics, can be very difficult to
execute and sometimes even impossible, while it is often easier to observe tem-
poral changes of system variables and to describe their evolution by means of
instantaneous parameters, called rates.

Let us analyze, for instance, the variation of a population size over time [109].
Let be p(t) the number of individuals in a given area at the the time t. If at time
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t+T the number of individuals in the same population is p(t+T ), then the change
in population size over the discrete interval T is p(t+ T )− p(t) = NT . Moreover,
we can suppose that the longer is the interval T the greater is the number of added
individuals, thus, writing NT = N · T we have

p(t+ T )− p(t) = N · T (2.1)

or
p(t+ T )− p(t)

T
= N. (2.2)

Letting T → 0, we obtain the differential equation (2.3) which describes the
instantaneous change of population size by means of the (instantaneous) rate of
change N :

dp(t)

dt
= N. (2.3)

Equation (2.3) represents a very simplistic mathematical model of the popula-
tion grow. Of course, one can consider that the more individuals there are at time
t the more births are likely to occur. In this case, N depends also on p(t) and the
model becomes

dp(t)

dt
= N0p(t) (2.4)

where N0 is a constant, called specific growth rate, describing the growth rate of a
single individual.

What we want to investigate by means of a differential model is the dynamics
of one or more elements of the system. The investigation often starts from some
knowledge about the rates of change of all these elements and their initial con-
ditions. For instance, given an initial population of 100 individuals and a specific
growth rate of 0.8 new individuals per minute per individual, the question is: “how
many individuals will be present in the system after 2 minutes?” The answer comes
from solving (integrating) the differential equation (2.4), whose general solution is

p(t) = p(0)eN0t. (2.5)

Setting p(0) = 100 and N0 = 0.8 the population size after 2 time units turns out
to be p(2) = 100e0.8·2 ≈ 495 individuals. Figure 2.1 shows the general trend of an
exponential evolution for p(0) = 1 and N0 = 1.

Equation (2.4) has a very simple form and it can be easily solved by analyt-
ical techniques but, in general, differential equations of complex systems present
more intricate forms which may be insoluble. Only specific types of equations can
be solved by means of analytical techniques [109], while for the majority of the
real-world models, numerical procedures are required to compute approximated
solutions. Euler’s method can be seen as a prototype for all numerical methods
that solve differential equations by a step-by-step process [7]. This technique can
be applied to differential equations having a general form

dy(t)

dt
= f(t, y(t)) (2.6)

where f is a continuous function. Euler’s method approximates the function y(t)
in the interval (t, t+ h) by the first two terms of the Taylor expansion of y(t)
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Fig. 2.1. Exponential growth generated by Equation (2.5) for p(0) = 1 and N0 = 1 [109].

ŷ(t+ h) = y(t) + h · f(t, y(t)) (2.7)

where f(t, y(t)) represents the slope of the y(t) tangent in t and h is the length of
the time interval (see Figure 2.2).

Fig. 2.2. Numerical approximation of y(t) by Euler’s method.

The low accuracy of Euler’s method, due to its first order (linear) approx-
imation, induced mathematicians to develop more precise techniques based on
higher-order approximations, multiple steps, and many other mathematical im-
provements. Among them, Runge Kutta methods [7], developed in 1900, are an
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important family of implicit and explicit approximation techniques that extend
Euler’s method.

The differential equations framework is quite general and it enables to model
many different kinds of systems, such as biological systems [109], but also econom-
ical systems and social systems [90]. In the following we show some applications
of this modeling framework.

2.1.2 A case study: administration of drugs

This example shows how a differential equation model supports the estimation of
dosage levels and administration intervals of a drug in order to maintain specific
concentrations of substances in a body [109].

When a drug is administered, its concentration in the body fluid rapidly grows
to a maximum values and then it starts to decrease because of various degradation
processes. The decreasing rate is often proportional to the drug concentration c(t),
thus, the following differential equation represents a model of this phenomenon:

dc(t)

dt
= −c(t)

k
(2.8)

where constant k is related to the speed of degradation. The solution of this equa-
tion, reported below, is a function which decreases exponentially from the initial
condition c0:

c(t) = c0e
−t/k (2.9)

An analysis of this solution function shows that concentration is divided by e
every k hours, which is very important if we want to forecast the drug concentration
after n doses administered every ∆t hours. This concentration value is in fact
computed by the following equation [109]

cn−1 = c0(1 + e−∆t/k + e−2∆t/k + . . .+ e−(n−1)∆t/k)

= c0
1− e−n∆t/k

1− e−∆t/k
(2.10)

and its trend is depicted in Figure 2.3. The residue rn measured just before the
(n+ 1)-th administration is

rn = cn−1e
−∆t/k = c0e

−∆t/k 1− e−n∆t/k

1− e−∆t/k
(2.11)

The mathematical analysis of Equation (2.10) shows that the drug concentra-
tion never exceeds the limit value cM , where

cM =
c0

1− e−∆t/k
(2.12)

because term e−n∆t/k, at the numerator of Equation (2.10), tends to 0 when n
grows. cM may be considered a good estimate of the concentration immediately
after a dose, for n and ∆t sufficiently large. Indeed, it can be found [109] that,
if n∆t > 5k then cn−1 differs from cM by less than 1%. In other words, to reach
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Fig. 2.3. Concentrations of drug during the first five administrations [109].

the maximum concentration in 5 doses, one should make the interval between
two doses larger than k. Of course, if ∆t/k increases, then the limit cM decreases
towards c0.

The residue just before the n-th dose, when n tends to infinite, is similarly
given by

r = cMe
−∆t/k =

c0
e∆t/k − 1

. (2.13)

Interesting considerations may be made even by analyzing this equation. We
observe that r decreases as ∆t/k increases. Moreover, being cM = c0 + r, the
larger ∆t/k the larger the concentration variation between two doses. Therefore,
a trade-off has to be found between keeping the residue among a certain level and
reaching the maximum concentration in a few doses. Figure 2.4 displays the stable
oscillatory behavior reached after administrating a sufficient number of doses.

Fig. 2.4. Concentrations of drug after many administrations [109].

Since several antibiotics can have harmful effects until their concentration is
below a specific threshold, the oscillatory growth of Figure 2.3 is something to
avoid, while the stable oscillation of Figure 2.4 is advisable. In order to quickly
reach the second behavior, a large dose cM is usually administrated at first in
order to reach the maximum concentration, and subsequently normal doses of c0
are given at intervals of ∆t.
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2.1.3 Modeling biochemical systems

In this section we introduce some notions about the application of differential equa-
tions to biochemical systems modeling. Biochemical systems are often represented
in standard chemistry by sets of coupled reaction in the form

X1 +X2
k→ X3 (2.14)

where molecules X1 and X2, called substrates or reactants, combine to generate
molecule X3, called product. Constant k is named reaction rate and it represents
instantaneous rate of transformation of substrates to products. In other words,
a reaction rate is the instantaneous “speed” of a reaction to generate products
from substrates. Most kinetic laws relate reaction rates to changes in chemical
concentrations, which is equivalent to write differential equations in the form

dXi(t)

dt
= instantaneous rate of change in Xi at time t. (2.15)

Since change in concentrations are usually functions of substrate concentrations
Si, enzymes Ei, factors Fi and products Pi, Equation (2.15) can be rewritten
as [234]

dXi(t)

dt
= f(S1, S2, . . . , E1, E2, . . . , F1, F2, . . . , P1, P2, . . .). (2.16)

Reaction rate equations (RRE), also called rate laws, are well known equations
in chemical kinetics. They express reaction rates as functions of reactant concen-
trations and some constant parameters. For instance, reaction (2.14) may be ruled
by the generic rate law

rate(X1, X2) = kXm
1 X

n
2 (2.17)

where rate constant k and reaction orders m and n have to be determined by ex-
periments. These kinetic constants become fundamental for generating differential
equation models, since they include everything that affects reaction rate besides
concentrations, such as, temperature, pH, pressure, ionic strength, geometric prop-
erties of chemicals, light irradiation, and so on. Consequently, kinetic constants are
approximations of a more complex (and unknown) functions, and their tuning is
often a tricky process.

RREs are, in fact, differential equations. Let us consider, for instance, the well
known Michaelis-Menten rate law, which describes the kinetics of many enzymes
acting on a substrate S and generating a product P . It is

v(S) = −v(P ) =
Vmax S

KM + S
(2.18)

where v(S) and v(P ) are, respectively, the instantaneous consumption of substrate
S and the instantaneous generation of product P , Vmax is the maximum rate
constant and KM is the so-called Michaelis constant. This equation can be written
in the differential form as

dS

dt
= − Vmax S

KM + S
(2.19)
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dP

dt
=

Vmax S

KM + S
(2.20)

since dS
dt = −v(S) and dP

dt = −v(P ).
Given such a differential model, our main target is usually to find the sub-

stance concentrations at a specific instant t. It requires to solve differential equa-
tions (2.19) and (2.20), that is, to compute functions S(t) and P (t) from these
equations. Let us set initial conditions S0 = 10 mol and P0 = 0 mol, and compute
the time evolutions of S and P employing rate constants VMAX = 2 and KM = 4.
We achieve the curves of Figure 2.5.

Fig. 2.5. Temporal evolution of substrate S and product P of the Michaelis-Menten
model of Equations (2.19) and (2.20). Rate constants are VMAX = 2 and KM = 4, initial
conditions are S0 = 10 moles and P0 = 0 moles [234].

Coupled differential equations are very common in biological systems model-
ing since a huge number of different chemical processes occur (even in very simple
organisms) which involve interactions and competition. Such a kind of problems
require to solve systems of differential equation, such as those defined by Equa-
tions (2.19) and (2.20).

Kinetics function forms. Given a biochemical system involving chemicals
X1, . . . , Xn, differential equation (2.16) can be rewritten, for each chemical Xi, as

dXi(t)

dt
= fi(X1, . . . , Xn) (2.21)

if we omit constant parameters.
In order to make such equations able to generate the time evolution of a system,

we have to discover suitable functions fi, i = 1, . . . , n. For several systems some
information about the form of these functions are available from experiments, but
their real forms are usually unknown. Michaelis-Menten rate law, for instance, is
an approximation achieved by fitting experimental observations of some enzyme
kinetics. This model is relevant to situations where very simple kinetics can be
assumed, but in different conditions it becomes not appropriate and more complex
kinetic functions are needed.
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For generating kinetic function forms for systems of coupled reactions, we con-
sider that each reaction can give to a substance Xi, either a positive contribution (if
the reaction generates substanceXi) or a negative contribution (if the reaction con-
sumes substance Xi). To consider this fact we split function fi of Equation (2.21)
into a production term f+i and a consumption term f−i [234]

dXi(t)

dt
= f+i (X1, . . . , Xn)− f−i (X1, . . . , Xn), i = 1, . . . , n (2.22)

where f+i and f−i can be, for instance, sums of functions fij representing the
contribution (rate) of each reaction rj to the transformation of substance Xi. Let
us consider a simple example. Given a system of three substances X1, X2, X3, and
three reactions

r1 : X1 → X2

r2 : X2 → X3 (2.23)

r3 : X3 → X1

we write the following system of differential equations

dX1(t)

dt
= f+1 − f

−
1 = f13(X1, X2, X3)− f11(X1, X2, X3)

dX2(t)

dt
= f+2 − f

−
2 = f21(X1, X2, X3)− f22(X1, X2, X3) (2.24)

dX3(t)

dt
= f+3 − f

−
3 = f32(X1, X2, X3)− f33(X1, X2, X3)

Now the question is: “which form should functions f+i and f−i have to properly
represent real-world chemical reactions?” In the following we introduce S-systems,
a well known modeling framework for biochemical systems which employs power
laws as functions f+i and f−i .

2.1.4 S-systems

Let us consider the chemical system of Figure 2.6 which represents the transfor-
mation of X1 to X2, catalyzed by X3. The degradation rate of X1 depends on
the the concentrations of X1 itself and of enzyme X3, X2 is produced at the same
rate because its production is originated from the degradation of X1, finally, the
degradation of X2 depends on concentration X2. Supposing to have a constant
generation of X1 at rate α, we achieve the following system of differential equa-
tions [234]:

dX1(t)

dt
= α− f1(X1, X3)

dX2(t)

dt
= f1(X1, X3)− f2(X2) (2.25)
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Fig. 2.6. Transformation of X1 to X2, catalyzed by X3 [234].

Many experimental observations and related considerations about kinetic prop-
erties of biochemical systems suggest that a convenient mathematical representa-
tion for f+i and f−i is given by “a product of power law functions of those and only
those variables that directly affect this process. This product is then multiplied
by a rate constant that determines the speed of the process” [205–207,234]. For a
general system of n substances, power-law production and degradation functions
are reported in the following, for i = 1, . . . , n

f+i (X1, . . . , Xn) = αiX
gi1
1 Xgi2

2 . . . Xgin
n , (2.26)

f−i (X1, . . . , Xn) = βiX
hi1
1 Xhi2

2 . . . Xhin
n , (2.27)

where rate constants αi, βi ∈ R+ ∪{0}, and kinetic orders gij , hij ∈ R. In particu-
lar, powers gij and hij are set to 0 for substancesXk that do not affect, respectively,
production and degradation of Xi. In the specific case of the catalyzed conversion
model (2.25), the power-law representation is

f+1 = α,

f−1 (X1, X3) = f+2 (X1, X3) = βXa
1X

b
3, (2.28)

f−2 (X2) = γXc
2 .

α, β ∈ R+ ∪ {0} and a, b, c ∈ R. Power law functions are supported only by many
experimental evidences [208, 234], but no mathematical proof demonstrates that
they are the best possible description of biochemical dynamics. Savageau and Voit
shown in [209] that virtually any differentiable nonlinearity can be captured by
these equations, including most complex oscillations and even chaos.

S-systems [205–207, 234], where S stands for synergism and saturation, are
defined by substituting functions (2.26) and (2.27) in the general schema (2.22),
obtaining differential equations in the following form

dXi(t)

dt
= αi

n∏
j=1

X
gij
j − βi

n∏
j=1

X
hij
j , i = 1, . . . , n. (2.29)

We observe that S-systems equations have a standard form. What relates them
to specific biological systems are rate constants and kinetic orders. In particu-
lar, kinetic orders are interpreted, in elemental chemical kinetics, as the number
of molecules involved in a reaction. Recent studies suggest that many enzyme-
catalyzed reactions in vivo require non-integer and also negative kinetic orders.
For instance, Equations (2.28) could have the forms
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f+1 = 1.34,

f−1 (X1, X3) = f+2 (X1, X3) = 0.76X1X
−2.45
3 , (2.30)

f−2 (X2) = 2X2.

The effect of non-integer and negative parameters in the transformation of a
metabolite is easy to understand. For example, constant −2.45 means that en-
zyme X3 inhibits the production of X2 from X1 by a factor 2.45, thus it is a
repressor.

Theoretical justification. A comprehensive analysis of S-systems theoretical
basis is beyond the scope of this thesis, but we want to remark that a consequence
of S-systems approximation is that relative variations in metabolite concentrations
are linearly related to relative changes in production and degradation rates [234].
From biochemical findings it is known that studying relative effects in response to
relative variations can be more appropriate than studying absolute effects. This
fact is supported, for instance, by allometric principle [236] which states that a
specific ratio holds between the relative variations of two related biological param-
eters, such as, the mass of an organism and its superficial area. It seems to be a
general property of living organisms which allows them to keep basic equilibria un-
derlying their internal organization [140]. As shown in [236], many empirical laws
on metabolism are also instances of allometry. In [234] Voit shows that S-systems
equations can be derived from equations describing relative rate of changes by
Taylor’s approximation.

Let us define the flux Fi of a metabolite Xi as

Fi = αi

j=1∏
n

X
gij
j − βi

j=1∏
n

X
hij
j , i = 1, . . . , n. (2.31)

where the α-term is called incoming flux for Xi and the β-term is named outgoing
flux for Xi. Experiments suggest that relative variations of metabolite concentra-
tions cause proportional variation in fluxes at the steady state, and S-systems have
proved to respond in the same way. In particular, at the steady state we have

Fi = αi

j=1∏
n

X
gij
j = βi

j=1∏
n

X
hij
j , i = 1, . . . , n. (2.32)

and the mathematical analysis of flux relative variations shows that a one-percent
change of concentration Xj induces a gij-percent change in Fi [234].

2.2 Stochastic models of chemical reactions

Let V be a volume containing a well stirred mixture of n chemical species
X1, . . . , Xn that interact by means of m chemical reactions R1, . . . , Rm. In the
last section we explained how differential equation models can represent such a
kind of systems in a continuous and deterministic way. Chemical reactions have
been regarded as continuous rate processes having a deterministic dynamics in
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order to represent their instantaneous contribution by power laws. However, it is
known that the time evolution of a real chemical system is not a continuous pro-
cess because molecules are discrete entities and their quantity can change only by
integer amounts. Moreover, the time evolution is not even a deterministic process
since microscopic interactions involve uncertainty that cannot be solved unless
appealing to quantum considerations about molecular motion, which are often
intractable from a computational viewpoint. In other words, although chemical
systems evolve deterministically with respect to molecular position, velocity and
population size, they would not evolve deterministically with respect to population
sizes alone, because quantum indeterminacy unavoidably enters [82].

The continuous and deterministic approach is effective in many cases but, since
it deals with average molecular population levels, it is unable to describe fluc-
tuations and correlations that feature every real biological system and become
significant when systems involving small amounts of molecules are modeled. In
these cases a compromise has to be reached between quantum models, considering
position and velocity of every single molecule, and deterministic models, regarding
only the average amount of each chemical species. Stochastic chemical models at-
tempts to describe time evolution of uniformly distributed chemical systems taking
into account system discreteness and stochasticity but avoiding molecular motion
details.

2.2.1 Molecular collisions

In a well stirred mixture of molecules in thermal equilibrium, reactions occurs
when two or more particles, randomly moving in a medium, collide in a proper
way. Considering a system composed by a mixture of two gas-phase molecular
species X1 and X2 (where the same symbols are used to denote the amount of
molecules of each species), we assume molecules as hard spheres having radius
r1 and r2 respectively [79, 80]. A collision between a molecule of type X1 and a
molecule of type X2 happens whenever the center-to-center distance between the
two particles becomes equal to r12 = r1 + r2, as shown in Figure 2.7.

Fig. 2.7. A representation of molecules as hard spheres and the collision volume swept
by molecule 1 with respect to molecule 2 in the time interval dt [80].
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Being ~v12 the relative speed of molecule 1 with respect to molecule 2, the
“collision volume” dVcoll = πr212v12dt represents the volume swept by molecule
1, relative to molecule 2, in the infinitesimal time interval dt (see Figure 2.7).
If molecule 2 lies in dVcoll during interval (t, t + dt) then a collision occurs. At
this point, rather than estimating the rate of collision as the number of molecules
X2 whose centers lie in dVcoll in the time interval dt, for dt → 0, we compute
the probability of collision as dVcoll/V assuming a random and uniform molecule
distribution [80]. In this way we avoid non-rigorous averaging arguments required
by the first approach to overcome difficulties related to the limit dt → 0 which
brings dVcoll to be infinitesimal (the reader may refer to [79] for a more detailed
description about this argument). The probabilistic approach instead averages
ratio dVcoll/V over the molecule velocities, obtaining the average probability that
a specific pair of molecules 1 and 2 collide in interval dt

dVcoll/V =
πr212v12
V

dt. (2.33)

The average velocity v12 can be easily computed if the mixture of molecules is
in thermal equilibrium at absolute temperature T . In this case the velocities of
molecules are randomly distributed according to Maxwell/Boltzmann distribution,
than Equation (2.33) becomes [79]

dVcoll/V =
πr212

√
8kT/πm12

V
dt. (2.34)

where k is the Boltzmann’s constant and m12 is the reduced mass m1m2/(m1+m2)
(mi represents the mass of a molecule of type i).

Considering all the X1 molecules of type 1 and the X2 molecules of type 2 con-
tained in V we compute the average probability of collision between two different
molecules in V in the infinitesimal time interval (t, t+ dt) as X1X2πr

2
12v12V

−1dt.
Therefore, even if we cannot compute the number of collisions occurring in V in
the infinitesimal time interval dt, we can compute the average probability of a
collision in V in the time interval dt.

2.2.2 The stochastic reaction constant cµ

In this section we explain how the molecular collision model, introduced above,
can be employed to describe chemical reaction dynamics. Given the following set
of reaction types [79]

∗ → P, (2.35)

Xj → P, (2.36)

Xj +Xk → P (j 6= k), (2.37)

2Xj → P (2.38)

Xi +Xj +Xk → P (i 6= j 6= k 6= i), (2.39)

Xj + 2Xk → P (j 6= k), (2.40)

3Xj → P. (2.41)
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where Xi, Xj , Xk represent molecule species and P is a general product term. We
characterize each reaction Rµ by a probability constant cµ (rather than by a rate
constant kµ as done with ODEs) which takes into account the physical properties
of molecules involved in the reaction and the temperature of the system. The so
called fundamental hypothesis states:

cµdt ≡ the average probability that a specific combination of Rµ (2.42)

substrate molecules react in the next infinitesimal

time interval dt [80]

Given, for instance, a reaction Rµ : X1 + X2 → P , we have that, if every
1-2 collision leads to an Rµ reaction, than quantity cµdt corresponds exactly to
the quantity defined by Equation (2.34). However, real reactions occur only if
the kinetic energy of the collision exceeds some “activation energy” u∗µ, thus the

reaction probability must be diminished of a factor e−u
∗
µ/kT [79]. Putting together

all these considerations, we conclude that, for a reaction Rµ : X1 + X2 → P , if
conditions of thermal equilibrium prevail for species X1 and X2, than the quantity
defined in (2.42) indeed exists and the reaction parameter cµ is given by [79]:

cµ =
πr212

√
8kT/πm12

V
· e−u

∗
µ/kT . (2.43)

Notice that, the actual calculation of cµ is often hard to deal with. Sometimes
it is easier to determine this constant experimentally instead of theoretically, but
such kinds of experiments require a deep knowledge of microscopic interactions,
thus approximations and empirical values are usually employed.

In [79] the relationship between the reaction parameter cµ and the reaction
constant kµ (employed in the deterministic modeling of chemical kinetics) is an-
alyzed. It turns out that, for a simple bimolecular reaction Rµ : X1 + X2 → P ,
we have kµ=̇V · cµ. This is because for (2.42) the probability that an Rµ reac-
tion occurs somewhere in volume V in the next infinitesimal time dt is X1X2cµdt.
From this, we may infer that X1X2cµ = X1X2cµ is the average rate at which Rµ
reactions occur inside V , where the average is here considered over an ensemble of
stochastically identical systems. The average reaction rate per unit volume is thus
X1X2cµ/V , or, if we use molecule concentrations xi = Xi/V instead of number
of molecules Xi, it is x1x2V cµ. Now, the reaction rate constant kµ is defined as
the average reaction rate per unit of volume divided by the product of the aver-
age densities of reactants, that is, kµ = x1x2V cµ/x̄1x̄2. Since in the deterministic
formulation it is assumed that x1x2 = x̄1x̄2, the equation kµ=̇V · cµ is achieved. If
we multiply the expression for cµ in Equation (2.43) by V we get the well-known
formula for the reaction rate constant for hard-sphere bimolecular reaction [175]:

kµ = πr212
√

8kT/πm12 · e−u
∗
µ/kT . (2.44)

2.2.3 Computing the stochastic dynamics of biochemical systems

Given a stochastic model of a biochemical system, namely, the set of reactions in-
volved in the system and their probability constants cµ, now we want to compute
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the time evolution of each molecular species, starting from some initial condition.
Differently from deterministic models, the dynamics generated by a stochastic
model is never exactly identical, since it only satisfies the (probabilistic) fundamen-
tal hypothesis (2.42) respect to a given set of constants cµ, µ = 1, . . . ,m (where
m is the number of reactions involved in the system). Two main approaches have
been devised in order to characterize the stochastic time evolution, the master
equation [156] and the stochastic simulation approach [79, 80]. They are equiva-
lent, since they both originate from the fundamental hypothesis (2.42), but, as
explained in the following, the second approach provides a tractable step-by-step
procedure to compute the dynamics, which is not achievable by the first approach.

Master equation approach. Stochastic models of chemical reaction systems
usually employ the grand probability function P (X1, X2, . . . , Xn; t) to describe the
probability that X1 molecules of type 1, X2 molecules of type 2, ... , Xn molecules
of type n will be in volume V at time t. If this function is known, the state of the
system at time t can be characterized by the following equation

Xi(t) =

∞∑
X1=0

. . .

∞∑
Xn=0

XiP (X1, . . . , Xn; t) i = 1, . . . , n (2.45)

which gives the average number of molecules of type i in V at time t, over many
repeated runs from 0 to t starting from the same initial conditions. This average
number of molecules is thus computed by multiplying, for each possible state
(X1, . . . , Xn), the probability to have this state at time t (i.e., P (X1, . . . , Xn; t)),
by the amount of molecules of type i (i.e., Xi) in the same state, and then summing
together all these products.

The master equation [156] is a first-order differential equation representing the
time evolution ∂

∂tP (X1, X2, . . . , Xn; t) of the grand probability function. The main
problem of this equation is that it is analytically solvable only in a few and very
simple cases, even fewer than the number of problems for which differential models
are analytically solvable. Moreover, the master equation turns to be even numeri-
cally intractable in the majority of cases due to the high number of its independent
variables [79]. Therefore, despite its exact and elegant formulation, master equa-
tion is usually unemployable for numerical simulations.

Stochastic simulation approach. In order to build a tractable procedure for
the stochastic simulation of biochemical systems, Gillespie [79] proposed a new
approach based on the the reaction probability density function instead of on the
master equation. While the master equation answers to the question: “given the
state (X1, X2, . . . , Xn) at time t, which will be the stochastic state at time t+dt?”,
the reaction probability density function answers to the questions: “given the cur-
rent state (X1, X2, . . . , Xn), when will the next reaction occurs?” and “what kind
of reaction will be?” The reaction probability density function P (τ, µ) is a joint
probability density function defined as

P (τ, µ)dτ ≡ probability at time t that the next reaction in V will (2.46)

occur in the next time interval (t+ τ, t+ τ + dτ)

and will be an Rµ reaction [79].
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The simulation procedure we are looking for needs a legitimate method to
derive values τ and µ from the fundamental hypothesis (2.42). Let us start by
generating an analytical expression for P (τ, µ). We define hµ as the number of
combinations of the reactants of Rµ in the state (X1, X2, . . . , Xn), for each re-
action Rµ, µ = 1, . . . ,m. This quantity depends on the reaction type, and for
reactions (2.35) - (2.41) is, respectively [79]

hµ = 1 for reaction (2.35), (2.47)

hµ = Xj for reaction (2.36), (2.48)

hµ = XjXk for reaction (2.37), (2.49)

hµ = Xj(Xj − 1)/2 for reaction (2.38), (2.50)

hµ = XiXjXk for reaction (2.39), (2.51)

hµ = XjXk(Xk − 1)/2 for reaction (2.40), (2.52)

hµ = Xj(Xj − 1)(Xj − 1)/6 for reaction (2.41). (2.53)

Now, let us compute the probability in (2.46) as the product of two terms,
namely, the probability P0(τ) that no reaction will occur in the time interval
(t, t + τ), and the probability hµcµdτ that a reaction Rµ will occur in the next
differential time interval (t+ τ, t+ τ + dτ)

P (τ, µ)dτ = P0(τ) · hµcµdτ. (2.54)

To calculate P0(τ) we divide the interval (t, t + τ) into K subintervals of length
ε = τ/K. The probability that none of reactions R1, . . . , Rm occurs in the first
interval (t, t+ τ) is, by the multiplication theorem for probabilities,

m∏
j=1

(1− hjcjε+ o(ε)) = 1−
m∑
j=1

hjcjε+ o(ε) (2.55)

The same thing is valid for the second interval (t + ε, t + 2ε), and so on. By
multiplying these probabilities for all the K subintervals it turns out that

P0(τ) = (1−
m∑
j=1

hjcjε+ o(ε))K (2.56)

= (1−
m∑
j=1

hjcjτ/K + o(K−1))K (2.57)

which becomes, to the limit of infinitely large K

P0(τ) = e−
∑m
j=1 hjcjτ . (2.58)

By substituting Equation (2.58) in Equation (2.54) we obtain the following ex-
pression for the reaction probability density function:

P (τ, µ) =

{
aµe
−a0τ if 0 ≤ τ <∞ and µ = 1, . . . ,m

0 otherwise
(2.59)
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where aµ = hµcµ, for µ = 1, . . . ,m and a0 =
∑m
i=1 ai. Figure 2.8 displays

some trends of the reaction probability density function P (τ, µ) for different reac-
tions Rµ.

Fig. 2.8. Plotting of reaction probability density function P (τ, µ) given in Equa-
tion (2.59). The shaded area represents the probability that reaction Rµ occurs in the
next time interval (t+ τ, t+ τ + dτ) given the current state (X1, X2, . . . , Xn) [79].

Our goal is now to find a method for simulating the time evolution of bio-
chemical systems according to the reaction probability density function P (τ, µ)
defined in Equation (2.59). The simulation algorithm proposed by Gillespie in [79]
is a Monte Carlo technique based on the generation of random pairs (τ, µ) whose
probability density function is P (τ, µ). There exists a mathematical rigorous pro-
cedure for getting two random numbers r1 and r2 from the unit interval uniform
distribution, and constructing from them a random pair (τ, µ) from a set described
by any specified pair probability density function. For the pair probability density
function P (τ, µ) in Equation (2.59) the construction procedure turns out to be
the following: given two random numbers r1 and r2 in the unit interval we can
compute τ as

τ = (1/a0)ln(1/r1), (2.60)

while µ is the integer number for which

µ−1∑
i=1

ai < r2a0 ≤
µ∑
i=1

ai. (2.61)

The reader may refer to [79] for a rigorous proof of these formulae. Here we just
hint that Equation (2.60) generates a random number τ according to the probabil-
ity density function P1(τ) = a0e

−a0τ , while Equation (2.61) generates a random
integer µ according to the probability density function P2(µ) = aµ/a0. The pair
generation follows because P1(τ) · P2(µ) = P (τ, µ) [80].

Since pseudo-random number generators are implemented in many program-
ming languages, this approach brings to an implementable procedure for stochasti-
cally generating time evolutions of chemical reaction systems. In the following the
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pseudo-code of the Stochastic Simulation Algorithm (SSA) proposed by Gillespie
is reported [79].

Stochastic Simulation Algorithm (SSA) [79]

Initialization. Input reaction constants c1, . . . , cm, and initial amount of
substances X1, . . . , Xn. Set t = 0.

while (Halting condition is not met) do
Step 1. Compute a1 = h1c1, . . . , am = hmcm, for the current state

(X1, . . . , Xn) by using hµ as defined in (2.47) - (2.53) and
calculate a0 =

∑m
i=1 ai.

Step 2. Generate random numbers r1 and r2 in the unit interval and
compute τ and µ according to (2.60) and (2.61).

Step 3. Increase t by τ and update the substance population levels
according to the application of reaction Rµ, namely,
subtracting reactants and adding products according to
their stoichiometry in Rµ.

end while

return time evolution of (X1, . . . , Xn).

This algorithm has many advantages: i) it is exact respect to the fundamental
hypothesis (2.42), thus it takes into account stochastic fluctuations and correla-
tions; ii) it never approximates infinitesimal time intervals by discrete time steps
as numerical methods for differential models do; iii) it is very easy to implement
and it does not require a big amount of memory. On the other hand, this procedure
has also some drawbacks: i) it is very time expensive since it simulates, one by one,
every single reaction. This is a strong limitation on the total amount of molecules
that can be simulated, since the larger the number of molecules, the higher the
number of reactions that occur in the time unit; ii) stochastic simulations have
to be repeated many times to achieve average trends. This is also time expensive
and, moreover, it seems to nullify the advantage of preserving natural fluctuations.
In fact, this is not completely true, since fluctuations keep additional information
about the standard deviation of the simulated dynamics, which are not considered
by deterministic models.

In order to overcome these drawbacks an approximate procedure, called τ -leap,
has been presented in [81]. This method computes, in a fast but approximated way,
how many times each reaction fires in a discrete time interval τ , where τ has to
satisfy the so called leap condition [81] in order to reach some given approximation
error. In this way the algorithm does not simulate each single reaction but it groups
together the effect of all the reactions which fire during each time interval τ . It
can be proved that, if enough time intervals contain many reaction events, then
the speed of the algorithm can increase substantially [81].
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The choice between the deterministic and the stochastic approach depends
on the system to be analyzed. In fact, when small molecular populations are in-
volved, fluctuations become fundamental elements of the time evolution, because
they yield substantial deviations from the average dynamics. In these cases the
stochastic approach is a good choice, since it takes into account fluctuations and
correlations, and the simulation algorithm does not require too much time to be
executed. Many real-world biochemical systems, however, involve huge amounts of
molecules whose dynamics has deterministic average trends which are negligibly
influenced by stochastic fluctuations. In such cases the stochastic simulation algo-
rithm requires too much time to be run on standard computers, while deterministic
approaches, such as differential models, represent a feasible way to capture average
time evolutions.

However, we observe that both the approaches require kinetic constants,
namely, kµ for differential models and cµ for stochastic models, which are intrin-
sically related to a microscopic and instantaneous description of the system under
investigation. These constants are often difficult to determine since experiments are
based on discrete and macroscopic observations of the system. Therefore, kinetic
constants are computed as mathematical approximations, to the limit of infinites-
imal time intervals, of the system behavior observed in discrete time instants.
Moreover, since experimental observations are macroscopic and representative of
the behavior of the whole system, another approximation is done when the local
internal dynamics of each reaction is deduced from these observations. In Chap-
ter 4 we present a new modeling approach which aims to overcome the drawbacks
of using kinetic constants by considering the system at a high abstraction level,
but sufficiently low to reveal the logic of observed behaviors.

2.2.4 A simple example: the irreversible isomerization

In this section we report an application of the SSA to the simple case study of
irreversible isomerization (or radioactive decay), represented by reaction

X
c→ Z. (2.62)

This example, firstly presented in [80], copes with a very simple system whose
dynamics can be computed analytically by both master equation and reaction
rate equation. The master equation for this particular case study has the following
form [80]

∂

∂t
P (X; t) = c[εX,X0

(X + 1)P (X + 1; t)−XP (X; t)] (2.63)

where X is the amount of reactant molecules in the system, c is the stochastic
constant for isomerization and εi,j is the ‘Kronecker epsilon”, defined as εi,j = 0
if i = j and εi,j = 1 otherwise. The solution of this (quite complex) differential
equation gives the probability function P (X; t) of having X reactant molecules at
time t, for X = 0, 1, . . . , X0, that is [80]

P (X; t) =
X0!

X!(X0 −X)!
e−cXt[1− e−ct]X0−X (X = 0, 1, . . . , X0) (2.64)
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for the initial condition P (X, 0) = δX,X0
.

The mean and standard deviation of the binomial probability function in Equa-
tion (2.64) turn out to be, respectively

X(t) = X0e
−ct and σ(t) = [X0e

−ct(1− ect)]1/2 (2.65)

On the other hand, by modeling the same chemical reaction by the determin-
istic approach, we achieve the following differential equation

dX

dt
= −cX (2.66)

whose solution is, for X = X0 at time t = 0

X(t) = X0e
−ct (2.67)

which corresponds exactly to the mean of the master equation solution (2.65).
Now, let us generate a stochastic time evolution of the isomerization process

by SSA, employing cj = 0.5 as reaction constant and X0 = 1000 as initial condi-
tion. The bold-dotted line of Figure 2.9 represents the trajectory of the stochastic
simulation, while dashed and solid lines surround, respectively, the area between
X(t)± σ(t) and X(t)± 2σ(t). Notice that, the horizontal separation between the
time evolution dots gives a direct measure of the time interval between two suc-
cessive reactions, which increases as long as the population size X decreases.

Fig. 2.9. Time evolution (bold-dotted line) of isomerization computed by SSA with
c = 0.5 and initial condition X0 = 1000. Standard deviation envelope X(t)±σ(t) (dashed
line) and two-standard deviation envelope X(t)± 2σ(t) (solid line) [79].

Figure 2.10 displays the simulation trajectory (plotted after every 10 reaction
occurrences) and the standard deviation envelopes when the initial condition is
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X0 = 10000. We observe that the increased number of molecules makes the sim-
ulation chart match the continuous deterministic evolution described by reaction
rate Equation (2.66), since the fluctuation contribution becomes negligible when
the population size grows. Moreover, stochastic simulations fulfill the temporal
behavior predicted by the master equation regardless of the initial number of
molecules, indeed bold-dotted time evolutions keep inside the standard deviation
envelopes in both Figures 2.9 and 2.10.

Fig. 2.10. Time evolution (bold-dotted line) of isomerization computed by SSA with
c = 0.5 and initial condition X0 = 10000. Standard deviation envelope X(t) ± σ(t)
(dashed line) and two-standard deviation envelope X(t)± 2σ(t) (solid line) [79].

This example shows that deterministic and stochastic approaches converge as
the number of interacting molecules increases. However, in nature there exist sev-
eral biological systems involving low numbers of molecules [212, 246]. For these
systems stochastic and deterministic models present inherently different behaviors
that do not converge even when averages of the stochastic dynamics are consid-
ered. As mentioned at the end of Subsection 2.2.3, stochastic or hybrid models are
better suited for analyzing these systems.
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P systems for modeling biological systems

In this chapter P systems are introduced and some literature is reviewed concerning
P systems extensions for biochemical systems modeling. Although these contents
do not constitute the original part of this Ph.D. thesis, they have been detailed in
order to present to the reader the main contributions in this research field. In Sec-
tion 3.1 the main elements of a P system are described, namely, membrane struc-
ture, multisets of atomic objects, rewriting rules and rule application strategy. A
formal definition of transition P systems is reported in Subsection 3.1.1, while Sub-
section 3.1.2 presents the main extensions of this model, concerning respectively,
rules, membrane activities, multisets of objects, and membrane arrangements.

P systems have been deeply investigated in two directions, namely, computa-
tional power and possible applications as modeling framework. The main results
about the first topic are summarized in Subsection 3.1.3, while the second topic
is dealt with in Sections 3.2, 3.3 and 3.4. In particular, the first of these sections
introduces a P system extension called stochastic P systems, the second presents
dynamical probabilistic P systems, and the third copes with abstract rewriting sys-
tems on multisets.

3.1 P systems

Membrane computing [44, 184, 185, 223] is a branch of natural computing aiming
to abstract computing strategies and models from structure and functioning of
the living cell. Membrane systems, usually called P systems from the name of G.
Păun who devised them in 1998 [182], represent a novel computational model orig-
inated from the prominent role played by membranes in the living cell [4]. In fact,
membranes do not only act as separation barriers indispensable to create different
environments within cell boundaries, but they also constitute fundamental layers
whereby the cell communicates with neighboring cells [4, 151, 181], accounts en-
ergy [187] and selects chemicals to keep on vital cycles. Moreover, membranes often
represent some kind of “working board” in which enzymes can perform their activi-
ties. P systems represent an application of the membrane framework to contexts of
formal language theory [100,201]. The result is a discrete non-conventional model
based on three main elements: i) a hierarchical membrane structure, ii) multisets
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of objects and iii) sets of rewriting rules. Many results about the computational
universality of this approach have been achieved [185]. In the following we detail
the fundamental elements listed above and we present some strategies for rule ap-
plication.

Membrane structure. Looking at the cell structure through “mathematical
glasses” [44] one observes a hierarchical compartmentalization of the 3D space,
which follows the arrangement showed in Figure 3.1. The most external element of
this Euler-Venn representation is a skin membrane, corresponding to the plasma
membrane which separates the environment out of the cell from the environment
inside the cell. Membranes arranged inside the skin membrane further compart-
mentalize the space in a hierarchical way, since each membrane is arranged inside
another. A membrane without any other membranes inside it is said to be ele-
mentary. Each membrane is usually identified by a label, which can be a natural
number (as in Figure 3.1) or a name string. In some cases a label can be assigned
to many membranes of the same “type”.

Fig. 3.1. Euler-Venn representation of the hierarchical membrane structure of a P sys-
tem [44].

Other two useful representations of P system membrane structure are the
rooted tree, displayed in Figure 3.2, and the string of labeled matching paren-
theses, reported in the following

[1 [2 ]2 [3 ]3 [4 [5 ]5 [6 [8 ]8 [9 ]9 ]6 [7 ]7 ]4 ]1.

Each of these the representations described so far highlight different features of
membrane structures. In the following we adopt the compact and elegant paren-
theses representation.
Multisets of atomic objects. Inside cellular membranes, chemical elements
(ions, small molecules and macromolecules) freely move in the aqueous solution
performing brownian motion. P systems abstract this condition by neglecting the
position and the velocity of each particle but considering only the number of copies
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Fig. 3.2. Tree representation of the hierarchical membrane structure of a P system [44].

of each chemical species present in each membrane. This is done by associating
a multiset of objects to each membrane, namely, a set of objects wherein the
multiplicity of each object matters. For instance, if we consider an alphabet of
objects V = {a, b, c}, a possible multiset on V is the string a4b9c2, where each
exponential represents the multiplicity of the related symbol, thus we have four
elements of type a, nine of type b, and two of type c. Notice that multisets can be
straightforwardly represented by strings in which the order of symbols does not
matter. In the following a formal definition of multiset is reported [17].

Definition 1 (Multiset) Let V be an alphabet, a (finite) multiset over V is a
mapping M : V → N, in which N denotes the set of natural numbers. For each
a ∈ V , M(a) is the multiplicity of a in M .

Rewriting rules. From biological background we know that chemical reactions
among molecules occur in cell compartments. P systems abstract chemical reac-
tions by associating a set of multiset-rewriting rules to each membrane. A rewriting
rule is usually represented by the arrow notation r : u → v, where u and v are
multisets of objects. For instance, applying the rule r : a2b → c3 to the multiset
a4b9c2, two objects of type a and one object of type b are consumed and three
objects of type c are produced, thus obtaining the new multiset a2b8c5.

Since rules are associated with regions, some kind of matter exchange is needed
to make the compartments communicate. For this reason rewriting rules have
been equipped with target indications, which are labels indicating where each
product object has to move after the application of the rule. In the transition P
systems [44], formally defined in the next section, three target indications have
been considered: here is associated to objects remaining in the membrane where
the rule occurs, in indicates that the object has to go into an adjacent membrane
nondeterministically chosen among the membranes contained in the compartment
where the rule occurs, out states that the object has to exit the membrane where
the rule is applied. As an example, the rewriting rule aab→ (a, here)(b, out)(c, in)
transforms two objects of type a and one object of type b into one object of type
a, which remains in the same membrane, one object of type b, which goes out
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to the surrounding membrane, and one object of type c, which enters one of the
membranes contained in the current one. Notice that, label here can be omitted.

A rewriting rule having at least two objects in the left hand side is said coop-
erative, while rules of the form r : a→ v, where a is an object and v is a multiset
of objects, are called non-cooperative. A particular type of cooperative rules are
those in the form r : ca → cv, that are called catalytic since a catalyst c enables
the reaction without being transformed.

Besides the traditional multiset-rewriting rules described so far, two other types
of rules have been employed in P systems: communication rules, abstracting the
symport/antiport trans-membrane communication in cell, and rules for handling
membranes, which enable the evolution of the membrane structure (e.g., mem-
brane creation, dissolution, division). Here we only consider membrane dissolution
rules, having the form u → vδ, where δ indicates that the membrane hosting the
rule is dissolved after the rule application, thus the membrane content is released
in the surrounding membrane.

Rule application strategy. When many membranes are present in a P sys-
tem and several rules are associated to each membrane, a strategy is needed to
choose which rule to apply at a certain computational step. From this point of
view P systems do not abstract any biological law, while rules are chosen in a non-
deterministic and maximally parallel way, which means that objects are assigned
to rules by choosing nondeterministically both objects and rules, until no further
assignment is possible [44,185].

In other words, an evolution step in a given region consists of finding a maximal
applicable multiset of rules, removing from the region the objects specified in the
left hand sides of the selected rules (multiplied by the number of times each rule
has been selected), producing the objects from the right hand side of the rules,
and distributing these objects according to the target indications associated to
them by each rule. If any dissolution rule has been applied, then the membrane is
deleted and its content released into the parent membrane.

3.1.1 Transition P systems

Transition P systems are one of the three main types of cell-like P systems. They
employ only multiset-rewriting rules. The other two main classes of cell-like P
systems are P systems with symport/antiport rules and P systems with active
membranes, which will be hinted in the next section. A comprehensive introduction
to all these models can be found in [44].

The formal definition of transition P systems, reported below, basically involves
the three main P system elements, namely, a membrane structure, a multiset of
objects for each region, and a set of object-rewriting rules for each region.

Definition 2 (Transition P Systems) A transition P system of degree m ≥ 1
is a construct [44]

Π = (O,C, µ,w1, w2, . . . , wm, R1, R2, . . . , Rm, i0)

where:
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• O is a (finite and non-empty) alphabet of atomic objects;
• C ⊂ O is the set of catalysts;
• µ is a membrane structure, consisting of m membranes labeled 1, 2, . . . ,m in a

system of degree m;
• w1, w2, . . . , wm are strings over O representing the multiset of objects present

in regions 1, 2, . . . ,m of the membrane structure;
• R1, R2, . . . , Rm are finite sets of evolution rules associated with regions 1, 2, . . . ,m

of the membrane structure. Notice that, rules are in the form u→ v or u→ vδ,
with u ∈ O+ and v ∈ (O × Tar)∗, where Tar = {here, in, out} are target
indications. Symbol δ indicates membrane dissolution;

• i0 is either one of the labels 1, 2, . . . ,m, and the respective region is the output
region of the system, or it is 0, and the result of a computation is collected in
the environment of the system.

Figure 3.3 shows a simple transition P system having three membranes. The con-
figuration displayed in the picture, namely, the membrane structure and the multi-
sets of objects enclosed in each compartment, involves three membranes and only
two objects placed in membrane 3. Rewriting rules are included in the membrane
which they belong to.

Fig. 3.3. Graphical representation of a transition P system [44].

When P systems are employed as computational tools, an initial configuration
is arranged and the system is evolved by means of a set of transitions, namely,
transformations of configurations due to the application of rules in a nondetermin-
istic and maximally parallel way. Notice that, in the basic variant of P systems a
global clock is assumed which beats the time in all regions.

A sequence of transitions is called computation, and a computation is consid-
ered successful if it halts after a certain number of steps, that is, no rule can be
applied any more and the output region i0 still exists. In that case, the result of
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the computation can be defined in two ways: if the output region i0 is an internal
region, then we have an internal result, which is constituted by the objects present
in region i0 when the halting configuration is reached. If i0 = 0 then the external
result involves the objects that have exited the system during the computation.
Of course, non-halting computations and computations wherein the output region
is dissolved, do not provide any result.

Since rules are applied non-deterministically, many halting configurations can
be reached from the same initial configuration, therefore several results can be
found. Thus, we can say that a P system Π computes a language L(Π) composed
by the set of object multisets it can generate. We observe that, in some cases the
result is considered as the number of objects, or the vector of multiplicities of
objects, contained in the output region. In those cases the P system generates,
respectively, a set of numbers, denoted by N(Π), and a set of vectors Ps(Π),
called Parikh vectors [184]. For instance, a P system Π which generates the set of
squares of natural number have N(Π) = {n2 | n ≥ 1}.

3.1.2 P systems extensions

The standard formulation of P systems, described so far, has been extended in
several ways in order to make it closer to the cell reality. In this section we only
give some hints about a few of these extensions, while a more detailed description
can be found in [44]. Extensions basically concern the three main elements of P
systems, namely, membrane, rules and objects. Notice that the structure wherein
membranes are arranged can be modified as well.

