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 1

RIASSUNTO 
 
L’obiettivo principale di questa tesi di dottorato è rappresentato dalla ricerca di nuove 

evidenze in grado di supportare la conoscenza di un possibile coinvolgimento del 

Neuropeptide Y (NPY) e dei suoi principali recettori Y1, Y2 e Y5 nei meccanismi che 

regolano i disturbi dell’umore, quali depressione, ansia ed i disturbi legati all’esposizione allo 

stress. Questo studio, proposto dal dipartimento di Biologia del Centro Ricerche 

GlaxoSmithKline di Verona, è stato condotto nell’ambito di varie collaborazioni con centri 

universitari, quali il Karolinska Institutet di Stoccolma (Svezia), l’Ecòle Polytechnique 

Fédérale de Lausanne (Svizzera) ed il German Primate Center di Göttingen (Germania).  

Il possibile ruolo di NPY e dei suoi recettori nella regolazione dei meccanismi 

implicati nella fisiopatologia dei disturbi dell’umore è stato analizzato utilizzando tecniche 

sperimentali sia in vitro che in vivo applicate a diversi modelli animali di depressione, ad un 

modello di topi transgenici ed a tessuti cerebrali umani post-mortem ottenuti da pazienti 

affetti da disturbi psichiatrici. In particolare si è focalizzata l’attenzione sull’analisi 

dell’espressione dei trascritti di NPY e dei suoi tre recettori mediante la tecnica 

dell’ibridazione in situ applicata a tre modelli animali di depressione: i ratti Flinders 

Sensitive Line, un modello genetico particolarmente interessante data l’influenza della 

componente genetica in questo tipo di disturbi, il “chronic mild stress” ed il “chronic social 

defeat”, due modelli di stress; quest’ultimo ritenuto una tra le maggiori cause dei disturbi di 

depressione ed ansia. Il chronic social defeat è stato studiato su due diverse specie animali: 

un roditore - il ratto - ed un non roditore - la tupaia o tree shrew (Tupaia belangeri) - 

considerata la sua elevata omologia genetica con l’uomo. I modelli utilizzati sono serviti ad 

approfondire lo studio del coinvolgimento del sistema di NPY nei disturbi dell’umore 

cercando di chiarire i meccanismi attraverso cui questo sistema neuropeptidergico agisce e 

provando a dimostrare quale dei principali sottotipi recettoriali abbia un ruolo di rilievo nella 

fisiopatologia di questi disturbi e nei meccanismi di regolazione delle risposte agli stress. Lo 

studio effettuato evidenzia che i tre sottotipi recettoriali sono differentemente espressi nei 

vari modelli animali e subiscono variazioni dell’espressione dei loro trascritti di tipo specie-

specifico. Si è dimostrato che i tre recettori sono diversamente influenzati dall’esposizione ai 

vari tipi di stress, tuttavia, sebbene il sottotipo Y5 sembri essere particolarmente affetto da 

variazioni trascrizionali nei modelli animali considerati, non è stato ancora completamente 

chiarito quale sia il sottotipo recettoriale maggiormente coinvolto nella regolazione dei 

disturbi dell’umore. Il coinvolgimento del recettore Y2 in tali disturbi non sembra essere 
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sostenuto da questa ricerca, sebbene numerosi studi preclinici e analisi di tessuti umani post-

mortem avessero dimostrato un ruolo di questo recettore nell’ansia e nella depressione. In 

generale, in questo studio le variazioni più consistenti e frequenti di espressione del trascritto 

di NPY e dei suoi recettori sono state osservate a livello dell’ippocampo, dell’ipotalamo e 

dell’amigdala, fornendo ulteriore supporto all’importanza cruciale di tali regioni cerebrali 

nella fisiopatologia dei disturbi affettivi.  

Al fine di confermare alcuni precedenti studi comportamentali che avevano 

dimostrato che la delezione del recettore Y2 era in grado di indurre una riduzione dello stato 

d’ansia ed un aumento della capacità di risposta agli stress, è stato condotto uno studio in 

vivo sottoponendo alcuni topi transgenici, ai quali era stata effettuata una delezione completa 

di tale recettore, a test di depressione ed ansia comunemente utilizzati. In contrasto con i 

risultati precedenti, lo stato d’ansia e lo stato depressivo di tali topi non hanno subito 

variazioni significative rispetto ai loro controlli sebbene i topi utilizzati in entrambi gli studi 

fossero stati completamente privati dello stesso recettore: sembra quindi non essere possibile 

supportare un ruolo diretto del recettore Y2 nei meccanismi che regolano disturbi quali 

depressione ed ansia. Una possible causa del diverso comportamento legato agli stati d’ansia 

e di depressione è da ricercarsi nei diversi ceppi a cui i topi analizzati nei due studi 

appartenevano. L’analisi ha dimostrato l’importanza della scelta del ceppo degli animali: una 

diversa componente genetica tra i vari ceppi può avere un impatto maggiore sul fenotipo 

dell’animale rispetto alla delezione di un intero gene e questo fenomeno suggerisce quindi 

una certa cautela nella scelta degli animali e nell’interpretazione dei dati forniti da animali 

transgenici. 

Infine, l’espressione del trascritto del recettore Y2 è stata analizzata attraverso la 

tecnica dell’ibridazione in situ a livello dell’amigdala e della regione corticale ad essa 

adiacente in tessuti umani post-mortem ottenuti da pazienti affetti da diversi disturbi 

psichiatrici e paragonata all’espressione in soggetti di controllo, in cui tali disturbi non sono 

stati diagnosticati. Anche in questo caso non si è confermato il ruolo di Y2 nei meccanismi 

che regolano la fisiopatologia dei disturbi affettivi, dato che non è stata dimostrata alcuna 

differenza tra i diversi gruppi patologici nell’espressione di tale recettore a livello 

dell’amigdala. Inoltre, l’espressione del recettore Y2  è stata studiata in relazione al consumo 

di sostanze d’abuso. Differentemente dagli utilizzatori di marijuana, una variazione del 

trascritto di tale recettore è stata osservata nei soggetti consumatori di cocaina e nicotina, 

ipotizzando un coinvolgimento di Y2 nei meccanismi che regolano l’assunzione di queste 

sostanze. Riguardo all’etanolo, questo studio non ha dimostrato alcuna variazione 
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trascrizionale del recettore Y2 in soggetti che ne facevano uso, non potendo confermare 

alcuni studi che sostengono l’importanza del ruolo del sistema di NPY nella dipendenza da 

etanolo.  

La presente tesi ha fornito nuovi interessanti dati riguardanti il coinvolgimento del 

sistema del Neuropeptide Y nei disturbi affettivi, tuttavia per completare lo studio sarebbero 

necessari ulteriori approfondimenti in particolare sui tessuti umani. Disturbi quali la 

depressione rappresentano infatti una condizione tipicamente umana, non esattamente 

riproducibile nei modelli animali, che possono solamente fornire una semplificazione dello 

stato depressivo. L’utilizzo di composti antagonisti recettoriali selettivi applicato a studi su 

modelli animali sarebbe in grado di fornire risultati più dettagliati e specifici che potrebbero 

meglio indicare il sottotipo recettoriale maggiormente coinvolto in questi disturbi, fornendo 

così un nuovo bersaglio per il possibile sviluppo di nuovi farmaci ansiolitici ed 

antidepressivi. Ad oggi questa indagine sembra essere piuttosto difficoltosa da effettuare data 

la mancanza di composti selettivi verso un sottotipo recettoriale e con caratteristiche tali da 

essere capaci di agire a livello del sistema nervoso centrale. La sintesi di questo genere di 

composti permetterebbe di comprendere maggiormente la base dei meccanismi che regolano 

il funzionamento del sistema di NPY nei disturbi dell’umore e di fornire un trattamento 

efficace contro l’ansia e la depressione. 
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ABBREVIATIONS 

 
5-HT  5-hydroxytryptamine 
AB  accessory basal nucleus 
ACTH  adrenocorticotropin hormone 
ANCOVA analysis of covariance 
ANOVA analysis of variance 
ARC arcuate hypothalamic 

nucleus  
BI basal intermediate division  
BMC basal magnocellular division 
bp  base pairs 
CA1  hippocampal CA1 region 
CA2  hippocampal CA2 region 
CA3  hippocampal CA3 region 
CC  cingulate cortex  
CCK  cholecystokinin  
cDNA  complementary DNA  
CMS  chronic mild stress 
CNS  central nervous system 
CRF Corticotrophin-releasing 

factor 
CSF  cerebrospinal fluid 
Ct  threshold cycle 
CUS  chronic unpredictable stress 
DG  dentate gyrus 
DSM Diagnostic and Statistical 

Manual of Mental Disorders 
EC entorhinal cortex 
ECS  electroconvulsive stimuli 
ECT  electroconvulsive treatment 
EPM  elevated plus maze 
FRL  Flinders Resistant line 
FSL  Flinders Sensitive line 
FST  forced swim test 
GABA  γ-ammino butirric acid 
GAD  generalized anxiety disorder 
GAPDH glyceraldehydes-3-phosphate 

dehydrogenase 
HA  high anxiety 
HPA  hypothalamic-pituitary-

adrenal 
i.c.v.  intracerebroventricular 
i.p.  intraperitoneally  
IRMA  immunoradiometric assay 
KO  knockout 
L  lateral nucleus 

LA  low anxiety 
LABORAS Laboratory Animal 

Behaviour Observation 
Registration and Analysis 
System 

LHPA limbic-hypothalamic-
pituitary-adrenal 

MDD  major depressive disorder 
MeA medial amygdala 
mRNA  messenger RNA 
NA  Noradrenaline 
NK  Neurokinin 
NPY  Neuropeptide Y 
NPY-LI  NPY-like immunoreactivity 
N.S.B.  non specific binding 
PBS  phosphate buffered saline 
PMI  post-mortem interval 
PP  pancreatic polypeptide 
PYY  peptide YY 
RIA  radioimmuno assay 
RT  reverse transcription 
RT-PCR  Reverse Transcriptase-

Polymerase Chain Reaction 
RT-qPCR Real Time-quantitative 

Polymerase Chain Reaction 
S  septum  
SNRI serotonin-noradrenergic re-

uptake inhibitor 
SP  Substance P 
SRI  selective re-uptake inhibitor 
SSC  saline sodium citrate 
SSRI selective serotonin re-uptake 

inhibitor 
T.B.  total binding 
TCd deep layers of the temporal 

cortex 
TCsup superficial layers of the 

temporal cortex 
TH  thalamus  
VMH ventral medial hypothalamic 

nucleus 
VMHDM ventro-medial hypothalamus 

dorso-medial portion 
WT  wild type 
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1. INTRODUCTION 
 

1.1 DEPRESSION 
 

Depression has been described by mankind for several millennia. The term melancholia, 

which means “black bile” in Greek, was first used by Hippocrates around 400 b.C. (Akiskal 

et al., 2000). The major symptoms of depression and the comorbidity of depression with 

anxiety and excessive alcohol consumption were recognized in ancient times, indeed 

similarities between ancient descriptions of depression and those of the modern era are 

striking. From the middle part of the 19th century the brain became the focus of the efforts to 

understand the pathophysiology of depression.  

Today, depressive disorders represent a common psychiatric disorder experienced by 

more than 10% of the population at least once during the lifetime (Blazer et al., 1994). 

Women are more prone to the disease than men, with almost a two-fold lifetime prevalence 

rate: around 21% of women and 13% of men of the Unites States population. The mortality is 

high: 70% of all suicides can be attributed to depressive disorders and they represent a major 

cause of morbidity worldwide: studies in the United States suggest that 2–3% of the 

population is hospitalized or seriously impaired by affective illnesses (Blazer, 2000). The 

World Health Organization has declared depression as the single largest cause of morbidity 

for women and the leading cause of disability worldwide. Despite the devastating impact of 

depressive disorders, little is known about their etiology and pathophysiology. 

  

1.1.1 Major Depressive Disorder 

Since the 1960s, depression has been diagnosed as Major Depressive Disorder (MDD), as 

defined by the Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV, 

2000). The diagnosis of depression is not based on objective diagnostic tests, but rather on a 

highly variable set of symptoms, described by the DSM-IV as: emotional dysregulations, 

such as sadness, emotional instability, irritability, anhedonia and anxiety; cognitive 

symptoms, such as impaired concentration, attention and short-term memory deficits, and a 

pervasive negative distortion, leading to a pessimistic cognitive interpretation of everyday 

experiences. The combination of emotional and cognitive symptoms often leads to a passive 

or active desire to die. These symptoms are frequently accompanied by severe endocrine 

symptoms, such as change in sleep, appetite and sexual behaviour, as well as behavioural 

manifestations, such as motor retardation and inertia. MDD is also associated with metabolic 
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changes leading to an increased risk for a number of somatic problems, such as osteoporosis 

and cardiovascular disorders; in fact MDD leads to a 4-5-fold increase in the risk for 

myocardial infarction (Pratt et al., 1996), resulting in a markedly increased morbidity and 

mortality in individuals with MDD.  

Patients affected by MDD have a mean of 4-5 episodes during life, each of which has 

a mean duration of 5-6 months (Eaton et al., 1997). Only 10 to 20% of patients have no more 

than a single episode. The etiology of MDD is particularly complicated: various factors, such 

as acute and chronic stress, genetic factors, early life trauma and somatic diseases have been 

associated with the disorder. 

1. Acute stress. One of the factors eliciting MDD is acute stress (adverse life 

experiences). The majority of first episodes of MDD are preceded by an acute stress 

experience or adverse life event (Mazure et al., 2000). However, the importance of life 

events in eliciting a major depressive episode diminishes as the number of depressive 

episodes increases in a given subject (Kendler et al., 2000).  

2. Chronic stress. Chronic stress or problematic life circumstances is a second known 

cause of MDD. Chronic stress associated with a psychological dimension of ‘‘entrapment’’ 

(being trapped between apparently unsolvable psychosocial difficulties or demands) or a 

dimension of ‘‘humiliation’’ is reported to be particularly depressogenic (Kendler et al., 

2003). Whether acute or chronic stress leads to MDD is also dependent on the individual. 

The liability to develop depression in response to stress is highly variable between 

individuals; in fact, genetic factors and early traumatic experiences are considered very 

important etiological factors.  

3. Genetic factors. Family studies report that the risk for MDD is increased in first-

degree relatives of MDD patients. Earlier onset seems to be associated with increased 

familiarity and the heritability estimate range goes from 37 to 70%. Twin studies consistently 

show a genetic component in the vulnerability for the disease: the probability that a twin will 

develop depression, given that the other twin has depression, is about 14-24% for dizygotic 

twins and about 54-65% for monozygotic twins (McGuffin & Katz, 1989). These evidences 

indicate interplay between genetic and environmental factors in the etiology of MDD. The 

exact nature of this interplay has not been elucidated, but most probably genetic factors 

influence the risk to develop MDD partly by altering the sensitivity of individuals to the 

depression-inducing effect of stressful life events. The best-fitting model for the joint effect 

of stressful events and genetic liability on the onset of MDD has suggested genetic control of 

sensitivity to the depression-inducing effects of stressful life events.  
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4. Early life trauma. Severe adverse experiences in early life, such as child abuse, 

increase the vulnerability for MDD and for a number of anxiety disorders later in life 

(Duncan et al., 1996). 20% of women who had been exposed to sexual abuse as a child had 

psychiatric disorders, predominantly depressive in type, compared with 6.3% of the non-

abused population (Mullen et al., 1988). A history of physical or sexual abuse in childhood is 

often associated with MDD, with reversed neurovegetative features (Levitan et al., 1998).  

5. Somatic diseases. Somatic diseases can be associated with a strongly increased 

prevalence of MDD. The disease can act as a non specific stressor; however, in a number of 

cases, MDD often occurs before the onset of the somatic disease, indicating a more direct 

biological link between them. Ischemic heart disease, renal failure, infectious diseases and 

organic brain disorders show a high co-morbidity with MDD. In most cases, untreated MDD 

worsens the prognosis of the somatic disorder (Claes, 2004). 

 

1.1.2 Brain structures related to depression 

Many brain areas implicated in the regulation of emotions mediate the diverse symptoms of 

depression. The neural circuitry associated with emotional processing is complex and 

overlaps significantly with the limbic system. The anhedonia and the reduced motivational 

that predominate in many depressed patients (Drevets, 2001) could be mediated by the so 

called reward pathways in the brain, including regions like medial prefrontal cortex, striatum 

(in particular the ventral part or nucleus accumbens) and ventral tegmental area.  

Among the brain regions known for their prominent function in the pathophysiology 

of depression and anxiety, the amygdala, a structure consisting of several nuclei, is part of the 

limbic system and plays a critical role for the regulation of affective behaviour and 

neurochemical responses to stress, suggesting a strong involvement of this limbic area in 

anxiety, fear and emotional memory (Aggleton, 1993; Gallagher & Chiba, 1996; LeDoux, 

2000). In various animal models, electrical stimulation of the amygdala produces behavioural 

changes similar to those produced by stressful or fearful stimuli and lesions of the amygdala 

block innate or conditioned reactions to stress (Aggleton, 1993; Davis et al., 1994).  

In humans, functional studies on normal individuals and on brain-damaged patients 

indicate a key role of the amygdala on the processing of emotionally and socially relevant 

information in response to aversive visual stimuli (Adolphs et al., 1998; Morris et al., 1998). 

Functional and morphological alterations of the amygdala have also been described with 

imaging techniques in depressed patients (Chen et al., 2007; Fales et al., 2007; Drevets et al., 

1992; Drevets & Raichle, 1992; Drevets, 2001, 1999; Frodl et al., 2002). Increased cerebral 
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blood flow and glucose metabolism have been reported in different forms of depression 

(Abercrombie et al., 1998; Drevets et al., 1992), as well as increased amygdala volume 

(Frodl et al., 2002), although some contrasting results have also been described (Sheline et 

al., 1998). A brain region reciprocally connected to the amygdala is the prefrontal cortex, 

which plays a relevant role in the neuropathology of psychiatric disorders, regulating the 

social behaviour and cognitive functions, allowing cognitive control of conditioned fear 

(Drevets, 2001, 1999). These two regions share afferent and efferent connections with the 

hippocampus, another limbic region, which plays a well documented role in declarative 

memory and spatial learning (Barco et al., 2006; Manns & Eichenbaum, 2006). Deficits in 

the hippocampus-dependent cognitive functions are evident in depressed patients, supporting 

a role for dysfunctions of this brain region in depression (Bremner et al., 2000; Bremner et 

al., 2004; Vythilingam et al., 2004; Gould et al., 2007). Prefrontal cortex and hippocampus 

mediate the cognitive aspects of depression, such as memory impairments and feeling of 

worthlessness, hopelessness, guilt and suicidality (Nestler et al., 2002). These various brain 

areas operate in a series of highly interacting parallel circuits, which could represent a neural 

circuitry involved in depression.  

Finally, the neurovegetative symptoms of depression, including alterations of sleep, 

appetite, energy, loss of interest in sexual and other pleasure activities have been associated 

to different hypothalamic nuclei (Nestler et al., 2002).  

 

1.1.3 Pharmacological treatment of depression 

In contrast to the limited understanding of the pathophysiology of depression, there are many 

antidepressive treatments available. Around 70% of people with depression respond to 

currently available antidepressant medications or electroconvulsive treatment (ECT), a 

procedure used to treat depression in pharmacotherapy-resistant cases or in other situations, 

such as early pregnancy, elderly or severe hepatic or renal diseases, in which drug 

metabolism and excretion are impaired. In addition, several forms of psychotherapy can be 

effective for mild to moderate cases and the combination of medication and psychotherapy 

can exert a synergistic effect. However, antidepressant medications have a therapeutic effect 

delayed of several weeks or even months, whereas the side effects are manifested within 

hours or days following the beginning of the administration.  
 

1.1.3.1 Overview of current antidepressant treatments 

The use of antidepressant drugs in the treatment of depression dates back to the early 1950s, 
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with the discovery by serendipity of two classes of effective antidepressants: the tricyclic 

antidepressants and the monoamine oxidase inhibitors. Both classes of antidepressants have 

been demonstrated to effectively improve the symptoms of depression. Thus, for the first 

time, depression was treated pharmacologically; whereas earlier it had been only treated with 

ECT. Both classes of antidepressants have been found to increase the brain extracellular 

concentrations of the two neurotransmitters serotonin or 5-hydroxytryptamine (5-HT) and 

noradrenaline (NA), implicated in the mechanisms involved in the pathophysiology of 

depression by blocking their re-uptake back to nerve endings or by inhibiting the main 

metabolizing enzyme, monoamine transporter or monoamine oxidase, respectively. As drugs 

that alleviate depression by increasing extracellular monoamine levels, it has been proposed 

that depression might be produced by a 5-HT or NA deficiency in functionally important 

receptor sites in the brain: this proposal constitued the basis for the “monoamine hypothesis 

of depression”.  

Successively, in the early 1980s, a second-generation of drugs, the selective reuptake 

inhibitors (SRIs), was developed to enhance the function of specific monoamine systems by 

increasing the availability of monoamines through blockade of the presynaptic transporters 

that promote the re-uptake, thus increasing the transmitter availability in the synaptic cleft. 

The improved tolerability of these new drugs led to the development of fluoxetine, a 

selective serotonin reuptake inhibitor (SSRI); more recent SRIs are serotonin noradrenergic 

re-uptake inhibitors (SNRIs). These antidepressant drugs target the monoamine system and 

are similar in terms of efficacy and delay in the onset of antidepressant effect. In fact, there is 

a time lag of weeks to months in the desired therapeutic response, while the molecular 

inhibition of 5-HT or NA re-uptake occurs immediately. This therapeutic lag means that 

enhance serotonergic or noradrenergic neurotransmission per se is not responsible for the 

clinical actions of these drugs. Finally, despite the advances in the psychopharmacology, the 

treatment of depressive disorders is still not satisfactory, because all the currently used 

pharmacological substances are affecting the monoamines in the central nervous system 

(CNS).  

Recent advances in the understanding of the molecular and cellular functions of 

neurons have led to the identification of additional extracellular and intracellular signaling 

targets (Nestler et al., 2002). Such potential targets include neurotransmitter receptors, 

neuropeptides, intracellular second messenger generating systems and proteins involved in 

the neurotrophic cascades (neurogenesis and apoptosis), glutamate modulating agents, 

substances affecting melatonin and others modulating the hypothalamic-pituitary-adrenal 
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(HPA) axis (Pacher et al., 2001). New classes of antidepressants acting on these pathways 

represent the new-generation of antidepressants with novel mechanism of action.  
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1.2 ANIMAL MODELS OF DEPRESSION  
 

The animal models of depression represent a valid research tool to explore the possibility that 

a neurotransmitter system has a role in depression. The reason for using animal models of 

depression is based mainly on the fact that antidepressants are largely devoid of mood-

elevating effects in normal individuals, meaning that the relevance of the studies carried out 

in normal animals is questionable and thus animal models of depression are indispensable in 

research. Therefore, the effects of antidepressant treatments on neurotransmitters in healthy 

rats are not necessarily informative of their therapeutic mechanism of action and do not 

necessarily contribute to understanding the pathophysiology of the affective disorders. 

However, there are only a few studies in which “depressed” animals have been used 

(Kornstein, 1997; Frackiewicz et al., 2000).  

A valid animal model of depressive disorders should reflect the etiology and replicate 

symptoms, course and treatment of human depression. To assess the validity of an animal 

model, three general headings are evaluated: (1) face validity, the apparent similarity between 

the behaviour observed in the model and the specific symptoms of depression; (2) predictive 

validity, concerning how the model respond to drugs that are clinically active and (3) 

construct validity, implying that human and animal responses are homologous and thus the 

response observed has clinical significance for the disorder modeled. The rationale of these 

three sets of criteria of validation of the animal models of depression has been discussed in 

detail (McKinney & Bunney, 1969; Willner 1991, 1986, 1984).  

Different animal models of depression have been developed, such as stress models 

(e.g. learned helplessness, chronic unpredictable stress and behavioural despair), genetic 

models (e.g. the Flinders Sensitive Line (FSL) and the Fawn-Hooded rats), lesion models 

(e.g. olfactory bulbectomy), separation models (e.g. maternal separation) and developmental 

models (e.g. neonatal antidepressant treatment, prenatal/neonatal stress).  

In the present study, a genetic model and two stress models were considered. 

 

1.2.1 Genetic models  

The selective breeding is an approach used to generate genetic models of depression, such as 

the FSL rats, based on the assumption that depression in humans generally requires a genetic- 

and/or environmental-based vulnerability.  
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1.2.1.1 Flinders Sensitive Line rats 

Numerous evidences have suggested that depressive disorders are caused by genetically 

defined neurochemical alterations in the CNS and an example of a putative genetic animal 

model of depression is represented by the FSL rats. These rats and their control Flinders 

Resistant Line rats (FRL) are Sprague-Dawley derived and selected for the high – FSL – or 

low – FRL – sensitivity to the anticholinesterase agent diisopropyl fluorophosphate 

(Overstreet et al., 1979). The FSL rat supersensitivity to cholinergic agents is consistent with 

the cholinergic hypothesis of depression (Janowsky et al., 1972). The FSL rats display 

features similar to those observed in depressed humans: reduced body weight, elevated REM 

sleep and reduction in REM sleep onset (Shiromani et al., 1988), reduced basal motor 

activity (Overstreet & Russell, 1982), increased immobility and anhedonia after exposure to 

stressors (Pucilowski et al., 1993), disturbance in learning, submissiveness and decreased 

response to rewards (Overstreet, 1993). However, there is no evidence for anhedonia and 

cognitive disturbance, core observations in depressive disorders, but there are some 

evidences that the resemblance of the FSL rats to depressed individuals may be higher if 

environmental manipulations are induced (Overstreet et al., 2005). Under basal conditions, 

no differences in anhedonia are detected, but the FSL rats exhibit a greater decrease in 

saccharin intake following the application of chronic mild stress (Pucilowski et al., 1993). 

These data imply that the FSL rats may be considered a model of predisposition to 

depression,  rather than a model of depression per se. Moreover, they respond to different 

chronic, but not acute, antidepressant treatments, such as tricyclic and SSRIs, with a 

reduction of immobility in the forced swim test, a predictive test for antidepressant activity 

(Porsolt et al., 1977). These rats, however, do not respond to bright light and lithium 

treatment (Overstreet, 1993; Overstreet et al., 2005). The construct validity of the model 

derives from the cholinergic and serotonergic supersensitivity of the FSL rats, partially 

consistent with the cholinergic and serotonergic hypothesis of depression. Overall, the FSL 

rats meet reasonably well the criteria of face, construct and predictive validity for an animal 

model of depression, thereby making it a useful model to study the pathophysiology and 

pharmacology of depression (Yadid et al., 2000).  

 

1.2.2 Stress induced models  

Stressful life events often contribute to the etiology of depressive episodes, thus stress 

induced animal models have been developed to study central nervous mechanisms leading to 
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depressive symptoms. The impact of stressful events on the development of 

psychopathologies has been largely investigated in pre-clinical studies and it has been 

evidenced that using stress to induce a feeling of loss of control might result in a behavioural 

state analogous to depression. Chronic stress models seem to have a major ethological value 

compared to the other models. 
 

1.2.2.1 Chronic mild/unpredictable stress 

This animal model was initially developed and set out because it can be considered valid as a 

simulation of depression and long-lasting in its duration. It was targeted at modelling 

anhedonia, the core symptom of the melancholic subtype of MDD in the DSM-IV, defined as 

the “decreased capacity to experience pleasure of any sort” (Fawcett et al., 1983), and 

modelled by inducing a decrease in the responsiveness to rewards.  

