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In this paper we describe safety semantics as abstract interpretation of a trace-based
operational semantics of a transition system. Intuitively, a property is safety if ”nothing bad
will happen”. Formally this is described by saying that a property is safety if it is maximal
with respect to a given set of allowed partial executions. We show that this can be specified
in the standard Cousot’s framework of abstract interpretation. In particular, we show that
this semantics can be derived as fixpoint of a semantic operator. This construction provides
a formal characterization of the constructive nature of safety properties, that can be enforced
by means of execution monitors. By using the same construction we show that while safety
without stuttering preserves the constructive nature, safety properties allowing cancellation
of states lose the constructive characterization. Finally, we characterize safety properties as
the closed elements of a closure, and we show that in the abstract interpretation framework
safety and liveness properties lose their complementary nature.

Keywords: Abstract interpretation, safety, semantics, program verification, closure opera-
tors.

1. Introduction

The traditional dualism between safety and liveness properties of a transition sys-
tem has been widely studied in the literature. Since Lamport’s seminal paper [28],
a number of authors have studied the computational [4, 32], logical [8], algebraic
[4], and topological [3, 6] aspects of safety and liveness properties of a computation.
This dualism have been also studied in the framework of model checking and tem-
poral logic [37, 38, 40] where safety is also known as invariance, saying that each
partial computation of a possibly infinite trace meets some requirement. Accord-
ing to this intuitive definition, safety properties assert that “nothing bad happens”;
whereas liveness properties ensure that “something good will eventually happen”.
Typical examples of safety properties are deadlock freedom, mutual exclusion, and
partial correctness. In contrast, a typical liveness property is termination.
The importance of safety properties relies precisely on their standard constructive
characterization. Indeed, Schneider [35] noted that safety properties correspond
precisely to the enforceable properties. Namely, to those properties for which there
exists a mechanism that works by monitoring execution steps of a program, termi-
nating the programs that are about to violate the security property. The basic idea
is that a safety property holds for a computation if it holds for each of its states,
therefore by checking the property during the execution we are sure to enforce
the property for the whole computation. Starting from this work, several papers
have been written about execution monitors, analysing their power, in terms of the
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information that they can recall [20], or trying to extend the class of properties
that can be monitored [30]. Recently, a precise characterization of enforceable se-
curity properties has been given [26], providing a better characterization of those
properties which are enforceable by execution monitors as well as a taxonomy of
enforceable security policies.
A more theoretical aspect to consider is that the standard characterization of
safety/liveness properties naturally leads also to the definition of safety proper-
ties as closure operators on the set of possible traces, and liveness as open sets.
This corresponds to a well-known approach to safety/liveness in topological terms.
According to Alpern and Schneider [3] safety properties are the closed sets in
the Cantor’s topology on infinite traces, while liveness properties are precisely the
dense sets of the same topology. This dualism is justified by observing that with
respect to liveness properties, any partial computation is always remediable. This
corresponds to saying that for any finite (partial) trace σ, there exists an infinite
completion ση of σ such that ση satisfies a given liveness property. Another theoret-
ical approach for modelling safety and liveness is the one proposed by H.P. Gumm
in [25]. In this work the author shows that all that is needed in order to char-
acterize safety is a ∨-preserving map ϕ between complete Boolean algebras. This
map extracts from a set of infinite traces all the corresponding partial executions
and it can be interpreted as an abstraction of the infinite semantics, in the stan-
dard abstract interpretation framework [11]. This map is central in our approach
since it provides the model for safety semantics necessary for establishing a formal
connection between the standard approaches to safety and liveness and abstract
interpretation.

Abstract Interpretation and the hierarchy of semantics. Abstract interpretation
[11] is a general theory for semantics approximation, which includes static program
analysis as a special case. The design of an approximate semantics is usually a
step-by-step procedure which starts from a very concrete semantics, specifying the
computational behavior at a great level of detail, and which leads to the defini-
tion of a more abstract semantics, where only the properties of interest about the
computation can be observed. The abstraction is specified by an ∨-preserving map
which represents the left adjoint in a pair of functions, relating the concrete and
the abstract semantics, forming a Galois insertion. In the case of standard program
analysis, the approximate semantics is a decidable approximation of the concrete
one. The whole approach is systematically driven by abstract interpretation theory
which provides a number of formal methods and tools to help the designer. This
approach has several well-known advantages with respect to other methods: (1)
The analysis is fully described and constructively derived by the way the concrete
data and control flows are approximated; (2) The correctness with respect to the
concrete semantics can be immediately proved formally by construction; (3) New
and more advanced analyses can be systematically conceived by modifying the
abstraction methods [13, 22].

Cousot [10] proposes an abstract interpretation-based formal structure where
several well-known semantics are derived as abstract interpretations of a more
concrete semantics, which is the maximal trace semantics. In Fig. 1 we have a
picture of this hierarchy, in particular we can note that in the same structure
we have also depicted several possible observables of the different semantics (e.g.,
finite, +, or infinite, ω, computations). All the abstraction relations depicted with
plain lines (isomorphisms) or arrows (abstractions) are those present in the original
hierarchy (see Sect. 2.3 for more details).
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Figure 1. Cousot’s hierarchy.

Main contribution. In this paper we use the abstract interpretation framework
mainly for two reasons: first we want to insert safety semantics in the Cousot’s hi-
erarchy of semantics (Fig. 1); second, we aim to study whether the complementary
relation between safety and liveness holds also in the abstract interpretation char-
acterization. For the first task, the idea is that of deriving a semantics for safety by
abstract interpretation, i.e., by abstracting the (infinite) operational trace-based
semantics [10]. The derived semantics is the most abstract approximation of the
concrete trace semantics of a transition system which preserves safe executions,
i.e., modeling only safety properties. The interest in this semantics is twofold: (1)
it provides a formal setting where safety semantics can be compared with respect
to other semantics; (2) it provides a base semantics for designing static program
analysis tools for safety properties, for proving their correctness, and for deriving
new safety properties by abstract interpretation. In particular, we show that safety
semantics can be obtained as the fixpoint of a semantic operator, which provides
a formal characterization of how execution monitors works for enforcing safety
properties. We use this characterization also for showing that not all the possible
restrictions of safety properties preserve this constructive nature. In particular,
safety without stuttering, allowing repetition of states, can still be obtained as
fixpoint, while safety properties allowing cancellation of states (e.g., strong safety)
lose the constructive nature, namely cannot be enforced like standard safety prop-
erties.
The second task concerns complementation in the abstract interpretation frame-
work, hence we have first to characterize safety properties by means of a closure
operator. We formally prove that this operator precisely captures safety properties
in the Alpern-Schneider approach, modelling both safety and liveness properties.
At this point we study the algebraic properties of the safety domain in order to
compute its (pseudo-)complement in the infinite trace semantics, showing that, in
the abstract interpretation framework, safety is not complemented, hence liveness
cannot be characterized as the complement of safety.

Structure of the paper. The paper is structured as follows. In Sect. 2 we de-
scribe some basic notions that we will use in the paper. In particular we introduce
abstract interpretation, and we describe the Cousot’s hierarchy of semantics. In
Sect. 3 we describe the safety semantics as Galois insertion, including it in the
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hierarchy of semantics. The main task of this section is to use the Kleene fixpoint
transfer theorem in order to obtain the safety semantics as fixpoint of a semantic
operator, formalising its constructive nature. In Sect. 4 we introduce three restric-
tions of safety properties, we include them in the Cousot’s hierarchy of semantics
as abstract interpretations of the safety semantics. Hence we show that to allow
repetition of states in safety properties preserves the constructive nature, while to
allow cancellation of states makes safety properties lose the constructive charac-
terization. Finally, in Sect. 5 we obtain safety semantics as an abstract domain
and we characterize the algebraic structure of safety semantics in the abstract in-
terpretation framework, in order to show that, in this context, liveness cannot be
interpreted as the complement of safety semantics.

2. Preliminaries

2.1 Basic notions

If S and T are sets, then ℘(S) denotes the powerset of S, S r T denotes the
set-difference between S and T , S ⊂ T denotes strict inclusion, and for a function
f : S → T and X ⊆ S, f(X)

def
= {f(x) | x ∈ X}. By g◦f we denote the composition

of the functions f and g, i.e., g ◦ f
def
= λx.g(f(x)).

Lattices and meet-irreducible elements. The notation 〈P,≤〉 denotes a poset P
with ordering relation ≤, while 〈P,≤,∨,∧,⊤,⊥〉 denotes a complete lattice P , with
ordering ≤, lub ∨, glb ∧, greatest element (top) ⊤, and least element (bottom) ⊥.
Often, ≤P will be used to denote the underlying ordering of a poset P , and ∨P ,
∧P , ⊤P and ⊥P denote the basic operations and elements of a complete lattice.
The notation C ∼= A denotes that C and A are isomorphic ordered structures.
x ∈ C is meet-irreducible if x = a ∧ b ⇒ x ∈ {a, b}. The set of meet-irreducible
elements in C is denoted Mirr(C). A subset X of a lattice C is said to be order
generating iff every element of C can be written as a glb of a subset of X.

Functions. S−→T denotes the set of all functions from S to T . We use the symbol
⊑ to denote pointwise ordering between functions: If S is any set, P a poset, and
f, g : S → P then f ⊑ g if for all x ∈ S, f(x) ≤P g(x). Let C and A be complete
lattices. Then, C m−→A, C c−→A, C a−→A, and C coa−→A denote, respectively, the
set of all monotone, (Scott-)continuous, additive, and co-additive functions from
C to A. Recall [1] that f ∈ C c−→A iff f preserves lub’s of (nonempty) chains
iff f preserves lub’s of directed subsets (co-continuity is dually defined), and
f : C → A is (completely) additive if f preserves lub’s of all subsets of C (empty
set included). Co-addittivity is defined by duality.

Fixpoints. We denote by lfp≤
⊥f and gfp≤

⊤f , respectively, the least and greatest
fixpoint, when they exist, of an operator f on a poset. If f ∈ C c−→C then
lfp≤c

⊥c
f = ∨i∈Nf i(⊥C), where, for any i ∈ N and x ∈ C, the i-th power of f in x

is inductively defined as follows: f0(x) = x; f i+1(x) = f(f i(x)). Dually, if f is co-
continuous then gfp

≤C
⊤C

f = ∧i∈Nf i(⊤C). {f i(⊥C)}i∈N and {f i(⊤C)}i∈N are called,
respectively, the upper and lower Kleene’s iteration sequences of f (see [12]). It
is possible to transfer any fixpoint computation on a domain into another do-
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main under suitable conditions. These results are known as fixpoint transfer theo-
rems [10]. In the following we will use the Kleene fixpoint transfer theorem which
is as follows: Let 〈A,≤A〉 and 〈C,≤C〉 be complete lattices and fC : C m−→C,
fA : A m−→A, and α : C c−→A such that α(⊥C) = ⊥A and α ◦ fC = fA ◦ α. Then

α(lfp≤c

⊥c
fC) = lfp

≤A
⊥A

fA. The closure iteration order for lfpf (gfpf) is the least ordinal

β such that f(fβ) = fβ.

Topology. A topology on a set X, ΩX, is a family of subsets of X such that: If
S ⊆ ΩX then

⋃

S ∈ ΩX; If S ⊆ ΩX is finite then
⋂

S ∈ ΩX. X is a topological
space if it is equipped with a topology. The elements of ΩX are known as the open
subsets of the space X. We say that a subset F ⊆ X is closed if its complement is
open. Let X be a topological space, then a (Kuratowski) topological closure is an
operator M : ℘(X) −→ ℘(X) which is extensive (∀A ⊆ X. A ⊆M(A)), idempotent
and finitely additive (namely M(∅) = ∅ and M(A) ∪M(B) = M(A ∪B)).

2.2 Abstract interpretation

Abstract interpretation is a general theory for specifying and designing approxi-
mate semantics of program languages [11].