Rule extensions

An important type of cell-like P systems is called P systems with symport/antiport.
In this framework, rules are extended in order to abstract the passage of substances
through membranes. Specifically, the following rules are employed [44]:

• symport rules, have the form (ab, in) or (ab, out), where a, b ∈ O, and they ab-
stract the process by which two molecules, respectively, enter and exit together
the membrane (through a specific protein channel);

• antiport rules, have the form (a, out; b, in), where a, b ∈ O, and they abstract
the the process wherein two molecules pass simultaneously through the protein
channel in opposite directions. In this case object a exits the membrane while
object b enters the membrane;

• uniport rules, have the form (a, in) or (a, out), where a, b ∈ O, and they abstract
the passage of single molecules across the membrane, respectively, in entrance
and exit.

Evolution-communication P systems [37] use traditional multiset rewriting rules
(without target indications) for object evolution and symport/antiport rules for
moving objects among membranes.

Notice that, the target indication in ∈ Tar introduces a degree of indeter-
minism in the choice of the internal membrane where to place produced objects.
This indeterminism can be removed considering indications in the form inj , where
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j ∈ 1, . . . ,m, is a membrane label. Other extensions assign electrical polarizations
+, -, 0 to both objects and membranes and force charged objects to go to any
inner membrane having an opposite polarization, and neutrally polarized objects
to stay in the same region or to exit it, depending if the target indication is here or
out. Further extensions consider priority relations among rules, or rules controlled
by promoters and inhibitors, as observed in real biochemical systems [44].

Membrane extensions

Membrane systems considered so far have a fixed membrane structure, but looking
at cell membranes one observes they evolve either by changing their features or by
dividing. P systems with active membranes [178, 183, 251] take into account this
feature by introducing the following developmental rules, where H is a finite set
of membrane labels [44]:

• object evolution rules: [ha → v]eh, for h ∈ H, e ∈ {+,−, 0}, a ∈ O, v ∈ O∗.
They define the transformation of object a to the multiset v in membrane h,
if it has charge e;

• in communication rules: a[h]e1h → [hb]
e2
h , for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O.

They define the introduction of object a in membrane h if it has a charge e1.
The object is possibly modified to b and the membrane polarization changed
to e2, during the application of the rule;

• out communication rules: [ha]e1h → [h]e2h b, for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈
O. Object a is sent out of membrane h and possibly modified to b. The po-
larization, which has to be e1 before the rule application, can be changed to
e2;

• dissolving rules: [ha]eh → b, for h ∈ H, e ∈ {+,−, 0}, a, b ∈ O. Membrane h,
having charge e, is dissolved and internal object a is transformed to b.

• division rules for elementary membranes: [ha]e1h → [hb]
e2
h [hc]

e3
h , for h ∈

H, e1, e2, e3 ∈ {+,−, 0}, a, b, c ∈ O. Membrane h, having charge e1 and an
internal object a, is divided into two membranes having the same label h and
polarizations e2 and e3, respectively. Object a is replaced by object b in the first
new membrane, and by object c in the second new membrane. The remaining
objects are duplicated and they may evolve by object evolution rules in the
same step.

These rules are applied in the standard nondeterministic maximally parallel way,
paying attention to apply first the object evolution rules (first type) and then the
rules of the other types. Notice that, when dissolution and division rules are em-
ployed the membrane structure is changed during the computation. Other types
of rule regarding membrane structure update are considered in [44], among them,
rules for membrane creation, rules for merging two membranes, rules of endocyto-
sis/exocytosis and gemmation [15].

Object extensions

The idea of considering structured objects, such as string objects, instead of atomic
objects, comes from the observation that in the cell many complex molecules (e.g.,
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proteins, DNA molecules and other large molecules) exist, whose structure matters
during the system evolution. In general P systems objects could be represented by
many complex data structures, such as trees, arrays, etc., however, many valuable
properties have been proved for P systems with string objects [150,179]. They are
defined by means of an alphabet V of strings, a terminal alphabet T ⊆ V and
a finite set Ri of string-processing rules for each membrane i = 1, . . . ,m, where
m is the number of membranes in structure µ. In this approach, object multisets
w1, . . . , wm (typical of standard P systems) are replaced by finite sets of strings
M1, . . . ,Mm.

In rewriting P systems [62] string objects are processed by rules of the form
a→ u(tar), where a→ u is a context-free rule over V and tar is a target indication
among {here, in, out}. When such a rule is applied to a string x1ax2, where x1, x2
are string over V , the result is the string x1ux2, which is placed, depending on
the target indication, respectively in the same region, in a lower region or in a
surrounding region.

Membrane arrangement extensions

The tree membrane structure of traditional cell-like P systems can be generalized
by a graph structure, in which membranes are represented by nodes, while arches
represent spatial relationships between membranes. In particular, let us consider a
tissue-like structure, in which each cell communicates with adjacent cells by com-
mon protein channels, enabling molecules transportation. The P system class we
obtain by abstracting this framework is called tissue-like P systems with channels
states [74]. In this approach, m membranes (called cells in this context) contain-
ing, respectively, object multisets w1, . . . , wm, are connected by a set of synapses
syn ⊆ {(i, j)|i, j ∈ {0, 1, 2, . . . ,m}, i 6= j}, where at most one of (i, j) and (j, i) is
present in syn. Each synapse is, at each computational step, in a state s(i,j) ∈ K,
where K is the alphabet of states. Moreover, each synapse (i, j) ∈ syn has an as-
sociated set of rules R(i,j) of the form (s, x/y, s′) for some s, s′ ∈ K and x, y ∈ O∗.
These rules can occur only if the synapse (i, j) is in state s. The rule moves the
multiset x from membrane i to membrane j, and the multiset y from membrane j
to membrane i. Moreover, it changes the synapse state from s to s′.

A computation starts from an initial configuration in which multisets w1, . . . , wm
are present, respectively, in the m cells. At each step, a rule is applied to each
synapse for which a rule can be applied. In this way rules are sequentially applied
in every synapse but they are applied in parallel from a system point of view. Re-
sult is taken from the output cell, identified by the label i0 ∈ {1, 2, . . . ,m} when
the computation halts.

A further extension of tissue-like P systems, called neural-like P systems [185],
makes use of more complex cells however arranged in a graph structure. In this
model, states are moved from synapses to cells, ensuring a powerful control of
object flows through the system, thus making these approach very powerful and
efficient. In particular, each cell of the tissue is, at each instant, in a specific state
s and it contains a certain multiset of objects. The system configuration evolves
by means of rules of the form sw → s′(x, here)(y, go)(z, out), where s, s′ are cell
states and w, x, y, z are multisets of objects. This rule can be applied if the cell
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is in the state s. It transforms the multiset w to the multisets x, y, z and updates
the cell state to s′. Multiset x stays in the same cell, multiset y is communicated
to the cells connected (by synapses) with the current cell, and multiset z is sent
to the environment (the out label can appear only in “output” cells).

The computation takes place by the simultaneous processing of the multiset of
every cell according to the local rules of each cell. After being transformed, objects
are distributed to other cells along synapses and, possibly, results are sent to the
environment. In [44] further strategies are considered for processing multisets of
objects (minimal mode, parallel mode and maximal mode) and for distributing
objects between cells (spread mode, one mode, replicate mode).

Some of the most recent evolutions in this field concern population P sys-
tems [13] and spiking neural P systems [75, 88, 103]. The first ones are a class of
tissue P systems in which the links between cells can be modified by means of a
specific set of bond making rules. The second ones incorporate the idea of spiking
neurons into the area of membrane computing. An up to date bibliography of new
trends in P systems research can be found in [223].

3.1.3 Universality

The computational power of different classes of P systems has been much inves-
tigated until now, since the initial goal of membrane computing was to define
computability models inspired form the cell. Most of the P systems variants have
proved to be Turing complete, that is, their computational power is equivalent
to the power of the universal Turing machine. As an example, all the P systems
extensions considered so far (cell-like, tissue-like, neural-like, with symbol or string
objects, etc.) are known to be universal.

An interesting topic of study regards the search of the minimal number of ele-
ments needed by each class of P systems in order to keep the universality. Thus,
a typical question is the following: “Are P systems with one membrane and two
catalysts universal?”. In the following we report some of the main results of uni-
versality. The reader may refer to [44,185] for a comprehensive description of these
results.

The following classes of P systems are universal:

• transition P systems with one membrane and two catalysts [73];
• symport/antiport P systems with three membrane and rules dealing with single

objects [5];
• symport/antiport P systems with three membrane and only symport rules

dealing with two objects [5];
• P systems with active membranes with three membranes having rules of the

first three types (see “membrane extensions” in Section 3.1.2) [163];
• P systems with string objects with three membranes and rules with at most

two copies of each string produced by replication [126];
• symport/antiport P systems with four membranes, three objects and rules of

arbitrary size [186].

Computational power issues seem to be more related to computer science than
to biology, but the generality of a mathematical model (its comparison with Turing
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machine and its restrictions) assumes an important role when one aims at algo-
rithmically solving questions about the model dynamics. Typical questions related
to dynamical properties of biological systems concern stability, oscillations, peri-
odicity, attractors, reachability, trajectories and answers often depends directly to
the generality (and therefore the power) of the model [17].

The main issue related to the use of P systems as a modeling framework con-
cerns the way of making the model evolve. In fact, the nondeterministic strategy is
not very meaningful within the context of bio-systems modeling [140], thus some
variants based on stochastic, probabilistic and deterministic evolution rules have
been proposed in order to overcome this issue [39,44,77,105–108,141,142,170,171,
173, 180, 196, 220]. In these frameworks, the P system formalism is employed as
a specification framework for biological systems, while the dynamics is computed
according to different strategies, such as the Gillespie’s SSA algorithm, probabilis-
tic strategies or difference equations. In the next sections, three of these variants,
namely, stochastic P systems, probabilistic P systems and ARMS, will be intro-
duced, while in the next chapter we present metabolic P systems, which is the
focus of the rest of this thesis.

3.2 Stochastic P systems

Stochastic P systems [171] are an extension of traditional P systems aiming to
model biochemical systems. The non-deterministic and maximally parallel strategy
of rule application is replaced, in this framework, with a stochastic algorithm called
Multi-Compartmental Gillespie’s Algorithm (MGA). In a stochastic P model, sym-
bols or strings represent molecular species, membranes identify compartments of
the observed biochemical system and rewriting rules deal with molecule inter-
actions. In this multiscale modeling framework, higher level structures, such as
cellular colonies and tissues, are modeled as collections of individual P systems. In
a recent work Romero-Campero et al. define Stochastic P systems as follows.

Definition 3 (Stochastic P Systems) A Stochastic P system is a construct [198]:

Π = ((Σobj , Σstr), L, µ,Ml1 , . . . ,Mlm , (R
obj
l1
, Rstrl1 ), . . . , (Robjlm , R

str
lm ))

where:

• Σobj is a finite alphabet of objects representing molecular species whose internal
structure is not relevant in the functioning of the system under investigation;

• Σstr is a finite alphabet of objects representing relevant parts of some molecular
species in the system. These objects are arranged into strings describing the
structure of molecular species;

• L = {l1, . . . , lm} is a finite alphabet of symbols representing compartment la-
bels used to identify compartment classes. Compartments having the same label
share the same class, i.e., set of rewriting rules and initial multisets;

• µ is a membrane structure consisting of n ≥ 1 membranes defining compart-
ments identified in a one-to-one way by values from {1, . . . ,n } and labeled by
elements from L;
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• Mlt = (wt, st), for each 1 ≤ t ≤ m, is the initial state of the compartments of
the class identified by label lt, where wt ∈ Σ∗obj is a finite multiset of individual
objects and st is a finite set of strings over Σstr. A multiset of objects obj is
represented as obj = o1 + o2 + . . . + op with o1, . . . , op ∈ Σobj. Strings are
represented as follows 〈s1 · s2 · . . . · sq〉, where s1, . . . , sq ∈ Σstr;

• Robjlt = {robj,lt1 , . . . , robj,ltkobj ,lt
}, for each 1 ≤ t ≤ m, is a finite multiset of rewriting

rules on multisets of objects associated with compartments of the type specified
by the label lt. The rewriting rules on multisets of objects are of the following
form:

robj,ltj : obj1[obj2]l
c
obj,lt
j→ obj′1[obj′2]l (3.1)

with obj1, obj2, obj
′
1, obj

′
2 some finite multiset of objects from Σobj and l a label

from L. These rules are multiset rewriting rules that operate on both sides of
membranes, that is, a multiset obj1 placed outside a membrane labeled by l and a
multiset obj2 placed inside the same membrane can be simultaneously replaced
with a multiset obj′1 and a multiset obj′2, respectively. Note that a constant

cobj,ltj is associated specifically with each rule. This constant will be referred
to as stochastic constant and it is key to provide P systems with a stochastic
extension as it will be used to compute the probability and the time needed to
apply each rule. This constant depends only on the physical properties of the
molecules and compartments involved in the reaction described by the rule, such
as temperature, pressure, pH, volume, etc;

• Rstrlt = {rstr,lt1 , . . . , rstr,ltkstr,lt
}, for each 1 ≤ t ≤ m, is a finite set of rewriting

rules on multisets of strings and objects associated with compartments of the
type defined by lt and of the following form:

rstr,ltj : [obj + str]l
c
str,lt
j→ [obj′ + str′; str′1 + . . .+ str′s]l (3.2)

with obj, obj′ multisets of objects over Σobj and str, str′, str′1, . . . , str
′
s strings

over Σstr. These rules operate on both multisets of objects and strings. The
objects obj are replaced by the objects obj′. Simultaneously a substring str is
replaced by str′ whereas the strings str′1, . . . , str

′
s are produced to form part

of the content of the compartment. In the same way as for rewriting rules on
multisets of objects a stochastic constant cstr,ltj is associated with each rule.

The time evolution of stochastic P system is computed by the Multi-Compartmental
Gillespie’s Algorithm [171] which is an extension of the Gillespie’s algorithm [79]
for multi-compartmental environments. Gillespie’s algorithm (SSA), already de-
scribed in Chapter 2, is a stochastic method proved to be effective, under specific
conditions, to simulate biochemical systems. It basically determines, at each com-
putational step, the reaction which has to fire next and the time interval which has
to be waited before the firing, according to specific reaction probability density
functions. In order to employ this strategy within the stochastic P system frame-
work the Multi-Compartmental Gillespie’s Algorithm (MGA) [171], basically runs
SSA into each membrane of the system and manages membrane interactions by
a biologically-inspired strategy. In the following we outline the main steps of the
MGA by using a simplified notation for membranes and rules, as described in [171].



40 3 P systems for modeling biological systems

Multi-Compartmental Gillespie’s Algorithm (MGA) [171]

Initialization.
- Set the simulation time t = 0
- For each membrane i in µ compute the triple (τi, j, i) by the

Gillespie’s equations 3.3 and 3.4, where τi is the waiting time of the
next reaction rj firing in membrane i;

- Sort triples (τi, j, i), i = 1, . . . , n according to τi;

while (Halting condition is not met) do
Step 1. Select the triple (τs, j, s) having the lowest τs

Step 2. Set time t = t+ τs;

Step 3. Update waiting times τi of the other triples by subtracting τs;

Step 4. Apply the rule rj of membrane s updating the sizes of
population affected by the rule;

Step 5. For each membrane s′ affected by the rule applied at step 4,
update the corresponding triple (τ ′s, j

′, s′) with the triple
(τ ′′s , j

′′, s′′) generated by the Gillespie’s algorithm using the new
population sizes;

Step 6. Add the new triples (τ ′′s , j
′′, s′′) to the sorted triple list and

iterate the process;

end while

return Time evolution of object populations.

We remark that, given membrane i, the triples (τi, j, i) is computed by generating
two random numbers r1 and r2 in the unit interval, and then calculating waiting
time as

τi = (1/a0)ln(1/r1), (3.3)

and rule index j such that

j−1∑
k=1

ak < r2a0 ≤
j∑

k=1

ak (3.4)

where ak = hkck is the firing probability of the k-th rule of membrane i and a0
is the sum of the firing probabilities of all rules in membrane i (see Section 2.2).
Waiting times are then employed to select the rule which fires, in a specific mem-
brane i, at the subsequent step. After rule firing, waiting times of membranes
whose objects have been affected by the modification are recomputed by taking
into account the new population sizes.
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Several biological processes have been modeled by stochastic P systems [194],
among them, pseudomonas quorum sensing [23], the epidermal growth factor re-
ceptor (EGFR) signaling cascade, quorum sensing system in Vibrio Fisheri [171],
the FAS-induced apoptosis [180] and Lac operon regulation pathway [197]. In the
next section we consider one of these processes as an example of modeling biolog-
ical systems by stochastic P systems.

3.2.1 An example

In [198] the functioning of the lac operon in Escherichia coli (E. coli) is considered
to highlight the main modeling principles of stochastic P systems. Here we report
just a few elements of the achieved model in order to show how a stochastic P sys-
tem looks like. The lac operon regulates the glycolitic pathway employed by some
organisms to generate carbon from glucose. In particular, E. coli bacterium syn-
thesizes carbon from glucose and lactose. If the bacterium grows in an environment
with both glucose and lactose, then it consumes glucose, but if the environment
contains only lactose, then E. coli synthesizes special enzymes that metabolize
lactose by transforming it into glucose [4, 53]. The synthesis of these enzymes is
controlled by the transcription of the lac operon, displayed in Figure 3.4, which
consists of three genes, lacZ, lacY and lacA, each related to the production of an
enzyme.

Fig. 3.4. The lac operon structure (top) and its representation as a string (bottom) [198].

The biological system described above has been modeled by an appropriate
stochastic P system. The set of objects representing molecular species is reported
in Table 3.1. The membrane structure involves two membranes identifying, respec-
tively, the cytoplasm region and the cell-surface region, as shown in Figure 3.5.
Some of the rules, representing chemical interactions and translocation among
membranes, are reported with their stochastic constants, in Table 3.2.

The latest extensions of the stochastic P systems approach attempt also to
represent emergent behaviors which arise from the interactions occurring in cell
colonies [14,196]. This is achieved by three steps [198]: i) by dividing the P system
environment into a set of small regions, each satisfying Gillespie’s algorithm re-
quirement of well mixed volumes, and defining a connection topology among these
regions, ii) by distributing a collection of P systems, representing individual cells,
over the multi-environment defined above, iii) by defining rules representing the
diffusion of signals among regions and rules describing P system movements from
one environment to another. The reader can find a detailed description of these
concepts in [198].
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Fig. 3.5. Membrane structure used for the stochastic P model of lac operon [198].

... ... ... ...

Table 3.1. Molecular species involved in the lac operon model and related objects [198].

... ... ...

Table 3.2. Reactions involved in the lac operon model and related stochastic con-
stants [198].

Once having generated such a mathematical representation for the system un-
der investigation one can compute its time evolution by setting some initial condi-
tions for object population sizes and running the Multi-compartmental Gillespie’s
algorithm.
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3.2.2 Automatic parameter and structure estimation

One of the main issues of generating novel stochastic P models is the determi-
nation of stochastic kinetic parameters cj , such those reported on the rightmost
column of Table 3.2. As seen for S-systems in Chapter 2, this is a common point
of many mathematical models, and several authors proposed different optimiza-
tion techniques able to estimate parameter values that reproduce observed time-
series [40, 84, 87, 118]. As for stochastic P system a new methodology for both
structure and kinetic parameter estimation has been proposed in [195] by Romero-
Campero et al. It is based on a memetic algorithm [125] involving two layers, where
the first layer optimizes the model topology by evolving rule structures with genetic
algorithms (GA), and the second layer fine tunes stochastic parameters employing
GA as well.

Fig. 3.6. Flowchart of the memetic algorithm employed for structure and parameter
estimation in stochastic P systems [195].

This technique is performed on P systems modules, namely, sets of rules rep-
resenting functional separable units which recur in many cell systems. Given an
initial population of P system models, each encoded by a set of basic modules,
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the memetic algorithm (whose flowchart is displayed in Figure 3.6) firstly evolves
individual module structures by applying evolutionary operations of crossover, mu-
tation and cloning. Subsequently, it optimizes the stochastic kinetic constants of
the achieved modules by GA, and finally selects the fittest individuals (models)
according to a root mean square error fitness function and it iterates the loop.

In [195] an initial library of five P systems modules has been introduced. They
represent basic biological functions of complex formation/dissociation, unregu-
lated gene expression, and positive/negative regulated expression. The memetic
algorithm has been tested on three case studies, namely, molecular complexation,
enzymatic reaction and regulation in transcriptional networks. For each test the
memetic algorithm manages to find a topological structure and a set of kinetic pa-
rameters that make the resulting P system model reproduce the target time-series.
Results were also improved by adding to the elementary library of modules the
new modules found during the optimization of previous models, thus suggesting an
incremental approach for developing an extended module library. In the last case
more than one plausible model has been synthesized, showing the possibility to
employ this methodology to support metabolic engineering [60,157] and synthetic
biology [10] in developing new possible design of cellular systems.

3.3 Dynamical probabilistic P systems

Dynamical probabilistic P systems have been firstly introduced by Pescini et al.
in [173] and then extended in [172]. In this model, originated from traditional P
systems, rules are applied according to a probability-based strategy rather than
using the classical non-deterministic and maximally parallel approach. A proba-
bility value, depending on the current state of the system, is associated to each
rule at each evolution step in order to determine the chance of firing of the rule. In
the following the formal definition of a dynamical probabilistic P system (DPP)
is reported.

Definition 4 (Dynamical Probabilistic P Systems) A Dynamical Probabilis-
tic P system of degree n is a construct [172]:

Π = (V,O, µ,M0, . . . ,Mn−1, R0, . . . , Rn−1, E, I)

where:

• V is the alphabet of the system, O ⊆ V is the set of analyzed symbols;
• µ is a membrane structure consisting on n membranes labeled with the numbers

0, . . . , n− 1. The skin membrane is labeled with 0;
• Mi, i = 0, . . . , n− 1, is the multiset of symbols from V representing the initial

object configuration in membrane i;
• Ri, i = 0, . . . , n−1, is a finite set of evolution rules associated with membrane i.

The form of each evolution rule is r : u
k→ v, where u is a multiset over V , v is a

string over V ×({here, out}∪{inj | 1 ≤ j ≤ n−1}) and k ∈ R+ is a probabilistic
rate constant which defines the probability that, given a simultaneous collision
of the objects in u, a reaction r occurs;
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• E = (VE ,ME , RE) is the environment consisting of an alphabet VE ⊆ V , a
feeding multiset ME over VE and a finite set of feeding rules RE of the type
r : u→ (v, in0), for u, v multisets over VE;

• I ⊆ {0, . . . , n − 1} ∪ {∞} is the set of labels of the analyzed regions (label ∞
corresponds to the environment).

As usual, we have an alphabet of objects V which represents chemical species,
a membrane structure µ determining a compartmentalization of the environment
and a set of rules Ri for each membrane i. Multisets of objects are employed to
describe the presence of multiple copies of any given object inside a membrane,
and transformation of object multisets are handled by rewriting rules of the form
r : u → v, where u is a multiset of objects and v is a multiset of objects with an

associated target identifier tar. Let us consider, for instance, the rule r : XXY
k→

(Y Z, tar). If tar = here then objects Y Z stay in the same membrane, if tar = out
then objects Y Z exit from the current membrane, if tar = ini then objects Y Z
enter membrane i, placed inside the current membrane (if there exists any inner
membrane i). Finally, environment E is equipped with feeding rules RE which
provide the skin membrane (labeled by 0) with new objects.

The state of a probabilistic P model evolves from an initial configuration
Mi, i = 0, . . . , n−1, by applying rewriting rules according to a probabilistic strat-
egy. Let V = {a1, . . . , al}, Mi be the multiset inside membrane i (thus Mi(ah) is

the multiplicity of object ah in multiset Mi), and rj : u
kj→ v be a rule in the set

Ri = {r1, . . . , rm}, i = 0, . . . , n − 1. Let u = aα1
1 . . . aαss , alph(u) = {a1, . . . , as},

and H = {1, . . . , s}, s ∈ N. The probability of applying rule rj , considering all
rules in Ri, is [172]

pi(rj) =
p̃i(rj)∑m
j=1 p̃i(rj)

, (3.5)

where the so called pseudo-probability p̃i(rj), corresponding to the probability of
a collision among the reactant objects of rj , is a weighted product of binomial
coefficients each representing the combination of αh objects of type ah taken from
the multiset Mi

p̃i(rj) =

{
kj ·

∏
h∈H

Mi(ah)!
αh!(Mi(ah)−αh)! if Mi(ah) ≥ αh for all h ∈ H,

0 if Mi(ah) < αh for some h ∈ H.
(3.6)

Let us consider, for instance, a membrane i containing the multiset Mi =

X3Y 8Z2 and the three rewriting rules r1 : X2Y
k1→ Y Z, r2 : XZ2 k2→ Y and

r3 : Z3 k3→ Y , with k1 = 3.2 · 10−1, k2 = 1.4 · 10−1 and k3 = 4.5 · 10−1. We firstly
observe that rule r3 cannot fire because it needs at least three objects of type Z
while there are only two of such objects in membrane i. By solving Equation (3.6)
we obtain the following collision probabilities
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p̃i(r1) = 3.2 · 10−1
3!

2!(3− 2)!
· 8!

1!(8− 1)!
= 7.68, (3.7)

p̃i(r2) = 1.4 · 10−1
3!

1!(3− 1)!
· 2!

2!(2− 2)!
= 0.42, (3.8)

p̃i(r3) = 0 (3.9)

therefore, the probabilities of firing of the three rules are

pi(r1) =
7.68

7.68 + 0.42
= 0.948, (3.10)

pi(r2) =
0.42

7.68 + 0.42
= 0.052, (3.11)

pi(r3) = 0 (3.12)

In order to compute the time evolution of a probabilistic P system the sim-
ulation algorithm, reported in the next page, has been proposed in [172, 173]. It
assumes that rule application is synchronized among membranes by a universal
clock and, at each evolution step, rules are selected according the probability values
dynamically computed by Equations (3.5), so that rules having higher probability
values are on the average applied more frequently.

Basically, at each evolution step three stages are accomplished on every mem-
brane i: firstly, the probability value of each rule in membrane i is evaluated ac-
cording to Equation (3.5). Then, rules are selected according to their probability
values (while any rule is applicable in each membrane i) and their reactants are
removed from the multiset of objects of the membrane i. Finally, products gener-
ated by all rules are added to the related target membranes. Notice that along the
first two steps there is no interaction among membranes, thus these steps can be
performed in parallel. Communication among membranes is instead performed in
the third stage by means of the multisets update.

If we denote by R, S and hi, respectively, the number of rules in the model,
the cardinality of the alphabet and the total number of objects appearing in the
model at evolution step i, the complexity of the algorithm has been quantified as
Ti(S,R) = O(hi) · O(R · S) [172]. Of course, considering real biological systems
the term O(hi) often turns out to be very time-consuming since the number of
molecules involved in such processes can range from a few hundreds to many
trillions. In order to overcome this drawback, dynamical probabilistic P systems
have been provided with a method, based on the τ -leaping procedure [81], for the
simulation of complex systems composed by several communicating regions [38].



3.3 Dynamical probabilistic P systems 47

Dynamical probabilistic P system simulation algorithm [172]

While (halting condition is not met) do

Feed the skin membrane by rules RE so that multiplicities in M0 are
kept at a constant value

Step 1: probability evaluation
For each membrane i ∈ 0, . . . , n−1 do

For each rule rj in Mi do
evaluate the pseudo-probability p̃i(rj) by Equation (3.6)

end for
For each rule rj in Mi do

evaluate the firing probability pi(rj) by Equation (3.5)
end for

end for

Step 2: rule firing (object consumption)
For each membrane i ∈ 0, . . . , n−1 do

For each rule rj in membrane i do
set counter cj = 0

end for
While (any rule is applicable in membrane i) do

- Generate a random number rnd in [0,1]
- Select a rule rj by rnd according to the firing probabilities pi(rj)

of the rules in membrane i
- Check the applicability of rule rj in respect to the current

availability of objects in membrane i
- If (rj is applicable) then increment by one its counter cj
- Remove the left-hand side multiset of rule rj from Mi

end while
end for

Step 3: rule firing (object production)
For each membrane i ∈ 0, . . . , n−1 do

For each rule rj in Mi do
Add cj times the right side multiset of rule rj to the multiset Mtar

of the target membrane tar of rule rj
end for

end for

end while

3.3.1 An example

The so called predator-prey model [57,162] was proposed independently by Alfred
J. Lotka [134] and Vito Volterra [235] respectively in 1924 and 1926. It concerns
with the interactions among two or more species sharing the same environment
and competing for resources, habitat, or territory. Given a species of preys whose



48 3 P systems for modeling biological systems

number of individuals is x and a population of predators of y individuals, the
following system of differential equations describes the dynamics of the food chain
involving these two species:

dx

dt
= ax− bxy (3.13)

dy

dt
= −cy + dxy (3.14)

The term ax represents the prey increment due to their reproduction, the terms
−bxy and dxy cope with the interaction between preys and predators, which yields
prey decrement (since they are eaten by predators) and predator increment (since it
is supposed that predators reproduce each time they eat a prey). Finally, the term
−cy concerns with predators death, which naturally happens with an average rate
c. Setting proper growth, death and reproduction rates, and starting from suitable
initial conditions this model shows interesting oscillations [57,162].

The investigation of the predator-prey system by means of dynamical proba-
bilistic P systems, in [172], yielded the model ΠLV = (V,O, µ,M0, R0, ELV , {0})
described below:

• V = {A,X, Y }, where A represents sustenance resources for preys, X stands
for preys and Y for predators;

• O = {X,Y } is the set of symbols whose dynamical variation is analyzed;
• µ = [0]0 is the environment membrane where the two species interact;
• M0 = Xp1Y p2 , for some p1, p2 ∈ N, is the multiset representing the initial pop-

ulations of preys (p1 individuals) and predators (p2 individuals). No resources
A are available at the starting time;

• R0 = {r1, r2, r3} where

r1 : AX
k1→ (XX,here)

r2 : XY
k2→ (Y Y, here)

r3 : Y → (λ, here)

for some k1, k2, k3 ∈ R+. Rule r1 represents the prey growth, which is related
in this model to the presence of sustenance resources, rule r2 describes the
interaction between predators and prey, which yields the death of a prey and the
reproduction of the predator, and r3 describes the natural death of predators;

• E = ({A}, {As, for some s ∈ N}, {r4 : A → (A, in0)}), where the first set is
the alphabet of input resources, the second set is the feeding multiset and the
third set is the set of feeding rules containing only the rule r4 used to keep the
amount of resources inside the system at the constant level s;

• I = {0} is the set of the regions of interest for the analysis of this model. It
involves only the environment membrane.

By setting the initial configuration to p1 = 1000, p2 = 1000 and s = 200, and the
probability constants of rules r1, r2 and r3, respectively to k1 = 1, k2 = 10−2 and
k3 = 10, the oscillatory dynamics of Figure 3.7 has been found [172].
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a) b)

c) d)

Fig. 3.7. Dynamics charts of the predator-prey model [172]. (a) temporal evolution, (b)
X-Y plane temporal evolution, (c) phase diagram and (d) FFT frequencies.

3.4 ARMS: abstract rewriting systems on multiset

Abstract Rewriting Systems on Multiset (ARMS) has been proposed for the first
time in [221] as an abstract model for chemical reactions in artificial life [52]. An
ARMS basically evolves the configuration of a multiset of symbols over an alpha-
bet A by means of a set of rewriting rules R which can be applied according to
some evolution strategies. What seems to miss in this framework with respect to
P systems is the membrane structure, indeed the first definition of ARMS did
not cope with membranes. This feature has been added in successive extensions
of this framework in order to satisfy needs of environment compartmentalization.
In this context many topics have been investigated, such as, the relationship be-
tween ARMS and cellular automata [218] and the emergence of life from chemical
evolution [219]. Further applications of this approach range from ecology [217] to
medical science [216] and from environment engineering [110] to biochemical sys-
tems modeling [220, 230, 231]. The formal definition of ARMS is reported in the
following.

Definition 5 (Abstract Rewriting System on Multiset - ARMS) An AR-
MS is a construct [230]:

Π = (A,w,R)

where:
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• A is an alphabet (a finite set of abstract symbols). A multisets over A is defined
as a mapping M : A 7→ N assigning a multiplicity value M(a) to each symbol
a of the alphabet. The set of all the multiset over A is denoted by A#, where
the empty multiset is ∅(a) = 0 for every a ∈ A;

• w is the multiset representing the initial configuration of the system;
• R is the set of multiset rewriting rules, where a rewriting rule r over A is defined

as a couple of multisets (s, u), with s, u ∈ A#. A rule can also be represented
by the arrow notation r : s→ u. Given a multiset w, the application of the rule
r to w produces a new multiset w′ such that w′ = w − s + u, where multisets
w,w′, s, u can be represented by vectors of natural numbers (n1, . . . , n|A|), thus
+ and − are the classical operator of sum and difference among vectors. The
reaction vector νji denotes the multiplicity variation of symbol ai ∈ A due to
a single application of reaction rj ∈ R.

In order to model chemical kinetics, ARMS have been extended in several ways.
A deterministic ARMS (DARMS), for instance, employs multisets having real
multiplicities instead of natural multiplicities, and the time evolution is computed
deterministically by means of the Euler’s method usually employed for ODEs.
Notice that real multiplicities are very useful for modeling biological systems since
they allow to directly handle experimental data of molar concentrations [230].

Let us assume a biological system having n ∈ N substances represented, re-
spectively, by the symbols of the alphabet A = {a1, . . . , an} and m reactions
represented by rules R = {r1, . . . , rm}. Being X : A 7→ R a multiset of symbols
of A having real multiplicities, we denote by x = (X(a1), X(a2), . . . , X(an)) the
state vector of the system, where X(ai) is the molar concentration of substance ai.
Finally, let x(t) be the state of the system at the time t, t ∈ R. The dynamics of
a DARMS is computed by the algorithm displayed in the next page, which starts
from an initial state x(0) and then calculates the subsequent states x(t+∆), with
a time interval ∆, by adding to each substance concentration X(ai) an Euler’s
change term λi ∈ R.

Notice that the time evolution of a deterministic ARMS proceeds by discrete
time steps of length ∆. This time interval, however, must be small enough in order
to have a good approximation of the reaction rate equation. In fact, if ∆ increases,
then the state of the system changes considerably during a single computation
step and, consequently, the Eulero’s method yield a rough approximation of the
real reaction rate equation.

Other ARMS variants have been considered in [230], such as stochastic ARMS
(SARMS) whose dynamics is computed by the stochastic τ -leap method [81], an
approximation of the exact stochastic approach proposed by Gillespie in [79]. This
Monte Carlo method yields non-deterministic dynamics satisfying the stochastic
properties of each reaction (defined by stochastic constants k1, . . . , km). On the
other hand, cellular automata ARMS (CARMS) are a composition of cellular au-
tomata and ARMS in which N DARMS are placed in a grid space. In this variant,
each ARMS can communicate with adjacent ARMS in the grid space by means of
diffusion rules. The emergence of 1D and 2D chemical waves for the BZ reaction
has been shown by means of these tools [230].
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DARMS time evolution algorithm [230]

Initialization
- set the simulation time t = 0
- for each couple of reaction-substance (rj , ai) set the stoichiometric

coefficient νji of substance ai with respect to reaction rj
- set the initial state x(0) of molar concentrations
- set the rate constants k1, . . . , km of every reaction
- set the halting time tstop
- set the time interval ∆ ∈ R

while (t < tstop ∧ halting condition is not met) do

Step 1. Calculate the state change vector Λt = (λ1, . . . , λn). Each λi
is computed by the equation

λi =
∑m
j=1 νji · fj(x(t)) ·∆

where fj(x(t)) is a reaction rate equation for reaction rj ,
involving rate constant kj and reactant concentrations x(t)
(e.g., fj(x(t)) = kja1(t)a3(t)).

Step 2. Update the state vector x(t) by adding the state change Λt:

x(t+∆) = x(t) + Λt
t = t+∆

end while

3.4.1 An example

The Belousov-Zhabotinsky reaction [9, 109, 247, 252] (also known as BZ reaction)
is the first discovered example of a class of reactions that show oscillatory be-
haviors due to non-equilibrium thermodynamics. It has been discovered by B.
P. Belousov in 1950 who noted that in a mix of potassium bromate, cerium(IV)
sulfate, propanedioic acid and citric acid in dilute sulfuric acid, the ratio of con-
centration of the cerium(IV) and cerium(III) ions oscillated, causing an oscillation
of the color of the solution between a yellow solution and a colorless solution.

In more detail, this interesting oscillatory reaction involves several chemi-
cal compounds, among them [17]: malonic acid (CH2(COOH)2), bromate ions
(BrO−3 ), cerium ions (IV) that act as catalysts (Ce4+) and hydrogen ions ob-
tained by the acid reaction environment (H+). The most important reaction
products are carbonic anhydride (CO2), formic acid (CH2O2) and bromomalonic
acid (BrCH(CO2H)2), while the main intermediate compounds are bromous acid
(HBrO2), radical (BrO2), bromide ions (Br−) and hypobromous acid (HOBr).
The theoretical importance of this reaction is due to the fact that it is not dom-
inated by equilibrium thermodynamic behavior observed in the majority of the
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chemical reactions. Rather, it remains far from equilibrium for a significant length
of time.

Several simplified models of the BZ reaction have been proposed, such as the
Oregonator [64, 65], developed at the University of Oregon by R. J. Field and R.
M. Noyes, and the Brusselator [177], introduced by I. Prigogine at the Universite
Libre de Bruxelles. Here we show a DARMS model Πo = (Ao, wo, Ro) ( from [230])
which translates the classical ODE model of the Oregonator. The alphabet is
Ao = {X,Y, Z,A,B,W,H}, where

X ≡ HBrO2 (bromous acid),

Y ≡ Br− (bromide ions),

Z ≡ Ce(IV ) (cerium-4),

A ≡ BrO−3 (bromate ion),

B ≡ CH2(COOH)2 (malonic acid),

W ≡ HOBr (hypobromous acid),

H ≡ H+ (hydrogen ion).

Reaction rules Ro that take part to the three main processes involved in the BZ
reaction are the following:

Process A :

r1 : X,Y,H
k1→ 2W,

r2 : A, Y, 2H
k2→ X,W,

Process B :

r3 : 2X
k3→ A,W,H,

r4 : A,X,H
k4→ 2X, 2Z,

Process C :

r5 : B,Z
k5→ 0.5Y.

where rate constants, taken from the literature, are k1 = 106 mol−2sec−1, k2 =
2 mol−3sec−1, k3 = 2·103 mol−1sec−1, k4 = 10 mol−2sec−1, k5 = B·2·10−2 sec−1.

When the model is simulated, chemicals A and B are continuously supplied in
order to keep constant their concentrations, while substances X, Y and Z show
the typical BZ oscillations. Notice that oscillations are triggered by the presence
of bromous acid (X) which causes the increasing of concentration of cerium-4
(Z). Then, the activation of reaction r5 determines the consumption of Z and
the production of bromide ions (Y ), thus a new cycle is ready to start. The time
evolution of the achieved DARMS has been computed, by means of the algorithm
described in the last section, using five different time intervals ∆1 = 0.0001, ∆2 =
0.001, ∆3 = 0.01, ∆4 = 0.1, ∆5 = 1.0. Results shown that time intervals between
0.0001 and 0.01 yield typical BZ oscillations (as displayed in Figure 3.8), while,
as the time interval decreases (see Figure 3.9), the oscillation pattern becomes
smaller, and smaller until the typical pattern is lost (Figure 3.10). This behavior
is due to the approximation made by the the Euler’s method which characterizes
the simulation strategy of DARMS.
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Fig. 3.8. Time evolution of the Oregonator DARMS with ∆1 = 0.0001. It shows a
normal oscillation amplitude (figure from [230] with permission).

Fig. 3.9. Time evolution of the Oregonator DARMS with ∆4 = 0.1. It shows a smaller
oscillation amplitude in respect to Figure 3.8 (figure from [230] with permission).

3.5 Discussions and comments

In this chapter we have reviewed some of the main extensions of P systems for
biological systems modeling. Stochastic P systems take their inspiration from the
Gillespie’s stochastic approach, which is suited when small amounts of molecules
are investigated. Indeed, the dynamics of these models is computed by simulating
each single reaction occurring in the system, so that a huge amount of computa-
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Fig. 3.10. Time evolution of the Oregonator DARMS with ∆5 = 1.0. The oscillation
pattern is different from the typical one (figure from [230] with permission).

tional resources are needed when real biological systems are investigated. Some
approximated algorithms are often used to reduce the computational cost of dy-
namics computation. The τ -leaping approximation algorithm simulates in a single
step all the reactions occurring in the system during a time interval τ . This approx-
imation can be employed only if certain ratios are respected between the amount
of molecules and the interval length, and it produces averaged dynamics which
tend to deterministic ODE dynamics (or corresponding Euler’s approximations)
as the number of molecules grows.

Deterministic P systems provide a probabilistic approach for computing the
time evolution of the model. Equations 3.5 and 3.6 compute the probability of
applying each rule according to the probability of collision of rule reactants, mul-
tiplied by a reactivity constant assigned to the rule. Notice that no formal way is
suggested to define reactivity constants for real biochemical reactions. Moreover,
we observe that, when the number of molecules Mi(ah) is very large, factorials in
Equation 3.6 need specific analytic techniques to be computed, otherwise overflow
errors arise in normal computers. The strategy for computing the time evolution
of ARMS is instead inherited from ODE or Gillespie’s algorithm, depending on
the type of ARMS to be used. In particular, DARMS employ the Euler’s approx-
imation, usually employed with ODE, and SARMS use the Gillespie’s algorithm,
typical of the stochastic approach.

A key issue of all the three approaches concerns the choice of kinetics constants
for each reaction in the system. As for stochastic P systems, for instance, stochas-
tic constants cj determine the dynamics of the system, since they are employed
in Equations 3.3 and 3.4 for choosing the next rule to be applied and the waiting
time until its firing. It can be very difficult to estimate these constants from exper-
iments, since they should reflect microscopic, infinitesimal and local behaviors of
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molecules which are almost impossible to observe while real systems evolve. The
same problem arises also with dynamical probabilistic P systems and ARMS mod-
els, which need, respectively, probabilistic constants and rate constants to compute
their time evolutions.

What seems to lack in these modeling frameworks is a fresh and original theory
for determining the dynamics of each reaction by observing the evolution of the
system as a whole. Of course, this is a very difficult task of inverse-engineering,
but we think it must be solved in order to overcome some of the main issues
of traditional biochemical modeling [66]. A first attempt in this direction has
been presented in Subsection 3.2.2 for stochastic P systems. In this context, a
memetic algorithm, based on genetic algorithms, has been developed for esti-
mating both model topology and kinetic parameters from observed time series
of substance dynamics. Similar techniques, involving genetic algorithms, genetic
programming, simulated annealing and other optimization strategies, have been
recently employed also for estimating kinetic parameters of other modeling frame-
works [16,40,84,87,118,232,234].

In the next chapter we introduce a novel modeling framework for which a
brand new theory have been devised expressly for deducing reaction kinetic func-
tions from observed data. This modeling framework, rooted in P systems, is called
metabolic P systems, and the new theory which makes it particularly attractive is
the Log-gain theory. The author’s contribution in this context concerns three main
topics: i) an equivalence between metabolic P systems and hybrid functional Petri
nets, ii) the generation of metabolic P models from experimental data, iii) the
software MetaPlab, which is a virtual laboratory based on metabolic P systems.





4

Metabolic P systems

Several mathematical formalisms have been proposed to model biological systems
and to to overcome some limitations of the traditional ODE models. Some in-
teresting approaches, alternative to ODE, are based on rewriting systems, in the
context of formal language theory, where biochemical elements correspond to sym-
bols from a given alphabet and chemical reactions are represented by rewriting of
commutative strings (also called multisets). In Chapter 3 P systems [184, 185]
have been introduced as a novel computational model inspired by the prominent
role played by membranes in living cells [4]. Since the first definition of P sys-
tem’s evolution strategy assumes a non-deterministic and maximally parallel ap-
plication of the rules [184], which is not very meaningful within the context of
bio-systems dynamics computation [140], many variants of this formalism were
proposed [44]. A class of P systems that proved to be significant and successful
for modeling biological phenomena are metabolic P systems, also called MP sys-
tems [17–22, 29–36, 67–69, 71, 72, 136–149, 168]. Their evolution is computed by a
deterministic algorithm, called metabolic algorithm [19,21,140,144], based on the
mass partition principle which defines the transformation rate of object popula-
tions according to a suitable generalization of chemical laws. In this thesis we
deal with MP systems whose evolution is computed by fluxes [139, 141, 142], and
we visualize these models by MP graphs [144], a graphical representation of MP
systems. These formalisms are also employed in MetaPlab, a Java software which
enables to generate, simulate and analyze MP models [18,22,34,146,241]

A series of significant processes modeled by MP systems include the Belousov-
Zhabotinsky reaction (in the Brusselator formulation) [19,21], the Lotka-Volterra
dynamics [19,69,145], the SIR (Susceptible-Infected-Recovered) epidemic [19,21],
the circadian rhythms, the mitotic cycles in early amphibian embryos [144] and
the lac operon gene regulatory mechanism in glycolytic pathway [31].

4.1 Fundamentals of metabolic P systems

A significant principle of chemistry is the so called mass action law which considers
two main aspects of chemical reactions: the kinetic aspect, dealing with reaction
rate equations for elementary reactions (already defined in Chapter 2), and the
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equilibrium aspect, concerning chemical equilibrium as a dynamical process in
which rates of forward and backward reactions balance each other out. According

to the mass action law, the instantaneous rate of a generic reaction x1 + x2
k→ x3

does not just depend on the chemical nature of reactants (with the rate constant
k), but it is also proportional to the active mass of the reactants, each raised to a
specific power term

rate(X1, X2) = kXm
1 X

n
2 (4.1)

where k ∈ R+, m,n ∈ R. In this way, the instantaneous substance variation
produced by a reaction depends on the instantaneous quantities of substances
involved in the reaction.

We have seen in Chapter 2 that ordinary differential equation models are of-
ten based on the mass action law, indeed each equation of such models expresses
a dynamical mechanism at an infinitesimal scale and independently from other
equations [141]. The systemic effect then results from the combination of the in-
stantaneous effects of all the equations involved in the model. In this perspective
differential models are infinitesimal, microscopic and local, since kinetic rate con-
stants of each equation have to be evaluated according to a deep understanding of
single molecular events.

Metabolic P systems, instead, adopt an observational, macroscopic, and global
approach which is opposite to the perspective of differential models. The idea is
to leave unknown the real internal dynamics of each reaction but to consider the
system at a higher abstraction level which is however sufficiently informative to
reveal the logic of the observed system. In particular, no instantaneous kinetic is
considered by MP models but the variation of substance amounts is accounted at
discrete time instants separated by macroscopic intervals. In this way, the time
evolution of the system turns out to be a discrete sequence computed from the
knowledge of the contribution of each reaction during every time interval. The way
in which these contributions are computed is the key aspect of the MP systems
theory which is based on the log-gain principle [140–142]. Of course, this abstrac-
tion unavoidably causes the loss of some system details, but such a more generic
information could be still very useful for discriminating important aspect of the
reality under investigation. Moreover, this abstraction sometimes represents the
only way for handling some comprehension of very complex systems.

Let us consider now some fundamental chemical principles on which the MP
systems theory is based. In metabolic systems, molecules of various types usually
float in a liquid medium and they are subjected to reactions when they collide.
MP systems omit to consider position and velocity of each single molecule, which
is very time and space consuming from a computational point of view, but they
represent only the number of molecules of each type, and the reactions which may
occur among the various molecule types. More specifically, a population unit ν is
defined which represents the amount of molecules of a conventional mole, and each
substance type is associated, at each time instant, to a real number accounting
the number of population units of molecules of this type. For instance, if we set
ν = 100 in an MP system having four substance: X1 with 3.2 population units,
X2 with 5.2 population units, X3 with 3.0 population units and X4 with 10.5
population units, then the amounts of molecules represented are, respectively, 320,
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520, 300 and 1050, and the state of the system can be represented by the vector
(3.2, 5.2, 3.0, 10.5) ∈ R4. Notice that, the value of population unit ν influences
the dynamics only for a scale factor. Indeed if we had chosen ν = 10, instead
of ν = 100, then the system state above would be represented by the vector
(32, 52, 30, 105) ∈ R4, which is 10·(3.2, 5.2, 3.0, 10.5). The population unit is usually
set manually just considering the average number of molecules for each substance
in the system. Chemical reactions can also be represented by vectors in Rn, where
n is the number of substance types. Let us consider, for example, the reaction
r : 3X1 + X2 → 2X3. It can be represented by the vector (−3,−1, 2, 0), saying
that, each time that reaction r occurs, 3 molecules of type X1 and 1 molecule of
type X2 are transformed into 2 molecules of type X3, while substance X4 is neither
generated nor produced.