The chronic mild stress (CMS) protocol consists on the exposure of the rats to a 

variety of mild stressors (e.g. overnight illumination, periods of food and/or water 

deprivation, isolation housing, change of cage mate, cage tilt) which change every few hours 

over a period of weeks or months, resulting “unpredictable”: thus this model is also called 

chronic unpredictable stress (CUS). The effectiveness of this procedure is usually monitored 

by tracking, over repeated tests, a decrease in the consumption of and/or preference for a 

palatable weak (1-2%) sucrose solution, a valid method to measure the sensitivity to rewards, 

thus demonstrating that a prolonged exposition to repeated stressors induces anhedonia 

(Willner, 2005, 1997a). In this way, the criterium of construct validity is fulfilled. Decreases 

in sucrose drinking cannot be related to non-specific changes in fluid consumption, since the 

intake of plain water is unaffected by CMS. Food intake is also not decreased, but CMS 

decreases food reward. In addition, CMS causes the appearance of many other symptoms of 

MDD, such as decrease in sexual, aggressive and investigative behaviours (D'Aquila et al. 

1994) and reduced locomotor activity during the dark phase of the light-dark cycle (Gorka et 

al., 1996). Furthermore, animals exposed to CMS show a variety of sleep disorders, 

including decreased REM sleep latency and increased number of REM sleep episodes and 

more fragmented sleep patterns (Moreau et al., 1995). They also display a loss of body 

weight and show signs of increased activity in the HPA axis, including adrenal hypertrophy 

(Muscat & Willner, 1992) and corticosterone hypersecretion (Ayensu et al., 1995) and finally 

abnormalities in the immune system. All these observed behavioural changes may be 

maintained for several months and contribute to fulfil the face validity criterium. However, 

normal behaviour is restored, during continued application of CMS, by chronic treatment 
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with a variety of antidepressant drugs, such as tricyclic or atypical antidepressants (Papp et 

al., 1996). They are able to reverse anhedonia and increase responsiveness to rewards in 3-4 

weeks of treatment, which closely resemble the clinical time course of antidepressant action, 

making possible the validation of the CMS model, because the criterium of predictive 

validity is also fulfilled (Willner et al., 1987). 
 

1.2.2.2 Chronic social defeat stress in rat and tree shrew 

The most common stressors in human subjects are of a psychological or social nature. The 

loss of position within the social organization is characterized in human population by 

feelings of worthlessness and inadequacy, assumed to arise from negative self-evaluation 

(Bjorkqvist, 2001; Kessler, 1997; Kessler et al., 1985b). Many animal species develop 

hierarchical social structures based on agonistic encounters between males and therefore the 

loss of social position provides a submissive behaviour. A number of studies have showed 

that subordination stress (social defeat) is an important factor that may lead to 

psychopathological changes (Bjorkqvist, 2001; Fuchs & Flugge, 2002).  

Social defeat in rats or in a non-rodent species, the tree shrews (Tupaia belangeri), 

using the resident-intruder paradigm (Tornatzky & Miczek, 1994), represents a suitable and 

naturalistic experimental paradigm to study the causal mechanisms of major depression 

(Fuchs et al., 1996). In this paradigm, an adult male - the intruder - is introduced into the 

home cage of an unfamiliar, aggressive individual - the resident -. The animals interact 

rapidly, fight and the intruder usually loses the encounter; as a consequence, a social 

hierarchy is established with a dominant and a subordinate male. The animals are then 

physically separated, but they constantly remain in olfactory, visual and acoustic contact for 

the rest of the stress session. The direct physical contact is only allowed for approximately 

one hour every day, while in the remaining time the two animals are separated by a wire 

mesh barrier that does not interfere with the hierarchy. These conflict conditions can last 

several days or even weeks and they are perceived as highly stressful by the subordinated 

animal. Subordinated animals exhibit physiological and behavioural modifications correlated 

to the depression state, including decreased locomotor and exploratory activity (Koolhaas et 

al., 1997b; Meerlo et al., 1996), reduced self-grooming (van Erp et al., 1994), impaired 

consumatory behaviour and consequently loss of body weight (Rybkin et al., 1997; Kramer 

et al., 1999), reduced aggression and sexual behaviour (McGrady, 1984), increased 

submissive behaviour and anxiety (Ruis et al., 1999). Moreover, social defeat alters the 

sensitivity to subsequent challenges of other kinds of stress, impairs anticipatory behaviour 
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(Von Frijtag et al., 2000) and induces cross-sensitization to psychostimulants (Kapur and 

Mann, 1992). Physiologically, the defeated animals show increased adrenocorticotropin 

hormone (ACTH) and glucocorticoid activity (Buwalda et al., 2001, 1999), altered circadian 

rhythms in heart rate, blood pressure and core temperature (Meerlo et al., 1996; Sgoifo et al., 

1999), disturbances in sleep (Rüther, 1989), impaired immunological function and reduced 

resistance to diseases (Engler et al., 2004; Stefanski & Engler, 1998). In addition, social 

defeat produces a variety of changes in neurotransmitter systems, including altered dopamine 

turnover in different brain areas (Isovich et al., 2001), changes in γ-ammino butirric acid 

(GABA) (Miller et al., 1987), glutamate (Krugers et al., 1993) and serotonin receptor binding 

(McKittrick et al., 2000) and affect opioid system (Miczek, 1991; Coventry et al., 1997).  

A great number of these findings derive from studies 

performed on tree shrews (Tupaia belangeri), 

phylogenetically regarded as an intermediate between 

insectivores and primates (Martin, 1990). They present a 

high genetic homology with humans (90-98% amino acid 

sequence identity, whereas the homology with the rat is 

only about 80%). They are solitary and the male show a pronounced territoriality, used to 

establish naturally occurring challenging situations under experimental control. Moreover, 

tree shrews are day-active, so their biological rhythms might be more similar to those of 

humans than the diurnal rhythms of night-active rodents such as rats.  

The observed behavioural and neuroendocrine changes in socially stressed animals mimic 

depressive-like symptoms, comparable to those of depressed patients. Thus, the chronic 

social stress model has obvious face and construct validity for depression. Interestingly, it 

has been demonstrated that antidepressants, such as the tricyclic clomipramine, lead to a 

time-dependent improvement of these symptoms, restoring the endocrine and behavioural 

parameters (Fuchs et al., 1996; Kramer et al., 1999). Thus, the predictive validity is also 

fulfilled, making the chronic social stress a validated animal model of depression. 
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1.3 ANXIETY 
 

The DSM-IV describes the anxiety neurosis as divided into multiple syndromes, such as 

generalized anxiety disorder (GAD), the most provisional anxiety syndrome, obsessive-

compulsive disorder, post traumatic stress disorder, social anxiety disorder and panic 

disorder.  

Anxiety disorders in general are the most common form of mental illness in the 

United States (DuPont et al., 1996): several community-based surveys have estimated the 

current prevalence rates for GAD at 1.2% to 6.4%, with a lifetime prevalence of 5.1% in the 

adult population (Kessler et al., 1994). Epidemiology and clinical studies have suggested that 

GAD typically occurs before the age of 40, runs a chronic, fluctuating course and affects 

women twice as often as men (Walley et al., 1994).  

Anxiety symptoms include motoric, autonomic and cognitive manifestations, with an 

excessive, unrealistic and uncontrollable worry about a number of events or activities as the 

key feature, occurring for at least six months; a core set of increased arousal and motor 

tension symptoms have been also identified (Brown et al., 1994). The anxiety and worry 

need to be associated with an unspecified number of the following symptoms: motor tension 

(restless, tension headaches, trembling, inability to relax), being easily fatigued, irritability, 

apprehension (worry about future, feeling “on edge”, difficulty concentrating), autonomic 

over-activity (tachycardia, epigastric discomfort, dizziness, dry mouth, sleep disturbance). 

The anxiety, worry or physical symptoms cause clinically significant distress or impairment 

in social, occupational or other important areas of functioning.  

Research studies have revealed the existence of a high rate of comorbid psychiatric 

disorders with GAD. In some studies, more than 90% of GAD patients fulfilled criteria for at 

least one or more concurrent disorders: strong association between GAD and other mood 

disorders, such as social phobia, major depression or dysthymia has been found. The 

presence of comorbidity has been also associated with hypomania and a high suicide attempt 

risk (Sanderson & Barlow, 1990). Studies examining order of onset of GAD and other 

comorbid disorders have suggested that onset of major depression seemed to follow the onset 

of anxiety (Fava et al., 1992; Kessler, 2000). The presence of more than one psychiatric 

disorder may influence the diagnosis process and treatment response.  

Studies have indicated that the vulnerability to develop GAD may be, at least in part, 

genetic. Twin studies have suggested a higher rate of concordance in monozygotic twins than 

dizygotic (Skre et al., 1993). Moreover, other studies have demonstrated that while genetic 
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factors may predispose a person to GAD, environmental factors play an important role in the 

development of GAD (Kendler et al., 1995 a,b).  

 

1.3.1 Pharmacological treatment of anxiety 

The first drugs used in the treatment of GAD were the benzodiazepines, generally used to 

treat neuroses rather than specific anxiety disorders (Davidson, 2001). They are active on the 

central GABA receptors, gated chloride channels, on which they act promoting the binding 

with the neurotransmitter, responsible of the opening of the receptor channels, inducing a 

cellular increase of chloride and an hyperpolarization of the cell membrane, inhibiting the 

release of other neurotransmitters (Shader & Greenblatt, 1993).  

Abnormalities in noradrenergic system have also been implicated in the 

pathophysiology of anxiety disorders (Munjack et al., 1990). Moreover, the serotonin system 

has been shown to play a role in fear and anxiety responses in animal models (Taylor et al., 

1985) and in humans (Kahn et al., 1991; Garvey et al., 1993). Thus, antidepressants have 

been consistently found to be equal or even superior in efficacy to benzodiazepines 

(Davidson, 2001). Studies are concordant in indicating that benzodiazepines are less effective 

than antidepressants in reducing psychic symptoms of GAD, while they may be more 

effective than these drugs in treating somatic symptoms (Rickels, 1982; Rickels & 

Schweizer, 1993). Even in patients without comorbid major depression, the presence of mild 

depressive symptoms may negatively affect the response of anxiety symptoms to 

benzodiazepines, but not to antidepressants (Rickels and Schweizer, 1993). For this reason, 

antidepressants should be favored over benzodiazepines as a first-line treatment for GAD 

(Ballenger, 2001) because of their efficacy against comorbid psychiatric disorders, such as 

depression. Moreover, the recurrence of anxiety symptoms in GAD patients occurs 

significantly more often with benzodiazepines in comparison with non-benzodiazepine 

anxiolytics (Ballanger, 2001). 

Other examples of drugs used to treat anxiety disorders are represented by SSRIs and 

trcyclic antidepressants, more effective in improving the psychological symptoms, whereas 

the benzodiazepines lead to greater improvement in physical symptoms; moreover, β-

blockers, beneficial in decreasing the autonomic symptoms of anxiety, especially 

cardiovascular manifestations, peptides and antipsychotic drugs are also included. 
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1.4 NEUROPEPTIDES 
 

Recent research studies have focused on the neuroactive peptides as possible novel targets to 

study the mechanisms underlying the pathophysiology of depression and anxiety, in which 

neuropeptides could play a role, in view of their manifold interactions with monoamines, and 

the mechanism of action of the antidepressant drugs (Warnock et al., 1998; Ressler & 

Nemeroff, 2000; Abelson et al., 2007); thus, they have been considered an interesting source 

of new potential antidepressant molecules.  

Neuropeptides have been grouped into families depending on common precursor, 

sequence homologies and often function. They have been demonstrated to be involved in a 

series of physiological functions and numerous studies have suggested a role for 

neuropeptides in the pathophysiology of a variety of psychiatric disorders. Regarding mood 

disorders, the Substance P (SP) or Neurokinin (NK), initially characterized for its role in 

pain, has been then demonstrated to have a role in depression and anxiety (McLean, 2005): 

interestingly, the efficacy of an antagonist of the SP preferential receptor, Neurokinin-1 

(NK1), in the treatment of depression has been also demonstrated in a clinical trial (Kramer 

et al., 1998). Cholecystokinin (CCK) is another neuropeptide abundantly expressed in the 

brain, which has been demonstrated to induce anxiety-related behaviour in animals (Harro et 

al., 1993; Lydiard, 1994) and in humans (Bradwejn, 1992; Adams et al., 1995; Kennedy et 

al., 1999), acting predominantly through CCK-B receptors, mostly expressed in the CNS 

than the CCK-A subtype (Wank, 1995). Another important example is represented by the 

corticotropin-releasing factor (CRF), known for its involvement in the behavioural responses 

to stress (Koob, 1999; Koob & Heinrichs, 1999) and for its role in eliciting anxiety and fear 

responses when administered in various parts of animal brains (Butler et al., 1990; Griebel, 

1999). There are also evidences on the prominent role of Neuropeptide Y (NPY) in anxiety 

and depression, demonstrating that it induces anxiolytic-like effects when centrally injected 

(Heilig et al., 1993; Heilig & Murison, 1987) and a depressive-like phenotype when it 

decreases both in human and animals (Widerlov et al., 1988b; Widdowson et al., 1992). The 

present study will provide further evidences for the involvement of the NPY system in 

response to stressful stimuli and for its role in the mechanisms regulating the 

pathophysiology of depression and anxiety. 
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1.5 NEUROPEPTIDE Y SYSTEM 
 

1.5.1 Neuropeptide Y 
 

1.5.1.1 Isolation and discovery 

NPY was isolated from porcine brain extracts (Tatemoto et al., 1982) and belongs to a family 

of related peptides, including pancreatic polypeptide (PP), peptide YY (PYY) and 

seminalplasmin (Herzog et al., 1995). The members of this peptide family share some 

general characteristic, such as a chain length of 36 amino acids, a C-terminal amidation and 

α-amide structure. The unusual large number of tyrosine residues gave their names to NPY 

and PYY. Subsequent work have showed NPY to account for almost all the PP-like 

immunoreactivity in the brain (Lundberg et al., 1984), while PYY has been mainly found in 

the intestine. Indeed, NPY is one of the most abundant peptides in the CNS and one of the 

most conserved peptides in evolution: the rat and human NPY sequences have been 

demonstrated to be identical (Larhammar et al., 1987).  

 

1.5.1.2 NPY distribution in the CNS 

NPY is abundantly expressed in the rat and human brain (Adrian et al., 1983; Chan-Palay et 

al., 1986, 1985; Chronwall et al., 1985). NPY has been found in two basic types of neurons: 

(1) short-axon cells or interneurons, thought to be elements of local inhibitory circuits and 

mainly found in the forebrain and (2) long projection neurons, mainly found in the brainstem, 

from which they project for a considerable distance (Hendry, 1993). Immunohistochemical 

studies have demonstrated a high degree of similarity between the distribution of NPY-like 

immunoreactivity (NPY-LI) in the rat and human brain (Chan-Palay & Yasargil, 1986; de 

Quidt & Emson, 1986 a, b). The highest concentrations of NPY-LI have been observed in 

periacqueductal gray, nucleus accumbens, hypothalamus, septum and amygdala, whereas 

lower amounts have been observed in the basal ganglia, globus pallidus, hippocampus and 

cortex. NPY is almost absent in pons and cerebellum. In situ hybridization studies have 

revealed the existence of a good correlation between the distribution of the NPY mRNA 

expression and the NPY-LI (Terenghi et al., 1987; Chan-Palay et al., 1988); (Fig. 1). 
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Fig. 1. Representative images of the distribution of NPY mRNA expression in coronal sections of the rat brain, 
approximately at 1.60 mm (A), -1.88 mm (B) and -3.14 mm (C) from Bregma. Scale bar = 3.5 mm. CC, 
cingulate cortex; DG, dentate gyrus of hippocampus; CA1, hippocampal CA1 region; ARC, arcuate 
hypothalamic nucleus. 

 
1.5.1.3 Central functions of NPY 

The wide distribution and abundance of NPY in numerous brain regions have suggested a 

variety of functions of this neuropeptide in the CNS. Several studies have investigated its 

role in the regulation of many central functions, revealing its involvement in various 

fundamental physiological processes. These include effects on feeding behaviour, water 

consumption, locomotion, body temperature, circadian rhythms, sexual behaviour, learning 

and memory, neuroendocrine function as well as neurotransmitters release. Some of the 

activities linked to NPY are summarized in Table 1. 

 

 NPY biological actions Reference 

Feeding and drinking  

behaviours 
Central injections of NPY 
increase food intake, even in 
satiated animals, and water 
consumption. 
 
NPY stimulates food intake for 
hours when administered 
acutely, while chronically 
mimics hormonal and metabolic 
changes seen in obesity. 
 
Fasting increases NPY 
expression in the hypothalamic 
PVN. 
 
NPY is involved in the 
regulation of energy 
metabolism. 
 

(Clark et al., 1984) 
 
 
 
 
 

(Levine & Morley, 1984) 
 
 
 
 
 
 

(Kalra et al., 1991) 
 

 

(Leibowitz ,1990) 

Locomotor activity Central NPY injection 
suppresses locomotion in rats 
both in their home cage and in 
the open field. 
NPY increases locomotor 

(Heilig & Murison, 1987) 
 
 

(Heilig et al. 1989b) 
 
 

A) 

ARC 

B) C)CC 
CA1 

DG  
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activity in spontaneously 
hypertensive rats. 
 
NPY injection into the frontal 
cortex increases locomotor 
behaviour in rats. 
         

 
 

(Smialowski et al., 1992) 
 

Circadian rhythm Microinjections of NPY in the 
suprachiasmatic nucleus cause a 
shift of the circadian rhythms. 
 
NPY levels decrease during the 
light phase and decline 
thereafter, without NPY 
fluctuation in rats kept in 
complete darkness. 
 

(Albers & Ferris, 1984) 
 
 
 

(Calza et al., 1990) 

Learning and memory Post-training central 
administration of NPY improves 
memory retention in mice. 
 
NPY can reverse amnesia 
induced by scopolamine. 
 
NPY injection into the rostral 
hippocampus and septum 
enhances memory retention, 
while injected into the amygdala 
and caudal hippocampus 
induces amnesia. 
 
NPY enhances memory 
retention through inhibition of 
the release of GABA and 
vasoactive intestinal peptide. 
 

(Flood et al., 1987) 
 
 
 

(Flood et al., 1987) 
 
 

(Flood & Morley, 1989) 
 
 
 
 
 
 

(Morley & Flood, 1990) 
 

 

Neuroendocrine regulation NPY stimulates CRF mRNA in 
the hypothalamic PVN, both in 
vivo and in vitro. 
 
Administered in the 
hypothalamic PVN, NPY 
increases ACTH, corticosterone 
and aldosterone in serum. 
 
Depending on the hormonal 
state of the animals, NPY 
modulates release of luteinizing 
hormone from pituitary gland. 
 
Injected in the supraoptic 
nucleus, NPY enhances 
secretion of vasopressin. 
 
Central NPY administration 
affects the secretion of growth 
hormone, prolactin and 
thyrotropin. 

(Tsagarakis et al., 1989) 
 
 
 
 

(Wahlestedt et al., 1987) 
 
 
 
 

(McDonald et al., 1985) 
 
 
 
 

(Willoughby & Blessing, 1987) 
 
 
 

(Härfstrand et al., 1986) 
  

 

 

Table 1. Some of the central biological actions of NPY.  
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1.5.2 Neuropetide Y receptors 

The actions of NPY are mediated by specific NPY receptor subtypes that belong to the 

superfamily of the seven transmembrane domain G protein-coupled receptors and their 

activation leads to the inhibition of adenylate cyclase and the increase in intracellular calcium 

concentration (Hinson et al., 1988). To date, seven mammalian receptor subtypes have been 

described, sorted into three distinct subfamilies, based upon their degree of amino acid 

sequence identity and named as their first members, i.e. Y1, Y2 and Y5, which have been the 

most studied NPY receptors with respect to pharmacological profile and anatomical 

distribution (Wahlestedt et al., 1986b; Herzog et al., 1992; Larhammar et al., 1992; Bard et 

al., 1995; Rose et al., 1995; Lundell et al., 1995; Gerald et al., 1995b; Gregor et al., 1996; 

Weinberg et al., 1996a). Their overall sequence identity is only 27-31% and the 

transmembrane domains share 40-43% identity (Larhammar et al., 2001). The Y1 subfamily 

includes the mammalian subtypes Y1, Y4 and Y6 and they share approximately 50% overall 

amino acid identity which reaches 60% in the transmembrane regions (Larhammar et al., 

2001). The Y2 subfamily includes the Y2 and the recently discovered Y7 receptor, whereas 

the Y5 receptor has not known relatives (Friedriksson et al., 2004).  

 

 

1.5.2.1 NPY Y1 receptor 

The Y1 receptor was the first NPY receptor cloned in the rat (Eva et al., 1990), then the 

human clone was isolated (Larhammar et al., 1992; Herzog et al., 1993) and it showed a 94% 

homology with the rat gene (Herzog et al., 1993). The Y1 receptor is a seven transmembrane 

domain protein of 384 amino acids, G-protein bound, and it can couple to different second 

messengers, depending on the type of cells in which it is expressed. It has been showed that 

the Y1 receptor activation is combined with inhibition of adenylyl cyclase in human cerebral 

cortex (Westlind-Danielsson et al., 1987) and in SK-N-MC cells (Wahlestedt et al., 1992a). 

In the rat CNS, the Y1 receptor binding sites are concentrated postsynaptically in distinct 

layers of cerebral cortex, olfactory bulb, dentate gyrus of the hippocampus, amygdala, 

several thalamic and hypothalamic nuclei, island of Calleja and in the posterior part of the 

medial mammillary nucleus (Dumont et al., 1996; Caberlotto et al., 1997). However, in the 

human brain, the Y1 receptor binding sites have been demonstrated to be predominantly 

localized in the dentate gyrus of hippocampus (Jacques et al., 1997). The distribution of the 

Y1 mRNA expression in the rat CNS does not correspond completely with the distribution of 

the Y1 binding sites, for example at the level of hypothalamus (Larsen et al., 1993; 
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Caberlotto et al., 1998a); (Fig. 2). The Y1 receptor seems to be involved in many 

physiological functions, such as modulation of locomotor activity (Heilig et al., 1988), 

stimulation of food intake (Kanatani et al., 1996), regulation of body weight and energy 

expenditure (Pedrazzini et al., 1998) and central cardiovascular regulation (Yang et al., 

1993). Finally, Y1 receptor has been proposed to be involved in seizures modulation, in view 

of the anticonvulsant properties of BIBP3226, a Y1 specific  antagonist (Gariboldi et al., 

1998).   

 

 

Fig. 2. Hybridization signal of NPY Y1 receptor mRNA expression in coronal sections of the rat brain, 
approximately at 1.60 mm (A), -1.88 mm (B) and -3.14 mm (C) from Bregma. Scale bar = 3.5 mm. CC, 
cingulate cortex; CA1, CA2, CA3, hippocampal CA1, CA2, CA3 regions; DG, dentate gyrus of hippocampus; 
MeA, medial amygdala. 
 

 

1.5.2.2 NPY Y2 receptor 

The Y2 receptor is a protein consisting of 381 amino acids with a very low degree of 

homology (31%) with the Y1 receptor. The Y2 gene has been cloned in a variety of species, 

including human (Gerald et al., 1995; Gehlert & Gackenheimer, 1997), and it presents a high 

degree of homology between different species: the rat and human receptors have 92% amino 

acids identity (St Pierre et al., 1998). The Y2 receptor, similar to the Y1, is a seven 

transmembrane receptor, G-protein bound. The Y2 receptors are coupled to the inhibition of 

adenylate cyclase (Wahlestedt et al., 1992) and they decrease intracellular Ca2+ levels in a 

variety of neuronal preparations, with the exception of neuroblastoma cells, in which an 

increase of intracellular Ca2+ is observed (Ewald et al., 1988; Bleakman et al., 1992). In the 

rat CNS, the Y2 specific binding sites have been found predominantly in the lateral septum, 

piriform cortex, bed nucleus of stria terminalis, dorsal hippocampus, ventral tegmental area, 

substantia nigra, dorsal raphe nucleus and cerebellum (Dumont et al., 1996). The distribution 

of Y2 mRNA expression is in line with the autoradiographical distribution (Gustafson et al., 

1997); (Fig. 3). The Y2 receptor has been demonstrated to be the most abundant NPY 
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receptor subtype in the human brain, in particular in the hippocampal area (Widdowson, 

1993; Jacques et al., 1997). This NPY receptor subtype is primarily located presynaptically, 

where it acts as an autoreceptor, inhibiting further release of NPY (Wahlestedt et al., 1986; 

King et al., 2000; Smith-White et al., 2001). The Y2 receptors have been implicated in a 

variety of NPY central functions: an activation of this receptor increases locomotor activity 

(Heilig et al., 1989b), enhances memory retention (Flood and Morley, 1989), affects 

circadian rhythms (Golombek et al., 1996) and mediates central cardiovascular functions 

(Aguirre et al., 1990). In addition, Y2 receptor subtypes can regulate the release of 

neurotransmitters: they suppress the release of noradrenaline in the locus coeruleus (Illes et 

al., 1993) and glutamate in the hippocampus (Colmers et al., 1991). Finally, the hippocampal 

Y2 receptors appear to have an endogenous anticonvulsant activity, since they have been 

found to be increased in the hippocampus of an animal model of epilepsy (Schwarzer & 

Sperk, 1998; Schwarzer et al., 1998). 

 

 

 

 
 
Fig. 3. Distribution of NPY Y2 receptor mRNA expression in coronal sections of the rat brain, approximately at 
1.60 mm (A), -1.88 mm (B) and -3.14 mm (C) from Bregma. Scale bar = 3.5 mm. S, septum; CA3, hippocampal 
CA3 region; ARC, arcuate hypothalamic nucleus.  
  

 

1.5.2.3 NPY Y3 receptor 

The Y3 receptor is the only NPY receptor subtype that has not been cloned yet, thereby very 

little information is available concerning the presence and distribution of Y3 receptors in the 

CNS. Presence of putative Y3 receptors has been described in the rat brainstem (Glaum et al., 

1997) and also in the hippocampal CA3 region (Monnet et al., 1992). Some central functions 

have been ascribed to the Y3 receptors, although the lack of selective compounds have put 

into question their effective role: it seems possible that central activation of Y3 receptors, as 

well as Y1 and Y2 subtypes, could be associated with hypotension and bradycardia (Barraco 

et al., 1990). Moreover, in adrenal chromaffin cells, Y3 can inhibit the acetylcholine-induced 

release of catecholamine (Higuchi et al., 1988).    
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1.5.2.4 NPY Y4 receptor 

The Y4 receptor has been cloned in rat and human and it presents the lowest degree of 

homology (75%) between the two species. It is coupled to the inhibition of adenylate cyclase 

and mobilization of intracellular Ca2+ (Bard et al., 1995). The autoradiographical distribution 

of Y4 still remains to be established; however, using [125I]bPP, Y4 binding sites in the CNS of 

rats have been found in the interpeduncular nucleus, area postrema and nucleus of tractus 

solitarius (Whitcomb et al., 1997), whereas using [125I][Leu31Pro34]PYY, abundant Y4 

binding sites have not been found in the interpeduncular nucleus (Gehlert et al., 1997). 