Abstract domains individually. Approximation can be equivalently formulated
either in terms of Galois connections or closure operators [11, 13].
A Galois connection is an adjoint relation between abstraction and concretization
functions [11]. The abstraction identifies only some properties of interest, while
the concretization associates with the abstract property the greatest set of
concrete elements having the same abstract property. Consider for example the
concrete domain of sets of integer values ℘(Z), and suppose to consider the
sign property, namely the sign abstract domain S. Then a possible abstract
domain is S = {“I don’t know”,+, 0,−, “none”} representing the possible sign
of sets of integers, and the corresponding abstraction is αS : ℘(Z) → S such
that αS(∅) =“none”, αS(X) = + if ∀n ∈ X. n > 0, αS(0) = 0, αS(X) = −
if ∀n ∈ X. n < 0 and αS(X) = “I don’t know” otherwise. The corresponding
concretization function maps each abstract value in the set of all the integers
with the represented property: γS : S → ℘(Z) such that γS(“none”) = ∅,
γS(+) =

{

n ∈ Z
∣

∣n > 0
}

, γS(0) = {0}, γS(−) =
{

n ∈ Z
∣

∣n < 0
}

and
γS(“I don’t know”) = Z. At this point let us introduce the adjoint framework for-
mally. If α : C m−→A and γ : A m−→C are monotone functions such that λx.x ⊑ γ ◦ α
and α ◦ γ ⊑ λx.x, then (A,α, γ,C) is called a Galois connection (GC for short) or
adjunction between C and A, also denoted 〈C,≤C〉 −→←−α

γ
〈A,≤A〉. Note that in GC,

for any x ∈ C and y ∈ A: α(x) ≤A y ⇔ x ≤C γ(y) and γ(y) =
∨
{

x
∣

∣α(x) ≤ y
}

and α(x) =
∧
{

y
∣

∣x ≤ γ(y)
}

. If in addition α ◦ γ = λx.x, then (A,α, γ,C) is
a Galois insertion (GI) also denoted 〈C,≤C〉 →−→←−α

γ
〈A,≤A〉 of A in C. Note that

A ∼= C iff 〈C,≤C〉 →−→←←−α

γ
〈A,≤A〉. The concrete and abstract domains, C and A, are

assumed to be complete lattices. Following a standard terminology, A is called an
abstraction of C, and C is a concretization of A. If (A,α, γ,C) is a GI, then each
value of the abstract domain A is useful in representing C, because all the elements
of A represent distinct members of C, γ being 1-1. Any GC may be lifted to a GI
by identifying in an equivalence class those values of the abstract domain with
the same concretization. This process is known as reduction of the abstract domain.
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The standard abstract interpretation framework can be also represented by
means of upper closure operators [13]. An upper closure operator (uco for short)
ρ : C → C on a poset C, representing concrete objects, is monotone, idempotent,
and extensive: ∀x ∈ C. x ≤C ρ(x). The upper closure operator is the function that
maps the concrete values to their abstract properties, namely with the best pos-
sible approximation of the concrete value in the abstract domain. More precisely,
this means that the closure maps each concrete element in the greatest concrete
element satisfying the same abstract property. For example, the operator for the
property of signs is Sign : ℘(Z)→ ℘(Z), operating on the powerset of integers and
associating each set of integers with the set of all the integers with the same sign,
for instance Sign(S) =

{

n ∈ Z
∣

∣n > 0
}

if ∀n ∈ S. n > 0. Let 〈C,≤,∨,∧,⊤,⊥〉 be
a complete lattice, then closure operators ρ are uniquely determined by the set of
their fixpoints ρ(C), for instance Sign = {Z, Z+, {0}, Z−, ∅}1. For upper closures,
X ⊆ C is the set of fixpoints of ρ ∈ uco(C) iff X is a Moore-family of C, i.e.,
X =M(X)

def
= {∧S | S ⊆ X} — where ∧∅ = ⊤ ∈M(X).

Abstract domains collectively. If C is a complete lattice then uco(C) ordered
pointwise is also a complete lattice, denoted by 〈uco(C),⊑,⊔,⊓, λx.⊤, λx.x〉, where
for every ρ, η ∈ uco(C), {ρi}i∈I ⊆ uco(C) and x ∈ C:

– ρ ⊑ η iff ∀y ∈ C. ρ(y) ≤ η(y) iff η(C) ⊆ ρ(C);
– (⊓i∈Iρi)(x) = ∧i∈Iρi(x);
– (⊔i∈Iρi)(x) = x ⇔ ∀i ∈ I. ρi(x) = x;

Note that any GI (A,α, γ,C) uniquely determines an upper closure operator γ◦α ∈
uco(C) and conversely, any closure operator ρ ∈ uco(C) uniquely determines a GI
(ρ(C), ρ, id, C), up to isomorphic representation of domain’s objects. Hence, we will
identify uco(C) with the so-called lattice LC of abstract interpretations of C (cf. [11,
Sect. 7] and [13, Sect. 8]), i.e., the complete lattice of all possible abstract domains
(modulo isomorphic representation of their objects) of the concrete domain C. The
pointwise ordering on uco(C) corresponds precisely to the standard ordering used to
compare abstract domains with regard to their precision: A1 is more precise than A2

(i.e., A2 is an abstraction of A1) iff A1 ⊑ A2 in uco(C) iff 〈A1,≤A1
〉 →−→←−α

γ
〈A2,≤A2

〉.
Let {Ai}i∈I ⊆ uco(C): ⊔i∈IAi is the most concrete among the domains in LC

which are abstractions of all the Ai’s, i.e., ⊔i∈IAi is the least (w.r.t. ⊑) common
abstraction of all the Ai’s; and ⊓i∈IAi is (isomorphic to) the well-known reduced
product (basically cartesian product plus reduction) of all the Ai’s, or, equivalently,
it is the most abstract among the domains in LC which are more concrete than
every Ai. Let us remark that the reduced product can be also characterized as
Moore-closure of set-union, i.e., ⊓i∈IAi =M(∪i∈IAi).

Computing abstract functions. If (A,α, γ,C) is a GI and fC : C c−→C,
fA : A c−→A, then fA is a sound approximation of fC if α ◦ fC ≤A fA ◦ α.
Soundness naturally implies that α(lfp

≤C
⊥C

fC) ≤A lfp
≤A
⊥A

fA. If α ◦ fC = fA ◦ α then
we say that fA is a complete approximation of fC . In the case of completeness we
have α(lfp

≤C
⊥C

fC) = lfp
≤A
⊥A

fA [23].

1Note that Z
+ def

=
˘

n ∈ Z
˛

˛ n > 0
¯

and Z
− is analogously defined.
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Semantics Domain relation Abstraction and Concretization

τ+ = α+(τ∞) 〈℘(Σ∞),⊆〉 →−→←−
α+

γ+

〈℘(Σ+),⊆〉 α+(X) = X ∩Σ+ def
= X+

γ+(Y ) = Y ∪Σω

τ∂ = α∂(τ∞) 〈℘(Σ∞),⊆〉 →−→←−
α∂

γ∂

〈D∂ ,⊆〉 α∂(X) = X ∪
⋃
{

chaos(σ0)
∣

∣σ ∈ X ∩Σω
}

γ∂(Y ) = Y

τω = αω(τ∞) 〈℘(Σ∞),⊆〉 →−→←−
αω

γω

〈℘(Σω),⊆〉 αω(X) = X ∩ Σω def
= Xω

γω = X ∪ Σ+

Table 1. Observable semantics as abstract interpretations

2.3 Cousot’s semantics hierarchy

In this section, we recall Cousot’s hierarchy of semantics [10, 14]. Semantics in the
hierarchy are derived as abstract interpretations of a more concrete operational
semantics that associates a discrete transition system with each well-formed pro-
gram. A transition system is a pair 〈Σ, τ〉 where Σ is a nonempty set of states
and τ ⊆ Σ × Σ is a binary transition relation between a state and its pos-
sible successors. In the following, Σ+ and Σω def

= N−→Σ denote respectively the
set of finite nonempty and infinite sequences of symbols in Σ. Given a sequence
σ ∈ Σ∞ def

= Σ+ ∪ Σω, its length is denoted |σ| ∈ N ∪ {ω} and its i-th element is
denoted σi. A non-empty finite (infinite) trace σ is a finite (infinite) sequence of
program states where two consecutive elements are in the transition relation τ ,
i.e., for all i < |σ|: 〈σi, σi+1〉 ∈ τ . In the following we will use Greek letters for
denoting potentially infinite traces, we will use letters such as x, y for denoting
finite traces of states. The maximal trace semantics of a transition system [14]
is τ∞ def

= τ+ ∪ τω, where if T ⊆ Σ is a set of final/blocking states τ ṅ = {σ ∈
Σ+| |σ| = n,∀i ∈ [1, n) . 〈σi−1, σi〉 ∈ τ}, τω = {σ ∈ Σω| ∀i ∈ N . 〈σi, σi+1〉 ∈ τ},
τ+ = ∪n>0{x ∈ τ ṅ| xn−1 ∈ T}, and τn = τ ṅ ∩ τ+. In the following we will use the
concatenation operation between traces: The concatenation σ = η⌢ξ of the traces
η, ξ ∈ Σ∞ is defined only if η|η|−1 = ξ0. In this case σ has length |σ| = |η|+ |ξ| − 1
and it is such that σl = ηl for each 0 ≤ l < |η|, while σ|η|−1+n = ξn if 0 ≤ n < |ξ|.
Moreover if η ∈ Σω then for each ξ ∈ Σ∞ we have η⌢ξ = η. For instance, if η = ab
and ξ = bc, then σ = η⌢ξ = abc.

The semantics τ∞ [14] is the fixpoint of the monotone operator F∞ :
℘(Σ∞)→ ℘(Σ∞) defined on traces as F∞(X) = τ1 ∪ τ 2̇ ⌢X . This operator pro-
vides a bi-induction (induction and co-induction) on the complete lattice of the
maximal trace semantics 〈℘(Σ∞),⊑∞,⊓∞,⊔∞,⊓∞,Σ+,Σω〉, where X ⊑∞ Y if
and only if X ∩ Σ+ ⊆ Y ∩ Σ+ and Y ∩ Σω ⊆ X ∩ Σω. This order, later called the
computational order , allows us to combine both least and greatest fixpoint in a
unique fixpoint presentation: finite (terminating) traces are obtained by induction
(least fixpoint) of F∞ on 〈℘(Σ+),⊆〉 and infinite traces are obtained by co-induction
(greatest fixpoint) on 〈℘(Σω),⊆〉, which corresponds to the least fixpoint of F∞ on
〈℘(Σω),⊇〉. In this case: τ∞ = lfp⊑∞

Σ
ω F∞ (see [10, 14] for details).

The semantics in natural style may have a corresponding angelic, demonic, and
infinite observable all of which are abstractions. All the observables are derived as
fixpoints in the computational order by applying fixpoint transfer theorems.
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Angelic. The angelic trace semantics τ+ is designed as an abstraction of the max-
imal trace semantics, and it is obtained by approximating sets of possibly finite or
infinite traces with sets of finite traces only, i.e., τ+ = α+(τ∞) (see Table 1). The
angelic trace semantics is constructively derived as fixpoint in the computational

order: τ+ = lfp⊆
∅
F+ where F+ : ℘(Σ+)→ ℘(Σ+) is defined as F+(X) = τ1∪τ 2̇ ⌢X.

Demonic. The demonic trace semantics, denoted as τ∂ , is derived from the max-
imal trace semantics by approximating non-termination by chaos, namely by the
set of all the possible finite computations starting from the state that leads to
non-termination and this corresponds to allowing the worst possible behavior of
the program [10, 16]. This semantics is obtained as an abstraction of the natural
semantics by the function α∂ , i.e. τ∂ = α∂(τ∞) (see Table 1). In this way the new

observable is defined on the domain D∂ = α∂(℘(Σ∞))1 that is such that X ∈ D∂

if and only if

σ ∈ Xω ⇒ chaos(σ) ⊆ X+

where chaos(σ)
def
=
{

δ ∈ Σ+
∣

∣ δ0 = σ0

}

. The demonic trace semantics is con-
structively derived as fixpoint in the computational order: τ∂ = lfp⊑∂

Σ
∞F ∂ where

X ⊑∂ Y iff ∀σ ∈ Σω. σ ∈ X ∨ (σ /∈ Y ∧ ∀δ ∈ Σ+. σ0δ ∈ X ⇒ σ0δ ∈ Y ) and
F ∂ : D∂ → D∂ is defined as F ∂(X) = τ1 ∪ τ 2̇ ⌢X [10].

Infinite. The infinite trace semantics, denoted τω, is derived by observing non-
terminating traces only, i.e., τω = αω(τ∞) (see Table 1). The infinite trace seman-
tics is constructively derived as fixpoint in the computational order: τω = gfp⊆

Σ
ωFω

where Fω : ℘(Σω)→ ℘(Σω) is defined as Fω(X) = τ 2̇ ⌢X.

Example 2.1 In this example, we show how the observable abstractions work.
Consider τ = {〈a, a〉, 〈b, c〉, 〈a, b〉, 〈c, d〉, 〈c, e〉} with d and e final states. Then
τ∞ = {aω} ∪

{

anbcd, anbce
∣

∣n ∈ N
}

∪ {cd, d, ce, e}. At this point, τω = {aω},

τ+ =
{

anbcd, anbce
∣

∣n ∈ N
}

∪ {cd, d, ce, e} and τ∂ =
{

σ ∈ Σ+
∣

∣σ0 = a
}

∪
{

anbcd, anbce
∣

∣n ∈ N
}

∪{cd, d, ce, e} =
{

σ ∈ Σ+
∣

∣σ0 = a
}

∪{bcd, bce, cd, d, ce, e}.