If we consider the metabolic system along discrete time instants separated by
a constant temporal interval τ ∈ R+, then we certainly have that during each time
interval every reaction occurs a certain number of times, transforming molecules
from some types to other types. Moreover, matter can be introduced into the system
from the external environment, or expelled from the system. From this perspective,
reactions may be considered as agents performing matter transformation according
to some ratios which depend on the stoichiometry of the system, as defined by
the Avogadro’s principle. For instance, if reaction r : 3X1 + X2 → 2X3 occurs
three times during a certain time interval τ , then 9 molecules of type X1 and 3
molecules of type X2 are transformed into 6 molecules of type X3. MP systems
dynamics satisfy the Avogadro’s principle since substances are always transformed
according to the stoichiometry of some reaction. Furthermore, each reaction r has
an associated flux regulation map ϕr(q) which computes, given the current state q
of the system, the flux of molecules transformed by the reaction during the next
time interval τ . For instance, if at time t the state is qt = (3.2, 5.2, 3.0, 10.5) and
the flux of reaction r : 2X1+X2 → X3 is ϕr(q) = 0.9, then 2.7 moles of X1 and 0.9
moles of X2 are consumed and 1.8 moles of X3 are produced, thus the state at time
t + τ will be qt+τ = (0.5, 4.3, 4.8, 10.5). We manually set parameter τ according
to the “speed” of the system. In particular, to analyze very fast processes we set
very brief time intervals (e.g., 1 msec), while to model slow processes we employ
longer intervals (e.g., 1 sec or 1 min). However, recent studies have shown that
time grain τ can influence the complexity and the readability of MP models, since
flux regulation functions depend on this parameter. Future work will hopefully
provide some formal procedures to estimate parameter τ .

We call this kind of transformation mechanism as molar multiset rewrit-
ing [141]. It differs from the usual multiset rewriting of P systems, indeed in the
classical case a rule X1X1X2 → X3 replaces two objects X1 and one object X2

into one object X3, thus the rule application is individual. On the other hand, in a
molar multiset rewriting perspective, the application of the same rule transforms
a population of X1, X2 and X3, where the size of these population is given by the
flux of the reaction (a value depending on the state of the system) and the number
of times this population is taken, is given by the number of occurrences of each
symbol (corresponding to the stoichiometry of the reaction). This perspective en-
ables us to tune the time of MP models with the macroscopic time of the observer,
rather than with the microscopic time of reaction kinetics. In this way, MP models
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can be directly generated from discrete and systemic observations of biochemical
system dynamics, while avoiding to compute instantaneous reaction rate constants
from discrete observations and then to discretize the achieved equations, as usually
happens with ODE.

Another important law of chemistry, referred to Dalton, states the additivity
of the effects of all reactions involved in a biochemical system. According to this
principle, after having calculated the flux of each reaction in state q, we compute
the next state by adding the effects of every reaction, that is, by adding to each
substance Xi all the amounts of X1 produced by every reaction, and subtracting
from each substance Xi the amounts of this substance consumed by every reaction.
For instance, in an MP model having two reactions r1 : X1X2 → 2X3 and r2 :
X2X3 → X4, if the initial state is q = (30.3, 40.5, 25.0, 12.3) and fluxes are ϕ1(q) =
3.3 and ϕ2(q) = 2.1, then reaction r1 consumes 3.3 moles of X1 and 3.3 moles of
X2 and it produces 6.6 moles of X3, while reaction r2 consumes 2.1 moles of X2

and 2.1 moles of X3 and produces 2.1 moles of X4. By adding the effects of the two
reactions, the next state will be q′ = (27.0, 35.1, 29.5, 14.4), where, for instance,
X2 has been decreased of 3.3 moles by reaction r1 and of 2.1 moles by reaction r2,
while X3 has been increased of 6.6 moles by r1 and decreased of 2.1 moles by r2.

Employing together the Avogadro’s and the Dalton’s principles, the dynamics
of MP systems can be computed by the following two steps:

1. compute the flux of each reaction from the current state;
2. add produced substances and subtract consumed substances to/from substance

amounts in the current state q.

In order to ensure the matter conservation within MP models the Lavoisier’s
principle is implicitly assumed. According to this law, for each reaction the mass
of matter consumed and produced in the system at each step must be equal. In
order to satisfy this principle, MP systems associate to each substance x a real
number µ(x), representing the mass of a mole of x (with respect to some measure
unit).

The three laws described so far, namely, Avogadro’s, Dalton’s and Lavoisier’s
laws, are fundamental for computing MP dynamics, but what we still need is a
strategy for computing the flux of matter transformed by each reaction in each
state. In particular, we need a law which extends the (infinitesimal and micro-
scopic) mass action law to the case of discrete and macroscopic time evolution
considered by MP system. We will call it mass partition principle [140–142], and
it states that, during the time interval τ the available mass of a substance X is
divided among the reactions which need it, according to the percentage which they
consume in the time interval of the observation step. This law bring us to consider
a fundamental aspect of MP system modeling, which concerns the synthesis of
flux regulation functions ϕr(q). An new theory, called log-gain theory [140–142],
has been developed by Prof. Vincenzo Manca and his research group for tackling
this problem. It will be described in the following of this chapter, after a formal
definition of MP systems and MP graphs.
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4.2 MP systems

MP systems are deterministic P systems developed to model dynamics of biolog-
ical phenomena related to metabolism and signal transduction in the living cell.
Here we consider two classes of MP systems, namely, MP systems with flux maps
(MPF) and MP systems with reaction maps (MPR). While in the first approach
general functions are employed to compute fluxes, in the second approach flux
functions have a standard form involving an implicit mass partition according to
the “reactivity” of each reaction.

4.2.1 MP systems with flux maps

The notion of MP system we consider here is essentially that proposed in [141,222].
Given a biological process of interest, all its variables can be split in two different
kinds (introduced by item 1 and item 3 of Definition 6): chemical substances,
which have a mass and transform according to the mass conservation principle,
and other parameter elements, with no mass (e.g., pressure, pH), that provide
some observed values or evolve according to some specific laws. Substances are
measured by (conventional) moles, which correspond to suitable population units.
For each substance, the mass of a mole specifies the matter quantity (in terms of
some mass unit) associated to a mole of the substance. The biochemical reactions
of the process (R, in item 3) are seen as rewriting rules. The observation time
interval (τ , in item 8) is established on the basis of either the kind of process or
the kind of study in which one is interested; faster biological processes require
shorter time intervals.

Definition 6 (MPF system) An MP system with flux regulation maps, shortly
an MPF system, is a discrete dynamical system specified by a construct [142]:

M = (X,R, V,Q, Φ, ν, µ, τ, q0, δ)

where X, R, V are disjoint sets and the following conditions hold, with n,m, k ∈ N:

1. X = {x1, x2, . . . , xn} is a set of substances (molecule types);
2. R = {r1, r2, . . . , rm} is a set of reactions over X. A reaction r is represented

in the arrow notation by a rewriting rule αr → βr with αr, βr strings over X.
The stoichiometric matrix A stores reactions stoichiometry, that is, A =
(Ax,r | x ∈ X, r ∈ R) where Ax,r = |βr|x − |αr|x, and |γ|x is the number of
occurrences of the symbol x in the string γ;

3. V = {v1, v2, . . . , vk} is a set of parameters (such as pressure, temperature
or pH) equipped with a set {hv : N → R | v ∈ V } of parameter evolution
functions, where, for any i ∈ N, hv(i) ∈ R is the value of parameter v at
simulation step i;

4. Q is the set of states, namely functions q : X ∪ V → R from substances
and parameters to real numbers. A state q is identified by the vector q =
(q(x1), . . . , q(xn), q(v1), . . . , q(vk)) of the values that the function q associates
to the elements of X ∪ V . We denote by q|X the substance set state, and by
q|V the parameter set state;
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5. Φ = {ϕr : Q → R | r ∈ R} is a set of flux regulation functions, where for
any q ∈ Q, ϕr(q) states the amount of moles consumed/produced, in the state
q, for every occurrence of a reactant/product of r. The flux vector at state q
is defined as U(q) = (ϕr(q) | r ∈ R);

6. ν is a natural number, called population unit, which specifies the number of
molecules of a (conventional) mole of M ;

7. µ is a function which assigns to each x ∈ X, the mass µ(x) of a mole of x
(with respect to some measure unit);

8. τ is the temporal interval between two consecutive observation steps;
9. q0 ∈ Q is the initial state;

10. δ : N→ Q is the dynamics of the system. It can be identified as the vector δ =
(δ(0), δ(1), δ(2), . . .), where δ(0) = q0, and δ(i) = (δ(i)|X , δ(i)|V ) is computed
by the following autonomous first order difference equations:

δ(i+ 1)|X = A× U(δ(i)) + δ(i)|X (4.2)

δ(i+ 1)|V = (hv(i+ 1) | v ∈ V ) (4.3)

where A is the stoichiometric matrix of R over X, of dimension n×m, while
×, + are the usual matrix product and vector sum.

In other words, if we denote by X[i] = (x1[i], x2[i], . . . , xn[i]) the vector of sub-
stance amounts at step i, by V [i] = (v1[i], v2[i], . . . , vk[i]) the vector of param-
eter values at step i, and by U [i] = (u1[i], u2[i], . . . , um[i]) the vector of fluxes
at step i, the dynamics of M can be defined by the following vector recurrent
equation [141,222], called Equational Metabolic Algorithm (EMA[i]):

X[i+ 1] = A× U [i] +X[i] (4.4)

and parameters are updated at each step according to equation

V [i+ 1] = (h1(i+ 1), h2(i+ 1), . . . , hk(i+ 1)). (4.5)

Thus, the P system formalism is here employed as a specification framework for
biological systems while the dynamics of the model is computed by solving a
set of difference equations. With a slight abuse of notation, in the following we
sometimes use hj(i), instead of hvj (i), to represent the evolution function of a
parameter vj , j = 1, . . . , k, and we use ϕj(q), instead of ϕrj (q), to represent the
flux regulation function of a reaction rj , j = 1, . . . ,m. Moreover, in this thesis
notation “MP systems” is often used to refer to MPF systems. Only in a few cases
we will use MP systems with reaction maps. In these cases we will explicitly adopt
the notation MPR systems.

In order to clarify the notions introduced so far, we consider a toy MPF sys-
tem. The elements of this system have no relationships with any specific biological
system, but its simple structure is useful for understanding the key mechanisms of
MP dynamics. Let M be an MPF system with three substances, i.e., A,B,C,
having molar masses, respectively, of µ(A) = 1.5 g/mol, µ(B) = 2.8 g/mol
and µ(C) = 0.9 g/mol, where the conventional mole is defined as ν = 1000
molecules. The system has a single parameter P representing the system pressure
and having an evolution function hP (i) = 0.001 · C[i]2. It has four reactions, i.e.,
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R = {r1, r2, r3, r4}, having stoichiometry and flux regulation maps as reported in
Table 4.1. Notice that, both parameter and flux regulation maps are set to evolve
with a time interval τ = 2 sec.

Reactions Flux regulation maps
r1 : λ→ A ϕ1(q) = 10 · C+P

C·P
r2 : λ→ B ϕ2(q) = 1.2

r3 : A+B → CC ϕ3(q) = 0.1 · A
2+B
B

r4 : C → λ ϕ4(q) = B+C
C

Table 4.1. Reactions and related flux regulation functions of a toy MPF system (λ is
the empty multiset, + denotes the multiset sum in the left column, while the arithmetic
sum in the right column).

If we want to compute the system dynamics from the initial state q0 =
(A[0], B[0], C[0], P [0]) = (100.00, 120.30, 30.80, 9.49), according to EMA (Equa-
tion (4.4)), then we first need to generate the stoichiometric matrix, which is

A =

1 0 −1 0
0 1 −1 0
0 0 2 −1

 , (4.6)

since: reactions r1 (in the first column) produces one substance A (first row); re-
action r2 (in the second column) produces one substance B (second row); reaction
r3 (in the third column) consumes one A and one B and produces two C; reaction
r4 (in the forth column) only consumes one C. The first step of system dynamics,
from instant 0 to instant 1, can be therefore computed by the following three steps:

1. compute fluxes by means of flux regulation maps:

ϕ1(100.00, 120.30, 30.80, 9.49) = 1.30 mol,

ϕ2(100.00, 120.30, 30.80, 9.49) = 1.20 mol,

ϕ3(100.00, 120.30, 30.80, 9.49) = 8.41 mol,

ϕ4(100.00, 120.30, 30.80, 9.49) = 4.90 mol;

2. apply each reaction according to the related flux, that is, reaction r1 generates
1.30 moles of A, reaction r2 produces 1.20 moles of B, reaction C consumes
8.41 moles of A, 8.41 moles of B and produces 2 · 8.41 moles of C (since C has
multiplicity 2 in the right side of r3), reaction r4 consumes 4.90 moles of C.
Employing the additivity of the effects we obtain:

A[1] = 100.00 + 1.30− 8.41 = 92.89 mol,

B[1] = 120.30 + 1.20− 8.41 = 113.09 mol,

C[1] = 30.80 + 2 · 8.41− 4.90 = 42.72 mol,

where X[i] is the amount of substance X at instant i;
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3. compute the new value of parameter P , that is, in our case

hP (1) = 0.01 · C[1]2 = 18.25

By iterating this procedure for t times, the dynamics of the system is computed
from time 0 to time t · τ .

4.2.2 MP systems with reaction maps

MP systems with reaction maps, shortly MPR systems, are a second class of MP
systems wherein fluxes are not computed by generic flux regulation functions,
but they are rather calculated by a specific strategy implicitly based on mass
partition. In fact, MPR systems have the same elements of MPF systems but each
reaction r ∈ R is provided with a reaction map fr : Q → R, instead of a flux
map ϕr : Q → R, and each substance x ∈ X is provided with an inertia function
ψx : Q → R. The reaction map fr(q) computes the reactivity of rule r given the
system state q, while inertia function ψx(q) determines the (molar) quantity of
substance x which is not consumed in state q. Fluxes are thus calculated, by using
reaction and inertia functions, by means of two steps. First of all, for each reaction
r and each substance x, we compute the partial pressure wr,x(q) applied by r to
x (at state q), that is:

wr,x(q) =
fr(q)

ψx(q) +
∑
r′∈Rα(x) fr′(q)

, (4.7)

where Rα(x) is the set of reactions having x as a reactant. Second, the flux ϕr(q)
of each reaction r (at state q) is calculated by a regulation functions having the
following form:

ϕr(q) =

{
fr(q) if αr = λ;

min{wr,y(q)·q(y)|αr|y | y ∈ αr} otherwise.
(4.8)

where q(y) represents the amount of substance y in state q, and |αr|y is the the
multiplicity of object y in the reactant multiset αr of reaction r : αr → βr.

In other words, as the system evolves, reactants are partitioned among all the
rules according to a competition strategy which assigns to each reaction a portion
of the available reactants proportional to its reactivity fr(q) [17]. The reactivity
of a rule in a certain state, given by its reaction map, measures the capability of
the rule to acquire its reactants. Non transformed matter is taken into account by
fake reactions of the form x→ x, having a reactivity given by the inertia function
ψx(q). Equation (4.7) provides the relative portion (a number between 0 and 1)
of substance x which r is allowed to consume, while Equation (4.8) computes the
flux of r as the minimum substance portion available among all the reactants of r.

Let us consider the example proposed in Section 4.2.1, and replace the reactions
and the flux regulation functions of Table 4.1 with the reactions, the reaction maps
and the inertia maps of Table 4.2.

In order to compute the first step of the system dynamics, namely, substance
and parameter variations between instant 0 and instant 1, we perform the following
five steps:
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Reactions Reaction maps Inertia maps
r1 : λ→ A f1(q) = 10 · C+P

C·P ψA(q) = 0.1 ·A
r2 : A→ B f2(q) = 1.2 ψB(q) = 0.3 ·

√
B

r3 : A+ 2B → 2C f3(q) = 0.1 · A
2+B
B

ψC(q) = 10·C
A+B+C+P

r4 : C → λ f4(q) = B+C
C

Table 4.2. Reactions, reaction maps and inertia maps of a toy MPR system (λ is the
empty multiset, + denotes the multiset sum on the left, while the arithmetic sum on the
right).

1. compute the reactivity of each reaction and the inertia of each substance at
state q0 = (A[0], B[0], C[0], P [0]) = (100.0, 120.3, 30.8, 9.49):

f1(100.00, 120.30, 30.80, 9.49) = 1.30,

f2(100.00, 120.30, 30.80, 9.49) = 1.20,

f3(100.00, 120.30, 30.80, 9.49) = 8.41,

f4(100.00, 120.30, 30.80, 9.49) = 4.90,

ψA(100.00, 120.30, 30.80, 9.49) = 10.00,

ψB(100.00, 120.30, 30.80, 9.49) = 3.29,

ψC(100.00, 120.30, 30.80, 9.49) = 1.18,

2. compute, by means of Equation (4.7), the partial pressure applied by each
reaction on each of its reactants (notice that reactions r1 does not have any
pressure value since its reactant set is empty):

w2,A(100.00, 120.30, 30.80, 9.49) =
1.20

10.00 + 1.20 + 8.41
= 0.06,

w3,A(100.00, 120.30, 30.80, 9.49) =
8.41

10.00 + 1.20 + 8.41
= 0.43,

w3,B(100.00, 120.30, 30.80, 9.49) =
8.41

3.29 + 8.41
= 0.71,

w4,C(100.00, 120.30, 30.80, 9.49) =
4.90

1.18 + 4.90
= 0.80;

3. compute fluxes by means of Equation (4.8):

ϕ1(100.00, 120.30, 30.80, 9.49) = f1(100.00, 120.30, 30.80, 9.49) = 1.30 mol,

ϕ2(100.00, 120.30, 30.80, 9.49) = min

{
0.06 · 100.00

1

}
= 6.00 mol,

ϕ3(100.00, 120.30, 30.80, 9.49) = min

{
0.43 · 100.00

1
,

0.71 · 120.3

2

}
= 42.70 mol,

ϕ4(100.00, 120.30, 30.80, 9.49) = min

{
0.8 · 30.8

1

}
= 24.64 mol;

4. apply each reaction according to the related flux, that is, reaction r1 generates
1.30 moles of A, reaction r2 consumes 6.00 moles of A and produces 6.00 moles
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of B, reaction r3 consumes 42.70 moles of A, 2 · 42.70 moles of B (since B has
multiplicity 2 in the left side of reaction r3) and produces 2 · 42.70 moles of
C (since C has multiplicity 2 in the right side of reaction r3), reaction r4
consumes 24.64 moles of C. Employing the additivity of the effects we obtain:

A[1] = 100.00 + 1.30− 6.00− 42.70 = 50.00 mol,

B[1] = 120.30 + 6.00− 2 · 42.70 = 40.90 mol,

C[1] = 30.80 + 2 · 42.70− 24.64 = 91.56 mol,

where X[i] is the amount of substance X at instant i;
5. compute the new value of parameter P :

hP (1) = 0.01 · C[1]2 = 18.25

Notice that, when two or more reactions compete for a substance x ∈ X, such as
reactions r2 and r3 do for substance A (see Figure 4.1), matter is partitioned among
the reactions according to their partial pressure value at the current state wr,x(q).
These values are computed through the reaction maps of reactions involved in the
competition and the inertia map of substance x. In the example above, reaction
r2 has a reactivity f2(q0) = 1.20, reaction r3 has a reactivity f3(q0) = 8.41 and
substanceA has an inertia (i.e., a tendency to keep untransformed) ψA(q0) = 10.00.
This means that r2 produces a partial pressure w2,A = 0.06 on substance A while
r3 produces, on the same substance, a partial pressure w3,A = 0.43, which is about
seven time greater than w2,A. Moreover, since reaction r3 has also B as a reactant,
we need to compute the partial pressure of r3 on B, which is w3,B = 0.71. Given
the partial pressures, we compute, for every reaction r ∈ R, the amount of acquired
reactant y ∈ X as

wr,y(q) · q(y) | y ∈ αr, (4.9)

that is, by multiplying the partial pressure wr,y(q) by the amount of substance y,
i.e., q(y). In our example, reaction r2 acquires 6.00 mol of its single reactant A,
while reaction r3 acquires 43.00 mol of A and 85.40 mol of B. In this way, the flux
of r2 is simply 6.00 mol, while the flux of r3 is the minimum between 43.00 mol
and 85.40/2 = 42.70 mol (since B has multiplicity 2 in αr3). This minimum is
42.7 mol. We can conclude that the 100.00 mol of substance A are partitioned
as follows: 6.00 mol are transformed by reaction r2, 42.7 mol are transformed by
reaction r3 and the remaining 51.30 mol are not transformed.

4.2.3 Equivalence between MPF systems and MPR systems

MP systems with flux maps and MP systems with reaction maps have been com-
pared in [142] and an equivalence has been proved. The following definition of
(dynamical) equivalence between two MP systems is used.

Definition 7 (Equivalence between MPF and MPR [142]) Two MP sys-
tems with the same sets X (substances) and R (reactions), and the same ν, µ, q0, τ
of Definition 6 are equivalent when in both systems the dynamics of substances
δ|X(i) provides the same values for any i > 0.
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Fig. 4.1. Matter partition in MP systems with reaction maps.

Given an MPR system, the definition of an equivalent MPF system turns out
to be quite straightforward. The following proposition gives a constructive way to
generate flux regulation functions from reaction and inertia maps.

Proposition 1 For any MPR system there is an equivalent MPF system with the
same sets X (substances) and R (reactions), and the same ν, µ, q0, τ of Defini-
tion 6, having for any r ∈ R the following flux regulation map [142]:

ϕr(q) =

{
fr(q) if αr = λ;

min{wr,y(q)·q(y)|αr|y | y ∈ αr} otherwise
(4.10)

where

wr,x(q) =
fr(q)

ψx(q) +
∑
r′∈Rα(x) fr′(q)

. (4.11)

The proof of this proposition is directly contained in the definition of MPR systems
and in their explicit use of the mass partition principle. The definition of an MPR
systems equivalent to a given MPF system requires, indeed, a few more passages
to be proved.

Definition 8 (Monic and non cooperative MP system [142]) An MP sys-
tem is monic if |αr|x ≤ 1 for every r ∈ R and for every substance x ∈ X. An MP
system is non-cooperative if |αr| ≤ 1 for every r ∈ R.

We remember that |αr|x is the the multiplicity of object y in the reactant multiset
αr of reaction r : αr → βr, while |αr| is the sum of multiplicities of all objects in
the reactant multiset αr.

Lemma 4.1. For any MP system there exists a monic MP system which is dy-
namically equivalent to it [142].

Proof. Any rule r : αr → βr with |αr|x > 1 can be split into many rules sat-
isfying monic requirements, if all these rules share the flux map of rule r. For
instance, given the rule r : aa → b, which is not monic due to the presence of
two objects a in αr, we can split r into two rules r1 : a → b and r2 : a → λ
sharing the same flux map. By proceedings in this way for each rule which



68 4 Metabolic P systems

does not satisfy monic requirements we obtain an equivalent monic MP system.
�

The equivalence between MPR and MPF systems now can be easily proved by the
following theorem.

Theorem 4.2. For any MPF system there exists an MPR system with the same
sets X (substances) and R (reactions), and the same ν, µ, q0, τ of Definition 6,
which is equivalent to it [142].

Proof. Let M be a monic MPF system, we define an MPR system M ′ having the
same sets of substances (i.e., X ′ = X) and reactions (i.e., R′ = R), wherein any
rule r has a reaction map f ′r(q) = ϕr(q). Moreover, we associate to each substance
x ∈ X an inertia function ψx(q) = q(x) −

∑
r∈Rα(x) f

′
r(q). By employing these

reaction and inertia maps in Equation (4.10) of Proposition 1 we obtain that, for
any rule r ∈ R, the flux map ϕ′(r) in M ′ is trivially equal to ϕ(r) if αr = λ. On
the other hand, if αr 6= λ, we substitute functions f ′r(q) and ψx(q), just defined,
into Equation (4.11), obtaining

wr,x(q) =
ϕr(q)

q(x)
(4.12)

and then we employ this equation within the second branch of Equation (4.10),
achieving the following function:

ϕ′r(q) = min

{
ϕr(q)

|αr|y
| y ∈ αr

}
. (4.13)

We can thus conclude that ϕ′r(q) = ϕr(q) since M is monic and therefore |αr|y = 1
for every r ∈ R and for every x ∈ X. �

Notice that, dynamics generated by MPR systems are necessarily non negative,
since matter is partitioned among rules. On the other hand, MPF systems could
generate unrealistic dynamics having negative substance amounts, if no constraint
is employed within flux regulation functions.

4.3 MP graphs

Biological and biochemical systems are characterized by a high complexity level
which needs specific representation tools in order to be handled. Macroscopic sys-
tems usually involve big amounts of individuals and species interacting together
within ecosystems. Microscopic systems also include an impressive variety of bio-
chemical elements, such as, DNA and RNA molecules, proteins, enzymes and so
on. For instance, a simple bacterium, which is an unicellular microorganism, con-
tains more than ten thousand proteins and thousands of other constituents needed
for life under ever varying conditions [234], while biochemical pathways, that
seems quite simple if investigated alone, are actually part of complex networks
of metabolic processes. The first step for modeling such an ubiquitous complexity
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concerns the choice of a meaningful representation of the system under investiga-
tion. It should include the key elements of the system while excluding unnecessary
features in order to convey a clear picture of the system functioning.

There exist several ways to describe biochemical pathways. In the simplest
case of a system with a few reactions a brief verbal description can contain all
the information needed to understand the process. For instance, the statement
“5-phosphoribosyl-α-1-pyrophosphate (PP-ribose-P) is formed by transfer of the
terminal pyrophosphate group of ATP to the carbon 1 of ribose-5-phosphate in
a reaction catalyzed by PP-ribose-P synthetase” [214] well describes one of the
initial steps of purine synthesis de novo [234]. The sentence lists the chemicals
involved in the system and explains some of the mechanisms by which the process
evolves. Natural language has, however, several disadvantages in describing path-
ways with parallel branches and simultaneous events, since it is a linear stream.
In order to overcome these problems, two-dimensional graphical representations of
biochemical pathways are almost always employed which offer greater flexibility
in visualizing biochemical processes than a verbal description.

Figure 4.2 shows a biochemical map of the purine biosynthesis pathway ex-
plained above. Notice that, flow of material and interactions among different com-
pounds, represented respectively by bold and thin arrows, can be clearly grasped
from this simple picture, which enables biochemists and modelers to understand
at a glance the main features of the pathway. Other kinds of symbols can be also
added to these maps in order to increase their expressiveness. The reader can refer
to [234] for a full set of rules for constructing proper biochemical maps.

Fig. 4.2. A biochemical map of the purine biosynthesis pathway [234].

In systems biology many formalisms have been defined to graphically represent
biopathways. One of the most important of these notations is the Systems Biology
Graphical Notation (SBGN) [242], which is briefly described in Section 6.1. Within
the framework of MP systems a specific representation of biochemical systems,
named MP graphs, has been introduced in [144]. MP graphs represent biochemical
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reactions as graphs with two levels: the first level describes the stoichiometry of
reactions, while the second level expresses the regulation, which tunes the flux of
every reaction (i.e., the quantity of chemicals transformed at each step) depending
on the state of the system. MP graphs provide an intuitive way to model biolog-
ical pathways overcoming the rather complicated use of traditional mathematical
descriptions, such that of ODE systems, which need a strong mathematical back-
ground in order to be understood.

Definition 4.3 (MP graph). An MP graph is a construct [144]:

G = (XG, VG, RG, ΦG, I, E, o)

where:

• XG is a finite set of substance nodes representing substance types. These
nodes are visualized by blue circles or ellipses containing the substance name;

• VG is a finite set of parameter nodes representing system variables (i.e., pres-
sure, pH, temperature, etc.). Each parameter node is visualized by an orange
rectangle or square containing the parameter name. It is usually associated to
an analytical expression hv(i) which computes the parameter evolution function
at each step i (as reported in Definition 6);

• RG is a finite set of reaction nodes representing biochemical reactions among
substances. These nodes are visualized by gray circles or ellipses labeled by the
name of a reaction and they act as hubs for all the substances nodes involved
in a reaction (reactants and products). Each reaction node is connected with a
flux node (explained at the next point) which regulates the amount of matter
transformed by the reaction itself.

• ΦG is a finite set of flux nodes one-to-one related with reaction nodes. Each
flux node is visualized by a red rounded-corner rectangle or square containing
the flux name. It is usually associated to an analytical expression ϕr(q) which
computes reaction fluxes in accordance with the current state q of the system
(as reported in Definition 6);
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• I is a set of two nodes: the input gate node and the output gate node. These
nodes are visualized by green triangles labeled respectively by the “in gate” or
the “out gate” string. They mark reaction nodes in which substances are created
or destroyed;

• E is a set of direct edges between nodes. There are two kinds of edge: stoi-
chiometric edges and regulatory edges. Stoichiometric edges are plain edges
that connect substance nodes (reactants) to reaction nodes, or reaction nodes
to substances nodes (products). They possibly have labels denoting reaction sto-
ichiometry if it is different from 1 (e.g., label ′2′ on the edge from H to R1, in
the picture below).

Regulatory edges are dashed edges of two types: the first type, characterized
by a black arrow, connects each flux node to the reaction node it regulates (e.g.,
edge from flux node F1 to reaction node R1, in the picture below); the sec-
ond type, characterized by a white arrow, connects i) substance and parameters
nodes involved in a regulation function to the flux node containing the function
itself (e.g., edge from substance node H and parameter node Pressure to flux
node F1, in the next picture), ii) substance nodes involved in a parameter evo-
lution function to the related parameter node (e.g., edge from substance node
H2O to parameter node Pressure, in the next picture).

• o is an organism node that contains the organism name, the molar unit ν of
the MP system, its time unit τ and an additional organism description.
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Figure 4.3 shows the MP graph corresponding to the toy MPF system of Ta-
ble 4.1. It has three substance nodes represented by the blue circular nodes A, B
and C. Reaction nodes R1, R2 and R4, connected with input and output gates
(green triangles), represent respectively the entrance of substances A and B into
the system and the expulsion/degradation of substance C. Reaction node R3 rep-
resents the chemical rule A + B → CC. Each reaction node has an input dashed
arrow from the only flux node that regulates it (e.g., flux node F1 for reaction
node R1). The only parameter involved in the MP graph is Pressure, whose value
evolves with a function depending on the substance C. This is showed by the
dashed edge from node C to node Pressure. Finally, the isolated node, on the
top, represents the organism: it contains the organism name, i.e., “Toy MPF sys-
tem”, the molar unit ν = 1000.0 of the MP system, its time unit τ = 2.0 sec,
and an additional organism description. Fluxes are computed by means of alge-
braic formulae contained in flux nodes. MP graphs show the arguments of each
flux/parameter regulation function by means of dashed edges from substances and
parameters to flux/parameter nodes.

Fig. 4.3. The MP graph representation of the MPF toy example described in Table 4.1.
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The graphical user interface (GUI) used for drawing the MP graph of Figure 4.3
is part of the software MetaPlab [18,34,146], a tool developed to provide modelers,
as well as biologists, with a reliable and easy-to-use simulation environment for
computing systems dynamics. The last release of this software, available at the
MetaPlab website [241], is presented Chapter 6.

4.4 Equivalence between MP systems and ODEs

The equivalence between MPR systems and ODEs has been investigated in [68],
where two procedures for mapping, respectively, MPR systems to ODEs, and ODEs
to MPR systems, have been proposed. The first result shows that MPR systems
translate naturally to ODE systems based on mass action law. Let us refresh the
following notation, which will be used in the next definitions:

Notation 1 (MP notation)

• Each reaction r ∈ R is denoted by r : αr → βr, where αr identifies the multiset
of reactants of reaction r, and βr identifies the multiset of products of reaction
r;

• |αr|x is the number of occurrences of x in αr;
• |βr|x is the number of occurrences of x in βr;
• Rα(x) = {r ∈ R | x ∈ αr};
• Rβ(x) = {r ∈ R | x ∈ βr};
• Ax,r = |βr|x − |αr|x;
• Π(αr) =

∏
x∈αr q(x)|αr|x ;

The next definition formalizes the transformation of an MPR system to an ODE
system [68]:

Definition 9 (MP-ODE transformation [68]) Let M = (X,V,R,Q, τ, q0, F,
Ψ,H, ν, µ) be an MPR system, where F is the set of reaction maps, Ψ is the set of
inertia maps, and the other elements are as in Definition 6. For every x ∈ X, the
following is the ODE-transformation of M :

x′ =
∑
r∈R

Ax,r · fr(q) ·Π(αr). (4.14)

A comprehensive description and motivation of this formula is reported in [68].
On the other side, given a set of reaction rules and an ODE system S describing

their differential dynamics, an MPR system having S as ODE-transformation can
be derived [68]. The procedure for generating such an MPR system involves the
synthesis of reaction and inertia maps from differential equation terms. Many MPR
models of real biological processes have been generated from ODE models by means
of this mapping procedure. A few examples are the Belousov-Zhabotinsky reaction
(in the Brusselator formulation) [19,21], the Lotka-Volterra dynamics [19,69,145]
and the mitotic cycles in early amphibian embryos [144].

Another significant result concerns the identification of a class of MP systems
whose temporal evolution asymptotically converges, at the limit of infinitesimal
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time, to the solution of ODE systems of Equation (4.14). For this class of MP
systems, metabolic and differential perspectives meet each other, so that “mass
partition” (characterizing MP systems) and “time partition” (characterizing nu-
merical solution of ODE) turn out to be strictly related one to the other [68].

Definition 10 (Uniformly transparent MPR system [68]) For some c ∈ R,
an MPR system is c−uniformly transparent if every substance x ∈ X has a con-
stant inertia ψx(q) = c.

Definition 11 (Input closed MPR system [68]) An MPR system is input
closed if no rules r ∈ R exists in the system such that αr = λ.

Theorem 4.4. The computation of a non-cooperative, input closed c-uniformly
transparent MP system converges, as c → ∞, to the solution, when it is unique,
of the ODE system provided by the MP-ODE transformation.

The reader can refer to [68] for a formal proof of this theorem. Another significant
result reported in the same paper ensures the existence, for every MP system M ,
of a non-cooperative MP system M ′ having the same ODE-transformation of M .
However, this non-cooperative MP system is not uniquely determinable, and even
if all the possible non-cooperative MP systems obtained from M provide a solution
that converges to the same ODE system, the speed of this convergence depends
on the specific non-cooperative MP system. From this point of view MP systems
can be seen as machines for computing approximations of ODE system solutions.

4.5 Equivalence between MP systems and hybrid functional
Petri nets

In this section some original results are presented, about an equivalence between
MPF systems and a special class of Petri nets. These results, presented for the
first time in [31], are here reported and expanded.

Petri nets were introduced in 1962 by Carl Adam Petri [174] as logic circuits
to describe concurrency in artificial systems (i.e., operative systems or event-
driven systems) [191]. They have been recently employed to model biological path-
ways [96, 189] and in particular metabolic processes [95]. The recent development
of MP systems theory, based on fluxes, shows deep similarities with a novel exten-
sion of Petri nets, named hybrid functional Petri nets (HFPN) [154]. They have
been introduced to overcome some drawbacks of traditional Petri nets for modeling
biochemical pathways. A software has also been developed to compute biological
simulations of HFPN models [53,164,237].

In the following, a thorough comparison between the formalism of MP sys-
tems and that of hybrid functional Petri nets is presented, in order to highlight
similarities and differences as well as feasibilities to model biochemical systems.
A first investigation about this comparison can be found in [30, 35], while the re-
sults reported in the following have been published in [31]. A formal description of
the HFPN graphical model is introduced in the next Section 4.5.1. Section 4.5.2
and Section 4.5.3 respectively show the equivalence between the two formalisms
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and point out two mapping procedures (from one to the other and vice versa). In
Section 4.5.4 these procedures have been successfully employed for modeling and
simulating the lac operon gene regulatory mechanism and glycolytic pathway.

4.5.1 Hybrid functional Petri nets: a formalization

A Petri net [174, 191] is a network mainly consisting of four kinds of elements:
i) places, ii) transitions, iii) arcs, iv) tokens (see Figure 4.4). According to the
traditional notation, a place Pγ can hold a nonnegative integer number of tokens
mγ as its content. The amount of tokens in all places identifies the state of a Petri
net. Transitions (e.g., T in Figure 4.4) are elements equipped with firing rules
specified by: i) the arcs connecting the places, ii) the number of tokens (expressed
as arc labels) to move from input to output places, and iii) the speed of the token
transition.

Fig. 4.4. A simple Petri net [154]: P1 and P2 are input places and P3 is an output place
of the transition T ; m1, m2 and m3 are the amount of tokens held by P1, P2, and P3;
the arc labels 2, 3, 1 state that T can fire if m1 ≥ 2 and m2 ≥ 3, by removing two tokens
from P1 and three from P2 and adding one token to P3. The firing speed is assumed to
be constant and the label 1.0 under the transition symbol means that T must wait 1.0
step before firing.

Hybrid functional Petri nets [154] extend traditional Petri nets by introducing
continuous places and transitions, and adding special arcs, to overcome Petri net
drawbacks in modeling biopathways. Figure 4.5 shows in detail the main elements
of this model, which are basically: i) the discrete places and transitions inherited by
the traditional formalism, ii) the continuous places and transitions, and iii) three
kinds of arcs to connect places and transitions. Namely, a discrete (continuous)
normal input arc has an integer (real) label, which states a strict lower bound
for the place amount that causes the transition activation; a discrete (continuous)
inhibitory input arc has an integer (real) label, which states an upper bound of
the place amount, that causes the transition activation but it does not remove any
token; a discrete (continuous) test arc works as a normal input arc but it does not
remove any token from the input place.

HFPN discrete components have been employed (in glycolytic pathway simu-
lation [53] and in circadian rhythms of Drosophila simulation [154]) for pathways
regulatory mechanisms modeling. In fact, transcription switches, feedbacks and
promotion/inhibition mechanisms can intuitively be modeled by discrete elements
that can namely stand for DNA binding sites or trigger conditions.
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Fig. 4.5. On the left, the basic elements of HFPN [154]. Only normal arcs are able
to move tokens, and their labels represent strict lower bound conditions for the transi-
tion firing. Inhibitory and test arcs represent respectively upper bound and lower bound
conditions that must be satisfied for the transition firing. On the right, an HFPN con-
tinuous transition TC [154]. P1, P2, P4, Q1, Q2 are continuous places, P3 is a discrete
place; m1, m2, m3, m4, n1 and n2 represent the content of the corresponding places.
Labels a2, a3 denote test arcs, the other are normal arcs.

In general [154], a (continuous or discrete) transition T specifies three functions
(on the right side of Figure 4.5):

• the firing condition given by a predicate c(m1(i), . . . ,mn(i)) (if T is con-
tinuous, as long as this condition is true T fires continuously; if T is discrete,
whenever the condition is true T gets ready to fire),

• a nonnegative function fj(m1(i), . . . ,mn(i)) for each input arc aj , called con-
sumption firing speed which states the (real, integer) number of tokens
removed by firing from Pj through arc aj ,

• a nonnegative (continuous, or integer) function gj(m1(i), . . . ,mn(i)) called
production firing speed for each output arc bj , that specifies the number of
tokens added by firing to Qj through arc bj .

If aj is a test or an inhibitory input arc, then we assume fj ≡ 0 and no amount
of tokens is removed from Pj through the input arc aj .

Moreover, for discrete transitions, the delay function is given by a nonneg-
ative integer valued function d(m1(i), . . . ,mn(i)). If the firing condition gets sat-
isfied at time i, the corresponding transition acquires the chance of firing after
a number of steps equal to its delay d(m1(i), . . . ,mn(i)). The transition actually
fires if and only if the firing condition does not change during the delay time.

A time unit is assumed, called Petri time, in terms of which the firing speeds
and the discrete transition delays (waiting time before firing) are given. In the
case that simulation granularity must be increased, a fraction of Petri time named
sampling interval is considered.

An interesting difference between discrete and continuous transitions is the
firing policy. A discrete transition moves the expected amount of tokens (equal
to the firing speed value) in only one step of the sampling interval, while the
continuous transition moves it in one Petri time unit, though step by step with
respect to the sampling interval.

The following definition outlines the mathematical structure of HFPN.
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Definition 12 (HFPN) An HFPN is a construct

N = (P, T1, T2, I, E, S, s0, P t, SI,D,C, F,G)

where:

1. P = {p1, . . . , pn} is a finite set of discrete or continuous places;
2. T1 = {t1, . . . , tk} and T2 = {tk+1, . . . , tz} are finite sets of continuous and

discrete transitions respectively, where T1 ∩ T2 = ∅ and we define T =
T1 ∪ T2;

3. I ⊆ P × T and E ⊆ T × P are respectively the normal input arcs and
the output arcs of the transitions, given by the stoichiometry of the modeled
system;

4. S is the set of states, that are functions s from the places of P to real numbers.
If we assume some order among the elements of P , and an instant i ranging
in the set of natural numbers, then the state s at the time i can be identified
as the real vector si = (m1(i),m2(i), . . . ,mn(i)), also denoted by P[i];

5. s0 ∈ S is the initial state, that is, s0 = (m1(0),m2(0), . . . ,mn(0));
6. Pt is the time unit of the model (related to that one of the modeled real system),

called Petri time, whereas SI is the sampling interval, which represents
the number of petri times between two computational steps;

7. D = {dk+1, . . . , dz} is a finite set of delays, given by nonnegative functions
dj : S → N which specify the time that the corresponding discrete transition tj
must wait before firing;

8. C = {c1, . . . , cz} is a set of firing conditions, given by boolean functions on
the states cj : S → {0, 1} which control the activation of the corresponding
transition tj;

9. F = {f1, . . . , f|I|} is a set of consumption firing speeds, given by non-
negative functions fx : S → R, where x = (pγ , tj), γ = 1, . . . , n, j = 1, . . . , z,
that specify the quantity which the transition tj can remove from the place pγ
for each state s. For all x = (pγ , tj) in which pγ is a discrete place, we have
fx : S → N;

10. G = {g1, . . . , g|E|} is a set of production firing speeds, given by non-negative
functions gy : S → R, where y = (tj , pγ), γ = 1, . . . , n, j = 1, . . . , z, that
specify the quantity which the transition tj can add to the place pγ for each
state s. For all y = (tj , pγ) in which pγ is a discrete place, we have gy : S → N.

Given an HFPN N = (P, T1, T2, I, E, S, s0, P t, SI,D,C, F,G), the algorithm
presented in Table 4.3 computes the first h consecutive states, for h ∈ N, according
to the following strategy.

As a first computational step, the algorithm initializes the functions lj for
all the discrete transitions tj (instructions 2 and 3). These functions are initially
defined by the algorithm to control the waiting of discrete transition delays, their
null value corresponds to a positive delay in the initial state.

In order to compute the state P [h] of the HFPN system, it is necessary to check
how the discrete transitions behave in the previous states of the system. In fact,
each of them can be waiting either for its condition to be true, or for the delay
to pass in order to fire, or it can be ready to fire. This information is kept by the
function lj for each discrete transition tj , then all the values lj(1), lj(2), . . . , lj(h−1)
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HFPN-Evolution(N,h)

1. begin
2. for j = k + 1, . . . , z do // tj ∈ T2

3. if dj(P [0]) = 0 then lj(0) = 1 else lj(0) = 0;
od

4. for i = 0, . . . , h− 1 do

5. for γ = 1, . . . , n do mγ(i+ 1) := mγ(i); od
6. for j = 1, . . . , k do // tj ∈ T1

7. if cj(P [i]) = 1 then
8. for γ = 1, . . . , n do
9. x := (pγ , tj);
10. y := (tj , pγ);
11. if x ∈ I then mγ(i+ 1) := mγ(i+ 1)− fx(P [i]) · SI;
12. if y ∈ E then mγ(i+ 1) := mγ(i+ 1) + gy(P [i]) · SI;

od
od

13. for j = k + 1, . . . , z do // tj ∈ T2

14. if lj(i) = 0 then

15. if cj(P [i]) = 1 then lj(i+
dj(P [i])

SI
− 1) := 1;

16. for k = 1, . . . ,
dj(P [i])

SI
− 2 do

17. lj(i+ k) := 2;
od

18. else lj(i+ 1) := 0;
19. if lj(i) = 1 then // tj is ready to fire
20. if cj(P [i]) = 1 then //firing
21. for γ = 1, . . . , n do
22. x := (pγ , tj);
23. y := (tj , pγ);
24. if x ∈ I then mγ(i+ 1) := mγ(i+ 1)− fx(P [i]);
25. if y ∈ E then mγ(i+ 1) := mγ(i+ 1) + gy(P [i]);

od
26. if dj(P [i]) > 0 then lj(i+ 1) := 0;
27. else lj(i+ 1) := 1;

od
28. write (m1(i+ 1),m2(i+ 1), . . . ,mn(i+ 1))

od
29. end

Table 4.3. HFPN Algorithm to compute the first h consecutive states of N.

need to be computed, and consequently all the states P [1], P [2], . . . , P [h− 1]. For
each of the instants 1, . . . , h− 1 (instruction 4), the state P [i+ 1] is initialized by
the current state P [i] (instruction 5), and then processed by the firings as in the
following.

There are two main for cycles (instructions 6 and 13): the first one controls
the application of the continuous transitions (from T1) and the second one con-
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trols the application of the discrete transitions (from T2) which are equipped with
delay functions. By the first of these for cycles (instructions 6-12), each continu-
ous transition with true condition fires, and the contents of the involved places
are consequently modified (by instructions 11 and 12). The content of each place
connected to the continuous transition by an arc of I decreases of fx(P [i]) · SI
(instruction 11). The content of each place connected to the continuous transition
by an arc of E increases of gy(P [i]) · SI (instruction 12).

In the last for cycle (instructions 13-27), the firing of discrete transitions tj is
ruled firstly by the value of a corresponding function lj (instructions 14 and 19) and
secondarily by the boolean value of the corresponding condition cj (instructions
15 and 20). If a transition tj has a null delay function, its function lj is identically
equal to 1 (instruction 27).

In the case of delay dj(P [i]) greater than zero, lj (instruction 14) has value 0
(initially and) whenever the transition has just fired and until the condition cj is
not true. As soon as the condition is true (instruction 15), the function lj is set to
2 (instruction 17) for each time of the next dj steps, and it is set to 1 (instruction
15) at the time the transition will be ready to fire (after the delay). Then, the
transition fires only if the condition is true (instruction 20). At this point the
function lj is set to 0 (denoting that the transition is waiting for the condition to
be true).

HFPN is an intrinsically parallel model which assumes the simultaneous firing
of all the transitions that can fire in every computational step. The algorithm
presented in Table 4.3, however, sequentially obtains an equivalent evolution of
the system if, for every step, the quantity of tokens contained in each place pγ is
greater than or equal to the sum of the quantities actually taken from that place.
This is an assumption considered more or less explicitly in all the HFPN literature.

We want to remark the complex structure of the algorithm with respect to
the simplicity of the finite difference system which computes the MP dynamics
(Equation (4.2)). This aspect is not only a matter of elegance. In fact, within
the framework of MP systems, a theory was developed [140] which allows us to
define an MP model of an observed dynamics. The key point of this theory is the
discovery of flux regulation maps by means of suitable algebraic manipulations of
time series of observed states.