 

1.5.2.5 NPY Y5 receptor 

The Y5 receptor is a protein consisting of 445 amino acids and it was cloned by Hu and 

collaborators (1996). This receptor subtype has less than 35% amino acid identity with the 

other members of the NPY receptors family (Gerald et al., 1996). The human protein is 

rather similar to the rat protein, presenting 87% overall amino acid identity. The Y5 gene 

sequence has some overlap with the Y1 gene, but the transcription of the Y1 and the Y5 genes 

occurs in opposite orientation (Gerald et al., 1996). A shared promoter with the Y1 has also 

been found, suggesting a possible co-regulation of Y1 and Y5 (Herzog et al., 1997). The 

activation of Y5 receptor causes an inhibition of adenylate cyclase activity (Gerald et al., 

1996). The Y5 binding sites have been found in the olfactory bulb, lateral septum, 

anteroventral thalamic nuclei, CA3 region, nucleus tractus solitarius and area postrema, using 

[125I][Leu31Pro34]PYY/BIBP3226-insensitive (Dumont et al., 1998). The Y5 mRNA 

expression is localized postsynaptically, mainly in the dentate gyrus and CA3 region of 

hippocampus, cingulate cortex and to a less extent in a number of hypothalamic nuclei 

(Gerald et al., 1996); (Fig. 4). Regarding the functional role of Y5 receptors, 

intracerebreventricular (i.c.v.) injections of Y5 antisense oligodeoxynucleotides inhibit both 

NPY- and fasting-induced food intake in rats (Schaffhauser et al., 1997). Moreover, 

CGP71683A, a non-peptide Y5 receptor specific antagonist, inhibited NPY-induced food 

intake (Kask et al., 2001). However, some studies and clinical evidences have questioned the 

role of Y5 receptor in feeding behaviour (Small et al., 1997; Kanatani et al., 1997).  
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Fig. 4. Representative images of the distribution of NPY Y5 receptor mRNA expression in coronal sections of 
the rat brain, approximately at 1.60 mm (A), -2.12 mm (B) and -3.14 mm (C) from Bregma. Scale bar = 3.5 mm. 
TH, thalamus; VMH, ventral medial hypothalamic nucleus; ARC, arcuate nucleus of hypothalamus. 
 

 

1.5.2.6 NPY Y6 receptor  

The Y6 gene appears not to be present in the rat brain, although it has been found in several 

other species, such as mouse and human, in which it is a pseudogene (Burkhoff et al., 1998). 

The Y6 receptor presents a very low homology to the other NPY receptors, but it share the 

highest identity (56% overall) with the Y1 subtype (Weinberg et al., 1996). Although Y6 has 

the highest homology with the Y1 receptor, the pharmacology is more similar to that of Y2 

(Weinberg et al., 1996). In the murine CNS, a high expression of Y6 receptor mRNA has 

been detected in the bed nucleus of the stria terminalis and in some hypothalamic nuclei, e.g. 

suprachiasmatic nucleus, anterior hypothalamus and ventromedial nucleus (Weinberg et al., 

1996).    

 

1.5.2.7 NPY Y7 receptor 

The Y7 receptor has been recently cloned from zebrafish (Friedriksson et al., 2004). It has 

also been found in rainbow trout and in two amphibians, but this subtype seems to be lost in 

mammals. Its phylogenetic relationship to the other NPY receptors and its chromosomal 

position in the zebrafish genome suggest that Y7, together with Y2, constitute the Y2 

subfamily, namely origin from a common ancestor by chromosomal duplication. These two 

receptors present 50% homology in zebrafish, when comparing to the entire coding sequence. 

Despite this high level of homology, the pharmacological profile of the zebrafish Y7 subtype 

differs considerably from mammalian Y2, as it binds with low affinity endogenous NPY, 

PYY and the porcine peptides. It also binds short fragments of NPY, NPY3-36 and NPY13-36 

with lower affinity, while the Y2-specific antagonist BIIE0246 has showed no binding to the 

Y7 receptor. The Y7 mRNA has been primarily expressed in the gastrointestinal tract, eye and 
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some expression has been also found in the brain, whereas Y2 receptor expression is mainly 

observed in the CNS (Friedriksson et al., 2006, 2004). 

 

1.5.3 NPY in neuropsychiatric disorders 

In view of its distribution in the CNS and physiological functions, NPY has been widely 

investigated in relation to the mechanisms underlying the pathophysiology of a variety of 

neuropsychiatric illnesses, which are summarized in Table 2. 

 

 Pathophysiological effects Reference 

Schizophrenia Reduced PYY, but not NPY levels have 
been found in schizophrenics. 
 
NPY-LI is higher in drug free 
schizophrenics compared to control. 
 
NPY-LI is reduced in the temporal cortex 
of schizophrenics, but not in the 
hypothalamus and amygdala. 
 
Haloperidol withdrawal is linked to 
increased NPY-LI levels. 
 

(Widerlov et al., 1988) 
 
 
 
 

(Peters et al,. 1990) 
 
 
 

(Beal et al., 1987b) 
 
 
 
 
 

(Peters et al., 1990) 

Neurodegenerative disorders In the Huntington’s disease, NPY-LI is 
increased in the striatum, cerebral basal 
ganglia, substantia nigra, thalamic   
nuclei, bed nucleus stria terminalis, locus 
coeruleus and dentate nucleus of 
cerebellum. 
 
NPY is unchanged or decreased in the 
CSF of Alzheimer patients.        
                          
Post- mortem studies reveal both 
unaltered and reduced NPY-LI in 
different cortical regions of Alzheimer 
patients. 
 
Normal NPY concentration is reported in 
the striatum, while increased NPY and 
PYY are revealed in the hypothalamus of 
Alzheimer patients.       
 
NPY-positive neurons are diminished in 
the frontal and temporal cortices or 
unchanged in the globus pallidus and in 
the basal forebrain of Alzheimer’s 
patients. 
 
Cortical NPY levels are not altered or 
reduced in patients with severe 
Parkinson. 
 

(Dawbarn & Emson, 1985) 
(Beal et al., 1988b) 

 
 
 
 
 

(Atack et al., 1988; Alom et 
al., 1990) 

 
(Gabriel et al., 1993; Beal et 

al., 1987a, 1986) 
 
 
 

(Widerlöv et al., 1991) 
 
 
 
 

(Davies et al., 1990)  
 
 
 
 
 

(Allen et al., 1985; Beal et al., 
1988a) 
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NPY levels are reduced in the CSF of 
patients with Parkinson’s disease.       
                                        

(Martignoni et al., 1992) 
 

Epilepsy After seizures, NPY mRNA and binding 
sites are up-regulated in some cortical 
and limbic areas. 
 
An anticonvulsant role of NPY is 
confirmed by in vivo studies.  
 
NPY KO mice display spontaneous 
seizure and an induced sensitivity to 
pharmacologically induced convulsions, 
which are antagonized by centrally 
injected NPY. 
 

(Vezzani et al., 1996 a,b) 
 
 

(Smialowska et al., 1996) 
 
 

(Erikson et al., 1996) 
 

 

Food-related disorders NPY is released from terminals of the 
paraventricular hypothalamic nucleus of 
food restricted animals. 
 
NPY mRNA increases in the 
hypothalamic arcuate nucleus of food-
restricted and food-deprived male and 
female rats. 
 
NPY concentration in the CSF of 
anorectic patients is significantly 
elevated. 
 
Plasma NPY levels in women   
with anorexia nervosa are reduced, while 
in women with bulimia nervosa are 
increased, compared to normal control 
subjects. 

(Levenson, 2003) 
 
 
 

(Brady et al., 1990) 
 
 
 
 

(Kaye et al., 1990) 
 
 
 

(Baranowska et al., 2001) 
 

 
Table 2. Some of the pathophysiological changes observed in the neuropsychiatric disorders in which NPY is 
mainly involved. 
 

 

1.5.3.1 NPY and depression  

A number of pre-clinical and clinical studies have proposed an involvement for NPY in the 

pathophysiology of depression and a role in the mechanism of action of antidepressant drugs 

(Widdowson et al. 1992). In the CNS, NPY is localized in limbic-related structures and in 

serotonergic and noradrenergic neurons (Everitt et al., 1984; Halliday et al., 1988; Blessing 

et al., 1986). Interestingly, it has been showed that NPY can modulate the release of 

noradrenaline and serotonin, neurotransmitters involved in the pathophysiology of depression 

and the action of antidepressant drugs (Schlicker et al., 1991; Finta et al., 1992; Martire et 

al., 1993). Clinical studies have suggested that the concentration of the NPY-LI in selected 

regions of post-mortem brains from suicide victims is reduced (Widdowson et al., 1992). In 

particular, suicide victims with a previous history of depression have low levels of NPY-LI 
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in the frontal cortex and caudate putamen. Moreover, a decrease of NPY mRNA in the 

prefrontal cortex of subjects affected by bipolar disorder has also been described (Caberlotto 

& Hurd, 2001). In addition, decreased NPY-LI have been found in the cerebrospinal fluid 

(CSF) and plasma of depressed patients compared to healthy controls (Widerlov et al., 1988; 

Hashimoto et al., 1996; Nilsson et al., 1996; Westrin et al., 1999). In other investigations, 

however, no differences in NPY-LI in CSF or in post-mortem brain tissues have been 

observed between diagnostic groups (Irwin et al., 1991; Ordway et al., 1995). Additional 

data consistent with the NPY hypothesis are the findings of increased NPY-LI after 

antidepressant treatment or repeated ECT in depressed individuals (Mathé, 1996), suggesting 

that NPYergic hypofunction could play a role in the pathophysiology of depression. 

Likewise, animals treated with electroconvulsive stimuli (ECS), as well as lithium and 

antidepressants, show selective and specific effects on brain NPY-LI and NPY mRNA 

expression; in particular, ECS consistently increase NPY-LI and NPY mRNA in the 

hippocampal formation of rat (Mathé et al., 1990; Wahlestedt et al., 1990; Stenfors et al., 

1992, 1989). The observed changes have suggested that antidepressants may exert some of 

their therapeutic effects through the up-regulation of the endogenous NPY. Other studies, 

however, failed to demonstrate any alteration of the NPY system following antidepressant 

treatment (Heilig & Ekman, 1995; Bellmann & Sperk, 1993). The NPY system has also been 

largely studied in animal models of depression and some of the observed changes are 

summarized in Table 3. 

 
Animal Model Effect Reference 

Flinders Sensitive Line rats ↑↓ NPY mRNA 
↑↓ NPY immunoreactivity 
↓ NPY immunoreactivity 

(Caberlotto et al., 1998a) 
(Caberlotto et al., 1999) 

(Jimenez-Vasquez et al., 2000) 

Fawn Hooded rats ↓ NPY immunoreactivity (Mathé et al., 1998) 
Maternal separation ↓ NPY immunoreactivity (Jimenez-Vasquez et al., 2001) 
Olfactory bulbectomy ↑ NPY gene expression 

↑ NPY immunoreactivity 
 

(Holmes et al., 1998; Primeaux & 
Holmes, 2000) 

Social isolation ↑ ↔ NPY levels (Thorsell et al., 2005) 
 
Table 3. Summary of the pre-clinical evidences indicating a role for NPY in depression. ↑: increase, ↓: decrease, 
↑↓: increase/decrease depending on brain region, ↔: no change. 
 
 
1.5.3.2 NPY and anxiety 

Experimental studies have demonstrated an anxiolytic-like effect in rodents after NPY i.c.v. 

administration or into the central amygdala (Heilig et al., 1992). In addition, behavioural 
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studies have also suggested the anxiolytic and sedative action of the peptide (Heilig & 

Murison, 1987). In contrast, transgenic mice with brain overexpression of NPY have 

displayed an anxiety-like behaviour (Inui et al., 1998).  

Less is known about the implication of NPY in human anxiety disorders. A clinical 

study has showed a trend for a negative correlation between NPY CSF levels and anxiety 

levels obtained using the Hamilton Depression rating scale in patient diagnosed with major 

depression (Widerlow et al., 1989). 

 

 

1.5.4 NPY receptors in depression and anxiety 
 

1.5.4.1 NPY Y1 receptor in depression and anxiety 

Numerous pre-clinical evidences have supported a role for NPY and the Y1 receptor in the 

pathophysiology of depression and anxiety disorders, evidencing that this receptor subtype 

generally mimics the actions of NPY (Dumont et al., 1996; Caberlotto et al., 1997).   

The Y1 receptor mRNA expression and binding sites have reported significant 

changes in specific brain regions of the FSL rats, an animal model of depression, suggesting 

that this receptor subtype plays an important role in the mechanisms underlying the 

pathophysiology of depression (Caberlotto et al., 1998a; Caberlotto et al., 1999; Zambello et 

al., 2007; Jimenez-Vasquez et al., 2006; Jimenez-Vasquez et al., 2007). Moreover, chronic 

antidepressant treatments have showed to increase the Y1 receptor subtype mRNA levels in 

certain brain regions on the FSL rats (Caberlotto et al., 1998a). An hippocampal 

coadministration of NPY and BIBO3304, a Y1 receptor selective antagonist, has blocked the 

antidepressant-like effect of NPY in the learned helplessness rats, an animal model of 

depression, while an injection of the Y1 and Y5 preferring agonist [Leu31Pro34]PYY into the 

same region has produced an antidepressant-like effect (Ishida et al., 2007). Moreover, an 

i.c.v. injection of NPY and the Y1 preferring agonist [Leu31Pro34]PYY has reduced the 

immobility time in the mouse forced swim test (FST) in a dose-dependent manner, thus 

inducing an antidepressant effect, which was blocked by the injection of the Y1 antagonists 

BIBP3226 and BIBO3304, obtaining a depressive-like effect (Redrobe et al., 2002). 

Furthermore, it has been found that the injection in the amygdala of BIBO3304 produced an 

anxiolytic-like effect in the social interaction test (Sajdyk et al., 1999) and in the elevated 

plus maze (EPM) in rats (Primeaux et al., 2005). However, an anxiogenic-like effect of the 

centrally administered Y1 receptor antagonist BIBP3226 has been demonstrated in the EPM 



 31

(Kask et al., 1996) and in the social interaction test in rats, after administration in the dorsal 

periacqueductal gray matter (Kask et al., 2002, 1998b). In agreement with these findings, a 

role for the Y1 receptor in the anti-anxiety effect of NPY has been proposed since injections 

of a Y1 antisense oligonucleotide in amygdala caused an anxiety-like state in the rat (Heilig, 

1995). Furthermore, an anxiolytic-like activity of the Y1 receptor agonists [Leu31Pro34]NPY 

and [Gly6Glu26Lys26Pro34]NPY has been observed in the conflict test (Britton et al., 1997). 

Moreover, the Y1 receptor agonists have showed anxiolytic-like effects both in the EPM and 

open field tests of anxiety (Sorensen et al., 2004).   

Studies conducted on mice lacking the Y1 receptor have suggested that the Y1 

deficiency resulted in marked alterations in the anxiety-related behaviours in the open-field, 

EPM and light-dark tests (Karl et al., 2006; Karlsson et al., 2008), assessing that the Y1 

receptor has a prominent role in the anxiolytic-like effects of NPY.  

At present, the information regarding the possible alteration of the NPY receptors in 

human subjects diagnosed with affective disorders or other psychiatric disorders is still 

reduced. The Y1 receptor mRNA expression has been investigated in the prefrontal cortex of 

post-mortem depressed patients, but no changes have been reported (Caberlotto & Hurd, 

2001). 

 

1.5.4.2 NPY Y2 receptor in depression and anxiety 

Numerous pre-clinical studies have described a role for the Y2 receptor in the 

pathophysiology of depression and anxiety, assessing that this receptor subtype could 

regulate NPY release, probably for its presynaptical location.   

A chronic antidepressant treatment has reduced the NPY binding to the Y2 receptor 

subtype in discrete rat brain regions (Widdowson & Halaris, 1991). However, a previous 

study on the FSL rats, an animal model of depression, has failed in demonstrating a role for 

the Y2 receptor in the mechanisms underlying the pathophysiology of depression, since 

alterations of the Y2 mRNA expression have not been found (Caberlotto et al., 1998a). 

Contrasting data are available on the involvement of Y2 receptors in anxiety, depending on 

the brain site or receptor ligand injection and the type of behaviour tested. An anxiogenic-

like effect of NPY through the Y2 receptor has been proposed, in view of the effect of the 

i.c.v. injection of NPY13-36, the truncated form of NPY, in mice tested in the EPM 

behavioural paradigm (Nakajima et al., 1998); however, no effect of NPY on punished 

responses has been evaluated in the rat conflict tests (Heilig et al., 1989; Britton et al., 1997). 

Moreover, intra-amygdaloid injections of Y2 receptor agonist have increased anxiety (Sajdyk 
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et al., 2002), whereas injections close to the locus coeruleus have resulted in an anxiolytic-

like response (Kask et al., 1998b; Sajdyk et al., 2002) in the social interaction test and in the 

EPM, respectively. Finally, an anxiolytic-like profile of BIIE0246, a Y2 receptor antagonist, 

has been observed in the rats after exposure to the EPM (Bacchi et al., 2006).  

Numerous studies have investigated the depressive- and anxiety-related behaviours in 

the Y2 knockout (KO) mice, which have demonstrated reduced immobility in the FST, 

supporting a role for the Y2 receptor in the antidepressant-like behaviour (Tschenett et al., 

2003; Carvajal et al., 2006), and increased time spent in the open arms of the EPM, 

demonstrating an involvement of the Y2 receptor in the modulation of an anxiolytic-like 

profile (Redrobe et al., 2003; Tschenett et al., 2003).  

Finally, a post-mortem study conducted on human pre-frontal cortex of depressed 

patients has failed in finding any changes of the Y2 receptor mRNA expression levels 

compared to the controls (Caberlotto and Hurd, 2001).  

 

1.5.4.3 NPY Y5 receptor in depression and anxiety 

Although the Y5 receptor has been mostly studied for its involvement in the mechanisms 

related to food intake and obesity (Gehlert, 1999; Cabrele & Beck-Sickinger, 2000), in view 

of its distribution in brain regions known for their role in the emotional disorders, some 

recent studies have also assigned a role for this receptor subtype the emotional responses to 

stress and in mediating the anxiolytic-like effects of NPY. In fact, it has been described to 

mediate the anxiety-like state in the basolateral amygdala in the social interaction test 

(Sajdyk et al., 2002); moreover, specific Y5 receptor agonists have showed an anxiolytic-like 

activity in the EPM and open field test of anxiety (Sorensen et al., 2004). However, 

contrasting data have been presented in a study involving the Y5 receptor antagonist 

CGP71683A; in fact, it has failed in demonstrating an involvement for this receptor subtype 

in mediating the NPY-induced anxiolysis in the rat social interaction test, EPM and open 

field (Kask et al., 2001). 
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2. AIMS  
 

The major objectives of this study consisted on improving the knowledge on the involvement 

of the NPY system in mood disorders, in particular depression and anxiety, investigating the 

role of the different NPY receptor subtypes in the modulation of the NPY function in mood 

disorders. In particular, the purpose of the present study was to investigate which of the three 

NPY major receptor subtypes Y1, Y2 and Y5 has a principal role in regulating the NPY 

functions in mood disorders, given that the lack of selective, brain penetrant, specific 

antagonists has created difficulties in establishing which one could be the mainly involved. 

The specific aims of this study were to: 

• Perform a behavioural characterization of the NPY Y2 KO mice, giving further 

support to some previous evidences reporting that the Y2 KO mice have displayed 

reduced anxiety and increased stress coping ability. Subsequently, the role of the 

Y1 receptor would be investigated in these mice, to assess if a possible 

compensatory mechanism involving Y1 could be activated in mice lacking the Y2 

receptor. 

• Analyze the possible alterations of the NPY system mRNA expression in three 

different animal models of depression: a genetic model - the FSL rats - and two 

chronic stress models - the chronic mild stressed rats and the chronic social 

defeated rats and tree shrews - to possibly define the receptor subtype with a 

major role and the brain regions mainly involved in the affective disorders. 

Finally, the existance of species-specific differences in the expression and 

functions of the NPY system would be considered. 

• Investigate the possible alterations of the Y2 receptor mRNA expression in human 

post-mortem amygdala of psychiatric subjects affected by major depression, 

bipolar disorder and schizophrenia, compared to normal controls, to detect if 

potential alterations of the Y2 receptor mRNA in this region known for its 

involvement in the regulation of affective behaviour and neurochemical responses 

to stress could be directly associated with these neuropsychiatric diseases. 
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3. MATERIAL AND METHODS  
 

3.1 CHARACTERIZATION OF THE NPY Y2 KO MICE 
 

3.1.1 In vivo experiments 

The strategy used to generate the Y2 KO mice consisted on using the cre/loxP technology to 

delete the entire coding sequence of the Y2 receptor on mixed 129SvJ-C57BL/6 genetic 

background mice (Sainsbury et al., 2002). These mice were generated at the Garvan Institute 

of Medical Research, Sydney, Australia. Successively, they were sent to GlaxoSmithKline, 

where the mixed genetic background mice were back-crossed for seven generations with the 

pure C57BL/6 genetic background mice, to obtain Y2 KO mice with a pure C57BL/6 genetic 

background.  

In the present study, 9-12 weeks old male and female Y2 KO mice and their controls 

wild type (WT) mice were used. They were kept under standard 12 hours light (6:00 a.m. – 

6:00 p.m.) and 12 hours dark (6:00 p.m. – 6:00 a.m.) cycles and fed a standard chow diet and 

tap water ad libitum. Male and female mice were individually caged in two separated rooms., 

Mice were allowed to habituate to the testing room at least one hour before all the 

behavioural tests. All the tests were carried out between 09:00 a.m. and 3:00 p.m. Test 

environments were thoroughly cleaned between test sessions. 

All the procedures involving the care of the animals and the experimental protocols 

were conducted in conformity with the institutional guidelines, in compliance with national 

and international laws and policies. 

 

3.1.1.1 LABORAS system 

The Laboratory Animal Behaviour 

Observation Registration and Analysis 

System (LABORASTM) system consisted 

of a triangular shaped sensing platform 

(700 x 1000 x 30 mm) positioned on two 

orthogonally placed force transducers. 

The whole structure stood on three 

spikes, adjustable in height, and 

adsorbed external vibrations. One cage 
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was placed directly onto the sensing platform, the upper part of which (including the top, 

food hopper and drinking bottle) was suspended in a high adjustable frame and was free from 

the sensing platform. The resultant electrical signals caused by the mechanical vibrations of 

the movement of the animal were transformed by each force transducer, amplified to a fixed 

signal range, filtered to eliminate noise, digitized and stored on a computer. The computer 

then processed the stored data using several signal analysis techniques to classify the signals 

into the behavioural categories of feeding, drinking, climbing, grooming, locomotor activity 

and total distance.  

The Y2 KO and WT male (n = 15-16) and female (n = 8) mice were habituated to the 

LABORAS cage two hours before the beginning of the recording, which was then performed 

for 24 hours.  

 

3.1.1.2 Elevated Plus Maze (EPM) 

The EPM is a pharmacologically 

validated test of anxiety (Pellow & 

File, 1986). The device consisted 

of a central part (5 x 5 cm), two 

opposing open arms (30 x 5 cm) 

and two opposing closed arms of 

the same size, with 14 cm high, 

non transparent walls. The maze was elevated 50 cm above the floor and exposed to a red 

dim light. At the beginning of each trial, mice were placed on the central platform facing an 

open arm. Mice were tested randomly and their behaviour was videotaped and subsequently 

analyzed by an observer blind to the genotype. Entry into an arm was defined when the 

mouse placed its four paws in that arm. The number of entries into the open and closed arms 

and the time spent in each type of arm were determined.  

The test was performed for 5 minutes on Y2 KO and WT male mice (n = 9-10); 

among them, some had been previously exposed to 5 minutes of restraint stress, by placing 

them in a plexiglass tube.  

 

3.1.1.3 Forced Swim Test (FST) 

The FST is a pharmacologically validated test to examine the depressive-like state of the 

animals (Porsolt et al., 1977). In the present study, the FST was performed in two different 

modalities: the first one was conducted on the same male mice (n = 8) tested 10 days before 
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with the LABORAS system. Each mouse was individually 

placed in an open container (diameter 10 cm, height 25 cm), 

filled with 10 cm deep tap water maintained at 25ºC. Its activity 

was videotaped over a period of 6 minutes and the total time of 

immobility was measured during the last 4 minutes by an 

observer blind to the genotype. The second modality was 

applied both on male and female mice (n = 8) previously 

exposed to the LABORAS and EPM tests, which were placed in a container (diameter 18 cm, 

height 35 cm) filled with 15 cm deep tap water maintained at 25ºC. Their activity was 

videotaped for a period of 10 minutes and the immobility time was considered during the last 

5 minutes. Mice were considered immobile when floating passively in the water, performing 

only those movements required for keeping their heads above the water level.    

 

3.1.1.4 FST after desipramine treatment  

The FST was also performed on Y2 KO and WT male (n = 8) and female (n = 10-11) mice, 

previously intraperitoneally (i.p.) administered with two different doses (10 mg/Kg and 20 

mg/Kg) of the antidepressant desipramine, whereas the control animals were injected i.p. 

with vehicle (saline solution). The body weight of the male mice was measured between 23 g 

and 33 g and the body weight of the female mice was measured between 14 g and 22 g. The 

injections were performed 30 minutes before the beginning of the behavioural tests, occurred 

using a container (18 cm diameter, 35 cm height) filled with 15 cm deep tap water at 25ºC. 

The FST was conducted over a period of 10 minutes and the immobility time was considered 

between the second and the sixth minute. 

 

3.1.1.5 ACTH and corticosterone levels after FST at 21°C  

The FST conducted using a container (diameter 10 cm, height 25 cm) filled with 10 cm deep 

tap water maintained at 21ºC was considered a kind of stress and it was performed only on 

male mice (n = 16). They were individually placed in the container for 5 minutes, while the 

animals not exposed to stress (n = 16) were maintained into their home cages. Five minutes 

after the end of the stress procedure, control and stressed mice were all sacrificed by 

decapitation. From each animal, a blood sample was collected and it was stored either in a 

container with K+- EDTA, to prevent the coagulation, obtaining the plasma, or in a container 

without this substance, obtaining the serum. Each sample was then centrifuged at 1800 rcf 

speed for 10-15 minutes at 4ºC; subsequently, the plasma ACTH levels and serum 



 37

corticosterone levels were measured using specific radioimmunoassay kits, named 

respectively IRMA (Immunoradiometric Assay, DiaSorin) and RIA (Radioimmuno Assay, 

MP Biomedicals).  

  

3.1.1.6 Statistical analysis 

The statistical analysis was performed using the “Statistica 6.0” software package for the 

analysis of variance. The data obtained from the LABORAS, FST and EPM studies were 

subjected to a paired Student’s t-test, comparing the two groups of mice, Y2 KO and WT. In 

the FST, the effect of the desipramine treatment vs vehicle on the immobility time in the Y2 

KO and WT mice was assessed by the analysis of variance (one-way ANOVA), followed by 

the Duncan’s post hoc test when appropriate. Finally, a two-way ANOVA was carried out to 

evaluate the effect of stress (FST at 21ºC) on the ACTH and corticosterone levels in the two 

groups of animals.    

All the results were expressed as mean ± S.E.M. and in all the statistical analysis the 

p-value has been considered significant if lower than 0.05. 

 

3.1.2 In vitro experiments 

The data obtained with the behavioural experiments were supported by a series of in vitro 

analysis, to confirm the deletion or presence of the Y2 receptors in the Y2 KO mice and in 

their controls WT mice.  

 

3.1.2.1 Reverse Transcriptase-PCR reaction (RT-PCR) 

To demonstrate the central deletion of the Y2 receptor in the Y2 KO mice and its presence in 

the WT mice, a RT-PCR was conducted as follows:  

• Tissue collection and total RNA extraction: since the Y2 receptor has been 

demonstrated to be highly expressed in the hippocampus (Dumont et al., 1996), this region 

was dissected out from the brains of three Y2 KO and three WT mice, collected in 200 µl of 

RNAlater solution (Qiagen) and kept at 4°C overnight. The day after, the RNAlater solution 

was removed and the samples were frozen in dry ice and stored at -80ºC until processed. The 

tissues were homogenized with a rotor-stator homogenizer. After the homogenization was 

complete, total RNA was isolated using the RNeasy Mini kit (Qiagen), following the 

manufacturer’s protocol. Potential trace amounts of residual genomic DNA were removed 

with the addition of RNase-free DNase I (Qiagen). Purified total RNA samples were eluted 

in RNase-free water and stored at -80°C. Quality control evaluation of RNA samples was 
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performed with the Agilent 2100 Bioanalyzer (Agilent Technologies).  