All semantics in the hierarchy are derived again as abstract interpretation of
the trace-based semantics. Each semantics in natural style corresponds here to a
suitable abstraction of the basic natural trace-based semantics τ∞.

The relational semantics R∞ associates an input-output relation with program
traces by using the bottom symbol ⊥ 6∈ Σ, to denote non-termination. This corre-
sponds to an abstraction of the maximal trace semantics where intermediate com-
putation states are ignored. The abstraction function αR that allows to get the
relational semantics as abstraction of the maximal trace one, i.e., R∞ = αR(τ∞)
is given in Table 2. The relative observables are angelic R+ (the big-step relational
semantics [34]), demonic R∂ and infinite Rω relational.

The denotational semantics D∞ abstracts away from the history of computations
by considering input-output functions. This semantics is isomorphic to relational
semantics. The abstraction function αD that leads to the denotational semantics
by abstracting the relational one, i.e., D∞ = αD(R∞) is given in Table 2. The
relative observables are angelic D+, demonic D∂ [5] and infinite Dω denotational.

1Note that, as explained in Sect. 2.2, in order to obtain a Galois insertion the abstraction has to be
surjective and therefore, in this case, we have to restrict the co-domain of α∂ precisely to the set of its
images.



February 4, 2010 14:16 International Journal of Computer Mathematics MastroeniGiacobazzi-
Def2

9

Semantics Domain relation Abstraction and Concretization

R∞ = αR(τ∞) 〈℘(Σ∞),⊆〉 →−→←−
αR

γR

〈℘(Σ × Σ⊥),⊆〉 αR(X) = {〈x0, xn−1〉 | x ∈ X+}

∪{〈σ0,⊥〉 | σ ∈ Xω}

γR(Y ) = {x ∈ Σ+ | 〈x0, xn−1〉 ∈ Y }

∪{σ ∈ Σω | 〈σ0,⊥〉 ∈ Y }

D∞ = αD(R∞) 〈℘(Σ× Σ⊥),⊆〉 →−→←←−
αD

γD

〈Σ −→ ℘(Σ⊥),⊑〉 αD(X) = λs.{s′ ∈ Σ⊥ | 〈s, s
′〉 ∈ X}

γD(f) = {〈x, y〉 | y ∈ f(x)}

gWp = αgWp(D∞) 〈Σ −→ ℘(Σ⊥),⊑〉 →−→←←−
αgWp

γgWp

〈℘(Σ⊥) coa−→℘(Σ),⊒〉 αgWp(f) = λP.{s ∈ Σ | f(s) ⊆ P}

γgWp(Φ) = λs.{s′ | s 6∈ Φ(Σ⊥r{s′})}

gH = αgH(gWp) 〈℘(Σ⊥) coa−→℘(Σ),⊒〉 →−→←←−
αgH

γgH

〈℘(Σ)⊗ ℘(Σ⊥),⊇〉 αgH(Φ) = {〈X,Y 〉 | X ⊆ Φ(Y )}

γgH(H) = λY. ∪ {X | 〈X,Y 〉 ∈ H}
Table 2. Basic natural-style semantics as abstract interpretations

Dijkstra’s predicate transformer gWp is represented as a set of co-additive func-
tions, denoting the weakest-precondition predicate transformers [17]. In general,
the weakest precondition semantics describes in an implicit way the semantics of
a program. We consider the program S and a post-condition (set of desired final
states) P , that we want to hold after the execution of S. The semantics consists in
finding the weakest pre-condition, namely the biggest set of possible initial states,
which allows the program to terminate in a state which belongs to P . The ab-
straction function αgWp that allows to get the weakest precondition semantics as
abstraction of the denotational one, i.e., gWp = αgWp(D∞), is given in Table 2. The
relative observables are angelic Wlp (weakest-liberal precondition [16]), demonic
Wp∂ , infinite Wpω and weakest precondition for total correctness Wp [15].

Similarly to the gWp semantics, in the Hoare axiomatic semantics we consider
triples of the kind {Q} S {P}, and in this case we give semantics to the program
S by finding all the pairs 〈P,Q〉 such that {Q} S {P} is a valid Hoare triple
[27]. Hoare’s axiomatic semantics gH is represented as elements in tensor product
domains, i.e., GC’s, specifying the adjoint relation between weakest-precondition
and strongest-postcondition in Hoare’s triples {P} C {Q}. The abstraction function
αgH that leads to the axiomatic semantics by abstracting the weakest precondition
one, i.e., gH = αgH(gWp), is given in Table 2. The relative observables are angelic
pH (Hoare’s partial correctness semantics [27]), demonic gH∂ , infinite gHω and
total correctness semantics tH [27].

Example 2.2 Consider the transition system of Example 2.1. In this case we have
R∞ = {〈a,⊥〉, 〈a, d〉, 〈a, e〉, 〈b, d〉, 〈b, e〉, 〈c, d〉, 〈c, e〉, 〈d, d〉, 〈e, e〉}. D∞ = λs. Xs

where Xa = {⊥, d, e}, Xb = {d, e}, Xc = {d, e},Xd = {d} and Xe = {e}.
gWp = λS. YS where Y{⊥} = {a}, Y{d} = {a, b, c, d} and Y{e} = {a, b, c, e}. Fi-
nally gH contains, for example, tuples of the kind 〈{a}, {⊥}〉 or 〈{a, b}, {d,⊥}〉.

The whole hierarchy, relating semantics styles and observables is shown in Fig. 1,
where continuous lines and arrows denote, respectively, isomorphisms and strict
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abstractions (i.e., abstractions which are not isomorphisms) between semantics.

3. Safety semantics in the hierarchy

In this section we aim to characterize the safety semantics in the abstract inter-
pretation framework in order to insert it in the Cousot’s hierarchy of semantics
and to formally characterize its constructive nature. In fact, as we have seen, all
the semantics in the hierarchy are obtained as fixpoints of semantic operators.
Our aim is to provide the same characterization also for safety semantics, showing
that this fixpoint characterization precisely formalises the constructive nature of
safety properties, which can be enforced by means of execution monitors.

Modelling safety in abstract interpretation. The abstract interpretation formal-
ization of safety properties is given in terms of an abstraction of a set of infinite
traces of a transition system modelling concurrent executions. The first definition
of safety by means of a pair of adjoint functions was given in terms of the maps
ϕω : ℘(Σω)→ ℘(Σ+) and γω : ℘(Σ+)→ ℘(Σω) [25] where:

ϕω(X) =
{

x ∈ Σ+
∣

∣∃δ ∈ X . x 4 δ
}

γω(Y ) =
{

σ ∈ Σω
∣

∣ϕω(σ) ⊆ Y
}

with X ∈ ℘(Σω), Y ∈ ℘(Σ+). The relation x 4 y means that x is a prefix of y.
In this case, while ϕω extracts the set of finite prefixes of an (infinite) trace, γω

completes a set Y of finite traces into the least set of infinite traces whose prefixes
are included in Y . The result is a Galois connection.

Proposition 3.1 〈℘(Σ+), ϕω, γω, ℘(Σω)〉 is a Galois connection [25].

At this point, we can define the safety domain, as the ϕω abstraction of the
infinite trace domain, namely

S = ϕω(℘(Σω)) =
{

X ∈ ℘(Σ+)
∣

∣∃Y ∈ ℘(Σω) . ϕω(Y ) = X
}

This is a domain of infinite sets of finite traces, collecting all the sets of traces
corresponding to safety properties. Note that, this domain, is closed under set
union but not under set intersection, since the intersection of infinite sets can be
finite.

Proposition 3.2 〈S,⊆,∪,⊓safe,Σ+, ∅〉 is a complete lattice, where the greatest
lower bound is the best correct approximation of the concrete one ∩, i.e., ⊓safe

i Xi =
ϕω(∩iγω(Xi)).

Hence, we can insert safety semantics in the hierarchy as shown in Fig. 1. by
defining the safety semantics of a transition system 〈Σ, τ〉 as τ safe = ϕω(τω).

Example 3.3 Consider the set of traces X =
{

ancω
∣

∣n ∈ N
}

, then ϕω(X) =
{

aicj
∣

∣ i, j ∈ N
}

takes all the finite prefixes of traces in X while γω(ϕω(X)) =
X ∪ {aω}, namely γω adds all the infinite traces whose prefixes are all in ϕω(X),
in this case aω.

Constructing safety by fixpoint. At this point, we aim to exploit the hierarchy
of semantics in order to prove that also the safety semantics can be obtained as
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the fixpoint of a semantic operator. This fixpoint characterization is important
both in the security policies and in the semantic contexts since it provides a better
understanding of the structure of the safety semantics. In the context of security
policies, this construction provides, in some sense, a theoretical comprehension of
why safety properties are enforceable by execution monitors. Indeed, execution
monitors analyze the property step by step during the execution of programs,
while the fixpoint operator we are going to define builds the safety semantics
by keeping, at each step of computation, only the prefixes of those traces that
at least for n steps (at the nth iteration) are possible executions of the program
to analyse. This is exactly the constructive characterization we can provide of
safety semantics, in the semantic context, coherent with the constructive semantic
characterization provided for several known semantics in the Cousot’s hierarchy
[10].

Hence, we follow the standard Cousot’s construction by specifying safety se-
mantics τ safe as the fixpoint of a monotone operator defined on infinite traces. In
particular, we show that this semantic operator is ϕω(Fω), where we recall that

the fixpoint of Fω def
= λX. τ 2̇ ⌢X is the infinite semantics τω [10]. Note that, in

the following, we use the function ϕω applied also to sets of finite traces. This
is a natural extension of the function previously defined: Let X ∈ Σ∞ then
ϕω(X)

def
=
{

y ∈ Σ+
∣

∣∃x ∈ X . y 4 x
}

. In order to specify safety semantics as fix-
points, we consider the semantic operator:

F safe(X) = ϕω(τ 2̇ ⌢X)

The idea is to prove that the safety semantics is the fixpoint of this semantic
operator by using the dual Kleene transfer theorem [10]. Consider a concrete do-
main C with an operation F , an abstract domain A with an abstract operator
FA, α : C −→ A co-continuous and FA ◦ α = α ◦ F (commutative property), then
the transfer theorem says that α(gfpF ) = gfpFA. In our case, the concrete domain
is the infinite semantics τω, the abstract domain is the safety semantics τ safe, the
abstraction is clearly the prefix abstraction ϕω, while the concrete and the abstract
operators are respectively Fω and F safe. Hence, in order to apply this transfer to
greatest fixpoints the abstraction function has to be co-continuous but we know by
Prop. 5.1 that ϕω is not co-continuous. Fortunately, this is not a problem because
Cousot noticed [10] that co-continuity is not needed in general, since the proof of
the transfer theorem uses only the fact that the abstraction preserves the greatest
lower bound of the (possibly transfinite) iterates of the concrete operator starting
from ⊤. Therefore, the first thing to prove is that ϕω preserves the greatest lower
bound of all the iterates of Fω. Fortunately, as the following results shows, F safe is
co-additive, hence we have only to check whether ϕω preserves the greatest lower
bound of the iterates, limited by ω, of the concrete operator starting from Σ+. The
following lemmas provide some useful properties of the concatenation operation.
We recall that the concatenation used in this paper is not a simple juxtaposition of
traces, but a concatenation possible only when the two traces share, respectively,
the last and the first symbol, e.g., ab ⌢bcω = abcω while ab ⌢cω = ∅ (see Sect. 2.3).

Lemma 3.4 Let {Xi}i∈I ⊆ ℘(Σ∞). Then τ 2̇ ⌢(
⋂

i Xi) =
⋂

i (τ 2̇ ⌢Xi).
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Proof

δ ∈
⋂

i τ
2̇ ⌢Xi ⇔ ∀i . δ = δ0δ1δ2 . . . δn . . . ∈ τ 2̇ ⌢Xi

⇔ δ0δ1 ∈ τ 2̇, ∀i . δ1 . . . δn . . . ∈ Xi

⇔ δ0δ1 ∈ τ 2̇, δ1 . . . δn . . . ∈
⋂

i Xi

⇔ δ = δ0δ1δ2 . . . δn . . . ∈ τ 2̇ ⌢
⋂

i Xi

�

In sake of readability, in the following of the paper we will use the notation
γωϕω(X) instead of γω(ϕω(X)).