4.5.2 Mapping HFPN to MP systems

MP systems and HFPN have been both developed for biological dynamics mod-
eling, but they have a very different theoretical background. Both the formalisms
are mainly based on i) reactant elements (substances and places), ii) rules (reac-
tions and transitions) that state how the substances can interact with each other,
and iii) dynamics elements (fluxes and firing speeds/conditions) that control the
system evolution by computing the amount of substances moved in the network
at each computational step. Nevertheless, in order to model biological processes,
the firing speeds f(pγ ,tj) and g(tj ,pγ) have to be linked to transitions rather than to
arcs. This argument has been confirmed also by analyzing some HFPN models and
testing of an HFPN simulator called Cell IllustratorTM [164,237]. We can assume
arc firing speeds fj to have this form:



80 4 Metabolic P systems

f(pγ ,tj)(si) = f̄j(si) · wγ,j and g(tj ,pγ)(si) = f̄j(si) · wγ,j (4.15)

where wγ,j ∈ N, γ = 1, . . . , |P |, j = 1, . . . , |T |. In (4.15), f̄j denotes a function
common to the consumption and production firing speeds of the transition tj ,
while wγ,j represents the weight of the arc (pγ , tj) or (tj , pγ).

The following mapping associates to a given HFPN N = (P, T1, T2, I, E, S, s0,
P t, SI,D,C, F,G) an MP system M(N) = (X,R, V,Q, Φ, ν, µ, τ, q0, δ) that will be
proved to be dynamically equivalent to N .

HFPN-to-MP mapping procedure

1. X = P . Places p1, . . . , pn of N are one to one mapped into substances
x1, . . . , xn of M ;

2. R = T . Transitions of N are mapped into reactions of M . Stoichiometric ma-
trix A is generated according to Equations (4.15), because firing speeds can
be related to transitions rather than to arcs. In this way, every weight wγ,j of
a consumption firing speed f(pγ ,tj) = f̄j ·wγ,j (see Equations (4.15)) generates
the element aγ,j = −wγ,j of the stoichiometric matrix A, while every weight
wγ,j of a production firing speed g(tj ,pγ) = f̄j · wγ,j generates the element
aγ,j = wγ,j ;

3. V = {v1, . . . , vz−k}. Elements of T2 (discrete transitions tj) are mapped into
parameters (vj−k), having initial values related to the corresponding delays
from D (see item 8 below) and evolving according to functions {h1, . . . , hz−k}
defined as follows. Each function hj controls the evolution of the parameter
vj as a “counter of waiting”, set by the delay dj+k ∈ D, which supports the
simulation of the discrete transition tj+k. Each function hj can be defined as:

hj(q) = (q(vj) ≤ 0)(dj(q)/SI − 1)+
+((cj(q) ∧ q(vj) = dj(q)/SI − 1)∨
∨(0 < q(vj) < dj(q)/SI − 1))(q(vj)− 1)

where the first term of the sum reinitializes the counter vj to dj(q)/SI − 1 if
q(vj) ≤ 0, while the second term decreases the counter by one if either it is
equal to dj(q)/SI − 1 and the condition cj(q) is true, or the counter value is
between 0 and dj(q)/SI − 1. The initial value dj(q)/SI − 1 corresponds to the
number of steps that M performs during the time interval dj(q);

4. Q = {q | q : X∪V → R, q|X ∈ S} where q|X is the restriction of q to the set X;

5. Φ = {ϕ1, . . . , ϕk, ϕk+1, . . . , ϕz}. Regulation functions are deduced from T
which has k continuous transitions and z − k discrete transitions. They are
defined as ϕj(q) = cj(q) · f̄j(q) · SI for j ∈ {1, . . . , k} and as ϕj(q) =
(cj(q) ∧ q(vj−k) ≤ 0) · f̄j(q) for j ∈ {k + 1, . . . , z}, where q ∈ Q, and f̄j is
determined by Equations (4.15). Boolean values have been mapped to integer
numbers 0 (true) and 1 (false);
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6. The value ν and the mass function µ of M are chosen with respect to the
modeled system; indeed they do not have any corresponding component in N .
They work as biological data measurements and they do not affect the system
dynamics;

7. The time interval τ is the time between two computational steps of N , that is
τ := SI · Pt;

8. q0 = (s0, V [0]), denoting the juxtaposition of the vectors s0 and V [0], where

s0 is the initial state of N and V [0] = (dk+1(s0)
SI − 1, . . . , dz(s0)SI − 1), with

dk+1, . . . , dz ∈ D.

Finally, we notice that HFPN model defines a delay value for each discrete transi-
tion while MP systems can simulate the delays by using parameters. Actually, the
delays do not have a biological counterpart in the real systems, and they are just
computational tricks to describe some complex low-level processes (which needs
a particular time interval to be performed) as black-boxes that return particular
outputs after a delay time.

Both MP systems and HFPN dynamics are characterized by the temporal evo-
lution of quantities that represent significant entities of the biological systems of
interest. Therefore, to compare the two formalisms we consider the evolution of
quantities related to substances and parameters in the MP systems, and related
to places in the HFPN.

Theorem 1: [HFPN to MP] Given an HFPN N = (P, T1, T2, I, E, S, s0, P t, SI,
D,C, F,G), the MP system M(N) = (X,R, V,Q, Φ, ν, µ, τ, q0, δ) obtained by ap-
plying the HFPN-to-MP mapping procedure has the same time evolution of N .

Proof: For every (discrete or continuous) place pγ of P in N (with γ ranging from
1 to n) there exists a corresponding substance xγ of X in M , such that, the content
of pγ is equal to the value of xγ for every instant, that is, mγ(i) = xγ [i] ∀i ∈ N.
The proof is given by induction on the computational step i. The evolution of
N is computed by the HFPN algorithm reported in Table 4.3 while Equations
(4.2) and (4.3) compute the evolution of M . Since discrete places of N evolve only
by discrete transitions (instructions 6-12 of the HFPN algorithm) and continuous
places evolve by both discrete and continuous transitions (instructions 6-27), we
analyze the two cases separately, while the base of the induction is common to the
two cases.

Base. The HFPN-to-MP mapping procedure states that q0 = (s0, V [0]). As a
consequence, for every γ = 1, . . . , |P | we have xγ [0] = mγ(0).

Inductive step for discrete places. The content of a discrete place pγ is modified
only by discrete transitions (instructions 13-27 of the HFPN algorithm). Instruc-
tion 5 assigns mγ(i) to each γ-th component of the state at the instant i+ 1, and
instructions 24-25 update mγ(i+ 1) for every input or output transition tj related
to pγ , that satisfies both the conditions lj(i) = 1 (instruction 19) and cj(si) = 1
(instruction 20). In particular, the quantity fx(si) is removed from mγ(i + 1) for



82 4 Metabolic P systems

every output arc x of pγ , while the amount gy(si) is added to mγ(i+ 1) for every
input arc y of pγ . The evolution equation is the following:

mγ(i+ 1) = mγ(i)−
∑
x

fx(si) +
∑
y

gy(si) (4.16)

where x ∈ {(pγ , tj) | (pγ , tj) ∈ I, tj ∈ T2, cj(si) = 1 and lj(i) = 1} and y ∈
{(tj , pγ) | (tj , pγ) ∈ E, tj ∈ T2, cj(si) = 1 and lj(i) = 1}. By replacing production
and consumption firing speeds by means of Equations (4.15) and arc weights wγ,j
with the related stoichiometric coefficients aγ,j (as defined at point 3 of the HFPN-
to-MP mapping procedure), the next equation follows:

mγ(i+ 1) = mγ(i) +
∑

j=k+1,...,z

(lj(i) = 1 ∧ cj(si)) · f̄j(si) · aγ,j (4.17)

On the other hand, HFPN-to-MP mapping procedure maps discrete places
pγ to substances xγ and discrete transitions tj to reactions rj having regulation
functions ϕj(q) = (cj(q) ∧ q(vj−k) ≤ 0) · f̄j(q). The evolution of a “discrete”
substance xγ is thus computed by the Equation (4.2) as:

xγ [i+ 1] = xγ [i] +
∑

j=k+1,...,z

(cj(si) ∧ q(vj−k) ≤ 0) · f̄j(si) · aγ,j (4.18)

Equations (4.17) and (4.18) compute the same dynamics, i.e., mγ(i + 1) =
xγ [i+ 1], indeed i) mγ(i) = xγ [i] from the inductive hypothesis, ii) the two sum-
mations are equal; in fact, the first one adds the contribution f̄j(si) · aγ,j for
j ∈ {k + 1, . . . , z} if lj(i) = 1 and cj(si) is true, while the second one adds
the same contribution if q(vj−k) ≤ 0 and cj(si) is true. The two conditions are
equivalent since lj(i) = 1 ⇔ q(vj−k) ≤ 0, in fact the function lj(i) is initialized
(instructions 2-3) and updated (instructions 14-18 and 27) by the algorithm of
Table 4.3 in order to be:

• lj(i) = 0, if (at the step i) the transition tj is waiting for the conditions cj to
be true,

• lj(i) = 1, if (at the step i+ 1) the transition tj will be ready to fire,
• lj(i) = 2, if (at the step i) the transition tj is waiting for the delay dj to pass.

Finally, every parameter vj is initialized to
dk+j(s)
SI − 1 and then it is decreased by

one, at each step, by the regulation function hj , in order to be zero (or less) as
soon as the delay dk+j(s) is elapsed and the reaction rj is ready to fire. This is
a way to force the discrete transition (and corresponding reactions) to fire only if
the delay is passed.

Inductive step for continuous places. A continuous place can be connected with
both continuous and discrete transitions. Thus, its temporal evolution is computed
by the for cycles of instructions 6-12 and 13-27 according to the following equation:

mγ(i+ 1) = mγ(i)−
∑
xd

fxd(si) +
∑
yd

gyd(si) +

−
∑
xc

fxc(si) · SI +
∑
yc

gyc(si) · SI (4.19)
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where

• xd ∈ {(pγ , tj) | (pγ , tj) ∈ I, tj ∈ T2, cj(si) = 1 and lj(i) = 1},
• yd ∈ {(tj , pγ) | (tj , pγ) ∈ E, tj ∈ T2, cj(si) = 1 and lj(i) = 1},
• xc ∈ {(pγ , tj) | (pγ , tj) ∈ I, tj ∈ T1 and cj(si) = 1},
• yc ∈ {(tj , pγ) | (tj , pγ) ∈ E, tj ∈ T1 and cj(si) = 1}.

Basically, Equation (4.19) appends to Equation (4.16) two terms (second row)
related to continuous transitions.

By replacing production and consumption firing speeds by Equations (4.15),
and arc weights wγ,j with the related stoichiometric coefficients aγ,j (as defined
at point 3 of the HFPN-to-MP mapping procedure), we have:

mγ(i+ 1) = mγ(i) +
∑

j=1,...,k

cj(si) · f̄j(si) · aγ,j +

+
∑

j=k+1,...,z

(lj(i) = 1 ∧ cj(si)) · f̄j(si) · aγ,j (4.20)

On the other hand, HFPN-to-MP mapping procedure maps continuous places pγ
to substances xγ , discrete transitions tj to reactions rj having regulation functions
ϕj(q) = (cj(q) ∧ q(vj−k) ≤ 0) · f̄j(q), and continuous transitions tj to reactions rj
having regulation functions ϕj(q) = cj(q) · f̄j(q) · SI. The evolution of a “contin-
uous” substance xγ according to Equation (4.2) gives:

xγ [i+ 1] = xγ [i] +
∑

j=1,...,z

aγ,j · ϕj(si)

= xγ [i] +
∑

j=1,...,k

cj(si) · f̄j(si) · aγ,j +

+
∑

j=k+1,...,z

(cj(si) ∧ q(vj−k) ≤ 0) · f̄j(si) · aγ,j (4.21)

Equations (4.20) and (4.21) compute the same dynamics, i.e., mγ(i+1) = xγ [i+1],
since i) mγ(i) = xγ [i] from the inductive hypothesis, ii) the two summations having
indices between 1 and k (related to continuous transitions) are equal, and iii) the
summations having indexes between k + 1 and z provide identical values for the
considerations previously made for discrete places.

�

4.5.3 Mapping MP systems to HFPN

Given an MP system M = (X,R, V,Q, Φ, ν, µ, τ, q0, δ), an hybrid functional Petri
net N(M) = (P, T1, T2, I, E, S, s0, P t, SI,D,C, F,G) having the same dynamics
can be obtained by the following mapping.
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MP-to-HFPN mapping procedure

1. P = X ∪ V . All the substances and parameters are mapped into places, thus
we can identify the following vectors (p1, . . . , pn) = (x1, x2, . . . , v1, v2, . . .);

2. T1 = R ∪ {t|R|+1, . . . , t|R|+2|V |}, T2 := ∅, then T = T1 ∪ T2 = T1. All the reac-
tions of M are mapped into continuous transitions. Furthermore, 2|V | contin-
uous transitions have been defined to control the places p|X|+1, . . . , p|X|+|V |,
related to parameters;

3. I = {(pγ , tj) | γ and j are positive natural numbers such that, either
aγj < 0 ∧ γ ≤ |X| ∧ j ≤ |R| or |X| < γ ≤ |P | ∧ j = |R| − |X|+ γ}. The
transition input arcs of N include both arcs corresponding to negative ele-
ments of the stoichiometric matrix A and arcs corresponding to transitions
t|R|+1, . . . , t|R|+|V |, respectively related to places p|X|+1, . . . , p|X|+|V | which
map parameters of M ;

4. E = {(tj , pγ) | γ and j are positive natural numbers such that, either
aγj > 0 ∧ γ ≤ |X| ∧ j ≤ |R| or |X| < γ ≤ |P | ∧ j =
|R| + |V | − |X| + γ}. The transition output arcs of N include both arcs cor-
responding to the positive elements of the stoichiometric matrix A and arcs
corresponding to transitions t|R|+|V |+1, . . . , t|R|+2|V |, respectively related to
places p|X|+1, . . . , p|X|+|V | which map parameters of M ;

5. S = Q;

6. s0 = q0. Since P = X ∪ V we can easily identify the initial states of the two
systems;

7. Pt = τ , SI := 1. This setting is chosen in order to suitably compare the com-
putational behaviors of the two systems. It allows N to evolve along the same
computational steps of M , and to get simulations with respect to the same
time interval τ . Furthermore, with this choice, firing speeds are the number
of tokens moved in a single computational step, and delays are the number of
steps to wait before the firing;

8. D = ∅. Delays are not included into the MP model M , thus the delay set of
N turns out to be empty;

9. C = {cj | cj : S → {0, 1}, cj(s) = 1, where j = 1, . . . , |T |}. Firing conditions
are identically set to 1 (true), because in M they are included into regulation
functions Φ and evolution functions {hv : N→ R | v ∈ V }, which are mapped
to the firing speeds, as in points 10 and 11;

10. F = {f(pγ ,tj) | f(pγ ,tj) : S → R, f(pγ ,tj)(s) = −ϕj(s) · aγ,j for γ =
1, . . . , |X|, j = 1, . . . , |R|, (pγ , tj) ∈ I and f(pγ ,tj)(s) = q(vγ−|X|) for
γ = |X|+ 1, . . . , |P | and j = |R|+ 1, . . . , |R|+ |V |}, where q(vγ−|X|) = s(pγ)
for the above definition of S. Consumption firing speeds are defined from the
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regulation functions Φ and the stoichiometric matrix A for arcs connecting
substances to reactions in M . They are defined as s(pγ) for arcs which control
the places pγ related to parameters vγ−|X|, in order to remove the entire con-
tent of these places at each step;

11. G = {g(tj ,pγ) | g(tj ,pγ) : S → R, g(tj ,pγ)(s) = ϕj(s) ·aγ,j for γ = 1, . . . , |X|, j =
1, . . . , |R|, (tj , pγ) ∈ E and g(tj ,pγ)(s) = hγ−|X|(s) for γ = |X| + 1, . . . , |P |,
j = |R| + |V | + 1, . . . , |R| + 2|V |}. Production firing speeds are defined from
the regulation functions Φ and the stoichiometric matrix A for arcs connecting
reactions to substances in M . They are defined as hγ−|X|(s) for arcs which
update places related to parameters vγ−|X|. In this way, at each step, they set
the new parameter value hγ−|X|(s) as content of these places.

Theorem 2: [MP to HFPN] Given an MP system M = (X,R, V,Q, Φ, ν, µ, τ,
q0, δ), the HFPN N(M) = (P, T1, T2, I, E, S, s0, P t, SI,D,C, F,G) obtained by
applying the MP-to-HFPN mapping procedure has the same time evolution of M .

Proof: For every element yγ of X ∪ V in M (with γ ranging from 1 to n) there
exists a corresponding place pγ of P in N , such that, the value of yγ is equal to
the content of pγ for every instant i ∈ N, that is, ∀i ∈ N yγ [i] = mγ(i). The proof
is given by induction on the computational step i and the evolution of N is com-
puted by the algorithm reported in Table 4.3. Since substances and parameters
in M evolve independently by Equations (4.2) and (4.3) respectively, we analyze
separately these two elements, while the base of the induction is common to the
two cases.

Base. The mapping procedure (4.5.3) states that s0 = q0. As a consequence,
for every γ = 1, . . . , |X| we have xγ [0] = mγ(0), and for every γ = 1, . . . , |V | we
have vγ [0] = mγ+|X|(0).

Inductive step for substances. The evolution of substances in M is computed
by the Equation (4.2), whose γ-th component can be written as:

xγ [i+ 1] = xγ [i] +
∑

j=1,...,|R|

aγ,j · ϕj(qi) (4.22)

where, γ = 1, . . . , |X|, and aγ,j > 0 if xγ is a reactant of the reaction rj , aγ,j < 0
if xγ is a product of the reaction rj , and aγ,j = 0 otherwise.

Since N has only continuous transitions tj , having conditions cj(s) identically
true, its evolution from the state si to si+1 is essentially computed by the instruc-
tions 5-12 of the HFPN algorithm (Table 4.3), starting from the assignment of
mγ(i) to each γ-th component of the state at the instant i + 1 (instruction 5).
The for cycle of instructions 6-12 updates the content of every place pγ by adding
gy(si) from any input arc y or subtracting fx(si) from any output arc x, since
SI = 1. The evolution equation of a place pγ is the following:

mγ(i+ 1) = mγ(i)−
∑
x

fx(si) +
∑
y

gy(si) (4.23)
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where x ∈ {(pγ , tj) | (pγ , tj) ∈ I} and y ∈ {(tj , pγ) | (tj , pγ) ∈ E}.
Given that mγ(i) = xγ [i] for inductive hypothesis, and the firing speeds

f(pγ ,tj)(s) and g(tj ,pγ)(s) have been defined by the procedure 4.5.3 as

f(pγ ,tj)(s) = −ϕj(s) · aγ,j and g(tj ,pγ)(s) = ϕj(s) · aγ,j
for γ = 1, . . . , |X| and j = 1, . . . , |R|, the comparison between Equations (4.22)
and (4.23) shows the equivalence between the evolution of each substance xγ and
the related place pγ .

Inductive step for parameters. Parameters vγ , with γ = 1, . . . , |V |, evolve in M
according to their regulation functions:

vγ [i+ 1] = hγ(qi). (4.24)

The evolution of the related places p|X|+γ is still computed by the instruc-
tions 5-12 of the HFPN algorithm (Table 4.3) because only continuous tran-
sitions, having identically true conditions, are involved. Instruction 5 initializes
m|X|+γ(i + 1) with m|X|+γ(i) and the for cycle at the instructions 6-12 update
m|X|+γ(i + 1) by the amounts computed by firing speeds f(p|X|+γ ,t|R|+γ)(si) and
g(t|R|+|V |+γ ,p|X|+γ)(si). They are designed by the mapping procedure 4.5.3 to re-
move the current place content m|X|+γ(i), and to add the next value of vγ , namely
hγ(qi). Since SI = 1, the new amount of p|X|+γ is:

m|X|+γ(i+ 1) = m|X|+γ(i)− f(p|X|+γ ,t|R|+γ)(si) + g(t|R|+|V |+γ ,p|X|+γ)(si)

= hγ(si) (4.25)

which is identical to the value of vγ [i+ 1] computed by Equation (4.24).

�

4.5.4 The lac operon gene regulatory mechanism and glycolytic
pathway

Glycolytic pathway is the network by which some organisms obtain carbon from
glucose. The E. coli bacterium can synthesize carbon from glucose and lactose. If
the bacterium grows in an environment with both glucose and lactose, then it con-
sumes glucose, but if the environment contains only lactose, then E. coli synthesizes
special enzymes that metabolize lactose by transforming it into glucose [4, 53].

A specific regulation mechanism placed in the lac operon allows the expression
of the genes for each of these situations. Figure 4.6 shows the dual control of
lac operon (represented by the horizontal line) along which i) gene I produces
a repressor protein at a constant rate, ii) the promoter region allows the RNA
polymerase to trigger for the operon transcription, iii) the operator region matches
with the repressor protein to inhibit the transcription, and iv) the Z, Y and A
genes produce the enzymes for the synthesis of glucose from lactose inside the
cell [154].

Main elements. The main substances involved in the pathway (and reported
in Figure 4.6) are lac repressor, allolactose, catabolite gene activator protein
(CAP), cyclic AMP (cAMP) and β-galactosidase (LacZ protein).
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Fig. 4.6. The regulatory mechanism of glycolytic pathway in E. Coli [154].

Process description. In presence of glucose or in absence of lactose the
operon transcription does not start, as the two control mechanisms described
in the following allow the lac operon transcription (and the consequent glucose
production) only in presence of lactose or absence of glucose.

The presence of glucose in the environment decreases the concentration of
cAMP which no longer binds with CAP, while the absence of the gene activator
CAP-cAMP turns off the operon transcription. The glucose decreasing enhances
the concentration of cAMP, which promotes the operon activation by binding to
CAP. The transcription of genes Z, Y, A starts only if the repressor protein is re-
moved from the operator region, and this takes place only when lactose increases,
producing the allolactose protein which binds to the repressor by removing it from
the DNA. Operon genes produce both the β-galactosidase permease (LacY pro-
tein) and the β-galactosidase (LacZ protein) which allow, respectively, the lactose
recruitment and its transformation to glucose, in order to keep on the glycolysis.
Finally, glycolysis pathway breaks down the glucose by means of enzymes while
releasing energy and pyruvic acid.

The pathway described above was modeled first by traditional Petri nets [189]
and recently by means of HFPNs [53, 154]. The HFPN of Figure 4.8 has been
designed in [53], where every substance has been modeled by a place and every
chemical reaction by a transition with firing speeds and firing conditions (Figure
4.7).

This HFPN has been mapped, by the HFPN-to-MP mapping procedure, to
the MP system of Figure 4.9, which resulted to have an equivalent dynamics.
MP dynamics was computed by the simulator MetaPlab [34, 146, 241], while the
software Cell IllustratorTM [164,237] has been employed to compute the dynamics
of the HFPN. A detailed description of the HFPN model and a complete analysis
of its dynamics are proposed in [53].

The temporal evolutions of the two models have been compared by the six case
studies considered in [53] (wild type, lacZ−, lacY −, LacI−, lacIs and lacI−d) and
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Fig. 4.7. A sketch of the modeling process by HFPN [154].

the equivalent results of Figures 4.10 and 4.11 have been achieved. Each column
shows the dynamics of five substances (i.e., lactose outside the cell, lactose inside
the cell, glucose, LacZ protein and LacY protein) for a specific case study. Figure
4.10 displays the results achieved for the HFPN dynamics, while Figure 4.11 is
related to the equivalent MP dynamics.

“Wild type”, showed in the first columns, represents the healthy case. It starts
with the degradation of the glucose by the glycolytic pathway, finally allowing
the lactose homing and its transformation to glucose. In this way, the lactose
outside the cell decreases and the lactose inside the cell increases together with
the glucose concentration which re-activates the glycolytic pathway. In the second
columns, lacZ− is a mutant which disables the transformation of lactose in glucose.
To perform this test the reaction (transition) involved in the translation of β-
galactosidase has been deleted from the MP system (HFPN), thus, the lactose
enters the cell but it is not transformed into glucose. The glycolytic pathway is
not re-activated and the operon transcription keeps on producing a great amount
of LacY protein. The lacY − mutation disables the capability of the cell to recruit
lactose from the environment. The third columns in both the figures show that
LacZ starts to grow when glucose is finishing, while LacY remains absent because
the mutation inhibits the LacY mRNA transcription.

Figures 4.10 and 4.11 show equivalent results also for lac repressor mutants.
In the case study of lacI− mutant, the repressor function is disabled and the Lac
operon transcription keeps on even in absence of glucose and lactose. The be-
havior of lacI−d mutant, is similar to lacI−, indeed in both cases the repressor
inhibition forces the LacZ and LacY production, even after the complete consump-
tion of lactose, leading to a great amount of these proteins. Finally, lacIs, in the
fifth column, is a mutant for which the lac operon transcription is disabled, thus
preventing the synthesis of glucose from lactose. The graphical results show that
lactose, LacZ and LacY are just slightly degraded while glucose is not reproduced
after its termination.
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Fig. 4.8. The lac operon gene regulatory mechanism and glycolytic pathway [154] mod-
eled by HFPN. The picture has been obtained by the graphical user interface of the
software Cell IllustratorTM .

4.6 Flux discovery: the metabolic log-gain theory

MP systems proved to be relevant in the analysis of metabolic processes, since they
enable to simulate pathway behaviors under different environmental conditions and
to understand internal mechanisms of biological systems. However, a key problem
of MP modeling concerns models design. In order to generate a new MP model of
a biochemical system we basically need to know: i) the substance types and the
parameters involved in the process (i.e., sets X and V ), ii) the reactions occurring
among substance types (i.e., set R and stoichiometric matrix A), iii) the flux of
matter transformed by each reaction during the system evolution (i.e., set Φ). Even
if substance types, parameters, and reactions are often available in the literature,
the microscopic nature of chemical elements, their huge amount in real systems and
their complex interactions make it difficult to measure reaction fluxes. The log-gain
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Fig. 4.9. The lac operon gene regulatory mechanism and glycolytic pathway modeled
by MP systems (figure from [31] with permission). The network has been mapped from
the HFPN of Figure 4.8 by the HFPN-to-MP mapping procedure. An enlarged version
of this picture is published at the web page [153].

theory1 [140–142] is a tool for deducing fluxes, within an acceptable approximation,
from observed time evolutions of the system. In this context, to “observe” time
evolutions means to measure, with a sufficient accuracy, the (molar) quantities of
all different kinds of molecules and the values of parameters over a sequence of
time instants.

Nowadays biologists have several high-throughput experimental techniques able
to provide time-series of substance quantities and chemo-physical parameters [133,
233]. The theoretical framework provided by the log-gain theory, based on some
acknowledged biological principles, aims to interpret this huge amount of data
and to employ them into MP models for regulation functions synthesis. In fact,
two main steps have to be performed in order to infer flux regulation functions
from experimental data: i) to compute flux time-series from observed substance
and parameter time-series, ii) to synthesize regulation functions from substance,

1 Notice that the term “log-gain” is due to the fact that in differential notation (with
respect to the time) the relative variation of a value, i.e., ∆(x)/x becomes dx

dt
/x, which

is the same as d(lgx)
dt

.
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Fig. 4.10. HFPN simulation results of the lac operon gene regulatory mechanism and
glycolytic pathway described in [53]. The wild type column describes the evolution of
lactose outside of the cell, lactose inside of the cell, glucose, LacZ and LacY proteins in
a healthy cell. The other columns plot the temporal evolutions of the same substances
for mutants lacZ−, lacY −, lacI−, lacIs and lacI−d.
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Fig. 4.11. MP systems simulation results of the lac operon gene regulatory mechanism
and glycolytic pathway (figure from [31] with permission). The wild type column describes
the evolution of lactose outside of the cell, lactose inside of the cell, glucose, LacZ and
LacY proteins in a healthy cell. Subsequent columns describe the temporal evolutions of
the same substances for mutants lacZ−, lacY −, lacI−, lacIs and lacI−d. An enlarged
version of this picture is published at the web page [153].
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parameter and flux time-series. Specifically, the log-gain theory supports the first
step by deducing the time-series of flux values from the corresponding time-series
of substances and parameters of an observed dynamics. After this first step a
regression technique is needed to compute sound flux regulation functions from
flux time-series. In the following we report the main notions of the log-gain theory,
while Chapter 5 collects some original results about the synthesis of regulation
functions by neural networks and other regression techniques.

Let us consider the problem of flux discovery in a very simple MPR system
called Sirius [140,142]. This model does not have any biological counterpart but it
is interesting as well because of the oscillations it generates when specific regulation
functions are employed. As displayed in Figure 4.12, Sirius has three substances, A,
B and C, five reactions R1, . . . , R5. It generates the oscillatory dynamics reported
at the bottom of the same figure when reaction maps of Table 4.4 are employed
with inertia maps ψa(q) = ψb(q) = ψc(q) = 100 and initial state a[0] = 100, b[0] =
100, c[0] = 0.

Reactions Reaction maps
r1 : a→ aa f1(q) = k1
r2 : a→ b f2(q) = k2 · c
r3 : b→ λ f3(q) = k3
r4 : a→ c f4(q) = k4 · b
r5 : c→ λ f5(q) = k5

Table 4.4. Sirius’s reactions and reaction maps, where k1 = k3 = k5 = 4, k2 = k4 = 0.02.

Sirius’ differential formulation, according to the MP-ODE transformation de-
scribed in Section 4.4, is given by the following differential equation system:

da

dt
= k1a− k2ca− k4ba

db

dt
= k2ac− k3b (4.26)

dc

dt
= k4ab− k5c.

Now, if we suppose to observe the dynamics δ(i) of the system for t steps, we
achieve a set of vectors {(a[i], b[i], c[i]) | i = 0, . . . , t}, where a[i], b[i], c[i] are
the quantities (expressed in moles) of substances a, b, c, respectively, at time
i = 0, . . . , t. From the stoichiometry of the system we know that, at each step,
substance a is produced by the reaction r1, while it is consumed by reactions r2
and r4; substance b is produced by reaction r2 and it is consumed by reaction
r3; finally, substance c is produced by reaction r4 and it is consumed by reaction
r5. Accordingly, considering the transition between two consecutive instants i and
i+1 we get the following system of equations, we call SD[i] (Substance Differences
at step i):
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Fig. 4.12. On top: Sirius’ MP graph. At the bottom: Sirius’ dynamics

a[i+ 1]− a[i] = u1[i]− u2[i]− u4[i]

b[i+ 1]− b[i] = u2[i]− u3[i] (4.27)

c[i+ 1]− c[i] = u4[i]− u5[i]

where each ur[i], r = 1, . . . , 5, represents the flux of reaction r at step i, namely,
ur[i] = ϕr(δ(i)). In order to solve the problem of flux discovery we should compute
fluxes ur[i], r = 1, . . . , 5, for i = 0, . . . , t, but the system SD[i] does not permit to
do it, since it has three equations (assuming them to be linearly independent) and
five variables. In general, whenever the maximal rank of the system SD[i] is lesser
than the number of reactions, the equation system SD[i] becomes indeterminate
and it needs more constraints in order to be solved. According to the log-gain
theory, this issue can be overtaken by adding new equations based on a general-
ization of the allometric principle [236]. It is a mathematical law, introduced by
L. von Bertalanffy, which states that a specific ratio holds between the relative
variations of two related biological parameters (e.g., the mass of an organism and
its superficial area). This principle seems a general property of living organisms
which enables them to keep basic equilibria underlying their internal organization.
As reported in [236], many empirical laws on metabolism are instances of allome-
try and also the abundance of power laws in biological systems is related to this
principle [140, 142]. Therefore, the application of allometric constraints deriving
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from the allometric principle to the equation system SD[i] seems to make sense in
the perspective of identifying a biochemically meaningful solution of the system.

The log-gain principle, formally described below, constrains the relative vari-
ation of each flux, during the step i, to be a linear combination of the relative
variation of some substances and parameters along the same step. In the follow-
ing, given a dynamics δ of an MP system, we will use the simplified notation, for
i ∈ N, r ∈ R, and w ∈ X ∪ V :

ur[i] = ϕr(δ(i)),

w[i] = (δ(i))(w).

Principle 1 (Log-gain [142]) For i ∈ N and r ∈ R, let us call

Lg(ur[i]) = (ur[i+ 1]− ur[i])/ur[i]

the log-gain of the flux unit ur at the step i, and analogously,

Lg(w[i]) = (w[i+ 1]− w[i])/w[i]

the log-gain of the substance or parameter w at step i. There exists a subset Tr
of X ∪ V of elements called (log-gain) tuners of r such that Lg(ur[i]) is a linear
combination, in a unique way, of the tuners of r:

Lg(ur[i]) =
∑
w∈Tr

pr,wLg(w[i]). (4.28)

In order to understand this principle in action, let us apply it to Sirius. We firstly
identify a set of tuners for each reaction, say, the reactants of the reaction plus
the arguments of its flux regulation function, i.e., T1 = {a}, T2 = {a, c}, T3 =
{b}, T4 = {a, b}, T5 = {c}. Afterward, we write the Equation 4.28 for every reaction
r1, . . . , r5 in order to generate the following system of equations, we call log-gain
module LG[i]:

Lg(u1[i]) = p1Lg(a[i])

Lg(u2[i]) = p2Lg(a[i]) + p3Lg(c[i])

Lg(u3[i]) = p4Lg(b[i]) (4.29)

Lg(u4[i]) = p5Lg(a[i]) + p6Lg(b[i])

Lg(u5[i]) = p7Lg(c[i])

Now, putting together the systems 4.27 and 4.29, at step i+1 and i, respectively,
we obtain the observation log-gain module at step i, we indicate by LG[i]+SD[i+1].
If we consider this module at step 0 and we assume to know the vector U [0] =
(u1[0], u2[0], u3[0], u4[0], u5[0]) (some methods for discovering it have been hinted
in [72, 140, 168]), then we achieve a system of 8 equations and 12 variables (i.e.,
5 fluxes at time i=1 and 7 log-gain coefficients p1, . . . , p7). Moreover, let us set to
1 the log-gain coefficients while adding an offset coefficient pr to each equation
of LG[i], which accounts the error introduced by setting log-gain coefficients to
1. The equation system we get in this way has still 8 equations, but the number
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of its variables is 10, since 7 log-gain coefficients have been set to 1 and 5 offset
coefficients have been introduced, decreasing the total number of variables by two.
The equation system obtained in this way is called offset log-gain module, (OLG[i])
and it can be determined according to the following principle.

Principle 2 (Offset log-gain [142]) There exists a subset Tr of X ∪ V of ele-
ments called (log-gain) tuners of r and a unique value pr, called offset log-gain,
such that

Lg(ur[i]) =
∑
w∈Tr

Lg(w[i]) + pr. (4.30)

The offset log-gain module has always n+m equations and 2m unknown vari-
ables, but in the following we show that the number of variables can be decreased
to n + m, obtaining a univocally solvable equation system [142]. In fact, by con-
sidering the stoichiometric module SD[i + 1], we observe that the sum of offset
coefficients of reactions consuming or producing a given substance x is constrained
to be equal to a fixed value. Let us consider, for instance, the case of Sirius, wherein
the module SD[i+ 1] is:

a[i+ 2]− a[i+ 1] = u1[i+ 1]− u2[i+ 1]− u4[i+ 1]

b[i+ 2]− b[i+ 1] = u2[i+ 1]− u3[i+ 1] (4.31)

c[i+ 2]− c[i+ 1] = u4[i+ 1]− u5[i+ 1].

It can be rewritten, in terms of (offset) log-gain, as:

a[i+ 1]Lg(a[i+ 1])− u1[i] + u2[i] + u4[i] =

= u1[i]Lg(u1[i])− u2[i]Lg(u2[i])− u4[i]Lg(u4[i])

b[i+ 1]Lg(b[i+ 1])− u2[i] + u3[i] =

= u2[i]Lg(u2[i])− u3[i]Lg(u3[i]) (4.32)

c[i+ 1]Lg(c[i+ 1])− u4[i] + u5[i] =

= u4[i]Lg(u4[i])− u5[i]Lg(u5[i])

and distinguishing, in the log-gain offset linear combination, the non-offset part

Lgur [i] =
∑
w∈Tr

Lg(w[i]) (4.33)

we can easily obtain the following form:

a[i+ 1]Lg(a[i+ 1])− u1[i] + u2[i] + u4[i] =

= u1[i]Lgu1
[i]− u2[i]Lgu2

[i]− u4[i]Lgu4
[i] + p1 − p2 − p4

b[i+ 1]Lg(b[i+ 1])− u2[i] + u3[i] =

= u2[i]Lgu2
[i]− u3[i]Lgu3

[i] + p2 − p3 (4.34)

c[i+ 1]Lg(c[i+ 1])− u4[i] + u5[i] =

= u4[i]Lg(u4[i])− u5[i]Lg(u5[i]) + p4 − p5

that is, for suitable linear operators K1,K2,K3, H1, H2, H3:
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K1(Lgu1
[i], Lgu2

[i], Lgu4
[i]) = H1(p1 − p2 − p4)

K2(Lgu2
[i], Lgu3

[i]) = H2(p2 − p3) (4.35)

K3(Lgu4
[i], Lgu5

[i]) = H3(p4 − p5).

From 4.35 it is clear that, if we set to 0 the offset coefficients of reactions r2
and r4, namely, p2 and p4, then the log-gain gap can be covered by the offset of
reaction r1, which is p1, in the first equation. Analogously, in the second and third
equations, respectively, offsets p3 and p5 cover the the log-gain gap since p2 and
p4 have been set to 0. Therefore, the number of log-gain offsets has been reduced
from 5 (the number of reactions) to 3 (the number of substances), and in the final
system OLG[i]+SD[i+1] the number of equations (i.e., n+m) equals the number
of variables. This reduction is possible since, at each step, the sum of the fluxes of
all the reactions competing for a substance are constrained to algebraically equate
the total variation of the substance itself. In this way, only one offset can be chosen
for any set of competing reactions, that is, one offset for any substance. The set
R0 of reactions whose offset coefficients are not null, is said to have the covering
log-gain property. This property and the procedure of offset log-gain adjustment,
formerly applied to Sirius, have been formally generalized to any offset log-gain
module in [142].

In conclusion, the log-gain theory enables to compute flux vectors U [1], U [2], . . . ,
U [t−1], which yield an observed dynamics δ(0), δ(1), δ(2), . . . , δ(t), given i) a vec-
tor U [0] of initial fluxes, ii) a set R0 satisfying the covering log-gain property, and
iii) a set Tr of tuners for each reaction r ∈ R. Some preliminary methods for sys-
tematically discovering U [0] and R0 have been outlined in [140, 168] and [72, 142]
respectively. They represent crucial topics of our current research, together with
tuners discovery.

Once flux vectors U [i], i = 0, . . . , t − 1 have been computed, the last task
remaining to be performed concerns the synthesis of flux regulation functions
ϕr(q), r = 1, . . . ,m, which fit these flux data. The problem requires regression
tools able to deduce functions representing complex biochemical reaction mecha-
nisms from time-series. In Chapter 5 we propose some original methodologies for
flux regulation functions and tuners discovery. All of them have been also imple-
mented by software tools for MetaPlab, as described in Chapter 6.
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5

Statistical and optimization perspectives in
MP modeling

Models of biological systems are becoming increasingly crucial for tackling the
current challenges of biology and medicine. The aim of these tools is to provide
new insight on biological processes by abstracting their main features from sets
of observations. Many different approaches have been employed so far in order
to develop effective models, but complex systems usually show different charac-
teristics when viewed from different “distances”, and the majority of models now
available seem to be either very low level (too detailed), or very high level (too
coarse grain). Better understanding [233] and synthesis [10] of biological systems
probably need an intermediate level of abstraction. According to the approach of
executable biology [66] such a kind of abstraction could be achieved by compu-
tational models, namely a new class of models that resemble computer programs
and mimic natural phenomena by executing algorithm instructions, rather than
using computer power to analyze mathematical relationships among the elements
of biological systems.

As seen in Chapter 4, metabolic P systems suggest a deterministic strat-
egy based on the generalization of chemical laws for computing the dynamics
of metabolic phenomena [140, 144, 145]. Being intrinsically discrete and based on
string rewriting, MP models are able to give a different viewpoint on biological
processes respect to ODE models.

The difficulty of MP modeling concerns the synthesis of MP regulation func-
tions from experimental data. Nowadays biologists have several high and low-
throughput experimental techniques able to provide time series of substance quan-
tities and chemo-physical parameters [26, 133, 233], but this huge amount of data
needs ad-hoc mathematical methodologies in order to be interpreted and employed
into MP models for regulation functions. The log-gain theory [142] supports the
first step of the regulation function synthesis by deducing the time series of flux
values from the corresponding time series of substances and parameters of an ob-
served dynamics. After this first step a regression technique is needed to compute
sound flux regulation functions from flux time series. The choice of such a re-
gression method deeply depends on the knowledge one has about the form of the
expected flux regulation function.

In general, if the function is known to be a linear combination of its numerical
parameters then linear regression analysis is used [1,94], i.e., least squares, while if
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the function is a nonlinear combination of its parameters then nonlinear regression
analysis is employed [211]. These two kinds of regression are known as parametric
regression since they estimate a set of parameters allowing the function to fit a data
set. When, conversely, the functional form is unknown, it cannot be parameterised
in terms of any basis function. In this case a smooth function can be estimated
by using nonparametric regression [91]. A preselected function form sometimes
might be too restricted or too low-dimensional to fit unexpected features, whereas
the nonparametric smoothing approach is a flexible tool for analyzing unknown
regression relationships. On the other hand, nonparametric regression usually re-
quires more complex computations and larger number of samples than parametric
regression because data must supply the function form as well as the function
parameters.

In Section 5.1 we introduce the inverse-engineering problem of the synthesis of
MP flux regulation functions from observed data, and we present four mathemat-
ical representations for these functions. Sections 5.2 and 5.3 are dedicated to the
definition of two regression techniques employed for solving our problem, namely,
linear regression and artificial neural networks. For both the methodologies, spe-
cific optimization techniques are described for the estimation of parameters which
make functions fit observed data. In Section 5.4 we propose a case study in which
flux regulation functions of the mitotic cycle in amphibian embryos have been syn-
thesized by neural networks. The learning technique employed in this case study
has been extended in Section 5.5 to allow also an automatic selection of the vari-
ables, i.e., substances and parameters, required by each regulation functions. The
chapter ends with the presentation, in Section 5.6, of a complete pipeline coping
with the process of flux regulation function synthesis, from data preparation to
model validation.

5.1 Synthesis of MP flux regulation maps from data: an
inverse-engineering problem

One of the fundamental targets of a mathematical model is to contribute towards
the understanding of a real-world process, in order to forecast and control its future
behavior. As for metabolic processes, this target is usually achieved when all the
substances involved in a system are detected and the typology of their interactions,
i.e., the reactions occurring in the process and their rates, are identified. Let us
suppose to know all the substances and the reactions involved in a biological
process. In this case the transformation rate of every reaction is needed to forecast
the dynamics of the system. MPF systems define the rate of each reaction r ∈ R,
which depends on the state q ∈ Q of the system, by means of a flux regulation
map ϕr(q) (see Definition 6).

Two main steps have to be performed in order to infer flux regulation functions
from experimental data, as shown in Figure 5.1: i) to compute the flux time series
which yield the observed substance and parameter time series, ii) to synthesize
regulation functions from substance, parameter and flux time series. In the follow-
ing we analyze these two steps.
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Fig. 5.1. Regulation function synthesis is performed by two main steps: i) the application
of the log-gain principle (the box on top-left) to compute flux time series from substance
and parameter time series, ii) the employment of regression analysis (the box on top-
right) to generate regulation functions from flux time series and further constraints.

Flux time series computation. One way to compute flux time series from sub-
stance time series relies on the log-gain theory [142]. For each step i of substance
time series, a system SD[i] of n equations and m variables, i.e., fluxes U [i], is
initially generated from the stoichiometric matrix A and the substance values at
step i. Readers can refer to [142] and to Chapter 4 for a detailed description of this
equation system. If the number of linearly independent columns of A (reactions)
is less than or equal to the number of linearly independent rows (substances) then
the number of variables of SD[i] is less than or equal to the number of equations.
In this case flux time series at step i can be computed from substance time series
at step i by just solving the equation system SD[i], which has a unique solution.
If, on the other hand, the number of lineraly independent columns of A is greater
than the number of linearly independent rows, then the equation system is inde-
terminate and it needs more constraints in order to be solved. According to the
log-gain theory, this problem can be overtaken by adding new equations based
on a sophisticated generalization of the allometric principle [236], a mathemati-
cal law introduced by L. von Bertalanffy describing relationship among biological
attributes. This new method integrates some natural proportions among system
attributes and specific statistical analysis of the system dynamics in order to gen-
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erate an univocally solvable equation system.

Regulation function synthesis. For each flux time series computed at the pre-
vious step, a function which interpolates these data points has to be synthesized
by means of suitable regression techniques. The following constraints should be
also considered in order to get effective and biologically-significant functions:

1. ϕr(δ(i)) ≥ 0,∀i ∈ N,∀r ∈ R. Regulation functions should be nonnegative since
they represent reaction rates.

2. δ(i)|X ≥ 0,∀i ∈ N. Substance quantities should keep nonnegative during the
dynamic computation.

3. Function form. Some knowledge about reactions can be exploited in order to
constraint the form of regulation functions. For instance, if it is known that
a regulation function ϕr(q) is a linear combination of some substances and
parameters, then linear regression analysis should be employed to synthesize
function parameters rather than using a nonparametric regression technique
which generates both form and parameters of the function from scratch.

The integration of such constraints into a classical regression technique is often
a nontrivial process. Moreover, real-world biological problems often require non-
linear regression techniques, rather than linear methodologies, in order to capture
all the features of complex dynamics. In these cases, often no closed-form ex-
pression exists for the best-fitting parameters, as there exists for linear regression,
thus numerical optimization algorithms [27] are usually employed to determine the
best-fitting parameters. Optimization techniques make use of evaluation functions
that express the quality of solutions. For instance, in the case of MP regulation
function synthesis, an evaluation function should estimate the quality of a set of
parameters to be used by the target regulation function. In general, the optimiza-
tion process aims at finding the solution which maximizes the evaluation function
and these functions usually rate candidates according to their error (in our case
a “distance” between known flux samples and the regulation function), but even
further constraints can be rated. Notice that, complex evaluation functions may
be nondifferentiable and have many local optima, thus several different techniques
may be used to climb that functions up to a global optima without getting stuck
into local optima.

5.1.1 Mathematical representations of complex biochemical reaction
mechanisms

One of the key issues of regulation maps generation concerns the choice of function
forms able to represent the biochemical mechanisms of the reactions they regulate.
Indeed, only using proper regulation function forms the final MP model will be
suited to interpret the phenomenon under investigation and to forecast its future
behaviors. In this subsection we briefly review some mathematical techniques for
representing biochemical reactions.

We firstly notice that, the choice of a correct form for a flux regulation function
deeply depends on the abstraction level of the entire model. This is because chem-
ical reactions usually involve many elementary steps, namely, steps that cannot be
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decomposed to reveal reaction intermediates. But given a set of concentration time
series observed with a certain timescale, only those reaction steps which take place
on the observation timescale can be “viewed” in the data. Accordingly, flux regu-
lation functions should summarize the reaction steps “visible” at the observation
timescale. Depending on the timescale of the available data and, consequently, on
the observation level of the model, different approaches to deriving kinetic func-
tions are commonly adopted, such as, mass action kinetics, the Michaelis-Menten
equation and allosteric kinetics, the power-law approximation and nonlinear kinet-
ics approximations [46]. In the following we briefly review these approaches and
we present some advantages and disadvantages of using each mathematical form
to represent biochemical transformation processes. From the first representation,
based on the mass action law, to the last one, involving nonlinear function forms,
the degree of abstraction increases, therefore the first representations should be
used when one needs regulation functions which consider low-level details of the
biochemical transformation process, while the last one should be employed when
one wants to capture the logic of a biochemical transformation process from a high
abstraction level.