• complementary DNA (cDNA) synthesis: a reverse transcription reaction was then 

performed using the First-Strand cDNA Synthesis kit (invitrogen), in which SuperScript II 

reverse transcriptase reacted for 50 minutes at 42ºC to convert total RNAs into single 

stranded cDNAs. For each sample, triplicate reverse transcription reactions (RT+) were 

performed, while an additional reaction in which the enzyme had been omitted (RT-) was 

carried out to exclude the possibility of an eventual genomic DNA contamination. 

• DNA oligonucleotides primers selection and RT-PCR: the RT-PCR reaction was 

conducted using four couples of oligonucleotides primers, selected from the mRNA sequence 

of the mus musculus Y2 receptor (NM_008731) contained in the GenBank database 

(http://www.ncbi.nlm.nih.gov/). The primers were designed using the Primer Express v1.00 

software (Applied Biosystems) and they were the followings (forward and reverse, obtained 

product length and annealing temperature):  

1) 5’-ctt tag agg tcc acc gag aa-3’ and 5’-ggg ctc cac ttt cac ttc ta-3’; 303 base pairs (bp); 

56ºC;  

2) 5’- act gct cca tca tct tgc ta-3’ and 5’- tct cca ggt ggt aga caa tg-3’; 303 bp; 56ºC;  

3) 5’-aga cct ccc att gta ttg act c-3’ and 5’-ccg aaa cat tact cgt ata gca-3’; 489 bp; 56ºC;  

4) 5’-tga gag caa aca aag ttc aca-3’ and 5’-ttc aac gat tca ctt cag aca-3’; 801 bp; 54ºC.  

All the amplification reactions were performed in a total reaction volume of 30 μl, composed 

by 300 nM of each primer, 200 μM dNTPs, 1.5 mM 10X buffer, 2 mM MgCl2, 2.5 

unit/reaction Hot Star Taq DNA polymerase (Qiagen), 10 ng cDNA and sterile water. Using 

the first three couples of primers, the RT-PCR reaction protocol was the following: 15 

minutes at 95ºC, 35 cycles at: 94ºC for 30 seconds, 1 minute at 56ºC and 1 minute at 72ºC, 

plus 7 additional minutes at 72ºC. Using the fourth couple of primers, the protocol applied 

was the same, but the annealing temperature was 54ºC. As negative controls, a RT-PCR 

reaction performed without the cDNA as a template was conducted for each sample. The RT-

PCR products were then visualized through a 0.7% agarose gel electroforesis.  

 

3.1.2.2 Receptor autoradiography 

To visualize the Y2 receptor binding sites in the WT mice and to demonstrate their absence in 

the Y2 KO mice, a receptor autoradiography was performed using [125I]PYY radioligand, 

which binds indistinctively all the NPY receptors (Gobbi et al., 1999). As previously 

mentioned, the Y2 receptor binding sites are abundant in many different brain areas, but 

mainly in the lateral septum, piriform cortex, bed nucleus stria terminalis, hippocampal 

http://www.ncbi.nlm.nih.gov/
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formation, ventral tegmental area, substantia nigra, dorsal raphe nucleus and cerebellum 

(Dumont et al., 1996). The receptor autoradiography was performed on coronal sections (14 

μm-thick) cut from a Y2 KO and a WT mouse, approximately at -1.34 mm from Bregma 

(Paxinos and Watson, The Mouse Brain in Stereotaxic Coordinates, 1997, Academic Press). 

The sections were preincubated in 1X HEPES buffer for 30 minutes at room temperature 

(10X HEPES buffer was made with 137 mM NaCl, 5.4 mM KCl, 0.44 mM KH2PO4, 1.26 

mM CaCl2, 0.81 mM MgSO4, 20 mM HEPES, 0.3% BSA, pH 7.4). Successively, the 

sections were incubated in the same buffer containing 25 pM [125I]PYY (2200 Ci/mmol, 

Amersham) alone (total binding, T.B.) or added with 1 μM unlabelled NPY (non specific 

binding, N.S.B.) for 60 minutes at room temperature. The sections were subsequently washed 

four times (2 minutes each) in ice-cold Tris-HCl 50 mM, pH 7.4, briefly dipped in deionized 

water, quickly dried in a stream of cold air and then exposed overnight to a BAS-IP-SR 2025 

Fuji photo film. The autoradiogram was then visualized using an image analysis software 

system (AIS 4.0, Imaging Research).    

 

3.1.2.3 In situ hybridization 

The experiment was performed on coronal sections (14 μm-thick) cut from two WT and two 

Y2 KO mice (two slices for each animal, at -1.34 mm from Bregma; Paxinos and Watson, 

The Mouse Brain in Stereotaxic Coordinates, 1997, Academic Press) using a rat Y2 receptor 

riboprobe (95% sequence homology with mouse mRNA sequence). The procedures of the 

riboprobe preparation and in situ hybridization reaction will be described in detail in the 

sections 3.2.2.1 and 3.2.2.2. After the experimental procedure, the slides were exposed to a 

Fuji Imaging plate (BAS-TR 2025) together with 14C standards for 4-5 days. The images 

obtained from the in situ hybridization experiment were not exposed to a quantitative 

analysis, but only to a qualitative inspection.  

 

3.1.2.4 Real-time quantitative PCR reaction (RT-qPCR) 

The RT-qPCR or TaqMan analysis, one of the most precise and sensitive methods for the 

quantification of gene expression (Schmittgen et al., 2000), was performed to verify the 

presence of eventual differences between C57BL/6 and 129SvJ mice in the basal 

hypothalamic NPY levels. 

• Tissue collection, total RNA extraction and cDNA synthesis: five C57BL/6 and five 

129SvJ male mice were sacrificed by head dislocation. Their brains were quickly removed 

under RNAse-free conditions and the entire hypothalamic regions were dissected out, 
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collected in RNAlater solution (Qiagen) and kept overnight at 4ºC. The total RNAs were then 

isolated, purified and converted into single stranded cDNAs, as previously described (section 

3.1.2.1). The final products were directly used for TaqMan analysis.  

• TaqMan DNA oligonucleotides primers and probes: TaqMan primers and probe 

sequences specific for mouse NPY and glyceraldehyde-3-phosphate-dehydrogenase 

(GAPDH) gene, used as control housekeeping gene, are listed in the Table 4 reported below. 

All the DNA oligonucleotide primers were custom synthesized by Proligo Europe.  

The NPY primers were designed from a public sequence contained in the GenBank database 

(http://www.ncbi.nlm.nih.gov/) using Primer Express v.1.00 software (Applied Biosystems). 

The amplicon size was 74 bp for NPY and the selected annealing temperature was 60°C. The 

primer pairs were selected to amplify a sequence close to the 3’ coding region of the target 

gene and to keep each primer pair within the same exon, in order to be able to use mouse 

genomic DNA for the standard curve, obtained for each primer pair by five serial decimal 

dilutions of mouse genomic DNA. In addition, the absence of genomic DNA was tested in 

cDNA samples prepared in the reverse transcription reactions in which the enzyme was 

omitted (RT-). The primers and probe sequences for mouse GAPDH gene were obtained 

from P. Murdock (Quantitative Expression Dept. GlaxoSmithKline, Stevenage, UK). The 

amplicon size was 90 bp for GAPDH and the annealing temperature was 60°C.  

• RT-qPCR assay: the RT-qPCR reactions were performed in triplicate in 96-well 

optical plates (Applied Biosystems) in 30 μl per well, each containing 2X TaqMan® 

Universal PCR Master Mix kit (Applied Biosystems), forward and reverse primers (300 nM 

each), TaqMan probe (6 μM)  and 5 μl cDNA template. The amount of total cDNA amplified 

was related to the mRNA abundance of the target gene; generally, the totally used material 

was 20 ng. On each plate, three reactions were performed without adding cDNA template, 

but water, as negative controls; then three replicates of each dilution of the standard curve 

and three replicates for each cDNA preparation were added. The plates were analyzed with 

the ABI PRISM 7900HT Fast sequence detector (Applied Biosystems). Cycling parameters 

were: two initial steps at 50°C for 2 minutes and at 95°C for 10 minutes, followed by 40 

cycles at 95°C for 15 seconds and at 60°C for 1 minute. Data were acquired and processed 

with the SDS software v2.3 (Applied Biosystems). The quantity of PCR products was 

monitored by measuring the increase in fluorescence; these measurements resulted in an 

amplification plot of the fluorescence signal vs cycle number. The parameter Ct (threshold 

cycle) was defined as the fractional cycle number at which the fluorescence passes a fixed 

threshold, automatically set by the software at 10 standard deviations above mean 

http://www.ncbi.nlm.nih.gov/
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fluorescence generated during baseline cycles (from 3 to 15). The quantification of the 

unknown samples was calculated from their Ct values by interpolation from the standard 

curve to yield a relative gene expression measure. After the final cycle of the RT-qPCR, 

primer specificity was checked by the dissociation curve method, according to the Applied 

Biosystems protocol. Heat dissociation of the amplified DNA detected a single peak, thus 

showing that a single, specific PCR product was synthesized.     

• Statistical analysis: data were analyzed with the analysis of covariance (ANCOVA) 

for statistical significance (p < 0.05), followed by Dunnett’s post-hoc test, as previously 

described (Bond et al., 2002). The average quantity relative to total RNA input was 

calculated for each sample. The expression data for the housekeeping gene GAPDH were 

used as covariate, in order to remove the effects due to RNA and cDNA samples quality from 

the analysis. The covariance efficiency factor measured the probability that the treatment 

affected the expression of the selected housekeeping gene (Bond et al., 2002).  

 
 

 
Mouse  
target  
gene 

Sequence 
 

Tm 

[°C] 

 
GAPDH 
forward 
 

CAAGGTCATCCATGACAACTTTG 61 

 
GAPDH 
reverse 
 

GGGCCATCCACAGTCTTCTG 63 

 
GAPDH 
probe 
 

ACCACAGTCCATGCCATCACTGCCA 69 

 
GAPDH 
standard 

GGGGCCATCCACAGTCTTCTGAGTGGCAGTGATGGCATGGACTGTGGTCATGAGCCCTTCCACGATGCCAAAGTTGTCATGGATGACCTTG 

 
- 

 
NPY 
forward 

TTTCCAAGTTTCCACCCTCATC 

 
59 

 
NPY  
reverse 

AGTGGTGGCATGCATTGGT 

 
58 

 
NPY 
probe 
 

ATCTCATCCCCTGAAACCAGTCTGCCTG 70 

 
NPY 
standard 

CTAGTGGTGGCATGCATTGGTGGGACAGGCAGACTGGTTTCAGGGGATGAGATGAGATGAGGGTGGAAACTTGGAAAA 

 
- 

 
Table 4. List of forward and reverse primers, probes and standards used in the TaqMan analysis. Their melting 
temperatures were reported, when available.  
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3.2 ANIMAL MODELS OF DEPRESSION  
 

3.2.1 Behavioural protocols and tissues collections 
 

3.2.1.1 Flinders Sensitive Line rats 

The behavioural experiments on the Flinders rats were performed at the Karolinska Institute, 

Stockholm, Sweden. Animals were treated in accordance with protocols approved by the 

Animal Ethical Committee of Stockholm and all the experimental procedures were 

conducted in conformity with the Karolinska Institutet’s Guidelines. Efforts were made to 

minimize the number of animals used and to reduce their sufferings. 

Twelve FSL and twelve FRL adult male rats weighing 240-260 g at the beginning of 

the study were kept under standardized light conditions at a constant room temperature of 

23˚C, with free access to food pellets and tap water. Six FSL and six FRL rats were subjected 

to one hour acute restraint, by placing them in a plexiglass tube, and after the stress 

procedure, they were returned in their home cages. The control rats were left in their home 

cages and handled without exposure to the stress procedure. All the animals were sacrificed 

four hours after the end of the exposure to stress, based on a previous study reporting NPY 

mRNA changes in the arcuate hypothalamic nucleus following restraint (Makino et al., 

2000). Their brains were then removed, immediately frozen by immersion in isopentane, then 

stored at -80˚C and shipped to GlaxoSmithKline laboratories for the in vitro experiments. 

Coronal sections (14 µm-thick) were cut from the entire brains using a CM3050S cryostat 

(Leica), approximately at 1.60 mm, -1.88 mm, -2.30 mm and -3.14 mm from Bregma 

(Paxinos and Watson, The Rat Brain in stereotaxic coordinates, 1998, Academic Press), 

thaw-mounted onto polarized SuperFrost Plus slides and then stored at -80˚C until usage in 

the in situ hybridization experiments. 

 

3.2.1.2 Chronic mild/unpredictable stress 

The chronic mild stress paradigm was performed at the Laboratoire de Génétique 

Comportementale, Brain and Mind Institute, Ecòle Polytechnique Fédérale de Lausanne 

(EPFL), Switzerland. All the procedures involving the care of the animals and the 

experimental protocols were conducted in conformity with the institutional guidelines, in 

compliance with Switzerland national rules and international laws and policies. 

Twenty Sprague-Dawley rats, weighing 250 g at the beginning of the study, were 

kept under standardized light conditions at a constant room temperature of 22˚C, with free 
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access to food pellets and tap water. Seven days before the beginning of the CMS protocol, 

all the rats were exposed to an EPM test, used as selective criterion to define two groups of 

animals: “high anxiety” (HA; n = 7) and “low anxiety” (LA; n = 5) rats, based on the time 

they spent in the open arms of the maze and on the number of entries in the open arms, 

representative of the anxiety levels of the animals (Landgraf & Wigger, 2002). Among them, 

some rats were subsequently exposed to a CMS protocol for 21 days, always during the light 

phase, but at different times of the day, while the non stressed animals were left in their home 

cages and exposed to daily handling. Each stress procedure was conducted in a different 

experimental room, also different from the room in which the animals were stored. Each kind 

of stress and the experimental modalities are summarized in Fig. 5. At the end of the CMS 

protocol, the rats were exposed to another EPM to evaluate their final anxiety level and 24 

hours after this last stress all the animals were sacrificed. The brains were removed and 

immediately frozen by immersion in isopentane, stored at -80˚C and shipped to 

GlaxoSmithKline laboratories for the in vitro experiments. Coronal sections (14 µm-thick) 

were cut from the entire brains using a CM3050S cryostat (Leica), approximately at 1.60 

mm, -1.88 mm, -2.30 mm and -3.14 mm from Bregma (Paxinos and Watson, The Rat Brain 

in stereotaxic coordinates, 1998, Academic Press), thaw-mounted onto polarized SuperFrost 

Plus slides and then stored at -80˚C until usage in the in situ hybridization experiments. 
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  EPM EPM  sacrify 

A) 

B) 



 44

             Elevated platform         ****     120’                               4                    once a week 

           Elevated Plus Maze                     **       5’              2                   7 days before  
           the beginning/end 

              Predator odour          ***      60’              3                     first 2 weeks 

      Fear cond. 0.4 mA training              ***     5.5’              1                          end 

         Fear cond. 0.4 mA test          ***       8’              1                       end 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 5. A) Experimental design of the study. Seven days before the beginning of the CMS procedure, the animals 
were subjected to an EPM, to classify them in “high anxiety” or “low anxiety”, depending on the anxiety levels 
demonstrated in the behavioural test. Afterwards, they were exposed to the stress procedure for 21 days, as 
indicated by the red arrow, and at the end of the stress procedure they were immediately exposed to another 
EPM, to verify their final anxiety level; finally, after 24 hours they were sacrificed. B) The scheme shows the 
different kinds of stress to which the animals were subjected during the CMS procedure; the anxiety level 
induced in the animals (represented by the number of asterisks); the duration of each stress (in minutes); the 
number of expositions to each stress during the 21 days and in which phase of the study each stress was 
applied. C) The table shows the kind of stress/stressors to which the animals were exposed every single day of 
the treatment.  

 

 

3.2.1.3 Chronic social defeat stress in rats and tree shrews 

The social conflict paradigm was performed at the Clinical Neurobiology Laboratory, 

German Primate Center, Göttingen, Germany. The behavioural experiments were conducted 

in accordance with the European Council Directive of 24 November 1986 (86/609/ECC) and 

were approved by Government of Lower Saxony, Germany. 

The chronic social defeat was induced as described previously (Koolhaas et al., 1997; 

Tornatzky and Miczek, 1994), using male Wistar rats weighting 180-200 g at the beginning 

of the study. They were housed in six groups of four animals per cage, with food and water 

ad libitum. The colony room was maintained at a constant temperature of 21 ± 1°C with a 

reversed light/dark cycle (light on: 9:00 p.m. - 9:00 a.m.). Before the beginning of the 

behavioural study, the animals were habituated to maintenance conditions and handled daily 

for two weeks. All the experimental manipulations were conducted during the dark phase of 

the light/dark cycle under the dim red light (< 1 Lux). Lister Hooded male rats, weighting 

300-350 g at the beginning of the study, were paired with sterilized females and housed in 
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large plastic cages, located in a separate room from the Wistar rats, but subjected to the same 

maintenance conditions. 

The experimental design of this study is represented in Fig. 6. The first experimental 

phase lasted 7 days, during which all the animals were subjected to daily handling and body 

weight recording. The second phase was a 7-days period, during which the Sprague-Dawley 

rats (intruders) of the Stress (n = 6) and the Stress + fluoxetine (n = 6) groups were daily 

exposed to one hour social defeat. Before the beginning of the stress procedure, the female 

rats were removed from the cages of the experimental male Wistar rats (residents). Thus, the 

Sprague-Dawley rats were removed from their home cages and introduced into the resident’s 

cages. The intruders were attacked by the residents in typically less than a minute, after 

which the intruders adopted freezing and submissive postures. For the remaining hour, the 

intruders were enclosed in a small wire-mesh compartment within the resident’s cage; thus, 

the intruders were protected from the direct physical contact, but they remain in olfactory, 

visual, and auditory contact with the residents. Afterwards, the intruders were singly housed 

until the end of the experiment. To avoid individual differences in the defeat intensity, each 

day the intruders were confronted with a different resident. Control animals were kept in a 

separate room for all the duration of the experimental protocol and were subjected to daily 

handling procedure, consisting on picking up each rat, transferring it to a novel cage with 

sawdust bedding for 1 hour a day, similar to the defeated animals, and then returning it to its 

home cage. The third experimental phase, lasting 28 days, consisted of the antidepressant 

treatment: the stressed rats remained in the psychosocial conflict situation and were treated 

daily orally with fluoxetine (5 mg/Kg) or vehicle. The animals of the Control + fluoxetine 

group (n = 6) received the drug daily for 28 days, while the animals of the Control group (n = 

6) were injected with vehicle. During all the experimental phases, body weight was recorded 

daily; furthermore, to reveal changes evoked by stress and counteracted by fluoxetine 

treatment, a battery of behavioural tests (sucrose preference test, horizontal locomotor 

activity, sniffing) was performed on the same animals, according to the studies published by 

Rygula and collaborators (2005, 2006). On the last experimental day (day 42), all the animals 

were sacrificed, the brains were rapidly removed, immediately frozen by immersion in 

isopentane, stored at a temperature of -80˚C and shipped to GlaxoSmithKline laboratories for 

the in vitro experiments. A similar experimental protocol was adopted with the tree shrews, 

with the difference that the animals were 4/group and the administered dose of fluoxetine 

was 15 mg/Kg. 

Coronal sections (14 µm-thick) were cut from the entire brains using a CM3050S 
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cryostat (Leica) approximately at 1.60 mm, -1.88 mm, -2.30 mm and -3.14 mm from Bregma 

(Paxinos and Watson, The Rat Brain in stereotaxic coordinates, 1998, Academic Press). The 

corresponding brain levels were also cut for the tree shrews brains. The slices were thaw-

mounted onto polarized SuperFrost Plus slides and then stored at -80˚C until usage.  

 

 
 

Fig. 6. Experimental design of the study. Experimental procedures and experimental groups: Control, Stress, 
Control + fluoxetine, Stress + fluoxetine (n = 6 rats/group; n = 4 tree shrews/group). Phase I (days 0-7) 
consisted on 7 days of habituation period. During the phase II (days 7-14), the animals of the stress groups 
(Stress and Stress + fluoxetine) were submitted to daily psychosocial conflict, whereas the animals of the 
control groups (Control and Control + fluoxetine) were handled daily. During the phase III (days 14-42), the 
animals remained in the psychosocial conflict situation and received fluoxetine (Stress + fluoxetine: 5 
mg/Kg/day for rats or 15 mg/Kg/day for tree shrews) or vehicle (Stress). Control animals remained undisturbed 
and received vehicle (Control) or similar drug treatment (Control + fluoxetine). On the last experimental day 
(day 42), the animals were sacrificed. 
 

 

3.2.2 In vitro experiments  
 

3.2.2.1 Riboprobes preparation 

The NPY rat riboprobe was made from a 508 bp cDNA of the entire NPY sequence, 

subcloned in a pGEM4Z plasmid vector (NM_012614; courtesy of Dr. Joseph Rimland, 

GlaxoSmithKline, Verona, Italy). The rat Y1 riboprobe corresponded to a 245 bp cDNA 

fragment of the Y1 receptor (genebank accession number X95507), spanning over the 4th and 

the 5th transmembrane regions. This cDNA was subcloned into a Bluescript II SK vector 

(generously provided by Dr. Ingrid Lundell, Uppsala University, Sweden). The rat Y2 cDNA 

was generated based on the patent sequence (WO 95/21245) and it was a 423 bp fragment, 

spanning from the amino acids 651-1073 of the receptor, and subcloned in a pBSKSII vector 

(courtesy of Dr. Joseph Rimland). The rat Y5 riboprobe was made from a 600 bp cDNA of 

the entire Y5 sequence (NM_012869), spanning from the amino acids 703-1302 of the 

receptor and then subcloned in a pCRII-TOPO vector. The probes specificities were 
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evaluated with the public domain program Basic Local Alignment Search Tool (BLAST) in 

the NCBI package (http://www.ncbi.nlm.nih.gov) and each sequence did not display any 

significant similarity with other sequences in the Non-Redundant database at NCBI.  

Once subcloned in plasmid vectors, prior to the transcription, the plasmids were 

linearized with appropriate restriction enzymes to generate the antisense and sense 

riboprobes (Table 5). The RNA probes complementary to the coding sequence were 

transcribed from the linearized plasmid templates with 2200 Ci/mM α-[33P]UTP (Amersham 

Biosciences) using  Sp6, T7 or T3 RNA polymerase. Transcriptions occured in the presence 

of 100 mM dithiothreitol, 0.5 mM each of ATP, GTP, CTP and 1 µg linearized plasmid 

template in 5X transcription buffer for 60 minutes at 37°C. Then 1 µl DNase was added to 

the transcription mixture, which was subsequently incubated for 10 minutes at 37°C. The 

labelled probes were then separated from unincorporated nucleotides using spin columns 

MicroSpinTM S-200 HR (Amersham Biosciences). 

 

  
cDNA fragment 

 
 

Plasmid vector 

 
Restriction enzyme and  
RNA polymerase  
generating sense riboprobe 

 
Restriction enzyme and  
RNA polymerase generating 
antisense riboprobe 

 
Rat NPY 

 
508 bp 

 
pGEMZ4 

 
DraI/T7 

 
PstI/Sp6 

 
Rat Y1 

 
245 bp 

 
Bluescript II SK 

 
PstI/T7 

 
EcoRI/T3 

 
Rat Y2 

 
423 bp 

 
pBSKSII 

 
BamHI/T3 

 
XhoI/T7 

 
Rat Y5 

 
600 bp 

 
pCRII-TOPO 

 
XhoI/Sp6 

 
HindIII/T7 

 
Table 5. Principle steps used to obtain the rat riboprobes for NPY and its receptors Y1, Y2 and Y5: length (in bp) 
of the cDNA fragments from which the riboprobes are generated; plasmid vectors in which the cDNA fragments 
were subcloned; restriction enzymes used to cut the cDNA fragments and RNA polymerase used to generate the 
sense and antisense riboprobes are reported.    
 

 

3.2.2.2 In situ hybridization 

The in situ hybridization reaction was carried out as previously described (Hurd & 

Herkenham, 1993). The sections of tissue were warmed to room temperature and allowed to 

dry, then they were fixed in 4% formaldehyde/1X phosphate buffered saline (PBS) for 5 

minutes, rinsed twice in 1X PBS and once in 0.1 M triethanolamine/0.9% sodium chloride 

(pH 8) and then treated with 0.25% acetic anhydride/0.1 M triethanolamine/0.9% sodium 

chloride for 10 minutes. The sections were then rinsed in 2X saline sodium citrate (SSC), 

dehydrated in graded series of ethanol (70%, 80%, 95%, 100%) and delipidated with 

chloroform. They were allowed to air dry before being used or were frozen at - 80°C until 

http://www.ncbi.nlm.nih.gov/
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use. All aqueous solutions used in the pre-hybridization phase were prepared with RNase-

free water. The hybridization buffer consisted of 1 mg/ml sheared ssDNA, 500 µg/ml yeast 

tRNA, 2X Denhardt’s solution, 20% dextran sulfate, 8X SSC and 50% formamide. Before 

the hybridization, the labelled probe was added to the hybridization cocktail in the 

concentration of 20*103 c.p.m. per µl, and 150 μl of this hybridization mixture were applied 

to each slide. The sections of tissue were coverslipped to prevent the evaporation and the 

hybridization was carried out in a humified chamber overnight at 55°C. Incubation was 

followed by washes in graded series of SSC (2X, 1X, 0.5X, 0.1X), all at room temperature 

except for 0.1X SSC (53°C) and dehydration was carried out with graded ethanol solutions 

(50%, 70%, 90%, 95%, 100%). The slides were then air dried and exposed to Fuji Imaging 

plates (BAS-TR 2025) together with 14C standards for 4-5 days. 

 

3.2.2.3 Quantification 

The images from the in situ hybridization experiments were used for semi-quantitative 

analysis. Light transmittance values were measured from the digitalized images using an 

image analysis software system (AIS 4.0, Imaging Research, St. Catharines, Ontario, 

Canada). Based on the known radioactivity of the 14C standards relative to their transmittance 

levels, the light transmittance values (PLS) per mm2 [PLS/mm2] were converted to nCi/g 

using a calibration curve. The regions of interest, i.e. cingulate cortex, septum, CA regions 

and dentate gyrus of hippocampus, amygdaloid and hypothalamic nuclei were chosen for 

their known role in depression and stress-related disorders and were defined by anatomical 

landmarks in conjunction with a rat brain atlas (Paxinos and Watson, The Rat Brain in 

stereotaxic coordinates, 1998, Academic Press). Generally, for each subject, two consecutive 

sections were considered, based on the anatomy, and the regions were analyzed bilaterally. 

The measurements of each specific brain region were taken by individually tracing the 

structures on the TV monitor with a cursor.  

 

3.2.2.4 Statistical analysis 

Statistical evaluations of the differences among the experimental groups were assessed using 

the “Statistica 6.0” software package for the analysis of variance (ANOVA). For each region, 

the effects of the strain (FSL/FRL in the Flinders rats; HA/LA in the rats exposed to chronic 

mild stress) or of the pharmacological treatment (fluoxetine/vehicle in the chronic social 

stressed animals) and of the stress exposure (stress/no stress) on the dependent variable (NPY 

and its receptors mRNA expression) were analyzed by a two-way ANOVA, followed by a 
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Tukey-Kramer post-comparison test. All the results were expressed as mean ± S.E.M. and in 

all the statistical analysis the p-value was considered significant if lower than 0.05.
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3.3 NPY Y2 RECEPTOR mRNA EXPRESSION IN AMYGDALA AND TEMPORAL 

CORTEX OF PSYCHIATRIC SUBJECTS 
 

3.3.1 Tissues collections 

Coronal sections of human amygdala (14 μm-thick, frozen) were obtained from the Stanley 

Foundation Neuropathology Consortium which collected the brains under approved ethical 

guidelines. Four groups were studied: major depression, bipolar disorder, schizophrenia and 

normal control (15 subjects per group). The demographic information is presented in Table 6. 