Lemma 3.5 Let X ∈ ℘(Σω) and Y ∈ S, then

(i) ϕω(τ 2̇ ⌢ϕω(X)) = ϕω(τ 2̇ ⌢X) (ii) τ 2̇ ⌢γω(Y ) = γωϕω(τ 2̇ ⌢Y )

Proof (i) By definition τ 2̇ ⌢ϕω(X) = τ 2̇ ⌢
{

x ∈ Σ+
∣

∣∃σ ∈ X . x 4 σ
}

, then

x′ ∈ ϕω(τ 2̇ ⌢
{

x ∈ Σ+
∣

∣∃σ ∈ X . x 4 σ
}

)

⇔ x′ 4 x0x1x2 · · · xn with x0x1 ∈ τ 2̇, x1x2 · · · xn ∈ ϕω(X)

⇔ x′ 4 x0x1 · · · xn, x0x1 ∈ τ 2̇, ∃σ ∈ X . x1x2 · · · xn 4 σ

⇔ x′ 4 x0x1x2 · · · xn 4 τ 2̇ ⌢σ ∈ τ 2̇ ⌢X

⇔ x′ ∈
{

x ∈ Σ+
∣

∣

∣∃σ ∈ τ 2̇ ⌢X . x 4 σ
}

= ϕω(τ 2̇ ⌢X)

(ii) By definition τ 2̇ ⌢γω(Y ) = τ 2̇ ⌢
{

σ ∈ Σω
∣

∣ϕω(σ) ⊆ Y
}

, then

x′ ∈ τ 2̇ ⌢
{

σ ∈ Σω
∣

∣ϕω(σ) ⊆ Y
}

⇔ x′ = x0x1x2 · · · xn · · · with x0x1 ∈ τ 2̇, x1x2 · · · xn · · · ∈ γω(Y )

⇔ x′ = x0x1 · · · xn · · · , x0x1 ∈ τ 2̇, ϕω(x1x2 · · · xn · · · ) ⊆ Y

⇔ ϕω(x′) = ϕω(x0x1x2 · · · xn · · · ) ⊆ ϕω(τ 2̇ ⌢Y )

⇔ x′ ∈ γωϕω(τ 2̇ ⌢Y )

where in the last implications we have to consider ϕω(τ 2̇ ⌢Y ) instead of τ 2̇ ⌢Y in
order to have also the prefixes of x′ whose length is 1. �

At this point, let us show that F safe is co-additive, meaning also that we can
reach its fixpoint in at most ω iterations.

Proposition 3.6 F safe is co-additive.

Proof

F safe(
d

safe

i Xi) = F safe(ϕω(
⋂

i γω(Xi)))

= ϕω(τ 2̇ ⌢ϕω(
⋂

i γω(Xi))) [ by Lemma 3.5(i) ]

= ϕω(τ 2̇ ⌢
⋂

i γω(Xi)) [ by Lemma 3.4 ]

= ϕω(
⋂

i(τ
2̇ ⌢γω(Xi))) [ by Lemma 3.5(ii) ]

= ϕω(
⋂

i γωϕω(τ 2̇ ⌢Xi)) =
d

safe

i F safe(Xi)

�

Finally, we can prove that ϕω preserves the iterations of Fω, and the previous
result justifies the fact that we do not consider transfinite iterations.
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Proposition 3.7 ϕω(
⋂

n∈N
(Fω)n(Σω)) =

d
safe

n∈N
ϕω((Fω)n(Σω))

Proof Note that (Fω)n(Σω) = τ
˙n+1 ⌢Σω [10]. Therefore we have to prove that

ϕω(
⋂

n∈N
(τ

˙n+1 ⌢Σω) =
d

safe

n∈N
ϕω(τ

˙n+1 ⌢Σω). By definition of ⊓safe (see Proposi-

tion 3.2) we have
d

safe

n∈N
ϕω(τ

˙n+1 ⌢Σω) = ϕω(
⋂

n∈N
γωϕω(τ

˙n+1 ⌢Σω)). Let n ∈ N,

let us show τ
˙n+1 ⌢Σω = γωϕω(τ

˙n+1 ⌢Σω). Clearly the inclusion ⊆ comes from the

extensivity of Safe. Let us prove the other inclusion. Consider δ ∈ γωϕω(τ
˙n+1 ⌢Σω),

then by definition of γω this implies that ϕω(δ) ⊆ ϕω(τ
˙n+1 ⌢Σω). Suppose

δ /∈ τ
˙n+1 ⌢Σω, then ∃i ≤ n + 1 . (δi, δi+1) /∈ τ , therefore we have δ0 . . . δi+1 ∈ ϕω(δ)

but δ0 . . . δi+1 /∈ ϕω(τ
˙n+1 ⌢Σω), which is absurd for the inclusion above. Hence

δ ∈ τ
˙n+1 ⌢Σω. The equality just proved implies trivially the thesis. �

At this point, in order to apply the Kleene transfer theorem we have simply to
show the commutative property, namely F safe ◦ ϕω = ϕω ◦ Fω, which corresponds
to saying that the abstraction ϕω is complete with respect to the operation Fω,
i.e., ϕω ◦ Fω ◦ ϕω = ϕω ◦ Fω [13], being F safe def

= ϕω ◦ Fω. This is precisely what we
proved in the first point of Lemma 3.5.
The next theorem collects together all the properties we proved for Fω and ϕω

giving a fixpoint characterization of safety semantics as the greatest fixpoint of
F safe, obtained by Kleene fixpoint transfer.

Theorem 3.8 τ safe = gfp⊆

Σ
+F safe.

Proof We can prove the theorem by using the dual of Kleene’s fixpoint transfer
theorem. Moreover by Lemma 3.5(i) we can simply verify that F safe is complete
with respect to abstraction ϕω and to the function Fω. By Prop. 3.6 we have
that at least in ω iterations we find the fixpoint. Finally by the Prop. 3.7 we
know that the abstraction function commutes with finite iterations of Fω so we
can apply the dual of Kleene’s fixpoint transfer theorem. Therefore we have that
τ safe = ϕω(gfp⊆

Σ
ωFω) = gfp⊆

Σ
+F safe. �

Example 3.9 Let us consider a very simple example where we can show how the
operator F safe builds the safety semantics. Consider the transition system τ =
{〈a, a〉, 〈a, c〉, 〈c, c〉}. Then we have the following iterations:

F safe(Σ+) = ϕω(τ 2̇ ⌢Σ+) = ϕω(
{

aσ, cσ
∣

∣σ ∈ Σ+
}

)
= {a, c} ∪

{

aσ, cσ
∣

∣σ ∈ Σ+
}

def
= F1

F safe(F1) = ϕω(τ 2̇ ⌢F1) = ϕω({aa, ac, cc} ∪
{

aaσ, acσ, ccσ
∣

∣σ ∈ Σ+
}

)
= {a, c, aa, ac, cc} ∪

{

aaσ, acσ, ccσ
∣

∣σ ∈ Σ+
}

def
= F2

F safe(F2) = ϕω(τ 2̇ ⌢F2)
= ϕω({aa, ac, cc, aaa, aac, acc, ccc} ∪

{

aaaσ, aacσ, accσ, cccσ
∣

∣σ ∈ Σ+
}

)
= {a, c, aa, ac, cc, aaa, aac, acc, ccc} ∪

{

aaaσ, aacσ, accσ, cccσ
∣

∣σ ∈ Σ+
}

. . .

F safe(Fn) = ϕω(τ 2̇ ⌢Fn)
= ϕω(

{

ai, ci, ajck
∣

∣2 ≤ i ≤ n + 1, 1 ≤ j, k ≤ n
}

∪
{

an+1σ, cn+1σ, ajckσ
∣

∣σ ∈ Σ+, 1 ≤ j, k ≤ n
}

)
=
{

ai, ci, ajck
∣

∣1 ≤ i ≤ n + 1, 1 ≤ j, k ≤ n
}

∪
{

an+1σ, cn+1σ, ajckσ
∣

∣σ ∈ Σ+, 1 ≤ j, k ≤ n
}

It is quite straightforward to check that the greatest fixpoint is τ safe =
{

ajck
∣

∣ j, k ∈ N
}

.

Finally, let us note that, in this case, we can also show how F safe generates τ safe. In
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particular, note that the nth iteration of F safe is Xn = ϕω(τ
˙n+1 ⌢Σ+) (by induction

and by Lemma 3.5). Next result is a property of ϕω useful for characterizing the
fixpoint of F safe without using the transfer theorem.

Proposition 3.10 Consider δ ∈ Σω, then we have ∀n ∈ N . ϕω(δ) ⊆
ϕω(τ ṅ ⌢Σ+) ⇔ ∀n ∈ N . δ ∈ τ ṅ ⌢Σω

Proof Suppose that ∀n ∈ N . ϕω(δ) ⊆ ϕω(τ ṅ ⌢Σ+), and that ∃n ∈ N . δ 6∈ τ ṅ ⌢Σω

then there must exists δi−1, δi ∈ Σ with i ≤ n such that (δi−1, δi) 6∈ τ . This implies

that ϕω(δ) 6⊆ ϕω(τ i̇ ⌢Σ+), which is absurd. Suppose now that ∀n ∈ N .δ ∈ τ ṅ ⌢Σω,
and that ∃n ∈ N . ϕω(δ) 6⊆ ϕω(τ ṅ ⌢Σ+), then ∃x ∈ ϕω(δ) . x 6∈ ϕω(τ ṅ ⌢Σ+) and
there are at least two states xi−1, xi ∈ Σ with i ≤ n such that (xi−1, xi) 6∈ τ . This

means that δ 6∈ τ i̇ ⌢Σω, which is absurd. �

Hence, we can provide the following direct proof of Th. 3.8.

gfp⊆

Σ
+F safe =

d
safe

n∈N
Xn =

d
safe

n∈N
ϕω(τ

˙n+1 ⌢Σ+) =
d

safe

n>0 ϕω(τ ṅ ⌢Σ+)
= ϕω(

⋂

n>0 γωϕω(τ ṅ ⌢Σ+))
= ϕω

(
⋂

n>0

{

σ ∈ Σω
∣

∣ϕω(σ) ⊆ ϕω(τ ṅ ⌢Σ+)
})

=
{

x ∈ Σ+
∣

∣∃δ ∈
⋂

n>0

{

σ ∈ Σω
∣

∣ϕω(σ) ⊆ ϕω(τ ṅ ⌢Σ+)
}

. x 4 δ
}

=
{

x ∈ Σ+
∣

∣∃δ ∈ Σω . ∀n > 0 . ϕω(δ) ⊆ ϕω(τ ṅ ⌢Σ+) ∧ x 4 δ
}

[ by Prop. 3.10 ]

=
{

x ∈ Σ+
∣

∣∃δ ∈ Σω . ∀n > 0 . δ ∈ τ ṅ ⌢Σω ∧ x 4 δ
}

=
{

x ∈ Σ+
∣

∣∃δ ∈
⋂

n>0 τ ṅ ⌢Σω . x 4 δ
}

= ϕω(
⋂

n>0 τ ṅ ⌢Σω) = ϕω(
⋂

n∈N
τ

˙n+1 ⌢Σω) = ϕω(τω) = τ safe

At this point, we can underline that the fixpoint construction explicitly described
above can be interpreted as monitoring, for two main observations. First, the nth

iteration of F safe, i.e., ϕω(τ
˙n+1 ⌢Σ+), corresponds to the set of all the prefixes of

all the computations that at least for n steps are computations of the considered
program. From the abstract interpretation point of view it is like to abstract traces
only to the first n + 1 states, or in other words, to observe only the first n steps.
Second, we can note that if we check the program for n steps, and therefore for all
the prefixes of these steps of computation, in order to check the program for n + 1
steps it is sufficient to move one step forward in the computation, since we know
that ϕω(τn+1) = τn+1∪ϕω(τn). But these two things together, intuitively, provide
a theoretical description of how an execution monitor works.

4. Other safety properties as abstractions in the hierarchy

In this section, we consider three different kinds of safety semantics known in the
literature, and we show that all of them can be modelled as abstractions of safety in
the hierarchy of semantics. This characterization is important also because allows
us to prove that some kind of safety properties, in particular those admitting
cancellation of states, lose the well-known constructive nature.
We mainly focus on two notions of safety: safety without stuttering [2] (also called
stuttering safety) and strong safety [38]. Intuitively a property is safety without
stuttering if it is safety and if it is insensitive with respect to the repetition of
states. In other words, a property is without stuttering if, given a sequence of
states σ that satisfies the property, then any other sequence σ′ that differs from σ
only for the repetition of a set of states of σ, satisfies the property. An example
of property without stuttering is the following: Consider the sequence σ of states
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representing the evolution of a clock with a variable h for hours and m for minutes.
Then consider another sequence σ′ again representing a clock with a variable h for
hours, a variable m for minutes and a variable s for seconds. Then a property
without stuttering cannot distinguish the two sequences even if σ′ evolves in 59
consecutive different states while σ does not change [29] (namely repeats for 59
times the same state). On the other hand a property Π is a strong safety property,
if it is a safety property without stuttering and is insensitive to deletion of states,
i.e., from any sequence in Π if we delete an arbitrary number of states, then the
resulting sequence is also in Π. In the following we will identify a trace property as
the set of traces satisfying the property.