The law of mass action. Often used with ODE systems, the law of mass action
enables to compute the (instantaneous) rate of elementary reactions supposing
that it is proportional to the product of the concentrations of the species reacting
in the elementary process. This law has been postulated more than a century ago
to describe observations about the rate of elementary chemical reactions, thus it
is empirical in its origin, but it has been shown to be consistent with results in
non-equilibrium thermodynamics [115].

The rate of change Fi,j of a specie xi due to a reaction rj satisfying the law of
mass action has the form [46]:

Fi,j = (|βrj |xi − |αrj |xi)kj
n∏
l=1

x
|αrj |xi
l i = 1, . . . , n, j = 1, . . . ,m, (5.1)

where |αrj |xi and |βrj |xi are the stoichiometric coefficients for species i appearing
as a reactant and as a product, respectively, in the j-th reaction, kj is a rate
constant specific for reaction rj , and xi is the concentration of the i-th specie.

This function form is consistent for several kinds of elementary reactions but it
has two main drawbacks: first, the rate constant is sensible to reaction conditions
(temperature, pH, etc.), thus data must be collected by preserving these conditions
to avoid higher-order complexities, and second, this law could be not satisfied by
“complex” reactions, namely, reactions that summarize more than a single ele-
mentary reaction. The second issue is much related to MP systems, since they aim
to model biochemical systems from a discrete-time and macroscopic perspective.
MP reactions can thus represent many elementary reactions of the real system,
and fluxes must take into account all the amount of matter transformed, by MP
reactions, during a discrete time interval. Consequently, MP system reactions are
often complex and they require more general function forms for regulating their
fluxes.
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Michaelis-Menten equation. One way to represent enzyme-catalyzed reac-
tions involves the description of all the elementary steps of the enzyme-substrate
association-dissociation, isomerization of intermediates and formation of products.
However, such a representation often brings to highly nonlinear models with many
kinetic and stoichiometric parameters, which are typically stiff, computationally
hard to solve numerically and have multiple timescales [46].

A simplified kinetic function for enzymatic reactions, however, can be obtained
if the overall reaction is studied under the quasi-steady-state conditions. The ap-
proximated function is called Michaelis-Menten equation and has the following
form:

d[P ]

dt
= −d[S]

dt
=

vmax[S]

KM + [S]′
(5.2)

where Vmax and KM are, respectively, the maximum rate and the so-called
Michaelis constant, [P ] represents the product concentration, [S] the substrate

concentration of the enzymatic reaction S+E 
k1
k−1

C
k2→ E+P , E is an enzyme,

and C the intermediate enzyme-substrate complex.
This is an example in which all the elementary steps of a reaction (i.e., the

enzyme-catalyzed reaction) have been embedded in a single complex reaction, and
an approximated kinetic function (i.e., Equation (5.2)), has been employed to com-
pute its dynamics. This is an interesting approach but it can still be used only
with specific reaction types and in presence of particular environmental conditions.
In order to overcome these issues, alternative approaches have been developed for
modeling reactions following non-ideal kinetics.

The power law approximation: S-systems. In 1969 Savageau [205–207] pro-
posed a new approach which, in contrast to the previous ones, assumes that the
rate of change of a state variable is equal to the difference of two products of
variables raised to non-integer powers [46], that is:

dxi
dt

= αi

n∏
j=1

x
gi,j
j − βi

n∏
j=1

x
hi,j
j i = 1, . . . , n, (5.3)

where αi ∈ R+ is a rate constant pertaining to all reactions which produce sub-
stance xi, βi ∈ R+ is a rate constant pertaining to all reactions which consume
substance xi, and powers gi,j ∈ R and hi,j ∈ R are kinetic orders which account
the influence of substance xj to the transformation of substance xi. These mod-
els, called synergistic-systems (S-systems) and already presented in Chapter 2, are
based less on physical principles and more on mathematical concepts, and they are
achieved by linearizing enzymes kinetic rate expressions in terms of concentrations
or in terms of reaction parameters. The idea here is to write the network reaction
rate Fi =

∑m
j=1 Fi,j for the i-th chemical specie (see Equation (5.1)) as a polyno-

mial or a rational function of concentrations xj , j = 1, . . . , n,, and then to take the
logarithmic transform and truncate a Taylor series expansion about an arbitrary
point at linear order. In this way we find the form of Equations (5.3) [46,205].

It is not always possible to pass from a general mass action or Michaelis-Menten
rate law to an equivalent S-system form since production and consumption terms
are not in general separable under this transformation. Moreover, we observe that,
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in contrast to the previous approaches, Equations (5.3) do not show the contri-
bution of each reaction in the computation of dxi

dt , thus hiding some aspects of
the system stoichiometry. S-systems can approximate many properties of reaction
kinetics but they fail to describe some important biochemical effects, such as sat-
uration and sigmoidicity [93]. For all the considerations outlined above, S-systems
seem to be appropriate whenever we need mathematical expressions able to ap-
proximate complex biochemical data without requiring a detailed understanding
of kinetics mechanisms [46].

Nonlinear forms. The most general way to model kinetic functions is represented
by nonlinear forms. Notice that, the term “nonlinear” is here referred to the use
of any kind of functions, such as, powers, polynomials, exponentials, logarithms,
and their linear or nonlinear combinations. However, in literature the term “linear
regression” is usually referred to the discovery of function coefficients occurring
linearly (i.e., not as exponential, powers, etc.) in a function. On the other hand
“nonlinear regression” is referred to techniques able to compute function coeffi-
cients occurring also as exponentials, powers and other nonlinear functions, or as
nonlinear combinations of these functions. The use of nonlinear forms is significant
in those cases wherein the real internal mechanisms of a reaction are unknown,
because of a lack of complete information or because the reaction actually includes
many elementary reactions. The use of global nonlinear forms provides a method
for establishing a mathematical description of the behavior of a biochemical re-
action, which is valid over a specific range of observed data. Typically for this
approach, the type of nonlinearity to be used is chosen empirically. Biochemical
reactions are constrained by the fundamental laws of chemistry and physics, and
so this is a good starting point for mathematical representation of reaction kinet-
ics. Employing these constraints to select function forms increases the likelihood
of obtaining an accurate mathematical representation of the underlying reaction
mechanism, by restricting the model class (the number of type of kinetic functions)
that may be used to describe the biochemical reaction. Once a good nonlinear form
has been selected, parameters are estimated in order to make the function fit ob-
served data. The amount of experimental data available, their timescale and the
complexity of the biochemical reaction under investigation are deciding factors
when selecting an appropriate nonlinear form [46]. However, the choice of a model
is somewhat arbitrary since different approaches better capture different features
of the observed data, and they represent the underlying hypothesis of a theory
more or less faithfully.

Multivariate polynomial models [1,46] are a restrictive class of functions, which
is frequently used in biochemical reaction analysis since, for instance, it can capture
the structure of equations deriving from mass action kinetics. According to this
approach a set of basis functions (monomials) involving substance concentrations,
parameter values, their powers and cross products, are summed together to obtain
a polynomial in which parameters enter linearly. This means that the model may
be fitted to data using least squares for computing a set of parameters minimizing
the sum of squared residuals. The main advantages of using this method are that
it is known to converge (via the Weierstrass approximation theorem), it is com-
putationally light, its statistical properties are well established and the achieved
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functions can be subsequently interpreted in terms of reaction mechanisms. How-
ever, when the nonlinearity of the kinetics is significant, multivariate polynomials
tend to assume high degrees and to employ many variables, thus limiting their
usefulness [192].

Artificial neural networks (ANNs) are an extremely flexible tool which may
be convenient in this case. Being nonlinear in their parameters, ANN models are
capable of approximating very complicated functions [24], which is useful in or-
der to approximate complex biochemical mechanisms or if the data set is of very
poor quality, so that only patterns and correlations in the data are sought. ANNs
are modular and parsimonious in their structure and they provide an accurate ap-
proximation of recorded time series, but a significant disadvantage (and a common
criticism) of their use is that the obtained models are often difficult to interpret
from a biochemical point of view. Moreover, to make an ANN fit a data set, a non-
linear minimization step must be accomplished, which is generally fraught with
many local minima in parameter space. For this reason, large data sets are usually
needed and, however, one cannot be certain that the function found during the
learning step is the best one for fitting observed data. As a consequence a large
amount of computational effort must be dedicated to this step to have good results.
Learning techniques include the iterative error backpropagation algorithm, or any
other general nonlinear optimization approach, such as the conjugate gradients,
simulated annealing [27, 176], genetic algorithms [97, 250] and other techniques
described in the following.

Nonlinear forms have been selected as the best way to represent MP flux reg-
ulation functions, since these functions must compute flux values by considering
the overall effects of complex regulation mechanisms occurring over discrete time
intervals. Moreover, such functions can sometimes include in their structure the
logic of some unknown parts of a the system under investigation. Other times they
can summarize complex regulation mechanisms involving many elementary reac-
tions, but in any case, their form must be sufficiently general to capture the logic
of a biochemical transformation process from a high abstraction level. We have
employed two kinds of nonlinear models, namely, polynomial models, introduced
in Section 5.2, and artificial neural networks, described in Section 5.3.

5.2 Regulation function synthesis by linear regression

Linear regression and multiple regression are both statistical methods for gener-
ating mathematical functions describing sets of data. Our aim is to infer, for each
reaction rj of an MP system, a function ϕrj (q) which regulates the reaction flux
depending on the system state q. Since we want to make these functions fit a
dataset of observations O = {(δoss(i), uossj [i]) | i = 0, . . . , t}, where δoss(i) is the
system state observed at time i and uossj [i] is the flux of reaction rj observed at
time i (these values are usually computed by the log-gain theory), linear regression
techniques represent proper tools for inferring our functions.

Our aim is to generate functions able to explain as much as possible about
the biochemical (reaction) process underlying observed data. However, due to the
uncertainty inherent in all real world situations, our functions will probably not
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explain everything, and some errors will certainly remain. They are due to un-
known outside factors that affect the process generating our data. The functions
we are looking for should capture the systematic behavior of the data, leaving
out the factors that are nonsystematic and cannot be foreseen, namely, the errors.
The final target is, thus, to break down the data into a nonrandom, systematic
component, described by a function, and a purely random component representing
the error [1] (as shown in Figure 5.2). Linear regression models assume that the
random errors, denoted by ε, are additive, normally distributed with mean of zero
and constant variance σ2, and they are independent of one another (Figure 5.3).

Fig. 5.2. Breaking down the data into a systematic component and a random component
by linear regression.

X

Y

Fig. 5.3. Linear regression assumptions [1].

In order to build a statistical model describing a certain dataset, some steps
have to be performed, as displayed in Figure 5.4. First, a specific function form is
defined. Then the parameters of the function are estimated from the dataset by
means of optimization techniques. Subsequently, residuals, i.e., the errors resulting
from the fit of the model to the data, are examined in order to quantify the
information in the data not explained by the model. If the residuals are found to
contain some nonrandom, systematic component, then the function form defined
at the first step has to be adjusted by incorporating this systematic component.
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Otherwise, the function achieved is employed for its intended purpose, which is
usually: variable prediction, variable control, or explanation of the relationships
among variables. We are interested in predicting flux values and in explaining the
biochemical mechanisms underlying flux regulation.

Fig. 5.4. Some basic steps for building a statistical model.

5.2.1 Simple linear regression

One of the simplest function forms which may be used for describing the sys-
tematic component of a dataset is the straight line. The relationship between an
independent variable X and a dependent variable Y is represented by the equation:

Y = β0 + β1X + ε, (5.4)

where the two parameters to be estimated are β0, i.e. the Y intercept, and β1, i.e.
the slope of the line, as shown in Figure 5.5.

In this model the nonrandom, systematic component is represented by the line,
while the purely random component is represented by the error term ε. If we adopt
such model to represent the relationships between an independent variable X and
a dependent variable Y , we obtain the equation

Ŷ = b0 + b1X, (5.5)

where Ŷ is the approximated value of Y (which does not consider the random
error ε), b0 and b1 are the estimators of the regression parameters β0 and β1,
computed from a dataset of experimental observations O = {(xoss[i], yoss[i]) | i =
0, . . . , t}. The method of least squares is used to compute the best linear unbiased
estimators of β0 and β1, which are the estimators that minimize the sum of square
error (SSE) between the straight line and the data points:

SSE =

t∑
i=0

(y[i]− ŷ[i])2 (5.6)
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Fig. 5.5. The main elements of a simple linear regression model [1].

Estimators b0 and b1 are computed by the following equations:

b1 =

∑t
i=0(x[i]− x̄)(y[i]− ȳ)∑t

i=0(x[i]− x̄)2
(5.7)

b0 = ȳ − b1x̄ (5.8)

where x̄ and ȳ are, respectively, the mean value of x and y in the dataset O.
If we apply a simple linear regression model to represent the relationships

between a flux time series uj [i], i = 1, . . . , t, and a substance time series xl[i], i =
1, . . . , t, we obtain a flux regulation function of the form

ϕj(xl) = b0 + b1xl. (5.9)

This form often results too weak to represent multiple regulations character-
izing real biochemical networks, thus in the following we present an extension of
linear regression which enables to consider functions of more than just one variable
instead of straight line functions.

5.2.2 Multiple linear regression

In [46], Crampin et al. show that multiple regression models often provide proper
mathematical descriptions of biochemical kinetics since, according to the Weier-
strass approximation theorem, their flexible polynomial form enables them to ap-
proximate, in principle, any function. A p-variable multiple regression model is an
extension of the simple linear regression model, having the following form:

Y = β0 + β1X1 + β2X2 + . . .+ βpXp + ε, (5.10)

where the regression surface Y (see Figure 5.6) is in general an hyperplane with
intercept β0 and slope parameters βi, i = 0, . . . , p.
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Fig. 5.6. The regression surface of a multiple regression model having two variables [1].

As for the simple linear regression model, we assume that the error terms ε
are normally distributed with mean zero and constant variance σ2, and they are
independent for each observation. In this case the method of least squares can be
applied to estimate parameters βi, i = 1, . . . , p. Let us assume, for instance, a
model having two variables:

Ŷ = b0 + b1X1 + b2X2. (5.11)

Estimators b0, b1 and b2 which minimize the square error between observation data
and regression surface can be computed by solving the following system of normal
equations [1]:

t∑
i=0

y[i] = (t+ 1) b0 + b1

t∑
i=0

x1[i] + b2

t∑
i=0

x2[i] (5.12)

t∑
i=0

x1[i]y[i] = b0

t∑
i=0

x1[i] + b1

t∑
i=0

x1[i]2 + b2

t∑
i=0

x1[i]x2[i] (5.13)

t∑
i=0

x2[i]y[i] = b0

t∑
i=0

x2[i] + b1

t∑
i=0

x1[i]x2[i] + b2

t∑
i=0

x2[i]2 (5.14)

where t is the number of samples in the observation dataset. This system can
be generalized to any number of variables, but we observe that its solvability is
ensured only if the variables are independent one another (so that the determinant
of the system matrix is not null). In practice, this condition is often difficult to
ensure since explanatory variables are often interrelated in some way.

A key problem of multiple regression models concerns the selection of a proper
set of explanatory variables. Although it seems logical to incorporate as many
variables as possible to obtain the maximum prediction power, this approach has
many limitations. Section 5.5 focuses on this problem and presents some techniques
of variable selection that have been employed for the synthesis of flux regulation
models.

For what said so far, we assume that an MP flux regulation function ϕr can
be expressed as a weighted sum of p linearly independent basis functions ψj , with
p ≤ l:
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ϕr(q) =

p∑
j=1

bjψj(q) (5.15)

where each basis function is a monomial including a component of the system
state (a substance or a parameter), their powers or cross products between state
components. From a biological point of view, each weight bj represents the influence
of the basis ψj on the flux function ϕr, with a positive or negative sign indicating
activation or repression.

This approach has been applied for the first time to MP systems in [148,149],
where the flux regulation functions of a Non Photochemical Quenching model
have been generated by means of multiple regression. The polynomials achieved in
this way have quite simple forms which can be also analyzed from a biochemical
point of view in order to understand the contribution of each substance in flux
regulation. Notice that, in [148,149] polynomial’s variables, i.e. substance and pa-
rameters, have been manually chosen according with the knowledge of the process
owned by modelers and acquired from the literature. However, the process of vari-
able selection can be automate by using variable selection techniques presented in
Section 5.5. In Section 5.6 we present some results achieved by employing these
techniques on the NPQ and the mitotic cycle models.

5.3 Regulation function synthesis by optimized neural
networks

The problem of MP regulation function synthesis is here tackled in the very gen-
eral case in which the form of these functions is very complex and involves several
nonlinearities. In this case linear regression models tend to assume high degrees
and to employ many variables, therefore their usefulness and applicability are lim-
ited [192]. On the other hand, artificial neural networks (ANNs) [24] turn out to
be a convenient approach, because their modular structure enable them to pro-
vide accurate approximations of very general functions just nonlinearly combining
simple seed functions.

The assumptions are the same as for linear regression, that is, given a set of
reactions r1, . . . , rm of an MP model, and given a time series of t+ 1 observations
for each substance, parameter and flux, we aim to synthesize a flux regulation
function ϕj(q), for each reaction rj , which fits the flux values observed for that
reaction rj . In the following we briefly introduce the main elements of ANNs, the
algorithms employed to train the networks with data, and finally we suggest two
possible ways to “connect” ANNs to MP systems [33].

5.3.1 The choice between linear and neural models

A preliminary evaluation of the regression complexity is very important for select-
ing the right regression model. We recommend to start with a linear model, i.e.,
a polynomial, since if it satisfies the performance requirements then it should be
adopted. The reason is that linear models are computationally easier than ANNs
and they have unique solutions which can be easily computed by the least square
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method. Moreover, linear models often have a simple (readable) form and their
statistical properties (i.e., statistical tests, confidence intervals, etc.) are founded
in a solid mathematical theory.

On the other hand, when the non-linearity of the regression is significant and
complex polynomials with many high-degree monomials are needed to fit the data,
neural networks become useful. With this approach, the higher modeling power
has, however, the cost of a higher model complexity and a computationally more
expensive procedure for computing the non-unique set of parameters that optimize
the model. Tuning ANN parameters involves, indeed, iterative optimization tech-
niques which require more time than least squares to find solutions. Furthermore,
these solutions could be local minima instead of a global minima, depending on
the starting point of the search.

Rivals and Personnaz [192] propose a strategy for choosing between polynomial
and neural models. In Figure 5.7 we report the flow chart of this strategy. When
the number of model input variables is large, say greater than 30, it is almost
impossible to cope with monomials of degrees larger than two, since the number of
possible monomials would be too high. In this case we try to generate a polynomial
of degree less or equal than two. Fortunately, cross-products of two variables are
often able to model interactions between systems variables, and squared terms
may represent nonlinearities. However, sometimes it happens that polynomials of
degree two are not enough powerful and they achieve bad performance. In that
case neural networks may be employed to find a better model. On the right side of
Figure 5.7, is represented the case in which the number of potentially significant
input variables is small, say less than 30. We therefore generate a multiple linear
model of (theoretically) any degree and then we check the performance and the
complexity of the model, namely, the number of monomials employed and their
degrees. If the performance is good and the complexity is acceptable in respect
to the purpose the model is built (i.e., the model is readable and allows some
understanding about the process being investigated) then the linear model is kept,
otherwise a neural model is generated.

5.3.2 Artificial neural networks

ANNs are a paradigm of information processing inspired by the networks of inter-
connected neurons constituting the biological nervous systems and, in particular,
by the brain. The key elements of this mathematical model are i) a set of pro-
cessing units, called neurons, computing activation functions, ii) a set of weighted
interconnections, called synapses, conveying information among neurons. ANNs
are usually depicted by graphs where nodes represent neurons and edges symbol-
ize synapses, as displayed in Figure 5.8. Every neuron uj (be careful not to confuse
neuron notation, i.e., uj , with flux values notation, i.e., uj [i]) computes its output
yj by means of the equation yj = f(

∑
i wjiyi), where f is the activation function

of neuron uj , yi is the output value of neuron ui and wji is a real number related to
the synapse which connects ui to uj . Activation functions are often nonlinear func-

tions, such as the logistic sigmoid, f(x) = 1
1+e−x , or tanh, f(x) = ex−e−x

ex+e−x , but also
other kind of function can be considered. Feed-forward neural networks have no
feedback loops, thus, neurons are usually arranged in layers, where the input-layer
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Fig. 5.7. A strategy for choosing between linear and neural models [192].

includes neurons receiving input from the environment, the output-layer contains
neurons returning output to the environment, and hidden layers include internal
neurons (see Figure 5.8).

The power of neural networks lies in their ability to represent both linear
and nonlinear relationships between a set of input variables and a set of output
variables, and in their ability to directly learn these relationships from the data
being modeled. This skill is achieved by representing functions of many variables
in terms of composition of nonlinear functions having a single variable. Many
studies focused on the representational capabilities of an ANN depending on the
number of neurons, the number of layers and the type of activation functions [24].
In particular, it has been proved [76] that networks having just one hidden layer
of sigmoid neurons are able to approximate any continuous functional mapping
if no limit is given on the number of hidden neurons. Accordingly, a regression
technique based on this model can, in principle, be employed even when the form
of the required function is completely unknown. Arbitrary network topologies can
be considered (not necessary having a simple layered structure), the only restriction
to be satisfied is that the topology must be feed-forward in order to ensure the
translation of the network into an explicit function.
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Fig. 5.8. On top: feed-forward neural network having four layers: an input layers with
four neurons, an output layer with four neurons and two hidden layers with, respec-
tively, four and two neurons. White circles represent bias neurons. At the bottom: the
computation performed by a single neuron (figure from [36] with permission).

5.3.3 Traditional and evolutionary optimization algorithms for
training ANNs

ANNs store knowledge within inter-neuron connection strengths, namely, synaptic
weights. The process of tuning these parameters is called training and it is per-
formed by learning algorithms, namely, optimization techniques that search for a
set of weights able to give to the network a behavior defined by a set of examples,
called training set (see Figure 5.9). The central goal in network training is not to
memorize the training data (memorization), but rather to model the underlying
generator of data (generalization) in order to get the best possible predictions for
the new values presented to the network after the training. This is particularly
important in systems and synthetic biology modeling as one is interested in com-
ing up with robust models that could predict, in silico, a large number of unseen
behaviors while accurately matching observed experimental behaviors. Generaliza-
tion can be achieved by choosing the right number of hidden neurons, and specially
by splitting the training set T into two subsets T1 and T2, and using the first one
as a normal training set and the second as a validation set, namely, a set of pat-
terns used to validate the network trained by T1. If the error is computed on the
validation set, rather than on the training set, the network tends to better fit new
inputs [24].
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Fig. 5.9. Learning algorithms tune ANN weights in order to make the network fit a
training set.

Learning algorithms can be roughly split in two main classes, i) gradient-based
techniques employ information about the gradient of the evaluation function in
order to find its global optimum; ii) non-gradient-based techniques do not make
use of gradient information. Usually gradient-based learning algorithms have good
time performance but they can be applied only if the evaluation function is differen-
tiable and not multimodal. Nevertheless, when applied without any metaheuristic,
gradient-based techniques may get stuck into local optima. Non-gradient-based
methods can often overcome this problem by performing the searching process in
accordance with alternative rules. For evolutionary algorithms [97] and memetic
algorithm [125] these rules are inspired by natural phenomena, such as natural
evolution and swarm intelligence.

In the following we present four techniques for learning neural networks,
namely, backpropagation, genetic algorithms, particle swarm optimization, and
a memetic algorithm. Given a training set T = {(ā, t̄) | ā network input, t̄ target
output}, our aim is to estimate the synapse weights which make a network fit
these data. Notice that, notation x̄ is here employed to represent vectors of neu-
ron inputs, which has no relations with notation xj used previously to represent
biochemical substances.

Backpropagation

Backpropagation is a learning algorithm using gradient descent to find, in the
hypothesis space of all possible weight vectors, the weights that best fit a set of
training samples T . Let us consider the task of training a simple linear neuron,
whose output y(x̄) is given by:
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y(x̄) = w̄ · x̄, (5.16)

where w̄ is the vector of input synapse weights and x̄ is the vector of neuron input
values. In order to derive a weight learning rule for this simple unit, we start by
specifying the error function, relative to the training samples, with respect to the
weight vector w̄, that is [160]:

E(w̄) =
1

2

∑
d∈T

(td − yd)2 (5.17)

where T is a training set for the linear neuron, td is the target output for training
sample d ∈ T , and yd is the output of the linear neuron for the training sample d.
Error E(w̄) is simply half the squared difference between the target output td and
the linear unit output yd, summed over all training samples. Notice that, given a
fixed training set T , the error E(w̄) depends on the weight vector w̄, since values
yd are computed according to Equation 5.16.

To understand the gradient descent procedure, we show in Figure 5.10 the
entire hypothesis space of possible weight vectors (for a simple neuron having only
two inputs) and their associated error values. For each couple of weights (w0, w1)
in the hypothesis space, a point in the error surface is assigned. Since the neuron
under investigation is linear, the error surface must always be parabolic with a
single global minimum. The specific parabola form depends on the particular set
of training samples.

Fig. 5.10. Error function E(w̄) for a linear neuron with two weights [160].

The aim of gradient descent search is to find the weight vector which minimizes
the error function E(w̄) by starting from an arbitrary point in the hypothesis space.
To accomplish this task, it iteratively moves the weight vector in the direction
that produces the steepest descent along the error surface E(w̄), until the global
minimum is reached. This direction corresponds to the negative gradient of E(w̄)
with respect to w̄. In a general n-dimensional hypothesis space, this is:
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∇E(w̄) =

[
∂E

∂w0
,
∂E

∂w1
, . . . ,

∂E

∂wn

]
. (5.18)

The training rule for gradient descent is therefore:

w̄ = w̄ − η∇E(w̄) (5.19)

where η, called learning rate, determines the step size in direction ∇E(w̄). The
problem of gradient descent search thus translates into the computation of gradient
components ∂E

∂wi
. For a linear unit, by differentiating E from Equation 5.17 we

find [160]:
∂E

∂wi
=
∑
d∈T

(td − yd)xid (5.20)

where xid is the i-th input component of training sample d. However, a big disad-
vantage of using linear units is that networks with multiple layers of cascaded linear
units can produce only linear functions. As a consequence, for real applications
sigmoid units are usually employed, which are based on a smoothed, differentiable
threshold function. The computation of the error gradient for multilayer networks
of sigmoid units is harder than that for linear units, thus specific methodologies
have been implemented to speed up this task.

Backpropagation is a powerful and computationally efficient method for com-
puting the derivatives of the error function, with respect to weights, for multilayer
networks with a fixed set of units and interconnections. The aim of employing this
technique is to minimize, by gradient descent, the overall error of a neural network,
that is, the sum of the errors over all the network output neurons:

E(w̄) =
1

2

∑
d∈T

∑
k∈outputs

(tkd − ykd)2 (5.21)

where outputs is the set of output neurons, and tkd and ykd are, respectively, the
target and the output values of the k-th output for the d-th sample of T . The
surface of error E(w̄) is highly dimensional, since the number of weights is usually
high in multilayer networks. Moreover, this surface can have multiple local minima,
in contrast to the case of Figure 5.10. For these reasons, gradient descent tech-
niques cannot ensure to converge to one of the global minima of the error surface,
but they only ensure to find a local minimum. Despite this issue, the application
of backpropagation to real-world problems has often yielded good results [160].

The backpropagation algorithm for feedforward networks having two layers of sig-
moid neurons (with each neuron connected to all the neurons of the next layer)
can be summarized as follows [160]:

Initialization: n=0;
While the termination condition is not met, Do

• For each (ā, t̄) ∈ T
1. Input forward-propagation:

– Feed the input neurons with ā and apply the activation functions of
every neuron until the output yk of each output neuron uk is computed.
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2. Error back-propagation:
– For each output neuron uk, compute the error term ek

ek ← yk(1− yk)(tk − yk) (5.22)

– For each hidden neuron uh compute the error term eh

eh ← yh(1− yh)
∑

k∈outputs

wkhek (5.23)

where outputs is the set of output neurons.
3. Weights update:

– Update each weight wji

wji ← wji +∆wji(n) (5.24)

where
∆wji(n) = ηejyi + σ∆wji(n− 1), for n ≥ 0 (5.25)

∆wji(−1) = 0 (5.26)

and yi is the output of the neuron ui.
4. Iteration update: n = n+ 1.

The algorithm input is a network having random weights with small values. The
main loop is the for cycle, which iterates over each training sample. In particular,
for each sample (ā, t̄) ∈ T , it firstly computes the output b(ā) of the network
(forward propagation), then it calculates the error terms e for each output and
hidden neuron according to gradient descent, and it finally updates weight values
by means of Equation (5.24) (back propagation). The weight variation, computed
by Equation (5.25), consists of two terms: a gradient descent term, i.e., ηejyi, and a
momentum term, i.e., σ∆wji(n−1). The first determines the step in the gradient-
descent direction, the second, which is optional, adds an inertial contribution to the
search movement, and it is useful to avoid local optima. The for cycle is iterated
many times, until the error E(w̄) falls under a specific threshold or a predefined
number of iterations have been performed.

Notice that, the gradient descent update, i.e., ηejyi, is quite similar to the
update term of Equations (5.19) and (5.20) for the linear unit. The main differences
are the following:

• in the backpropagation algorithm presented above, weights are updated by
considering one sample at a time, instead of summing over all the training
samples of T . This is an approximated way to perform the weight descent
search, which is computationally faster.

• the error td − yd of Equation (5.20) is replaced by a more complex term ej for
each neuron uj , which follows from the derivation of the error function

E(w̄) =
1

2

∑
k∈outputs

(tk − yk)2 (5.27)

namely, the network error given a single sample of the training set.
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To understand intuitively how the ej terms of Equations (5.22) and (5.23)
are conceived, let us consider the first equation. Given an output neuron uk, the
error term ek is simply the term (tk − yk) of linear units multiplied by the factor
yk(1 − yk), which is the derivative of the sigmoid function. As for hidden units
uh, the error term eh of Equation (5.23) has a similar form but, since no target
value is given for hidden units, the error term (tk − yk) is substituted by the
sum

∑
k∈outputs wkhek. This accounts for the contribution of the error ek of each

unit influenced by the neuron uh, multiplied by wkh, that is, the weight from
the hidden neuron uh and the output neuron uk. For the complete derivation of
backpropagation rules readers may refer to [24,160].

Genetic algorithms

Among non-gradient-based optimization techniques, genetic algorithms (GAs) [97]
have been often used as a learning methodology for neural networks [250]. GAs
are a population based search strategy inspired by principles of natural selection
and genetics. Individuals in a population compete and exchange information with
each other in order to perform certain tasks.

GAs usually encode the solutions of a search problem by finite-length strings
called chromosomes. The variables of the problem are referred as genes and the
possible values of variables as alleles [27]. For instance, in the ANN learning prob-
lem, a chromosome represents the set of all the weights, a gene represents a single
weight and an allele represents a weight value. In order to evolve good solutions,
natural selection is implemented. An evaluation function is defined which rates the
fitness of every chromosome of the population according to its error and/or other
rating criteria. Chromosomes are indeed selected for reproduction with a prob-
ability proportional to their fitness, thus better solutions transfer with a higher
probability their characters to the offspring.

A standard genetic algorithm can be summarized as follows [27]:

Initialization: randomly generate an initial population of N chromosomes across
the search space.

While the termination condition is not met, Do

1. Selection: select the chromosomes to be reproduced according to a selection
strategy which employs the survival-of-the-fittest mechanism.

2. Recombination: combine, with a probability called recombination rate, parts of
two or more parental chromosomes to create new and possibly better solutions
(offspring).

3. Mutation: locally and randomly modify genes of every chromosome with a
probability called mutation rate.

4. Replacement: replace the original parental population with the offspring pop-
ulation generated so far by selection, recombination and mutation operators.

After being selected, solutions are recombined by crossover operators with a
probability called recombination rate, and then each allele is mutated by a mu-
tation operator with a probability called mutation rate. The new solutions finally



120 5 Statistical and optimization perspectives in MP modeling

replace the offspring population and the cycle is iterated until a termination con-
dition is met. The four biological-inspired operators used by these algorithms,
namely, selection, crossover, mutation and replacement, may be implemented by
many different strategies which are summarized in the following. For a detailed
description of these strategies the reader may refer to [27].

• Selection strategies. Roulette-wheel selection assigns to each chromosome a like-
lihood to be selected, which is proportional to its fitness. Tournament selection
chooses s ∈ N chromosomes at random, enters them in a tournament against
each other and select the fittest. Rank selection assigns a rank from 1 to N
(number of chromosomes) to every chromosome of the population according to
its fitness and then applies the roulette-wheel strategy using ranks as fitness
values.

• Recombination strategies. Single-point crossover selects a random crossover site
over the chromosome length and exchanges the alleles of one side between two
chromosomes. Double-point crossover selects two random crossover sites over
the chromosome length and exchange the alleles between these two sites, be-
tween two chromosomes. Uniform crossover exchanges every allele of a couple
of randomly selected chromosomes with a specific probability.

• Mutation strategies. Random mutation substitutes an allele with a new random
value. Depending on the particular problem, other ad-hoc strategies can be
applied. For instance, if alleles represent numbers, a random value can be added
to an allele rather than to substitute it.

• Replacement strategies. Delete-all replacement substitutes all the elements of
the parent population with the same number of new chromosomes. Elitist re-
placement preserves the best parent chromosomes. Steady-state replacement
substitutes s ∈ N old chromosomes with s new members.

Recombination and mutation rates must be suitable tuned in order to achieve
the best performance from the algorithm. The termination condition of GA is
usually satisfied when the fitness of at least one chromosome of the population
reaches a desired threshold and/or when a maximum number of epochs have been
performed. We notice that, conversely to backpropagation error functions, GA
evaluation functions can be nondifferentiable, thus, this technique is able to eval-
uate the fitness of a solution according to several constraints.

Particle swarm optimization

Another non-gradient-based technique we consider in order to train a neural net-
work is particle swarm optimization (PSO) [116]. The roots of this metaheuristic lie
in the observation of the social behavior of birds flocking and fish schooling, more
generally known as swarming. During coordinated search for food, each bird makes
its moving decisions based on cognitive aspects (awareness of itself and its posi-
tion) and social aspects (awareness of other individuals and their positions). This
idea inspired Kennedy and Eberhart to develop a method for function optimiza-
tion [27]. Basically, a PSO algorithm maintains a population of N particles, called
swarm, where each particle represents a location in a D-dimensional search space,
where D is the number of parameters to be optimized. Particles start at random
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locations and search for the minimum (or maximum) of a given objective function
by moving through the search space according to cognitive and social rules. In
particular, each particle i keeps track of its current position x̄i = (xi1, . . . , xiD)
(where each xij , j = 1, . . . , D is a parameter to be tuned in order to minimize
an objective function γ(x̄)), its current velocity v̄i = (vi1, . . . , viD) (where each
vij , j = 1, . . . , D is the current rate of change of parameter xij) and its best posi-
tion p̄i = (pi1, . . . , piD), i.e., the position on its past trajectory where it scored the
best fitness value. The best position p̄g = (pg1, . . . , pgD) reached by any particle
is considered as well.

The particle swarm optimization algorithm can be summarized as follows [27]:

Initialization: randomly initialize location and velocity of N particles across the
search space.

Repeat

1. For each particle i ∈ [1, N ]
• evaluate the objective function γ(x̄) on the particle current location x̄i

2. For each particle i ∈ [1, N ]
• if γ(x̄i) < γ(p̄i) then p̄i = x̄i (particle best update)

3. If γ(p̄i) < γ(p̄g) then g = i (global best update)
4. For each particle i ∈ [1, N ]
• For each dimension d ∈ [1, D]

vid = w · vid + c1 · r1 · (pid − xid) + c2 · r2 · (pgd − xid) (5.28)

xid = xid + vid (5.29)

until the termination condition is met.

The main parameters employed by this algorithm are inertia w, cognitive coeffi-
cient c1 and social coefficients c2. Inertia is a nonnegative real number determining
the influence of the old velocity on the new particle movement, while cognitive and
social coefficients are nonnegative real numbers affecting, respectively, the influence
of the local and the global best on the particle movements. A formal description of
the equations exploited by this technique in order to move the particles through
the searching space is included in [27].

PSO can be straightforwardly applied to train a neural network by mapping
each synapse weight into a particle dimension d ∈ D. According to this approach
particle movements across the search space correspond to synapses weight tuning.
As well as genetic algorithms, this non-gradient-based technique is able to find the
global bests of nondifferentiable and multiobjective functions, taking into account
both an error function and additional constraints.

A memetic algorithm for learning ANNs

Being gradient-based, backpropagation has good time performance but it can be
applied only if the evaluation function (usually the mean square error) is differen-
tiable and not multimodal, otherwise it may get stuck into local optima. On the
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other hand, non-gradient-based methods such as GA and PSO, can often overcome
this problem by steering the searching process in accordance with evolutionary
rules, but sometimes they have lower performance. In order to overcome the draw-
backs of both gradient-based and non-gradient-based optimization techniques we
have implemented a memetic algorithm [125] employing GA for the global search
and backpropagation for the local search. In particular, the algorithm initially
generates a population of random solutions and then it evolves the population by
means of two stages [33]:

• a global search performed by running GA for a certain number of epochs,
• a local search performed on every individual of the population by running

backpropagation for a certain number of epochs.

These two stages are iterated until a termination condition is met. In this way, GA
guarantees a spread search of global optima over the search space, while backprop-
agation ensures quite a fast convergence towards local optima. Notice that, both
the GA and backpropagation parameters have to be set before the employment
of this memetic algorithm. Furthermore, the number of GA steps and backpropa-
gation steps of each iteration have to be suitable selected in order to achieve the
best performances.

5.3.4 ANNs for the synthesis of flux regulation functions

We have employed feed-forward neural networks as “observers” of the experimen-
tal data collected from metabolic systems in order to capture some rules that
govern those systems [33]. Neuron activation functions are set to sigmoid, a very
used function for modeling population growth in biology. The nonlinear combi-
nation of such functions enables to fit a large range of function forms. Moreover,
since sigmoid output ranges in (0, 1), regulation functions generated by them are
nonnegative, as required by constraints of Section 5.1.

Given an MP system having n substance, k parameters and m fluxes, each
associated to a reaction, we have two ways to connect it to neural networks: i)
by employing only one neural network having n+ k input neurons and m output
neurons, as shown in Figure 5.11, ii) by using one neural network for each reaction,
having n + k input neurons and one output neuron, as displayed in Figure 5.12.
In the first case we connect each substance and parameter node of the MP sys-
tem to a different input neuron of the neural network and each output neuron is
connected to a different flux node. In the latter case input neurons of each net-
work still “observe” the MP system state (substances and parameters) but their
only output neuron is connected to a specific flux node. Both the configurations
work as regressors but, while the first one emphasizes a systemic regulation of the
system, the second one tends to preserve the functional independence among the
regulation functions, thus some difference between the two approaches could be
noticed.

The number of hidden layers and hidden neurons depends on the complexity
of the sought regulation functions. As a rule of thumb, the more “complex” the
regulation functions, the higher the number of hidden layers and hidden neurons.
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Fig. 5.11. MP systems fluxes computed by a single ANN. Substances and parameters are
connected to input neurons while output neurons are connected to fluxes (figure from [33]
with permission).

Since sometimes no information is available about the regulation function com-
plexity, few networks having different topologies may be tested, until a good set
of regulation functions is found.

A training set is represented by time series of substances and parameters,
generally collected by observations, and flux time series computed by the log-gain
method [140]. Training data are cyclically “observed” by neural networks which
update their weight values at each training epoch (according to some learning
rules) in order to minimize the mean square error between their outputs and the
outputs of the training sets. We have developed a Java library for training neural
networks where four kinds of learning algorithms are available: backpropagation,
genetic algorithms (GA), particle swarm optimization (PSO) and the memetic
algorithm described above. The library has been linked to NeuralSynth, a Java
software which can be plugged-in to the MetaPlab virtual laboratory in order to
automatically learn neural networks from experimental data stored in MP model
files. This software, joins the rack of tools developed so far to generate, simulate and
analyze MP models within the framework of MetaPlab, a plug-in based software
for MP systems modeling [34, 241]. Both MetaPlab and the NeuralSynth plugin
may be downloaded from [153,241] and they are described in Chapter 6.

After ANNs has been trained on the experimental data of a specific biological
system, they enclose some information about the behavior of that system in some
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Fig. 5.12. MP system fluxes computed by one neural network for each reaction. Sub-
stances and parameters are connected to input neurons while the only output neuron of
each network is connected to a specific flux (figure from [33] with permission).

situations. Moreover, the training process employs the information included in
the training set in order to guess new information about the system behavior in
different states and it stores this information in the network structure and weights.
The question which naturally arises at this point is: what do we want to do by these
networks? We have two main targets: i) to extract and analyze the information
they contain in order to achieve a deeper insight of the observed biological systems,
ii) to simulate, in silico, the dynamics of the system by computing MP fluxes
through the trained ANNs. As for network analysis, in Section 5.5 we focus on the
application of weight elimination techniques [24] to simplify the network structure
and to determine substances and parameters having a major influence on the
regulation of each flux. On the other hand, some of the results we achieved by
employing ANNs as regulation functions in a real biological system are showed in
the next section.

5.4 A case study: mitotic oscillator in early amphibian
embryos

In this section we present an application of ANN regression to the synthesis of
flux regulation functions in a real biological system, namely, the mitotic oscillator
in early amphibian embryos. The results, reported after a brief description of the
biological process and an overview of the related MP model, are encouraging, since
they highlight the capability of ANNs to learn regulation rules by samples [33].
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5.4.1 Process description

Mitosis, the process of cell division, aims at producing two identical cells from a
single parent cell. Some studies on yeast and embryonic cells pointed out the exis-
tence of an universal mechanism regulating the onset of this process. In particular,
many cellular changes related to mitosis are triggered by the fluctuations in the
activation state of a protein kinase produced by cdc2 gene in fission yeast and
by homologs in other eukaryotes [85]. In the following we consider the simplest
form of this mechanism, which has been observed in early amphibian embryos.
In these organisms the process involves two cyclic loops. The first one starts by
the progressive accumulation of a protein signal, named cyclin, which causes the
activation of cdc2 kinase when it goes beyond a threshold. The kinase activation
is performed by the generation of a complex known as M-phase-promoting (MPF )
from cyclin and cdc2 kinase. The complex triggers mitosis and promotes cyclin
degradation which consequently generates a negative feedback loop that inacti-
vates cdc2 kinase and brings back the cell to the initial state. In the second cycle
cdc2 kinase activates a cyclin protease which promotes cyclin degradation.

In 1991 Goldbeter proposed a minimal model, based on ordinary differential
equations (ODE), for the mitotic oscillator [85]. According to this model, graphi-
cally depicted in Figure 5.13, cyclin is produced at a constant rate vi and it controls
the activation rate of cdc2 kinase, which is considered by the model in its inactive
(M+) and active (M) form. Cdc2 kinase deactivation is instead performed at a
rate V2 by another kinase which is not considered. The model also represents in-
active (X+) and active (X) forms of cyclin protease whose activation is promoted
by active cdc2 kinase (dashed arrow from M). In Figure 5.13 the arrow connect-
ing X to X+ takes into account the protease deactivation while the dashed arrow
starting from X denotes the control performed by X on cyclin degradation.

Fig. 5.13. Graphical model, devised by Goldbeter, of the mitotic oscillator [85].

The mathematical representation conceived by Goldbeter to represent this
model consists on the following ODE system:
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dC

dt
= vi − vdX

C

Kd + C
− kdC

dM

dt
= V1

(1−M)

K1 + (1−M)
− V2

M

K2 +M
(5.30)

dX

dt
= V3

(1−X)

K3 + (1−X)
− V4

X

K4 +X

where V1 = C
Kc+C

· VM1, V2 = 1.5, V3 = M · VM3, V4 = 0.5, VM1 = 3.0, VM3 = 1,

Ki = 0.005, i = 1, . . . , 4, vi = 0.025 µmol · min−1, vd = 0.25 µmol · min−1,
Kd = 0.02 µmol, Kc = 0.5 µmol, kd = 0.01 min−1. A detailed description of
this model is out of the scope of this thesis but we recall some notation meanings
for the easy of reading. Symbol C denotes cyclin concentration, while M and X
represent the fraction of active cdc2 kinase and cyclin protease, thus (1−M) and
(1−X) are the inactive fraction of the same proteins (corresponding, respectively,
to M+ and X+). Parameters vi, vd and kd are constant rates of cyclin synthesis
and degradation, Kd and Kc are Michaelis constants for cyclin degradation and
cyclin activation of the phosphatase, Vi and Ki (i = 1, . . . , 4) are the maximum
rates and the Michaelis constants that characterize the kinetics of enzymes Ei
(i = 1, . . . , 4) which activate and deactivate cdc2 kinase and cyclin protease. The
numerical solution of the ODE system (5.30) from initial conditions C = 0.01µmol,
M = X = 0.01 shows the oscillatory behavior displayed in Figure 5.14. Readers
may refer to [85] for a more accurate description of the model.

Fig. 5.14. Numerical solution of the ODE system (5.30) [85].

5.4.2 MP model

In [144] Manca and Bianco proposed three translations of the ODE model (5.30) to
MP systems that exhibit an equivalent oscillatory behavior. In that work regulation
functions have been directly generated from differential equations by means of the
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mapping procedure defined in [68], which guarantees the model equivalence under
specific conditions. Here, starting from a simplification of a model given in [144],
our aim is to automatically synthesize, by means of neural networks, the flux
regulation functions of an MP model from the observed time series of substances
C, M , M+, X, X+.

Let us start by considering an MP system we call AMC (Amphibian Mitotic
Cycle) in which, i) substance symbols C, M , Mp, X, Xp have been already de-
scribed above (Mp and Xp coincide, respectively, with M+ and X+); ii) reactions
and regulation functions are listed in the following:

R1 : λ→ C , ϕ1(Q) = vi

R2 : C → λ , ϕ2(Q) = kdC

R3 : C Mp → C M , ϕ3(Q) = V1
Mp

K1+Mp

R4 : C X → X , ϕ4(Q) = vdXC
Kd+C

R5 : M →Mp , ϕ5(Q) = V2M
K2+M

R6 : Xp M →M X , ϕ6(Q) =
V3Xp
K3+Xp

R7 : X → Xp , ϕ6(Q) = V4X
K4+X

where constant values and initial conditions are as in (5.30); iii) the temporal
interval τ = 0.06 sec. An MP graph representation of this model is displayed in
Figure 5.15.

We generate the dynamics of this model for 4000 steps obtaining five time
series, one for each substance, and we use these data as training set for ANN
synthesis. These are synthetic data, but of course, the same methodology could be
applied to data coming from experimental observations. Flux time series have been
generated by means of the log-gain principle, as described in Section 4.6. Readers
can generate the time series of both substances and fluxes by means of two MP
plug-ins contained in the MetaPlab free package (for the sake of simplicity, the
entire training set can be downloaded from [153] within an MP model file).

Once collected all the training set data we launch the plugin NeuralSynth and
select one of the training techniques among backpropagation, GA, PSO and the
memetic algorithm introduced above. Depending on the training technique the
software displays a slight different interface asking for the corresponding training
parameters and the topology of the neural networks to be trained (other options
can be selected but they are described in Chapter 6). At the end of the training
process each neural network provides a function which is stored into a flux node.

5.4.3 Tests

We performed five training tests for each of the four learning techniques (back-
propagation, GA, PSO and memetic algorithm). In every test we connected seven
independent neural networks to the MP model, one for each reaction according
to the general method shown in Figure 5.12. The aim of each network is to learn
the regulation function of a specific reaction from training set samples. Since the
lower error has been achieved by the memetic algorithm (e.g., Figure 5.16), in the
following we detail only the results obtained by such technique.
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Fig. 5.15. An MP graph of the mitotic cycle (figure from [33] with permission).