The psychiatric diagnosis was established independently by two senior psychiatrists, using 

DSM-IV criteria based on the information obtained from hospital records, pathologists, 

and/or interviews with family members or treating professionals (Torrey et al., 2000). The 

groups had been matched for age, gender, post-mortem interval (PMI, time between the death 

of the individuals and the moment in which the brain tissues were frozen or fixed) and brain 

hemisphere. The brains studied had also been matched for mRNA stability (GAPDH and 

actin) and for pH. All the demographic information and the documented medical data (e.g. 

lifetime fluphenazine antipsychotic treatment) about the subjects were provided by the 

Stanley Foundation Neuropathology Consortium. Information was also provided as to the 

substances of abuse history (marijuana, cocaine, nicotine and alcohol), specifying if the 

subjects were “current drug users”, based on a documented history of drug use, abuse or 

dependence diagnosis, “past users”, defined as prior but not present drug use, or “no users”, 

defined as no current or past drug use history. 

 

 
Control      Major     Bipolar                Schizophrenia 

Depression Disorder  

 
Age in years    48.1       46.5    42.3     43.6 
   (range)      29-68      30-65      25-61    25-62 
 
Gender 
    male        9          9       9        9 
    female            6          6       6        5 
 
Ethnic origin   
    Caucasian     14         15      14       12 
    Afro-Carribean            1           -       1         - 
    Asian        -           -       -         1 
 
PMI, hours    23.7        27.5                     32.5      34.2 
    (range)        8-42        7-47                        13-62     12-61 

 
pH      6.3         6.2      6.1        6.1 
    (range)  5.8-6.6            5.6-6.5   5.8-6.5           5.8-6.6 
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Emisphere side 
    Right        7           6        8          6 
    Left        8           9        9          9 
 
Cause of death 
    Suicide              0           7        9          4 
    Cardiopulmonary        13           7        4          8 
    Accident       2           0        1          2 
    Other        0           1        1          1 
 
Antidepressant       0           9        7          5 
   Lithium              0           1        4          2 
   Antipsychotic       0           0       12         14 
   (fluphenazine) 

 
 
Table 6. Demographic information obtained from the Stanley Foundation Neuropathology Consortium on the 
brain specimens examined. 
 

 

3.3.2 Probe preparation 

The human Y2 receptor riboprobe was generated from a 629 bp fragment of the human Y2 

cDNA (Rimland et al., 1996), spanning over the coding region of the receptor, from the 

second to the sixth transmembrane domains. This fragment was successively subcloned in a 

PBKSII vector and used to generate RNA probes. Before the transcription, the plasmid was 

linearized with the ApaI and EcoRI restriction enzymes, generating respectively sense and 

antisense riboprobes. RNA probes complementary to the coding sequences were then 

transcribed from the linearized plasmid template with 2200 Ci/mM α-[33P]UTP (Amersham 

Biosciences) using T7 and T3 RNA polymerases. The transcription reactions and the in situ 

hybridization were conducted as previously described (section 3.2.2.1). 

 

3.3.3 Quantification 

The slides were exposed to Fuji Imaging plates (BAS-TR 2025) together with 14C standards 

for 4-5 days. Light transmittance values were measured from the digitalized images using an 

image analysis software system (AIS 4.0, Imaging Research, St. Catharines, Ontario, 

Canada). Based on the known radioactivity of the 14C standards relative to their transmittance 

levels, the light transmittance values (PLS) per mm2 [PLS/mm2] were converted to nCi/g 

using a calibration curve. The regions of interest, such as various nuclei of the amygdala 

(lateral nucleus, basal intermediate division, basal magnocellular division, accessory basal 

nucleus) and of the cerebral cortex (entorhinal cortex, superficial and deep layers of the 

temporal cortex) were defined by anatomical landmarks. Generally, for each subject, two 

consecutive sections were considered and a minimum of six measurements for each region 

were taken and averaged. Background signal in the adjacent white matter was subtracted 
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from the averaged values. The measurements of each specific brain region were taken by 

individually tracing the structures on the TV monitor with a cursor.  

 

3.3.4 Statistical analysis 

The analysis of covariance (ANCOVA) using “Statistica 6” software package was performed 

to determine the possible differences among the various pathological groups on the Y2 

receptor mRNA expression levels in the brain regions analyzed. The independent variables 

(age, PMI, gender, hemisphere side and documented history of stimulant substances) were 

included in the statistical model if results from ANCOVA analysis were significant for that 

specific variable (p < 0.05). The significant differences obtained from the ANCOVA analysis 

were further assessed by Tukey–Kramer post-hoc comparison. The influence of suicide as a 

cause of death, the age of disease onset and the duration of the disease on the mRNA 

expression levels was determined only in the psychiatric groups. All the data were expressed 

as mean ± S.E.M. 
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4. RESULTS 
 

4.1 CHARACTERIZATION OF THE NPY Y2 KO MICE  
 

4.1.1 In vivo experiments 
 

4.1.1.1 LABORAS system 

The behaviours of the NPY Y2 KO and WT male mice examined in basal conditions with the 

LABORAS system were separately evaluated in the dark phase (6 p.m. - 6 a.m.) and in the 

light phase (6 a.m. - 6 p.m.) of the day. The statistical analysis performed with the Student’s 

t-test did not report significant differences between the Y2 KO and WT mice in the 

locomotion activity, grooming, feeding and drinking behaviours, while a significant increase 

of the climbing activity (p < 0.05) and of the total distance (p < 0.01) was evidenced in the 

Y2 KO mice compared to the WT in the dark phase (Fig. 7). Moreover, in all the examined 

behaviours, both in the Y2 KO and in the WT mice, a significant reduction of all the activities 

was observed during the light phase compared to the dark phase.  
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Fig. 7. Graphical expression of the two basal behavioural parameters, climbing (A) and total distance (B), 
evaluated with the LABORAS system (mean ± S.E.M.), in the WT and Y2 KO mice during the dark and light 
experimental phases.  
A) time, expressed in seconds, spent in the climbing activity: comparison between WT and Y2 KO male mice (n 
= 15-16) in the dark and light phase of the day (WT, dark phase: 2559.78 ± 381.9; Y2 KO, dark phase: 5214.99 
± 729.52; WT, light phase: 104.02 ± 34.37; Y2 KO, light phase: 141.45 ± 23.39); * p < 0.05.  
B) total distance, expressed in meters: comparison between WT and Y2 KO male mice (n = 15-16) in the dark 
and light experimental phases (WT, dark phase: 162.83 ± 12.41; Y2 KO, dark phase: 213.96 ± 11.34; WT, light 
phase: 25.76 ± 2.17; Y2 KO, light phase: 28.20 ± 1.62); ** p < 0.01.          
        

 

The Student’s t-test did not evidence significant differences between the Y2 KO and the WT 

female mice on the same basal behavioural activities analyzed for the male mice during both 

A) B)
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the dark and light phases. However, as observed for the male, all the behaviours were 

significantly reduced during the light phase compared to the dark phase.  
 

4.1.1.2 Elevated plus maze (EPM) 

To identify eventual differences in the anxiety-related behaviour, the mice were exposed to 5 

minutes of EPM, but the Student’s t-test did not reveal significant differences in terms of 

time spent by the WT and Y2 KO male mice in the open and closed arms of the plus maze. 

No differences between the two groups of mice were also observed in the same experiment 

preceded by 5 minutes of restraint stress. However, both WT and Y2 KO mice displayed a 

decreased number of entries in the open arms of the plus maze after the stress exposure, but 

the statistical significance was not reached (Fig. 8). 

 

        
 
Fig. 8. Elevated plus maze (EPM). The data are expressed 
as mean ± S.E.M. Comparison between WT and Y2 KO male 
mice (n = 9-10), not exposed or previously exposed to 5 
minutes of restraint stress.  
A) Time, expressed in seconds, spent in the open arms of the 
plus maze by the four groups of animals (WT, no stress: 
47.67 ± 10.52; WT, stress: 58 ± 16.57; Y2 KO, no stress: 
65.75 ± 8.57; Y2 KO, stress: 65 ± 21.59).  
 
        
 
 
 
 
B) Number of total entries in the open arms of the plus maze 
in the four groups of mice (WT, no stress: 6.78 ± 1.49; WT, 
stress: 3.56 ± 0.6; Y2 KO, no stress: 6.20 ± 1.21; Y2 KO, 
stress: 4.13 ± 1.14).            
               
 
 
 
 
 

 
  
 
 
C) Time, expressed in seconds, spent in the closed arms of 
the plus maze by the four groups of animals (WT, no stress: 
169.67 ± 11.28; WT, stress: 176.44 ± 14.77; Y2 KO, no 
stress: 157.1 ± 14.14; Y2 KO, stress: 165.88 ± 23.44).  
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4.1.1.3 Forced Swim Test (FST) 

This test evaluates the ability of the animals to cope with stressful events. Their goal consists 

on reaching safety through swimming although no escape route exists. Immobility or floating 

in this test is thought to reflect a situation in which the animals give up any attempt to escape 

from the water. The statistical analysis did no show behavioural differences, expressed as 

time of immobility, between the WT and Y2 KO male and female mice, both in the 6 minutes 

and in the 10 minutes experiments (Fig. 9). 
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Fig. 9. Forced swim test (FST). The data are expressed as seconds of immobility (mean ± S.E.M.).  
A) FST - 6 minutes: comparison between WT and Y2 KO male mice (n = 8 mice/group) during the last 4 minutes 
of test (WT mice: 190.38 ± 7.71; Y2 KO mice: 183.5 ± 3.30; * p < 0.05). 
B) FST - 10 minutes: comparison between WT and Y2 KO male mice (n = 8 mice/group) during the last 5 
minutes of test (WT mice: 284.38 ± 6.02; Y2 KO mice: 276.63 ± 12.18; * p < 0.05). 
C) FST - 10 minutes: comparison between WT and Y2 KO female mice (n = 8 mice/group) during the last 5 
minutes of test (WT mice: 286 ± 7.16; Y2 KO mice: 289.5 ± 5.2; * p < 0.05).     
 

 

4.1.1.4 FST after desipramine treatment 

The statistical analysis (one-way ANOVA followed by Duncan’s test) of the immobility time 

in the 10 minutes FST evidenced that a significant reduction of the immobility time between 

2-6 minutes in the WT male mice compared to the WT mice treated with vehicle was induced 

by the highest administered dose of desipramine (20 mg/Kg, i.p.; p < 0.05; Fig. 10). Other 

significant differences were not reported in the three groups of treatment of Y2 KO mice or 

between WT and KO mice belonging to the same group of treatment. 

A) B) C)
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Fig. 10. Forced swim test (FST), 10 minutes. The data, expressed as seconds of immobility, were calculated 
between 2-6 minutes of test (mean ± S.E.M). The test was performed on: (A) WT male mice (n = 8) and (B) Y2 
KO male mice (n = 8). 30 minutes before the beginning of the FST, they were injected i.p. with vehicle, 10 
mg/Kg or 20 mg/Kg desipramine; (WT, vehicle:187.4 ± 12; WT, 10 mg/Kg:145.6 ± 19; WT, 20 mg/Kg: 94.9 ± 
20.2; Y2 KO, vehicle: 140.4 ± 18.3; Y2 KO, 10 mg/Kg: 122.5 ± 29.6; Y2 KO, 20 mg/Kg: 108.6 ± 21.7); * p < 
0.05.  
 

In the same experiment performed on female mice, significant differences in the immobility 

time between 2-6 minutes of test were observed among the different groups of treatment both 

in the WT and in the Y2 KO mice. The one-way ANOVA analysis followed by the Duncan’s 

test showed a reduction of the immobility time both in the WT and Y2 KO mice injected i.p. 

with 10 mg/Kg desipramine, compared to the animals of the same group injected with 

vehicle (p < 0.05 in the WT group and p < 0.01 in the Y2 KO group; Fig. 11). 
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Fig. 11. Forced swim test (FST), 10 minutes. The data, expressed as seconds of immobility, were calculated 
between 2-6 minutes of test (mean ± S.E.M). The test was performed on: (A) WT female mice (n = 10 - 11) and 
(B) Y2 KO female mice (n = 10 - 11). 30 minutes before the beginning of the FST, they were injected i.p. with 
vehicle, 10 mg/Kg or 20 mg/Kg desipramine; (WT, vehicle:173.8 ± 10.1; WT, 10 mg/Kg: 92.5 ± 23.6; WT, 20 
mg/Kg: 107.6 ± 20.5; Y2 KO, vehicle: 185 ± 10.2; Y2 KO, 10 mg/Kg: 94.5 ± 18.7; Y2 KO, 20 mg/Kg: 134.2 ± 
20.3); * p < 0.05; ** p < 0.01.  
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4.1.1.5 ACTH and corticosterone levels after FST at 21°C  

A two-way ANOVA statistical analysis (group of mice and stress) demonstrated that 5 

minutes of FST at 21°C induced a stressful effect on the animals, both the WT and the Y2 

KO mice, which reported a significant increase (p < 0.001) of the ACTH and corticosterone 

levels (Fig. 12). Other significant differences between the two groups of animals were not 

detected: WT and Y2 KO mice reported similar levels of the two analyzed hormones. In 

addition, no significant effects due to the interaction between the two groups of mice and the 

stress exposure were detected.  
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Fig. 12. A) Plasma ACTH levels, given as pg/ml (mean ± S.E.M.), measured from blood samples of WT and Y2 
KO male mice (n = 8), not stressed or stressed with 5 minutes FST at 21ºC; *** p < 0.001. 
B) Serum corticosterone levels, given as ng/ml (mean ± S.E.M.), measured from blood samples of WT and Y2 
KO male mice (n = 8), not stressed or stressed with 5 minutes FST at 21ºC; *** p < 0.001.      
 

 

4.1.2 In vitro experiments 
 

4.1.2.1 Real Time-PCR reaction 

The agarose gel electroforesis result was visualized by using the VERSA DOC Imaging 

System (BIO-RAD) and the software Quantity One (v. 4.5.1), which evidenced that the RT-

PCR products, corresponding to the Y2 receptor sequences delimited by the previously 

reported couples of primers (section 3.1.2.1), were only obtained from the reactions in which 

the hippocampal cDNAs of the WT mice had been used as substrates and in which the Super 

Script II enzyme had been added to the reaction (RT+) (two 303 bp bands and one 489 bp 

band in the higher section of the agarose gel and one 801 bp band in the lower section). The 

reactions in which the Y2 KO mice cDNAs were included but the Super Script II enzyme was 

not added (RT-) gave no bands, as expected (Fig. 13).    
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Fig. 13. Agarose gel electrophoresis result.  
 

 

4.1.2.2 Receptor autoradiography 

To demonstrate the presence of the Y2 receptors in the WT mice and their absence in the Y2 

KO, some coronal mouse brain sections, cut approximately at -1.34 mm from Bregma 

(Paxinos and Watson, The Mouse Brain in stereotaxic coordinates, 1997, Academic Press) 

were incubated with 25 pM [125I]PYY (Amersham), which binds indistinctively all the NPY 

receptors (Gobbi et al., 1999). High levels of specific [125I]PYY binding were observed in the 

hippocampal area and moderate levels were found in the amygdala and hypothalamic regions 

of the WT mice (T.B., Fig. 14A), while the Y2 KO mice did not display [125I]PYY binding, 

especially in the hippocampus (T.B., Fig. 14C). However, the addition of 1μM non 

radioactive NPY to [125I]PYY (non specific binding, N.S.B.) displaced the specific binding 

both in the WT and in the Y2 KO mice (Fig. 14B,D).  

 

 

 
Fig. 14. Receptor autoradiography for Y2 receptors. Representative images of mouse coronal brain sections, 
approximately at -1.34 mm from Bregma. Effect of the total binding (T.B.) of the ligand [125I]PYY in the WT (A) 
and Y2 KO (C) mice and effect of the non specific binding (N.S.B.), obtained adding 1 μM of non radioactive 
NPY to [125I]PYY, in the WT (B) and Y2 KO (D) mice. In the N.S.B. (B,D) the signal corresponding to the Y2 
receptors is absent, while a specific labeling is present in the WT mice T.B. (A), but not in the Y2 KO T.B.(C). 
Scale bar = 0.25 mm.  
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4.1.2.3 In situ hybridization 

The in situ hybridization reactions performed on coronal mouse brain sections, 

approximately at -1.34 mm from Bregma (Paxinos and Watson, The Mouse Brain in 

stereotaxic coordinates, 1997, Academic Press), with a rat Y2 receptor riboprobe 

demonstrated a difference between the WT (A) and Y2 KO mice (B) in the Y2 mRNA 

distribution. A high signal, especially in the hippocampus, hypothalamus and amygdala, was 

observed in the WT mice, while the Y2 KO mice did not display signal in the hypothalamic 

area and in the amygdala, whereas it was found in the hippocampus, even if with a lower 

intensity than in the WT mice. 

  

           

Fig.15. Representative images of the Y2 receptor mRNA distribution in coronal brain sections of a WT mouse 
(A) and a Y2 KO mouse (B), approximately at -1.34 mm from Bregma. Scale bar = 0.25 mm. 
 

 

4.1.2.4 Real-Time quantitative PCR reaction 

A possible difference between C57BL/6 and 129SvJ mouse strains in terms of basal NPY 

mRNA levels was analyzed using the RT-qPCR technique in the hypothalamus, a brain 

region in which the highest NPY levels have been observed (Morris, 1989).  

The analysis of the mouse GADPH mRNA expression as an internal reference was 

included to normalize the data for RNA quantity and quality. The gene expression data were 

statistically evaluated by analysis of covariance (ANCOVA), considering the expression of 

GAPDH as a covariate, under the hypothesis that it was not affected by changes in the two 

different mouse strains. The covariance efficiency factor was determined to be close to 1 

(1.085), thus proving independence of the GAPDH expression from the different mouse 

strains. Post-hoc analysis (Dunnett’s test) was performed by comparing the means of the 

GAPDH expression in the two mouse strains and it did not reach the statistical significance 

(Fig. 16). 

A) B) 
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Fig. 16. GAPDH mRNA expression levels in the hypothalamic regions of each mouse of the two strains, 
C57BL/6 and 129SvJ. The istograms represent an averaged value of a reaction performed in triplicate. No 
differences were determined in the GAPDH expression of the two mouse strains.  
 
 
 

 

The same analysis was repeated for the expression of the NPY mRNA levels in the two 

different mouse strains C57BL/6 and 129SvJ. The covariance efficiency factor was 

determined to be close to 1 (1.195), thus showing independence of the NPY expression from 

the different mouse strains. Post-hoc analysis (Dunnett’s test) was performed by comparing 

the mean values of the NPY expression in the two mouse strains, but it was not statistically 

significant (Fig. 17).  
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Fig. 17. NPY mRNA expression levels in the hypothalamic regions of each mouse of the two strains, C57BL/6 
and 129SvJ. The istograms represent an averaged value of a reaction performed in triplicate. No differences 
were determined in the NPY expression of the two mouse strains.  
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4.2 ANIMAL MODELS OF DEPRESSION  
 

4.2.1 Flinders Sensitive Line rats 
 

4.2.1.1 NPY mRNA expression 

The pattern of the NPY mRNA expression in the FSL rats was consistent with previous 

description of the NPY mRNA distribution, with scattered hybridization signals found 

mainly in the cerebral cortex, hippocampus, striatum and hypothalamus (Morris, 1989); (Fig. 

1). A significant strain difference was found in the dentate gyrus of the hippocampus, in 

which lower NPY mRNA levels were measured in the FSL rats compared to the FRL (p = 

0.043; Fig. 18). No significant differences of strain or due to the stress exposure or to the 

interaction between strain and stress were observed in the other regions examined (cingulate 

cortex, CA region of the hippocampus, medial amygdala and arcuate hypothalamic nucleus).  

 
 
 
Fig. 18. NPY mRNA expression levels in the dentate gyrus of 
the hippocampus (DG) in the Flinders Resistant Line (FRL) and 
Flinders Sensitive Line (FSL) rats, non stressed or stressed with 
one hour restraint. The bar graph represents the mean ± S.E.M. 
(n = 6 rats/group) given as nCi/g. A statistically significant 
difference exists between the FRL rats (n = 12 rats/group, DG 
= 467 ± 18.4) and the FSL rats (n = 12    rats/group, DG = 
414.9 ± 14.4); * p < 0.05.  
 

  

 

4.2.1.2 Y1 receptor mRNA expression 

The expression pattern of the Y1 mRNA distribution in the FSL rats was in line with 

previously reported results (Larsen et al., 1993), with high levels of Y1 hybridization signals 

in the neocortex, dentate gyrus of the hippocampus, several thalamic nuclei and the 

hypothalamic arcuate nucleus (Fig. 2). No significant differences due to the strain, the stress 

exposure, or to the strain x stress interaction were observed in the regions measured: 

cingulate cortex, septum, CA region and dentate gyrus of the hippocampus.  

  

4.2.1.3 Y2 receptor mRNA expression 

The localization of the Y2 mRNA expression in the FSL rats was similar to that previously 

reported (Gustafson et al., 1997). The most intense signals were observed in the CA3 region 
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of the hippocampus, hypothalamic arcuate nucleus, piriform cortex, centromedial thalamic 

nucleus and medial amygdala (Fig. 3). No significant differences due to the strain, the stress 

exposure or the strain x stress interaction were found in the Y2 mRNA levels in the analyzed 

regions: CA3, medial amygdala and arcuate nucleus of the hypothalamus. 

 

4.2.1.4 Y5 receptor mRNA expression 

The expression pattern of Y5 mRNA distribution in the FSL rats was in line with previously 

reported results (Gerald et al., 1996), with the most intense signal in the cingulate cortex, 

CA3 region and dentate gyrus of hippocampus and to a less extent in a number of 

hypothalamic nuclei (Fig. 4). A significant interaction between strain and stress exposure was 

observed in the central amygdala, in which the Y5 receptor mRNA expression levels were 

higher in the FSL control rats than in the FRL control rats and lower in the FSL stressed than 

in the FRL stressed rats (p = 0.038; Fig. 19). No significant differences due to the strain, the 

stress exposure, or to the interaction between strain and stress were observed in the other 

regions measured: cingulate cortex, septum, medial and basolateral amygdala, CA1, CA2, 

CA3 regions and dentate gyrus of hippocampus, hypothalamic arcuate, paraventricular and 

ventro-medial nuclei. 

 

   

 
Fig. 19. NPY mRNA expression levels in the central amygdala 
(CeA) in the Flinders Resistant Line (FRL) and Flinders Sensitive 
Line (FSL) rats, non stressed or stressed with one hour restraint. 
The bar graph represents the mean ± S.E.M. (n = 6 rats/group) 
given as nCi/g (n = 6 rats/group, CeA = 8.92 ± 0.61 in the FRL 
control rats; CeA = 10.96 ± 1.4 in the FRL stress rats; CeA = 
10.75 ± 0.98 in the FSL control rats; CeA = 8.37 ± 0.44 in the 
FSL stress rats); * p < 0.05. 
 
 
 

 
 

4.2.2 Chronic mild/unpredictable stress 
 

4.2.2.1 NPY mRNA expression 

The statistical analysis of the NPY mRNA expression levels evaluated in the four 

experimental groups of rats (low anxiety – no stress, low anxiety – stress, high anxiety – no 

stress, high anxiety – stress) showed a basal difference between the two groups of rats 

defined low anxiety (LA) and high anxiety (HA) in the medial amygdala, with higher NPY 
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mRNA levels in the HA rats compared to the LA (p = 0.022; Fig. 20A). In the same region, 

the statistical analysis did not evidence a significant effect of the CMS exposure or of the 

interaction between stress and anxiety levels. Moreover, in all the other regions analyzed 

(cingulate cortex, septum, basolateral amygdala, hippocampal CA1, CA2, CA3 regions and 

dentate gyrus, arcuate hypothalamic nucleus) there were no statistical significant differences. 

In addition, the correlation between the behavioural data (the time spent by the animals in the 

open arms of the plus maze) and the anatomical data (the NPY mRNA expression) was 

considered and a negative trend was observed in the medial amygdala (β = - 0.47; Fig. 20B), 

but not in the other regions.  

 

   

 
 

 
 
 

 
 

 
 
 
 
 
Fig. 20. A) NPY mRNA expression levels in the medial amygdala (MeA) of rats belonging to the low anxiety 
(LA) and high anxiety (HA) groups, non stressed or exposed to CMS. The bar graph represents the mean ± 
S.E.M. (n = 5 rats in the LA group; n = 7 rats in the HA group) given as nCi/g (LA - no stress = 142.35 ± 6.5; 
LA - stress = 141.5 ± 8.2; HA - no stress = 166.45 ± 7.5; HA - stress = 167.35 ± 11.1; * p < 0.05). 
B) Linear regression between the NPY mRNA levels in the MeA, given as nCi/g, in the x axis and the time, 
expressed in seconds, spent by the rats in the open arms of the maze in the y axis. A negative correlation is 
observed between the two parameters (β = -0.47).  

 

 

4.2.2.2 Y1 receptor mRNA expression 
 

In the four experimental groups of rats, the Y1 receptor mRNA expression was studied in the 

following regions: cingulate cortex, septum, central, medial and basolateral nuclei of the 

amygdala, hippocampal CA1, CA2, CA3 and dentate gyrus, hypothalamic paraventricular, 

ventro-medial and arcuate nuclei. A significant difference in the basal Y1 receptor mRNA 

levels between the HA and LA rats was found in the central amygdala, with a higher 

expression in the HA animals (p = 0.016; Fig. 21A). However, in the dentate gyrus of the 

hippocampus the HA rats have lower basal Y1 receptor mRNA levels compared to the LA (p 

= 0.014; Fig. 21C). No significant effect due to the CMS exposure or to the interaction 
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between stress and anxiety levels was observed in any analyzed regions. In addition, a 

negative correlation between the behavioural data (the time spent by the animals in the open 

arms of the plus maze) and the anatomical data (the Y1 receptor mRNA expression) was 

found in the central amygdala (β = - 0.51; Fig. 21B), while in the dentate gyrus the 

correlation was positive (β = + 0.435; Fig. 21D). The other regions did not present any 

correlation.  

 

 

 

 
 

        
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 21. A) Y1 receptor mRNA expression levels in the central amygdala (CeA) of rats belonging to the LA and 
HA groups, non stressed or exposed to CMS. The bar graph represents the mean ± S.E.M. (n = 5 rats in the LA 
group; n = 7 rats in the HA group) given as nCi/g (LA - no stress = 28 ± 1.6; LA - stress = 28.1 ± 1.1; HA - no 
stress = 30.5 ± 0.9; HA - stress = 31.5 ± 0.9; ** p < 0.01). 
B) Linear regression between the Y1 receptor mRNA levels in the CeA, given as nCi/g, in the x axis, and the 
time, expressed in seconds, spent by the rats in the open arms of the maze in the y axis. A negative correlation is 
observed between the two considered parameters (β = - 0.51). 
C) Y1 receptor mRNA expression levels in the dentate gyrus (DG) of hippocampus of rats belonging to the LA 
and HA groups, non stressed or exposed to CMS. The bar graph represents the mean ± S.E.M. (n = 5 rats in the 
LA group; n = 7 rats in the HA group) given as nCi/g (LA - no stress = 107.7 ± 2.6; LA - stress = 103 ± 2.5; 
HA - no stress = 94.5 ± 2.8; HA - stress = 100.1 ± 2.9; ** p < 0.01). 
D) Linear regression between the Y1 receptor mRNA levels in the DG, given as nCi/g, in the x axis, and the 
time, expressed in seconds, spent by the rats in the open arms of the maze in the y axis. A positive correlation 
can be observed between the two considered parameters (β = + 0.435).   
 