Definition 4.1 Let Π be a property on (potentially infinite) traces. Then Π is
safety without stuttering if it is safety and if

σ ∈ Π . σ = σ0σ1 . . . σn . . . then ∀i ≥ 0 . σ0 . . . σiσi . . . ∈ Π

Π is strong safety if it is safety without stuttering and if

(∗) σ ∈ Π . σ = σ0σ1 . . . σn . . . then ∀i > 0 . σ0 . . . σi−1σi+1 . . . ∈ Π

In Definition 4.1 we call cancellation safety a safety property that satisfies only
(∗). Note that in the cancellation property it is assumed that the initial state is
always observed [37].
The importance of properties without stuttering is in both requirement and
system specification. In system specification, a property with stuttering exposes
too much details of the internal structure, while in requirement specifications these
properties preclude, in model checking, efficient verification [33]. The meaning of
the definition of strong safety properties is that if we do not observe the system
during certain instances then the observed behaviour should still be permissible,
and similarly if we observe the same state many times before a state change
occurs, then the resulting behaviour should still be permissible. The strong safety
properties are important since invariant properties are a subset of them [37].

At this point we can define the abstractions characterizing the restricted safety
properties as abstractions of S. Let us define these abstractions in the most
general form, namely consider the abstraction given in Table 3, where, for each
α ∈ {αstr, αstu, αcan} we have α : ℘(Σ∞) → α(℘(Σ∞)), namely α is generically
defined in the set of all the possible traces, even if the corresponding semantics
in the hierarchy are obtained by applying α to the set S. In the following we will
call all these new abstract safety semantics restricted safety properties. Note that
the set of properties characterized by αstr contains the properties characterized by
both αstu and αcan. This is coherent with Definition 4.1 where we can note that
both safety without stuttering and cancellation safety properties are particular
strong safety properties.

Consider the definitions in Table 3. From these definitions it turns out that
the three abstractions differ only for the hypotheses on the number of possible
repetitions ki. In the following, for each α in Table 3, we write ki ∈ Dα in order to
denote that ki respect the hypothesis imposed by the abstraction α. In particular
we have that Dαstu = N r {0}, ki ∈ Dαcan means that ∀i > 0 . ki ∈ {0, 1}, while
k0 = 1, and ki ∈ Dαstr means that ∀i > 0 . ki ∈ N while k0 ∈ Nr{0}. The following
lemma says that the restricted properties commute with the safety abstraction,
and this property is important afterwards for proving that the α abstractions are
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Safety property Abstraction and concretization

Stuttering safety: αstu(X)
def
=

{

x ∈ Σ∞

∣

∣

∣

∣

∃y ∈ X . x = yk0

0 yk1

1 . . . ykn

n . . . ,
∀i . ki ∈ N r {0}

}

Cancellation safety: αcan(X)
def
=

{

x ∈ Σ∞

∣

∣

∣

∣

∃y ∈ X . x = y0y
k1

1 . . . ykn

n . . . ,
∀i > 0 . ki ∈ {0, 1}

}

Strong safety: αstr(X)
def
=

{

x ∈ Σ∞

∣

∣

∣

∣

∃y ∈ X . x = yk0

0 yk1

1 . . . ykn
n . . . ,

∀i > 0 . ki ∈ N, k0 ∈ N r {0}

}

Table 3. Restricted safety properties

closure operators on the safety abstraction domain. In the following, we consider
again the extension of ϕω to any set of (finite or infinite) traces.

Lemma 4.2 Let α ∈ {αstr, αstu, αcan}, and σ ∈ Σω. Then ϕω(α(σ)) = α(ϕω(σ))1.

Proof Let x ∈ ϕω(α(σ)) then there exists σ′ ∈ α(σ) such that x 4 σ′. Since

σ′ = σk0

0 σk1

1 . . . then there exists i such that x = σk0

0 σk1

1 . . . σki

i . Since σ0σ1 . . . σi 4 σ
and k0, k1, . . . ki ∈ N we have that x ∈ αϕω(σ).

Consider now x ∈ αϕω(σ). Then x = xk0

0 xk1

1 . . . xkn
n with x0x1 . . . xn 4 σ. Let

β ∈ Σω such that x0x1 . . . xnβ = σ, then xk0

0 xk1

1 . . . xkn
n β ∈ α(σ). This clearly

implies that x ∈ ϕω(α(σ)). �

Proposition 4.3 Let α ∈ {αstr, αstu, αcan}. α is an upper closure operator, i.e.,
α(S) is a Moore family of S.

Proof In order to show that α(S) is a Moore family of S we have to prove that,
given a family {Xi}i∈I ⊆ α(S), we have

d
safe

i Xi ∈ α(S). Recall that
d

safe

i Xi =
ϕω(

⋂

i γω(Xi)). Consider the following relations.

x = x0 . . . xh ∈ ϕω(
⋂

i γω(Xi)) ⇒ ∃σ ∈
⋂

i γω(Xi) . x 4 σ
⇒ ∃σ . x 4 σ, ∀i . σ ∈ γω(Xi) ⇒ ∃σ . x 4 σ, ∀i . ϕω(σ) ⊆ Xi

⇒ ∃σ . x 4 σ, ∀i . α(ϕω(σ)) ⊆ Xi, [ being Xi ∈ α(S) ]

⇒ ∃σ . x 4 σ, ∀i . ϕω(α(σ)) ⊆ Xi, [ by Lemma 4.2 ]

⇒ ∃σ . x 4 σ, ∀i . α(σ) ⊆ γω(Xi)
⇒ ∃σ . x 4 σ, α(σ) ⊆

⋂

i γω(Xi)
⇒ ∃σ . x 4 σ, ϕω(α(σ)) ⊆ ϕω(

⋂

i γω(Xi))
⇒ ∃σ . x 4 σ, α(ϕω(σ)) ⊆ ϕω(

⋂

i γω(Xi)), [ by Lemma 4.2 ]

⇒ α(x) ⊆ ϕω(
⋂

i γω(Xi)), [ by monotonicity of α, being x ∈ ϕω(σ) ]

We proved in this way that
d

safe

i Xi ∈ α(S), namely that
d

safe

i Xi is an α safety
property. �

The proposition above implies that for any X,Y ∈ α(S), where α is a restricted
safety, we have that α(X ⊓safe Y ) = X ⊓safe Y being α a closure.

Now that safety without stuttering, as well as all the other restricted safety
properties, are included in the Cousot’s hierarchy of semantics as abstractions of the
safety semantics, we can derive them as fixpoints of a semantic operator designed
by fixpoint transfer from the fixpoint safety semantics given in the previous section.
Consider the dual Kleene fixpoint transfer introduced before. We want to obtain

1α applied to infinite traces is the natural extension of the corresponding function defined in Table 3.
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any of the abstract safety properties introduced so far as the greatest fixpoint of
the semantic operator

Fα = αF safe

In this case, the concrete domain is the safety semantics τ safe, the abstract semantics
are the different τα, the abstractions are the respective α, and the operators are
F safe (concrete) and Fα (abstract). As we noticed in Sect. 3, in order to apply the
transfer theorem the abstraction function has to be co-continuous. Unfortunately
we can show that all the abstractions introduced so far are not co-continuous.

Proposition 4.4 Let α ∈ {αstr, αstu, αcan}. Then α is not co-continuous.

Proof We show first how the cancellation property makes the co-continuity to fail.
Let α ∈ {αcan, αstr} Consider ∀n ∈ N . Xn

def
=
{

x ∈ Σ+
∣

∣ |x| ≥ n + 1 ⇒ xn = a
}

,

clearly ∀n ∈ N . Xn ∈ S since ∀n . Xn = ϕω(Yn) where Yn =
{

σ ∈ Σω
∣

∣σn = a
}

.

α(Xn) =
{

xk0

0 . . . xkm

m

∣

∣ki ∈ Dα, (m ≥ n + 1 ⇒ xn = a)
}

. Note that α(Xn) =

Σ+, indeed let y ∈ Σ+, then if |y| ≤ n or yn = a it is in α(Xn). Let us consider |y| >
n and yn 6= a, then we can write y = (y0)

1 . . . (yn−1)
1a0(yn)1 . . . (ym)1 where clearly

y0 . . . yn−1ayn . . . ym ∈ Xn, therefore y ∈ α(Xn). But this implies immediately
that ∀n ∈ N . γωα(Xn) = Σω and therefore

d
safe

n∈N
α(Xn) = ϕω(

⋂

n∈N
γωα(Xn)) =

Σω. On the other hand we have that γω(Xn) =
{

σ ∈ Σω
∣

∣σn = a
}

, there-

fore
⋂

n∈N
γω(Xn) =

{

σ ∈ Σω
∣

∣∀n ∈ N . σn = a
}

= {aω}. This means that

ϕω(
⋂

n∈N
γω(Xn)) = {a, aa, aaa, . . .}, i.e., α(

d
safe

n∈N
Xn) = α(ϕω(

⋂

n∈N
γω(Xn))) =

{a, aa, aaa, . . .}, clearly different from Σω.
Consider now αstu and the sets Xn

def
=
{

ai
∣

∣ i ≤ n
}

∪
{

anx
∣

∣x ∈ Σ+, b ∈ x
}

which compose a decreasing chain. Then we have that the concretization is
γω(Xn) =

{

σ ∈ Σω
∣

∣an 4 σ, b ∈ σ
}

. Clearly, as in Prop. 5.1 we can note that
⋂

n γω(Xn) = ∅. On the other hand for each n we have that
{

ai
∣

∣ i ∈ N
}

⊆
αstu(Xn), therefore aω ∈

⋂

n γωαstu(Xn). From these facts we have
d

n α(Xn) =
ϕω(

⋂

n γωα(Xn)) 6= ∅ while α(
d

n Xi) = αϕω(
⋂

n γωXn) = ∅ �

Therefore all the abstractions introduced are not co-continuous. Anyway, as no-
ticed before, co-continuity is a too strong condition. Indeed, it would be sufficient
to prove that the abstraction functions introduced above preserve the greatest
lower bound of the iterations of F safe. Unfortunately, this holds for αstu, but it does
not hold for the other restricted safety properties as it is shown in the following
example.

Example 4.5 It is worth noting that the dual Kleene transfer fixpoint theorem, also
in its weakened form, is not applicable to strong and cancellation safety properties
to generate a fixpoint semantics of them. The following example shows that the
two restricted abstractions mentioned above do not commute with the iterations
of F safe. Let α ∈ {αstr, αcan}. Consider the transition system with Σ = {a, b, c}
and τ = {〈a, b〉, 〈b, b〉, 〈b, c〉}, with c is a terminal state. Note that for each n we
have that abn−2c

⌢
Σω ⊆ τ ṅ ⌢Σω. This implies that ∀n ∈ N . abn−2caω ∈ τ ṅ ⌢Σω.

Consider ∀i ∈ N .acai, then ∀n ∈ N, ∀i ∈ N .acai ∈ αϕω(abn−2caω) ⊆ αϕω(τ ṅ ⌢Σω)
since acai = ab0 . . . b0cai. Being ϕω(acaω) = {a} ∪

{

acai
∣

∣ i ∈ N
}

, we have that

∀n ∈ N .ϕω(acaω) ⊆ αϕω(τ ṅ ⌢Σω), namely ∀n ∈ N .acaω ∈ γωαϕω(τ ṅ ⌢Σω). Hence
we have the following implications

acaω ∈
⋂

n γωαϕω(τ ṅ ⌢Σω)⇒ ∀i ∈ N . acai ∈ ϕω

⋂

n γωαϕω(τ ṅ ⌢Σω)
⇒ ∀i ∈ N . acai ∈

d
n αϕω(τ ṅ ⌢Σω)
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On the other hand, we have that γωϕω(τ ṅ ⌢Σω) = τ ṅ ⌢Σω (see the proof of
Prop. 3.7). Then it is worth noting that

⋂

n τ ṅ ⌢Σω = {abω, bω}. Therefore

α
d

n ϕω(τ ṅ ⌢Σω) = αϕω

⋂

n γωϕω(τ ṅ ⌢Σω) = αϕω

⋂

n τ ṅ ⌢Σω

= α(
{

abi
∣

∣ i ∈ N
}

∪
{

bi
∣

∣ i ∈ N
}

)

Now, if α = αstr, then αstr(
{

abi
∣

∣ i ∈ N
}

∪
{

bi
∣

∣ i ∈ N
}

) = αstr(
{

abi
∣

∣ i ∈ N
}

) ∪

αstr(
{

bi
∣

∣ i ∈ N
}

) =
{

ajbi
∣

∣ i, j ∈ N, j > 0
}

∪
{

bi
∣

∣ i ∈ N
}

=
{

ajbi
∣

∣ i, j ∈ N
}

.