We start by initializing a population of 4 individuals, each encoding a neu-
ral network having 1 hidden layer with 3 sigmoid neurons and random weights
in [−1, 1]. This number of individuals, even if quite small, ensures a more spread
search than the classical backpropagation though keeping good learning perfor-
mance. As for the global search, the population is evolved by GA for 100 epochs
using rank selection with elitist replacement, double point crossover with a re-
combination rate of 0.8 and random mutation with a mutation rate of 0.1 and
mutated values in [-1,1]. After every global search a local search is performed by
running backpropagation on each of the four individuals for 900 epochs by em-
ploying a learning rate of 1.0 and a momentum rate of 0.1. Then the optimization
loop starts again by a new global search, until 10000 training epochs have been
performed. The same process is repeated for every neural network connected to
the MP model.

Training parameters have been accurately selected as they achieved good per-
formance for some benchmark functions (such as, Michalewicz’s function) during
a previous validation of the learning algorithms (see Section 6.2.7). A detailed de-
scription of GA, backpropagation and their parameters can be found, respectively,
in [27] and [24].
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Fig. 5.16. Error trends of backpropagation, GA, PSO and memetic algorithm achieved
from the best training processes of flux F5. Memetic algorithm reached the best results
even for all the other fluxes (figure from [33] with permission).

5.4.4 Results

For each reaction Ri, i = 1, . . . , 7, Table 5.1 shows i) the mean error ē (over the
five tests) between fluxes computed by the i-th neural network and the related
flux values for Ri in the training set, ii) the standard deviation σ of these errors.
We randomly split the set of 4000 samples into a training set containing the 20%
of samples and a validation set including the remaining 80% of them, and we
computed errors ē on the validation set. Different mean errors have been achieved
for different reactions. This is quite normal since some reactions, such as R1, have
very simple regulation functions in the original model while other reactions have
quite complex regulation functions that are harder to learn. However, we remark
that neural networks having just one hidden layer with three neurons achieved
very low errors and they managed to fit quite precisely the observed data points.
Moreover, time performances have been fairly good, since every single test has been
performed in about 30 minutes by a laptop equipped with a processor Intel(R)
Core(TM)2 Duo CPU T7250, 2.00GHz and 2038 MB of memory.

Flux ē σ

R1 8.806E-09 5.675E-09
R2 7.540E-06 6.238E-06
R3 2.533E-05 1.792E-05
R4 2.223E-05 6.798E-06
R5 7.750E-05 3.987E-05
R6 6.258E-06 5.066E-06
R7 2.935E-04 1.095E-04

Table 5.1. Mean training errors ē of regulation functions computed by ANNs (over five
training tests) and related standard deviations σ, for each reaction [33].
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Figure 5.17 shows, as an example, a neural network trained for reaction R5
and its weight values. The translation of such a kind of networks to mathematical
functions yields quite long strings that we avoid to mention here for a matter
of space. Readers can visualize these functions downloading the final MP model
from [153] and, eventually, they can compute the related dynamics by MetaPlab.

Fig. 5.17. On the left: the best ANN trained for reaction R5. On the right: ANN weight
values (figure from [33] with permission).

Figure 5.18.a displays the training set dynamics of substances C, M and X,
while the dynamics generated by using trained ANNs as regulation functions is dis-
played in Figure 5.18.b. In particular, ANNs employed to generate this chart have
been trained during the third test on the memetic algorithm. The high similarity
between the two evolutions, highlighted by Figure 5.18.c in the case of active cdc2
kinase, shows the capability of ANNs to learn regulation functions from sample
data. The mean error between the two curves of Figure 5.18.c is equal to 0.01216.
This error is equal to 0.00624 for cyclin curves (C) and 0.01046 for active cyclin
protease (X).

5.5 Variable selection for flux regulation functions

The problem we tackle in this section concerns the automatic discovery of flux
tuners from observed data [36]. In the following we will call tuners of a flux regu-
lation function ϕi, the variables (i.e., substances and parameters) involved in the
function [140]. In fact, it is known that every reaction of a biochemical system
transforms reactants into products with a rate depending on the instantaneous
value of some substances and parameters. Discovering these elements provides key
understanding about the system and it may suggest new experiments.

From regression theory it turns out that regulation functions should have as
few independent variables as possible in order to give to MP models the best
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(a)

(b)

(c)

Fig. 5.18. a. Training set dynamics of the mitotic oscillator (4000 samples); b. Dynamics
computed by means of the regulation functions synthesized in the third test of the mi-
totic algorithm; c. Comparison between the two evolutions of active cdc2 kinase (figure
from [33] with permission).

predictions capabilities [1]. This statement could sound a bit counterintuitive since
it seems logical that, if a regulation function incorporates as many variables as
possible, then its flux prediction should be more accurate. As a matter of fact,
this is true only if the number of data points to be fitted has no limitations
(which is not realistic), indeed, because of the curse of dimensionality [8], as the
dimensionality of the fitting surface increases also the degrees of freedom of this
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surface increase, and the number of points needed to achieve a good fitting surface
increases as well. Therefore, functions generated by regression methods have to
be parsimonious in the number of independent variables in order to capture the
systematic trend of data while avoiding uncertainty and overfitting typical of high-
dimensional functions [1].

A critical point of regulation function synthesis is thus the choice of a proper
set of basis functions (i.e., variables) for the flux under investigation. A model
involving many basis functions may provide excellent approximations but it could
cause problems of overfitting. On the other hand, a model having not enough basis
functions is usually unable to capture all the features of the systematic component
in the flux data. In both cases, the ability of the model to generalize to new data
would be relatively poor and prediction on new data would be of very low quality.

Our aim is to identify the relationships between each flux dataset and every
substance/parameter dataset, in order to select a minimal subset of variables in-
volved in the regulation maps. Functions employing these subsets of variables have
three main advantages: i) they provide a better understanding of the functional
role of each substance/parameter in the regulation of fluxes, ii) they improve
the prediction performance of MP models, since variable parsimony enhances the
signal-to-noise ratio, and iii) they reduce the computational complexity of learning
and simulation algorithms [89,165].

The problem of variable selection for building a good prediction model often
contrasts with the problem of finding all potentially relevant variables involved
in a process [122]. Indeed, good predictors should employ a minimal number of
variables (parsimony) to reach better performance, while variables that influence
the process but do not convey new information may possibly be discarded. In our
specific case, the flux regulation functions generated by using variable selection
techniques will involve a set of substances/parameters which may not correspond
to the entire set of substances and parameters regulating the reaction in the real
system. Some substances/parameters may be discarded because the information
they convey is redundant.

There exist several techniques for variable selection, which can be summarized
in three main classes [89]:

• filters select variables by ranking them according to specific criteria, such as,
correlation coefficients [1, 89, 213] or mutual information coefficients [89, 213,
227] between variables and fluxes. These tools can be applied, in principle,
to every kind of regression model although the significance of their results
may be different. For instance, correlation methods best fit linear models but
sometimes they are applied also to nonlinear models in order to gain some hints
of possible relationships among variables. Many variable selection algorithms
include variable ranking as preprocessing step, independent of the choice of
the prediction model, because of its simplicity, scalability, and good empirical
results. A common use of these techniques is, for instance, microarray analysis
for discovering sets of drug leads [86], where a ranking criterion is employed to
identify genes that discriminate between healthy and disease patients;

• wrappers assess subsets of variables according to their usefulness to a given
regression model [89]. The regression model of interest is used here as a black
box to score subsets of variables according to their predictive power, thus on-
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the-shelf prediction tools can be used as variable testers. In order to employ
wrapper methods, we need a strategy for exploring the search space of variable
subsets, a predictor for testing variable subsets, and a methodology for assessing
the predictor performance. Since the search space becomes quickly large as the
number of variables increases, many search strategies have been proposed that
ensure to find good variable subsets while avoiding exhaustive searches [122].
As for predictors, the most used regression and feature selection models are
usually employed, such as, least-square linear predictors, decision trees, naive
Bayes classifiers and support vector machines. Performance assessments are
usually performed by means of a validation set of data removed from the initial
training set, or by cross-validation. Even if wrappers are often criticized because
of their brute force approach requiring massive computational capabilities, this
is not always the case. Indeed, when efficient search strategies are employed,
such as greedy strategies (forward selection, backward elimination, etc.), good
results may be achieved without sacrificing prediction performance;

• embedded methods are dependent on specific regression models, since they per-
form the selection of variable subsets during the training stage. Specifically,
variable selection becomes part of the optimization process in which model pa-
rameters are tuned, so that a multiobjective optimization is performed. This
is often achieved by using objective functions that consist of two terms com-
peting with each other: a term accounting for the goodness of fit, and a term
coping with the number of variables (to be minimized). The search is per-
formed by estimating changes in the objective function produced by moving
first in the variable subset space, and afterward in the corresponding space of
model parameters. The main advantages of embedded methods with respect to
wrappers concern efficiency. By avoiding to retrain the predictor from scratch
for every variable subset investigated, embedded methods are often faster than
wrappers. Moreover, embedded methods often exploit better the information
available in the datasets since they do not need to split the training data in a
training and a validation set [89].

Notice that, whilst filters are quite simple tools that enable to rank variables
according to their individual predictive power, wrappers and embedded methods
can involve quite complex tools able to select subsets of variables that all together
have a good predictive power. Indeed variables that are useless by themselves can
be useful together. A more detailed description of all the methods introduced above
is available in [89].

In the next two subsections we present two methodologies for variable selection,
namely, stepwise regression for multivariate linear functions and an approach based
on weight elimination for neural networks, that can be seen as an implementation
of the minimum description length principle. These techniques have been chosen
for their simplicity and rich statistical background, but many other approaches
may be tested [28], such as, the Akaike information criterion (grounded in the
concept of entropy) and bayesian model comparison (rooted in Bayes’s theory).
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5.5.1 Variable selection with linear models

The linear regression techniques introduced in Section 5.2 employed a trial and er-
ror method for deciding which monomials ψj to include in a polynomial regulation
function of the form:

ϕr(q) =

p∑
j=1

bjψj(q). (5.31)

The idea, according to the schema of Figure 5.4, was to start with a subset s′ ⊆ S
of monomials, where S is the set of all possible monomials, then to test the achieved
model (by analyzing residuals, multicollinearity and other properties), and, if the
performance are not acceptable, to select other subset of monomials, until good
performance are reached. Since for systems with many variables it is very difficult
to find manually a good subset of monomials, some computational procedures are
often employed for tackling this problem in a systematic way. In the following we
report some of this methods.

All possible regressions

This method consists of testing all the possible models achievable from a set S
of monomials. Let us consider, for instance, a system having four variables, i.e.,
x1, x2, x3, x4. If we want to test all the models having a degree less than or equal
to two, we must put in the set S: i) the four variables x1, . . . , x4, ii) their powers
x21, . . . , x

2
4, etc., and iii) all their cross products x1x2, x1x3, . . ., thus the total

number of possible monomials is 14. Since each monomial may be either included
or not in the model and the model involves also an intercept term, we should
test 214 = 16384 models. Of course, this method can be used only if the number
of variables of the system and the degree of the considered polynomials are very
small, otherwise it takes too much time to be accomplished.

Forward selection and Fisher’s test

To overcome the performance issue of the previous technique we need a search pro-
cedure able to find a good subset of monomials without exploring the whole space
of monomial subsets. Forward selection starts with a model with no variable and
it adds one monomial at a time, according to a statistical test, until a predefined
performance level is reached.

The statistical test employed is Fisher’s test, also called F-test, and it is briefly
explained in the following. Let us consider a multiple linear model of the form

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + ε (5.32)

and suppose we want to test the significance of the subset of variables s′ =
{X2, X4} in the model. This information is very important since if it turns out
that variables X2 and X4 are not significant, then a more parsimonious model can
be employed, using only variables X1, X3 and X5 to achieve the same prediction
performance. In statistical terms, we want to test the following hypothesis:
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H0 : β2 = β4 = 0 (5.33)

H1 : β2 and β4 are not both zero. (5.34)

The test statistic for checking this kind of hypothesis test is the partial F
statistic [1]:

F[r,n−(p+1)] =
(SSRR − SSRF )/r

σ̂2
F

(5.35)

where SSRF is the sum of squared residuals of the full model (having p variables),
SSRR is the sum of squared residuals of the reduced model (having p−r variables),
σ̂2
F is the residual mean square of the full model, r is the number of variables

dropped from the full model to create the reduced model, and n is the number
of samples in the dataset. In our example, if we have a dataset with n = 100
samples, than we have to use the F statistic F[2,94], to find the threshold value
over which the null hypothesis H0 should be rejected. This topic requires some
statistics skills, thus we explain it by a simple example. Statistic tables, that may
be consulted in [1], give us a critical value close to 5.2 for the F distribution
F[2,94] with a significance level α = 0.025. This means that if the right side of
Equation (5.35) returns a value greater than 5.2, then we have only less than the
5% of chance that the null hypothesis be true. Consequently the null hypothesis
should be rejected and variables X2 and X4 should not be dropped from the model.
On the other hand, if the value returned by Equation (5.35) is less than 5.2, then
the null hypothesis should not be rejected and the reduced model should be kept.

When the F test is employed in forward selection, it suggests to add to the
current polynomial, having p terms, the i-th monomial of a set S, such that [94]:

Fi = maxi(
SSRR − SSRFi

σ̂2
Fi

) > Fin (5.36)

where SSRR is the sum of squared residuals of the original model, having p mono-
mials, SSRFi is the sum of squared residuals of the model in which the i-th mono-
mial has been added, σ̂2

Fi
is the residual mean square of the same model and

Fin is a threshold, computed by means of the F statistic, resulting in a rule for
terminating the variable search.

The selected (i-th) monomial is therefore the monomial which maximizes the
difference between the residuals sum of squares before and after its insertion (av-
eraged on the residual mean square of the model after the insertion), if it is greater
than the threshold Fin. In other words, the procedure keeps adding the monomials
which maximize the performances of the model, until the performance increasing
falls under the threshold Fin.

Backward elimination

An opposite way to select a subset of monomials for a linear model involves the
elimination of unnecessary terms from a starting polynomial including all the pos-
sible monomials. At each step, the partial F statistic is computed for assessing the
elimination of each monomial i and the term with the smaller Fi value is elimi-
nated if it does not exceed a specified threshold. That is, the backward elimination
procedure drops, at each step, the monomial i, such that [94]:
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Fi = mini(
SSRRi − SSRF

σ̂2
F

) < Fout (5.37)

where SSRRi is the sum of squared residuals of the model in which the i-th
monomial has been dropped, SSRF is the sum of squared residuals of the original
model, having p variables, σ̂2

F is the residual mean square of the original model
and Fout is a threshold, computed by means of the F statistic, resulting in a rule
for terminating the variable search.

In this case, the monomial selected for deletion is the monomial which mini-
mizes the performance decreasing, in term of difference between the sum of squared
residuals after and before its elimination (averaged on the residual mean square
of the model before the elimination). The process iterates until all variables in the
model are significant in term of their partial statistic, and consequently the perfor-
mance decreasing for dropping any monomial is greater than the threshold Fout.

Stepwise regression

The necessity to overcome some typical shortcomings of both forward selection
and backward elimination suggested a number of combination between the two
techniques. Stepwise regression, first presented by Efroymson [58, 59], is probably
the most commonly used method for variable selection in linear models. It basically
entails an alternate application of forward and backward steps by starting from
an initial model and ending when no step is applicable anymore. In this way, after
a variable has been entered in the model (by means of forward step) it can be also
dropped (by a backward step) if a subsequent reevaluation of the model shows that
the variable’s significance is decreased, because of the presence of other variables
inserted more recently. On the other hand, variables eliminated from the model
at a certain step can be re-inserted subsequently if their significance has increased
after some insertion and deletion of other variables.

By combining forward selection and backward elimination, stepwise regression
reevaluates the significance of every variable at every step. Thus it tends to avoid
multicollinearity, i.e., the presence of redundant variables in the model, typical of
forward selection, and it minimizes the chance of leaving out relevant variables,
which is a drawback of backward elimination. The main steps of the stepwise
regression procedure can be summarized as follows:

1. identifying an initial model and a set S of basis functions (monomials) available
for inclusion,

2. adding to the current model the variable i of set S yielding the largest F-test
index Fi according to Equation (5.36).

3. removing from the current model the variable i yielding the smallest F-test
index Fi according to Equation (5.37),

4. repeating step 3 until no further variables can be dropped, then go to step 2,
5. terminating the search when neither step 2 nor step 3 can be performed, or

when a maximum number of steps has been executed.

Notice that, parameters Fin and Fout must be carefully tuned, since they de-
termine the termination conditions of the procedure. To ensure the termination
we must have Fin > Fout [55, 203]. It is important also to note that stepwise
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algorithms may not find the best model since there is order dependence in the se-
lection process, thus we may not always arrive to the same model. However, there
is evidence of many good results achieved by this method for real-world regression
problems.

When applied to MP systems, stepwise regression enables to compute simulta-
neously a polynomial model and a set of tuners for each regulation function. The
tuners found do not necessarily correspond to the complete set of substances and
parameters involved in the regulation of a flux but they tend to be a minimal set
of variables which suffice for regulating the flux by means of a polynomial model.
That is, variables conveying redundant information, which are typical in nature to
preserve system robustness, could be discarded in order to increase the parsimony
(and consequently the performance) of the prediction model.

5.5.2 Variable selection with neural networks

ANNs have been introduced in Section 5.3 as models for MP flux regulation func-
tions. The techniques presented in that section for training ANNs do not consider
the selection of input variables, but they only cope with weight tuning of net-
works having pre-defined sets of variables. This approach yields good models if
the system under investigation is well known, since in this case input variables
can be manually selected. However, if the process has unclear features which we
want to elucidate by neural models (such as, unknown relationships between sub-
stance concentrations and reaction fluxes) then the variable selection stage should
be automatized by selection algorithms specific for neural networks. These tech-
niques enable to generate meaningful neural models and to exploit these models
for unveiling new relationships among the elements of the system.

Variable selection techniques for neural networks usually enclose the variable
selection process in the training process, since variable subsets are sought as a
further way to optimize model performance. The aim of this global optimization
is to maximize the prediction capabilities of the model while employing a minimal
set of variables having biological relevance for the flux function being modeled.
However, since the overall optimization depends on the model parameters (i.e.,
synapse weight values), it may be necessary to train the network with different
sets of variables: some selection procedures alternate between variable selection
and retraining of the model parameters [128].

It is important to note that neural models have some specificities that must be
taken in consideration by variable selection algorithms. First of all, ANN are non-
linear in their parameters. This means that the majority of the methods assuming
linear relationships between inputs and outputs, such as correlation-based meth-
ods, are ill fitted for neural models. Second, the search space of ANN weights has
many local minima. Since variable relevance depends on the minimum the ANN
has converged to, relevance measures should be averaged over several training runs.

In [128] a complete overview of the main algorithms for feature selection with
ANNs is given. Here we report a summary of the principal criteria used to rank
and select variables:

• zero order methods use only the network parameter values (i.e., weight values)
to rank each variable. Yacoub and Bennani [249] proposed an heuristic which
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exploits both weight values and the network topology of multilayer perceptron
to rank variables according to a saliency measure;

• first order methods employ the first derivatives of network weights. That is,
to evaluate the relevance of an input variable these techniques measure the
variation of the output with regard to the variation of the input, when the
other inputs are kept fixed. Since these derivatives are not constant, like in
linear models, they must be averaged over the training set in order to obtain
meaningful relevance measures. Moody and Utans [161] proposed saliency based
pruning (SBP), in which the relevance of a variable xi is measured by evaluating
the variation of the learning error when the variable is replaced by its sample
mean x̄i. This is a direct measure of the usefulness of the variable for computing
the output. Several authors have proposed to measure the sensitivity of a neural
model with regard to an input variable xi by computing the mean value of
output derivatives with respect to xi over the whole training set [92,190,202];

• second order methods use the second derivatives of network weights. Specif-
ically, several variable selection methods in this class evaluate the relevance
of an input variable xi by applying some weight pruning criteria to the set of
weights of the related input neuron ui. MacKey [135] has proposed an approach
based on bayesian learning. Optimal cell damage has been introduced by Cibas
et al. [42,43] and it is inspired from the weight pruning technique developed by
LeCun [47] and named optimal brain damage. In these techniques, the saliency
of an input neuron is usually defined as the sum of its output weight saliences.
The saliency of each weight can be computed in several ways, one of these is the
variation of the model error (over the training set) with respect to the variation
of the weight itself. Other weight pruning techniques are called, respectively,
early brain damage and early brain surgeon, and have been proposed by Tresp
et al. [228].

The majority of these techniques perform a backward search, since they start
from a large set of possible variables and they identify, in different ways, a subset
of variables to be kept in the model and another subset of variables to drop.

The methodology we have presented in [36] for discovering flux tuners by means
of neural networks, consists of two steps:

1. application of the weight elimination technique [24, 245], during the network
training, for removing unnecessary synapse weights,

2. assignment, to each substance (parameter) of the MP system, of a tuning index
for each flux, rating the saliency of the substance (parameter) to tune the flux
itself.

We can thus classify this technique as a zero-order variable ranking methodology,
according to the classification reported above.

Weight elimination

Weight elimination [24, 245] is a technique aiming to find a neural network which
fits a specific training set by using the smallest number of weights. The hypothesis
on which this method is based states that “if several networks fit the data equally
well, then the network having the smallest number of weights will on average
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provide the best generalization”, that is, it will get the best predictions for new
data.

The idea is to add to the backpropagation cost function (usually a square error),
a term which “counts” the number of weights, obtaining the new cost function [24]:

E =
∑
k∈T

(targetk − outputk)2 + λ
∑
i∈C

w2
i

ŵ2 + w2
i

. (5.38)

and then to minimize this function by means of backpropagation. The first term
of Equation (5.38), called performance term, represents the square error between
network outputs, i.e. outputk, and target outputs, i.e. targetk, over the entire
training set T . The second term, named complexity term, deals with the network
size. Its sum, which extends over all the synapses C, adds a penalty value close to
unity (times λ) to each weight wi ∈ R such that |wi| >> ŵ, for some threshold
ŵ while it adds a penalty term approaching to zero to each weight wi such that
|wi| << ŵ. The parameter λ ∈ R+ represents the relative importance of the
network simplicity with respect to the network performance.

When the classical backpropagation learning algorithm is employed with the
cost function of Equation (5.38), weights are updated at each step according to
the gradient of both the performance and the complexity terms, thus a trade-off
between a small fitting error and a small number of weights is found. In other
words, the complexity term tends to “push” every weight to zero with a strength
proportional to weight magnitudes and to λ, while the performance term keeps far
from zero the weights actually needed to fit training data. Notice that, parameter
λ is a sensitive factor in this procedure, since if it is too small, then the complexity
term has no effect, while if it is too large then all the weights are driven to zero.
Moreover, the value of λ usually changes depending on the problem. In [245] some
heuristic rules are presented for dynamically tuning the value of λ during the
training process in order to find a minimal network while achieving a desired level
of performance on training data.

The weight-elimination technique has been implemented in the NeuralSynth
plug-in [33], a Java software, described in Section 6, which can be employed within
the MetaPlab virtual laboratory to automatically learn neural networks from ex-
perimental data. By employing a specific feature of the plug-in, neural networks
are trained on time series data and, at the same time, their unnecessary weights
are removed.

Tuning indexes assignment

The second step of the tuners discovery strategy proposed in [36] involves the
analysis of the neural networks achieved at the first step, with the aim to evaluate
the sensitivity of each flux to the variation of each substance and parameter. Given
a trained (and minimized) neural network encoding a regulation function ϕ(q), we
assign to each input neuron x (which is connected to a substance or a parameter
node according to the schema of Figure 5.12) a tuning index :

ξ(x) =
∑

p∈path(x,o)

∏
w∈p
|w| (5.39)
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where path(x, o) is the set of all paths from the input neuron x to the (only)
output neuron o (connected to a flux node according to the schema of Figure 5.12),
and each path p ∈ path(x, o) is, in turn, the set of weights of synapses on the
path from x to o. In other words, the tuning index ξ(x) rates the saliency of the
substance (parameter) connected to the input neuron x to tune the flux connected
to the output neuron o. This index is computed by summing, for every path from
the input neuron x to the output neuron o, the product of weights in the path.
Similar techniques [128,249] have been already employed in several fields, such as
in finance [56].

The idea behind this heuristic for computing tuning indexes is informally ex-
plained by means of Figure 5.19. In that picture, red thin arrows represent synapses
having weights with small absolute values, green thick arrows stand for synapses
having weights with large absolute values, and orange medium-thickness arrows
represent synapses having weights with medium size absolute values. From Fig-
ure 5.19 it is evident that the contribution of a single path from the input neuron
u1 (related to substance A) to the output neuron u9 (connected to flux F1), is
proportional to the product of the absolute values of weights on the path between
u1 and u9. Moreover, the overall contribution of input A in tuning output F1 is
related to the sum of the contributions of every path. This is because each neuron
computes a sigmoid function of the weighted sum of its inputs, as already described
in Section 5.3.

Fig. 5.19. Weight analysis of paths from the input neurons u1 (on the left) and u2 (on
the right), to the output neuron u9 for computing the tuning indexes of, respectively,
substance A and B in respect of flux F1 (figure from [36] with permission).

Let us consider a simple example. On the left side of Figure 5.19, the contribu-
tion of path u1 → u5 → u9, that is |w5,1| · |w9,5|, is smaller than the contribution
of path u1 → u6 → u9, that is, |w6,1| · |w9,6|, since |w5,1| and |w9,5| are smaller
than |w6,1| and |w9,6|. The tuning index of substance A with respect to flux F1

is the sum |w5,1| · |w9,5| + |w6,1| · |w9,6| + |w7,1| · |w9,7|. On the right side of the
same picture it is showed that the contribution of substance B in tuning flux F1 is
almost insignificant, since the absolute values of all the weights on the paths be-
tween the input neuron u2 (connected to B) and the output neuron u9 have small
or medium sizes. Accordingly, the tuning index of substance A will be greater than
the tuning index of substance B.
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A case study: the Sirius model

In this section we report some preliminary results of the application of the tuners
discovery strategy explained above to a simple case study. The MP system we
investigate, called Sirius, has been already defined in Section 4.6 where it has been
employed to explain the log-gain principle. Here, we report an MPF version of this
model, which involves the following flux regulation functions:

F1 =
k1a

k1 + k2c+ k4b+ ka

F2 =
k2ac

k1 + k2c+ k4b+ ka

F3 =
k3b

k3 + kb
(5.40)

F4 =
k4ab

k1 + k2c+ k4b+ ka

F5 =
k5c

k5 + kc

where k1 = k3 = k5 = 4, k2 = k4 = 0.02, and ka = kb = kc = 100. Notice
that, functions F1, F2 and F4 have the same denominator but the numerator of
F1 is characterized by the tuner A, numerator of F2 by the tuners A and C,
and numerator of F4 is characterized by the tuners A and B. On the other side,
functions F3 and F5 are characterized, respectively, by the tuners B and C. The
oscillatory dynamics generated by these functions, displayed in Figure 5.20, is
featured by a very similar trend for substances B and C, which differ only in the
first fifty steps.

We have sampled the dynamics of Figure 5.20 in order to obtain three sub-
stance time series (one for each substance), each having 1000 values, and we have
computed the related five flux time series (one for each flux) by the log-gain theory.
Subsequently, these time series have been employed to train five neural networks
(one for each regulation function) by means of backpropagation with weight elim-
ination. Specifically, substance values have been used as inputs and flux values
as target outputs during the training process performed by the software Neural-
Synth. We run the computation of the tuning indexes of each flux for five times
and, subsequently, we have calculated the mean and the standard deviations of
these indexes for each flux regulation function. The best results, reported in Ta-
ble 5.2, have been achieved by employing λ = 0.0001 and w0 = 1.0 for weight
elimination and neural networks having one hidden layer with three neurons. This
value of parameter w0 tends to eliminate weights between (about) −5.0 and 5.0,
which is consistent with the random initialization of neural network weights be-
tween −1.0 and 1.0. The parameter λ has been manually tuned for this case study
but some heuristics [245] will be considered to dynamically tune its value during
the training process. The network topology has been adapted to the complexity
of the searched regulation function.

Let us analyze the results of Table 5.2. The first row reports the mean relative
tuning indexes of flux F1 and, in brackets, the standard deviation of the relative
tuning indexes over the five tests performed. Value 0.918 in the first column, states
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Fig. 5.20. On top: Sirius model. At the bottom: Sirius dynamics

A B C
F1 0.918 (0.044) 0.043 (0.026) 0.038 (0.017)
F2 0.336 (0.001) 0.301 (0.209) 0.362 (0.209)
F3 0.018 (0.017) 0.971 (0.020) 0.010 (0.009)
F4 0.337 (0.006) 0.525 (0.292) 0.136 (0.292)
F5 0.020 (0.027) 0.084 (0.112) 0.895 (0.111)

Table 5.2. Mean tuning indexes and related standard deviations (in brackets) of sub-
stances A, B and C with respect to fluxes F1, F2, F3, F4, F5. These results have been
computed by performing five tests for each flux.

that substance A have obtained a mean tuning index of 91.8% for flux F1 over
the five tests. Substances B and C, respectively in the second and third columns,
have achieved mean tuning indexes of 4.3% and 3.8%. This result completely agrees
with the form of function F1, by which dynamics data have been generated, indeed
function F1 is deeply related with substance A, which appears in the numerator
of this function. By analyzing the third row of Table 5.2, related to flux F3, we
observe that substance B, which appears in the numerator of function F3, has
achieved a mean tuning index of 97.1%, while substances A and C, which are not
arguments of function F3, have scored only 1.8% and 1.0%. Quite good results have
been achieved for flux F4 (in the forth row), indeed the variables appearing in its
numerator, namely A and B, have scored mean tuning indexes of, respectively,
33.7% and 52.5% in contrast to the 13.6% scored by substance C. Flux F5, in
the last row of the table, has mean tuning indexes of 2.0% for A, 8.4% for B and
89.5% for C, according to the form of function F5 which includes only substance
C amomg its arguments. Instead, the result related to flux F2 (in the second row)
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deserves further investigations, since the mean tuning indexes turned out to be
not informative enough. Indeed, they are 33.6 for A, 30.1 for B and 36.2 for C,
and the values are so close to each other that we cannot deduce A and C to be
the only tuners for F2 (as it clearly appears in the numerator of function F2). We
believe that this problem can be due to the high similarity between the dynamics of
substance B and C, which makes it difficult to distinguish between the two inputs.
This seems to be confirmed also by the high standard deviation values achieved for
substances B and C for both fluxes F2 and F4, which points out a large variance
in the relative tuning indexes computed over the five tests. The dynamics trend of
the model obtained by this approach, which is displayed in [33], is very similar to
the original one, showed in Figure 5.20.

5.6 A pipeline for statistical data analysis and modeling:
from laboratory to MP models

In this section we introduce a methodological pipeline, of five steps, which out-
lines the entire process of flux regulation map synthesis from raw experimental
data, given as time series of observed substance concentrations and parameter
values [32].

The first two steps concern, respectively, the pre-processing (preparation) of
raw experimental data and the computation of flux time series from pre-processed
data. Afterwards, substance, parameter and flux data are analyzed by means of
some statistical techniques aiming to discover reciprocal relationships, while two
regression techniques are suggested for synthesizing regulation maps, namely, step-
wise regression and neural networks. These methodologies are finally tested and
compared by means of suitable statistical indexes [1]. In the following, we describe,
one by one, each of the five steps introduced in [32], and graphically described in
Figure 5.21.

1. Initially, it is necessary a phase of data preparation and preprocessing [188].
It involves the elimination of both noise and artifacts from experimental data.
Statistical tools are here employed for removing outliers and instrumental noise
from raw data, moreover, correlations among all substances and parameters
are computed.

2. Log-gain theory is here employed to infer flux time series from the preprocessed
time series of substances and parameters.

3. Flux time series from the previous step are analyzed by statistical tools, such
as scatter plots, correlation analysis, and t-tests, in order to discover their
relationships with the preprocessed time series of substances and parameters.
These tests are introductory to a phase of feature selection [89] in which a
proper subset of substances and parameters is identified as for the choice of
variables of each flux regulation map.

4. This step concerns the synthesis of flux regulation maps by means of mathe-
matical regression. Two main techniques from literature are considered, (lin-
ear) stepwise regression [1, 94] and (non-linear) neural networks [24, 33], and
some hints are given about the choice of the appropriate technique for specific
case studies.
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5. As a final step, the validity and the performance of each flux regulation map is
evaluated by means of statistical tools, such as, coefficient of determination R2

and residual analysis [1]. These tests help us to see if an appropriate regression
model has been applied, and if a specific technique (between stepwise regression
and neural networks) achieves better performance for the specific system under
investigation.

Fig. 5.21. Main steps of data analysis pipeline, where flux regulation maps are shortly
called regulators, their variables tuners, and the areas in bold include the contribution of
this thesis (figure from [32] with permission).

We have applied this workflow to two case studies: the mitotic cycle in early
amphibian embryos [85] here reported very briefly, and the non photochemical
quenching phenomenon (NPQ) [148], which is analyzed in more detail as an ex-
ample of pipeline application. Namely, both stepwise regression and neural net-
works have been employed, and their performance has been compared by means
of statistical indexes. The results discussed in the final part of the chapter show
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new interesting developments in the framework of data analysis for modeling by
metabolic P systems.

5.6.1 MP model of the NPQ phenomenon

Let us briefly describe the photosynthetic process we employ as a case study for
our pipeline [32]. It is an interesting biological system, which received wide in-
vestigation by biologists but was never modeled by conventional mathematical
techniques, such as differential equations. It has been successfully modeled by an
MP system in [148], where the reader may find even references about the biological
studies of this system, and where a few open modeling problems were addressed
in the last sections. In the following we improve the regulative part of that model,
based on the rules reported in Table 5.3 (describing the dynamics we are going to
explain in biological terms), and solve those open problems, to systematically find
(simpler) flux regulation maps from flux time series together with their relevant
system variables (sections 5.6.2 and 5.6.2).

Photosynthetic organisms need to maximize the amount of absorbed light but
avoid the damages that follow from an excess of excitation energy, which is the
main cause for the formation of reactive oxygen species, shortly ROS1. The phe-
nomenon that helps to deal with quick light excess is called non-photochemical
quenching, shortly NPQ. Through this phenomenon the excess of light can be
dissipated by using non-chemical ways, when the excitation is transmitted to par-
ticular molecules that can pass to their unexcited state by emitting heat.

r1 : c→ o+ 12h+ p
r2 : c→ c+ q+

r3 : c→ c+ f+

r4 : o→ c
r5 : h→ λ
r6 : p→ λ
r7 : x+ 100v → x+ 100z
r8 : y + h→ x

Table 5.3. NPQ reactions, according to the following abbreviations: c = closed photo-
sytems, o = open photosytems, h = hydrogen ions, p = NADPH, q+ = cumulative heat,
f+ = cumulative fluorescence, x = active VDE, y = inactive VDE, v = violaxanthin, z =
zeaxanthin. The first three reactions model the possible fates of excited chlorophylls, the
fourth models the turning of the opened into closed photosystems. The fifth and sixth
rules represent the decreasing of unused r1-products, leading to the dark phase of photo-
synthesis. Finally, the seventh and eighth rules represent xanthophylls cycle. f+ and q+

are substances introduced to apply the log-gain method, that account for the cumulation
of fluorescence and heat. Four parameters (which one may see in Figure 5.22) are r =
reactivity, l = light (both effecting the process), f = fluorescence, q = heat (output of
the system) [148].

1 ROS are chemical species producing a dangerous effect known as photooxidative dam-
age.
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Fig. 5.22. MP graphs of NPQ phenomenon visualized by a graphical user interface of
MetaPlab. On top: the NPQ model proposed in [148] - At the bottom: the simpler model
obtained as an output of our data analysis workflow (figures from [32] with permission).
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According to this phenomenon, light energy is absorbed by plants mainly by
means of protein complexes called Light Harvesting Complexes (LHC), which bind
many chlorophyll molecules (Chl), that are excited by light radiation. LHC are con-
nected to the photosystems, protein super-complexes that host structures called
reaction centers where the first phases of photosynthetic process occur. Struc-
turally, photosystem super-complexes include both reaction centers and LHC, and
may assume either an open or a closed state, respectively when they are able to
accept further photons or not. When a chlorophyll molecule absorbs a photon, it
passes to the excited state. Excited states may be transferred to the reaction cen-
ters where the oxidation of two water molecules produces a stoichiometric amount
of electrons, oxygen and hydrogen ions. Electrons are then carried to enzymes
which synthesize high energy molecules, like ATP and NADPH, involved in the
so-called dark phase of photosynthesis. Moreover, excited chlorophyll molecules
can be de-excited by passing energy to molecules that emit the heat resulting in
NPQ phenomenon, as well as fluorescence radiation, or can decade in the triplet
state, that can be transferred to oxygen atoms, thus generating ROS.

LHC and chlorophyll molecules bind other molecules, called caroteoinds, which
absorb energy from excited chlorophyll molecules and dissipate it by heat gen-
eration. Two caroteoinds of great interest in NPQ phenomenon are violaxan-
thin and zeaxanthin. When the absorption of solar radiation exceeds the capac-
ity of the organism to use it, an increase of hydrogen ions provides a signal of
over-excitation that triggers a regulative feed-back process. The Violaxanthin De-
Epoxidase (VDE), once activated by hydrogen ions, catalyzes the cycle of xantho-
phylls, which transforms violaxanthin to zeaxanthin. Zeaxanthin bound to LCH
favors the NPQ fluorescence and heat production [3].

5.6.2 A pipeline to synthesize flux regulation maps from observed data

In this subsection we describe in detail the single steps of our workflow, by show-
ing how we applied them to model NPQ by an MP system, starting from raw
data [32]. The data required are typically time series on the response of a bio-
chemical system to different conditions and stimuli, as its behavior in response to
small perturbations can be used to determine the properties of the system near
to a steady state [46]. In our case, experimental measurements on Arabidopsis
thaliana wild type plants, complemented by literature data, made it possible to
estimate the concentrations of the species involved in modeling the NPQ phe-
nomenon. In particular, it was possible to measure the fraction of closed (c) and
opened photosystems (o). The presence of many closed photosystems induces the
inability of canalizing further amount of energy through the photochemical way:
this is the ideal situation to measure the ability of the NPQ phenomenon. To in-
duce such a condition strong light flashes were used. With closed photosystems,
the reduction of the fluorescence (f) yield and the efficiency of non photochem-
ical quenching were measured. The rate of fixation of CO2 during a suitable (to
get measurements) condition of NPQ gave an index for the reactivity (r) of the
system, which is strictly connected to the capacity to reach equilibrium after light
energy absorption. The fluorescence (f) and heat (q) values were deduced from
measurements on the sample [155]. Produced NADPH (p) was estimated through
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laboratory measures, while pH value was deduced by combining data from liter-
ature [61, 111, 229] and applying the rate of change to the estimated pH values
during the NPQ measure. VDE state (x, y) was set in relation to various pH val-
ues [83]. The change over time of violaxanthin (v) and zeaxanthin (z) was obtained
with lab measurements during VDE activity.

Data preparation

Let us consider a set of experimental data obtained by sampling (possibly at a
constant rate τ) substance concentrations and chemo-physical parameter values of
a certain biochemical system. The analysis of experimental time series is necessarily
complicated by uncertainty due to measurement errors, natural fluctuations, noise,
unexpected external variations effecting the experiment, and missing data [46].

To remove artifacts from substance and parameter time series, we consider
curve fitting, which is a simple technique, often employed by biologists to find a
smooth curve which fits noisy data by reducing their random component while
preserving the main trend of the dynamics under investigation. Of course, if data
are affected by other kinds of errors regarding, for instance, consistency, integrity,
or outliers, then ad hoc techniques must be used [188], but it is out of the scope
of this work to consider particular methods to process raw data. After such a
preprocessing of experimental data, we assume that fluctuations and measurement
errors are normally distributed around the average trend of the system dynamics,
therefore each observed substance and parameter time series is fitted by a smooth
function using least square theory (as reported in Figure 5.23).

Fig. 5.23. Pictures reporting the pre-processed laboratory data of all substances and
parameters in NPQ phenomenon (see caption of Table 5.3). Figure from [32] with per-
mission.
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The analysis of Pearson’s correlations (PC, also called estimator R) gives a
measure of the degree of linear relationship between two random variables x(t)
and y(t), t = 0, . . . , n. It is defined as

R(x, y) =

∑n
t=0(x(t)− x)(y(t)− y)

(n− 1)sxsy
, (5.41)

where x, sx and y, sy are sample means and standard deviations, respectively,
of variables x(t) and y(t) over the n measurements. Correlation values close to
1 indicate positive linear relationships between substance/parameter monomial x
and y, correlations equal to zero indicate no linear associations, while correlations
near to −1 indicate negative linear relationships.

Correlation indexes are computed for each couple of elements out of the set of
substances and parameters X ∪ V . The consequent correlation matrix

C = {cx,y}x,y∈X∪V , (5.42)

turns out helpful to select subsets of variables relevant for flux regulation maps
(see the third step of this pipeline). Indeed, regression techniques are assumed to
be applied to variables with a mutual low correlation, and for the success (and the
significance) of the model it is important paying attention not to select variables
which are highly correlated with each other. In the case of NPQ phenomenon,
such a matrix is reported in Table 5.4, where f and q are not considered because
their significance is to account for the system output while parameter l · r−1 was
suggested by biological knowledge of the system [148].

c v h p x o z y l r l
r

c 1.00 -1.00 0.99 0.00 0.99 -1.00 1.00 -0.99 0.23 0.58 -0.21

v -1.00 1.00 -0.99 0.00 -0.98 1.00 -1.00 0.98 -0.22 -0.55 0.20

h 0.99 -0.99 1.00 0.00 0.98 -0.99 0.99 -0.98 0.20 0.52 -0.20

p 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

x 0.99 -0.98 0.98 0.00 1.00 -0.99 0.98 -1.00 0.27 0.66 -0.25

o -1.00 1.00 -0.99 0.00 -0.99 1.00 -1.00 0.99 -0.23 -0.58 0.21

z 1.00 -1.00 0.99 0.00 0.98 -1.00 1.00 -0.98 0.22 0.55 -0.20

y -0.99 0.98 -0.98 0.00 -1.00 0.99 -0.98 1.00 -0.27 -0.66 0.25

l 0.23 -0.22 0.20 0.00 0.27 -0.23 0.22 -0.27 1.00 0.53 0.45

r 0.58 -0.55 0.52 0.00 0.66 -0.58 0.55 -0.66 0.53 1.00 -0.41
l
r

-0.21 0.21 -0.20 0.00 -0.25 0.21 -0.21 0.25 0.45 -0.41 1.00

Table 5.4. NPQ substances and parameters correlations [32].

Flux discovery by Log-gain theory

Log-gain theory, described in [140–142] and already presented in Section 4.6, al-
lows to infer a set of flux time series which yields an observed dynamics. Indeed,
according to the mass partition principle, during one time interval between two
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observations, each reaction transforms a certain amount of reactants into prod-
ucts [140], and these quantities (fluxes) may be computed, with a good approxi-
mation, for each step of the observed dynamics, by solving system OLG[i]+SD[i+1]
(see Section 4.6).

At each step, this system, having a time constant block matrix of dimension
equal to the number of rules (and fluxes), turns out to be univocally solvable [72].
Hence, MP fluxes may be efficiently computed from the states, given by observed
time series, once flux values at an initial observational step is computed (namely
by means of the algorithm reported in [168]).

One could think of computing flux time series directly from noisy data (thus
keeping all the information contained in the laboratory dataset, but also prop-
agating the noise to the fluxes), but in this case a fitting of noisy fluxes by a
smooth function should be followed by a synthetic production of data by means
of MP dynamics employing the resulting fluxes (because we need a dynamical
correspondence between states and fluxes), with an extra computational cost.

Flux analysis and variable selection

Our aim at this point is to identify functional relationships between each flux
time series and every substance/parameter time series, in order to select a set of
significant variables for regulation maps. Several techniques for variable selection
have been already presented in Section 5.5. We have implemented one filter tool
based on correlation measurements and two embedded methods, one for stepwise
regression and another for neural network regression. The filter tool has been
implemented in a Matlab R© function, which performs a statistical analysis of each
flux time series (obtained as described at the previous step) along the following
three points:

1 Generation of a scatter plot, which is a sketch of data on two variables [1],
of each substance/parameter time series (or possibly their products up to a
specific degree) and the flux time series.

By plotting an observed dynamics in such a chart the general trend or some simple
relationships between variables can be caught. In Figure 5.24 two scatter plots re-
garding NPQ phenomenon are showed, where we may visualize an “almost linear”
dependence of flux u2 on its rule reactant c, which is not the case for the reactivity
substance r.

2 Computation of correlation (together with partial correlation) index between
each substance/parameter time series (and their products up to a specific de-
gree) and the flux time series.

Namely, given a flux u, correlation index R(zj , u) are computed, for each zj ranging
in X ∪ V (according to the formula given at the first step), where fluxes u and
state components zj are considered random variables, whose measured values are
denoted, respectively, as zj(t) and u(t), for t = 0, . . . , n.

Unfortunately, correlation cannot always distinguish between direct interac-
tions (e.g., substances or parameters which directly regulate a flux) and indirect
interactions (e.g., substances or parameters which regulate a flux by means of an
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Fig. 5.24. Scatter plots produced by our Matlab R© function, where flux u2 is plotted
with c (left) and r (right). Figures from [32] with permission.

intermediate substance/parameter), thus our analysis has been improved by com-
puting also partial correlations. The formula for computing the first order partial
correlation between two random variables x(t) and y(t), t = 0, . . . , n is the follow-
ing [213]:

RC1
(x, y) = minz 6=x,y|R(x, y|z)|, (5.43)

where

R(x, y|z) =
R(x, y)−R(x, z)R(y, z)√

(1−R2(x, z))(1−R2(y, z))
. (5.44)

If the correlation between a substance and a flux is high but the first order partial
correlation between the same variables is close to zero, then the substance does
not directly regulate the flux but it probably influences an intermediate substance
which regulates the flux.

3 Application of t-test to evaluate, with a certain confidence level, when to drop
a variable from a regulation map.

Our Matlab R© function employs the t-test to decide whether a substance/parameter
zi is correlated to the flux u. Intuitively, given a specific pair of variables x, y, mea-
sured along n steps, the t-test answers to the question: “is it possible to say, with a
certain confidence, that x and y are in some way correlated?” In statistical terms,
this test is based on the following hypothesis test:

H0 : ρ(x, y) = 0
H1 : ρ(x, y) 6= 0

where H0 is the so called null hypothesis and ρ(x, y) is the real (unknown) correla-
tion coefficient, which R(x, y) estimates by using the set of n observations available
for x and y. If, given a predefined confidence threshold α ∈ [0, 1] (a common value
for α is 0.025), the test concludes that there is sufficient evidence against the null
hypothesis H0, than we can reject it with a probability less than α to make a
mistake. The test statistic for determining the rejection or nonrejection of the null
hypothesis H0 is the following:

t(n−2) =
R(x, y)√

(1−R(x, y)2)/(n− 2)
, (5.45)
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where t(n−2) refers to a t distribution with n − 2 degrees of freedom. The null
hypothesis should be rejected if the value of t(n−2) is greater than the critical
point for a t distribution with a confidence level α (this values are defined in
specific tables or they can be computed by means of the p-value). A more detailed
description of these concepts can be found in [1]. In our case study, in which the
t-test is performed between a substance/parameter zi and a flux u, if the null
hypothesis is not rejected, than we can conclude with a certain confidence level
that no linear correlation exists between the two variables, therefore we can drop
variable zi from the regulation function of flux u.