 
 
4.2.2.3 Y2 receptor mRNA expression 

The HA and LA rats did not present basal differences in the Y2 receptor mRNA expression in 
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the following regions: cingulate cortex, septum, central and medial amygdala, arcuate 

nucleus of the hypothalamus, CA1, CA2, CA3 and dentate gyrus of the hippocampus. 

Moreover, no significant differences due to the CMS exposure or to the interaction between 

stress and anxiety levels were found.  

 

4.2.2.4 Y5 receptor mRNA expression 

The basal Y5 receptor mRNA expression levels were not different between HA and LA rats, 

however in the two groups a significant stress-induced reduction of the Y5 receptor mRNA 

expression was found in the cingulate cortex (p = 0.015; Fig. 22A), medial amygdala  (p = 

0.032; Fig. 22B) and arcuate nucleus of hypothalamus (p = 0.033; Fig. 22C). However, no 

significant changes due to the interaction between the stress exposure and the anxiety levels 

were observed in the mentioned regions. All the other brain areas considered (septum, central 

and basolateral amygdala, paraventricular and ventro-medial hypothalamus, CA1, CA2, CA3 

and dentate gyrus of hippocampus) did not show any significant changes. In addition, the 

existence of a correlation between the Y5 receptor mRNA expression in all these regions and 

the time spent by the rats in the open arms of the maze was evaluated, but no significant 

results were observed.  

 
 

Fig. 22. A) Y5 receptor mRNA expression levels 
in the cingulate cortex (CC) of rats belonging to 
the LA and HA groups, non stressed or exposed 
to CMS. The bar graph represents the mean ± 
S.E.M. (n = 5 rats in the LA group; n = 7 rats in 
the HA group) given as nCi/g (LA - no stress = 
22.4 ± 0.6; LA - stress = 19.2 ± 1.4; HA - no 
stress = 21 ± 1.6; HA - stress = 18.8 ± 1.2; * p 
< 0.05). 
 

 
 

 
 
B) Y5 receptor mRNA expression levels in the 
arcuate nucleus of hypothalamus (Arc) of rats 
belonging to the LA and HA groups, non 
stressed or exposed to CMS. The bar graph 
represents the mean ± S.E.M. (n = 5 rats in the 
LA group; n = 7 rats in the HA group) given as 
nCi/g (LA - no stress = 35.9 ± 4.1; LA - stress = 
31.9 ± 2.6; HA - no stress = 32.8 ± 2.6; HA - 
stress = 26.2 ± 2; * p < 0.05). 
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C) Y5 receptor mRNA expression levels in the 
medial    amygdala (MeA) of rats belonging to the 
LA and HA groups, non stressed or exposed to 
CMS. The bar graph represents the mean ± S.E.M. 
(n = 5 rats in the LA group; n = 7 rats in the HA 
group) given as nCi/g (LA - no stress = 14.8 ± 1.5; 
LA - stress = 11.9 ± 0.9; HA - no stress = 13.7 ± 1; 
HA - stress = 12.3 ± 0.6; * p < 0.05). 
  

 
 

 
4.2.3 Chronic social defeat stress in rats and tree shrews 
  

4.2.3.1 Rat NPY mRNA expression 

The statistical analysis of the NPY mRNA expression levels evaluated in the four 

experimental groups of animals (Control, Stress, Control + fluoxetine, Stress + fluoxetine) 

showed a significant difference in the basal NPY mRNA expression levels in the CA3 

hippocampal region (p = 0.011) of the stressed rats. In the dentate gyrus of the hippocampus, 

a significant effect of the interaction between chronic social stress and fluoxetine treatment 

was detected (p = 0.018), with a down-regulation in the stressed rats compared to the control 

rats and an up-regulation in the Stress + fluoxetine group compared to the Control + 

fluoxetine (Fig. 23). In all the other regions analyzed, such as cingulate cortex, septum, 

medial amygdala, CA1 and CA2 hippocampal regions and arcuate nucleus of hypothalamus, 

no significant changes were detected. 

 
 
Fig. 23. NPY mRNA expression levels in the CA3 
region and in the dentate gyrus (DG) of 
hippocampus of rats belonging to the Control 
and Stress groups, not treated or treated with 
fluoxetine. The bar graph represents the mean ± 
S.E.M. (n = 6 rats/group) given as nCi/g (CA3 = 
379.915 ± 21.12 in the Control group; CA3 = 
349.925 ± 12.87 in the Control + fluoxetine 
group; CA3 = 324.98 ± 7.45 in the Stress group; 
CA3 = 320.97 ± 15.49 in the Stress + fluoxetine 
group. DG = 600.67 ± 39.7 in the Control rats; 
DG = 557.93 ± 14.04 in the Control + fluoxetine 
rats; DG = 466.32 ± 20.36 in the Stress rats e 
DG = 577.47 ± 37.11 in the Stress + fluoxetine 
rats); * p<0.05. 
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4.2.3.2 Rat Y1 receptor mRNA expression  

A significant stress x treatment interaction was found in the Y1 receptor mRNA expression 

levels in the ventro-medial hypothalamic nucleus (VMH; p = 0.036), with a down-regulation 

in the stressed rats and an up-regulation in the stressed animals treated with fluoxetine (Fig. 

24). In all the other regions measured (cingulate cortex, septum, central, medial and 

basolateral amygdala, paraventricular and arcuate hypothalamic nuclei, CA1, CA2, CA3 and 

dentate gyrus of hippocampus) no differences were found.  

 
 
 
 
Fig. 24. Y1 receptor mRNA expression levels in the 
ventro-medial hypothalamus (VHM) of rats belonging to 
the Control and Stress groups, not treated or treated with 
fluoxetine. The bar graph represents the mean ± S.E.M. (n 
= 6 rats/group) given as nCi/g (VMH = 46.35 ± 2.0 in the 
Control rats; VMH = 40.97 ± 6.52 in the Control + 
fluoxetine rats; VMH = 41.98 ± 3.8 in the Stress rats and 
VMH = 48.31 ± 5.73 in the Stress + fluoxetine rats); * p 
< 0.05.   
  

 
 

4.2.3.3 Rat Y2 receptor mRNA expression 

A significant difference in the basal Y2 receptor mRNA expression levels was observed in 

the ventro-medial hypothalamus, dorso-medial portion (VMHDM; p = 0.027), with lower 

levels found in the stressed animals (Fig. 25). There were no significant changes in the other 

regions considered: cingulate cortex, septum, central and medial amygdala, arcuate nucleus 

of hypothalamus, CA1, CA2, CA3 and dentate gyrus hippocampal regions.    

 

 
Fig. 25. Y2 receptor mRNA expression levels in the 
ventro-medial hypothalamus, dorso-medial portion 
(VMHDM) of rats belonging to the Control and Stress 
groups, not treated or treated with fluoxetine. The bar 
graph represents the mean ± S.E.M. (n = 6 rats/group) 
given as nCi/g (VMHDM = 76.57 ± 4.69 in the Control 
rats; VMHDM = 74.16 ± 3.3 in the Control + fluoxetine 
rats; VMHDM = 69.6 ± 3.58 in the Stress rats and 
VMHDM = 63.74 ± 2.37 in the Stress + fluoxetine rats); 
* p < 0.05. 
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4.2.3.4 Rat Y5 receptor mRNA expression 

A significant effect due to the interaction between the stress exposure and the fluoxetine 

treatment was observed in the ventro-medial hypothalamus (VMH), with a down-regulation 

in the stressed rats compared to the control rats and an up-regulation in the stressed rats 

treated with the antidepressant compared to the controls treated with fluoxetine (p = 0.041; 

Fig. 26). All the other regions analyzed (cingulate cortex, septum, central, medial and 

basolateral amygdala, paraventricular and arcuate hypothalamic nuclei, hippocampal CA1, 

CA2, CA3 regions and dentate gyrus) did not reveal significant variations in the Y5 receptor 

mRNA expression. 

 
 
Fig. 26. Y5 receptor mRNA expression levels in the ventro-
medial hypothalamus (VHM) of rats belonging to the 
Control and Stress groups, not treated or treated with 
fluoxetine. The bar graph represents the mean ± S.E.M. (n = 
6 rats/group) given as nCi/g (VMH = 23.75 ± 1.77 in the 
Control rats; VMH = 21.64 ± 0.97 in the Control + 
fluoxetine rats; VMH = 22.62 ± 1.56 in the Stress rats and 
VMH = 23.5 ± 1.62 in the Stress + fluoxetine rats); *p < 
0.05. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 69

4.2.3.5 Tree shrew NPY mRNA expression  

The distribution of NPY and of its Y1, Y2 and Y5 receptors mRNA in the tree shrew brain 

(Fig. 27) was found to be very similar to the NPY distribution in the rat brain (Figg. 1, 2, 3, 

4). 

 
Fig. 27. Anatomical distribution of NPY and its receptors Y1, Y2 and Y5 mRNA expression in three 
representative levels of the tree shrew brain. Scale bar = 5 mm. 
 

The two-way ANOVA analysis of the NPY mRNA expression levels evaluated in the four 

experimental groups of animals (Control, Stress, Control + fluoxetine, Stress + fluoxetine) 

showed a significant increase of the NPY mRNA expression in the CA1 (p = 0.007) and CA2 

(p = 0.034) hippocampal regions and in the arcuate nucleus of hypothalamus (p = 0.01) after 

exposure to stress (Fig. 28). In addition, the one-way ANOVA and the post-hoc analysis 

(Newman-test) were conducted, showing the presence of a trend (a result not reaching the 

statistical significance) in the CA1 hippocampal region between the Control and Stress 

groups of animals (p = 0.056), between the Control and Stress + fluoxetine groups (p = 

0.092) and between the Control + fluoxetine and Stress groups (p = 0.083). The same 
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analysis was repeated for the CA2 region and in this case the presence of a trend was 

observed between the Control and Stress groups (p = 0.068), between the Control + 

fluoxetine and Stress groups (p = 0.051) and between Stress and Stress + fluoxetine groups 

(p = 0.058). In addition, in all these regions, in particular in the arcuate nucleus of 

hypothalamus, the effect of the chronic stress was reversed by the action of the 

antidepressant fluoxetine, which induced a reduction of the NPY mRNA levels, restoring the 

initial conditions. No significant differences were found in all the other regions analyzed, 

such as cingulate cortex, septum, medial amygdala, CA3 region and dentate gyrus of 

hippocampus. 
Fig. 28. NPY mRNA expression levels in the 
CA1 and CA2 hippocampal regions and in the 
hypothalamic arcuate nucleus (ARC) of tree 
shrews belonging to the Control and Stress 
groups, not treated or treated with fluoxetine. 
The bar graph represents the mean ± S.E.M. 
(n = 4 animals/group) given as nCi/g (CA1 = 
77.85 ± 5.5 in the animals of the Control 
group; CA1 = 80.93 ± 1.49 in the Control + 
fluoxetine group; CA1 = 93.99 ± 4.53 in the 
Stress group and CA1 = 90.57 ± 3.49 in the 
Stress + fluoxetine groups; CA2 = 76.61 ± 
5.54 in the animals of the Control group; CA2 
= 77.87 ± 4.19 in the Control + fluoxetine 

animals; CA2 = 102.96 ± 5.76 in the Stress group; CA2 = 83.37 ± 9.84 in the Stress + fluoxetine group; ARC = 
157.83 ± 34.11 in the animals of the Control group; ARC = 131.15 ± 17.88 in the Control + fluoxetine group; 
ARC = 259.76 ± 12.85 in the Stress group; ARC = 195.83 ± 21.7 in the Stress + fluoxetine animals); * p < 
0.05; ** p < 0.01. 
  

 

4.2.3.6 Tree shrew Y1 receptor mRNA expression 

The statistical analysis did not evidence any alteration in the tree shrew Y1 receptor mRNA 

expression levels after the exposure to stress, or the treatment with fluoxetine or due to the 

interaction between stress and fluoxetine in all the regions considered: cingulate cortex, 

septum, medial and basolateral amygdala, CA1, CA2, CA3 regions and dentate gyrus of 

hippocampus. 

 

4.2.3.7 Tree shrew Y2 receptor mRNA expression 

Among all the regions considered, such as cingulate cortex, septum, medial and basolateral 

amygdala, CA1, CA2, CA3 regions and dentate gyrus of hippocampus, the Y2 receptor 

mRNA expression was found to be up-regulated only in the CA3 region after exposure to 

stress (p = 0.043; Fig. 29). 
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Fig. 29. Y2 receptor mRNA expression levels in the CA3 
hippocampal region of tree shrews belonging to the Control and 
Stress groups, not treated or treated with fluoxetine. The bar 
graph represents the mean ± S.E.M. (n = 4 animals/group) given 
as nCi/g (CA3 = 32.15 ± 0.62 in the animals of the Control 
group; CA3 = 30.53 ± 0.67 in the Control + fluoxetine animals; 
CA3 = 32.98 ± 4.23 in the Stress group; CA3 = 37.27 ± 1.46 in 
the Stress + fluoxetine animals); * p < 0.05. 
 

 

 

4.2.3.8 Tree shrew Y5 receptor mRNA expression 

The two-way ANOVA analysis of the Y5 receptor mRNA expression in the tree shrews 

reported significant changes due to the antidepressant treatment in the cingulate cortex of the 

stressed animals (p = 0.028) and in the same region the Y5 mRNA levels were also affected 

by the interaction between the stress exposure and the fluoxetine treatment (p = 0.044; Fig. 

30). In addition, the one-way ANOVA and the post-hoc analysis (Newman-test) were 

conducted and a significant interaction between the expression in the animals of the Stress 

group and the Stress + fluoxetine was demonstrated (p = 0.027), while a trend (p = 0.064) 

was found between the animals of the Control and the Stress groups. Furthermore, the Y5 

receptor mRNA expression was affected by the stress exposure in the medial amygdala (p = 

0.045), while a difference due to the interaction between stress and fluoxetine was observed 

in the CA1 (p = 0.044) and CA2 (p = 0.0031) hippocampal regions. No significant 

differences were seen in all the other regions analyzed, such as septum, basolateral amygdala, 

CA3 and dentate gyrus hippocampal regions.  

 
 
Fig. 30. Y5 receptor mRNA expression levels 
in the cingulate cortex (CC), medial amygdala 
(MeA), CA1 and CA2 hippocampal regions of 
tree shrews belonging to the Control and 
Stress groups, not treated or treated with 
fluoxetine. The bar graph represents the mean 
± S.E.M. (n = 4 animals/group) given as nCi/g 
(CC = 11.63 ± 0.33 in the Control group; CC 
= 11.56 ± 0.066 in the Control + fluoxetine 
group; CC = 12.44 ± 0.29 in the Stress group; 
CC = 11.12 ± 0.31 in the Stress + fluoxetine 
group; MeA = 10.56 ± 1.1 in the Control tree 
shrews; MeA = 9.97 ± 0.71 in the Control + 
fluoxetine tree shrews; MeA = 10.99 ± 0.5 in 
the Stress animals; MeA = 10.33 ± 0.48 in the 
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Stress + fluoxetine animals; CA1 = 23.54 ± 0.76 in the Control group; CA1 = 20.96 ± 1.34 in the Control + 
fluoxetine animals; CA1 = 19.32 ± 2.34 in the Stress group; CA1 = 23.56 ± 1.3in the animals of the Stress + 
fluoxetine group; CA2 = 32.06  ± 1.13 in the Control group; CA2 = 29.03 ± 0.48 in the Control + fluoxetine 
animals; CA2 = 28.94 ± 1.6 in the Stress group; CA2 = 33.42 ± 0.66 in the Stress + fluoxetine animals); * p < 
0.05; ** p < 0.01. 
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4.3 NPY Y2 RECEPTOR mRNA EXPRESSION IN AMYGDALA AND TEMPORAL 

CORTEX OF PSYCHIATRIC SUBJECTS  

 

The Y2 receptor mRNA distribution pattern in the human amygdala was consistent with that 

previously described (Caberlotto et al., 1998b). Hybridization signals were observed in many 

nuclei of the amygdaloid complex, such as the accessory basal nucleus (AB), the basal 

magnocellular division (BMC), the intermediate division (BI) and the lateral nucleus (L). In 

addition, a high hybridization signal was observed in the adjacent entorhinal cortex (EC) and 

temporal cortex (TC), with a major expression in the deep layers (TCd), compared to the 

superficial layers (TCsup) of the temporal cortex (Fig. 31A). In all these regions, no statistical 

significant differences in the Y2 receptor mRNA expression were observed in the four 

psychiatric groups (control, major depression, bipolar disorder and schizophrenia). However, 

a positive correlation between the Y2 receptor mRNA expression and increasing age was 

found in all the considered regions (TCsup: r = + 0.1252; TCd: r = + 0.1865; AB: r = + 0.0176; 

BI + BMC: r = + 0.1236; LA: r = + 0.1194; Fig. 33A,B). On the contrary, the correlation 

between the Y2 receptor mRNA expression and the post-mortem interval (PMI) was negative 

in all the analyzed regions (TCsup: r = - 0.3234; TCpro: r = - 0.3686; AB: r = - 0.2879; BI + 

BMC: r = - 0.2638; LA: r = - 0.3315; Fig. 33C,D). No correlation was detected between the 

Y2 receptor mRNA expression and the gender of the subjects, the cerebral hemisphere 

analyzed, the use of antidepressant drugs, the duration of the treatment and the cause of 

death.  
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Fig. 31. A) Representative images of the Y2 receptor mRNA expression in coronal sections of human amygdala. 
L: lateral nucleus; BI: basal intermediate division; BMC: basal magnocellular division; AB: accessory basal 
nucleus; EC: entorhinal cortex; TCsup: superficial layers of the temporal cortex; TCd: deep layers of the 
temporal cortex. Scale bar = 8 mm. 
Comparison between the human Y2 receptor mRNA expression in the temporal cortex and amygdaloid complex 
of a 61 years old subject (A) and of a 35 years old one (B): up-regulation of Y2 receptor mRNA in the brain 
regions of the older subject. The graphical representation of the positive correlation between the Y2 receptor 
mRNA expression and the age of the subjects in the temporal cortex (E) and in the amygdaloid complex (F) in 
also shown: the lines represent the linear regression between the Y2 receptor mRNA levels, given as nCi/g, in 
the y axis, and the age of the patients, expressed in years, in the x axis. 
Comparison between the human Y2 receptor mRNA expression in the temporal cortex and amygdaloid complex 
in two human brain samples with 61 hours PMI (C) and 19 hours PMI (D): reduction of the Y2 mRNA 
expression related to an increasing PMI in all the regions. The graphical representation of the negative 
correlation between the Y2 receptor mRNA expression and the PMI in the temporal cortex (G) and in the 
amygdaloid complex (H) is also reported: the lines represent the linear regression between the Y2 receptor 
mRNA levels, given as nCi/g, in the y axis, and the PMI of the human brain samples, expressed in hours, in the 
x axis. 
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The effect of the assumption of substances of abuse, such as marijuana, cocaine, nicotine and 

alcohol on the Y2 receptor mRNA expression was also considered. A significant increase of 

the Y2 receptor mRNA expression was demonstrated in the accessory basal nucleus of the 

amygdala of cocaine abusers, compared to subjects that had used cocaine in the past (p = 

0.0484; Fig. 32A). Finally, lower Y2 receptor mRNA expression levels were found in the 

superficial layers of the temporal cortex of cigarettes smokers subjects compared to non 

smokers (p = 0.0484; Fig. 32B). No significant effect was observed in the subjects with a 

history of marijuana and alcohol use. 

 

   

 
 

 
 

 
 
 

 
 
 
Fig. 32. A) Human Y2 receptor mRNA expression levels, given as nCi/g, in the accessory basal nucleus of the 
amygdala in relation to the cocaine assumption. A statistical significant difference is observed between the 
subjects defined cocaine abusers (group 2, n = 5, AB: 16.63 ± 5.42) and the subjects that had used this 
substance in the past (gruppo 4, n = 2, AB: 5.54 ± 0.12), who present a lower Y2 receptor mRNA expression; * 
p < 0.05. The other two groups (group 1, non users, n = 50, AB: 11.2 ± 0.99 and group 3, occasional users, n = 
2, AB: 9.02 ± 3.57) did not reach a statistical significant result.   
B) Graphical representation of the human Y2 receptor mRNA expression, given as nCi/g, in the superficial 
layers of the temporal cortex of cigarettes smokers and non smokers subjects. A significant down-regulation of 
the Y2 mRNA levels is observed in the smokers group (n = 20, TC sup: 6.51 ± 1) compared to non smokers (n = 
10, TC sup: 10.27 ± 1.65); * p < 0.05. 
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5. DISCUSSION 
 

5.1 CHARACTERIZATION OF THE NPY Y2 KNOCKOUT MICE 

 

The purpose of the present study consisted on improving the knowledge on the involvement 

of the NPY system in the pathophysiology of mood disorders, such as depression and 

anxiety, focusing on the role of the three major receptor subtypes in these disorders. In 

particular, this study on the Y2 KO mice would investigate the hypothesis of the involvement 

of the Y2 receptor subtype in anxiety and stress-related behaviours. The present research 

initially started with the behavioural characterization of the Y2 KO mice, to compare it with 

previous data demonstrating reduced anxiety and increased stress-coping ability in these 

mice (Tschenett et al., 2003; Redrobe et al., 2003). Afterwards, the role of the Y1 receptor 

would be evaluated after treating them with a Y1 receptor specific antagonist, to assess if the 

lack of the Y2 receptor would have induced the activation of a compensatory mechanism 

involving the Y1 receptor subtype, thus supporting a role for both the receptors in the 

anxiety- and depressive-related behaviours.  

A general basal behavioural analysis was initially performed to compare the 

behavioural activities of the Y2 KO male mice and of their WT in baseline conditions during 

the dark phase of the day, in which mice are more active, and during the light phase. The 

increase in basal exploratory activity found in the Y2 KO mice when exposed to a new 

environment could suggest a reduced anxiety-like state, given that the exploratory behaviour 

is related to a less anxious state of the animals (Fig. 7). The same analysis was performed on 

the Y2 KO and WT female mice, but no changes were found, underlining basal gender 

differences. This gender behavioural variability is not surprising: it has been previously 

described that the behaviour is clearly influenced by endocrine factors, differing between 

genders (Lathe, 2004). Moreover, gender has been demonstrated to influence both baseline 

behavioural characteristics (Voikar et al., 2001) and antidepressant responses in different 

strains of mice (Caldarone et al., 2003).  

In the present study, both male and female Y2 KO and WT mice were also exposed to 

the forced swim test (FST), a well established research tool to investigate the depressive-like 

state of the animals, but no difference in terms of immobility time was found between the 

two groups in both genders (Fig. 11). Immobility in the FST is considered a marker of the 

depressive-like behaviour (Porsolt et al., 1977), meaning that in this study using pure 
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background C57BL/6 mice the deletion of the Y2 gene seemed not to induce a depressive-

like state. However, previously published data on the same mice, in which the initial mixed 

129SvJ-C57BL/6 genetic background was maintained, have reported a significant reduction 

of the immobility time in the Y2 KO male mice compared to their control WT, suggesting a 

reduced depressive-like state in the mice lacking Y2 receptor (Tschenett et al., 2003). To 

further analyze the depressive-like behaviour of the pure background male and female Y2 KO 

and WT mice, a possible differential effect in terms of immobility time in the FST was 

evaluated after acute administration of desipramine, a frequently used antidepressant acting 

as a norepinephrine-transporter inhibitor, inducing a reduction of the immobility time in the 

FST, counteracting the depressive-like state. The same response to the pharmacological 

treatment was observed in the two groups of mice, consisting on a reduction of the 

immobility time after the administration of the higher dose of desipramine in the Y2 KO and 

WT male mice (Fig. 9) and of the lower dose in the female mice (Fig. 10). These results 

could suggest that the lack of Y2 receptor is not interfering with the action of the 

antidepressant or with the functioning of the norepinephrine system, in which desipramine 

acts, although also in this case the activation of a compensatory mechanism can not be 

excluded.   

The anxiety-related behaviour of the Y2 KO and WT mice was also assessed, 

exposing them to the elevated plus maze (EPM), a validated test of anxiety, in which the 

animals have to choose between their natural aversion for open spaces and their drive to 

explore a novel environment (Pellow & File, 1986). This test confirmed the lack of 

significant behavioural differences between Y2 KO and WT mice: they spent comparable 

times in the open and closed arms of the maze and a comparable number of entries in the 

open arms was also recorded (Fig. 8). However, previously published data on the same mice, 

in which the initial mixed genetic background has been maintained, have showed a 

differential anxiety-related behaviour between the Y2 KO and WT mice when exposed to the 

EPM, with a significant increase of the time spent in the open arms of the maze observed in 

the mice lacking Y2 receptor, thus displaying a less anxious behaviour compared to the WT 

mice (Tschenett et al., 2003; Redrobe et al., 2003). Since no baseline differences were 

detected in this study, the EPM was also performed after challenging the animals with an 

acute stress, but also in this case, a similar performance in the EPM was reported by the two 

groups of animals (Fig. 8).  

Finally, the basal levels of two stress hormones, ACTH and corticosterone, in the 

pure background Y2 KO and WT mice were also characterized, to investigate a potential 
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dysfunction of the HPA axis activity, but no differences were found, confirming the previous 

results (Fig. 12). In addition, a possible differential hormonal release in response to stress 

was investigated, since stress is a well known activator of the HPA axis (Smith & Vale, 

2006; Herman et al., 2005). Thus, the two groups of mice were exposed to an acute stress 

and a consequent strong release of both ACTH and corticosterone was observed, as 

previously described (Assenmacher et al., 1995; Armario, 2006), but it was not different in 

the Y2 KO and WT mice (Fig. 12). In summary, the present study seemed not to confirm the 

previously published data showing an involvement of the Y2 receptor in the modulation of 

the depressive- and anxiety-like states (Tschenett et al., 2003; Redrobe et al., 2003). The 

results of this study were quite unexpected, given the significant behavioural differences 

found between the two strains of mice in the two previously published works. Thus, to 

confirm the deletion of the Y2 receptor gene in the Y2 KO mice used in this study, a series of 

in vitro investigations, such as RT-PCR, receptor autoradiography, in situ hybridization and 

RT-qPCR reactions (Figg. 13, 14, 15, 16, 17) were performed, demonstrating the lack of the 

Y2 receptor in the KO mice and its presence in the WT. 

The behavioural differences observed between mixed background 129SvJ-C57BL/6 

mice and pure background C57BL/6 mice, although surprising, have been previously 

described by studies demonstrating distinct and specific differences in the anxiety-related 

behaviours, depressive-like state and stress responsiveness in different mouse strains, 

indicating that such behaviours could be influenced by the genetic component (Anisman & 

Zacharko, 1992; Griebel et al., 2000; Anisman et al., 2001; Belzung, 2001). The situation 

could be even more complicated, in presence of a genetic manipulation: complex interactions 

between genetic deletions and background strains could occur, resulting in phenotypic 

differences (Carlson, 1997; Cook et al., 2002; Lesch et al., 2003). In this particular case, a 

variety of studies on C57BL/6 mouse strain have demonstrated higher levels of basal 

immobility in the FST and in the tail suspension test, another behavioural tool to evaluate the 

depressive-like state of the animals, compared to many other strains, included the 129Sv 

(Lucki et al., 2001; Ducottet & Belzung, 2005; Jacobson & Cryan, 2005). These findings 

suggest that the C57BL/6 mice could be less sensitive to depressive situations (Shanks & 

Anisman, 1993, 1988). This hypothesis was confirmed by the results obtained in the 10 

minutes FST performed in the present study and by Tschenett and collaborators. The 

immobility time spent by the pure background C57BL/6 WT mice in 10 minutes was around 

280 seconds, whereas the immobility time spent by the mixed background 129SvJ-C57BL/6 

WT mice was around 170 seconds, probably due to the presence of the 129SvJ genetic 
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component. Moreover, further studies, such as acute inescapable shock and chronic 

unpredictable stress, have demonstrated a reduced or absent behavioural sensitivity to 

stressful stimuli in the C57BL/6 mouse strain (Zacharko et al., 1990, 1987; Pothion et al., 

2004; Mineur et al., 2003; Ducottet et al., 2004; Ducottet & Belzung, 2005). These results 

are consistent with the present study, in which an acute stress did not induce behavioural 

effects in the EPM in Y2 KO and WT mice with pure C57BL/6 genetic background (Fig. 8). 