While, if α = αcan then αcan(
{

abi
∣

∣ i ∈ N
}

∪
{

bi
∣

∣ i ∈ N
}

) = αcan(
{

abi
∣

∣ i ∈ N
}

)∪

αcan(
{

bi
∣

∣ i ∈ N
}

) =
{

abi
∣

∣ i ∈ N
}

∪
{

bi
∣

∣ i ∈ N
}

. In both cases, we have that

∀i . acai /∈ α
d

n ϕω(τ ṅ ⌢Σω).

Hence, in the following we can investigate only on the fixpoint construction of
safety without stuttering.
Next results show precisely that αstu preserves the greatest lower bounds of the
iterations of Fαstu

. As before, we have first to avoid transfinite iterations, proving
simply that Fαstu

reaches the fixpoint before ω iterations, in order to show the
preservation of glb only for ω limited greatest lower bounds.

Lemma 4.6 Let α = αstu, then we have that

∀n ∈ N . ∀X ∈ α(S) . (Fα)n(X) = α((F safe)n(X))

Proof Let α = αstu. We prove the thesis by induction on the number of applications
of Fα. By definition we have (Fα(X))0 = X and α((F safe(X))0) = α(X) = X,
being X ∈ α(S). Recall that (Fα)n(X)

def
= (αF safe)n(X). Let (αF safe)n(X) =

α((F safe)n(X)) be the inductive hypothesis. We prove that this holds also for n+1.
Consider

(Fα)n+1(X) = (αF safe)n+1(X) = (αF safe)((αF safe)n(X))
= (αF safe)(α((F safe)n(X))) [ by inductive hypothesis ]

= α(F safe(α((F safe)n(X))) [ by composition ]

= α(F safe((F safe)n(X))) [ being (F safe)n(X) ∈ α(S) ]

= α((F safe)n+1(X))

�

Proposition 4.7 Let α = αstu. Then

Fα

(

safel

n∈N

(Fα)n(Σ+)

)

=

safel

n∈N

(Fα)n(Σ+).

Proof Recall that Fα def
= α ◦ F safe, therefore

d
safe

n∈N
(αF safe)n(Σ+) =

d
safe

n∈N
α((F safe)n(Σ+)) [ by Lemma 4.6 ]

= α
d

safe

n∈N
(F safe)n(Σ+) [ by Prop. 4.9 ]

= αF safe(
d

safe

n∈N
(F safe)n(Σ+)) [ by Prop. 3.6 ]

= αF safeα(
d

safe

n∈N
(F safe)n(Σ+)) [ by Lemma 4.10 ]

= αF safe(
d

safe

n∈N
α(F safe)n(Σ+)) [ by Prop. 4.9 ]

= αF safe(
d

safe

n∈N
(αF safe)n(Σ+)) [ by Lemma 4.6 ]

�
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These results tell us that the fixpoint is reached at most in ω iterations, hence
we have simply to show now that αstu preserves ω-bounded iteration only.

Lemma 4.8 Let α = αstu and δ ∈ Σω then we have ∀n ∈ N:

ϕω(δ) ⊆ αϕω(τ ṅ ⌢Σ+) ⇔ δ ∈ α(τ ṅ ⌢Σω)

Proof (⇒) Consider δ ∈ Σω, and ϕω(δ) ⊆ αϕω(τ ṅ ⌢Σ+). By definition of α this
corresponds to saying that ∀x ∈ ϕω(δ) there exists z ∈ ϕω(τ ṅ ⌢Σ+) such that

x = zk0

0 zk1

1 . . . zkm
m , for some m ∈ N, k0, k1, . . . , km ∈ Dα. Now we prove that

this fact implies that ∃σ ∈ Σω such that ϕω(σ) ⊆ ϕω(τ ṅ ⌢Σ+) and such that

δ = σk0

0 σk1

1 . . . for ki ∈ Dα. Starting from ϕω(δ) we want to find a set of prefixes
ϕω(σ) for some σ ∈ Σω.
First of all we prove that if x = ys, with x, y ∈ Σ+, s ∈ Σ and such that
x = zk0

0 . . . zkm

m , y = wh0

0 . . . whl

l with z,w ∈ ϕω(τ ṅ ⌢Σ+), then we can find w′ ∈

ϕω(τ ṅ ⌢Σ+) such that y = w
′h′

0

0 . . . w
′h′

l′

l′ and w′ 4 z. Indeed suppose, without losing
generality, that km and hl are different from 0, otherwise we would take the longest
prefix of z and w with the last exponent different from 0 which is by construc-
tion in ϕω(τ ṅ ⌢Σ+). The fact that x = ys implies that zk0

0 . . . zkm
m = wh0

0 . . . whl

l s.

Therefore zk0

0 . . . zkm−1
m = wh0

0 . . . whl

l = y. Now if z ∈ ϕω(τ ṅ ⌢Σ+) then also

w′ def
= z0z1 . . . zm−1z

{0,1}
m ∈ ϕω(τ ṅ ⌢Σ+)1 since z0z1 . . . zm−1z

{0,1}
m 4 z. In this way

we found w′ ∈ ϕω(τ ṅ ⌢Σ+) such that y ∈ α(w′) with w′ 4 z. It is worth noting
that the set of these elements of ϕω(τ ṅ ⌢Σ+) is an infinite set of prefixes, therefore
it is the set of prefixes of a certain infinite trace σ, ϕω(σ), and moreover the relation

among prefixes of δ and σ implies that δ = σk0

0 σk1

1 . . .. Therefore:

ϕω(δ) ⊆ αϕω(τ ṅ ⌢Σ+)⇒ ∀x ∈ ϕω(δ) . ∃z ∈ ϕω(τ ṅ ⌢Σ+) . x = zk0

0 . . . zkm
m

⇒ ∃σ ∈ Σω . ϕω(σ) ⊆ ϕω(τ ṅ ⌢Σ+), δ = σk0

0 σk1

1 . . .

⇒ ∃σ ∈ τ ṅ ⌢Σω . δ = σk0

0 σk1

1 . . .
⇒ δ ∈ α(τ ṅ ⌢Σω)

where it is trivial to verify that ϕω(σ) ⊆ ϕω(τ ṅ ⌢Σ+) implies σ ∈ τ ṅ ⌢Σω.
(⇐) Consider δ ∈ α(τ ṅ ⌢Σω). Then the following implications hold:

δ ∈ α(τ ṅ ⌢Σω)⇒ ∃σ ∈ τ ṅ ⌢Σω . δ = σk0

0 σk1

1 . . .

⇒ ∃σ ∈ Σω . ϕω(σ) ⊆ ϕω(τ ṅ ⌢Σ+), δ = σk0

0 σk1

1 . . .
⇒ ϕω(δ) ⊆ α(ϕω(σ)) ⊆ αϕω(τ ṅ ⌢Σ+)

where the last inclusions are due to the fact that δ = σk0

0 σk1

1 . . .. �

Proposition 4.9 Let α = αstu. Then

safel

n∈N

α((F safe)n(Σ+)) = α

(

safel

n∈N

(F safe)n(Σ+)

)

Proof Note that it always holds that α(
d

i Xi) ⊆
dα

i α(Xi). This means thatd
safe

n∈N
α((F safe)n(Σ+)) ⊇ α

(d
safe

n∈N
(F safe)n(Σ+)

)

holds trivially. Let us consider the

other inclusion. We noted in Sect. 3 that, (F safe)n(Σ+) = ϕω(τ
˙n+1 ⌢Σ+), where ϕω

1We wrote z{0,1} since we do not know if km > 1.
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here is the extension to both finite and infinite traces defined in Sect 3. Therefore
the following relations hold.

x ∈
d

safe

n∈N
α((F safe)n(Σ+)) ⇒ x ∈ ϕω(

⋂

n∈N
γωα((F safe)n(Σ+)))

⇒ x ∈ ϕω(
⋂

n∈N
γωαϕω(τ

˙n+1 ⌢Σ+))

⇒ ∃σ ∈
⋂

n∈N
γωαϕω(τ

˙n+1 ⌢Σ+) . x 4 σ

⇒ ∃σ . ∀n ∈ N . σ ∈ γωαϕω(τ
˙n+1 ⌢Σ+), x 4 σ

⇒ ∃σ . ∀n ∈ N . ϕω(σ) ⊆ αϕω(τ
˙n+1 ⌢Σ+), x 4 σ

⇒ ∃σ . ∀n ∈ N . σ ∈ α(τ
˙n+1 ⌢Σω), x 4 σ [ by Lemma 4.8 ]

⇒ ∃σ . ∀n ∈ N . ∃δ ∈ τ
˙n+1 ⌢Σω . σ = δk0

0 δk1

1 . . . , x 4 σ, ki ∈ Dα

⇒ ∃σ . ∀n ∈ N . ∃δ ∈ Σω . ϕω(δ) ⊆ ϕω(τ
˙n+1 ⌢Σ+), σ = δk0

0 δk1

1 . . . , x 4 σ

At this point we have to prove that the condition above, i.e., ∃σ . ∀n ∈ N . ∃δ ∈

Σω . ϕω(δ) ⊆ ϕω(τ
˙n+1 ⌢Σ+), σ = δk0

0 δk1

1 . . . implies that we can build an infinite

trace δ with the same properties and whose prefixes belong to ϕω(τ
˙n+1 ⌢Σ+) for

all n. First of all we can erase all the consecutive repetitions from σ, obtaining
a minimal1 (as number of states) trace σ′ that generates σ by α: σ = σh0

0 σh1

1 . . .
where ∀i . hi 6= 0, and ∀i . σi 6= σi+1 by construction. If |σ′| < ω, i.e., σ′ = σ0 . . . σk,
then we consider σ′ def

= σ0 . . . σkσk . . ., namely we do not erase the repetitions of the
last different state.
For each n consider the trace δ such that ϕω(δ) ⊆ ϕω(τ

˙n+1 ⌢Σ+) and σ = δk0

0 δk1

1 . . .,

which exists by hypothesis. This means that δk0

0 δk1

1 . . . = σh0

0 σh1

1 . . .. Since we are
dealing with stuttering safety we have that ∀i . ki > 0. This implies that δ and σ′

contain the same states, only the number of their repetitions can change. Consider
a prefix x = σ0 . . . σi of σ′. Let us prove by induction on the length of x that ∀n.x ∈

τ
˙n+1 ⌢Σ+. If |x| = 1 then it must be x = σ0. But any δ such that δk0

0 δk1

1 . . . =

σh0

0 σh1

1 . . . has δ0 = σ0 therefore, since ∀n . ∃δ . ϕω(δ) ⊆ ϕω(τ
˙n+1 ⌢Σ+) . δk0

0 . . . =

σh0

0 . . ., then ∀n . x = δ0 ∈ ϕω(τ
˙n+1 ⌢Σ+). Let x = σ0 . . . σi, i.e., |x| = i + 1,

then σh0

0 . . . σhi

i 4 σ, therefore, let h = |σh0

0 . . . σhi

i |, there must exist δ such that

ϕω(δ) ⊆ ϕω(τ ḣ ⌢Σ+) such that σ = δk0

0 δk1

1 . . .. Clearly this last hypothesis implies

that ∃j . i ≤ j ≤ h . σh0

0 . . . σhi

i = δk0

0 . . . δ
k′

j

j . Since δ0 . . . δj ∈ ϕω(τ ḣ ⌢Σ+), we have

that δ0 . . . δj ∈ τ ḣ. Namely ∀l ≤ j − 1 . (δl, δl+1) ∈ τ , which implies, due to the

equality above, that ∀l ≤ i − 1 . (σl, σl+1) ∈ τ , namely x ∈ τ
˙i+1. In this way we

proved that ∀x 4 σ′ we have ∃n . x ∈ τ ṅ. Now let |x| = m, then ∀n ≤ m we

have x ∈ τ ṅ ⌢Σ+ ⊆ ϕω(τ
˙n+1 ⌢Σ+), while ∀n > m we have that x 4 σ0 . . . σn ∈

τ
˙n+1 ⌢Σ+ since σ0 . . . σn ∈ τ

˙n+1, therefore ∀n . ∀x ∈ ϕω(σ′) . x ∈ ϕω(τ
˙n+1 ⌢Σ+).