In conclusion, when our Matlab R© function is launched on a specific dataset
of substance, parameter and flux time series, it produces a statistical analysis
about linear relationships between substance/parameter time series (and their
products up to a specific degree) and flux time series. On the basis of the infor-
mation reported in Table 5.4, a subset N may be extracted of variables carrying
non-redundant information about the regulative mechanisms. For each reaction,
one considers its set of reactants and the set of substances/parameters which are
not correlated to any reactant. The last one is processed by non-deterministically
choosing one out of the sets of elements mutually correlated, and then united to the
set of reactants to form N . In case of NPQ, besides this procedure, we extracted
sets N1 (reported, correspondingly to each rule, in second column of Table 5.5),
also by deleting p from the variables (because it has an observed constant value),
and by considering some biological constraints [148], according to which all the
rules are regulated by l and r but r3, which is regulated by parameter l · r−1. As
a result, for each reaction, we have a reduced set of (possibly regulative) variables
(which gives new biological information beside reactants), and the correlation itself
is a measure of importance of each variable in the reduced set.

Reactions N1 N2

r1 : c→ o+ 12h+ p c, h, x, r, l c, h, l
r2 : c→ c+ q+ c, h, x, r, l c, h, x
r3 : c→ c+ f+ c, h, x, l · r−1 c, h, x, l · r−1

r4 : o→ c o, h, x, r, l o, h, l
r5 : h→ λ c, h, x, r, l c, h, l
r6 : p→ λ c, h, x, r, l c, h, l
r7 : x+ 100v → x+ 100z v, h, x, r, l v, h
r8 : y + h→ x c, h, y, r, l c, h, y

Table 5.5. NPQ reactions, equipped with a set N1 of corresponding regulative non-
correlated variables (tuners), and a set N2 of variables selected from N1 by correlation
and scatter plot analyses with corresponding fluxes [32]. N2 has been employed as set of
input variables for stepwise regression generating the regulators in Table 5.8, which give
the reduced MP graph in Figure 5.22.

Regression analysis

Building a model of a flux regulation map given a dataset of system states (time
series of variables) and fluxes (time series of map values), entails the employment
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of regression analysis. In Sections 5.2 and 5.3 we have proposed two regression
techniques, namely, linear regression, which uses polynomial functions, and neural
network regression, employing neural networks to represent regulation maps. The
reader may refer to those sections for a detailed description of both the techniques.

Multiple regression. Three main experiments were performed by applying
stepwise regression to estimate the MP regulators of the rules reported in Ta-
ble 5.3 modeling the NPQ phenomenon. In a first experiment, multiple stepwise
regression has been applied starting from sets N1 of tuners in Table 5.5, and gave
the successful results reported in Table 5.6. In a second experiment stepwise re-
gression was applied by enforcing the presence of reactants among the tuners, and
the regulators reproducing the correct dynamics are reported in Table 5.7. Finally,
a parsimonious model has been found as the result of a third experiment, where
stepwise regression was applied to variables from N2 selected by correlation and
scatter plot analyses.

In some cases (such as, mitotic oscillator discussed in the final part of this
chapter), multiple regression models tend to assume high degrees and to employ
many variables, meaning the regulators have a high level of complexity, and the
employed regression method to estimate them is not appropriate [192]. In these
situations, artificial neural networks (ANNs) may be convenient, because of their
modular and parsimonious structure, which allows us to obtain accurate approxi-
mations of any function [24].

Artificial neural networks. We have performed several experiments, by dif-
ferent network topologies, sets of input variables, and learning techniques. Let us
here notice an important difference between stepwise and neural networks regres-
sion methods: the first one transforms the set of input variables into a set of output
variables (which are tuners for the estimated regulators, as in Tables 5.6, 5.7, 5.8,
while the second does not. Then, the choice of input variables for ANNs actually
gives a choice of tuners for the associated MP model. We have trained networks
with one hidden layer having three, five or seven hidden neurons. Three sets of
variables have been processed by each network: i) that of tuners selected in the
original MP model of NPQ [148], ii) the set N1 reported in Table 5.5, and iii) the
set N5 of tuners selected by the stepwise regression technique as in Table 5.8. The
cardinality of these sets decreases from the first to the third case. In very few tests
we obtained networks able both to fit the observed data and to reproduce the ob-
served dynamics, while best results have been achieved by improving the method
along with generalization and normalization, at least for data on the parameter l
representing light.

To better understand the cause of such a kind of inadequacy, an analysis has
been performed on the initial dataset. We firstly observed that a normalization is
needed in order to feed each input neuron with data belonging to a certain interval
of values. Indeed, observed NPQ dynamics have very different scales: light (l), for
instance, fluctuates between 40 and 3000 µmol m−2 s−1, while hydrogen ions (h)
oscillates between 6 ·10−4 and 122 ·10−4 µmol [148]. The normalization module we
added to the NeuralSynth plugin linearly rescales each substance and parameter
dataset to the interval [0, 1], in order to give to every input the same relative
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importance in determining the required outputs [24]. Another issue concerns the
generalization, which is a bipartition of the dataset in a training and a validation
set. Better performance is usually obtained by training the networks on a subset
of randomly chosen data (training set) and, subsequently, validating them on the
remaining subset of data (validation set). Our dataset has, however, a particular
evolution, since at the tenth step a peak of light is observed which affects the
subsequent dynamics of the system. For this reason, in the training set (usually
taken as half of the dataset) we put i) some observations of the dynamics before the
light peak, ii) some observations of the dynamics after the light peak and iii) the
observation gathered during the peak, otherwise the network hardly learns how to
behave in all these three conditions. Accordingly, we generate our training set by
enforcing the first 15 steps of the observed dynamics, and then randomly choosing a
certain number of observations. The validation set has been generated by merging
the first 15 steps of the observed dynamics (again) with the observations which
have not been inserted in the training set.

Testing regression model soundness and validity

Once a regression model has been generated, its validity and its performances have
to be tested, in order to understand if the values it predicts are reliable and if it
is able to generalize on new data. There exist several techniques and statistical
indexes aiming to score regression models, such as root mean square error (shortly
RMSE) and the adjusted coefficient of determination R̄2. The first is the average
distance (i.e., error) between the observed data points yj and the related regression
estimations ŷj , and it is defined as

RMSE =

√∑n
j=1(yj − ŷj)2

n− (p+ 1)
, (5.46)

where n is the number of observations and p is the number of basis functions. A
high RMSE indicates that the regression model produces wrong estimations, while
values of RMSE close to zero are usually associated to good models.

This index, however, depends on the magnitude of data, while we prefer relative
measures of variation degree of the data on the regression hyperplane, that is an
helpful information to compare different models [1]. The gap between observed
data yj , j = 1, . . . , n and their average value ȳ is usually assumed to be given by
the sum of an unexplained deviation yj−ŷj (i.e., error) and a deviation explained by
the variation of the independent variables ŷ− ȳ (see Figure 5.25). The percentage
of total variation explained by the regression model is measured by the coefficient
of determination R2, as in the following:

R2 =

∑n
j=1(ŷj − ȳ)2∑n
j=1(yj − ȳ)2

= 1−
∑n
j=1(yj − ŷj)2∑n
j=1(yj − ȳ)2

. (5.47)

An improved version of R2 which accounts also for degrees of freedom of the
regression model, and therefore it does not always increase as new basis functions
are added, is the adjusted coefficient of determination:
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Fig. 5.25. Unexplained deviation and explained deviation in the computation of the
coefficient of determination R2 [1].

R̄2 = 1−
∑n
j=1(yj − ŷj)2(n− 1)∑n

j=1(yj − ȳ)2[n− (p+ 1)]
. (5.48)

This coefficient represents a reliable index of goodness for regression models. Its
value is 1 if the regression hyperplane perfectly fits all the data, while it decreases
to 0 as the variation of the data unexplained by the model increases.

Estimation errors yj− ŷ, j = 1, . . . , n, also called residuals, are the most impor-
tant elements to analyze for discovering model biases. Residual analysis involves
also residual plots. We may plot residuals versus predicted values of dependent
variables, versus each independent variable, versus time, an so on, in order to
point out if either the error is constant or has some pattern. If any patter is re-
vealed, then the model performance to compute the regression function was not
good enough. In Figure 5.26 we report residual plots of stepwise regression models
(left-hand side) and neural models (right-hand side) for functions F3 (on the top)
and F8 (on the bottom) of NPQ model.

5.6.3 Experimental results

Table 5.6 presents the regulators obtained by applying stepwise procedure to sets
N1 reported in Table 5.5, beside the statistical tests associated with the regression
model. These functions reproduce quite accurately experimental results, while sta-
tistical indexes point out that stepwise regression has learned the regulators with
good precision. In all the following experimental results, the regulator ϕ3 has resid-
uals higher than the other regulators, but they are relatively low considering that
its range reaches values around 3000. Also, particular attention has to be paid
to regulators ϕ2 and ϕ3, which state, respectively, the rate of heat (q) and the
amount of fluorescence (f) at each evolution step. These parameters are not input
of the system, but are important because they account (by means of MP modeling)
for information about non-chemical ways plants have to dissipate excessive energy
produced by light.
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Fig. 5.26. Residual plots of ϕ3 and ϕ8 in the more parsimonious model we have found
(N5), by stepwise regression (left) and by neural networks (right). Figures from [32] with
permission.

Regulators N3 (Tuners set) R
2

RMSE

ϕ1 α1 − β1c+ γ1h− η1x+ ϑ1r + ρ1l c, h, x, r, l 0.99997 1.4998e-04

ϕ2 −α2 − β2c− γ2h+ η2x+ ϑ2l c, h, x, l 0.99999 1.3811e-03

ϕ3 α3 − β3x+ γ3l · r−1 x, l · r−1 0.65384 2.1567e+02

ϕ4 −α4 + β4o+ γ4h− η4x+ ϑ4r + ρ4l o, h, x, r, l 0.99997 1.4998e-04

ϕ5 α5 − β5c+ γ5h− η5x+ ϑ5r + ρ5l c, h, x, r, l 0.99997 1.8000e-03

ϕ6 α6 − β6c+ γ6h− η6x+ ϑ6r + ρ6l c, h, x, r, l 0.99997 1.4998e-04

ϕ7 −α7 + β7v v 1.0 4.1058e-11

ϕ8 α8 + β8y y 1.0 4.2496e-12

Table 5.6. NPQ regulators obtained by applying stepwise regression to sets N1 of vari-
ables reported in Table 5.5, and relative statistical tests [32]. The basis functions weights
can be downloaded from [153].

In the first experiment, stepwise regression did not select all the rule reactants
as tuners of corresponding fluxes, namely, for reactions r3, r7, and r8. In order to
build a model closer to the biological reality, where reactants are assumed to be
tuners for a reaction, a second experiment has been carried out, where stepwise was
applied by including the reactants in the initial regression models for regulators
of reactions r3, r7, and r8. Also in this case, the new set of functions, reported in
Table 5.7 with its statistical tests, allowed us to reproduce the observed dynamics.
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Regulators N4 (Tuners set) R
2

RMSE

ϕ1 α̃1 − β̃1c+ γ̃1h− η̃1x+ ϑ̃1r + ρ̃1l c, h, x, r, 0.99997 1.4998e-04

ϕ2 −α̃2 − β2c− γ̃2h+ η̃2x+ ϑ̃2l c, h, x, l 0.99999 1.3798e-03

ϕ3 α̃3 + β̃3c− γ̃3x+ η̃3l · r−1 c, x, l · r−1 0.65369 2.1572e+02

ϕ4 −α̃4 + β̃4o+ γ̃4h− η̃4x+ ϑ̃4r + ρ̃4l o, h, x, r, l 0.99997 1.4998e-04

ϕ5 α̃5 − β̃5c+ γ̃5h− η̃5x+ ϑ̃5r + ρ̃5l c, h, x, r, l 0.99997 1.8000e-03

ϕ6 α̃6 − β̃6c+ γ̃6h− η6x+ ϑ̃6r + ρ̃6l c, h, x, r, l 0.99997 1.4998e-04

ϕ7 −α̃7 + β̃7v − γ̃7x v, x 1.0 4.1083e-11

ϕ8 α̃8 + β̃8y + γ̃8h y, h 1.0 4.2522e-12

Table 5.7. NPQ regulators, obtained by applying stepwise regression to sets of variables
N1 (Table 5.5) and by adding the reactants as tuners of ϕ3, ϕ7, ϕ8, and corresponding
statistical tests [32]. The basis functions weights can be downloaded from [153].

Finally, in order to achieve more parsimonious models, we applied stepwise
regression starting from N2 and we obtained tuner sets N5, along with the results
(regulators and statistical tests) reported in Table 5.8. This has been a significant
point, even for a biological interest in NPQ, because we drastically reduced (with
respect to the original MP model in [148]) the set of regulative variables, and
then we have found the key tuners of each regulator of the NPQ phenomenon.
Excitingly enough, with tuners N5 from Table 5.8 we perfectly reproduce the sys-
tem dynamics, along with statistical results comparable with those of the previous
experiments (see Tables 5.6 and 5.7).

Regulators N5 (Tuners set) R
2

RMSE

ϕ1 ᾱ1 − β̄1c+ γ̄1l c, l 0.99829 1.0826e-003

ϕ2 −ᾱ2 + β̄2c− γ̄2c2 c 1.00000 4.8559e-004

ϕ3 ᾱ3 − β̄3c+ γ̄3c
2 + η̄3l · r−1 c, l · r−1 0.65188 2.1629e+002

ϕ4 −ᾱ4 + β̄4o+ γ̄4l o, l 0.99832 1.0826e-003

ϕ5 ᾱ5 − β̄5c+ γ̄5l c, l 0.99829 1.2995e-002

ϕ6 ᾱ6 − β̄6c+ γ̄5l c, l 0.99829 1.0826e-003

ϕ7 −ᾱ7 + β̄7v v 1.0 4.1083e-011

ϕ8 ᾱ8 + β̄8y y 1.0 4.2522e-012

Table 5.8. NPQ stepwise third experiment, where the more parsimonious model was
found [32]. NPQ tuners are obtained by applying the stepwise regression to sets N2 of
variables reported in Table 5.5. The basis functions weights can be downloaded from [153].

In Table 5.9, adjusted coefficient of determination R̄2 and the RMSE are re-
ported of experiments, where functions have been estimated by employing neural
networks having one hidden layer, with five neurons in the case of ϕ1, . . . , ϕ6, and
three neurons for ϕ7 and ϕ8. Training has been performed, as for all the other
tests, by means of backpropagation, using half data as training test and half as
validation set. The dataset has been split as described in s Section 5.6.2. Moreover,
each network has been retrained for three times and only the network achieving
the best results has been used for simulating the system dynamics.
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Tuners

c, h, l, o, p, r, v, z

c, h, l, r, z

c, l · r−1, v, h

c, h, l, o, p, r, v, z

c, h, l, o, p, r, v, z

c, h, l, o, p, r, v, z

v, x

h, y

R
2

RMSE

ϕ1 1.0 8.71e-05

ϕ2 0.99989 4.97e-03

ϕ3 0.91246 105.96e00

ϕ4 0.99998 1.10e-04

ϕ5 1.0 9.66e-004

ϕ6 0.99998 1.05e-004

ϕ7 0.99964 4.56e-07

ϕ8 0.99977 2.61e-07

R
2

RMSE

ϕ1 1.0 1.17e-05

ϕ2 0.99995 3.43e-03

ϕ3 0.94515 83.88e00

ϕ4 1.0 1.08e-05

ϕ5 1.0 2.15e-04

ϕ6 1.0 1.02e-05

ϕ7 0.99996 1.52e-07

ϕ8 0.99996 2.03e-07

Table 5.9. Left-hand side: tuners selected through a biological analysis in [148] and
employed as input in first two experiments for ANN regression reported aside. Center:
Statistical tests for the experiment (with generalization, and normalization of only light
data, by dividing them by 1000) in which the NPQ dynamics has been better reproduced.
Right-hand side: results for an experiment performed along the same conditions, apart
that all datasets have been normalized to the interval [0, 1], and not reproducing the
observed dynamics [32]. Neural network weights can be downloaded from [153].

We have performed several other experiments, with generalization and by in-
troducing the normalization of every dataset to the interval [0, 1] in order to give
the same importance to every input of the neural networks. All of them, as well as
the results in Table 5.9, show that, there are cases where regression has a better
performance but the functions generated are not able anymore to reproduce the
observed dynamics.

In Table 5.10 we finally report the results of three experiments performed
with three different sets of input variables. The analytical forms of synthesized
regulation functions are reported in [153].

R
2

RMSE

ϕ1 1.0 2.93e-05

ϕ2 0.99996 2.89e-03

ϕ3 0,962 70.05e00

ϕ4 1.0 6.61e-05

ϕ5 1.0 2.11e-04

ϕ6 1.0 2.40e-05

ϕ7 0.99993 1.86e-07

ϕ8 0.99998 7.44e-08

R
2

RMSE

ϕ1 1.0 1.56e-05

ϕ2 1.0 2.82e-03

ϕ3 0.96 72.27e00

ϕ4 0.99999 5.95e-05

ϕ5 1.0 1.96e-04

ϕ6 1.0 3.54e-05

ϕ7 0.99996 1.46e-07

ϕ8 0.99987 1.96e-07

R
2

RMSE

ϕ1 0.99987 2.96e-04

ϕ2 0.99986 5.91e-03

ϕ3 0.94748 82.87e00

ϕ4 0.99987 3.02e-04

ϕ5 0.99999 1.07e-03

ϕ6 0.99985 3.15e-04

ϕ7 0.99984 3.03e-07

ϕ8 0.99987 1.96e-07

Table 5.10. Statistical indexes for neural networks trained with generalization and nor-
malization by using three different sets of variables [32]. Left-hand side: variables in N1,
reported in Table 5.5. Center: variables in N4 reported in Table 5.7). Right-hand side:
small set of variables N5 reported in Table 5.8. Only this last test has given a faithful
dynamics, for all substances but hydrogen. Neural network weights can be downloaded
from [153].
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5.6.4 Discussions

A first analysis on the performance of linear and ANN regression, applied to an MP
model of a biological phenomenon such as NPQ, may be carried on by comparing
the results of Tables 5.6, 5.7, 5.8, with the three tables, respectively, reported
(from the left to the right) in Table 5.10. Indeed, in the first case, regression has
been performed by starting from the same set of input variables (N1), while in
the other two cases, regulators with same sets of tuners (respectively, N4 and N5)
have been obtained. Let us recall that, stepwise regression has a possibly different
set of input variables and set of tuners (because a selection of variables regulating
the functions is performed by the method itself), while in ANN they coincide.

Comparing Tables 5.6 and 5.7 with the first two tables in Table 5.10, neural
networks outperformed stepwise regression on functions ϕ1, ϕ3, ϕ4, ϕ5, ϕ6, while
for functions ϕ2, ϕ7, ϕ8, stepwise regression scored better statistical indexes. We
remark, however, that regulation functions synthesized by stepwise regression per-
fectly reproduce the dynamics, and those by neural networks do not. Comparing
the stepwise regression parsimonious model of Table 5.8 with the neural networks
working on N5, statistical indexes are still better for neural networks, but while
stepwise functions can reproduce the entire observed dynamics, neural networks
faithfully reproduce the time evolution of all substances but hydrogen.

As a conclusion, to model NPQ, stepwise regression seems to give a better per-
formance than regression by neural networks. On the other hand, in Section 5.4 we
have presented a neural approach for modeling the mitotic cycle in early amphibian
embryos, namely, to infer flux regulation maps associated with reactions [33]. In
that case, simple neural networks with one hidden layer having three neurons have
been able to learn good regulators from a dataset of about 4000 observations. In-
terestingly enough, functions synthesized by means of stepwise regression for the
same MP model were not able to reproduce the dynamics of the mitotic cycle,
even if scoring low residuals. We performed several experiments in this context,
by applying stepwise regression on different sets of polynomial basis functions: i)
all substances/parameters involved in the mitotic cycle network [33], ii) variables
resulting from the correlation analysis described in section 5.6.2, and iii) variables
resulting from a combined correlation and the scatter plot analyses among fluxes
and substance/parameter time-series (as we have done, in case of NPQ, for N2).
In all these experiments we have obtained models able to fit flux values but unable
to reproduce the dynamics of mitotic cycle.

In the following, we discuss a few issues which arose in the attempt to under-
stand the inadequacy of stepwise regression (for mitotic cycle model) and of ANN
(for NPQ).

In case of mitotic cycle, we noticed that the estimation of a specific couple of
regulators is crucial to control the dynamics (they are ϕ5 and ϕ7 by referring to the
table of reactions reported at page 198 of [33]), indeed, in our stepwise regression
experiments, to have simulations in accordance with the observed dynamics it is
enough to replace such regulators with the original flux time series (computed
by log-gain theory). On the other hand, high degree polynomials of many basis
functions are needed to satisfy the performance specifications of these two specific
regulators, revealing a complexity which is difficult to tackle by linear regression.
Residual analyses exhibited non-random structures, a clear sign that the inferred
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maps fit the data poorly, and residual plots revealed a nonlinear relationship among
the regulators ϕ5 and ϕ7 and some substances.

When a set of analysis reveal nonlinear relationships among variables of a data-
set, it is often possible to transform some of these elements in order to obtain linear
relationships [1]. In our case, we tried to apply only nonlinear transformations,
which increase linear relationships among substances and fluxes and, thus, change
the correlations among variables. Namely, we applied a multi-step trial-and-error
process to transform some of our data, according to the following steps: i) choose a
transformation method, ii) transform some of the independent variables, iii) find a
model of ϕr by stepwise regression including the transformed variables, iv) reduce
some basis functions of ϕr by statistical inference (to have a more parsimonious
model), v) analyze the adjusted coefficient of determination and create a residual
plot. If the residual plot shows a random pattern and the adjusted coefficient
of determination exceeds a given threshold, the transformation was successful,
otherwise return to step i) to start with a different transformation method. In this
way, we obtained models of ϕ5 and ϕ7 able to fit flux time-series and to reproduce,
together the other regulators inferred by using stepwise regression, the dynamics of
mitotic cycle. Unfortunately though, there are many ways to transform variables
to achieve linearity for regression analysis, and the above technique can require a
lot of computation time.

Therefore, as a final successful approach, we sampled the time-series of the
mitotic cycle with τ = 1 minute (instead of 0.06 secs), in order to have 100 macro-
observations, and we considered corresponding data of macro-fluxes2. In this case,
we have been able to learn good regulators by simply applying these steps: i)
a principal component analysis [104] to analyze the relationships among fluxes
and substances, ii) stepwise regression to infer the regulators, and iii) statisti-
cal inference, based on t-statistics for the regression coefficient and on F-test for
the regression model, to retain only the relevant basis functions for parsimonious
models. This procedure points out the additional value of MP modeling approach,
dealing with all data sampled at observational (macro) intervals of time, and be-
ing able to deduce new knowledge on the regulative mechanism underlying the
modeled biological system.

In case of NPQ, we noticed that the MP graph may be partitioned in a few
independent functional subunits, while two of them being crucial to keep on the
entire dynamics - in the following, let us denote with R the rules and with F the
flux regulators. Some subgraphs, such as those producing Qcum (cumulated heat)
by reaction R2, or Fcum (cumulated fluorescence) by reaction R3, are important
to have the final products of our system, but they do not affect any other subunit
of the graph. An analogous consideration may be done for the subgraph producing
v (violaxanthin) and z (zeaxanthin) by R7 (which by the way produced and con-
sumed a same amount of x), or that including substance p (NADPH) and reactions
R1 and R6 (which have identical fluxes since p is constant).

There are then mainly two dynamically significant subgraphs (apart of any
biological consideration), pointed out in Figure 5.27 as subgraph 1 and 2. The
first involves open and closed receptors (c and o) with reactions R1 and R4, whose
rates difference, initially positive, needs to converge to zero as the system evolves.

2 The author wish to gratefully thank Vincenzo Manca, who kindly suggested this idea.
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This synchronization seems quite difficult to reach by neural networks, since on
the fluxes F1 and F4 they are trained independently and even a small error in
their predictions may generate an error in the time evolution of c and o. In gen-
eral, if residuals of synchronized functions have opposite effects then they tend
to disappear, otherwise they cumulate the error. This error is often amplified as
the simulation goes on, because when the model reaches unobserved states, neural
networks may produce perturbed fluxes which bring the system some more far
from the correct dynamics. From our analyses in fact, it seems that the nonlinear
form of neural network increases their ability to fit observed data, but it enhances
the risk to do overfitting, and thus to have wrong flux values around observed
states. Moreover, since neural networks training algorithms are stochastic, they
may produce functions having sometimes opposite residuals and sometimes resid-
uals with common effects. This is why, by using neural networks, we sometimes
generate functions able to reproduce the observed dynamics and sometimes not.

Fig. 5.27. Dynamically significant subgraphs identified in MP graph of Figure 5.22
modeling NPQ (figure from [32] with permission).

Subgraph 2 involves substances h (hydrogen ions), y (inactive violaxanthin de-
epoxidase), x (active violaxanthin de-epoxidase) and reactions: R5, and R1, very
correlated each other (F5 is approximatively 12 times F1), and which flux difference
keep the amount of hydrogen ions within observed (relatively very small) values,
and R8, which affects the amount of hydrogen as well but has a flux not correlated
with those of R5, and R1. The observed dynamics of h has values between 6 · 10−4

and 122 · 10−4 µmol, which are obtained by adding, at each step, a flux 12 ·F1 (of
the order of 1 mol), and then subtracting the flux F5 (of the order of 1 mol) and
the flux F8 (of the order of 10−5 mol). Since fluxes 12 ·F1 and F5 are much greater
than the average values of h, small relative error on one of these two fluxes (e.g., an
error of 0.1% in F5 is about 0.001mol) yields a relatively high error in h (0.001mol
corresponds to an error of about the 20% if the amount of H is 0.005). Accordingly,
small relative residuals in F1 and F5 correspond to big relative errors in updating
h, so that the dynamics of h is brought away from the observed dynamics. Since h
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is employed as argument in many flux regulation functions (except for the set N5

of variables), the error can quickly propagate to the rest of the system, and this
would explain the results in Table 5.10.

The case studies here investigated prove that complex interactions taking place
in real biological networks may need different regression techniques in order to be
modeled. Furthermore, along this trend, further investigation needs to be carried
out, both to simultaneously synthesize a group of correlated systemic functions,
rather than a single function, and to analyze how the form of flux functions around
the given fluxes can affect the dynamics.
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Québec, Canada, 2009. ACM Publisher.

• A. Castellini, V. Manca, and Y. Suzuki. Metabolic P system flux regulation
by artificial neural networks. In G. Păun et al., editors, 10th Workshop on
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MetaPlab virtual laboratory

The huge amount of experimental data available for metabolic pathways requires
suitable computational tools in order to be stored, retrieved, visualized and ana-
lyzed, as well as ad-hoc mathematical models to be correctly interpreted [84,233].
In this last chapter we survey some of the main software for bioinformatics
and systems biology (Section 6.1), and we present the MetaPlab virtual labora-
tory [34,146,241], a software platform entirely developed to generate and analyze
discrete dynamics of biochemical systems in terms of MP systems (Section 6.2).
This software, entirely developed by the MNC1 group at the University of Verona
in collaboration with the Center for BioMedical Computing (CBMC) [70], involves
a main graphical interface, presented in Subsection 6.2.1 and an extensible Java
plugin based architecture, described in Subsection 6.2.2. As a virtual laboratory,
MetaPlab is equipped with several virtual tools, in the form of plugins, perform-
ing various processing jobs, such as, dynamics computation, flux discovery, and
regulation function synthesis, which are detailed through Subsections 6.2.3-6.2.9.

6.1 Software for bioinformatics and systems biology: a brief
overview

The last decade has seen the development of several high-throughput techniques
able to perform biochemical, genetic or pharmacological tests on hundreds of thou-
sands of samples per day [26,133]. This huge amount of data needs suitable tools
in order to be stored, retrieved, visualized and analyzed, and, moreover, it requires
ad-hoc mathematical models to be correctly interpreted [233]. The simultaneous
increasing of computational power availability has brought to a substantial deploy-
ment of several software tools able to satisfy some of these requirements. As for the
storing process, database tools, such as, GenBank [11], EMBL Nucleotide Sequence
Database [127], DDBJ (DNA Data Bank of Japan) [215], KEGG (Kyoto Ency-
clopedia of Genes and Genomes) [112, 113] and PDB (Protein Data Bank) [12],
provide several interconnected information about genes, proteins and biological
pathways. Some of these tools are also equipped with retrieval and analysis facili-
ties, such as the well known BLAST (Basic Local Alignment Search Tool) [6] and

1 MNC stands for Models of Natural Computing.



164 6 MetaPlab virtual laboratory

FASTA [132,169], that enable quick similarity searches through DNA and protein
alignment.

Computational modeling [66] is becoming a key approach to understand the
biochemical processes underlying observed data [119], and many software tools
have been developed for this purpose (see the list in [243]). There exist simula-
tors based on: i) discrete-stochastic approaches [50, 51, 99, 129, 167], often based
on the Gillespie’s algorithm, ii) continuous-deterministic approaches [99,164,224,
226], mainly involving ordinary differential equations (ODE), and iii) hybrid ap-
proaches [50, 99, 117]. Some tools provide also graphical facilities for improving
model design and visualization, and enhancing the readability of biological fea-
tures through the model representation. An example in this direction is repre-
sented by Cell IllustratorTM [164], a software tool which enables to graphically
model metabolic, signal transduction and gene regulatory pathways by means of
hybrid functional Petri nets [154] and to simulate deterministically their dynam-
ics [31]. Other tools for biological modeling aim to analyze fluxes in metabolic
networks [121] and to manage data and components integration [49,204], but only
a few software suites originate as integrated tools coping with all the phases of
biochemical modeling.

COPASI (COmplex PAthway SImulator) [99] is a first example of integrated
suite. It combines graphical facilities for editing and visualizing model parameters,
with simulation, plotting, analysis, exportation and parameter estimation tools.
The software, implemented in C++, can be used through graphical user interfaces
or command line, and it enables both a mathematical view of the model (by means
of variables and differential equations) and a biochemical perspective employing
concepts of reaction, compartments, metabolites, and so on.

Another well known suite aiming at the whole-cell simulation is E-CELL [224,
226]. It is an object-oriented tool implemented in C++ attempting to model cellu-
lar processes at a various level, such as protein-protein interactions, protein-DNA
interactions, regulation of gene expression and other cellular interactions, with
the final aim to construct a cell model for in silico experiments. An E-CELL
model involves three types of objects: substances, genes and reaction rules, where
substances represent molecular species, genes represent DNA sequences (in which
coding sequences, protein binding sites and intergenic spacers are reported) and re-
action rules represent typical reactions in metabolic pathways (complex reactions,
such as transcription or translation are modeled by series of reactions). Notice
that information about the objects involved in these models are recovered from
knowledgebases such as KEGG. Graphical user interfaces enable the user to access
to all the functionalities provided by the software. Simulations of cell behaviors are
performed by numerically integrating differential equations describing the system
under investigation.

The multiplicity of software and viewpoints for understanding the logic and
functioning of biochemical systems have required a standardization of model rep-
resentation, which has been achieved by the Systems Biology Markup Language
(SBML) [243]. It is a tool-neutral, computer readable format for representing mod-
els of biochemical reaction networks, and it is applicable to metabolic networks,
cell signaling pathways, genomic regulatory networks and other systems investi-
gated in systems biology [41, 101, 102]. SBML is based on XML (the eXtensible
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Markup Language) [238], a standard medium for representing and transporting
data, which is widely supported on the Internet as well as by the systems biol-
ogy and bioinformatics communities. The main aim of SBML is model portability,
indeed, by encoding a biochemical model into an SBML file we enable:

• to read the model in a lingua franca whatever is its specific format (differential
equations, algebraic equations, reactions, pathway diagrams, event rules, etc.);

• to simulate the model by using multiple SBML-compatible tools (e.g., discrete-
stochastic and continuous-deterministic simulators) without rewriting the model
file;

• to disseminate the model in peer-reviewed literature, where reviewers and read-
ers can independently test the model and reproduce the proposed results;

• to ensure model survivability beyond its visualization/simulation engine.

The first version of SBML, called SBML Level 1, was released on 2nd March
2001, thanks to an international community of software developers and users. The
most recent version of the standard, which is the Level 2, Version 4, has the
structure reported in Table 6.1 [243]:

beginning of model definition
list of function definitions
list of unit definitions
list of compartment types
list of species types
list of compartments
list of species
list of parameters
list of initial assignments
list of rules
list of constraints
list of reactions
list of events

end of model definition

Table 6.1. Structure of SBML files

Each list encodes, in a specific XML format, some elements of the biochemical
model under investigation. The user can choose the elements he/she needs for
encoding the model, since each list is optional.

Another international project related to the SBML, aims to define a standard
graphical notation for visually describing biological networks and processes. The
Systems Biology Graphical Notation (SBGN) [242] is including a comprehensive set
of symbols for process diagrams [120] (see Figure 6.1), entity relationship diagrams
and activity flow diagrams. For such a graphical notation to be accepted by the
community and employed as a standard, software tools and data resources are
being made available.
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Fig. 6.1. SBGN symbols for representing biological networks by process diagrams [242].

The current proliferation of software packages for processing cellular networks
has resulted in a duplication of capabilities. Since developing such tools is time-
expensive, their reuse is wished in order to enable developers to concentrate on
novel functionalities rather than to reinvent existing packages. An effort in this
direction is represented by the Systems Biology Workbench (SBW), a software
framework that allows heterogeneous application components, written in diverse
programming languages and running on different platforms, to communicate and
use each others’ capabilities via a fast binary-encoded message system [204, 244].
Each SBW-compatible application, potentially running on separate distributed
computers, can communicate with other SBW-compatible applications via a simple
network protocol. The interfaces to the SBW system are encapsulated in client-
side libraries that are provided for different programming languages. In this way,
developers can build on previous work without having to understand in detail the
often intricate internal workings of other tools. What a developer needs to know
is only the interface that the tool exposes.

As shown in Figure 6.2, SBW consists of two components, a broker for rout-
ing messages (rounded-corner rectangles) and modules which send and receive
messages (stars). All connections between modules and a broker take place via
standard TCP/IP sockets. All messages are transmitted in a binary format for
maximum performance. If a message needs to be sent between two different com-
puters, then messages are sent first to the broker on the remote machine, this in



6.1 Software for bioinformatics and systems biology: a brief overview 167

turn routes the message to the correct remote module. Modules may be written in
a variety of languages, including, Java, C/C++, Delphi, Perl, Python and Matlab.

Fig. 6.2. Communication among SBW brokers and modules [244].

6.1.1 Software based on P systems

At the end of this brief survey we want to mention three interesting tools based on
P systems for biological modeling and systems biology. The first is P lingua [131],
a programming language for membrane computing which aims to be a standard to
define P systems. This tool, developed by the research group on natural computing,
at the University of Seville (Spain), is equipped with i) a command-line compiler
which checks both syntactic and semantic programming errors on P lingua files
and translates them to XML files, ii) a command-line simulator which computes
P system dynamics according to stochastic strategies. Another valuable tool is the
Infobiotics Workbench developed at the ASAP group of the University of Notting-
ham (UK) [240]. It is a computational framework written in C++ which provides
a user-friendly front-end allowing modelers to design in-silico experiments, ana-
lyze and visualize results by means of four components: i) a modeling language
which allows to define multicellular models including geometrical informations,
ii) a multi-compartmental stochastic simulator based on Gillespie’s SSA (see Sec-
tion 3.2), iii) a module for formal model analysis using stochastic model checkers
PRISM and MC2, iv) a module for structure and parameter model optimization
based on evolutionary algorithms. Finally, the third tool we mention is a simula-
tor based on dynamical probabilistic P systems (see Section 3.3) and developed in
2006 at the University of Milano-Bicocca (Italy). Written in C++ this software is
freely available from the P system web site [223] together with some experiments
about Vibrio Fischeri. From the same web site many other simulators based on
several P system variants can be downloaded. In the next section we introduce
MetaPlab, a modeling tool based on MP systems and developed in the last four
years at the computer science department of the University of Verona.



168 6 MetaPlab virtual laboratory

6.2 MetaPlab

The process of modeling biochemical processes by MP systems involves various
steps, which can be summarized in the following three phases: i) data collection,
ii) computation of the unknown elements of the MP model, and iii) model valida-
tion and analysis. What we aim to do now is to automatize some of these phases
by means of suitable software tools. Let us start with a simple example. Sup-
pose to know, from experimental observations, the set of substances involved in a
biological process (X, item 1 of Definition 6 in Chapter 4), the chemo-physical pa-
rameters with their evolution functions (V , item 3), the reactions (R, item 2), and
the mathematical laws which regulate reaction’s fluxes (Φ, item 5). Given these
elements, the dynamics (δ, item 10) of a related MPF system can be computed for
a certain number of steps by solving Equations (4.2) and (4.3).

This task, we will call dynamics computation, is only one of several biologically
inspired mathematical problems which can be tackled by MP systems. Table 6.2
collects a few of these tasks focusing on the known and the unknown elements
of related MPF systems. The second problem proposed in Table 6.2 is called flux
discovery, and entails the computation of flux time-series U [1], . . . , U [t− 1] which
yield an observed dynamics δ<t of substances and parameters (where δ<t denotes
a dynamics having t steps). A mathematical theory for solving this problem, called
log-gain theory, has been already presented in Section 4.6. The subsequent task
concerns regulation function discovery. It is a regression problem which aims at
generating flux regulation functions Φ which fit a (known) set of flux time-series
U [t], . . . , U [t − 1] obtained for a dynamic δ<t. As explained in Chapter 5, these
functions can be generated by traditional regression methods [32,148,149] as well
as by evolutionary and bio-inspired techniques, such as genetic programming [124]
and neural networks [24,32,33].

Problem Known elements Unknown elements

Dynamics computation X,R, V, Φ, q0 δ

Fluxes discovery X,R, V, U [0], δ<t U [1], . . . , U [t− 1]

Regulation discovery R,U [0], . . . , U [t− 1], δ<t Φ

Dynamics analysis X,R, V, δ<t Statistical params, etc.

Table 6.2. Some biologically inspired problems which can be tackled within the MPF
systems framework. Unknown elements should be computed from known elements by
means of suitable mathematical techniques and computational tools.

The last problem listed in Table 6.2 concerns the analysis of MP system dynan-
ics, a data-mining task which involves the discovery of new biological information
from observed dynamics. It is related to: i) the discovery of dynamics patterns
and statistical parameters (e.g., dynamics and flux correlations), ii) the clustering
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of observed time-series, and iii) the analysis of the dynamical behaviors occurring
from different (environmental and structural) conditions.

Of course, it would be very useful to systematically attack these and further
problems by means of a set of suitably developed computational tools. The software
MetaPlab [34,146,241], presented in the following, meets this target by supporting
an extensible set of plugins, each dedicated to a specific task. MetaPlab is a virtual
laboratory which assists biologists to understand internal mechanisms of biological
systems and to forecast, in silico, their response to external stimuli, environmental
condition alterations and structural changes.

6.2.1 General features and input GUI

MetaPlab is a stand-alone program which can be used through some graphical
user interfaces (GUIs) by which MP graphs can be easily generated, processed,
visualized, analyzed and related to experimental data. This software extends the
capabilities of the former Psim [18,22] package, which enables only to generate and
visualize MP dynamics. The peculiarity of MetaPlab is that each model-processing
job, such as the model dynamics computation, the flux discovery, and the regula-
tion function synthesis, is performed by a specific plugin tool. In fact, the extensible
plugin based architecture, described in Subsection 6.2.2, makes MetaPlab a proper
virtual laboratory wherein MP plugins represent virtual tools for processing MP
models.

MetaPlab is a free software distributed, under the GNU General Public License
(GPL) [239], at the MetaPlab official website [241]. The Java implementation of
this software ensures its complete portability across every platform supporting a
Java virtual machine. The official user-guide [146] of the software is available online
at [241].

The MetaPlab’s graphical user interface, displayed in Figure 6.3, is called input
GUI since it enables the user to input MP models by means of MP graphs, to im-
port experimental data and to visualize them in a “network-oriented” way. Three
main areas, can be identified in this GUI: i) a menu and toolbar section, on top,
whereby the user can manage (i.e., open, close, save, print, export, etc.) model
files, edit (i.e., undo, redo, delete, etc.) MP graphs elements, adjust MP graph
visualization (i.e., zoom, show grids and rulers, etc.), check model correctness and
start new model-processing sessions; ii) a central drawing area, where MP graphs
are visualized; iii) a side-bar, on the right, containing tools for generating new MP
graphs from scratch, navigating them and checking their correctness. Specifically,
in this area modelers can find drag-and-drop buttons for creating substance, pa-
rameter, reaction and flux nodes, a pointer for drawing arches between nodes, a
navigator tool for quickly moving across large MP graphs and a real-time checker
detecting model inconsistencies.

Figure 6.4 shows some steps of the process of MP graph generation performed
by means of the MetaPlab input GUI. Substance nodes S0, S1 and S2 are cre-
ated, in the top-left side picture, by selecting the substance button in the side-bar
and then clicking on the drawing area, where blue-circular nodes automatically
appear. Subsequently, the reaction button and the input/output button are se-
lected to generate, respectively, reaction nodes (gray circles R0, R1, R2, R3, R4)
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Fig. 6.3. MetaPlab input GUI [146].

and input/output gates (i.e., green triangles). The stoichiometry of the system is
completely described at the third step, where arches are drawn between substance
and reaction nodes by using the specific pointer tool. The fourth step concerns
the creation of flux nodes F0, F1, F2, F3, F4, which are suitably connected, at the
successive step, to reaction nodes through dashed arches. In the last picture, node
labels have been set to the name of the elements they represent, namely, substances
A,B,C, reactions R1, R2, R3, R4, R5, and so on. Moreover, the model name and
constants have been set into the organism node.

Once an MP graph has been built, the user can include specific information in
each node by simply clicking on the node and filling in some fields of the window
which pops up. For instance, by clicking on a substance node one accesses to a
window (showed in Figure 6.5) whereby the name, the initial quantity and the
molar weight of the substance can be defined and visualized. In order to set and
import from (export to) file substance time-series coming from experiments or
simulations, the user can click the button “Edit time series”, which opens the
window displayed in Figure 6.6. It contains a table listing substance quantities
over time and a chart visualizing the same data.

The procedure described so far for accessing substance node properties, is em-
ployed also to access the properties of parameter, flux and reaction nodes. For the
specific case of flux nodes, a field called “evolution” enables the user to define a
flux regulation function. The substances and parameters nodes corresponding to
the arguments of a flux regulation function are automatically linked, by dashed
arches, to the flux node containing the regulation function itself, as showed in
Figure 6.7. This “network-oriented” access to model data is very easy-to-use even
for people more unfamiliar with biological modeling. A more technical description
on how to employ the input GUI to generate MP models and how to analyze MP
model data can be found in [146].



6.2 MetaPlab 171

Fig. 6.4. MP graph generation through the MetaPlab input GUI.

When an MP graph has been generated, the modeler usually wants to simulate
it, to analyze its dynamics and, in general, to infer new information about the bio-
logical system under investigation. Each of these processing tasks is accomplished,
within the MetaPlab framework, by a specific plugin. The MetaPlab input GUI
provides the user with a button which starts up the plugin manager, a simple tool
by which plugins can be selected and launched. In the next section we introduce
the plugin architecture, while subsequent sections describe specific plugin tools.

6.2.2 Plugin-based architecture

The software architecture of MetaPlab is showed in Figure 6.8. It is an original
architecture, devised and developed by the author of this thesis, which involves
four layers: the first one, displayed on the left side and identified by the label
“MP graphs”, copes with the definition and visualization of MP graphs, and it
is represented by the MetaPlab input GUI; the second layer, concerning the MP
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Fig. 6.5. A window for setting up and visualizing substance properties.

Fig. 6.6. A window for setting up and visualizing substance time-series.

store data structure, is dedicated to MP model storing; the third layer, called data
processing, is the core of this architecture since it involves an extensible set of
plugins for processing MP models and a plugin manager by which the user can
easily select and launch plugins depending on the specific task he/she has to deal
with; finally, the forth layer, showed on the right side of Figure 6.8, can be seen
as an appendix of the third layer, since it collects all the MP model visualizations
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Fig. 6.7. Final MP graph obtained through the MetaPlab input GUI.

provided by plugins. These visualizations are called MP vistas and they can involve
mathematical views (i.e., the ODE translation of an MP system), dynamics views
(i.e., time evolution charts or phase charts), and any other kind of view chosen by
plugin developers. In the following we report some technical details of each layer.

MP graphs. The starting point of any job in MetaPlab is represented by the
definition of an MP model in the form of MP graph. The MetaPlab input GUI,
described above, enables the user to easily accomplish this task in a graphical
way. The reader may refer to Subsection 6.2.1 for a description of this graphical
interface.

MP store data structure. The second layer of Figure 6.8 consists of an object-
oriented data structure, called MP store, which has been designed to store all the
elements of an MP system by suitable Java objects.

As shown in Figure 6.9 and, with more technical details in Figure 6.10, the first
object we find in an MP store is a Membrane object. It includes all the elements of
an MP system, i.e., substances X, parameters V , reactions R and fluxes Φ. Each
substance x ∈ X is represented by an object which stores i) the substance name x,
ii) its molar weight µ(x) and iii) the time-series of its dynamics ((δ(i))(x) | i ∈ N).
Each parameter v ∈ V is implemented by an object having two main fields, the first
one stores the parameter regulation function hv as a string, while the second holds
the time-series of its dynamics ((δ(i))(v) | i ∈ N) as a vector (called “values”) of
real numbers. Flux objects are very similar to parameters, indeed each flux stores,
into a string, the regulation function ϕr of a reaction r, and it contains the related
flux time-series (ϕr(δ(i)) | i ∈ N) into a vector. Finally, each reaction object
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Fig. 6.8. MetaPlab architecture (figure from [34] with permission).

Fig. 6.9. MP Store data structure.

implements a reaction rule r ∈ R by means of a vector of pointers addressing to
the substances involved in r. A multiplicity field related to each pointer states the
stoichiometric contribution of the substance to the reaction.

The MP store data structure is a key element of the MetaPlab architecture
since its standard structure ensures a complete compatibility among the entire set
of plugin tools, and between the plugins and the input GUI. In fact, each MP
model developed through the input GUI is automatically stored into an MP store
instance representing a kind of “working board” for plugins during the processing
stage.

Figure 6.10 reports, in a schematic way, the headers of all the Java classes in-
volved in the MP store data structure. Each of the eight boxes, called respectively,
MPStoreExt, ConstantMPExt, MembraneMPExt, SubstanceExt, FluxExt, Parame-
terExt, ReactionExt and MultiplicityExt, represents a Java object of the homony-
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Fig. 6.10. MP store data structure details. Each big box contains the header of a Java
class involved in the MP store data structure. Green strings represents Java fields. Each
of them is preceded by a string indicating the field type. Small squares represents Java
object references, while array of small boxes represent Java vectors containing sets of
objects.

mous type. Each textual line inside these boxes is a Java field, where field names
(green strings) are preceded by field types. Small squares represents object refer-
ences, while arrays of small boxes represent Java vectors containing sets of objects.

Data processing. The third layer of Figure 6.8 represents the core of the new
architecture. It is a plugin based module coping with MP systems data processing.
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This layer is composed by i) an extensible set of Java plugins, listed on the right
of the third layer, each equipped with specific input and (auxiliary) output GUIs,
and ii) a plugin manager, depicted on the left of the third layer, which automati-
cally loads MP plugins when MetaPlab is started up and it makes them available
to be launched by the user.

MP plugins are the MetaPlab’s processing units. Each of them is involved
in a specific computational task, such as the dynamics computation of an MP
system, the estimation of its regulation functions, the analysis of its dynamics,
or the importation of metabolic models from databases. To accomplish one of
these (or further) tasks, a plugin gets two possible inputs: one or more MP store
instances of the model under investigation (loaded into the inMPStoreExt vector
of Figure 6.11), and, possibly, a set of auxiliary data coming from the plugin input
GUIs (if the plugin provides any graphical interface). Plugin outputs are saved
into a specific vector (called outMPStoreExt in Figure 6.11) and automatically
returned to the plugin manager, so that other plugins can subsequently employ
them for further processing. Another way to save plugin outputs, which however
does not always ensures format compatibility with other plugins, is file exportation.
Moreover, some kinds of plugin results can also be visualized by suitable MP vistas,
namely, specific views aiming to better explain the information they convey.