In support to the present findings, other examples of deletions of the same gene on multiple 

genetic background mice have showed the presence of different anxiety-related phenotypes 

(Ramboz et al., 1998; Heisler et al., 1998; Parks et al., 1998). In addition, a number of strain 

comparisons have illustrated the impact of the genetic background on the responses to 

different psychopharmacological agents, sustaining a genetic-based variability also in 

response to specific drugs (Crawley et al., 1997; Griebel et al., 2000; Lucki et al., 2001; 

Jacobson & Cryan, 2007). In particular, the relative variability of performance of mouse 

strains in the FST suggested that a selection of the animals strain is necessary to analyze their 

responses to antidepressant drugs. The least variable strain at baseline, the C57BL/6 strain, 

has provided the greatest precision of measuring changes in drug effects (Lucki et al., 2001; 

Jacobson & Cryan, 2005). However, differences between strain phenotypes could not only 

represent a reflection of the genotypes, but the environment vs. genes interactions have been 

also showed to significantly influence the phenotypic behaviour (Crabbe et al., 1999; Carola 

et al., 2006). Despite careful standardizations of the protocols, variations in the experimental 

methodologies, even subtle ones, and in the equipment performing the experiments, that 

could be found between different laboratories using the same protocols, may influence the 

behavioural results obtained using different mouse strains (Crabbe et al., 1999; Crabbe & 

Wahlsten, 2003). Particularly, the behavioural testing paradigms can be strongly influenced 

by variations in holding and test conditions, thus caution has to be used when comparing 

results (Jacobson & Cryan, 2007). The experimental conditions adopted in the present study 

when performing the behavioural tests reproduced as much as possible those performed by 

Tschenett and colleagues at the Innsbruck University, in terms of housing conditions, total 

duration of the tests, time of recording, parameters of the cylinder in the FST and of the maze 

in the EPM. However, as it has been demonstrated, handling could also influence the 

behavioural responses of different mouse strains in different laboratories (Jacobson & Cryan, 

2007). To exclude these possible methodological differences between the experiments, a 

chort of animals was sent to Innsbruck University, where the FST and the EPM were 

performed at their working conditions. However, they exactly reproduced the results 
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obtained in this study, thus excluding a possible effect due to differences in the experimental 

conditions used.  

Overall, the genetic background seemed to represent the unique difference existing 

between the mice used in these studies. Therefore, it could be possible to hypothesize that the 

different genetic background was, at least in part, responsible of the behavioural 

discrepancies found in the different laboratories. In particular, the present findings seemed to 

emphasize the role of the genetic background in influencing the depressive- and anxiety-

related behavioural phenotypes. A possible consequence could be the genetic-related 

difference in the basal NPY levels between the two strains, in line with a previous work 

showing that a different inborn alcohol drinking behaviour between C57BL/6 and DBA/2 

mice has been related to a strain different basal NPY expression in the nucleus accumbens 

(Misra & Pandey, 2003). In support to these findings, another report have illustrated 

differential basal NPY levels between the C57BL/6 and DBA/2 mouse strains also in other 

brain regions (Hayes et al., 2005). Thus, in the present study, the potential different NPY 

baseline levels between C57BL/6 and 129SvJ mice in the hypothalamic area were 

investigated, as a possible reason to explain the different behavioural phenotypes. However, 

it failed in demonstrating strain differences in the basal NPY levels (Fig. 17): this could be 

due to the limited number of animals used or to the selection of the brain region analyzed. 

Further investigations using a bigger number of animals for each strain and involving some 

other brain regions would be necessary to complete the study.   

It should also be considered that the deletion of a gene in an intact organism, such as 

a knockout mouse, could be followed by possible redundancy, compensations and different 

developmental roles of other related genes. Thus, the expression of the phenotype of the 

genetically modified mice may be not only characterized by the lack of a specific gene 

product, but by the changes that may have happened at the molecular and cellular levels in 

the mutant organism (Sibille & Hen, 2001). However, this line of study has been severely 

limited by the extent of the current knowledge of the function of the majority of genes and 

their implications in various biological systems and pathways. Therefore, another hypothesis 

to explain the lack of a differential depressive- and anxiety-related behaviour between Y2 KO 

and WT mice could be the development of an adaptation to the functional absence of the Y2 

receptor in the KO mice, suggesting the possible occurrence of mechanisms of 

compensations by functionally related systems. The risk of the development of compensatory 

mechanisms is very high in such mutant mice, referred to as “constitutive” knockout, 

generally exhibiting a total lack of expression of the mutated gene throughout their lifetime 
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in all the tissues. In these mice, the mutated gene is non-functional throughout development; 

consequently, changes arising due to the absence of the gene for the entire life span of the 

mouse could yield unexpected phenotypes in mature animals. In this specific case, the lack of 

the Y2 receptor gene during maturation of the mice could have interfered with the normal 

developmental program of the organisms, or could have induced changes in the other systems 

to compensate its absence (Gingrich & Hen, 2000). This problem could be avoided using 

“conditional” or “inducible” knockout mice, in which a targeted gene is not absent during the 

development of the organism, but its expression is controlled in a temporal and/or regional 

way, reducing the probability of adaptations (Sibille & Hen, 2001; Stark et al., 1998).  

The use of other methodologies aimed at manipulating gene expression could be 

suggested, such as the short-interfering RNA, in which double-stranded RNAs injected in the 

animals cause post-transcriptional silencing of gene expression (Thakker et al., 2004). 

Moreover, this methodology can be applied on adult animals, avoiding the risk of possible 

developmental compensations and rats can also be used, preferred than mice because they 

present less behavioural variability in the different strains. However, studies involving 

animals treated with selective antagonists acting on specific targets would be considered the 

most specific indication of the role of such biological targets in the pathophysiology of a 

specific disease. Unfortunately, the lack of selective, brain penetrant compounds targeting the 

NPY receptors available for in vivo studies leads to the use of other less precise research 

tools. 

Overall, the present investigation gave further supporting evidences to the importance 

of using specific mouse strains in the behavioural studies, especially when focusing on the 

emotional-related behaviours. 

 

 

 

 

 

 

 

 

 

 

 



 82

5.2 ANIMAL MODELS OF DEPRESSION 

 

The previously described behavioural characterization of the Y2 receptor KO mice was not 

conclusive for the understanding of the Y2 receptor role in mood disorders; however, a 

different experimental approach was then considered, consisting on the use of animal models 

of depression. These models are considered a potential investigative tool to provide insights 

into the pathophysiology of depression, to investigate the mechanism of action of 

conventional antidepressants and to support the discovery of new antidepressant drugs; 

however, they have not been extensively studied with regard to altered neuropeptide 

expression (Willner, 1997b). In the present study, they were used to investigate the possible 

transcriptional changes of the NPY system in depressive disorders. The choice of considering 

different animal models was due to the difficulties in representing with animals a psychiatric 

disease, which is a typical human condition. In fact, an animal model of depression can only 

be considered a simplified representation of a condition similar to human depression, not 

exactly reproducible with animals. 

        

5.2.1 Flinders Sensitive Line rats 

Numerous studies have demonstrated that the Flinders Sensitive Line (FSL) rats constitute a 

relevant animal model of depression, which mimics many of the biological and behavioural 

characteristics associated with depression in human subjects, which become even more 

evident in the FSL rats after exposure to stressors (Overstreet et al., 2005; Pucilowski et al., 

1993).  

Many findings focusing on neuropeptide systems have suggested that the FSL rats 

may be considered a validated animal model for exploring the involvement of these systems 

in depressive disorders (Owens et al., 1991; Husum et al., 2008, 2003, 2001; Mathé et al., 

2007).  

In the present study, a significant baseline difference between the FSL and FRL rats 

in the dentate gyrus of the hippocampus was demonstrated, with lower NPY mRNA 

expression levels in the “depressed” FSL rats compared to their control FRL (Fig. 18). This 

result is consistent with a number of studies providing supporting evidences for a possible 

role of the NPY system in the mechanisms underlying the pathogenesis of depression. In 

particular, the existence of an alteration of the NPY system in this hippocampal region of the 

FSL rats has been previously demonstrated by Bjørnebekk and collaborators (2006), who 

have showed a lower basal NPY mRNA expression in the dentate gyrus of the FSL rats, 
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whereas in other studies the FSL rats have reported a reduced NPY mRNA expression in the 

CA hippocampal region (Caberlotto et al., 1998a) and lower NPY-LI in the whole 

hippocampus, compared to their control FRL (Caberlotto et al., 1999; Husum et al., 2008, 

2001; Jimenez Vasquez et al., 2000 a,b; Wortwein et al., 2006). The reason for these 

discrepancies in the different hippocampal subregions is not clear; it could be due to the fact 

that the rats used in the above mentioned experiments were exposed to different treatments. 

Nonetheless, the hippocampal formation seems to be an important region related to NPY and 

depressive disorders, since in another genetic animal model of depression, the Fawn Hooded 

rats (Mathé et al., 1998), as well as in environmental models, such as maternal separation or 

chronic mild stress models (Husum & Mathé, 2002; Husum et al., 2002; Jimenez-Vasquez et 

al., 2001; Sergeyev et al., 2005), reduced hippocampal NPY has been found. The 

hippocampus is a brain region with a high functional and structural plasticity, which has been 

demonstrated to be important for learning and memory processing (Gould et al., 1999 a,b; 

Lisman, 1999) and it is one of the few structures in the adult brain where new neurons are 

formed (Altman, 1962). Hippocampal neurons are sensitive to stress and pre-clinical studies 

have indicated that stress may cause atrophy and death of the pyramidal neurons in the 

hippocampus, as well as decreased neurogenesis in the dentate gyrus (McEwen et al., 1992; 

McEwen & Magarinos, 1997; Gould & Tanapat, 1999). Moreover, it has been postulated that 

depressive symptoms are associated with reduced hippocampal plasticity and decreased 

neurogenesis (Duman et al., 1999); furthermore, a decreased hippocampal volume has been 

observed in the depressed patients and the degree of the hippocampal volume reduction has 

been correlated with the duration of the disorder (Sheline, 1996; Sheline et al., 1999, 1996; 

Bremner et al., 2000; Campbell & Macqueen, 2004; Campbell et al., 2004). In contrast, 

treatments inducing an antidepressant effect, such as antidepressant drugs (Malberg et al., 

2000), electroconvulsive treatments (Nibuya et al., 1995; Hellsten et al., 2002) and physical 

exercise (Neeper et al., 1996; van Praag et al., 1999 a,b; Bjørnebekk et al., 2005) could 

induce an increased hippocampal neurogenesis. However, different hypothesis debating on 

the key role of hippocampal neurogenesis or hippocampal atrophy in depression, as well as 

on the effect of antidepressants on cell proliferation have been proposed, suggesting that 

neurogenesis plays a role in depression, but neither this phenomenon is likely to be exclusive 

for the depressive disorders, nor it can explain all the clinical symptoms of depression, or all 

the effects induced by antidepressant drugs (Steckler & Prickaerts, 2004). Recently, NPY has 

been demonstrated to be involved in the adult hippocampal neurogenesis in the dentate gyrus, 

inducing an increase of the hippocampal cell number in the hilus and in the subgranular zone, 
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thus promoting cell proliferation (Howell et al., 2005). In addition, running has been 

demonstrated to induce a marked NPY mRNA increase in the CA4 and dentate gyrus of the 

hippocampus in the FSL rats compared to the FRL (Bjørnebekk et al., 2006). Moreover, the 

running-induced increase of NPY mRNA in the FSL rats has been strongly correlated with 

the running-induced increase of cell proliferation (Bjørnebekk et al., 2005), sustaining that 

NPY is one of the factors triggering cell proliferation. Consistent with these studies, 

reasoning is the finding that NPY increases adult neurogenesis in the olfactory bulb (Hansel 

et al., 2001). In view of these data and of the evidence suggesting that a decreased 

neurogenesis, with a consequential hippocampal atrophy, leads to a depressive state (Fuchs et 

al., 2004), the lower levels of the NPY mRNA expression found in baseline conditions in the 

dentate gyrus of the FSL rats could represent the biological correlate of their depressive-like 

behaviour. Moreover, the reduced NPY levels found in the “depressed” rats are in line with 

clinical findings, demonstrating a decrease of NPY in the cerebrospinal fluid (CSF) (Gjerris 

et al., 1992; Heilig et al., 2004; Widerlov et al., 1988) as well as in the plasma (Nilsson et 

al., 1996; Hashimoto et al., 1996) and in selected brain regions (Widdowson et al., 1992) of 

depressed patients. 

Unexpectedly, in the present study, no significant changes were found in the arcuate 

nucleus of the hypothalamus, even if the NPY system in this brain region has been 

demonstrated to be involved in the pathophysiology of depression and in the action of 

antidepressant drugs (Baker et al., 1996; Makino et al., 2000; Kim et al., 2003; Sergeyev et 

al., 2005). In fact, an earlier study has reported basal strain differences in the NPY mRNA 

expression between the FSL and FRL rats in this region (Caberlotto et al., 1998a).  

Although the expression of NPY has been largely studied in the FSL rats, less is 

known about the receptors. In the present work, the mRNA expression of the three major 

NPY receptor subtypes, Y1, Y2 and Y5, was analyzed in the FSL and FRL rats, in baseline 

conditions and after exposure to an acute stress. Only the Y5 receptor mRNA expression was 

inversely regulated by the stress exposure in the central amygdala of the two rat strains: the 

Y5 mRNA levels were increased by stress in the FRL rats, while a stress-induced reduction 

was observed in the FSL group (Fig. 19), suggesting that the “depressed” FSL rats have an 

altered response to stress compared to their controls. Interestingly, a recent study focusing on 

the CRF mRNA expression in the same animals has found a differential response to stress in 

the two rat strains in the same nucleus of the amygdala, in which the FRL stressed rats have 

displayed increased CRF mRNA, whereas the FSL rats have not reported alterations, 

showing a blunted response to stress (Zambello et al., 2007). Thus, these results could 
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suggest the existance of an anatomical and functional interaction between the NPY and CRF 

systems in a brain area involved in the regulation of emotionality, as previously demonstrated 

(Sajdyk et al., 2004; Krysiak et al., 2001; Britton et al., 2000; Heilig et al., 1994), sustaining 

the hypothesis that they exert a reciprocal and opposite regulation of responsiveness to 

stressful stimuli, as also demonstrated in other brain regions (Heinrichs et al., 1992; 

Palkovits, 1999; Morris & Pavia, 1998). On the contrary, the other two receptor subtypes 

considered in the present study, Y1 and Y2, did not display differences in baseline conditions 

or after exposure to stress. A series of studies reporting alterations of the Y1 receptor in the 

FSL rats (Caberlotto et al., 1998a; Jimenez-Vasquez et al., 2007) could have led to suggest 

the Y1 receptor as the subtype mediating the actions of NPY on the emotional processes. This 

was not confirmed in the present investigation and these discrepant results could be due to 

the different experimental procedures applied: in the previous works, the animals have been 

injected with fluoxetine or vehicle for 14 days (Caberlotto et al., 1998a), or have received a 

series of ECS or Sham (Jiménez-Vasquez et al., 2007), while in this study rats were not 

treated, but only exposed or not to an acute stress. In support for the notion that these 

discrepancies could be due to a differential experimental protocol, Husum and colleagues 

(2003) have demonstrated that repeated handling, alone or associated with injections of a 

drug, has respectively increased hypothalamic NPY-LI and reduced hippocampal NPY-LI of 

both FSL and FRL rats.  

Focusing on the Y2 receptor, no alterations of the binding sites have been reported in 

the FSL rats, even after the antidepressant treatment (Caberlotto et al., 1999). Moreover, the 

absence of changes in the expression of Y2 receptor mRNA was in line with previous studies 

on “depressed” rats (Caberlotto et al., 1998a, 1999) and it could lead to hypothesize a less 

important role of this receptor subtype in depression. In addition, this lack of changes on Y2 

receptor mRNA expression has been demonstrated to be in line with human findings, 

comparing the Y2 mRNA expression of subjects affected by bipolar disorder and major 

depression with normal controls in the prefrontal cortex (Caberlotto et al., 1999, 2001), 

temporal cortex and amygdala (section 5.3). 

 

5.2.2 Chronic mild/unpredictable stress  

The chronic mild/unpredictable stress (CMS) is a validated animal model of depression, 

characterized by a long and complex experimental procedure. However, the chronicity of the 

model also represents one of its major strengths in reproducing the stress conditions of 

human life.  
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The present study focused on the possible effects of the CMS procedure on the NPY 

system, to provide evidences of transcriptional changes in discrete brain regions related to 

emotions, stress and defense reactions. Only the Y5 receptor displayed a significant effect of 

the exposure to the CMS, consisting on a stress-induced reduction of the Y5 receptor mRNA 

expression in the cingulate cortex, medial amygdala and in the arcuate hypothalamic nucleus 

(Fig. 22). These alterations of the Y5 receptor mRNA expression in the CMS model in brain 

regions known for their fundamental role in mood disorders, together with the previously 

described results on the FSL rats model of depression (section 5.2.1), supported the role for 

this NPY receptor subtype in the regulation of the depressive-like state and its involvement in 

the emotional responses to stress.  

Surprisingly, the present study did not evidence any effect of the CMS exposure on 

the NPY levels (Fig. 20), whereas a previous study has demonstrated higher NPY mRNA 

levels in the arcuate hypothalamic nucleus and lower levels in the hippocampal dentate gyrus 

of Wistar rats exposed to the CMS compared to the non-stressed (Sergeyev et al., 2005). 

However, an immunohistochemistry study has showed that the exposure to the CMS induced 

a reduction of the NPY protein expression in several hypothalamic and thalamic areas, 

including the arcuate nucleus of hypothalamus, known for its critical role in the stress 

responses (Thorsell et al., 1998; Kim et al., 2003). However, the stress protocols applied in 

these different studies were not exactly the same, both in terms of duration of the stress 

procedure and in terms of kinds of stress to which the animals were exposed; this could have 

significantly influenced the final results, since another study has also demonstrated that even 

handling can induce considerable differences in the expression levels (Husum et al., 2003). 

Thus, contrasting results on the effects of the CMS have been reported, since it represents 

one of the most variable and difficult experimental stress protocols. The lack of changes on 

the NPY levels showed in the present study after the chronic stress procedure could be due to 

the possible activation of a mechanism of adaptation to the stress condition, as demonstrated 

in some preclinical and clinical studies (Chen & Herbert, 1995; Martinez et al., 1998; 

Thorsell et al., 1999; McEwen & Seeman, 1999; McEwen 2007, 2006). Moreover, a recent 

study has reported that the effects of stress could be frequently experienced even several 

weeks following the exposure to the stressor (Matuszewich et al., 2007). In support to this 

hypothesis, previous research works on chronic stressed animals have measured increased 

anxiety levels 1-3 weeks following the last stress exposure (Adamec, 2003; van Dijken et al., 

1992; Koolhaas et al., 1997; Koba et al., 2001; Buwalda et al., 2005). This hypothesis is 

consistent with evidences demonstrating that the unpredictable stress in rodents has not 
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caused behavioural effects immediately after the cessation of the stress procedure (D'Aquila 

et al., 1994; Vyas et al., 2002). However, in the present study the effects of the CMS on the 

NPY expression levels were evaluated only 24 hours after the cessation of the chronic stress 

procedure, thus a time-course study could be important to address this issue. Moreover, it has 

been showed that sensitivity to the CMS varies between strains and interacts with genetic 

factors relevant to depression: for example, the putative “depressed” FSL rat strain has been 

demonstrated to be more susceptible to the CMS-induced anhedonia than the control FRL 

rats, indicating that the “depressed” strain appears more prone to the effects of stress 

(Pucilowski et al., 1993). Thus, as previously discussed, an evaluation of the characteristics 

of the rat strain in terms of predisposition to stress, or to anxiety and depression would be 

appropriate before starting this kind of experimental procedure. 

In conclusion, these findings suggest that there could be individual differences in the 

activity of the NPY system, which may determine personal reactions to stressful situations, 

which may also lead to different compensatory mechanisms providing protection from stress. 

Thus, in general, it would be appropriate to systematically investigate the effects of the CMS 

at different time points following the stress exposure, performing a time-course study of the 

effects of stress. 

The Y1 and Y2 receptors mRNA expression were not affected by the exposure to the 

CMS (Fig. 21), possibly explained with the occurrence of mechanisms of compensations by 

functionally related systems. Unfortunately, studies investigating these issues are not yet 

available; thus, for this reason, further studies are needed to expand the knowledge on the 

mechanisms regulating the role of these receptors on mood disorders. 

The present study has also considered the differential basal anxiety levels of the rats, 

based on their behavioural response to an initial EPM test, thus dividing them in two groups 

defined low anxiety (LA) and high anxiety (HA). Successively, some animals of each group 

were exposed to the CMS protocol, while the controls were subjected to daily handling; at 

the end of the stress procedure, another EPM was performed to assess their final anxiety 

levels. The present study provided evidences of possible basal transcriptional differences of 

the NPY system between the two groups of rats in baseline conditions, based on their 

different anxiety levels. A significant difference of the NPY mRNA expression between the 

two groups of rats in baseline conditions, with higher expression levels in the HA animals 

compared to the LA, was observed in the medial nucleus of the amygdala (Fig. 20). This 

result is particularly interesting in view of the well known anxiolytic-like properties of NPY 

(Heilig et al. 1993, 1992, 1989; Wahlestedt et al., 1993; Britton et al., 1997; Kask et al., 
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1998a) and of the key role of the amygdala in the regulation of the affective behaviours, with 

a strong involvement in anxiety, fear and emotional memory (Aggleton, 1993; Gallagher & 

Chiba, 1996). In addition, this finding is in line with previous works, assessing that the NPY 

role in the amygdala has been consistently associated with anxiety; in particular, NPY 

injections in this region induced anxiolytic-like effects (Heilig et al. 1995, 1993). Therefore, 

increased NPY levels in this brain region of the HA rats could represent a protective 

mechanism, or a possible activation of compensatory processes, such as an attempt to control 

the high anxiety-like state of these rats, restoring a normal condition. Furthermore, in support 

to the present findings, a study comparing the NPY levels between the HA Fischer-344/N rat 

strain and the LA WAG/G strain in baseline conditions has reported higher NPY brain levels 

in the HA strain (Sudakov et al., 1999).  

In the present study, a significant difference in the Y1 receptor mRNA levels between 

the HA and LA rats was observed in the hippocampal dentate gyrus, in which the HA rats 

displayed lower Y1 mRNA levels compared to the LA in baseline conditions (Fig. 21). This 

result could support the hypothesis of the role of the Y1 receptor in mediating the NPY 

anxiolytic-like activity (Kask et al., 2002), in line with evidences demonstrating that the Y1 

receptor agonists produce NPY-like anxiolytic effects (Heilig et al., 1993; Broqua et al., 

1995; Britton et al., 1997), whereas the antagonists are anxiogenic (Wahlestedt et al., 1993a; 

Kask et al., 1998a, 1996). In this case, the higher Y1 mRNA expression in the LA rats could 

be reflected in their behavioural phenotype, inducing a reduction of their anxiety-like state, 

thus further sustaining the Y1 receptor involvement in the mechanisms regulating anxiety. 

This result is in line with the findings on the FSL rats, in which lower Y1 mRNA levels were 

found in the dentate gyrus of hippocampus in baseline conditions compared to the FRL 

(Caberlotto et al., 1998a; Jiménez-Vasquez et al., 2007), suggesting that altered levels of the 

Y1 receptor in this brain region could be related to the development of the anxiety-like state 

and depressive disorder. An opposite result was observed in the central amygdala, in which 

the HA rats showed higher Y1 mRNA levels compared to the LA animals (Fig. 21), 

confirming the hypothesized role of the Y1 receptor in the amygdala in the mechanisms 

regulating the anxiety-like state (Sajdyk et al., 1999; Kask et al., 2002, 1998b, 1996; 

Primeaux, 2005); in particular the central nucleus of this brain region is known to be 

involved in the behavioural, endocrine and autonomic responses to stress and anxiety (Davis 

et al., 1994). Thus, an increased expression of Y1 receptor mRNA in this nucleus of the 

amygdala in the HA animals could be responsible for their anxious phenotype. However, this 

result seems not to be in line with a previous work of Heilig and colleagues (1993), 
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demonstrating that the administration of Y1 receptor agonists led to the activation of the Y1 

receptors in the central amygdala, inducing anxiolytic effects. Finally, it is interesting to 

observe that, in baseline conditions, the same receptor can be oppositely regulated in the HA 

and LA rats in two different brain areas, underlying the regional specificity of the functions 

of these receptors.  

Regarding the Y2 receptor mRNA expression, no significant changes between HA 

and LA rats were observed in baseline conditions, consistently with the previously discussed 

findings on this receptor in the FSL and FRL rats (section 5.2.1) and with other studies on the 

FSL rats (Caberlotto et al., 1999, 2001). Although the lack of changes in the Y2 receptor 

mRNA expression in the depressive disorders is in line with human findings (Caberlotto et 

al., 1999, 2001), the role of the Y2 receptor in the regulation of anxiety has been supported 

by the findings on Y2 KO mice (Tschenett et al., 2003; Redrobe et al., 2003), or by studies 

investigating the activity of compounds acting selectively on the Y2 receptor tested in animal 

models of anxiety (Sajdyk et al., 1999; Nakajima et al, 1998; Bacchi et al., 2006). Hopefully, 

further studies will help to clarify the mechanisms regulating the role of this receptor in 

mood disorders. 

 

5.2.3 Chronic social defeat stress in rat and tree shrew 

The impact of stressful events on the development of psychopathologies has been largely 

investigated in pre-clinical studies, however the purpose of studying the animal responses to 

stress consists on clarify the human condition, in which the most common stressors have 

been demonstrated to have psychological or social nature (Kessler et al., 1985; Kessler, 

1997). Therefore, the use of social conflict between members of the same species to generate 

stress has advantages over animal models requiring aversive physical stimuli. A number of 

studies have showed that subordination stress, or social defeat, is a natural stressor leading to 

a variety of long-lasting physiological, behavioural and molecular changes (Bjorkqvist, 2001; 

Fuchs & Flugge, 2002). In particular it can affect reward-related processes (Von Frijtag et 

al., 2000) and evoke anhedonia and motivational deficits (Rygula et al., 2005), as well as 

changes in neurotransmitter release in different brain areas (Isovich et al., 2001; Krugers et 

al., 1993; McKittrick et al., 2000; Fuchs & Flugge, 2002). Moreover, a number of evidences 

have reported that these changes were reversed by treatments with antidepressant drugs 

(Fuchs et al., 1996; Kramer et al., 1999; Fuchs et al., 2004; Rygula et al., 2006), confirming 

that the chronic social defeat stress represents a validated animal model of depression.  