We proved in this way that ∀n ∈ N . ϕω(σ′) ⊆ ϕω(τ
˙n+1 ⌢Σ+). Therefore we have

the following implications:

∃σ . ∀n ∈ N . ∃δ ∈ Σω . ϕω(δ) ⊆ ϕω(τ
˙n+1 ⌢Σ+), σ = δk0

0 δk1

1 . . . , x 4 σ

⇒ ∃σ, δ . ∀n ∈ N . ϕω(δ) ⊆ ϕω(τ
˙n+1 ⌢Σ+) . σ = δk0

0 δk1

1 . . . , x 4 σ

⇒ ∃σ, δ . ∀n ∈ N . δ ∈ γωϕω(τ
˙n+1 ⌢Σ+) . σ = δk0

0 δk1

1 . . . , x 4 σ

⇒ ∃σ, δ . δ ∈
⋂

n∈N
γωϕω(τ

˙n+1 ⌢Σω), σ = δk0

0 δk1

1 . . . , x 4 σ

⇒ ∃σ, δ . ϕω(δ) ⊆ ϕω

⋂

n∈N
γωϕω(τ

˙n+1 ⌢Σω), σ = δk0

0 δk1

1 . . . , x 4 σ

⇒ ∃σ, δ . ϕω(σ) ⊆ αϕω(δ) ⊆ αϕω

⋂

n∈N
γωϕω(τ

˙n+1 ⌢Σω), x 4 σ

⇒ x ∈ ϕω(σ) ⊆ αϕω

⋂

n∈N
γωϕω(τ

˙n+1 ⌢Σω) = α(
d

safe

n∈N
(F safe)n(Σ+))

1Minimal here means that if we erase some other states then we cannot rebuild σ by using α.
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�

Finally, next result proves that the abstract domain defined by αstu is complete
for the operator F safe [11, 23], namely the commutative property holds. In the
following the domain Dα for the values ki is always N r {0}.

Lemma 4.10 Let α = αstu. Then α ◦ F safe = α ◦ F safe ◦ α.

Proof By definition we have that α ◦ F safe = α ◦ F safe ◦ α corresponds to the

property ∀X ∈ S . αϕω(τ 2̇ ⌢X) = αϕω(τ 2̇ ⌢α(X)). Since α(X) ⊇ X and being all

the involved functions monotone, we have the immediate inclusion αϕω(τ 2̇ ⌢X) ⊆

αϕω(τ 2̇ ⌢α(X)).
Let us prove the other inclusion.

x ∈ αϕω(τ 2̇ ⌢α(X))⇒ ∃y = y0y1 . . . ym ∈ ϕω(τ 2̇ ⌢α(X)) . x = yk0

0 yk1

1 . . . ykm
m

for some k0, k1, . . . , km ∈ N r {0}

⇒ x = yk0

0 yk1

1 . . . ykm
m ,∃w ∈ τ 2̇ ⌢α(X) . y 4 w

⇒ x = yk0

0 yk1

1 . . . ykm
m , y 4 w, w0τw1, w′ def

= w1 . . . wm ∈ α(X)

⇒ x = yk0

0 yk1

1 . . . ykm
m , y 4 w, ∃z0z1 . . . zl ∈ X .

w′ = zh0

0 zh1

1 . . . zhl

l for some h0, h1, . . . , hl ∈ N r {0}

⇒ x = yk0

0 yk1

1 . . . ykm
m , y 4 w, w′ = zh0

0 zh1

1 . . . zhl

l ,

y0z0 . . . zl ∈ τ 2̇ ⌢X [ since z0 = w1, y0 = w0 and h0 6= 0 ]

At this point, note that y1 . . . ym 4 w′ = zh0

0 zh1

1 . . . zhl

l . This implies
yk1

1 . . . ykm
m = z

h′

0

0 z
h′

1

1 . . . z
h′

l1

l1
, with l1 ≤ l. From the implications above we obtain

the equality x = yk0

0 yk1

1 . . . ykm
m = yk0

0 z
h′

0

0 z
h′

1

1 . . . z
h′

l1

l1
with y0z0 . . . zl1 ∈ ϕω(τ 2̇ ⌢X)

being prefix of y0z0 . . . zl ∈ τ 2̇ ⌢X . Namely x ∈ α(ϕω(τ 2̇ ⌢X)). �

Hence, we can transfer the fixpoint of the operator F safe on the stuttering abstract
domain in order to construct it systematically.

Theorem 4.11 Let α = αstu, X ∈ α(S) and Fα(X)
def
= αϕω(τ 2̇ ⌢X). Then

τα = α(gfp⊆

Σ
+F safe) = gfp⊆

Σ
+Fα.

Proof Fα ◦ α = α ◦ F safe ◦ α by definition of Fα, and α ◦ F safe ◦ α = α ◦ F safe by
Lemma 4.10. Then we have that Fα ◦ α = α ◦ F safe. Then by using Prop. 4.9, we
can apply the dual weakened Kleene transfer theorem and obtain the thesis. �

In this section we showed that safety without stuttering, allowing to replicate
states, preserves the constructive characterization proved for safety semantics. This
characterization is important since it tells us that we can enforce also this restriction
of safety monitoring the computation of programs. We also showed that the same
does not hold whenever we consider cancellation, namely whenever we want to
enforce properties where the deletion of states is admitted. In other words safety
semantics allowing cancellation of states cannot be characterized in a constructive
way.

5. Safety vs Liveness in abstract interpretation

In this section we want to exploit the abstract interpretation based characterization
of safety with a different task. Our final aim is to prove that the complementary
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nature of safety and liveness properties does not have a corresponding interpre-
tation in the abstract interpretation framework. In fact, it is well-known, that in
the standard approach to safety/liveness [3], liveness is in some way a “comple-
mentary” notion of safety in the sense that any interesting property is indeed the
intersection of a safety property with a liveness one [3][Th.1]. What we would like
to investigate is whether this “complementary” relation holds also in the abstract
interpretation framework, namely we want to understand if the complementation
of the safety domain, as abstraction, is a significant domain and whether it models
liveness properties. Hence we have to follow the following steps: (i) we first have to
characterize safety property by means of a closure operator; (ii) we have to prove
that this closure precisely captures safety properties in the Alpern-Schneider ap-
proach to safety/liveness properties; (iii) we characterize the complement of this
safety closure in the abstract-interpretation framework.

5.1 The closure operator Safe

Consider the pair of adjoint functions used in the previous sections for character-
izing safety in the hierarchy of semantics. It is well-know that the composition of
a pair of adjoint function forms a closure operator, in particular, the composition
Safe = γω ◦ ϕω is an upper closure operator (see Sect. 2.2):

Safe(X) =
{

σ ∈ Σω
∣

∣ϕω(σ) ⊆ ϕω(X)
}

In the following of this section we use the Alpern and Schneider [3] charac-
terization of safety and liveness properties in order to formally prove that this
closure precisely captures safety properties and can be used for characterizing also
liveness properties. Indeed, Safe captures exactly the intuitive characterization of
safety properties since it completes a set X of infinite traces with all those traces
whose partial executions are partial executions of traces in X, in this sense it is
maximal with respect to a given set of partial executions, those of X. On the
other hand, liveness properties are intuitively described as properties that admits
every possible partial execution, in this case formally Safe would complete the
property with all the missing infinite traces. Hence the idea is to show that safety
properties are exactly those such that Safe(X) = X, while liveness properties are
those such that Safe(X) = Σω.

5.2 Safe for safety/liveness properties

According to Alpern and Schneider [3], safety and liveness properties can be char-
acterized by considering the standard Cantor topology on the set of infinite traces
Σω induced by the metric d : Σω × Σω → R defined as

d(σ, δ) =

{

0 if σ = δ
2−n if n = min{i | σi = δi}

In this case, safety properties have been proved to be the closed sets of the Cantor’s
topology, while the dense sets are the liveness properties on ℘(Σω). Hence, if we
prove that the closure Safe is a topological closure and that its closed elements are
closed in the Cantor topology then we have done, since the topological structure
guarantees that also the dense elements can be characterized by means of the
topological closure, i.e., Safe(X) = Σω.
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Safe is a topological closure. Note that, the following properties are intuitively
quite trivial for a Cantor’s topology. Nevertheless, we provide a detailed proof in
order to show, in sake of readability, how the closure Safe works.

Lemma 5.1

(1) The closure operator Safe is finitely additive;
(2) The closure operator Safe is not continuous;
(3) The closure operator Safe is not co-continuous.

Proof

(1) First of all we prove that if we take two sets X and Y in ℘(Σω) then
Safe(X ∪ Y ) = Safe(X) ∪ Safe(Y ): By definition we have that

Safe(X ∪ Y ) =
{

σ ∈ Σω
∣

∣ϕω(σ) ⊆ ϕω(X ∪ Y )
}

=
{

σ ∈ Σω
∣

∣ϕω(σ) ⊆ ϕω(X) ∪ ϕω(Y )
}

We prove now that if ϕω(σ) ⊆ ϕω(X) ∪ ϕω(Y ) then ϕω(σ) ⊆ ϕω(X) or
ϕω(σ) ⊆ ϕω(Y ). Suppose that ϕω(σ) ∩ ϕω(X) 6= ∅ and that ϕω(σ) 6⊆
ϕω(X), then we have ∅ 6= ϕω(σ)rϕω(X) ⊆ ϕω(Y ). For the first inequality
we can say that ∃x′ ∈ Σ+ . x′ 4 σ, x′ 6∈ ϕω(X) and x′ ∈ ϕω(Y ), since the
difference operation doesn’t erase x′. Moreover ∀x ∈ Σ+ .x′x 4 σ ⇒ x′x ∈
ϕω(Y ) for the same reason, and being the sets closed under prefix.
Hence the infinite traces in Y which have x′ as prefix surely have as prefix
also each prefix of x′, then ϕω(σ) ⊆ ϕω(Y ). Therefore

{

σ
∣

∣ϕω(σ) ⊆ ϕω(X) ∪ ϕω(Y )
}

=
{

σ
∣

∣ϕω(σ) ⊆ ϕω(X)
}

∪
{

σ
∣

∣ϕω(σ) ⊆ ϕω(Y )
}

= Safe(X) ∪ Safe(Y )

(2) We prove that the closure is not continuous by showing an example where
the continuity fails. Consider the increasing chain {Xn}n∈N ⊆ ℘(Σω),
where ∀n ∈ N . Xn

def
= {bω} ∪ {aibω | i ≤ n}. It is worth noting that

⋃

n Xn = {bω} ∪ {anbω | n ∈ N}. Therefore we have that ϕω(
⋃

n Xn) =

{bi | i ∈ N} ∪ {ai | i ∈ N} ∪ {aibj | i, j ∈ N}. Finally we can find that
γωϕω(

⋃

n Xn) = {aω, bω} ∪ {anbω | n ∈ N}.
On the other hand we have that for each n ∈ N, ϕω(Xn) = {bi | i ∈
N} ∪ {ai | i ≤ n} ∪ {aibj | i ≤ n, j ∈ N}. Therefore γωϕω(Xn) =
{bω} ∪ {aibω | i ≤ n}. Clearly we have that aω /∈

⋃

n γωϕω(Xn).
(3) Finally we can show that Safe is not co-continuous since we can find an ex-

ample where co-continuity fails. Consider the decreasing chain {Xn}n∈N ⊆
℘(Σω), defined as follows: ∀n ∈ N . Xn

def
= {σ | an 4 σ, b ∈ σ}. The only

infinite trace σ that for each n has an as prefix is σ = aω, but σ does
not contain b, therefore

⋂

n Xn = ∅. On the other hand for each n we
have ϕω(Xn) ⊇ {ai | i ∈ N} since for all i ≤ n we have that ai 4 an,
while for all i > n we have that an 4 ai 4 aibω ∈ Xn. Therefore
∀n ∈ N .aω ∈ γωϕω(Xn), which implies that aω ∈

⋂

n γωϕω(Xn). We proved
in this way that Safe = γω◦ϕω is not co-continuous since γωϕω(

⋂

n Xn) = ∅.

�

Note that the lemma above implies also that the function ϕω is not co-continuous.
It is immediate to prove the following result.

Proposition 5.2 Safe is a topological closure
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Proof Safe is an upper closure operator by construction. Moreover by Lemma 5.1,
it is finitely additive and Safe(∅) = ∅. This makes Safe a topological (Kuratowski)
closure. �

Safe characterization of safety and liveness properties. Note that (Σω, d) is a
complete metric space, namely every Cauchy sequence in Σω has a limit. Recall
that a sequence {σn} in a metric space (U, d) is Cauchy provided that:

∀ǫ > 0 ∃k. ∀n,m ≥ k. d(σn, σm) ≤ ǫ

and that its limit, when it exists, is denoted as limn→∞ σn and it is the (unique) σ
such that

∀ǫ > 0 ∃k. ∀n ≥ k. d(σn, σ) ≤ ǫ

Let X ⊆ Σ+ be a set of finite traces. We denote by X↑n the set of traces in X of
length n. Then, in our case, a sequence {σn} of infinite traces is Cauchy if for every
ǫ > 0 there exists k = −⌊log ǫ⌋ such that for every n,m ≥ k ϕω(σn)↑k = ϕω(σm)↑k.
(Σω, d) is therefore clearly complete because it contains all infinite traces. It is
known [39] that a set X ⊆ U is closed in the metric topology induced by the
complete metric space (U, d) if and only if the limit of any Cauchy sequence of
points in X is contained in X.

Lemma 5.3 X = Safe(X) iff it is closed in the Cantor topology on Σω.