Fig. 6.11. A plugin example. In the bottom, vectors inMPStoreExt and outMPStoreExt
are represented, which hold, respectively, the input MP store objects coming from the
plugin manager and the output MP store object to return to the plugin manager at the
end of the computation.

Figure 6.12 depicts the plugin manager GUI which can be launched from the
MetaPlab input GUI menu, and it enables the user to choose plugins from a list
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and to run them. When MetaPlab is started up, the plugin manager automatically
loads plugin files from a specific directory contained in the package. The upper
side of the plugin manager window displays a list of the available plugins and a
brief description of their features. Each plugin can be launched by selecting the
related entry in the list and clicking the run button. Plugins can automatically
load MP store objects from the mpStoreExtList vector of the plugin manager.
Moreover, if a plugin saves its output into MP store objects and returns them to
the plugin manager (which enqueues them in the mpStoreExtList vector), then
further plugins can subsequently load them as an input and process it again,
as graphically showed in Figure 6.13. Whenever a plugin computation stops, the
plugin manager is displayed, in order to give the user the chance to launch another
plugin.

Fig. 6.12. MetaPlab Plugin Manager. In the upper side of the GUI the user can run plu-
gins by choosing them from a list. The lower side of the GUI allows the user to download
new plugins from forthcoming on-line repositories. In the bottom, vector mpStoreExtList
is reported, which enable the plugin manager to store MP store objects coming both
from the MetaPlab input GUI and from plugins.

The lower side of the plugin manager GUI will enable to upload new plugins
from suitable repositories. Because of their intrinsic open and easy structure, MP
plugins can be implemented (by following a few simple rules described below) by
whoever wants to attack a specific modeling problem through MP systems. From
this perspective, the forthcoming on-line repositories will enable the exchange of
these computational tools among the MetaPlab users, in order to encourage their
reuse. The MetaPlab website [241] already supports the manual download of new
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Fig. 6.13. Data computed by a plugin can be processed again by further plugins, as in
a pipeline.

plugins and it provides a complete software documentation for each of these tools.

MP vistas. The fourth level of the architecture deals with the graphical rep-
resentation of MP structures and MP dynamics. These views support the analysis
of specific features of an MP system. A vista can, for instance, show substance
and parameter charts together, plot phase diagrams or visualize statistical indexes
about the entire dynamics.

Auxiliary modules. Two further modules are displayed at the bottom of Fig-
ure 6.8: the MP store validator and the repository manager. The first one is a
Java library which assists plugin designers to check the MP store consistency. The
second, which is currently under construction, will assist the user to systematically
store and retrieve the results of many virtual experiments related the same MP
model.

How to implement a plugin. Whoever wants to attack a new modeling problem
by means of MetaPlab can develop new plugins by simply extending the abstract
class PluginExtAbs (see Figure 6.14) released within the MetaPlab source package.
Indeed, a plugin can involve one or more Java classes but it must have a startup
class (extending PluginExtAbs) whose name corresponds to the plugin name. In
this class three methods have to be implemented, namely, method getName, which
returns a string of the plugin name, method getDescription, which returns a string
describing the plugin main features, and method start, which executes the plugin
computation. These three methods are called by the plugin manager, respectively,
to show the plugin name and description in the plugin list, and to execute the plu-
gin computation when the user clicks on the run button. The plugin startup class
automatically inherits three fields from the abstract class PluginExtAbs: a vector of
input MP stores (called inMPStoreExt) representing the input models and data, a
vector of output MP stores (called outMPStoreExt) representing the output mod-
els and data, and a caller referring to the Java object which manages the plugin.
Moreover, the plugin startup class also inherits from PluginExtAbs some methods



6.2 MetaPlab 179

for managing communication and synchronization between the plugin and the rest
of the application (i.e., methods setCaller, notifyCaller, setInputMPStoreExt and
getOutputMPStoreExt). In this way, the developer can focus his/her attention only
on the specific task the plugin has to accomplish (which has to be written in the
start method), without dealing with secondary issues.

Fig. 6.14. Java abstract class PluginExtAbs. It implements some methods of the Java
interface PluginExt (see Figure 6.15) while leaving the implementation of three plugin-
dependent methods to the user.

Let us consider, for instance, the Java class EmptyPlugin displayed in Fig-
ure 6.16, which is the startup class of an homonymous (toy) plugin. It extends the
abstract class PluginExtAbs thus inheriting (input, output and caller) fields and
(communication/synchronization) methods as described above. Moreover, it im-
plements four methods: a constructor, and the three abstract methods (getName,
getDescription and start) of PluginExtAbs. In particular, method getName returns
the string “Empty plugin”, which will be displayed in the plugin list of the plu-
gin manager, method getDescription returns the string “This plugin only prints a
string”, which will be displayed in the description text field of the plugin manager,
and finally, method start prints the string “This string is printed” in the standard
output and notifies its caller of the accomplished computation. Of course, real plu-
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Fig. 6.15. Java interface PluginExt.

gins have much more complicated codes inside the start method, since they can
access input MP stores data structure, process their data, launch graphical user
interfaces for acquiring new data or displaying vistas, generate output MP stores,
and so on.

Once the required methods have been implemented, the plugin must be com-
piled, obtaining a .jar file having the same name of the startup class (i.e., Empty-
Plugin.jar in our toy example). This file has then to be copied in the pluginsExt
directory of the MetaPlab binary distribution, so that it is automatically loaded
by the plugin manager when the software will be relaunched. In order to launch
this new plugin, the user has simply to load an MP graph by the MetaPlab input
GUI, to run the plugin manager (by the specific button in the input GUI), to
select the plugin name in the plugin list and to click the run button. As for the
EmptyPlugin, the string “This string is printed” will be showed in the standard
output.
Launching plugins in succession: the MetaPlab data flow. To complete
this section we explain in more detail the mechanism for launching plugins in
succession. This mechanism enables the user to work with virtual tools, namely
plugins, in a similar way as biologists do with experimental tools in laboratory.
Let us consider, for instance, a simulation plugin which computes the dynamics
of MP models from initial conditions, and a chart plotting plugin able to plot
MP dynamics. In order to use these two plugins in succession the user has to
follow these steps. First of all, he/she creates or loads an MP model by the Meta-
Plab input GUI. This model, containing the stoichiometry, the regulation and the
initial conditions of the system, is automatically stored in an MP store object.
Then, the user launches the plugin manager, which acquires the MP store and it
puts this object in an internal vector (see vector mpStoreExtList in Figures 6.12
and 6.13). Subsequently, the simulation plugin is launched and the MP store object
is automatically passed from the plugin manager to the the input vector (called
inMPStoreExt in Figures 6.11 and 6.14) of the simulation plugin, so that data can
be employed by the plugin to compute the dynamics of the system. This dynamics
is stored in a new MP store object and put in the output vector (called outMP-
StoreExt in Figures 6.11 and 6.14) of the simulation plugin. When the simulation
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Fig. 6.16. A toy example of MP plugin. When it is launched from the plugin manager
it only prints a string on the standard output.

plugin finishes (and it calls the method notifyCaller), the plugin manager auto-
matically loads the MP store objects in the output vector of the simulation plugin
and enqueues them into its vector mpStoreExtList.

Now, the computation of the first plugin is finished and its output MP store
is stored in the plugin manager, thus the chart plotting plugin has to be launched
in order to graphically visualize these new data. When the user selects the chart
plotting plugin, the last MP store object loaded in vector mpStoreExtList is passed
to the plugin. In this way, the dynamics computed by the simulation plugin is
plotted by the chart plotting plugin. Of course, this process can be iterated if
more than two plugins has to be launched.

Notice that, the vector mpStoreExtList, is a kind of queue (contained in the
plugin manager) which stores the history of plugin results obtained during a virtual
experiment. In the current version of the architecture, plugins receive in input only
the last MP store object put in the vector mpStoreExtList. Future extensions may
provide a direct access to the vector mpStoreExtList, in order to enable the user
to pass to plugins one or more MP stores selected from the intermediate results
of a virtual experiment. In this way, it would be possible also to employ plugins
which returns more than a single MP store, since the user could select which of
them to process again and which to discard.

The architecture described so far enables to systematically tackle many prob-
lems about biological systems modeling by means of a set of MP plugins. In the
next sections we review some of these problems and we present the plugin tool we
implemented to automatically solve them.
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6.2.3 Dynamics computation

Given an MP system in which the stoichiometry, the initial state and the regulation
functions are known, one usually wants to compute the dynamics of the system for
a certain number of steps. The standard way to generate this time evolution is to
apply, at each computation step, the difference equations 4.2 and 4.3 which deter-
ministically computes the next state of the system, i.e., substance concentrations
and parameters values, from the current state.

The plugin tool we have developed to automatically generate the MP dynamics
is called simulation plugin and its graphical interface is showed in Figure 6.17. It
asks the user to set a few simulation parameters, such as, the number of steps to
perform (i.e., field “steps”), an optional “guard”, i.e., a proposition about some
dynamics properties, which stops the computation when it becomes false, the
name of the (optional) file where to save the achieved dynamics (i.e., field save
in). The input of this plugin is an MP store data structure containing all the
information about an MP model, the output is an MP store of the same MP model
but containing also the computed dynamics of each substance and parameter. If
the input MP store already contains t steps of a previously computed dynamics,
the field initial step should be set to t + 1 in order to keep this evolution and to
compute some more steps. Moreover, if one wants to store into the output MP
store only the last t steps of the computed dynamics he/she has to set the store
last field to t. MP flux objects sometimes contain regulation functions, while in
other circumstances they hold only flux time-series. In the first case the fluxes
radio button must be set to “by function”, while in the second case it must be set
to “by time-series”, so that the right flux source is selected.

Fig. 6.17. The graphical user interface of the simulation plugin.

When all the simulation parameters have been set, the simulation can be
launched by clicking on the start button. In this way, time-series of substances,
parameters and fluxes are generated and stored into the output MP store, while
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the progress bar at the bottom of the interface informs the user about the pro-
cessing state. The user can then choose to perform another simulation or to return
the result to the plugin manager by clicking the return button. A first analysis of
the simulation results can be performed by closing the plugin manager and thus
updating the MP graph in the input GUI with the newly generated dynamics.
By clicking on each node of the MP graph, dynamics data can be browsed and
visualized (by means of both tables and charts) in a network-oriented way. More
accurate analyzes can be performed by the plugin presented in the next section.

6.2.4 Chart plotting

MetaPlab provides the chart plotting plugin for plotting together substance, pa-
rameter and flux time evolutions of an MP model. It takes in input an MP store
object from the plugin manager and displays an MP vista of its dynamics. The
graphical interface of this tool, showed in Figure 6.18, is split in two main areas:
a 2D chart, on top, and a control area, at the bottom, where three tabbed panes
enable the user to choose a chart type between line chart and phase chart, and to
set the main options of the chart.

If the line chart is selected, the x axis represents the time instant and the y axis
represents the values of the plotted entities, which can be substance concentrations,
parameter values or flux values. In the left side of the bottom panel, the user can
set the x -axis and the y-axis labels, and select the plotting time-interval. In the
right side, the user can select which time-series to plot among all the substances,
the parameters and the fluxes of the input MP model, and he/she can choose if to
visualize only data points or also lines connecting data point.

On the other hand, if the phase chart tab is selected (at the bottom of Fig-
ure 6.18), the user has to choose the time-series to plot in the x and y axes and
the visualization features (points chart or line chart) before generating the chart.
Finally, the option tab opens a panel where the user can choose to sample the
dynamics data with a certain step. Notice that, zooming facilities are available by
selecting specific areas of the chart panel.

6.2.5 Flux discovery

The problem of flux discovery, already introduced in Section 4.6, represents a
crucial issue of MP modeling, since it is the first step towards the synthesis of
MP regulation functions from experimental data. This plugin computes flux time-
series from observed substance and parameter time-series by means of the log-gain
theory. In particular, this tool requires an MP model wherein i) the stoichiometry
is completely known, and ii) each substance (and parameter) has an associated
time series of observed concentrations (values). The plugin output is a copy of
the input MP store containing also suitable flux time-series computed using the
log-gain theory.

The user is asked to define, through the graphical interface of Figure 6.19,
a set of log-gain regulators (also called tuners) for each reaction (on the left)
and a set of reactions (called offset parameters) satisfying the “covering log-gain
property” (on the right). The theoretical definition of these concepts is reported in
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Fig. 6.18. On top: a line chart of the oscillations of the mitotic cycle in early amphibian
embryos achieved by the chart plotting plugin. At the bottom: a phase chart of Sirio’s
dynamics.

Section 4.6. In order to select a regulator x for a reaction r, namely, a substance or
a parameter which is directly involved in the regulation of flux ϕr, the user has to
select the reaction r and the substance/parameter x from the combo-boxes on the
top-left side of the interface and to click on the add regulator button. The delete
regulator button enables to remove a regulator entry once it has been selected in
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the regulator list (on the left-bottom side). On the right side, the user can “cover”
a substance x with a reaction r by selecting the substance x and the reaction r
from the combo-boxes and then clicking on the add reaction button. Also in this
case, an offset parameter can be removed by selecting the related entry in the
offset parameter list and clicking on the delete reaction button.

Fig. 6.19. Graphical interface of the flux discovery plugin.

Once regulators and offset parameters have been suitably defined, the run
log-gain plugin button can be clicked, so that the plugin computes a set of flux
time-series which makes the model evolve according to the observed dynamics.
In particular, the tool automatically arranges and solves an equation system in-
volving a substance difference module SD[i + 1] (see system 4.27 in Section 4.6)
and an offset log-gain module OLG[i] (see system 4.29 in Section 4.6) for each
step i of the observed dynamics. The resulting flux time-series are stored in the
appropriate fields of an output MP store which is returned to the plugin manager
when the return to the plugin manager button is clicked. In this way they can be
visualized through the MetaPlab input GUI and employed by other plugins, such
as those presented in the next section, which need flux time-series to synthesize
flux regulation functions. A complete description of the functionalities of the flux
discovery plugin can be found in [146].

6.2.6 Regulation function synthesis by linear regression

The synthesis of MP regulation functions from datasets of observed substance
and flux time-series is a regression problem which has been deeply investigated
in Chapter 5. The choice of a good regression technique for solving this problem
deeply depends on the knowledge one has about the form of the expected function.
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In general, when fluxes are known to be a linear combination of substances and
parameters, then linear regression analysis is employed, while if the relationship
between substances/parameters and fluxes is not linear, then nonlinear regression
is used. In Chapter 5 we have also introduced two main regression techniques for
generating regulation functions, namely, linear regression [1] (see Section 5.2) and
neural networks [24, 33] (see Section 5.3). In this and in the next subsection we,
respectively, present two plugins with the aim to automate the application of these
two regression methods within the MetaPlab environment.

The Linear Regression tool is an MP plugin which receives in input, from the
plugin manager, an MP store object containing the stoichiometry of the system
under investigation, and a time-series for each substance, parameter and flux. It
generates, for each reaction r, a flux regulation function fitting the flux data and
having the following form:

ϕr(q) = β0 + β1X1 + β2X2 + . . .+ βzXp (6.1)

where βi, i = 0, . . . , p, are real coefficients computed by the least squares method
(see Section 5.2 for more details), and Xi, i = 0, . . . , p, are monomials obtained by
raising substance and parameter variables to some real power and then possibly
multiplying them together. For instance, a regulation function generated by the
plugin for a reaction r of an MP model having three substances, i.e., A, B and C,
and one flux, i.e., P , could be ϕr(q) = −0.023 + 1.112A2B − 8.432P . The plugin
output consists of a copy of the input MP store, in which flux objects contain also
the newly computed regulation functions.

Linear regression plugin employs two graphical user interfaces. The first one
appears as soon as the tool is launched from the plugin manager and it enables the
user to generate parametric polynomials of the form of Equation 6.1 (they are said
parametric since coefficients βi, i = 0, . . . , z are unknown). The second interface
is displayed when the generation of parametric polynomials is finished, and it en-
ables to compute the polynomial coefficients by means of the least squares method.
Now, let us start explaining the first GUI, which is displayed in Figure 6.20.

First interface: Polynomials generation. The first GUI of the linear regres-
sion plugin is composed of the four areas highlighted in Figure 6.20. By clicking on
the topmost button, in the workspace selection area, we firstly select a workspace
directory where the plugin automatically stores experiment files related to the
MP model under investigation. Then, we select a reaction of the MP model from
the combo-box in the reaction selection area (e.g., reaction R1 is selected in Fig-
ure 6.20). Afterward, we start to generate one or more parametric polynomials
for the selected reaction. Every parametric polynomial related to a reaction r is
stored in a text file called r.txt in the workspace directory. Each polynomial is a
linear combination of monomials involving substance/parameter variables.

To insert a new substance (parameter) in a polynomial we select the substance
(parameter) variable from the list called substances and parameters, in the polyno-
mial generator area, we raise it to a proper power and we possibly multiply or add
it to other substance and parameter variables by clicking, respectively, on the “*”
button or on the the “+” button. While a polynomial is being written its elements
are visualized step-by-step in a specific text box (see the text box containing the
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Fig. 6.20. First GUI of the linear regression plugin: generation of parametric polynomi-
als.

polynomial V1+C*M in Figure 6.20). When every monomial has been inserted
we write a polynomial description in the bottom text-box and we click on the ok
button to add the new polynomial to the list of polynomials available for reaction
Ri, where Ri depends on the reaction selected above. Polynomials can be deleted
from this list by clicking the remove button in the polynomials visualizer area.
The overall process has to be repeated for each reaction of the model, until each
reaction is associated with at least one parametric polynomial. At that point, we
click on the next button to open the second GUI.

Second interface: computation of polynomial coefficients. The second GUI
is composed of three main areas, as displayed in Figure 6.21. In the first one (on
top) we can easily select a parametric polynomial for each reaction, among the
polynomials generated with the first GUI. We firstly select a reaction from the
combo-box and then we use the add and remove buttons to select or unselect
parametric polynomials. Once a specific set of polynomials has been selected, the
do regression button has to be clicked to compute the coefficients which make
those polynomials fit flux time-series in the MP store.

Results, namely optimized polynomials, are showed in the central area of the
interface. The user can analyze these results and choose if to save them in a file to-
gether with a suitable description or to discard them performing a new regression
process. Saved experiments are stored into a text file called exp.txt inside of the
workspace directory, and they are indicated by a suitable entry in the list placed
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Fig. 6.21. Second GUI of the linear regression plugin: estimation of polynomial coeffi-
cients.

on the left-hand side of the regression results selection area. The user can select
these entries, visualize the related polynomials (by clicking the “>>” button) and
send them to the plugin manager.

Workspace management. The workspace directory selected from the first GUI
contains two kinds of text files employed by the plugin: i) a file called r.txt for each
reaction r, and ii) a file called exp.txt. Each file r.txt stores a list of parametric
polynomials which can be used for computing regulation function ϕr by the least
square method. File exp.txt stores all the results (i.e., sets of polynomials) obtained
by the plugin for a specific MP model. In order to avoid improper functioning of the
plugin, the user is asked not to manipulate files r.txt and exp.txt by text editors.
Moreover, when a preexisting workspace is selected, the user has to make sure
that it refers to the current MP model, otherwise some warning or error messages
appear depending on the type of the anomaly.

6.2.7 Regulation function synthesis by optimized neural networks

The second plugin we have implemented for synthesizing flux regulation functions
from observed time-series is called NeuralSynth [33]. Even if this plugin has the
same aim of the previous one, the methodology employed to generate regulation
functions is completely different. While the linear regression tool generates (linear)
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regression functions having a polynomial form, NeuralSynth creates (nonlinear)
regression functions represented by neural networks. The possibility to employ
neural networks having just one hidden layer of sigmoid neurons to approximate
any continuous functional mapping is proved in [76] thus, a regression technique
based on this tool can, in principle, be employed even when the form of the required
function is completely unknown (see Section 5.3 for more theoretical details).

The plugin input is an MP store object containing the stoichiometry of the
system under investigation, and a time-series for each substance, parameter and
flux. To generate flux regulation functions, substance and parameter time-series are
provided to each neural network as inputs, while flux time-series are employed as
target outputs. The plugin output is a copy of the input MP store, but containing
also all the flux regulation functions (in the form of neural networks) which fit
the flux time-series. The plugin enables the user to generate feed-forward neural
networks, and then to automatically train them to fit flux data.

The plugin makes use of six graphical interfaces. The main interface, showed in
Figure 6.22, appears as soon as the plugin is launched from the plugin manager. It
simply enables the user to access the neural network builder, a tool for generating
neural network topologies, and to choose one among four algorithms for learning
these networks. By the neural network builder, displayed in Figure 6.23, the user
can set up a single feed-forward neural network representing all the regulation
functions of the MP model, or a feed-forward neural network for each regulation
function. In the first case, a single neural network having m output neurons is
generated (where m is the number of reactions in the MP system), in the latter
case, the NN builder creates m networks having a single output neuron. To switch
between the two modes the radio button on top of Figure 6.23 has to be used. Of
course, the second mode requires a specific set up of every single network topology
according to the type of the regulation function it has to represent. To do that, the
user has to choose, from the proper combo-box, the reaction to whom the network
refers, before starting to set up the network topology.

The current topology of the network under construction is displayed in the
bottom side of the interface, by means of a table. Each row of the table represents
a neuron layer, while the four columns of the table show, respectively, i) the
sequential position of the layer, ii) the number of neurons in the layer, iii) the type
of activation functions of the neurons in the layer, iv) the number of bias neurons
in the layer. For instance, the neural network represented in the NN builder of
Figure 6.23 has three layers: the input layer, in position 0, has three neurons with
a linear activation function and one bias neuron; the hidden layer, in position 1,
has three sigmoid layers and one hidden layer; the output layer, in position 2, has
five sigmoid neurons and no bias neurons. Notice that, this network represents all
the regulation functions of the MP model under investigation, indeed the radio
button on top of Figure 6.23 is set to the left-hand side item. This is confirmed
also by the fact that the network has more than one output neurons.

New neuron layers can be added to the network just by selecting the row of
the table where the layer has to be inserted, by setting up the number of normal
neurons, their type and the number of bias neurons from the combo-boxes placed
under the network table, and clicking on the add button on the right. Neuron
layers can be deleted by selecting a row of the table and clicking on the delete
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Fig. 6.22. NeuralSynth main GUI.

button. Moreover, neuron layer features can be updated by selecting a specific
row, setting up the new features in the combo-box under the network table and
by clicking on the update button.

The input of each neural network can be selected among the substances and
the parameters of the MP system under investigation listed in the tuners section,
situated in the central part of the NN builder. Initially, all the substances and
parameters are selected and visualized in the list of current tuners, but tuners can
be deleted by selecting them in the list and clicking on the delete tuner button.
In order to add new tuners, the user has to select an additional tuner from the
homonymous combo-box and to click on the add tuner button. Once the networks
has been built, the user closes the NN builder and selects, in the main interface
(see Figure 6.22), a learning algorithm. Depending on the selected strategy, a
specific GUI opens, which enables to tune all the parameters of the specific learning
algorithm and to start the training stage. As an example, we report in Figure 6.24
and 6.25 the GUIs employed for setting up the learning parameters of, respectively,
backpropagation and genetic algorithm.

As for backpropagation, the user can choose to put all the time series data
points in the training set (by selecting the memorization strategy) or to split them
into a training set and a validation set (generalization strategy). Subsequently,
he/she can set a training error threshold and a max number of epochs to be
performed before stopping the training. The learning rate and the momentum can
be set to single values or to ranges of values. In the second case all the combinations
of parameters within the defined range are tested (with a grain chosen by the user).
If needed, the weight elimination techniques can be employed by ticking the proper
check box (see Chapter 5 for more theoretical details about parameter setting).

When all the learning parameters have been set, the user can choose to re-
train every network more than one time, by typing the number of restarts in the
homonymous text box placed on top of the results section. Then, a log file can
be selected where the plugin will write all the results of the computation, the
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Fig. 6.23. NeuralSynth neural network builder.

Fig. 6.24. NeuralSynth backpropagation learning GUI.

achieved regulation functions, the used parameters and the time elapsed during
every computation. The training begins when the start button is clicked. The pro-
cess evolution can be monitored from the text fields placed in the bottom part of
the results section.

At the end of the computation the user can analyze the results of the training
stored in the log file. It contains a header, storing the parameters employed by
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Fig. 6.25. NeuralSynth genetic algorithm learning GUI.

the learning algorithms and a list of all the regulation functions computed during
the training stage, the time elapsed for computing them and some details about
the topologies of the employed neural networks. The best regulation functions
generated during the training process can be returned to the plugin manager within
the output MP store, by clicking the return best functions button at the bottom
of the result area.

In the following we report some tests performed to validate the learning algo-
rithms implemented by NeuralSynth. The positive results obtained in these tests
have been also confirmed by the successful application of the plugin to the case
study of mitotic oscillator in early amphibian embryos, reported in Section 5.4 and
presented for the first time in [33].

Validation of learning algorithms

The learning algorithms implemented by the NeuralSynth plugin, namely, back-
propagation, GA, PSO and a memetic algorithm, have been validated by means
of three test functions: sine, sine with gaussian noise (on the left-hand side of
Figure 6.26) and two-dimension Michalewicz’s function [158] (on the right-hand
side of Figure 6.26). Each function has been sampled in order to generate a re-
lated training set. Then, these data sets have been submitted to every learning
algorithm to assess its function synthesis capabilities and its performance over a
large range of optimization parameters.

For each learning algorithm, Table 6.3 collects the results achieved from the
synthesis of every test function. The best validation error (e) and the related
number of steps (s) show, respectively, the accuracy of the best function found by
a learning algorithm and the convergence speed of the algorithm. Given a specific
algorithm (a column of Table 6.3) and a test function (a row of Table 6.3), the mean
validation error (m) and the standard deviation (σ) have been computed over all
the learning tests performed by different combinations of optimization parameters.
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Fig. 6.26. On the left: sine function with gaussian noise (µ = 0, σ = 0.2). On the right:
two dimensional Michalewicz’s function. Related functions synthesized by the Neural-
Synth plugin are available in [153]

These values display the algorithm sensitiveness to learning parameter variations
and the mean performance of the algorithm in term of accuracy.

The parameters employed by each algorithm in order to generate its best sine
function are listed in the following:

• Backpropagation: learning rate η = 1.0 and momentum rate α = 0.2.
• GA: rank selection, single point crossover (recombination rate=0.8), random

addition mutation (muatation rate=0.1), elitist replacement and population of
20 chromosomes.

• PSO: inertia w = 0.6, cognitive coefficient c1 = 1.3, social coefficient c2 = 1.7
and swarm of 20 particles.

• Memetic algorithm. Ga: rank selection, double point crossover (recombination
rate=0.8), random mutation (muatation rate=0.05), elitist replacement, popu-
lation of 11 chromosomes, GA steps n1 = 100. Backpropagation: learning rate
η = 0.8, momentum rate α = 0.1, backpropagation steps n2 = 1000.

The best function achieved from the training set of sine with gaussian noise
have been synthesized by the following learning parameters:

• Backpropagation: learning rate η = 0.8 and momentum rate α = 0.1
• GA: rank selection, double point crossover (recombination rate=0.5), random

addition mutation (mutation rate=0.15), elitist replacement and population of
20 chromosomes.

• PSO: inertia w = 0.6, cognitive coefficient c1 = 1.5, social coefficient c2 = 1.7
and a swarm of 20 particles.

• Memetic algorithm. Ga: rank selection, double point crossover (recombination
rate=0.5), random mutation (mutation rate=0.1), elitist replacement, popula-
tion of 11 chromosomes, GA steps n1 = 100. Backpropagation: learning rate
η = 0.8 and momentum rate α = 0.1, backpropagation steps n2 = 1000.

Finally, the best Michalewicz’s approximation functions have been generated
by the following learning parameters:

• Backpropagation: learning rate η = 0.8 and momentum rate α = 0.0.
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Bprop GA PSO Memetic

Sine

e: 2.105E-5
s: 10969

m: 2.210E-4
σ: 1.609E-4

e: 3.315E-4
s: 60000

m: 1.131E-3
σ: 3.802E-4

e: 1.252E-4
s: 60000

m: 1.215E-3
σ: 2.733E-3

e: 2.0634E-5
s: 22000

m: 9.204E-5
σ: 5.104E-5

Sine+noise

e: 5.432E-3
s: 10369

m: 6.581E-3
σ: 5.442E-4

e: 5.690E-3
s: 38214

m: 6.263E-3
σ: 3.851E-4

e: 5.291E-3
s: 60000

m: 7.155E-3
σ: 2.368E-3

e: 5.368E-3
s: 22000

m: 5.962E-3
σ: 3.306E-4

Michalewicz

e: 1.574E-4
s: 25694

m: 1.345E-3
σ: 9.228E-4

e: 1.539E-3
s: 60000

m: 3.097E-3
σ: 1.681E-3

e: 1.359E-3
s: 60000

m: 4.170E-3
σ: 4.072E-3

e: 1.347E-4
s: 22000

m: 1.826E-4
σ: 1.088E-4

Table 6.3. Tests: best validation errors (e) and related number of steps (s), mean vali-
dation error (m) and error standard deviation (sd).

• GA: tournament selection, double point crossover (recombination rate 0.7),
random addition mutation (mutation rate 0.05), elitist replacement and popu-
lation of 20 chromosomes.

• PSO: inertia w = 0.6, cognitive coefficient c1 = 1.5, social coefficient c2 = 1.5
and swarm of 20 particles.

• Memetic algorithm: Ga: rank selection, double point crossover (recombination
rate=0.8), random mutation (mutation rate=0.1), elitist replacement, popula-
tion of 11 chromosomes, GA steps n1 = 100. Backpropagation: learning rate
η = 0.8 and momentum rate α = 0.0, backpropagation steps n2 = 1000.

For every test, the pattern set T has been randomly split in two subsets: a
training set T1 including 60% of the samples and a validation set T2 containing
the remaining 40%. A neural network having two hidden layers of five neurons has
been always employed. All the tests have been performed on a Intel(R) Core(TM)2
Duo CPU T7250, 2.00GHz processor having 2038 MB of memory.

Tests show interesting results for every learning technique. Synthesized func-
tions (available at the web page [153]) approximate in a satisfying way the functions
in question. Error seems to concentrate on minimum and maximum points. The
memetic algorithm scored the best accuracy while sometimes it requires a greater
number of steps than backpropagation. However, the joint employment of GA and
backpropagation seems to give to the memetic technique both the ability to look
for good solutions in a spread search space, and the speed of a gradient-based
approach. Backpropagation achieved the second best results, while GA and PSO
often could not perform a very fine tuning of their solutions. The number of steps
required by the non-gradient-based algorithms is higher than backpropagation’s
and memetic algorithm’s. The advantages of GA and PSO over backpropagation
emerge when further constraints are considered by the fitness function making it
nondifferentiable and multiobjective.
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An example: Sirius

In the following a typical application of regulation functions synthesis by neural
networks is analyzed by means of a very simple MP system, namely Sirius [140],
which is displayed in Figure 6.27. This model has already been defined in Sec-
tions 4.6 and 5.5.2. Here we have sampled the dynamics of Figure 6.27 to obtain
three substance time-series and we have computed the related five flux time-series
by the log-gain theory. Subsequently, substance values have been used as training
set inputs and flux values as outputs to train a neural network. NeuralSynth has
been launched in order to automatically synthesize a set of regulation functions
that give to Sirius the required oscillatory dynamics. A neural network having just
one hidden layer with six hidden neurons has been employed.

Fig. 6.27. On top: Sirius model. At the bottom: Sirius dynamics

Notice that, the results displayed in Figure 6.28 do not represent the synthe-
sized regulation functions but rather the dynamics generated by employing those
functions inside the Sirius MP model. Table 6.4 collects the errors and the num-
ber of steps required by each learning algorithm to compute the best regulation
functions, while the employed learning parameters are listed below:

• Backpropagation: learning rate η = 0.8 and momentum rate α = 0.2.
• GA: rank selection, single point crossover (recombination rate 0.7), random

addition mutation (mutation rate 0.1), elitist replacement and population of
20 chromosomes.

• PSO: inertia w = 0.6, cognitive coefficient c1 = 1.3, social coefficient c2 = 1.7
and swarm of 20 particles.

• Memetic algorithm: Ga: rank selection, double point crossover (recombination
rate=0.5), random mutation (mutation rate=0.05), elitist replacement, popu-
lation of 7 chromosomes, GA steps n1 = 100. Backpropagation: learning rate
η = 0.6 and momentum rate α = 0.1, backpropagation steps n2 = 3000.
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Backpropagation

GA

PSO

Memetic

Fig. 6.28. Sirius dynamics generated by regulation functions synthesised, respectively,
by backpropagation, GA, PSO and a memetic algorithm.

Bprop GA PSO Memetic

e: 1.683E-5
s: 13800

e: 7.608E-4
s: 60000

e: 1.117E-4
s: 60000

e: 1.321E-5
s: 93000

Table 6.4. Sirius best errors (e) and number of steps (s).

Even in this case the memetic algorithm has synthesized functions having a
better accuracy than backpropagation, PSO and GA, but it has performed a higher
number of learning steps. All the algorithms however succeeded in synthesizing a
set of regulation functions that generate an oscillatory dynamics. We remark that
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no information about the function form has been employed but the maps have
been completely synthesized from observations.

6.2.8 Integration with SBML

In order to have a textual rather than a graphical representation of MP systems,
in [147] a way to export MP systems into suitable XML documents is defined, and
a way to validate these representations through the definition of an XML Schema
Document is studied. In that work, the attention has been focused on the defini-
tion of an XML document which permits the exportation of MP models as they
are, without important modifications. However, a main format used in biological
contexts is the Systems Biology Markup Language [243], which is an XML-based
language designed for representing biological models in widely distributed simula-
tion/analysis tools.

MetaPlab is equipped by a plugin which permits to automatically map an
MP model to its SBML representation, giving an SBML document which can be
imported by any software supporting SBML models importation (notice that, the
author of the thesis is not directly involved in this research topic). Each type
of component in a model is described in SBML by using a specific type of data
object that organizes the relevant information. A high level SBML model definition
consists of the list of elements reported in Table 6.1.

Since an MP system has an elementary membrane structure, the resulting
SBML model, after an exportation procedure, gives a model with only one com-
partment (the skin membrane) where i) constants are mapped into SBML param-
eters, ii) substances are mapped into SBML species; iii) parameters are mapped
into SBML parameters whose evolution in time is specified by an SBML assign-
ment rule (if the MP parameter is defined by an evolution formula) or by a list
of SBML events (if the MP parameter is defined by a time series of values); and
iv) reactions are mapped into SBML reactions with kinetic laws expressed by the
corresponding formulae of the flux regulation maps.

SBML models have components which seem to suggest a natural mapping into
an MP model, but MP systems have been developed for discrete simulations while
SBML have been designed to represent ODE systems. Hence, in order to guarantee
an adequate mapping of the dynamics, MetaPlab SBML plugin assumes that the
resulting SBML model will be simulated with a numerical integration time step
equal to the MP model interval time.

MP parameters given by time series are mapped into an appropriate list of
SBML events without delay. Each event must have a trigger condition which per-
mits to fire at the sound simulation time. To implement this feature, the SBML
plugin adds to the MP model a reaction increasing a time “counter” substance T
of one unit at each step. More technically, each value vj [i] of a parameter time
series is mapped by the SBML plugin into an event which assigns the value vj [i]
to the parameter whenever the trigger condition T = i holds. This method might
be also employed to map substance time series, but it does not work for flux time
series, because SBML events cannot modify kinetic laws. In this case, the SBML
plugin first creates a new SBML parameter which will be used to define the kinetic
law and then modifies the parameter by means of the above method.
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The inverse process, consisting, for instance, in the importation in MetaPlab
of a differential model from an SBML specification, assumes a greater importance.
With this aim MetaPlab has been recently extended to compute the model dynam-
ics not only according to EMA system (4.2), but also as a numerical integrator,
with respect to some standard algorithms (such as Euler and Runge-Kutta), in
order to study the dynamics of a differential model imported by an appropriate
plugin (under development). For this reason it is essential to set a parameter called
“time resolution” which specifies the discretization level of the numerical integra-
tion. This feature increases the interest for the MP-SBML combination. In fact, let
we consider the case study in which we use a numerical integrator that computes
the dynamics with a resolution of 1

100 seconds. By using MetaPlab, in 100 steps
we can easily get the unitary fluxes of each MP reaction. After this, it is possible
to generate a temporal series of (unitary) flux arrays which are the input for a
regression plugin (based on least squares method or neural networks) that gives
us the definition of the flux regulation maps, and then a new MP model deduced
from the differential one. These models will have the same behavior in each instant
separated by a time interval of one second, but, the MP model might give more
knowledge due to its different scale of systemic logic.

6.2.9 Other plugins

The process of plugin development, started straight after the implementation of
the plugin architecture in 2008, has involved three Ph.D. students and two M.D.
students at the University of Verona, and our hope is to expand this activity in
the next future. Besides the plugins described through Subsections 6.2.3-6.2.9 also
the following plugins have been implemented:

• HTML plugin,
• flux integrator plugin.

These plugins are available from version 1.2 of MetaPlab. A complete descrip-
tion of their aims and some operating instructions can be found at the MetaPlab
website [241].

6.2.10 Future developments of MetaPlab

As described so far, MetaPlab provides many interesting tools and graphical func-
tionalities for supporting MP modeling. Although the graphical user interface
makes very simple to define and visualize models, it has also some drawbacks. For
instance, it does not allow users to run processes on servers through the command
line. In order to overcome this problem, the author is pondering the possibility to
develop a new architecture in which plugins are released as web services. Service
oriented architecture (SOA) would make plugins available to the entire scientific
community which could freely access them via web by means of standard inter-
faces defined by the Web Service Description Language (WSDL). Several kinds of
clients can connect to web services, such as tools implemented in Java, C, Visual
Basic or Matlab, thus the plugin accessibility could be increased by means of this
new technology. Moreover, web services would be run on a high-performance server
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recently bought by the Center for BioMedical Computing in Verona, enabling the
remote execution of complex tasks also from very small laptops.

Another important part of MetaPlab which should be improved is the model
repository. Currently, each model generated by the user is stored in a local file
which can contain also one dynamics (observed or simulated). Models are shared
only by the MetaPlab website, where users can download MP models. In the future
a public database of MP models and experiments could be released on our web
server, which would enable a complete sharing of MP models and related experi-
ments. In this database, models and experiments should be managed as separated
entities, where each experiment should be linked to at least one (coherent) model.
Such a model repository could enable to perform data-mining analysis when the
database will reach large dimensions.

Author’s publications for this chapter

• L. Bianco and A. Castellini. Psim: a computational platform for Metabolic P
systems. In G. Eleftherakis, P. Kefalas, G. Păun, G. Rozenberg, and A. Sa-
lomaa, editors, 8th International Workshop on Membrane Computing, Lecture
Notes in Computer Science 4860, pages 1-20. Springer, 2007.

• A. Castellini and V. Manca. MetaPlab: A computational framework for metabolic
P systems. In D. W. Corne, P. Frisco, G. Păun, G. Rozenberg, and A. Salomaa,
editors, 9th International Workshop on Membrane Computing, Lecture Notes
in Computer Science 5391, pages 157-168. Springer-Verlag, 2009.

• V. Manca, A. Castellini, G. Franco, L. Marchetti, and R. Pagliarini. Metaplab
1.1 user guide. Url: http://mplab.scienze.univr.it. 2009.
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Conclusions

Understanding the mechanisms of life is an exciting challenge of our century. Bi-
ological systems are very complex networks involving intricate interconnections
among a huge number of elements. The investigation of these systems requires
advanced tools for representing, describing, visualizing and analyzing their main
components, which may be substances and reactions of chemical systems, elements
of ecosystems, or many other kinds of biological entities. Much work has been done
in the last centuries for discovering and putting together the tiles of “life mosaic”:
in 1665 Robert Hooke coined the term “cell” to describe the basic unit of life, in
1953 Watson and Crick made their first announcement on the double-helix struc-
ture of DNA, and in 2001 a first draft of the human genome was published, just
to mention a few stages of this amazing story. In the last decades many powerful
tools have been developed as well, able to provide huge amounts of experimental
data in shorter and shorter time.

Nowadays biology, medicine and pharmaceutics may take advantage of recently
conceived mathematical and computational tools for analyzing these data, in the
search for new treatments, drugs and knowledge about biological processes. The
same tools are also used in synthetic biology for engineering new bacteria which
accomplish specific functions, such as, producing useful substances or surviving in
unusual conditions. This is why the development of mathematical and computa-
tional tools has recently became increasingly crucial.

One of the most important features for handling the high complexity of bi-
ological processes seems to be the possibility to observe these systems from an
adequate abstraction level. Metabolic P systems are a new modeling framework,
derived from P systems, which provides a macroscopic, global and time-discrete
perspective on metabolic processes and related dynamics. Advantages of this ap-
proach are a natural mapping between real elements (i.e., substances, parameters
and reactions) and model’s elements, the possibility to adapt the model perspec-
tive to the temporal grain of observed data, and an original theory, called log-gain
theory, for computing reaction fluxes from datasets of observed dynamics, without
using kinetic constants usually hard to estimate.

In this thesis we have reported three main results: i) an equivalence between
MP systems and hybrid functional Petri nets, ii) a pipeline for the generation of
flux regulation maps from dynamics data by means of statistical techniques, classi-
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cal regression and optimized neural networks, and iii) a software, called MetaPlab,
which supports many stages of the MP modeling process.

The equivalence of MP systems with a formalism related to Petri nets results
specially relevant in the framework of biological modeling since it highlights the
representational and computational potentialities of MP systems. The mapping
procedure has been tested on a fundamental biological process, i.e. the glycolytic
pathway controlled by the lac operon gene, showing how a real process can be
represented, simulated and analyzed by MP systems.

The second result, which represents the core of this work, provides model-
ers with a clear procedure consisting of five steps, and a set of statistical and
optimization tools for generating flux regulation maps. Tests performed on the
case studies of the mitotic cycle in amphibian embryos and the non photochemical
quenching phenomenon have shown that neural networks are useful tools for repre-
senting regulation maps when the non-linearity of observed fluxes is significant, so
that multiple linear regression would produce polynomials with many high-degree
monomials. On the other hand, a limit of neural networks is the difficult inter-
pretation of their (complex) structure from a biochemical point of view. Among
the four optimization techniques implemented for training neural networks (i.e.,
backproagation, genetic algorithms, particle swarm optimization and a memetic
algorithm), the memetic algorithm resulted to reach the best performance in terms
of training error.

The new plugin-based architecture for the software MetaPlab turns out to be
very useful for ensuring a continuous update and extension of this virtual labo-
ratory. So far eight plugins have been implemented by three Ph.D. students and
one M.D. student at the University of Verona, and our purpose is to expand this
activity in the next future. The tools currently available allow to graphically gen-
erate MP models, to compute their dynamics, to plot time evolutions by charts,
to discover reaction fluxes by the log-gain theory, to synthesize flux regulation
functions by linear regression and neural networks, and to export MP model files
to SBML and HTML.

Many research lines may be developed in the next future. The most crucial of
them are:

• the comprehension of the effect of time grain on the complexity and readability
of MP models. The peculiarity of MP systems is to model biological systems
in a discrete timescale, which is different from the microscopic (continuous)
timescale of ODE systems. It has been recently noticed that changing the time
scale by which the system is observed, different aspects of the system logic can
be highlighted. For instance, an MP model generated from a dataset having a
time interval of 1 second may show different biological features with respect to
an MP model having a time interval of 1 minute;

• the application of the MP modeling pipeline presented in Chapter 5 to new
areas of biological and non-biological modeling. Some recent research interests
are addressed to the insulin pathway, but also economical, financial or business
systems could be analyzed with the aim to develop new kinds of models for
economical or business intelligence applications [159];

• from the experience gained by working at this thesis, has emerged the crucial
importance of statistical and optimization tools for the synthesis and the anal-
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ysis of MP models. Our aim is to develop further techniques based on classical
statistical methods but also on unconventional inferential methods, such as
neural networks and evolutionary computing, for the analysis, prediction and
classification of complex biological behaviors.
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Jiménez, G. Rozenberg, and A. Salomaa, editors, 5th International Workshop on
Membrane Computing, Lecture Notes in Computer Science 3365, pages 161–177.
Springer-Verlag Berlin Heidelberg, 2005.

6. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

7. K. Atkinson. An Introduction to Numerical Analysis. Wiley, 2nd edition, 1989.
8. R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University

Press, 1961.
9. P. B. Belousov. A periodic reaction and its mechanism. In Sbornik Referatov po

Radiatsionni Meditsine, pages 145–147, 1959. In russian.
10. S. A. Benner and M. A. Sismour. Synthetic biology. Nature Reviews Genetics,

6(7):533–543, 2005.
11. D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler.

GenBank. Nucleic Acids Research, 36, Database issue:D25–D30, 2008.
12. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.

Shindyalov, and P. E. Bourne. The protein data bank. Nucleic Acids Research,
28(1):235–242, 2000.

13. F. Bernardini and M. Gheorghe. Population P systems. Journal of Universal Com-
puter Science, 10(5):509–539, 2004.

14. F. Bernardini, M. Gheorghe, and N. Krasnogor. Quorum sensing P systems. The-
oretical Computer Science, 371(1-2):20–33, 2007.

15. D. Besozzi. Computational and Modelling Power of P Systems. PhD thesis, Uni-
versity of Milan, Milan, Italy, 2004.

16. D. Besozzi, P. Cazzaniga, G. Mauri, D. Pescini, and L. Vanneschi. A comparison
of genetic algorithms and particle swarm optimization for parameter estimation in



206 References

stochastic biochemical systems. In C. Pizzuti, M. D. Ritchie, and M. Giacobini,
editors, Evolutionary Computation, Machine Learning and Data Mining in Bioin-
formatics, 7th European Conference, EvoBIO 2009, Lecture Notes in Computer Sci-
ence 5483, pages 116–127. Springer, 2009.

17. L. Bianco. Membrane Models of Biological Systems. PhD thesis, University of
Verona, Verona, Italy, 2007.

18. L. Bianco and A. Castellini. Psim: a computational platform for Metabolic P sys-
tems. In G. Eleftherakis, P. Kefalas, G. Păun, G. Rozenberg, and A. Salomaa,
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170. M. J. Pérez-Jiménez and F. J. Romero-Campero. A study of the robustness of
the EGFR signalling cascade using continuous membrane systems. In J. Mira and
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171. M. J. Pérez-Jiménez and F. J. Romero-Campero. P systems: a new computational
modelling tool for systems biology. Transactions on Computational Systems Biology
VI, Lecture Notes in Bioinformatics, 4220, pages 176–197, 2006.

172. D. Pescini, D. Besozzi, G. Mauri, and C. Zandron. Dynamical probabilistic P
systems. International Journal of Foundations of Computer Science, 17(1):183–
204, 2006.



214 References

173. D. Pescini, D. Besozzi, C. Zandron, and G. Mauri. Analysis and simulation of
dynamics in probabilistic P systems. In A. Carbone and N. A. Pierce, editors, 11th
International Meeting on DNA Computing, DNA11, Lecture Notes in Computer
Science 3892, pages 236–247. Springer-Verlag Berlin Heidelberg, 2006.

174. C. A. Petri. Kommunikation mit automaten. Bonn: Institut fur Instrumentelle
Mathematik, Schriften des IIM Nr. 2, 1962.

175. R. D. Present. Kinetic Theory of Gases. McGraw-Hill, New York, 1958.
176. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C.

Cambridge University Press, Cambridge, UK, 2nd edition, 1992.
177. I. Prigogine. From Being to Becoming: Time and Complexity in the Physical Sci-

ences. Freeman and Company, San Francisco, CA, 1980.
178. A. Păun. On P systems with active membranes. In I. Antoniou, C. Calude, and M.J.

Dinneen, editors, Unconventional Models of Computation, pages 187–201, London,
2000. Springer-Verlag. Contributed paper.
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