Based on these premises, the present study investigated any potential transcriptional 
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changes of the NPY system in two different animal species chronically exposed to social 

defeat stress and the possible effect of fluoxetine, a classic SSRI antidepressant, to clarify the 

mechanisms by which chronic stress acts on this neuropeptidergic system, presumably 

inducing a depressive-like state, and to assess if this system is involved in the mechanism of 

action of the antidepressant drugs. Focusing on the rat, the NPY mRNA levels were 

significantly decreased in the CA3 hippocampal region of the stressed group of animals 

compared to the controls (Fig. 23), hypothesizing a possible depressive-like effect of the 

chronic social stress, in view of the well known antidepressant properties of NPY in animals 

(Heilig, 2004). This result correlated with previous findings in the FSL rats model of 

depression, in which the “depressed” animals have displayed reduced baseline levels of NPY 

mRNA in the CA3 hippocampal region (Bjørnebekk et al., 2007), as well as reduced NPY-LI 

in the CA1-2 region (Jimenez-Vasquez et al., 2007), or in the total CA region (Caberlotto et 

al., 1999, 1998a) compared to the FRL control. Moreover, the present study showed an 

opposite regulation between the stress exposure and the antidepressant treatment in the 

dentate gyrus of the hippocampus, in which a down-regulation of the NPY mRNA expression 

was observed in the stressed rats compared to the controls; however, the chronic 

administration of fluoxetine reversed the effect of stress, restoring control NPY levels (Fig. 

23). This reduced NPY mRNA expression in the dentate gyrus of the chronically stressed 

animals was in line with many other studies on various animal models of depression 

(Caberlotto et al., 1998a; Mathé et al., 1998; Husum and Mathé, 2002; Bjørnebekk et al., 

2006; Jimenez-Vasquez et al., 2007) and together with the previously mentioned NPY 

reduction in the CA3 region, it supported the hypothesis that diminished hippocampal NPY 

levels seemed to be strictly related to a depressive-like state of the animal (Heilig, 2004). The 

hippocampus has been demonstrated to play an important role in the emotional processing 

and in the key aspects of learning and memories (Eichenbaum et al., 1992; Squire 1992). 

Moreover, it has been showed to belong to a neuroendocrine circuit, the limbic-

hypothalamic-pituitary-adrenal (LHPA) system, in which limbic and hypothalamic brain 

structures integrate emotional, cognitive and autonomic inputs, determining the responses to 

stressful experiences (Herman et al., 1996; Lopez et al., 1999). In addition, the hippocampal 

formation has been demonstrated to express a high concentration of glucocorticoid receptors 

(de Kloet et al., 1998) and to modulate glucocorticoid release, exerting inhibitory effects via 

a negative feedback on the HPA axis (Jacobson & Sapolsky, 1991; Herman, 1993). While 

short-term activation of this circuit is essential for vital functions, a constant hyperactivity of 

the circuit induced by chronic stress, resulting in chronically elevated glucocorticoids, has 
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been showed to lead to deleterious effects (Herman, 1993), such as hippocampal neuronal 

loss (Sapolsky, 1986). It has been observed that chronic stress impaired the feedback 

mechanisms, associated with decreased gene expression of hippocampal corticoid receptors 

(Meyer et al., 2001). Moreover, increasing evidences have suggested a connection between 

disturbances of the activity of the LHPA system with both structural alterations and volume 

reduction of the hippocampal formation, leading to cognitive or memory impairments 

(Sheline, 1996; Lupien et al., 1998). The glucocorticoids have been considered responsible of 

the deficits in cognitive and memory function, via significant atrophy of the hippocampal 

CA3 neurons, caused by a reduction of the dendritic arborizations and a loss of the dendritic 

spines; moreover, the gluococorticoids induced a reduction of the granule cell layer and of 

the subgranular zone of the hilus of the dentate gyrus, as well as of the whole hippocampal 

volume (Wooley et al., 1990). This hippocampal neuronal loss has been demonstrated to be 

mediated by apoptotic mechanisms (Sapolsky 1985 a,b) or by inhibition of the hippocampal 

neurogenesis (Magarinos et al., 1996; Gould et al., 1997), observable with brain imaging 

studies on human patients, which have reported a consequential deficit of the cognitive 

functions (McEwen et al., 1997; McEwen & Seeman, 1999). These findings seemed to 

hypothesize that impairment of brain structural plasticity represents an important feature of 

depressive disorders (Duman et al., 1999). Finally, various classes of antidepressant have 

been demonstrated to counteract the reduction of the dendritic arborizations of the CA3 

hippocampal neurons (Norrholm & Ouimet, 2001) and to activate the neurogenesis in the DG 

(Malberg et al., 2000), supporting the hippocampal hypothesis of depression. Based on these 

evidences, the present findings showing reduced NPY mRNA expression in the hippocampal 

CA3 region and dentate gyrus of the stressed rats could be related to the loss of hippocampal 

neurons under extreme, prolonged stress exposure, associated to a glucocorticoid excess. A 

parallel study conducted on rats exposed to the same protocol of those used in this work 

supported the hypothesized theory demonstrating an inhibited dentate gyrus neurogenesis 

after exposure to chronic psychosocial stress, reversed by chronic fluoxetine treatment (Czéh 

et al., 2007). Moreover, the present study gave further support to the previously mentioned 

anatomical and functional link between hippocampus and hypothalamus: all the changes 

affecting the NPY receptors were observed in hypothalamic nuclei. In particular, Y1 and Y5 

receptors displayed a reciprocal regulation between stress exposure and fluoxetine treatment 

in the ventro-medial-hypothalamus, with reduced transcriptional levels in the stressed group 

of rats compared to the controls, whereas the mRNA levels of the stressed animals treated 

with chronic fluoxetine were significantly up-regulated to the control levels, underlying that 
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fluoxetine counteracted the stress-induced effects (Figg. 24, 26). Fluoxetine, a selective 

serotonin re-uptake inhibitor (SSRI), was chosen in the present study because it represents 

one of the most used antidepressants in clinic. Its activity in restoring normal expression 

levels altered by chronic stress displayed both in NPY and in the two receptor subtypes 

represented the most relevant result obtained in this study. The purpose of the present 

experiments consisted on mimicking a realistic situation of an antidepressant intervention in 

animal studies; therefore, the drug was administered orally for 4 weeks, a clinically relevant 

time period and the plasma concentrations of the antidepressant were similar to those 

effective in clinical studies. In fact, parallel studies of the physiological parameters (Rygula 

et al., 2006; Czéh et al., 2007) have confirmed that the plasma concentration of fluoxetine 

resulted comparable in the control and stressed groups of rats and that the concentrations of 

fluoxetine in the plasma were in line with therapeutically effective doses (Baumann et al., 

2004). Moreover, the pharmacological treatment was applied while exposing the animals to 

the stress procedure and the stressful influences were continuously present during the whole 

period of treatment in order to mimic the human condition.  

In conclusion, the present investigation further validated the chronic psychosocial 

stress model as a predictive animal model of depression, giving further indications of the 

involvement of the NPY system in stress responses and depressive disorders, demonstrating 

the involvement of the NPY system in the activity of the antidepressant drugs.  

The reduced Y1 receptor mRNA levels in the stressed group of animals gave further 

support to the above mentioned role of the Y1 receptor in modulating the NPY functions in 

the stress-related responses and depressive-like states (section 5.2.2). Moreover, the similar 

effects observed in the Y1 and Y5 receptors were consistent with the hypothesis of their 

anatomical and functional interactions. An immunohistochemistry study has demonstrated 

that they co-localize in several rat brain regions (Wolak et al., 2003), an in situ hybridization 

study has showed that they have an overlapping mRNA distribution pattern (Parker & 

Herzog, 1999) and a high dimerization state of these two receptor subtypes has been 

observed (Dinger et al., 2003), explaining why Y1 and Y5 receptors are often involved in 

some identical functions, potentially exerting a reciprocal co-regulation (Lin, 2004; Gehlert, 

2004; Gehlert et al., 2007). Moreover, unlike the other NPY receptor subtypes, Y1 and Y5 

human genes were found in close proximity to each other and were likely evolved from a 

unique precursor, through a gene duplication event (Herzog et al., 1997).  

Finally, a significant reduction of the Y2 receptor transcriptional levels was observed 

in the ventro-medial hypothalamic nucleus of the stressed rats (Fig. 25), suggesting that the 
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chronic psychosocial conflict could be linked to alterations of the HPA axis (Kramer et al., 

1999; Fuchs et al., 2001). Moreover, the altered HPA axis activity was supported by a 

parallel investigation of the physiological parameters measured on these rats, showing that 

the exposure to chronic social stress has induced increased adrenal glands weight (Rygula et 

al., 2006), indicative of the effects of stress (Sapolsky et al., 2000), in line with a previous 

study reporting increased adrenal weight following chronic mild unpredictable stress (Muscat 

& Willner, 1992). In this case, increased adrenal weight in the stressed animals might reflect 

a hyper-activation of the HPA axis, involved in the mechanisms leading to depressive states 

(Kramer et al., 1999; Fuchs et al., 2001). Moreover, the dysregulation of the HPA axis 

represents one of the best replicated findings in human depressed patients (Rubin et al., 

1987), further confirming the validity of the model. However, Rygula and colleagues (2006) 

have failed to demonstrate an effect of fluoxetine in reducing adrenal glands weight in these 

animals.  

Furthermore, the present study examined the effects of the chronic psychosocial stress 

on the NPY system in a non-rodent species, the tree shrew (Tupaia belangeri), 

phylogenetically regarded as an intermediate between insectivores and primates, showing a 

high genetic homology with humans (Martin, 1990), a pronounced territoriality in male 

animals and a day-active life (Fuchs et al., 1996). Thus, the chronic defeat stress on the tree 

shrews could represent a suitable and naturalistic experimental paradigm to study the 

mechanisms of major depression (Fuchs et al., 1996). In fact, numerous behavioural and 

endocrine studies of the effects of chronic social stress in the tree shrew have supported this 

hypothesis, demonstrating that these animals resemble symptoms of human depressed 

patients and respond to chronic antidepressant treatments, leading to an improvement of the 

symptoms. Moreover, these studies have showed that chronic stress induced alteration of 

brain metabolism, hippocampal volume and reduction of the hippocampal neurogenesis, 

leading to memory and cognitive impairments, generally prevented by treatments with 

various antidepressants (Fuchs et al. 2004, 2001, 1996; Kramer et al. 1999; Fuchs & Gould 

2000; Czeh et al. 2007, 2001; Fuchs & Flugge 2003, 2002; Van Kampen et al. 2002; 

Lucassen et al. 2004; Fuchs 2005).  

Differently from the results found in rat, the present study demonstrated that a chronic 

exposure to defeat stress in the tree shrews induced an increase of the NPY mRNA levels in 

the CA1-2 hippocampal regions and in the arcuate hypothalamic nucleus (Fig. 28). The 

transcriptional changes, in particular those observed in the hippocampal formation, could 

support the hypothesis of a neuroproliferative role of NPY in the hippocampal cells (Howell 
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et al., 2007, 2005, 2003), representing an attempt to counteract the reduced hippocampal 

neurogenesis in the dentate gyrus observed in the stressed animals in a parallel study (Prof. 

Fuchs, personal communication). Thus, NPY has been showed to contribute to the 

maintenance of the hippocampal neurogenesis, suggesting a possible neuroprotective 

function against the stress-induced cellular damage in the hippocampus (Howell et al., 2007, 

2005, 2003, 2002). Thus, the hippocampal neuroproliferative role of NPY could be 

considered a possible mechanism by which NPY exerts its antidepressant properties and its 

improvement of learning and memory processing. Moreover, the alteration of the NPY 

expression found in the hypothalamic region, related to the alterations observed in the 

hippocampus, gave further support to the existence of an intimate connection between these 

two brain regions (Herman et al. 1996; Fuchs & Flugge 2003).  

Focusing on the receptors, consistently with the alterations of the NPY transcriptional 

levels, the Y2 receptor mRNA expression was increased in the stressed tree shrews compared 

to the non-stressed (Fig. 29), thus supporting the hypothesis of the activation of the NPY 

system against the stress-induced cellular damage in the hippocampus (Howell et al., 2007, 

2005, 2003).  

Furthermore, the Y5 receptor mRNA expression was found to be altered in various 

brain regions of the tree shrews, with a reduction of the transcriptional levels in the CA1-2 

hippocampal regions in the stressed animals and a restoring of the expression levels of the 

control animals after treatment with fluoxetine (Fig. 30), as observed in the rats. 

Furthermore, in the medial amygdala and cingulate cortex, a Y5 receptor up-regulation 

induced by stress exposure was found, which was not reversed by fluoxetine (Fig. 30). All 

these changes, together with the results obtained in the present study in other animal models 

of depression (sections 5.2.1 and 5.2.2) gave support for the involvement of the Y5 receptor 

in the mechanisms regulating the responses to stress and in the depressive states, resulting 

particularly interesting since the Y5 receptor has been mostly studied for its involvement in 

the mechanisms related to food intake and obesity (Gehlert, 1999; Cabrele et al., 2000).  

In conclusion, this study underlined that the transcriptional levels of the NPY system 

were affected by the chronic psychosocial stress in rat and tree shrew, showing that in some 

specific cases, both the species demonstrated transcriptional changes induced by fluoxetine 

treatment, which reversed the effects of stress by restoring the mRNA levels observed in the 

control subjects. These findings supported some previous evidences demonstrating that the 

levels of the NPY mRNA expression and the NPY-LI have been increased both in rat and 

human after a chronic administration of antidepressants (Heilig et al., 1988; Weiner et al., 
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1992; Nikish et al., 2005) or after ECS and ECT, procedures used to treat depression in 

pharmacotherapy-resistant cases (Jimenez Vasquez et al., 2007, 2000 a,b; Mathé, 1997, 

1996, Mikkelsen et al., 1994; Stenfors et al., 1992; Wahlestedt et al., 1990), suggesting that 

the antidepressive treatment modalities may act through a mechanism that increases the 

endogenous NPY levels. However, in this study, the stress exposure generally induced a 

reduction of the NPY and its receptors mRNA expression in the rat brain, whereas an 

opposite direction of changes was found in the tree shrew transcriptional levels, which were 

generally increased by stress and diminished following the antidepressant treatment. These 

differences observed in the two animal species could be interpreted as a species-specific 

response to stress and to the antidepressant treatment, evidencing that using animal species 

more similar to human, such as primates, would be very important to study psychiatric 

disorders. In fact, their brain structures and the mechanisms involved in the regulation of the 

emotional states have been demonstrated to be more similar to those observed in the human 

brain; thus, they would be more indicative than rodent species of the human condition. 

Unfortunately, the poor availability and the ethical issues of using primates in these kinds of 

studies represent a limit to the improvement of the knowledge of the psychiatric disorders. 
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5.3 NPY Y2 RECEPTOR mRNA EXPRESSION IN AMYGDALA AND TEMPORAL 

CORTEX OF PSYCHIATRIC SUBJECTS  

 

The present study has reported a wealth of interesting pre-clinical results, obtained analyzing 

the NPY system in the transgenic mice lacking Y2 receptor gene and in three different animal 

models of depression. Although one of the animal models studied was in a pre-primate 

species, depression is a human condition, not reliably reproducible in laboratory animals, 

thus pre-clinical studies can only provide a simplified model of the depressive-like state. For 

this reason, to provide a more complete analysis of the involvement of the NPY system in 

mood disorders, a human post-mortem study involving psychiatric subjects was also 

considered in the present work. The human tissues used, obtained from the Stanely 

Foundation Neuropathology Consortium, represent a good tissue collection, in which a high 

number of subjects composes each group, of great value in view of the difficulties in 

obtaining human specimen, especially those of psychiatric subjects. In this study, three 

different pathological groups were considered: major depression, bipolar disorder and 

schizophrenia, the last group included to have a specificity of the disease. To reduce the 

variability among the groups, given the high heterogeneity characterizing human subjects, 

which could affect the final result of the research work, the subjects were matched for a 

series of factors, such as age, gender, PMI, hemisphere side, use of antidepressant and 

duration of the treatment, substances of abuse history. 

The focus of the present study was the amygdala and the adjacent temporal cortex, 

brain structures known for their involvement in the regulation of emotions (Sah et al., 2003), 

emotional memories (Buchanan, 2007) and cognitive functions (Lupien et al., 2007; 

Watanabe & Sakagami, 2007). The amygdala has been demonstrated to be anatomically 

related to a number of other brain regions (McDonald, 1998); in particular, cortical inputs 

supply information from structures related with memory systems (Sah et al., 2003), emotion 

and vigilance (Davis & Whalen, 2001), which are altered in depression (Drevets et al., 2001). 

Of the three major NPY receptors in the brain, the present study focused on the Y2 subtype, 

which has been demonstrated to be the predominant NPY receptor in the human brain, in 

which it is abundantly expressed in the amygdala and temporal cortex (Caberlotto et al., 

1998a). As demonstrated by many pre-clinical studies, the Y2 receptors in amygdala are 

known for their critical role in the regulation of the emotions, stress-related behaviours and 

cognition and alterations of the expression of the Y2 receptors in this brain region could be 

related to the pathophysiology of psychiatric disorders (Nakajima et al., 1997; Sajdyk et al., 
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2002; Tschenett et al., 2003; Redrobe et al., 2003; Greco & Carli, 2006). However, a 

previous human post-mortem study has failed in observing a differential Y2 mRNA 

expression in the prefrontal cortex of the same psychiatric subjects considered in this study 

affected by major depression, bipolar disorder and schizophrenia, compared to normal 

controls (Caberlotto & Hurd, 2001), although a significant effect of suicide as a cause of 

death has been reported in all these psychiatric groups, in which subjects who have 

committed suicide have displayed higher Y2 transcriptional levels in a specific layer of the 

prefrontal cortex (Caberlotto & Hurd, 2001).  

In the present study, the Y2 receptor mRNA expression in different subnuclei of the 

amygdaloid complex and in the adjacent temporal cortex of the same groups of subjects 

considered by Caberlotto and Hurd (2001) was analyzed, but no significant alterations were 

observed compared to the control subjects. The lack of significant changes of the Y2 mRNA 

expression in the amygdala and temporal cortex of subjects affected by depressive disorders 

seems not to support a role for this NPY receptor in these two brain regions in the regulation 

of depressive states. Further human post-mortem studies would be needed to demonstrate a 

possible involvement of this receptor in these two brain regions in the regulation of stress 

responses and anxiety-related states, rather than depressive disorders, in view of the fact that 

these regions seem to play a major role in the mechanisms regulating fear, anxiety and 

cognitive functions (Aggleton, 1993).  

In addition, the present study analyzed the existence of a possible relation between 

the Y2 receptor mRNA expression and some demographic parameters, showing a positive 

correlation between the Y2 transcriptional levels in various amygdaloid nuclei or in the 

temporal cortical layers and the increasing age of the subjects (Fig. 31). The increased 

expression of the Y2 receptor in relation to the age of the subjects seems to be region-

specific, since the Y2 receptor mRNA expression on the human prefrontal cortex was not 

affected by the age of the patients in the study performed by Caberlotto and Hurd (2001). 

Moreover, a negative correlation between the Y2 receptor mRNA expression in the analyzed 

regions and the post-mortem interval (PMI) was found in the present study (Fig. 31). This 

finding has been supported by a previous evidence showing the same relation between the Y2 

receptor mRNA expression in the human prefrontal cortex and the PMI (Caberlotto & Hurd, 

2001). Altogether, these results underline the importance of a fast recover of human tissues 

for post-mortem analysis, suggesting caution in selecting brain tissue samples for post-

mortem studies, given that the PMI could negatively influence the quality of the tissues used 

and their ability to yield accurate results (Stan et al., 2006).   
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Other parameters, such as subjects’ gender, use of antidepressants and duration of the 

treatment, cause of death and hemisphere side analyzed did not affect the Y2 mRNA 

expression. In particular, none of the psychiatric groups studied differed from the control 

subjects on the expression of the Y2 receptor mRNA in relation to suicide, a cause of death 

generally highly correlated with mood disorders (Rihmer, 1996), suggesting that the up-

regulation of the Y2 mRNA expression observed in suicide victims in a previous work could 

be region-specific (Caberlotto & Hurd, 2001). Interestingly, in suicide victims, especially the 

youngest individuals, a higher Y1 receptor mRNA expression has been observed in the same 

brain region (Caberlotto & Hurd, 2001). Moreover, other works have focused on NPY in 

relation to suicide, also reporting constrasting results: significant differences (Träskman-

Bendz et al., 1992) or no alterations (Roy, 1993) have been found on the NPY concentration 

in the CSF of depressed and non-depressed patients with a recent suicide attempt. Another 

work considering the NPY-immunoreactivity in post-mortem brain tissues has showed 

differential NPY concentrations between suicide victims, a subgroup of suicides with a 

history of depression and subjects dead for natural causes, depending on the brain region 

considered (Widdowson et al., 1992).  

Based on some pre-clinical and clinical recent evidences suggesting a role for NPY 

and its receptors in drug addiction, especially in the mechanisms related to alcohol intake, 

dependence and withdrawal (Gilpin et al., 2003; Valdez & Koob, 2004; Thiele et al., 2004; 

Thorsell, 2007), the effects of the substances of abuse history in relation to the Y2 mRNA 

expression were evaluated in this study. Although not much is known about the relation 

between NPY and cocaine, in this study higher levels of Y2 mRNA were interestingly found 

in the accessory basal nucleus of the amygdala in cocaine “habitual users” compared to the 

“past users”, whereas the Y2 mRNA levels measured in the control subjects resulted 

intermediate between the other two groups analyzed (Fig. 32). This opposite expression of 

the Y2 receptor transcriptional levels between the cocaine “habitual users” and “past users” 

compared to the control subjects could be due to the possible activation of a mechanism of 

adaptation associated with the abuse, in which the normal expression of the receptor seemed 

to be altered. Moreover, the modifed expression of the Y2 transcriptional levels in the 

amygdala give further support to the suggested role for this brain region as a key regulator of 

discrete stimulus-reinforce associations produced by a variety of substances of abuse, ranging 

from psychostimulants to opiates (See, 2002). In fact, the amygdala has been shown to 

belong to a cortico-limbic circuit mediating both the acquisition and the expression of 

conditioning, playing a critical role in relapse to drug-seeking behaviour (See et al., 2003).  
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Regarding the nicotine use, lower Y2 transcriptional levels were interestingly 

observed in the superficial layers of the temporal cortex of the subjects with a history of 

nicotine abuse compared to the non-users (Fig. 32). A series of recent studies have proposed 

a role for nicotine in the improvement of cognition and attention and in the attenuation of 

memory impairment (Levin & Rezvani, 2007; Swan & Lessov-Schlaggar, 2007; Weiss et al., 

2007; Potter & Newhouse, 2008; Potter et al., 2006; Xu et al., 2005), suggesting a potential 

beneficial effect of the nicotinic agonists in the treatment of cognitive and mnemonic 

dysfunctions (Timmermann et al., 2007; Terry et al., 2005). This result could be related to 

the known functions of the cerebral cortex in the modulation of cognitive activities, 

especially in humans (Badre & Wagner, 2007; Briand et al., 2007; Watanabe & Sakagami, 

2007) and in particular to the role of NPY in learning and memory processing, known to be 

exerted especially through the Y2 receptors (Greco & Carli, 2006; Redrobe et al., 2004). In 

the present study, a positive correlation between the Y2 receptor mRNA levels in the 

temporal cortex and the age of the subjects was found (Fig. 31) and, at the same time, a lower 

expression of the Y2 receptors in the cerebral cortex of smokers (Fig. 32), which could be 

related to a reduction of the age of the cognitive structures in these subjects, possibly due to 

the beneficial effects of nicotine, which could have anti-ageing effects for the brain 

functions. 

Unexpectedly, no significant results were found in the ethanol abusers, in which the 

most significant changes on the Y2 transcriptional levels would have been expected, in view 

of a number of evidences demonstrating an involvement of the NPY system in alcohol 

dependence, with a particular focus on the Y2 receptor antagonists as selective suppressors of 

the motivation to ethanol self-administration (Thorsell et al., 2006; Badia-Elder et al., 2007; 

Carvajal et al., 2007; Rimondini et al., 2005; Thiele et al., 2004; Valdez & Koob, 2004) and 

based on the findings showing a correlation between the ethanol abuse and altered NPY 

levels in the amygdala, often associated with mood disorders, such as anxiety (Roy & 

(Pandey et al., 2003a; Pandey et al., 2003b; Roy & Pandey, 2002). 

 

 

 

 

 

 

 



 100

6. CONCLUSION 
 

This study investigated the potential role of NPY and its major receptor subtypes in 

depression and anxiety using different animal models of depression, transgenic mice lacking 

one of the most important NPY receptors and post-mortem human specimens of subjects 

affected by mood disorders. The animal models resulted extremely useful to further analyze  

the involvement of NPY and particularly of its three major receptor subtypes, Y1, Y2 and Y5, 

in the mechanisms regulating stress responses and depressive mood. All the receptors were 

demonstrated to be differentially expressed in the various animal models, showing species-

specific changes of their mRNA expression and to be influenced by the exposure to stress. 

However, it remains to be clarified which receptor subtypes is the most involved in the 

regulation of mood disorders, even if the present study mainly supported the role of the Y5 

receptor in mood disorders. Moreover, the most frequent and consistent expression changes 

involving the NPY system were observed in the following brain areas: hippocampal 

formation, hypothalamus and amygdala; thus, the present findings gave further support for 

the crucial role of these brain regions in the affective disorders. The role of Y2 receptor in 

these kinds of disorders, which was supported by pre-clinical evidences and human post-

mortem studies, seemed not to be confirmed in the present study. Further investigations 

would be necessary to complete the research project started with the present study, in 

particular using human tissues, given that affective disorders, especially depressive disorders, 

represent a typical human condition, not perfectly reproducible by animals, which can only 

provide a simplified model of the depressive-like state. Furthermore, the use of selective 

receptor antagonists applied to studies involving animal models would provide more detailed 

and specific results. They would probably indicate the receptor subtype playing the most 

important role in these disorders and it would be considered the novel target for the discovery 

and development of new antidepressants and anxiolytic drugs. Unfortunately, this purpose 

results particularly difficult because of the lack of selective and brain-penetrant antagonists. 

Hopefully, these compounds will be synthesized in the future, representing a novel and 

innovative approach in understanding the basis of the mechanisms regulating the NPY role in 

depression and anxiety and in particular providing a treatment against depression and anxiety 

disorders.  

 Finally, an involvement of the Y2 receptor in drug dependence was observed, in 

particular in cocaine and nicotine abuse, whereas some previous works have especially 
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focused on the functions of the NPY system in relation to alcohol intake. 

Moreover, the anxiety-related behaviours in two different strains of mice lacking the 

Y2 receptor were considered, underlining the importance of the genetic background in 

influencing the anxiety-like states, showing that the different genetic component could have a 

stronger impact on the phenotype than the deletion of an entire gene and suggesting caution 

in interpreting the data obtained from studies on knockout mice. 
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	RNA polymerase 
	The slides were exposed to Fuji Imaging plates (BAS-TR 2025) together with 14C standards for 4-5 days. Light transmittance values were measured from the digitalized images using an image analysis software system (AIS 4.0, Imaging Research, St. Catharines, Ontario, Canada). Based on the known radioactivity of the 14C standards relative to their transmittance levels, the light transmittance values (PLS) per mm2 [PLS/mm2] were converted to nCi/g using a calibration curve. The regions of interest, such as various nuclei of the amygdala (lateral nucleus, basal intermediate division, basal magnocellular division, accessory basal nucleus) and of the cerebral cortex (entorhinal cortex, superficial and deep layers of the temporal cortex) were defined by anatomical landmarks. Generally, for each subject, two consecutive sections were considered and a minimum of six measurements for each region were taken and averaged. Background signal in the adjacent white matter was subtracted from the averaged values. The measurements of each specific brain region were taken by individually tracing the structures on the TV monitor with a cursor. 