Proof In order to prove this result we have only to prove that for any X ⊆ Σω,
σ ∈ γωϕω(X) iff there exists a Cauchy sequence {xn}n∈N ⊆ γωϕω(X) of infinite
traces such that limn→∞ xn = σ.
(⇒.) Let σ ∈ γωϕω(X). This holds iff ϕω(σ) ⊆ ϕω(X). We consider the sequence
of traces {xn}n∈N such that xn = yη with y ∈ ϕω(σ)↑n and yη ∈ X ⊆ γωϕω(X).
These objects exist because any finite prefix y of σ is a finite prefix of some infinite
trace yη in X. This sequence is clearly Cauchy by definition and limn→∞ xn = σ.
(⇐.) Let {xn}n∈N be a Cauchy sequence in γωϕω(X) such that limn→∞ xn = σ. We
prove that σ ∈ γωϕω(X). From what we observed above, and the definition of limits
of Cauchy sequences, for any m ≥ 0, there exists k such that ϕω(σ)↑m = ϕω(xk)↑m.
Therefore

ϕω(σ) =
⋃

m<ω ϕω(σ)↑m ⊆
⋃

k<ω

⋃

m<ω ϕω(xk)↑m ⊆ ϕω(X)

Then, we have that ϕω(σ) ⊆ ϕω(X) which implies that σ ∈ γωϕω(X). �

Hence, due to the Alpern and Schneider topological characterization of safety and
liveness properties [3], we have the following characterization of these properties
by means of the closure Safe.

Theorem 5.4 Given X ∈ ℘(Σω), property on infinite traces

• X is a safety property iff Safe(X) = X;

• X is a liveness property iff Safe(X) = Σω.

5.3 Complementing Safe

It is clear from the previous construction and from Gumm’s characterization of
safety and liveness [25], that safety properties are abstractions of infinite traces.
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In this sense, the safety semantics can be considered as an abstract interpretation
of the infinite trace semantics in Cousot’s hierarchy (see Fig. 1). This abstraction
allows also to provide a characterization of liveness properties in terms of Safe as
we have seen before, i.e., X is liveness iff Safe(X) = Σω. However, we do not have
a characterization of liveness properties by means of an abstraction whose closed
elements are indeed liveness properties.
With this aim in mind we study the structure of meet-irreducible elements, i.e.,
those sets which cannot be obtained by intersection. Indeed, the importance in
this investigation is twofold: (i) the complementation in abstract interpretation is
based on these elements, as we will see later on; (ii) Closure operators on ℘(S),
with S being any complete lattice, are traditionally specified in terms of their
meet-irreducible elements [7]. This is justified by the fact that closure operators
are Moore families. In fact, for complete lattices generated by their meet-irreducible
elements, like algebraic complete lattices, meet-irreducibles specify the least (often
irredundant) set from which the whole lattice can be generated. Unfortunately, this
is not the case for the closed sets of Cantor topology on Σω, i.e., for the elements
in Safe. Namely, in our context, for each element X such that X = Safe(X) we can
find two other different elements in Safe whose glb is equal to X. This implies that
Safe does not have meet-irreducible elements. This fact, itself, is quite unusual in
the abstract interpretation framework, but what makes Safe even more interesting,
is the fact that we can anyway characterize a subset ∆ of closed elements, which
is order generating for Safe. In other words, each closed Safe element is meet
generated by elements in ∆.

The algebraic structure of safety properties. In this section we want to charac-
terize the algebraic structure of the domain Safe. For this reason, we have to inves-
tigate about the existence of its meet-irreducible elements (Mirr(Safe) for short),
which are the elements closest to the top of the lattice. In order to understand
the following results we have to underline some aspects about meet-irreducible el-
ements. We recall that (see Sect 2.1) a meet-irreducible set X is different from the
top, i.e., Σω, and cannot be obtained as intersection of sets different from itself,
i.e., if X = X1 ∩X2 then X = X1 or X = X2. On the other hand, note that, given
a metric space X, any closed C ⊂ X can be obtained as the intersection of the
closed sets C ∪ {x1} and C ∪ {x2}, with x1, x2 /∈ C. In general, this means that
each element in Safe can be obtained as intersection of other two sets in Safe. Even
if this allows to say that Safe has not meet-irreducible elements, it is not sufficient
for constructively characterizing whether Safe is, anyway, order generated. Hence,
our aim is to understand which are the closed sets just below the top, and to char-
acterize the structure of the elements that can generate the whole domain of closed
elements of Safe.
Clearly, the following study is based on the fact that Safe is an abstraction of the
infinite trace semantics in the Cousot’s hierarchy of semantics [10]. Moreover, in
the following, any element in Safe is called a safety set . At this point, before en-
tering in the construction, it is worth noting that ∀δ ∈ Σω . Safe({δ}) = {δ}, since,
being Σω a metric space, all the singletons {δ} are closed in the Cantor topology.
Now, let us start defining the following sets. Given x ∈ Σ+, we define

Λx
def
=
{

δ ∈ Σω
∣

∣x 64 δ
}

This is the set of all the traces δ such that x is not prefix of δ. In other words, the
only traces that are not in Λx are all the possible infinite extensions of x. We use
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these sets for defining the following subset of ℘(Σω):

∆ =
{

Λx ∈ ℘(Σω)
∣

∣x ∈ Σ+
}

∆ collects all the set maximal with respect to all the possible finite prefixes but
one, namely Λx is maximal with respect to the set of partial executions Σ+

r {x}.
For this reason, intuitively, they are the safety properties “closest” to the top.
These elements, like meet-irreducible, contains all the information necessary for
meet generating each safety property. Nevertheless, they cannot be meet-irreducible
since they can also be generated by other different elements in ∆, as we show in
the following results.

Lemma 5.5 ∀X ∈ ∆. Safe(X) = X and X is not meet-irreducible.

Proof Let X = Λx. Then we have:

Safe(X) = Safe(Λx)
= Safe(

{

δ
∣

∣x 64 δ
}

)
=
{

δ ∈ Σω
∣

∣ϕω(δ) ⊆ ϕω({δ | x 64 δ})
}

=
{

δ
∣

∣x 64 δ
}

= Λx = X

Clearly, these elements cannot be meet-irreducible since they are closed of the
Cantor topology, in the metric space Σω. �

Corollary 5.6 Mirr(Safe) = ∅.

Now we can prove that the abstract domain of Safe is order generated by ∆, namely
we can show that each closed element can be obtained as intersection of elements
in ∆. This means, that ∆ is all we need for describing the closed elements in Safe.

Proposition 5.7 ∆ ⊆ Safe is order generating for Safe.

Proof We prove that each element X in Safe can be obtained as intersection of
elements in ∆. Consider X ∈ Safe, then

δ ∈ X ⇔ ϕω(δ) ⊆ ϕω(X)
⇔ ∀x ∈ Σ+ . (x ∈ ϕω(δ) ⇒ x ∈ ϕω(X))
⇔ ∀x ∈ Σ+ . (x 6∈ ϕω(X) ⇒ x 6∈ ϕω(δ)
⇔ ∀x ∈ Σ+ . (x 6∈ ϕω(X) ⇒ x 64 δ)
⇔ ∀x ∈ Σ+ . (x 6∈ ϕω(X) ⇒ δ ∈ Λx)
⇔ δ ∈

⋂
{

Λx

∣

∣x 6∈ ϕω(X)
}

�

The proposition above says that in order to obtain a safety set it is necessary to
cancel from the top Σω an infinite number of traces. This because we are unable
to rebuild the missing traces simply by looking at the prefixes of the traces in the
set, in other words the set Mirr(Safe) is not order generating [24].

A first characterization of liveness properties as sets of infinite traces can be
obtained by analyzing the structure of the elements in ∆. Indeed, we can use these
elements for understanding the sets representing liveness properties. We noticed,
in fact, that the elements in ∆ are in Safe since they lack an infinite amount of
traces. We can note that if, instead, we cut off from the top Σω a finite number
of traces then we obtain liveness properties, since all their prefixes are prefixes of
other remaining traces of the set.
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Proposition 5.8 Consider X ∈ ℘(Σω) such that X has finite cardinality, i.e.,
|X| ∈ N, then Σω

r X is liveness.

Proof Consider Y = Σω
r X. We have first to prove that X ⊆ Safe(Y ). Namely

we have to prove that δ ∈ X implies δ ∈ Safe(Y ). By definition of Safe this holds
if ∀δ ∈ X we have ϕω(δ) ⊆ ϕω(Y ). Consider x ∈ ϕω(δ), then we can always build
an infinite trace α such that ∀δ ∈ X . xα 6= δ, since the δ are finite in number. This
implies that, for each x ∈ ϕω(δ) we have xα ∈ Y , therefore x ∈ ϕω(Y ). Hence we
proved that X ⊆ Safe(Y ), on the other hand clearly we have that Y ⊆ Safe(Y ),
and therefore Σω = Y ∪ X ⊆ Safe(Y ). This, finally, means that Safe(Y ) = Σω,
being Safe(Y ) ⊆ Σω. �

Complementing Safe. In the following we consider the complement operation de-
fined in [9, 19] as a systematic method to compare abstract domains. Abstract
domain complementation introduced in [9] provides a systematic method for de-
composing abstract domains. Complementation is the inverse operation of the
reduced product (see [22]), namely an operation which, starting from any two do-
mains C ⊑ D, gives as result the most abstract domain C ⊖ D, whose reduced
product with D is exactly C (i.e., (C ⊖D) ⊓D = C). By the equivalence between
closure operators and abstract domains, the above notion of complementation cor-
responds precisely to pseudo-complementation for the closure ρD corresponding to
D in uco(C). Recall that if L is a meet-semilattice with bottom then the pseudo-
complement of x ∈ L, if it exists, is the unique element x∗ ∈ L such that x∧x∗ = ⊥
and ∀y ∈ L. (x ∧ y = ⊥) ⇒ (y ≤ x∗) [7]. In a complete lattice L, if x∗ exists then
x∗ = ∨{y ∈ L | x ∧ y = ⊥}. If every x ∈ L has the pseudo-complement, L is
pseudo-complemented . It is worth noting that pseudo-complementation is the only
possible form of complementation for abstract interpretation. Indeed, it is well-
known [18, 31] that uco(C) is complemented (in the standard sense) iff C is a
complete well-ordered chain, and this is a far too restrictive hypothesis for seman-
tic domains. The following results [19, 21] provide sufficient conditions on C such
that uco(C) is pseudo-complemented. Moreover C is meet-generated by S ⊆ C if
C =M(S).

Theorem 5.9 Let C be a complete lattice.

(1) If C is a meet-continuous then uco(C) is pseudo-complemented [21].
(2) If C is meet-generated by Mirr(C) then uco(C) is pseudo-complemented

and, for any A ∈ uco(C), we have A∗ def
= C ⊖A =M(Mirr(C)rA) [19].

By this theorem, we have that Σω is pseudo-complemented, and trivially meet-
generated by its meet-irreducible elements, hence we can think of characterizing
the complement of Safe on the infinite trace semantic domain. Note that X is meet-
irreducible in ℘(Σω) if and only if ∃σ ∈ Σω such that X = Σω

r {σ}. It is worth
noting that this fact, together with Prop. 5.8, implies that if X is a meet-irreducible
element of ℘(Σω) then Safe(X) = Σω, i.e., X is liveness.

Corollary 5.10 Let Inf = γω ◦ αω (see Table 1) be the infinite semantics, then

Inf ⊖ Safe = Inf

The interpretation of this result is that, from an algebraic point of view, liveness is
not the complement information of safety, since safety as closure has no complement
in the set of infinite traces.
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6. Conclusions

In this paper we have studied the lattice-theoretical structure of safety semantics
in terms of the abstract interpretation of a maximal trace semantics of a transition
system. This allows us to prove some properties of the safety semantics as proper-
ties of the corresponding abstraction on infinite traces. In particular we proved that
the safety abstraction is complete in the sense of abstract interpretation with re-
spect to the fixpoint semantics operator characterizing infinite computations. This
construction provides a complete characterization of the safety semantics and of
some of its abstractions such as stuttering and strong safety in the Cousot’s hier-
archy. The whole resulting picture, including Cousot’s standard hierarchy and the
new observable of safety properties, is depicted in Fig. 1. Further abstractions of
safety can be derived by abstract interpretation of τ safe. In particular it is possible
to reinterpret the Alpern and Schneider [3] result by isolating the safety component
of any property π in the lattice of abstract interpretations simply by considering
π ⊔ Safe, which is the common abstraction between π and safety. Further research
directions are towards the inclusion of security properties in Cousot’s hierarchy of
semantics. In particular in [35] the author proves that the only enforceable secu-
rity policies are those representing safety properties. By enforceable we mean that
there exists a mechanism that works by monitoring execution steps of a program
and terminating the executions that are about to violate the security policy being
enforced.
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